ML20067A072

From kanterella
Jump to navigation Jump to search
Forwards Summary of 820915 Meeting W/Nrc in Bethesda,Md Re Thermal Margin Beyond Design Basis.Meeting Agenda,Viewgraphs & Attendance List Encl
ML20067A072
Person / Time
Site: Clinch River
Issue date: 11/12/1982
From: Longenecker J
ENERGY, DEPT. OF, CLINCH RIVER BREEDER REACTOR PLANT
To: Check P
Office of Nuclear Reactor Regulation
References
HQ:S:82:123, NUDOCS 8212010161
Download: ML20067A072 (140)


Text

i e

Department of Energy Washington, D.C. 20545 Docket No. 50-537 HQ:S:82:123 Nov i ^ 1982 Mr. Paul S. Check, Director CRBR Program Office Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Cormnasion Washington, D.C.

20555

Dear Mr. Check:

SUMMARY

OF THE SEPTEMBER 15, 1982, MEETING CN THERMAL, MARGIN BEYOND THE DESIGN BASE (TMBDB)

/

On September 15, 1982, the project and the NRC ;aet to discuss selected topics on TMBDB. Enclosure 1 is a summary of the meeting, is the meeting agenda, Enclosure 3 includes the view-graphs used, and Enclosure 4 lists the meeting attendees.

Sincerely, D

JodnR.Lont;ene er Acting Director, Office of the Clinch River Breeder Reactor Plant Project Office of Nuclear Energy l

4 Enclosures 1

1 Q00 f r

' / YD 8212010161 821112 DR ADOCK 05000537 PDR

TMBDB HEETING

SUMMARY

15, 1582 the Project and NRC met to discuss the On September egonda topics In Erclosure 2 concerning TMBDB.

A copy of the vicwgraphs presented are in Enclosure 3 and the attendees are listed in Enclosure 4.

The Project's presentation of two sensitivity studies of sodlum-These two studles we concrete penetration rates,was presented.and a " Realistic Upper Bound Case."ge o " Margin Assessment Case" Is an artifically contrived case to The " margin assessment case" existing data on sodium-concrete testing and to I

bound all The dotermine the margin In the existing design f or TMBDB.

case results in a need to vent the analysis of this artificial containment buil ding at 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> anc Indicates a need f or minor redesign in the reactor cavity.

The analysis of the " Realistic Upper Bound Case" results in a need to vent the containment at 22 hours2.546296e-4 days <br />0.00611 hours <br />3.637566e-5 weeks <br />8.371e-6 months <br /> with no redesign needed.

Also, the Project presented results to NRC that the vent lines from the RCB to the contatnment-cleanup system may need to be l

increased to 3 f eet diameter f rom 2 feet diameter to prevent plugging from the sodlum aerosols during venting.

During the meeting the Project accepted the tollowing action items in response to NRC questions:

Provide a reference for sodlum aerosols not being (1) transported thru the sodlum pool to the RC vents.

l (2)

Evaluate the effects of nonaxisymmetric convection currents on the containment shell Integrity.

I j

(3)

Provide information on the location of the purge and and evaluate the possibility of short vent lines circuiting.

Provide the ref erence of the Hydrogen Non-Strati f ication (4)

I tests at HEDL.

Forward to NRC a date by which the test results on the (5)

Hydrogen Monitor Fil ter will be avail abl e.

Docket the " Margin Assessment Case" In TMBDB fa the near (6) future.

I 7"/hr for 3 hrs then 1"/hr until Sodlum Bolidry 2

7"/hr for 20 mlutes then 1"/hr until Sodlum Bolidry

8

,,e...

e e

O ENCLOSURE 2 9

l l

i I

?

i i

l sb

BRIEFING ON CRBRP

-l THERMAL MARGINS BEYOND THE DESIGN BASIS.

1.1 i

FOR THE -

l NUCLEAR REGULATORY COMMISSION-CRBRP PROGRAM OFFICEl

'BETHESDA, MARYLAND l

SEPTEMBER 15,1982 AGENDA

~

N.KAUSHAL INTRODUCTION o

DISCUSSION OF'OPEN ISSUES o

- DESIGN MARGINS TO ACCOMMODATE EXTREME SODIUM-CONCRETE PENETRATIONS DURING TMBDB

SUMMARY

REVIEW OF TMBDB ANALYSES VlS A VIS SODIUM-CONCRETE REACTION

  • ASSESSMENT OF STRUCTURAL CAPABILITY FOR THE EXTREME G. FRESKAKIS

- CONTAINMENT EFFECTS DURING RC /ENTING TO RCB PENETRATION CASE T. BALL

.l

  • POTENTIAL FOR PLUGGING DURING RC VENTING TO RCB T. BALL
  • ASYMMETRY EFFECTS OF SODIUM BURNING

.l T. BALL

  • BASIS FOR NON-STRATIFICATION OF HYDROGEN T. BALL

'J. GROSS

  • SODIUM AEROSOL DEPLETION CALCULATIONS M. McKEOWN
  • SURVIVABILITY OF TMBDB INSTRUMENTATION n...,

BRIEL: LNG OX CRBRP I

THERMAL MARGINS BEYOND THE DESIGN BASIS i

FOR THE -

NUCLEAR REGULATORY COMMISSION-CRBRP PROGRA BETHESDA, MARYLAND SEPTEMBER 15,1982 AGENDA (CONT.)

DISCUSSION OF OPEN ISSUES, CONTINUED

- OPERABILITY AND ACCESSIBILITY OF VENT, PURGE, AND CLEAN-UP o

P.FAZEKAS SYSTEMS

  • CONTAINMENT CLEAN-UP SYSTEM DESCRIPTION

- VENT SYSTEM DESCRIPTION

- CLEAN-UP SYSTEM DESCRIPTION

  • CONTAINMENT CLEAN-UP SYSTEM TEST RSSULTS I
  • DYNAMIC ANALYSIS OF CONTAINMENT CLEAN-UP SYSTEM 17,1982

- DISCUSSION OF OPEN ISSUES IDENTIFIED IN AUGUST OPEN MEETING CLOSING DISCUSSION N.KAUSHAL o

- CLOSING

SUMMARY

.AND CONCLUSIONS i

SUMMARY

OF NRC STAFF POSITION i

  • hI,Ia $ h

~

t-4-..-

. e e.

e ENCLOSURE'3 e

e l

l i

l

?-

CLINCH RIVER BREEDER 5K

,l REACTOR PLANT CRBRP PROJECT BRIEFIXG FOR

+

NUCLEAR REGULATORY COMMISSION CRBRP PROGRAM OFFICE.

THERMAL MARGINS BEYOND l

THE DESIGN BASIS (TMBDB) l SEPTEMBER 15,1982 1

BRIEFING ON CRBRP THERMAL MARGINS BEYOND THE DESIG FOR THE NUCLEAR REGULATORY COMMISSION-CRBR BETHESDA, MARYLAND SEPTEMBER 15,1982 AGENDA N.KAUSHAL INTRODUCTION DISCUSSION OF OPEN ISSUES ODIUM-

- DESIGN MARGINS TO ACCOMMODATE EXTREME S CONCRETE PENETRATIONS DURING TMBDB i

ODIUM-

SUMMARY

REVIEW OF TMBDB ANALYSES VIS A VIS S P.BRADBURY CONCRETE REACTION TREME

  • ASSESSMENT OF STRUCTURAL CAPABILITY FOR THE E G. FRESKAKIS PENETRATION CASE RCB

- CONTAINMENT EFFECTS DURING RC VENTING TO T. BALL

  • POTENTIAL FOR PLUGGING DURING RC VENTING TO RC T. BALL l
  • ASYMMETRY EFFECTS OF SODIUM BURNING T. BALL I

~,

  • BASIS FOR NON-STRATIFICATION OF HYDROGEN T. BALL

'J. GROSS

  • SODIUM AEROSOL DEPLETION CALCULATIONSM. McKEOWN I

1

  • SURVIVABILITY OF TMBDB INSTRUMENTATION r

BRIEFING ON CRBRP ASIS THERMAL MARGINS BEYOND THE i

FOR THE -

OGRAM OFFICE NUCLEAR REGULATORY COMMISSION-CR BETHESDA, MARYLAND SEPTEMBER 15,1982 AGENDA (CONT.)

I DISCUSSION OF OPEN ISSUES, CONTINUEDOF VENT, PURGE, AND CL P.FAZEKAS

- OPERABILITY AND ACCESSIBILITY o

ESCRIPTION SYSTEMS

  • CONTAINMENT CLEAN-UP SYSTEM D

- VENT SYSTEM DESCRIPTION

- CLEAN-UP SYSTEM DESCRIPTION T RESULTS

  • CONTAINMENT CLEAN-UP SYSTEM TEST CLEAN-UP SYST
  • DYNAMIC ANALYSIS OF CONTAINMEN UGUST 17,1982 OPEN l

- DISCUSSION OF OPEN ISSUES IDENTIFIED IN A MEETING N.KAUSHAL CLOSING DISCUSSION I

USIONS

- CLOSING

SUMMARY

.AND CONCL i

ON

SUMMARY

OF NRC STAFF POSITI

- - ~

j Cia;.9. P THERMAL MARGINS I

BEYOND THE DESIGN BASIS

!l czsz 3RLEFL\\LG FOR fl NUCLEAR REGULATORY

-l

l l

COMMISSION l

CRBRP PROGRAM OFFICE l!

l

SUMMARY

REVIEW OF TMBDB il l

ANALYSES VIS A VIS

!'l SODIUM-CONCRETE REACTION ii i

PRESENTED BY:

PHILL BRADBURY SYSTEMS INTEGRATION, MANAGER i

WESTINGHOUSE-OR

^

CRBRP PROJECT SEPTEMBER 15,1982 a.

w

ROLE OF EXTREME PENETRATIO MARGIN ASSESSMENT CASE l

I,

'i THE CONCRETE PENEiRATION RA f

THE EXTREME PENETRATION CASE o

l

~

DERIVED FROM TEST DATA.

~

THE EXTREME PENETRATION CASE WA l

ARTIFICALLY CONTRIVED AS TH WOULD RESULT IN A NEED TO V E

IF 6% HYDROGEN CONCENTRATIO l

l THIS CASE HAS BEEN USED SO

~

EXCEEDED.

THE MARGIN AVAILABLE IN THE DESI HENCE, WE WILL CALL IT THE l

' MARGIN ASSESSMENT CASE'

COMPARISON OF UPPER BOUND AND REALISTIC CASE TO TEST DATA FROM HEDL-TME 82-15 I

MAXIMUM REACTION PENETRATION (cm)

^7 24 i

)

l O HEDL TESTS O AEROSPACE TESTS 20 - a ANL TESTS

~4 l

A SANDIA TESTS l

0 li 16 CURVE A (UPPER BOUND) l 12 0

CURVE B (REALISTIC CASE) y l

0 0

8 q 0

O f

I O

l o

a l

~O NOTE TIME SCALE CHANGp l l

4 U

O Q g.*

A I

I I

I I

t 0

4 8

12 16 20 24 80 100 TIME (HR)

UPPER BOUND OF TEST DATA i

THE UPPER BOUND OF TEST DATA IS i

18 cm/HR (7 INS /HR) FOR 20 MINS 1

2.57 cm/HR 41 IN/HR) FROM 20 MINS j

TO 3 HRS i

0.08 cm/HR (0.03 IN/HR) BEYOND 3 HRS ~

L THIS IS JUSTIFIED IN HEDL-TME-82-15.

THIS UPPER BOUND RESULTS IN TOTAL i.

PENETRATION OF l

5.6 INS IN 24 HRS 1

6.4 INS IN 50 HRS 4

I e

4 get #999 9 r

SODIUM-LIMESTONE CONCRETE REACTI PENETRATION

SUMMARY

i i

PENETRATION (INCHES)

SET-14 00 LCT-2 14 e HEDL AVERAGE PENETRATION 13 -

A SANDIA MAXIMUM PENETRATION 12 A SANDIA MAXIMUM PENETRATION-

.i SODIUM LIMITED 11

~

10 9

LCT-10 1

8 7

l A LS-3 LCT-120 6

5 A LS-2 CDC-10 LCT-130 4

SC-4 LFT-6 e SC-14 LSC-2 A LS-1 LS-9 e

3 SC-8 SC-13 Sg LS-8 LS-5 ^ '-18 SC-18G LFT-4 LS-6 i e

e ' '.

^'

I~

LS-4

^ ' ' ' ' ' '

100 0

10 1.0 TIME AT TEMPERATURE (HOURS)

O.1 e es seso se s

~ SODIUM-LIMESTONE CONCRETE REA PENETRATION

SUMMARY

FOR TIME PERIOD OF INTEREST (50 HOURS) 4 i

PENETRATION (INCHES)'

14-e HEDL ESTIMATED PENETRATION AT 50 HOURS FO TESTS PERFORMED FOR 100 HOURS 13 e HEDL AVERAGE PENETRATION A SANDIA AVERAGE PENETRATION l

A SANDIA AVERAGE PENETRATION-SODIUM LIMITED 11

~

i t> LCT-2 10 (DEHYDRATED) 9

~

8 t a LCT-1 7

t i LCT-12 4> SET-14 3

~

5 CDC-10 i > SET-15 4

A LS-3 SC'4

~

3-LS-9 e, LFT-6 e SC-14a LSC-2,'

CDC-2 A LS-2 SA/B SC-8 SC-13 2

SC C9 LS-8 O

=

'S i iA=

1 Ai eil 50

=

ie i i 10 0<

1.0 TIME AT TEMPERATURE (HOURS) 0.1 b

REASONABLE UPPER BOUND INCLUDING CORE DEBRIS e

IF CORE DEBRIS IS PRESUMED AS CONTINUA BREAKING UP THE REACTION PRODUCT LAYER I;A o

CONSERVATIVE ASSUMPTION) THEN THE REASONABLE UPPER BOUND PENETRATION l$

7 INS /HR FOR 20 MINS 1 lN/HR FROM 20 MINS TO BOIL-DRY THIS RESULTS IN TOTAL PENETRATION OF 3 INS IN 1 HOUR 18 INS IN 16 HOURS 26 INS IN 24 HOURS EXPECTED VENT TIME TO PREVENT 6i% H l

CONCENTRATION WOULD BE ABOUT 22-HOURS y

TIME TO VENTING AS A FUNCTION OF CONCRETE PENETRATION AT VENTING HOURS UNTIL VENTING 50 VENT TIME SELECTED TO PREVENT EXCESSIVE HYDROGEN CONCENTRATION IN EXCESS OF 6% IN 40 -

CONTAINMENT s\\

N

's 30 s's s

N N

'ss'N 20 N

N

\\s 10 Ds4

's I __

40 i

l 30 20 Q

INCHES OF CONCRETE PENETRATION AT V 10 0

e 31782 7 9

4 CONCLUSION

.d i:-

THE CRBRP DESIGN HAS SUFFICIENT MA l

ACCOMMODATE THE CONSEQU o

i THOSE OBSERVED IN TESTS TO DATE.

THE MARGIN IS SUFFICIENT TO ACCOM CONSERVATIVE PREDICTION OF THE E o

CORE DEBRIS ON SODIUM / CONCRET WITH ALL THESE EFFECTS INCLUDED, IT WOULD f

NOT BE NECESSARY TO VENT CONTAI LESS THAN 22 HOURS.

r g

a l

COMPARISON OF UPPER BOUND ANDT7 REALISTIC CASE TO TEST DATA FROM HEDL-TME 82-15 MAXIMUM REACTION PENETRATION (cm) t Y

24 i

)

'l o HEDL TESTS O AEROSPACE TESTS 20 - 0 ANL TESTS A SANDIA TESTS I

16 CURVE A (UPPER BOUND) l l

12 l

o o8 l

0 8 u Y3

^

.o NOTE TIME SCALE CHANGE l l

O O

O i

i 1

A1 M

0 4

8 12 16 20 24 80 100

^

O TIME (HR)

4 FLAMMABILITY / DETONATIONLIMITS FOR HYDROGEN AND OXYGEN MIXTURES 100 IMPOSSIBLE MIXTURE WITH AIR 4

NONFLAMMABLE 80 FLAMMABLE

@~ 60 N

[ I'h,[l DETONABLE o 40

/ g:

ss z

A NON-

/

k r

20 I

y

'N O

5 10 15 20 25 O

OXYGEN (%)

O ES N

l

L REVIEW OF VENTING CRITERIA

!i i.i l

'i CONSERVATIVELY IN 1977. IT HAS RECENTLY BEEN RE-EXAMINED, SINCE IT WAS RECOGNIZED THAT ADDITIONAL MARGIN COULD BE OBTAI BY UTILIZING MORE REALISTIC LIMITS.

~

IN THE MARGIN ASSESSMENT SCENARIO, HYDROGEN CONCENTRATION NEVER EXCEE UNLESS OXYGEN CONCENTRATION IS VERY i

  • A MORE REALISTIC CRITERION FOR VENTING WOULD INCLUDE CONSIDERATION OF OXYGE CONCENTRATION.

S

~

l t

i

'l itl l[

~

~

~

S E

A R D E S U

E N'

,DH R T T

A N A A NT N E TR DAO B MNEST E

EPRN ZS T D I

B DN I I EO MMOE LS N M NESMI T YO T T R AI TNP U A T E LI I

B CV A

EI TC S U A H Q NN C ON N R EE EAI T D

I L E OE E

.F R R

B EB CH I

U G B GDO BD P

E N

L B R

S N ENOF M

S I

VIATMY T S R

O LM O O SR E

F T

MR O S FR I

I U

T W

D T

H T

T A

EI A E

TPI S

R TR A

N STES E

F N AR E

T NE F

T O RLNS I

O E'S TN OOI E

I E

R N

EV L NEM SS MC R

P U

E ME A EM N NO RE YMO M

T C

P U MNE ER EN S

T E

A N

T U N

T R

O U O Q

I NIA G SE T I

EE QT EI LR MR P

ED B AT O EA DB O

E E

C I

TNR S

N N

G ONO D EMO L E

L E

ME IB T N

H E

R G

E O

N TOC Y HUTI SO H T DYW I

I S

O P

T U

O T

S A

NP S C E I

A T

L S

R OX REHE OOA N I

N E

OHTH TSWG VI A

O L

S I

D D

I T

ME E

N T

H R

Y A

T E ST

,.T RN RI E S I

I E

A S

P H

R D B NE S R AI E

V E

D N

E R L O LY D

R MT T

T T

T U

N N

N N

N O T S AP F LN I

E E

E C O MLUT

.S N

T S US U

N I

E.E N

U R

S S E MMMMML N N OR F

T O

N N

N N

N A L E

CE SS MI I

S S

O L

MI OT RS G A.N IGWUI MI OEN RD T

I T

L UI I

N I

I I

A A

A A

I B

T T

T T

T I

RD R S C F

I TTN D

N N

N N

N ST TNEE N C SS O B

O O

O O

O L A S OHH EUE N MC C

C C

C LH N CTT SSTI C AT I

T h.'

i l

1 e

[

CRBRP CONTAINMENT TMBDB. INSTRUMENTATION -

et y

l i

i ELEVATION 970' f

e se

%\\\\

ELEVATION 955'

  1. HYDROGEN A

A ~_

))

MEASUREMENT l

SYSTEM l

L SAMPLE Q. + - ELEVATION 902' POINTS M

O REACTOR REACTOR CONTAINMENT CONTAINMENT VESSEL BUILDING TEMPERATURE

-ELEVATION 875' d

A REACTOR

=

0 ELEVATION 854' CONTAINMENT d

=

U ATMOSPHERE O

TEMPERATURE o

6

- ELEVATION 833' oREACTOR d.

ELEVATION 823' CONTAIN' MENT d

l

'M ELEVATION 817',

PRESSURE R-

=

X

[ HIGH-RANGE H

CONTAINMENT

= -ELEVATION 733, RADIATION g

1= ELEVATION 715' 1

i

SUMMARY

OF HYDROGEN MONITOR FILTER TESTS ATMO-AEROSOL SPHERIC AEROSOL TIME OF NUMBER CONCEN-TEMPER-

. LOAD!NG EXPOSURE OF TRATION ATURE OF FILTERS TO AEROSOL i

TESTS GM/M3 C

GM/M22 HRS 50

  • SCOPING 6

6 - 40 100 -

35 - 5600 190 (5,000G TESTS TOTAL) 10

20 -

75-880 - 6110 190 660 FILTER TESTS

  • TMBDB 46 590 (1,400G 13.2 CONDI-TOTAL)

TIONS I

)

HYDROGEN SAMPLING SY. STEM REQUIREMENTS 10 MINUTES (MAX)

SAMPLE SYSTEM DELAY TIME

  • l o

61 M (200 FT) LONG SAMPLE LINE SIZE

  • 6.3 mm (0.25-IN) ID o

FILTER PRESSURE DROP, MAX

  • 34 kPa (5 psi) o 16 C TO 593 C (60 F TO 1100 F)

CONTAINMENT TEMPERATURE o

0-10 v/o H 0, 0-6 v/o CO 2

2 CONTAINMENT ATMOSPHERE o

500 HRS (WITH AEROSOL)

OPERATION DURATION o

8000 HR TOTAL AEROSOL CONCENTRATION 46 g/m (AT CV CONDITIONS) 3 o

Na 0, NaOH, AND Na CO 2

3 AEROSOL COMPOSITION 2

2 o

AERODYNAMIC MASS MEDIAN, AEROSOL SIZE DIAMETER (AMMD) = 5 pm, o

o, = 3.0 150 cc/ MIN (MIN! MUM) AT 150*C REQUIRED INSTRUMENT FLOW

  • o (300 F)

SUFFICIENT TO PROTECT SYSTEM FILTER EFFICIENCY

  • o ADAPTED FROM CRBRP-3, VOL. 2

i TYPICAL DESIGN REQUIREMENTS TMBDB INSTRUMENT REQUIREMENTS:

% ACCURACY

% OF RANGE MAX VALUE j

UNITS 5

INSTRUMENT F

60-1100

  • CONTAINMENT ATMOSPHERE TEMPERATURE 40-700 5

F j

  • CONTAINMENT STEEL DOME TEMPERATURE 14.7-55 5

psia

/

  • CONTAINMENT ATMOSPHERE PRESSURE VOLUME %

0-8 5

  • CONTAINMENT HYDROGEN CONCENTRATION REQUIREMENTS ALSO SPECIFIED FOR:* RADIATION I
  • RESPONSE TIME
  • ENVIRONMENTAL TEMP. AND DURATION PRESSURE
  • CHEMICAL ENVIRONMENT G

BRIEF DESCRIPTION OF TMBDB INSTRUMENTATION PLANNED FOR l

IN CONTAINMENT I

i HYDROGEN MONITORS l

PROTOTYPE DESIGN CONSISTS OF l

SAMPLE LINES IN-CONTA fo j

l i,

THE PROTOTYPE FILTER D j

o l

FILTER TESTS.

THE CHOSEN PROTOTYPE FILTER OF A NICKEL POWDER FILTER AND SE o

CHAMBER.

A " BACKFLOW" CAPABILITY MAY B CLEAN THE FILTERS DURiNG OPERATIO

~l FURTHER TESTING TO TMBDB ENVI CONDITIONS IS PLANNED.

BRIEF DESCRIPTION OF TMBDB

.l lNSTRUMENTATION PLANNED FOR USE

-l IN CONTAINMENT (CONT.)

il ATMOSPHERIC TEMPERATURE SENSORS I'

CURRENT PLANS ARE TO UTILIZE SEAMLESS, STAINLESS. STEEL SHEATHED,1/8" OR 1/16" OD, MgO INSULATED, TYPE K, UNGROUNDED THERMOCOUPLES WITH NO CONNECTORS IN CONTAINMENT.

-l

  • SIMILAR 1/8" THERMOCOUPLES HAVE OPERATED 100 HOURS IN SODIUM TESTS WITH 800-900 F

AVERAGE TEMPERATURES BETWEEN AND PEAKS UP TO 1200 F.

  • NO FAILURES HAVE BEEN OBSERVED IN TESTS TO DATE.

i

BRIEF DESCRIPTION OF TMBDB INSTRUMENTATION PLANNED FOR USE IN CONTAINMENT (CONT.)

l i

I PRESSURE SENSORS

/

  • THE CURRENT DESIGN UTILLZES DIAP GAUGES CONNECTED TO THE CONTAINM i.

i-VESSEL WITH 1/4" OR 1/2" STAINLESS TUBING.

  • NO ACTIVE FLOW IS REQUIRED THRO TUBING DU RING OPERATION OF THE j

l j-

  • SIMILAR DESIGNS HAVE BEEN UTILIZED PREVIOUS SODIUM TESTS WITH UP T OF TUBING AND NO CROBLEMS HAVE B i

L'

~-

ENCOUNTERED.

---a v--

J

m, Y

3 I:

ll' i

HAA-3 APPLICAT10!1.T0 HCDA AER] SOL ANALYSIS I V' J. F, GROSS

/

j WESTINGHOUSE ADVANCED REACTORS DIVISION SEPTEMBER 15, 1982 4

,9 4

~

e j

l 1

i

--r-c

-,n.

-, --- e

~. - - -, - - - - - - - - - - - - -


,.-,---v,

s HAA-3 APPLICATION TO HCDA AEROSOL. ANALYS e

WHAT IS THE HAA-3 CODE AND HOW IS IT USED?

A.

B.

H0wDOESHNA-3W0ax?

WHAT ASSdMPTIONS ARE IMPLICIT IN THE HAA-3 C.

CALCULATIONAL IECHNIQUES?

O WHAT ASSUMPTIONS ARE IMPLICIT IN IHE HAA-3 D.

INeuT DATA FOR HCDA ANALYSES?

HY IS HAA-3 ACCEPTABLE AND VALID FOR HCDA E.

AEROSOL ANALYSES?

1 l

l

. ~.

WHAT IS THE HAA-3 CODE AND HOW IS IT U HAA-3 IS A HETEROGENEOUS AEROSOL AGGLO 1.

CODE WHICH PREDICTS AEROSOL BEHAVIO PORT FOLLOWING HYPOTHETICAL LMFBR ACCID THE CODE IS USED TO CALCULATE DISTR 2.

LEAKAGE 0!-

AEROSOLS IN IHE RCB FROM HCDA'S,'

THE SUSPENDED AEROSOLS PROVIDES DOSE CALCULATIONS.

l

HOW DOES HAA-3 WORK?

~

1.

CALCULATES NUMBER DENSITY OF SUSPENDED AEROSOL (PARTICLES /CC).

THE SOURCE OF SUSPENDED MASS IS IHE SOUR 2.

GENERATION RATE CALCULATED FROM IHE CAC SODIUM-IN RATE TO IHE RCB, MASS IS DISTRIBUTED IO 4 DIFFERENT REGIONS:

3.

PLATED, SETTLED, LEAKED AND SUSPENDED, THE AM0uNT OF PLATED MASS IS DETERMINED 4.

THE EXPERIMENTALLY DETERMINED WALL PLATI PARAMETER, A.

THE SETTLING RATE OF THE AEROSOL IS DETE 5.

MINED DY THE SIZE OF THE PARTICLES WHICH GR0w THR0 UGH AGGLOMERATION, THE SOURCE OF LEAKED MASS IS IHE SUSPENDE 6.

LEAKRATE IS AN INPUT PARAMETER,

AEROSOL,

==

USPEN ED PLATED l

l C

V SETTLED LEAKED 4,

?

V

.,--m c,-_.--

.,m

,_ = _ --

J SODIUM i

HM-3 DISTRIBUTION M0EL l

WHAT ASSUMPTIONS ARE IMPLICIT IN THE HAA-3 CALCULATIONAL TECHNIQUES?

1.

HOMOGENEOUS AND INSTANTANEOUS DISTRIBUTION OF' SUSPENDED AEROSOL.

AEROSOL PARTICLE SIZE DISTRIBUTION FUNCTION 2.

IS LOG-NORMAL.

3.

IGNORES AGGLOMERATION CAUSED BY AEROSOL TURBULENCE.

4, IGNORES PLATING CAUSED BY THERMOPHORESIS.

l I

r I

i l'

i

e e

,..e....

WHAT ASSUMPTIONS ARE IMPLICIT IN THE HAA-31NPUT DATA FOR HCDA ANALYSIS?

100% 0F THE SODIUM AEROSOL PRODUCED 1~.

THE RCB.

RATE IHAT SODIUM ENTERS RCB IS CALCU 2.

CODE.

~

SODlun AEROSOL PRODUCTION CEASES A 3.

SODIUM AEROSOL IS 45% SODIUM HYDROXID 4.

MONOXIDE AS DETERMINED BY CACECO.

PLUTONIUM AND URANIUM AEROSOL PRODUCTION, R GAS SPARGING, BEGINS AT INITIATION OF THE HCDA.

5.

QUANTITY OF PLUTONIUM AND URANIUM RELE G

S CALCULATED USING THE TECHNIQUE OF WASH-1400 6.

i TO APPENDIX Vll,

}S LEAKRATE FROM IHE RCB, PRIOR TO VENTING AT 36 HRS, PROPORTIONAL IO IHE N45i SUCH IHAT THE RA l

7.

AT 10 PSIG.

LEAKRATE DURING RCB. VENTING, FROM 36 HRS.

8.

THE RCB BLOWDOWN RATE FROM 15 PSIG.

IS LEAKRATE AFTER RCB PURGING IS INITIATED 9.

8000 SCFM CONTINu0USLY.

GAS SPARGING I

CONCRETE / CORE DEBRIS i

MELT i

CO2 DISSOLVED Pu 02 GAS HO

~

2 4

DISSOLVED U02 GAS

WHY IS HAA-3 ACCEPTABLE ANH VAllD FOR HCDA AEROSOL ANALYSES?

SCENARIO SPECIFIC AEROSOL AND ENVIRONMENT PAR 1.

(AEROSOL DENSITY, PARTICLE SIZE, AIR TEMPERATURE, ETC ARE PART OF INPUT DATA.

2.

Na INTERNALLY CODED DATA BASE.

EFFECT OF DEPL$ TION MECHANISMS IS CALCULATE 3.

EOUATIONS DERIVED FROM CLASSIC PARTICLE KINETIC CONSIDERATIONS WHICH ARE _ INDEPENDENT 0F CHEM COMPOSITION.

HAA-3 HAS BEEN VERIFIED WITH EXPERIMENTAL D 4.

Al-AEC-12977.

INPUT DATA USED FOR HCDA ANALYSIS IS WITHIN 5.

OF INPUT PARAMETER VERIFICATION.

l l

FOR HAA-3 HCDA ANALYSIS.

. INPUT PARAMEIER VERIFICATIDN RANGE

-c V_ALRE_OSED_IN CRBRP-3_BAsg_fest RANGE OF VALUES

  • S_0DIUM AEROSOL EuELAEROSOL EARAMm

.05 - 5,5

.3

.1 2

(u)

AEROSOL R50 2

2 4

1.0 - 3,0 o 0F R50 INITI AL CONCENTRATION (UGM/CC) 0,0 - 135 6.18 0,0 DENSITY OF AEROSOL (GM/CC)

,05 - 10,97 2,21 10,97 765 366 300 - 811 AIR TEMPERATURE (OK) 4,0X10-5 4,0X10-5 1X10 5X10-4 WALL PLATING PARAMETER, a 10 8

10 9,9X10 OP TO 8,5X10 9,9X10 CHAMBER VOLUME (CC) 0,0 - 1,0 1,0 1,0 ORAVITATIONAL AGGLOMERATION EFFICIENCY, a DENSITY MODIFICATION

.05 - 1.0

,1

.'1

FACTOR, c
  • SOURCE OF DATA:

Al-AEC-12977, " AEROSOL MODELING OF HYPOTHETICAL LMFBR ACCID 1.

GEAP-14054, " REVIEW.AND EVALUATION OF CURRENT AEROSOL MODELS FOR 2.

LMFBR SAFETY ANALYSIS" HEDL-TME 79-28, " AEROSOL BEHAVIOR DURING SODlum POOL FIRES IN A 3.

LARGE VESSEL-CSTF TESTS AB1 AND AB2" 4.

Al-AEC-13038, "HAA-3 USER REPORT"

CALCJJlAIED_ELVIORLUM SPARGED DURING HCDA ANALYSIS CONSERVATIVELY RELEASED TO RCB FOR DOSE CALCULATION:

PLUT0NIUM MASS (KGM) 3

.2 1-10 ll 720 8000 0

133 TIME (HRS,)

CLEAN-UP SYSTEM LOADING - 7.7 KGM Pu 0

DISTRIBUTION COEFFICIENT BASED ON 5000 F MORE REALISTIC RELEASE TO RCB:

PLUTONIUM MASS (KGM) 1,6

.5 0

=4

=

ll 720

' 8000 i

0 133 TIME (HRS.)

i CLEAN-UP SYSTEM LOADING - 1.2 KGM Pu 0

i DISTRIBUTION COEFFICIENT BASED ON 4500 F e

-a

PLUT0NIUM LOADING 0F TMBDB CLEAN-UP SYSTEM 1.

IGNORES AEROSOL DEPLETION IN IHE REACTOR CAVITY AND DURING IRANSPORT TO RCB, 2,

1GNORES PACTOR OF ~50 REDUCTION IN SPARGED PLUT0NIU FROM VAPOR PRESSURE REDUCTION IN DILUTE SOLUTIONT 3.

SPARGED PLUTONIUM DOES NOT HAVE IIME TO ACHIEVE EQUILIBRIUM VAPOR CONDITION.

4.

COMPLETELY MOLTEN CORE SCENARIO REQUIRED ESSENTI A ZERO HEAT IRANSFER TO REACTOR CAVITY AREA ABOVE SURFACE.

RCB AEROSOL DEPLETION IGNORES EFFECT OF SPARG 5,

BLANKETS AND MOLTEN CONCRETE FROM DEBRIS BED.

O

[

T

~

\\/AFBR OESSORE NEDVCT\\odO DiIob SoujTiod O

o O.

M 9 S U T' E P=mP L

L; o

D TDs o

e e

chew cvitre. c

.. e c c. =n

- =

~== = --

. ux =. =. = _.: _..

l l

mit Cevnesh ce-veh

% M*c

\\oo*/,Po 40

%'dGwtxte 2% Ei 0 F =*

1T/a = FO a.pv he%0ve Edt

=

,/

CONTAINMENT EFFECTS DURING REACT 0r CAVITY VENTING T. W. BALL l

SEPTEMBER 15, 1982 t

1.

P0TENTIAL FOR RC VENT PLUGGING.

2.

ASYMMETRY EFFECTS FOR SODIUM BURNING.

3.

BASIS FOR NON-STRATIFICATION OF HYDROGEN.

4.

HYDROGEN AUT0-IGNITION CRITERIA.

i

l POTENTIAL FOR REACTOR CAVITY VENT PLUGGING j'

DESIGN REQUIREMENTS (CRBRP-3, VOL. 2):

LOW RATE THE VENT SYSTEM SHALL HAVE A PRESSURE DR 3

F 0.05 LB/FT-HR.

0F 4000 LB/HR OF GASES, A DENSITY OF 0.03 LB/FT, AND A VISC THE VENT IT SHALL REMAIN FUNCTIONAL IF UP TO 450 LBS AT A MAXIMUM RATE OF 8000 LB/HR.

BASES FOR REQUIREMENTS:

IZATION.

PRESSURE DROP 0.1 PSI - ARBITRARY LOW VA 1.

FLOW RATE, DENSITY, VISCOSITY - AVG. OVER FIRST 24 HOURS.

2.

1. a 2. PROVIDE BASIS FOR SIZING PIPE.

e OSPHERE UPON 3.h0 LBS SODIUM OXIDE) 8000 LBS/HR - IN RUPTURE DISK BREAKING.

2 IN THE R.C. AND PIPEWAY CELLS.

ASYMMETRY EFFECTS OF SODIUM BURNING (QUESTION CS760,144)

I E

ALTHOUGH THE RC VENT WILL BE OFF-CENTER IN THE RCB, ABOUT 55 FEET FROM THE STEEL SHELL WALL.

VALID THE ASSUMPTION OF AXISYMMETRIC TEMPE'RA ASSUMPTION FOR THE FOLLOWING REASONS:

ONLY SIGNIFICANT HEAT TRANSFER IS CONVECTION (RADIATION WOULD BE BLOCKED BY DENSE SODIUM e

0XIDE SM0KE)

STRONG CONVECTIVE MIXING 0F RCB ATMOSPHE N0ZZLE SIZED TO PRECLUDE DIRECT FLAME CO e

FT FLAME - 180 FT TOP 0F RCB) e STEEL SHELL (< 80 CRITICAL AREA 0F STEEL SHELL (816 FT EL.) PRO e

BY INSULATION MAXIMUM TEMPERATURE 220*F

.. AZIMUTHAL GRADIENTS SMALL

BASIS FOR HYDR 0 GEN NON-STRATIFICATION I

(CRBRP-3, VOL. 2, APPX. H.3)

PRE-HYDR 0 GEN IGNITION PERIOD I

1.

COMBINED MOLECULAR DIFFUSION, NATURAL CONVECTION AND e

CONVECTION - MORE THAN ADEQUATE TO CAUSE UNI l

THIS WAS CONFIRMED BY HEDL TESTS ATM-1 THROUG e

HYDR 0 GEN BURN TO S0DIUM BOILDRY PERIOD 2.

CONVECTION FROM FLAME AND VENT / PURGE MIXING 4

e i

3.

POST-B0ILDRY SLOW ADDITION RATES e

H -C0 MIXTURE DENSITY APPR0XIMATELY EQUAL e

2 VENT / PURGE MIXING ADEQUATE TO PREVENT STRA e

1

l HYDROGEN AUTO-CATALYTIC RECOMBINATION Objectives:

Determine conditions for Ignition e

Determ!riti conditions for extinguishment e

==

Description:==

Controlled hydrogen jet ignition and extinguishment tests e

l (3.5 ft.3 chamber) Hydrogen, nitrogen, sodium, water vapor in jet l

Effects of:

Oxygen depletion in chamber Water vapor in chamber - hydrogen generation Jet temperature l

Jet velocity Confirmatory tests during large scale sodium-concrete I

e Interactions testing (3800 ft.3 chamber)

(

l

  • (

1 s

e HYDROGEN AUTO-CATALYTIC RECOMBINATION (Continued)

Results/ Status:

Program has been completed o

Hydrogen burning criteria incorporated into CACECO:

Upon reaching containment, hydrogen will burn when either e

criterion (A) or (B) is met in combination with criterion (C)

(A) The hydrogen-nitrogen mixture entering containment is above 14507 (B) The hydrogen-sodium-nitrogen mixture entering 3 of sodium at containment contains at least 6 G/M temperatures above 5007 (C) The oxygen concentration is above 8%. With the oxygen concentration above 5% and the hydrogen concentration above 4%, the hydrogen in excess of 4% would burn um

HYDROGEN AUTO-IGNITION DATA (HEDL-TME 78-80)

,-ne,, N 5 "E s"e" N %' m a

"..g::"a

,o gn -

sa II ji.

o gle gu a

$le, LSC-2

-3 (1fi% 0 )

Gi s S'

2 f *$

?

/.. a a lg,:,;, aa-,.

1 LFT 6

..s n

.n., m seat 38W-3BB.F Conservative Limits for Hydrogen-Sodium Jet Ignition.

FIGURE 6.

O

i CRBRP-3 vol.2. Rev.0 22 nyggggg, gyg,g aggyg 3,,

20 j

TO THE RIGHT OF THE LtistT L18E8 i

g

E k 14 l

!E BUREAU OF MINES LIMIT h

f E 12 at E

h10 j, E

9' s

4 LOWER LIMIT FROM HEDL P

O N TESTS UPPER LIMIT FROM HEDL 2-PHASE 2 PROTOTYPIC TESTS I

I I

I I

O 2

4 6

8 10 12 14 16 O

CONTAINMENT HYDROGEN CONCENTRATION (%)

Containment Hydrogen Flammability Limits i

Figure H.l 5 1966 174 H.1-15 e

l i.

1

~

\\

?

EVAlllisTION OF STRUCTURES FOR MARGIN ASSESSMENT

SUMMARY

OF DISCUSSION e

STRUCTURAL REQUIREMENTS 4

G. N. );issfagri y

e SCOPE OF EVALUATION f,p g jf ggg STRUCTURAL EVALUATIONS e

e DESIGN MODIFICATIONS

6-Z Z

O O

U J

H H

M Z

W m

tr W O O

th Z Z

H H

W W

W

< H to Z

W H

Z Z

=

W W

O O M e

c.

C.

W W O to O

E E

Z F-E L

< to c

D tr 3 m o

W Z D o

O - O Q O C3 O H

E O CL W

O J O J

H -

H H W to u.

to LL E

U H <

ll>

D H

QU WU W

O U Q

H W C E%

Z Z -

CM Z

W <

W

2

O W

to - tr O

U H

O tr O c.

- O H

-E H H H O En H-2 Z X Z W

O lE" D H

W J - LLJ

~

D W

tr C

-.J J

CC 1

< W -

C W

W W

Z W W E

>J to E

O L:

U tr to H E W

J

=

U Z

H H W Q Z

C to H

Z C W D

Z Z

W - U H-O W

W E

D U

E to >. O c.

D H

cn to Z O d

in O

W<

(n

! en l

W

.,.)

H-D f.n H

W to to Z

< W C:Q

> CA W

En

= -

C3 W <

to Z

W LLJ U

Z to W c:3 U

Z

- < gr lE J

tn H-

< tr W

(S U <

Cr Z W

LD to tr to c

<Z Z

D -

U E E O O H

3*

U C C3 E

O D

O O W to to E

J

% J Z W W (n 1 CC

& LL

& C Q

=

H O O

O O

r i

CONTAINMENT / CONFINEMENT Casessee EI 994 ft 0 '

Steel Cemenieusseset Veneet

(

Spring t

N A

4 4

-.m

_1<

6-=

M

?

tea n -

~

--4 104 ft 4

Operstems l

P l* *'

El 818 ft 8 to.

1 89 ft I

=

r - = ===

f

-.---S, r S.

i

..".T

8

+

e-k(

r i.

e 9

-4 h.

8 j

e L. J /i s

..a

)e,i

.i !,r...

i

.a( i r, i

f

i.,:

e e,- L.

r----

.e i s -,, j,

. e,, s., i s,a e1 s8 i

i

      • ,n

$ 6.J e: -- -

e *.,

g 8

$g 4 3

g I

s b===a 8 8 g

...J8 g g i3 I

t g

8 g

F****

g g 8

g g

4 4 8

===3 8

I e e 3

8 e

1 8

e s 8 8 I l,

s g

I 8

i I

e 6....

e, If

'3 e

"===="

r===~

....J

====n L.....J E

s e

a e

r"""""9 e

8 e

9 i, F* * " * * *"I I w.... ====I 3

0 g I

l ll g

, g 88 8 8

', '1

} ri, : 7,s et o ia.

l S

e e

~

"0 83 7

LE s

i.s.s r

_s 5

0 1

L l

/

L E

l C

/

lf I

/

/

V YA WL 1

EE P

l R

PC f.

O

(

O h

N a -

L

/

A O

T N"O

/ ['

F

\\

e.

l M

I G

f T

F I

O'O C

T -

A *6 1

E M'5 S

R18 O

E T

Tl PL-A T

OE-T M

OL S

R d

OY 4

BE S

TT 7

N CI A V L

O O

A E

I E

T R

C R

AD C

N q

UO B

F C

R e.

[]

TN EM "0

T T

N

'0 N

N IA E

E T R3 7

M M

NE N

E OlHL CLE N

IAL TL F L L

I NE N L A

1 j

OH O

CS CW l[

o

= '

s, 4

e

/

l (1l ll l

STRUCTURAL EVALUATION Of MARGIN ASSESSMENT CASE SODluM CONCRETE REACTION RATE:

e 7 INCH PER 1100R FOR FIRST 3 HOURS 1 INCH PER HOUR AFTER 3 HOURS TO B0ll DRY B0ll DRY TIME - 50 HOURS e

STRUCTURAL EVALUATION CRITERI A e

WALL LINER IN REACTOR CAVITY TO MAINTAIN INTEGRITY UNTIL B0ll DRY TIME REACTOR CAVITY FLOOR AND PIPEWAY CELL FLOORS T SOD,1UM LEAKAGE TO CELL 105 (AIR FILLED CELL) UNTIL BOIL,DP.Y TIME

[

, CONTAINMENT AND CONFINEMENT INTEGRITY TO BE Mt.INTAINED F

FOR'LONG TERM (8000 H0uRS)

PIPEWAY CELL WALL LINER INTEGRITY,TO BE, MAINTAINED g

AS FOLLOWS:

50 HRS WALL LINER DETWEEN REACTOR CAVITY AND PIPEWAY CEL 30 HRS OTHERS

.r

/

t.

~/

4 f'

(CONTINUED) 2 I, t STRUCINRAL EVALUATION OF MARGIN ASSESSMENT l>il l',,.

j,

.4 SCOPE OF EVALUATION l

il DETERMINE WHETHER STRUCTURES, AS DESIGNED, CAN WITHSTAND IMPOSED EXTREME PENETRATION CONDI

[~

('

DETERMINE NECSSSARY' DESIGN MODIFICATIONS SOll STRUCTURES CAN. WITHSTAND IMPOSED CONDITIONS J

~,

,i

132 HRS CONCRETE WALL BASED ON ABOVE, RC LINER AND WALL ABOVE FLOOR ARE e

(BOIL EXPECTED TO MAINTAIN ' INTEGRITY FOR 50 HRS.

DRY TIME) AND BEYOND

1

)

1

)

e j-a-

i

\\

o.

l L

t I

?

e l

n

.J l

o J

O

\\

3 i

W C

4 U

w l5 2

C c.

m a

s.

w 8'

M

=

z =

g*

8 ooc CC

~

D wgm tu r=

lie C

N fft.

O.

W t

Qo

't; j 1

ll t

u

-I p

/r e.

t >

==

p

// e' '-.* a W

e s

  • Z

's m *

.. =.i e

m 4 J.x...E q

i l

W Q I

l I

o.

u)

=

i

.o o

i a

a o

z e E

E I

E E

I E"

d..

d.

e 1

< W

=

(3 ) aanguasdmal a

l

(

i

STRUCTURAL EVALUATION OF REACTOR CAVITY FLOOR UNDER MARGIN ASSESSMENT CASE CONDITIONS s

ASSUMPTIONS FLOOR LINER ASSUMED TO Fall AT ONSET OF SPILL APPROX 1MATELY 5.5 FEET OF FLOOR CONCRETE t

/

PENETRATED BY SODIUM e

9 l

I i

i I

i l

l 1

i i

1800 (

l 5Y1 26

  • L l

I t

i u

O 1400 g

l ky I

l 1200 1

l wg

\\

l w

6 jg j

i 1000 y

z

- BKSE CKSE I

y BOURS (Boil Dry) j 800 132 Hrs.

b0H)URS 1 50

\\

N e

~~

600

\\

m N

Base Case.

g N

N g

50 e s.

\\ _

w % ~ _. - Y 1-200 -

I, I

I, i

I m

l 120 100 80 o

60 40 O

20 -

DISTANCE FROM TOP OF FLOOR, IN.

REACTOR CAVITY FLOOR - TEMPERATURE TRA MARGn! ASSESSMENT CASE t

- - - ~ _ _.......,

i i

~

l l

I i

l l

INSULATINr.

CONCRETE I

I T

EL. 740'-8" l

~

~

t, 740 - /

+1 s e.t3 j

I 8

l

~

c

./

/

'l EL. 733'

.e

~

]

]

~

F EXTENT OF Na PENETRATION 4

MARGIN ASSESSMDIT CASE L

ST. JT

'4

~

CON I

2 1

CONTAINMENT LINER SECTION - REACTOR CAVITY AND WALL CURRENT DESIGN AND EXTENT OF Ma PENETRATION m

e 9

CONCLUSIONS OF RC FLOOR EVALUATION 9

O CURRENT DESIGN DOES NOT MEET MARGIN ASSESSMEN POTENTIAL LEAKAGE TO CELL 105 e

EVALUATION CRITERIA.

MINOR MODIFICATIONS TO Tile FLOOR SYSTEM WO e

NECESSARY TO MEET MARGIN ASSESSMENT EVALUATI CRITERIA f

O

4 4

RC F100R DESIGN MODIFICATIONS NEEDED FOR MARGIN ASSESSMENT CASE REMOVE CONSTRUCTION JOINT AT ELEVATION 733 e

AND REARRANGE RE-BAR EXTEND WALL LINER TO 6.5FT. INTO e

STRUCTURAL CONCRETE PROVIDE CIRCUMFERENTIAL VERTICAL PLATE ON e

TOP OF FLOOR LINER NEAR WALL TO INHIBIT SPREADING OF FUEL DEBRIS TO REGION OF FLOOR-WALL JUNCTION i

_,_ X ~

s

/0 3/A" STEEL LINF3 STEEL

_l X e

LINER A

e INSEMING CONCRITE TOP OF T100R

,1 j EL. 740'-8"

_rw -

]%

t-x

-- s. _

_.. c

-J

-g_

j f

4,.

x y

+

r N4

'y' s

A g

s 4

a' EL. 733' q

'l 5

l i

s p'

. o g

4*/ 730 7_

I

[

l CONTAINMDIT LINE SECTION - REACTOR CAVITY FI4)OR AND WALL MODIFIED DESIGN TO ACCQM,.MODATE M7EIN ASSESSMENT CASE

=

v I

2200 m

2000 l

1800 i

1 f

1600 l

f f

I

[ 1400 i

(

t I

j l

]

i 1200 g

\\

\\

I I

t i

a w

l 1000 g

Boil Dry time (132 Brs) i I

e

~

f f

f

~

600 I

I

)

i f

~

l i

600 j

t j

Margin q

Assessmen Case Boil 1

400 I

l l dry time (50%,g

)

f i

I x i l

J

!m 200

)

}

I i.

120 100 j

80 60 40 20

.e dry, in.

0 Distance from sodium reaction front at boil RC FLOOR - COMPARIS0N OF BASE C AND f%RGIN ASSESSi1ENT CASE T l

i

~

EW % C U

H l

CL C

D E E m

H cL cn E

E E

o o

C Z

J U

E E

W E

W E

e u

En Z

o I

o C

H C

llt:

.,J Z

W CL in (9

H E

H' W

< 3 Z

W t

E W

o Z

En E

W W

4 Z:

c E

E o

E H

E J

- sn W

D t.n o

CL Z

t.n t.LJ Z

U W E o

H W

C o

En t.n Z

v en Z

tn W

4 t.n O

H Z

Q D

En W

C2l*

Q W

W H

ED W

Z Z u

4 3

C W

es:

a-H Z

to CJ

< E 0.

D CI:

W C

H "J

J H J G W

W

<C cn W

Z W

H H

>==

  • C 4

3 H-W

(

W m W

=

H (n

H U

En cQ lll>"

Z U

U C

- Z to o

C H

a::

Z Z

g -

Z W

En H

ta.

aC:

En Z

Z ct:

W id co W

H c

Z U

Z o

O H

M i

E -

4

-.J

(

W H<

D D

1 g

H 0:

Ls.J o

to to o

ct:

o

<C o

J En o

i 1

J X

J Ct:

W W

W l

W eC G.

Q.

E E

E O

O ee O

w--

STRUCTURAL EVALUATION OF PIPEWAY CELL WALL UNDER MARGIN ASSESSMENT CASE CONDITIONS WALL BETWEEN RC AND PIPEWAY CELL 9

IN NARGIN ASSESSMENT CASE, WALL LINER TEMPERATURES SAME AS IN BASE CASE IN MARGIN ASSESSMENT CASE, 50 HOUR WALL TEMPERATU LOWER THAN BASE CASE, 70 hours8.101852e-4 days <br />0.0194 hours <br />1.157407e-4 weeks <br />2.6635e-5 months <br /> IN BASE CASE WALL LINER INTEGRITY DEMONST 70 siouRS, CONCRETE WALL WILL NOT COLLAPSE BEFORE 132 HOURS OTiiER WALLS e

IN MARGIN ASSESSMENT CASE, WALL LINER TEMPERATURE SAME AS IN BASE CASE IN MARGIN ASSESSMENT CASE, 30 HOUR TEMPERATURE TRANSIENT SAME AS 40 HOUR BASE CASE TEMPE IN BASE CASE, WALL LINER INTEGRI'TY DEMONSTRATED FOR 40 il0URS, CONCRETE WALL WILL NOT COLLAPSE BEFORE 132 il0VRS s

I l

Z DD b g k W

k2W g M

~~

Z w m *** W y g

M 2 Q

    • W W g W W w 2 k h' ds s

~C N u) o O trk z

I

-l l

i j

7~.-

l I

'. U ^ 'kh%;,,,

4 j

4 j

g T \\. *

\\.

j

~

y

/

i

.mJ I

\\\\v;,

/

si i j

2 I. ) !

l g

k

=

W I ;!

6 I

t.;

i St T

=

i t

i

=

2 L -

l/

e k

i

/

W

(

a

/

$l !

m l.

o w

a 2

-c_

i yl.

u t

w a

O

/

l e

1 I

q c

~

u

,e

/.

a Lm a

4( l' A

<j-

~

I f

c W

i i

l:Jl l1 '

~

y I

Ana

/

l fo' /

  • y..

~

E i

l 3

R

/

w M

)

lt i

i ii W.s,. :e L*)

A j

4 l

~

y Vo u

1

[ p %m*

n.s n

' fl, ) /

z e

Z

.:.W.:.~.!.

me I

< i M

i l

e l

I l

'I m

u j

I

.a m<

E e

.l o'

g q

o' o

~

~

o' I

~

~

o c

u S

I r

~

W t

3

~

W (de)aJnquaggwy, g

  • f i

~

14CO.

1 6

1*00.

=

1.

I

\\

m s.

\\

l C.

i,l 40 llrs.

sent.

1 Base Case E

l '.

E

{.

/

\\

E i

aCO.

.5 50 llrs.

ii.s L

~

40 llrs.

ih g

li., \\

30 llrs, i'.h:

[

y t

s

.Co.

s

%s

~

' ' @.'1:,?

e%

4:....~ ~' W' 7 -

. ' " - - ' '... ~.. ".5:. E: Z: ErK:-5.T O llrs.. $ -.e......[

~

o.o e.*

s.s i.7 8.s f.e 3.=

t.8 3.2 3.6 o __

DISTANCE (FT)

NOTEi lhRGIN ASSESSMENT CASE TRANSIENTS UNLESS NOTED OTilERWISE PIPEWAY CELL WALL TEMPERATURES - MARG

RESULTS OF PIPEWAY CELL WALL AND I

LINER EVALUATION

!i t :

i I,

CONCRETE WALLS AND WALL LINERS MEET MARGIN e

ASSESSMENT STRUCTURAL EVALUATION CRITERIA

(

e 6

9 STRUCTURAL EVALUATION OF PIPEWAY CELL FLOOR UNDER MARGIN ASSESSMENT CASE CO 1

1 Floor LINER ASSUMED.TO Fall AT 0 HOURS 5

o APPROXIMATELY 2.5 FEET PENETRATED BY SODIUM s

t 0

t

(

i l

l i

v 1

l

~. -.

e en I

I i

m Y>

e 1

=.

I ac I

3 -

)l,1 w

si 5

i n i k 8.-

I, );

e.

=

o l

r

-~

~

l e

ffl,s<'

~

/g*

1 f

{

f 1 is.

1

=

> +

i

\\

/

/

i

~ ~ ~ ~ ~

~

1 d'

/

/

I A "i e

l cl f'

V If a

i Y,s'

/

E

~

l[

o o

h' c o

s' a

o j

f

'Sp.

=

a

. /,

s-e-

> = *.

e a

e j

7.0.bi..,,,,..j w

1 f-a l

y lI

)

.~

J......,....

I

,1 a

a i

s-1 I

w w.

,l 5:

\\O. wts}.

>- e a.

l

\\

..#I _

~

d s.

5

/

w

..pjqt-

~~

w5 em

5. m j

e.

o.

I ae CD e fi s

ov a

z

'e

,s !

, /,

w

_L 1

g a

um mm u

(

n m

o w

i

(

6 m

a w

i 1

z 4

4 a

a d

a i

a i

4

.c o

o o

o.

o.

~

o u

o (3

g o.

o.

o, o

~

c:<

w x

a (3.) aangraadmal 9

4 s

00HClus10Hs 0F PI M j

CURRENT DESIGN DOES NOT MEET MARGIN ASSESSMEN e

STRUCTURAL EVALUATION CRITERIA MINOR MODIFICATIONS TO THE PIPEWAY FLOOR W e

NECESSARY TO MEET THE MARGIN ASSESSMENT SC REQUIREMENTS O

G e

,f PIPEWAY CELL FLOOR MODIFICATIONS NEEDED FOR MARGIN ASSESSMENT CASE Il IN. OF INSULATING CONCRETE BELOW SECOND LINE e

PROVIDE SEPARATING TWO LAYERS OF STRUCTURAL CONCRETE ll IN. TO MAINTAIN 3S IN. THICKNESS LOWER FLOOR BOTTOM BY e

OF BOTTOM LAYER 4

e g

g EV

,._L-

^

i at Io I

M t/J C

U a

i h3 zWW E

^

"WW g

5. H H EN)

N EW5 s5i

@m

=.

A

=

=

zes 4

I me Qw

>c g

I M

na P

9

=

a

,w E

.*e M

z d

l C

M y'

p$Yh w

\\ "7l 84 m

}

en C

-s W

I g

e y / *$ 5 y $ 'h b d

e U

~^

h

~

om s.

5

=

3 b

5 9

E g

5 t,

=

=

E a

o an E

^

==

W D

g M

I W

g

<C w"

PC b

_a 52 M

E 4

D U M Sh.

v2 Z W

=

=

g z C a.

=

e mud R t'e

=

4 4

1 t

W_

i.,.

^

~

I C

7 1

I I

re s

n r

i u

l l

0 S

II o

6 T

H d

N li n

E 0

2 I

5 S

w

-I N

N i

o A

l n

I R

e o

T b

i E

t R

T n

a O

L 0 O A

E a

E o

II l

%a 5 L M

S R

i u

F R

A C

t s

E C

N a

n I

F I

O l

i O

T T

C u

N s

o tI F

E G

in H

M

'0 N

T R

S I

O S

T h

0 H O

E

~

A t

L i

4 O L

S R

F S

U W

g A

S F

L N

N E

I I

C E

I I

N C

G s

R A

4 T

Y A

S A

M W

I 0 D E

P 3

S I

\\

P

\\

J

' t~g Ii

\\

\\

\\

DNR 0

OE 2

CN EI SL L"

E 4

O 0

0 0

0 0

0 0

0 4

0 8

0 2

6 0

1 1

2

'o g dWEhe l

C er 7

se an ci L

I l

lt'

~

nd en s

m2 e

r s

, sw u'

i l I 0

i S

eo o

6 h

T sl se N

ab 2

E e3 I

li N

S nn ls 1' i

i o a

I N

gi c

AR rt R

T aa e

ml s

O 0 O L E u

a i e E

< ss

,B l~ _

5 L A S E

rn F

M A T

R C R

ui F

E C

ohh u

O T

l i

t T N N

E O

I 0i G

.(

NN1 P

5 w

'O

- M C

S T

R S 0 M 0 E N

4 O 4 S I

a S

T R

I A

F F A L

E L N U

I

=

,i S

C L

I N

N E G I

A C R A

T

?

S Y M "4

f A

I 0 D WE 4

3 PI t

I P

1

~

ji H

~

D i 02 R

3t0 E EI i

~

CN SL a_

\\

s 0

0 0

0 0

0 4

1 0

0 8

0 0

2 0

6 1

0 1

2 s$i: M a 2 F.

2 a

s O

~

,4 s - -

e

' + +

e e

e W

>J Q

Z E

W c

Z

~

Z E

O m

E E

W A

O H

H E

M Z

W K

W W

Q W

Z E

E F

W W

3 U

W; L

J H

L M

E Z

O W

W U

C M

E J

W U

V W

H L

W Z

M Q

W W

O Z U H

E W

g W

L 5

Z c

C Z

U M

C W

g M

O M

H M

Z W

O 3

M Z

A Q

W C

J V

W A

E M

H<

d O

=

J U

m H

0 M

U 3

U J

H O

Z W

M c

O H

D<

L W

J H

W m

4 0

]

M Z

W J

O H

O' C

C W

Z Z

Z 3

m W

A M

L Z

W E%

M W

c Z

O I

O U E F

E J

3 3

m O

H T

E O

O H

O M M

C J

W m 1 W

W L

M E

L E M

M e

e

_.y

STRUCTURAL EVALUATION OF CONFINEMENT STRUCTURE FOR MARGIN ASSESSMENT CASE I

IN BASE CASE INTEGRITY DEMONSTRATED FOR 140 HOURS, COOLING e

DOWN BEYOND 140 HOURS DIRECT COMPARISON OF MARGIN ASSESSMENT CASE TRANSIEN e

WITH BASE CASE TRANSIENTS NOT CONCLUSIVE t

EVALUATION USING SIMPLIFIED COMPUTER MODELS e

s BASE CASE CONSIDERED AXISYMMETRIC MODEL FULL HEIGHT, FACTORS ESTABLISilED FOR RATIO OF FORCES AND MOME IN FULL MODEL TO TilosE IN RESTRAINED SECTION MODEL COMPUTER ANALYSIS (USING ANSYS) CARRIED OUT FOR RESTRAINED SFCTION MODELS UNDER MARGIN ASSESSMENT CASE TRANSIENTS FORCES AND MOMENTS ADJUSTED BY FACTORS FOR FULL CAPACITY OF SECTIONS DETERMINED FROM M-0 EFFECT.

RELATIONS CBTAINED WITH COMPUTER PROGRAM MPi CRITICAL TIME 30-50 HOURS, THEN COOLING TAKES PLACE s

'l:

3* 0" CONTAINMENT SHELL EL 994* T 1 5

m...... -.

CONFINEMENT STRUCTURE s.

3* 0" SPMERICAL 1

a SECTION R = 10T-4~

y, CONTAINMENT R = 10T-6"

- EL 913*. 7 9/15" l

l BUILDING

- EL 910' - 5 M" R = E5*- 5 3/18" l

f

\\ S~"

^

/

I;)

7. REACTOR SERVICE BLDG.

R = 53* 111/2" ROOF EL 884

  • FT.

1 j

f M

L_ P

- EL 883* -5 3/16".

35' j

i g, gg.,3

}__

.. =

.c W

1 F-b 4* - 0" STEAM GENERATOR

,.n

?

f

7...

4g SLDG. ROOF EL 357.5 t FT.

S t-CYLINDRICAL

  • lI, SECTION

\\

!~~

\\

I F

GPERATING FLOOR

?!*

. EL 816* 0" R = 98* -!" -

4.-

..::e i

g

., - r j

n-Y i m:

." 1 1

l CONFINEMENT STRUCTURE 4

5

~-

O N-v-m e-

r

^

0 500 A

I i

I I

I 400 t

1, 1

I I

Joe NQ l

143 hrs.

\\

~

base case

\\

~

I N

\\

~

zoo

  1. 0 k

30 hp,, % rghe. g '9

~ \\

4 f,

N w

l

~

[

j

~

jos

/

ug

/

s 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> Base Case 1

I i

50 o

Jo 40 to so n

Distance From Face - In.

l CONFINEMENT WALL TEMPERATURE AT EL. 900'

+0-

-w

-A.--

L-x a

a s

I a

i w

t e

J E

O 3

0 H

E U

D E

C E

-J E

4 to w

C

>M L

H Z

i Z

D LL.D w

M E

3 W

H Z

E tJ D

LL O

l M

Z W

i O

H u)

U Z

Z E

L&J

=

E

C H

W in LJ F-Z E

uJ t

O

>=

0 LL Z

>=

llZ E

O C

>=

J C

Z t) in Z

Z O

U LL O

O E

w H

u)

Q Z

Z f

W s

>J th

(

E

- ~. '

D E

en t.M u)

J a.LJ D

J UJ

\\,;

M, (n

J sn CO W

M X

d O

t e

e 9

J

a STRitTulGL EVALUATION FOR MARGIN ASSESS 5

SUMMARY

AND CONCLUSION REACTOR CAVITY WALL AND WALL LINER MEET e

STRUCTURAL EVALUATION CRITERIA J

3.,

e WITH MINOR MODIFICATIONS REACTOR CAVITY e

MARGIN ASSESSMENT EVALUATION CRITERIA PiPEWAY CELL WALLS AND WALL LINERS MEET o

EVALUATION CRITERI A l

WITtk MINOR l40DIFICAT10NS, PIPEWAY CELL FLOOR WOULD

,,,r

~

/

~J '. i

~

O e

g MARGidASSE'SSMENTEVALUATION, CRITERIA,.

y ll l

t t

CONFINEMENT STRUCTURE,AND CONTAINMENT SHELL MEET 1,

0 l

ASSESSMENT EVALUATION CRITERIA,

l t

p

.)

7 s

e C\\

h e

t

CRBPR OVERVIEW BRIEFING FOR NUCLEAR REGULATORY COMMISSION CRBPR PROGRAM 0FFICE CONTAINMENT VENT AND CLEANUP SYSTEM PRESENTED BY PETER FAZEKAS MANAGER, AUXILIARY SYSTEMS ENGINEERING BURNS AND R0E, INC.

l

\\

O CONTAINMENT CLEANUP SYSTEM DESIGN DEVELOPMENT EVALUATION OF ALTERNATIVE CONCEPTS e

SELECTION OF THREE-STAGE WET SCRUBBER

(

e l

TESTING OF THE SELECTED CONCEPT e

DYNAMIC. ANALYSIS OF THE SYSTEM ON BASIS e

OF TEST RESULTS 1

l i

i

o CONTAINMENT CLEANUP SYSTEM EVALUATIDH OF ALTERNATIVE CONCEPTS (HEDL REPORT TC-836)

MAJOR ALTERNATES CONSIDERED:

HIGH EFFICIENCY SYSTEMS (99% EFF.)

s BAG + HEPA + CHARC0AL e

CYCLONE + HEPA + CHARC0AL e

SAND AND GRAVEL + HEPA + CHARC0AL e

~

WET FIBER BED + HEPA + CHARC0AL e

MEDIUM EFFICIENCY SYSTEMS-(90% EFF.)

e VENTURI SCRUBBER e

SPRAY CHAMBER (QUENCH TANK) e l

WET FIBER BED e

SELECTED SYSTEM DESIGN:

HIGH EFFICIENCY PERFORMANCE (99% EFF.)

e HIGH MASS LOADING CAPABILITY e

THREE-STAGE WET SCRUBBER

\\

e QUENCH VENTURI WET FIBER BED

+

-+

TANK SCRUBBER SCRUBBER

CONTAINMENT VENT AND CLEANUP SYSTEM DESIGN DESCRIPTION VENT SYSTEM DESIGN e

DESIGN REQUIREMENTS e

' SYSTEM DESCRIPTION e

e SYSTEM OPERATION CLEANUP SYSTEM DESIGN e

DESIGN REQUIREMENTS e

SYSTEM / COMPONENT DESCRIPTION e

SYSTEM OPERATION e

l I

t l

l t

I 1

CONTAINMENT VENT, PURGE AND

~

CLEANUP SYSTEMS h

I

/, / ****~~= %

L.._

/--*L - J O.

f

~

/y i

sn$ne j

-r._.. M_ @.

f.%

~

r o,.,

~

h.

,PUflGE k-CONTAINMENT I

ISOLATION j8 vat.VES j

NT j

otSo URGE I,%

a GAS L

~

x. M.

1 i

FIBROUS

?

7 N SCHUGHER (g _

< r l

t sem m-l rower AAm QW h TANK L

a' iL 4

_ y j

g 1

'Qy VE NTURI SCRUDBER r

l

'f J,

MANEUP

' WATER

)

SOLUTION j

l TANM

$Uppty k

g a.c.a__,,______,

n soLUTrog' ANNULUS Devue 1

6

=

! j : iIi t..

i 1

?

SEP I

P TN N

M A

I E

D L

T N

S U

E Y

D N

S E

A S

R P

G E N R I

U M H

B R S O G E D

E S O U N BM T E R O

I R L N T

N R E E P L H

O M

R O

T T I

D U S D R N T E

ET S L N T M E A K

S O A N E V U C

SY E S O

T T

O S

R O S C S H C L

Y C A P R E T

E R E S A Y

E T L

N T A U H E

N T T P

N L

1 A

U N E A

V E H R M N O T M

T N i E O A

R S R M

l I

D P R E S E R O NE A 0 M F L E V O N C V D T M

T S E L A A M N

N T N O H O

B A N R O D V I

E R I

A C T D I

I E T B

P F T

M N T O N

E W T A O

V A U N T O N Y

C E L L T O

I E E L l

A U C I

E T V V N s

l N C A T H A E L O M E O L A T L R A O

R I

A L R

O P V N O T C A E O S O R O C U

P T I

O L I

T N R N 0

T A T L S

U O A

/ D T C A O i

T Y F F M N E N S O V R O T A E L I

T E

I N N E I

C D R T N N T I

G T T E N U O C O E A A I

O P N U T N A C M C R P M S M I

N D A I

A E E E R O E E U C R D R C C R F e

r S

Q E

R e

e e

e D

e e

e E

)

ll f

CONTAINMENT CLEANUP SYSTEll REQUIREMENTS:

l 99% EFFICIENCY FOR SOLID AND/0R LIQUID RADI0 ACTIVE MATERIALS e

97% EFFICIENCY FOR VAPORS (NAl,. SE0, SB2 3) 2 0

e REMAIN FUNCTIONAL WITH CALCULATED S0DliX1 AEROSOL INGESTION e

REMAIN FUNCTIONAL WITil CONTAINCD RADI0 ACTIVITY AND HEAT e

GENERATION FROM FISSION PRODUCTS REMOTE MANUAL ACTUATION FROM THE CONTROL ROOM s

DESCRIPTION OPERATION:

WET SCRUBBER FILTRATION SYSTEM e

DISCHARGE AT TOP 0F THE CONFINEMENT DOME e

e 211,000 NOMINAL ACFM CAPACITY WATER SYSTEM DESIGNED FOR PH OF 13 e

SYSTEM LOCAT,ED IN THE REACTOR SERVICE BUILDING e

e ALL ACTIVE COMPONENTS REDUNDANT l

l

CONTAINMENT VENT AND CLEANUP SYSTEM SPECIAL CONSIDERATIONS CONTAINMENT VENT SYSTEM e

CONTAINMENT ISOLATION VALVE OPERABILITY e

CONTAINMENT PENETRATION DESIGN e

e VENT PIPE PLUGGING

~

CONTAINMENT CLEANUP SYSTEM e

POTENTIAL HYDROGEN EXPLOSION e

WATER OVERFLOW INTO CONTAINMENT e

MATERIAL SELECTION / COMPATIBILITY e

l

.r 4

~

CONTAINMirlT VENT SYSTEM VALVE OPERABILITY REDUNDANT VENT LINES WITH DOUBLE ISOLATION VALVES e

VALVES LOCATED IN AREAS NOT AFFECTED BY TMBDB e

CONTAINMENT ENVIRONMENT e

REMOTE OPERATION FROM CONTROL ROOM e

NO MANUAL OVERRIDE CAPABILITY t

l s

I.

l

,e

i

\\

\\

I l

CONTAINMENT VENT SYSTEM PENETRATION DESIGN l

CURRENT CONFIGURATION SIMPLE " PIPE THRU" PENE l

e f

THERMAL ANALYSIS TO DETERMINE CONTAINMENT VESS e

TEMPERATURE DISTRIBUTION AT PENETRATION VICINIT STRESS ANALYSIS TO DETERMINE CONTAINMENT e

FALL BACK TO FLUED-HEAD CONFIGURATIO e

EXCESSIVE I

a

CONTAINMENT VENT SYSTEM

~

PIPE PLUGGING THE CURRENT DESIGN IS BASED ON THE CONVEYING e

METHOD - RESULTED' PIPE SIZE 24" HEDL TEST INDICATED PLUGGING OF 10" PIPE e

THE TECHNICAL LITERATURE WAS REVIEWED FOR e

IN TURBULENT FLOW CONSERVATIVE EQUATION WAS SELECTED FOR PIPE P e

SCOPING CALCULATION INDICATED THAT 36" PIPE W e

PLUG UNDER TMBDB CONDITION VERIFICATION 0F PLUGGING E20ATION WITH TEST R e

PROCESS BASED ON TEST EXPERIENCE PIPE ROUTING CRIT e

AEROSOL DEPOSITION IN DUCTS 1000

3. __.

O g>

T 100

. y_..

_ c.

.T.

,h-1 o

.4 l

M

_ o 4

l T a

o

_u_,

m 10 I

z._.

c a

w y,

_ _g, _ -_ _..

...p.

m..

w

_9 c_

o v,

.m 1

V)

_r_ __

a z

J.

.. a

_1 2

o-x A_i l

I 1

10 100 1000 b

1

. u,o l

TOTAL MASS ENTERING DUCT (KG) o S on.

o e cos s

1 Q %CH.%O i

l e

EVALUATION OF TECHNICAL LITERATURE AND SELECTION OF EQUATION FOR AEROSOL DEPOSITION IN TURBULENT FLOW THE WORK OF THE FOLLOWING AUTHORS WERE EVALUATED:

e FRIEDLANDER AND JOHNSTONE e

e WELLS AND CHAMBERLAIN e

DAVIES e

SEHMEL

~

e LIU AND ILORI e

GIESKE ET. AL.

SEHMEL'S EMPIRICAL FORMULA WAS SELECTED e

BASED ON EFFECTIVE PARTICLE DIFFUSITIVITY MODEL AND e

CORRECTED BY LINEAR REGRESSION METHOD PER AVAILABLE EXPERIMENTAL DATA ASSUMED PERFECT PARTICLE SINK SURFACE e

GOOD STATISTICAL CORRELATION WITH EXPERIMENTAL RESULTS e

e THE SELECTED FORMULA K+ = 1.47 x 10-f3 R

RE

+

WHERE:

K =

DIMENSIONLESS' DEPOSITION VELOCITY 3

P =

PARTICLE DENSITY (s /cm )

R=

RATIO 0FPARTICLEDIAMETER(pt)TO PIPE DIAMETER (cM)

RE =

REYNOLDS NUMBER

~ _ _.. _..

l

{. l _.. --

- _._ _., _ _ _3.

_._. _ g -

g-3 L_,,

_ d._ :_ :_. _1

7. _

e i

8 l

l m __

l l

I s

-\\

8 10 -

m, - -

1.

e tp s

e 7

i c

r,,

a.

10

,s w

i o

/

=_.a I.

D.

/

ce r

o m_ /'

u.

wca

,J.

,o f m

6 s.s,.

w

.a n,

.,/

s g

s...

/

..-Ty

/ #

s r

s

/

/

f t

L ? yo

,o

)

p I

o

>l' t%

m c.

a 7

L.L3

-Y W.

/

l

/

,,A f p,

-__g.-,

ac g g.

O 10. __ r. < _+ m _.., _f y

y H

r c

(,

ve f '

.o w 4

)

e

/

L' b4"[W 6

s

/

i I

w O

'/

~2 SF f l

l k

E

/

.s

)

I l

(

Q,

[

s

/

s W

r p.,,

,,e

.W s

7 LA.J

" ~.

,v 1

a s

s

)

_.\\

l g

"_z_'_....____'_____

10 p'/

y

,- p,_,,<_

E p.-/

~

4 6

8 10 12 14 16 18 20 22 24 26 28 3

10

,e i

PIPE DI A",ETER.(c:0

- - - ~.

--m---

.+,-----.--.m.-

i 4._

. _. wi

-.x l

f,/

i r.(

--,m, i

10

/,.,

l

/

p_/

i

'B I )f W W-

/./

$/

h

/

// l m

7

- - - i- - r-->

  • t

- i.__

1

~

10 D'

s'f-e ir

. s.

s

  • e g

u fg g

//

i

.O

/

t

//

_I i

n f

I

//

I

.a

)/

I

/

/

_,_.,-e

,_.i rf r-, a -.

.._ g_ ;

10

--f- -- {

i i

e O

f be 96 I

d

=

iI 0

O a.

O e'

17 N. O L e

O-

/

a 10

- 2Mc" l ~ e%P(_.cg >.m I

~

s j

p

~

e f.)I n

._.Im.,, - D,4 t,

g

- }f a

g i

/.

4 20 30 40 50 60 70 80 90 100 110 120 130 140 10

. PIPE DIAMETER' (cm)

=

W'e gw

' ' ' ~,

,g g _.

e ee k

  • ~

CONTAINMENT CLEANUP SYSTEM POTENTIAL HYDR 0 GEN EXPLOSION THE VENTED GASES ARE NOT CONTAINING HYDR 0 GE e

MIXTURES IN THE EXPLOSIVE RANGE HIGH POINTS OF THE COMPONENTS VENTED TO PREVENT e

STAGNATION NON-EXPLOSIVE GAS MIXTURE WILL NOT SEPARATE l

e e

1

l l

CONTAINMENT CLEANUP SYSTEM WATER OVERFLOW INTO CONTAINMENT 1

1 i

i

{

THE CLEANUP SYSTEM COMPONENTS COULD CONTAIN e

THE ENTIRE WATER INVENTORY l

THE EXPECTED WATER LEVEL IS BELOW THE VENT e

I PIPE ELEVATION I

[

t

CONTAINMENT CLEANUP SYSTEM MATERIAL SELECTION / COMPATIBILITY l

l ALLMETALLICCOMPONENTSARESPECIFIEDASCARs0N e

STEEL OR ARE TO BE COMPATIBLE WITH THE EXPECTED WATER CHEMISTRY THE FIBROUS SCRUBBER ELEMENTS SPECIFIED AS e

POLYPROPYLENE, TEST INDICATED HIGH PH COMPATI5ILITY

.e

- ~ ~

/

~

CONTAINMENT CLEANUP SYSTEM TESTS e

TEST OBJECTIVES TEST DESCRIPTION e

e TEST RESULTS N

A f,I s' (

(

S\\'\\ 1 4

t' W 4

y#

g t

CONTAINMENT VENT AND CLEANUP SYSTEM TEST OBJECTIVES 3

DETEMINE THE PARTICLE DECONTAMINATION PE e

SYSTEMCOMPONENTSDURINGVARIdUSOPERATINGCONDI DETERMINE THE CONDENSIBLE DECONTAMINATION e

THE SYSTEM DETERMINE THE HEAT 7 REMOVAL CAPABILITY OF TH e

COMPONENTS ESTABLISH THE' PRESSURE LOSSES THRU THE S e

DURING VARIOUS OPERATING CONDITIONS DETERMINE THE AEROSOL CHARACTERISTICS IN THE CONTA e

EVALUATE THE OPERABILITY OF THE SYSTEM COMPONE o

DEMONSTRATE THE COMPATIBILITY OF THE SPEC e

MATERIALS WITH THE SYSTEM ENVIRONMENT DETERMINE THE AEROSOL DEPOSITIONS IN THE SYSTE s

l e

=

n i

e

_-_-..._c

CONTAINMENT CLEANUP SYSTEM TEST DESCRIPTION TEST ARTICLE CONFIGURATION e

EXPERIMENTAL MEASUREMENTS e

TEST CONDITIONS e

O e

l d'

4 I

--T


r-

.Y 5

e e

S I

.va m,,

e,,-

en. "

cc::c x

n Nj D

_~>

l E

s-1 bE g

==64 N

U3 u) cr'.

O Ha

~

C t.D 0

8 O -

Rh =

Ex &

g z

L1-C5 gE

'u n

?."

h wd zw -

m bb

@i 0:

=

-c g$

5 s

a e

z en

,I a m a

G &

l

  • N

>(

g>>

. >J.

g WI 02(

u i

e e e e summ=

eaW

.O O

,ya me.

CONTAINMENT CLEANUP SYSTEM TEST EXPERIMENTAL MEASUREMENTS SUSPENDED AEROSOL MASS CONCENTRATION (AT i

e AEROSOL SIZE DISTRIBUTION (AT ALL COMPONENTS e

AEROSOL PARTICLE SIZE AND SHAPE (AT ALL CO e

AEROSOL CHEMICAL COMPOSITION (CV & DUCT) e SETTLED AEROSOL MASS (CV, DUCT) e SETTLED AEROSOL DENSITY (CV, DUCT) e S0DIUM SPRAY RATE (CV) e COMPONENT PRESSUPI DROPS (ALL COMP 0NENTS)-

e GAS FLOW RATE (FS OUTLET) e LIQUID FLOW RATE (AT ALL COMPONENTS) e GAS TEMPERATURE (AT ALL COMPONENTS) e LIQUID TEMPERATURE (AT ALL COMPONENTS)

GAS COMPOSITION (0, H, CO, M0ISTURE/CV, FS OUTLET e

2 2

2 f

e S

i CONTAINMENT CLEANUP SYSTEM l

TEST CONDITIONS AC-1 AC-2 AC-3 AC-4 AC-5 AC-6 l

COMPONENTS NO YES YES YES YES NO e QUENCH TANK YES YES YES YES YES YES VENTURI SCRUBBER e

YES VES YES YES YES YES o WET FIBER SCF;UBBER NaOH.H O NaOH Ma0H.H 0 2

AEROSOL TYPE Na2 2 NaOH Ma2003 2

0 3

6 11 5

15 13 27 INLET CONCENTRATION (g/m )

3.1 3.7 3.6 3.5 3.3 5.5 PARTICLESIZEAlmo(f) l 2.8 2.1 2.8 2.6 2.5 2.5 GEOMETRIC STD. DEVISTION 3

0.19 0.35 0.27 0.55 0.44 0.54 GAS FLOW RATE (m / s )

1.5 1.8 2.1 2.0 5.7 2.1 PRESSURE DROP (kPa )

60.6 1 51 61.2 342 477 424 4

COLLECTEDAEROSOLS(kg)

MEASUREDEFFICIENCY.*(%)

~

79 66 62 62 QUENCH TANK 89 88 86 87 81 94.5 VENTURI SCRUBBER.

98.6 99.0 99.2 99.2 99.9 99.4 99.97 99.96 99.95 99.93 99.98 99.96 WET FIBER SCRUBBER OVERALL SYSTEM s

CONTAINMENT CLEANUP SYSTEM TEST MAJOR CONCLUSIONS l

e PARTICLE DECONTAMINATION PERFORMANCE 99.95%

e NAI DECONTAMINATION PERFORMANCE 99.8%

AT DESIGN FLOW CONDITIONS VENTURI SCRUBBER LEAVING GAS e

AND WATER IN THERMAL EQUILIBRIUM PRESSURE DROPS VARIED AS PREDICTED z SYSTEM CAPABLE e

FOR LARGE AEROSOL LOADINGS e

THE PERFORMANCE OF ALL COMPONENTS IMPROVED WITH REDUCED i

GAS FLOW e

THE SYSTEM LOADING DEPENDS ON NA CO23 SOLUBILITY, RECOMMENDED LIMIT 115g NA/L THE DECONTAMINATION EFFICIENCY IS NOT AFFECTED BY THE e

CHEMICAL COMPOSITION OF THE AEROSOL e

RECOMMEliDED L/G RATIOS VENTURI SCRUBBER 0.007 WET FIBER SCRUBBER 0.00008 a

WET FIBER SCRUBBER MAX VELOCITY 21 FT/SEC e

SYSTEM OPERATION WAS SATISFACTORY NO SPRAY N0ZZLE PLUGGING NO FIBER ELEMENT DETERIORATION i

NO CARBON STEEL CORROSION TROUBLE FREE FLOW MODULATION

e l

  • 3 a

- a 10 2,

>g a

0 AC1 O AC2 A

A AC3 A #U#

3 1tr AoO 2

o P

4 i

a p

g w.

2 i

w O

a.gg 4 A

c E

A D

A e

w<

w A.

t 10-6 g

f I

2

,,,I

.$g 4

id 10 3 8

10 tr PRED!CTED PENETRATION mam, sus.na.s 1

Comparison of Measured and Predicted sodium Aerosol Penetration by Total, System.

, o w _,.

^

Na! MASS BALANCE AND Na! REMOVAL EFFICIENCY FO Test AC3 Recovered Refoova l Component (g Nal) _

Efficiency 205 0.291 Quench Tank Venturi Scrubber 208 0.417 Finrous Scrubber 289 0.9947 1.531_

1.000*

HEPA Filter 703.531 0.9978**

overall System

~* Assumed 7-

    • Excluding HEPA filter

SUMMARY

OF Na! EFFICIENCIES DETERMINED BY AEROSOL AND BY LIQUID SAMPLING METHODS Averace Efficiency Test Average

~ACJ AC4 Nal-1 Nal-2 All Tests Conconent Quench Tank _

0.53 0.41 0.33 Aerosoi 0.29 Liquid 0.57 0.20 0.67 0.21 0.41 Venturi Scrunoer_

0.8.3 0.80 0.68

- Aerosca 0.42 Liquid 0.998 0.990 0.997 0.998 0.996 Fiorous Scruocer 0.990 Aerosol 0.995 Liquid

.QT/VS/F5 System _

M.992 0.998 0.999 0.9963 0.9978 i

~ Aerosol 0.9978 Liquid

  • Not measured; no inlet sample taken
    • Not measured; back-up HEPA filter. not analyzed e

e..e a e e.

8"-

- - ~ -

e -

--__....,.,.,.,,n.

r

,-g--,-p,w

i

\\

l

.....g

100,

....,g O AC1

~

A AC2 o AC3 0 AC4 OPEN SYMBOLS = 3.38 m FALL HEIGHT 2

CLOSED SYMBOLS = 1.89-m FALL HEIGHT u

g

< ~ "..

..d C >;

r T, = OUTLET GAS TEMPERATURE 5

E *"$

g

a. g 4

7 gl = INLET GAS TEMPERATURE T

0 10-1

= AVERAGE UQUID TEMPERATURE :

Tg

> 3 i E o

NS

~

EE o

O s'

og q,

gg

, c g

q q%

O c 4

CORRELATING CURVE e c gg POR 1.8S.m FALL HEIGHT ~

g3c 10-2 7 N

~

sZ r h

CORRELATING CURVE g

FOR 3.h FALL HEIGHT 2

2 i

i c

t 0

10-3 10-2 10-1 10 i

4 f

SPRAY FLOW RATE / GAS FLOW RATE (DIMENSIGNLISS) 10 essa. mm.ts:

4 l

Correlation of Gas Cooling Data for Quench Tank.

~

~

,_m_._

i-e G = 0.238 m /s ISTP) 10.803 m /s ACTUAL) AT VS INLET 3

3 L/G = 0.00353 UQUID = 0.5 M NACH

,300 S

=

\\

> ms

\\

VS GAS INLET 300 30 VS GAS OUTLET w

u g 3 VS UQUID OUTLET

~

80

~

O

~

t em

+E TEMP CIFFERENCE VS LIQUID VS GAS O u

-7 7

7 7

4 7

0 s

9 t

t

.g __-

20 30 m

50 80 s

0 10 TIME (mini j nies seran.m 4

Gas tooling by Venturi Scrubber at Intermediate Vafue of 1./G.

.e we

~ ~ -

J l

l* E G = 0.472 m /s (STPi 3

G = 1.1 m /s ACTUAL ATVS INL27 3

13 M NADH UQUID =

400 -

4

/

dik d

f VS GAS INL1T p 350 PROPANE N BURNEA OFF MIN 20 I'

. e, 100 4--c 4

VS GAS OUTLET #p h

pi

\\W h

A 1

i

' Cf e# o.o-30 -

P a

I VS UQUID OUTLET 5

d r

si uL g?

r

-n

+10 TEMP DIFFERENCE VS GAS OUTLET -

VS UQUID b

0 l

-'./ G = 0.0029 a

U L/G = 0.0025--

L 1ho 2b 2

4 0

50 10 TIME (min) mem.sswei.w.

l Gas Cooling by Yenturi Scrubber at 1.ow L/G Ratios j o

+.

    • O"

.g

-M y

l PREDICTED PRESSURE DROP (Pescalsi 100 180 W

18 0

0.8 e

i a

O TESTS WITH AMBIENT AIR AND Pl.AIN WATER 0

A MIDWAY IN TEST AC1 A END OF TEST AC1 5 MIDWAY IN TEST AC2 j

0.~.i END OF TEST AC2

{

MIDWAY IN TEST AC3 g

a o

y z

o END OF TEST AC3 9

100 [

a MIDWAY IN TEST AC4 0

=

V o

0.4 END OF TEST AC4 Y

a O

a C

C e

Q

-Au C

E

.w a

$. Q.3 w

C s

w m

c ti C

50 E C

3 E 0.2 a

UNE OF PERFECT AGREEMENT 3m C

2 2

0.1 l

t i

f i

i 0

1 q

0.0 0.1

- 0.2 0.3 0.4 0.5

. 0.8 C

PREDICTED PRESSURE DROP (In. H2 l nen ne.us Comparison of Measured and Predicted Pressure Drop Across Quench Tank.

^

PREDICTED AP (kPs) 0.5 0

OJ 1.0

. 1J 2.0 2.0 g

g 3

8 ROOM TEMPERATURE TESTS WITH CLEAN AIR O

7 -A DATA FROM AC1 O DATA FROM AC3 1.3 8

O Es z

2 O

n.

i 1.0 g O.

a.

2 4

<2 a

0 C

a c

33 b

o 3

a m

U

    • 'b m

~

y2 C

s

~

O cE1 2

0 0

w 0 2

i 3 -o

[

O 0.5

-2

-1 0

1 2

3 4

5 6

7 8

2 PREDICTED PRESSURE GAIN (In. H O) 2 peotsusvas

. Comparison of Measured and Predicted Pressure Differentials Across Venturi Scrubber.

l PREDICTED AP (kPal 0

0.5 1.0 1.5 2.0

. 2.5 3

10

,~g

~

0 TEST AC1 9

A, TEST AC2 g

2.0 O PRETEST AC3 a TEST AC3 9

g e TEST ACA

~

V POST TEST AC4 7

T 1J.I E

8 c

5 e

e O

w 5

us o

1.0 E E

<w n.

4 2

c w

2

@ 3 a

UNE OF PERFECT 0.5

- AGREEMENT 2

1 I

I I

O O

1 2

3 4

6 8

7 8

9 1Q 0

PREDICTED PRESSURE DROP (In. H O) 2 nam som:

i Comparison of Measured and Predicted Pressure Orop Acros Scrubber.

i B

~

y

- = = - * = = = + * "

- = = = = = = = - =

24

- 8.0 0 18 TEST ACS 33 POINT NUMBERS REFER 130 gg4 5.0 TO OPERATING PERIODS.

DEFINED IN TABLE 5 T

02 18 019

" 4.0 5

C, a.

U o

z g

03 o 10 E

w*

010

D O

S m

D OM M LO wa" OU 4

012 o1, PRETEQ gaos 1.0 2

11g22 g

O 0

0.3 0.4 0.5 0.8 0.7 O

0.1 0.2 3

G (m /s.) (STP) 10 2=5 TEST AC.d 10 l

POINT NUMBERS REFER 69 5

g g, _TO OPERATING PERIODS c11 7a.

DEFINED IN TABLE 6 a

5 a,N o4 g 1.5 2

  • g N.-

o w

PRETEST

4 7

$ 1.0 m

M 1

.W 2

[

E 12 l

6 0.5 6

O 0

0.1 0.2 0.3 0.4 0.5 0.5 0.7 l

0 l

3 G (m ) (STP) 1 I

l 1

14 g

j, 3.5 -

l/

l g.4 li,}

l 22 l II 2.0

~

l'

..# a iij 10 _

11 2.5 fIi Q

2 TI T

0. ass 1/2 I

E a-I 8 =

6 W

's-O E

a.

2.0 I

a C

s C

o w

w sg e

S 1.5 o.cos2s1/2 1

e e

v e

I w

g l/OLUBluTY UMIT a

4 FOR Na2CO3@20*O[

1.0 I

l

-2 03 3

GAS FLOW 0.47 STD rn /s 24*C 0

150 0

100 to 0

'UQUID CONCENTRATION (g Na/t) inset use.w _.

i Effect of Caustic Spray on Pressure Drop Across Fibrous Scrubb 1

^ ~

.a

~

3.1 g

g

~ ~

2.8 s

10 LE 2.4 2.2 ag

.g.2.0

=

e

  • n

=

a.

1.3 C

m 8 m O 1.8 O

E

  • w o

$.4 a

2 m

e e

w m

m

$2<-

W e.

m 4

a.

1.0

~

3 0.8 GAS M.OW 0.C STD m /s TEMPERATURE = 24*C UQUID CONC. <1 g Na/2 2

0.g 0.4 0.2

.e 0

0 0.04 0.08 0.12 0.16 0.20 0

s em anet.n WATER SPRAY RATE (2/s)

I 1

e i

)

\\

Effect of Water Spray Rate on Pressure Drop Across' Fibrous j

Scrubber.

l

~~~--

2.--

33.

~ - - - - - - - -,. -...

mr- ' ----- -., _,

e I

e ee p

e i

1 1

4 M

E v

-W X

X X

.X m

M 4

>==

=0.

w W8 M<

J ME b

M u

E o

8 g

e w

w

~

a m

=

=J W

n C

C O

W m

y M

$a k

w

=

"g"*

C W

t@

7 g

g J

m.

W M

cc cf.

M cr..

y y

W W

K a

4 4

3

  • lE M

Z W=

aC s

J a

M

~

=4 <.

>4 M

W W

=

U C

=

=

C C

t.o

=

r e

e e

e O

O l'

4' t

1 I

\\.

-,_-,_m,,

,_.,-.,__.--___-.-._.,-..,wy..m.

PUMP, MAKE-UP, ASSUMPTIONS / INPUTS INPUT ASSUMPTION CONSERVATISH CONSTANT VOLUME, VARIABLE TEMP, DENSITY X

e X

X

.5 F AT INPUT DUE TO PUMPING ACTION e

0 X

X C0OLING WATER INLET TEMPERATURE 91 F e

1 X

e MAKE-UP RATE 5 GPM X

X e

MAKE-UP TEMPERATURE 91 F.

i i

I I

8 l-j

'~

BASIC PROGRAM LOGIC STARTOFPROGRAM) o

/ SET INITIAL CONDITIONS /

/

AND ASSUMPTIONS

/

1 1P fREAD INPUT FILE AND - /

PRINT OUT DATA 1

hDOFPROGRN[4

/

7 t

CALCULATE SOLUTION CALCULATE QUENCH TANK jTANK HEAT BALANCE MASS. HEAT BALANCE y

EAT T

ALANC LANCE MV FBAN CAtCutATt Nx

. HEAT BALANCE EAT LANC ALANC

't CALCULATE FIBROUS SCURBBER 14 ASS, HEAT BALANCE

.e f

\\

\\

M

l 1

1 l

t l

l

~ _

~

0

.~;

ts -

l I

m.

I o4 i

22 =

t

,8 -

I}

k u

s 14 -

pzwI E

C 5 EO -

o I

i i

e i

i

~t i

4 I

L 40 50 60 70 80. 90 10 0 11 0 120 13 0 TIME, HOURS AFTER THE ACCIDENT o~Y.

N*

CONTAINMENT VENT RATE 1100 -

f VENTED GAS TEMPERATURE M

c

~7 e

900 e

6 w

E I

N e

5$

w t

800 g

o w

0 6-i 4

(

l e

700 3

~

AEROSOL k

FLOW RATE t

z e00 t.

30 40 50 60 70 80 90 10 0 11 0 12 0 c

TIME, HOURS AFTER THE ACCIDENT

'Of RATE VENTED GAS TEMPERATURE AND AEROSOL FLOW

, - - - - - - - - - - - +, - - - -

l l

I c.-

C-Y O I

O w

O D

t

-o C

D e.z N

s -ro w.J

=

I I

I I

o 10 0

-0

- 20

-30 SOLtJTICN #NLET TEMR - GAS INLET TEMP.,'F

.',._ p RELATIONSHIP FOR VENTURI SCRUSSER DATA so.

o a

t.e.

1 o

E g

S O

o o

e o

g

-to ms -

1-eo

> 400oF

..o-o o VENTED CASTFMP E,

< 4000F t

t l

6 Q

o 10 30 30 40 30 00 SAS FLM RATC / SOLUTION FLOW RATE, SCFM/SPM AfLAT10MSHtP FOR OUCNCM TAME DATA d

I

~

1000 -

VENTED SAS 800-w e

ase 600-D 4e 2

Y AnO-DISCHARGED GAS 200 -

j I

I i

e i

I 30 40 50 60 70 80 90 TIME, HOURS AFTER THE ACCIDENT

.o CALCULATED DISCHARGED GAS TEMPERATURE

.e

no THIS 57Ut*

O, O HEDL TEST DATA 120 -

O O O o GAS LEAvlMG eo OUEhCH TANK M

u o

~

O o 11 5 O O p

O O O O O O wz oO 3>

4 i

z

[

U

$ 110 -

GAS LEAVING FIBROUS SCRUBBER 00 0 0 00 0 000 0

0006 000 00 6 6 10 5 -

i 1790 1770 i

1730 1750 i

1690 m0 TienE, MtNUTES WITH MEDL TEST RUN ACI' COMPARISON OF RESUTS e

l h

SufflARY CONTAINMENT CLEANUP SYSTEM IS USED TO e

MITIGATE HCDA'S HEDL TESTED CONTAINMENT CLEANUP SYSTEM e

BURNS AND ROE ANALYZED CONTAINMENT CLEANUP e

SYSTEM VIA COMPUTER MODELING ANALYTICAL AND TEST RESULTS CORRELATED WELL e

k l

i 6

I I

i l

1

(

+

StMSRY OF AEROSOL DEPOSITION IN OUCTS - TESTS AC1 tnt 00GH i

I

!i Aeroso) Mass,kq(a) lia Fraction Bulk Maximise

', i AP Duct Duct 1.D.

Length Deposit Penetrated I

g Na per Densgty kPa _ Pluqqed_

Dimensions _

a/cm

Number, m

a In Doct Duct Total Pen.

__g Total __

Acl-10 265 16.4 12.5 60.8 73.3 82.9 0.515 0.16 0.5 No AC2-1 22.1 14.6 0.516 0

0.516 0

0.437 e 0.5 70 Yes(b)

AC2-10 265 16.4 122 172 294 58.5 0.437

.87 2.8 No AC3-1 22.1 13.3 0.275 0.110 0.385 28.6 0.434 0.11 70 Ves l

l AC3-2 52.5 13.5 0.420 0.405 0.825 49.1 0.434 0.11 9.0 No AC3-10 265 16.4 37.0 61.7 98.7 62.5 0.434 0.11 0.87 No q

AC4-2 52.5 13.5 0.137 4.37 4.51 96.9 0.25

~0.6 5.2 No g

AC4-10 265 16.4 62.6 455 518 87.8 0.25

.~ 0.6 3.3 No ACS-2 52.5 17.8 3.56 2.60 6.16 42.2 0.558

~0.5 70 Yes

}

~ 0.5 7.5

,Yes AC5-4 110 21.3 20.4 50.8' 71.2 71.3 0.558 ACS-10 265 10.7 27.8 541 569 95.1 0.558 a.O.5 1.0 No i

AC6-10 265 10.7 55.6 424 480 88.3 0.458 0.64 4.2 No l

f ai0etermined by analyrlog for Na and dividing by Na mass fractionduct walls above MaOH melting po i

.dbjouet plugged post-test by heat ng g

t g

t

^

j CONTAINMENT CLEANUP SYSTEM DYNAMIC ANALYSIS TO VERIFY THE PERFORMANCE OF THE CONTAINMENT CLEAN e

TEST PROGRAM WAS INITIATED AT HANFORD E LABORATORY (HEDL)

THE PRIMARY G0AL 0F THE TEST PROGRAM IS TO e

FILTRATION EFFICIENCY OF THE CLEANUP SYSTEM THE TEST COULD NOT FULLY SIMULATE ALL TMB e

DUE TO LIMITATIONS OF THE TEST FACILITY THE FULL SIZE SYSTEM DESIGN REQUIRED A D e

CONTAINHENT CLEANUP SYSTEM THE PURPOSE OF THE DYNAMIC ANALYSIS IS TO l

e THERF10-HYDRAULIC BEHAVIOR OF THE SYSTEM THE RESULT OF THE ANALYSIS PROVIDED INPU i

e 0F THE COMPONENTS AND SELECTION OF THE THE ANALYSIS UTILIZED THE AVAILABLE TEST

~

e CORRELATIONS AND EXTRAPOLATION THE COMPARIS0N OF TEST RESULTS WITH THE e

INDICATED Ct'1SE CORRELATION t

1

.-~

. a....

1 l

COMPARISON OF THE CRBRP LAYOUT AND HEDL TEST ARRANGEMENT

-~

g

.,s..,

u r

\\

INTAEE I*l /

=

-, ?

h e

'. C el l p as

8.

8 COr#TAIMaagNT gg l>

scLAT. ION wt VElst

$ $=

g

[Y#

I

![

t

.gm, g

j

.. a w

....e

.i S:nwooge g

-.: s j

l, T "(.,

j L,;e.

m.

~'-

u-CRBRP LAYOUT

~

fst3M g

.70 Aas STACE en.1r g,g

.=,A o

FEffet #1 l

~

_.R x

)

n ats WNO4 TK SCBU TJE_C.-.

A g

L,p L

' ~

d d',

Ol H.

5 5

I j

CONTAINastMT o

vm.

1

=a

  • gid-I W

l lY

,,,5 t..a &

2

_a_

v HEDL TEST ARRANGEMENT

C COMPARISON OF THE HEDL AND CRBRP SYSTEM COMPONENT PARAMETERS CRBRP HEDL 1,000*

22,8ty)*

MAXIMUM SYSTEM FLOW (SCFM) I 35' 50*

MAXIMUM AEROSOL CONCENTRATION (s/M )

1,100*

MAXIMUM GAS TEMPERATURE (0F) 700!

QUENCH TANK 4

18' 6" DIAMETER (PT)

HIGH (FT) 13 25 RESIDENCE TIME (SEC) 6.5*

5.7*

28.5 500 SPRAY FLOW (GPM)

AIR /WATERRATIO(@)

35*

46' JET VENTURI

' 20 7.5 THROAT DIAMETER (INCH)

M 198 THROAT VELOCITY (((c) 8.7 24 HIGH (FT) 50.6 1,000 FLUID FLOW (GPM)

AIR /WATERRATIO($)

19.7' 30 FIBROUS SCRUBBER 2.5 23 i

DINETER (FT) 13.25 24 HIGH (FT)

-38 1

ELEMENT NO.

24 24 ELElENT LENGTH (IN) 72 ELBENT LENGTH (IN) 120 2

63 1,432 TOTAL ELEMENT FACE AREA (FT )

ELBENT FACE VELOCITY (Qg) 15.9*

18.1*

  • SIGNIFICANT PARA.'ETERS

5 CONTAINMENT CEANUP SYSTEM PROCESS MODEL QUENCH TANK e.

CHEMICAL CONVERSION OF NA20 To NA0H ~ REACTION SOLUTION OF REMOVED NA0H PARTICES - SOLUTION HEA SENSIB E HEAT COOLING OF VENTED GAS

--+

JET VENTURI e,

SOLUTION OF REMOVED NA0H PARTICES SOLUTION HEAT SENSIBLE / LATENT HEAT COOLING OF VENTED GAS

=

FIBROUS SCRUBBER e

SOLUTION OF REMOVED NA0H PARTICES -- SOLUTION H REMOVAL OF FISSION PRODUCTS - DECAY HEAT I

SYSTEM INPUT VARIAB E S e

VENTED GAS MASS FLOW RATE, TEMPERATURE, F9 ESSURE, WATER VAPOR CONTENT VENTED NA20 MASS FLOW RATE VENTED FISSION PRODUCT DECAY HEAT RATE REMOVED FISSION PRODUCT DECAY HEAT RATE FLUID FLOW NA0H CONCENTRATION, TB4PERATURE, DENSIT(

e.

i e

- --, _. ~. _. - - _. - +. -.-,____.-, -,

\\

g a.

CONTAINMENT CLEANUP SYSTBi PROCES3 MODEL (cont' SYSTE1 INPUT CONSTANTS e

FLUID ~ VOLUMETRIC FLOW RATE TO COMPONENTS FILTRATION EFFICIENCY OF THE COMPONB4TS HX COOLING WATER FLOW, INLET TEMPERATURE MAKE-UP WATER FLOW, TEMPERATURE HXSURFACEAREA SYSTEM 00TPUT VARIABLES e

GAS FLOW, TEMPERATURE AT VARIOUS STAGES FLUID FLOW NA0H CONCENTRATION, TEMPERATURE, VISCOSITY -

HEAT EXCHANGER DUTY A

4 t

i

ANALYTICAL PROGRAM ASSUMTPIONS/ INPUTS e

GENERAL QUENCH TANK e

l JET VENTURI e

FIBROUS SCRUBBER e

SOLUTION TANK e.

PUMP, MAKE-UP, HEAT EXCHANGER e-e

\\

i l

4 a

4 e> e a e Se m e

e e

e

  • e e se e ee

=

e e sep 6 ee e

)

d N

(

f w

j CN M

M M

w ME W

e C

M M

M m

M 4

>==

2 H

C M

E cE NM8 b

_M4 W

C Q

J&

P a.

c

=

w W

  • H E

L W

C W

E E

LD ClL.

W W

'l>

  • l>

a E

M D-C E

E

~

L W

Z

~

W W

J Z

D i-g g

U E

N b

(M J

M W

C C

J K

M J

CM W

g k

O N

~

E W

W M

W J

C x

h J

C 4

O e

e e

i l) 1l1 lll

,I

! ', l l l.

i

i M

S

)

I

)

T T

T(

A

(

V X

R X

ESNO C

N

)

O T

I

(

TW X

X X

USSA TUPN I

/

T X

S U

^

N P

O N

I I

TPM US E

S R

A U

)

T M

K A

EMP EG N

R A

E E T

R P

(

U M T E O

l iC A T I

N E

R T

E T

E T A

E P E R

0 0

L M L

~

P E T N

M M

s T UK O P

7 O

A ON I

G T

6 C

R T

A T l T U 0

S E

Y 3

L 0

L 0

E l

C 0

3 T

1 H Q 5

T l

l e

d A

3 U TC S E

N 3

O UN /

=

Y LE R B

C O

R O0 I

W I

I T

I S0 A O

D L

E A

I

=

F F

ma F

l F

i E

0 I

N L

S T

a o

s O

R s

1 E

A R

3 s

A I

V E

T T R

T V

U O

V L

=

M N

o O

E O

S R

C T

)

T

(

(

e e

e ll ll l

O e

e -

es..

++eeep eeuen w.

e eese e -

9

  • p ee 1

l E

n Y-*

W W

g w

w N

X X

da v

E X

X C4 4

cn

. W 3C E.

H

>C

==

- 3 N

f/3 C

~

g 5

N I.I t,E.

m C

MC

ll3 Cz:

LLJ 3

CE W

3 4

Z KW g

p LLJ 7

r p

.E c,,,

W w

ca 5e W

-c W*

u

+

E 3

HE W

C CW M

  1. =

!E CC

-W CE:

CW t/3 ll>

C is:

J W

~W u

W W

W 5

4

=

W et E

4

~

J H

C

==

c Cz:

vn W

R H

H "l>

DJ E

O C

W W

e C$

m H

bem w

O O

FlBROUS SCRUBBER ASSUMPTIONS / INPUTS s.

s

~

INPUT ASSutPTiod CONSERVATISM f:

X X (T)

REMOVAL EFFICIENCY 98,8%

e X

X DECAY HEAT RAISES AIR TEMPERATURE e

X X

NO WATER EVAPORATION e

X WATER SPRAY FLOW 11 GPM e

e 4

s b

r (T)=VERIFIEDBY; TEST

9 6

O e

EflCLOSURE 4 a

e 1

i l

l k

l 1

r

--a- -

T,tn M,.L) k.

+.cii

~

lb hjiJ i 'L.

l

{ vn Y)Yl O..M 6 Al RC Rs a d ')

uRc/cR$RPo V A 6,u.uk awt-7 F dusu

-H71.L

{'v m w es IM t-NA&zas'AVswc

/W S.L. M/;L

%/,; (,,

,, h.' ?

^

(<l

- : i;

(. t.:. -

-). l

.. c.

. d

' k

,1,- lr.

c. a.

P::

a L.?. -

d ' y, Q.; t, i

m.

~

~

Di5K. Be.c Ke c-NRc-/c)ctsrWD kW1 0lsY<r b5 kg,,gOf

.hy).

F :up. e, 4 eP er-L M L.

.g

[. - D -

).

i k 'f~-

t$l1 u.:s

/cu kt"o 3

'.El;Y f.1fJE N.TEF3.

M'I

) a vi.s f( l?,b C%lU

$rs'of k rr s n

)VlC,/htES

!? Z J10 /4er-

/YA'clirx*.s E.

Am.'viciy.

.e.'viA T iusy._& s' ( ~g **

C(2 B B 1%,h 8 f.

Ji'.5.,9;,n-

[.:<c.:e :,5 s 7

J..A '. i'~. 2:... s., -.s

.' t ::: us v. -.~E

  • I '. ' e b i(C he ' C l { (.. I
  • 5, 7 fu d g

L (r

l'

.. t.: s

.s F rq,# S'c,a ceu em, yy r,,e -%&

{C?}A) /b,% o cgen/ptvAJ

[gog U 's. s l T..

t3 (?c. ce s...'N l f/) C A I.

n

' ** N.

9

% q.

6

s. V. I4s L

aML R. D. Gessea-D"L

//p /fak

/VM C i l M

1.c.

sinuwse w-wit EnEGrces (D-eM r w. /3a //

cd-wivl t

e,

-*'-'w'w

'wwww w,w-w-ww-w-

,w,,.,

,,,,,p

_ _ _ _