ML20066H889

From kanterella
Jump to navigation Jump to search
Cycle 15 Startup Test Rept
ML20066H889
Person / Time
Site: Vermont Yankee File:NorthStar Vermont Yankee icon.png
Issue date: 01/23/1991
From: Tremblay L
VERMONT YANKEE NUCLEAR POWER CORP.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
BVY-91-10, NUDOCS 9101290315
Download: ML20066H889 (13)


Text

._.

.. =....

..~.

.. s-IVERMONT YANKEE NUCl, EAR POWER CORPORATION-Ferry Road, Brattfeboro. VT 05301 7002 7

g ENGINEERING OFFICE i-580 MAIN $TREET OOL TON, M A 01740 (508)779 6711 l

January 23,1991 BVY 91 10 United States Nuclear Regulatory Commission NITN: -Document Control Desk Washington, DC 20555 i

References:

a.

License No. DPR-28 (Docket No. 50 271)

Subject:

Vermo-t ",nkee Cycle l' tartmp Test Rwart

Dear Sir:

(

- Enclosed please find the Cycle 15 Start Up Test Report for Vermont Yankee, which is submitted to you in accordance with the requirements of Section 6.7.A.1 of the Vennont Yankee i

' Technical Specifications.

'We trust that you will find.this information satisfactory; however, should you desire i

' additional information, please contact this office.

Very truly yours, l

VERMONT YANKEE NUCLEAR POWER CORPORATION (h $ N AM

'(,

1.conard A. Tremblay, Jr.

Senior Licensing Engineer Enclosure cc:

USNRC Region i Administrator USNRC Resident inspector VYNPS USNRC Project Manager-VYNPS 3 101290315 910123 b

DR. ADOCK 0500 1

D 0 04' E I

STARTUP TEST REPORT VERMONT YANKEE CYCLE 15 Introduction Vermont Yankee Cycle 15 initial startup commenced on 14 October 1990 following a 45.5 day outage for refueling and maintenance.

The core loading for Cycle 15 consists of:

104 BP8DRB299 Reinserts loaded in Cycle 13 48 DB324B Reinserts loaded in Cyclc 14 88 DD326D Reinserts loaded in Cycle 14 60 HP80WD311-100Z Non-irradiated assemblies loaded in-Cycle 15 64 DP8DFB311-11GZ Non-irradiated assemblies loaded in Cycle 15 4 ANFIX-3.04B-E0Z Non-irradiated qualification assemblies loaded in Cycle 15 An as-loaded Cycle 15 core map is included in Figure I.

Details of the Cycle 15 core loading are-contained in the Yankee Atomic Electric Company document YAEC-1749,

/ermont Yankee cycle 15 Core Performance Analysis Repcic", August 1990.

The final as-loaded core loading wasworified correct by Vermont Yankee and Yankee Atomic Electric Co. personnel on 26-27 Septe.nber 1990.

Control - rod coupling verification Las satisf actorily performed for all 89 control rods after control rod friction testing on 27 September 1990.- Control rod scram testing on all 89 rods was performed satisf accorily prior to reaching 30% core thermal power per the Technical Specifications.

The testing was performed on 9 October 1990.

An in-sequence critical was performed satisf actorily on 10 Octob'er 1990..The cold' shutdown margin was verified to be within the Technical Specifications based on data collected during the in-scquence critical.

Startup commenced on 14 October 1990 and full. power steady state conditions were reached on 24 October 1990.

Core Verification The final as-loaded core was verified correct on 26 and 27 September 1990. Three separate critaria were checked:

1.

Proper fuel bundle seating was verified by traversing'the core with the refueling orapple raised about 1/2" to 3/4" above three randomly selected peripheral bundles.

2.

Proper bundle orientation, channel f astener integrity and upper tie plate cleaniness woro verified.

Cne bundle was found' with a bent channel fastener.

The bundle was removed and the factoner was replaced and seating was reverified.

3.

Proper coro loading was verified by checking the serial number of each. bundle through the use of an underwater video camera. Two identical new fuel bundles were found to be switched.

The misloading was corrected. 'The verification was recorded on tape and later independently reviewed and reverified to agree with the licensed core loading shown in Figure I.

o 4

2

.-Process Computer Data Checks Process computer data shuffling checks were completed on 12 October 1990.

These checks i

j included various ma.aal and computer checks of the new data constants.

A check for consistency of the data was also performed by Yankee Atomic Electric Co. (YAEC) and found

[

to be satisfactory.

4 3

In-Sequence Critical Control rod sequence 15-A-2(1) was used to perform the in-sequence critical test.

On 10 October 1990 control rods were withdrawn in a normal startur sequence until criticality was achieved. Criticality was achieved on the last rod in Group 7 (22 49) at notch position 12.

The moderator temperaturn was 116 deg. F.

The actual critical rod pattern and the YAEC prediction agreed within +/- 1% delta-k/k.

Figure II-shows the actual, predicted and the +/- 1% delta-k/k critical rod patterns.

Cold Shutdown Margin Testing-The cold shutdown margin calculation was performed using the data collected during the in-

{

sequence critical.and information provided in the YAEC " Core Management. Report".

The i

minimum cold shutdown margin required was 0.32% delta-k/k. The actual was shown to be 2.34%

delta-k/k.

Control "od Scram Testing Single rod scram testing of all 89 control rods was performed sucessfully on 9 October 1990. All insertion times were within the limita defined in the Technical Specifications.

Results are presented in Table I-A.

-In accordance-with Technical Specifications Section 4.3.C.2, scram time information for scrams occurring since the transmittal of the previous startup test report are also included.

See Table I-B.

All scram time information s as evaluated to insure proper drive performance is being maintained.

No degradation of drive performance is noticeable.

Thermal Hydraulic Limits and Power Distribution The core maximum fraction of critical power (CMFCP), the core maximum fraction of limiting power density (CHFLPD), the maximum average planar linear heat generation ra ce ratio to its limit (MAPRAT) and the ratio of. CMFLPD to the fration of rated power (FRP) were all checked-3 daily during the startup using the process computer. All checks of core thermal limits were within the limits specified in the Technical Specifications.

j The process computer power distribution was updated four times using the Traversing Incore P

Probe (TIP) system during the ascent to full power. The results of these updates and the k

rated power case are presented in Tablo II.

The Local Power Range Monitors (LPRMs) were calibrated twice in conjunction with TIP sets.

The LPRM high and low trip alarm setpoints were verified correct prior to startup on l

12 October 1990.

The T7Ps and LPRMs were both functionally tested and found to operate satisfactorily.

{

l I

3

'The process computer power distribution update performed on 24 October 1990 (TIP set 1362) was used as a basis for comparison with an of f line calculation perf ormed using the Yankee Atomic Electric Co. nodal computer code SIMULATE-3.

For that poerr distribution the SIMULATE-3 core average axial power distribution was compared to ' that calculated by the plant process computer; comparisons are shown in Table III. A comparisca was also performed between SIMULATE-3 and process computer peak radial power; comparisons are shown in Table IV.

TIP Reproducibility and TIP Symmetry TIP system reproducibility was checked in conjunction with the power distribution update performed on 24 October 1990. All three TIP system traces were reproducible to within 1.5%.

The total TIP uncertainty was calculated using TIP set 1362. Since the control red patterr.

was nearly symmetric, the actual plant TIP readings were. ied in the calculation.

The resulting total TIP uncertainty for this case was 1.5%.

The results of the TIP uncertainty test as shown in Figure.III are well below the 8.7% acceptance criterion.

j l

i

4 Table I-A Control Rod Scram Testing Resulte Vermont Yankee Beginning of Cycle 15 Single Rod Scrams - 9 October 1990 Maximum 87.84% insertion time (secc. ids) = 2.923 Tech. Spec, limi* for slowest 87.84% insertion time (seconds) = 7.000 m

25.34%

46.18%

87.84%

dtqILL' me f or % incertion Measured time (seconds) 0.349 0.867 1.398 2.522 Tech. Spec. limit (seconds) 0.358 0.912 1.468 2.686 Slowest 2x2 arrav for % inpertion Measured time (seconds) 0.372 0.899 1.430 2.564 Tech. Spec. limit (seconds) 0.379 0.967 1.556 2.848

4 4

4 5

Table I-B Control Rod Scram Testing Results l

Vermont Yankee Cycle 14 i^

h Single Rod Scrams at Power - 23 September 1989 Haximum 87.84% insertion time (seconds) = 2.976 1 Tech. Spac. limit for slowest 87.84% insertion time (seconds) = 7.000 1

4.51%

25.34%

46.18%

87.84%

Mean Time.for % insertion Heasured time (seconds) 0.344 0.855 1.373 2.478 Tech. Spec. limit (seconds) 0.358 0.912 1.468 2.686 F

Slowest 2x2 arrav for % insertion 4

Measured time (seconds) 0.371 0.896 1.437 2.587 Tech. Spec. limit (seconds) 0.379 0.967 1.556 2.848 i

e.

L I

Single Rod Scrams - 19 March 1990 I

Maximum 8'.

4% incertion time (seconde) = 2.976 Tech. Spec. ILmit for elowest 87.84% insertion time (seconds) = 7.000 l

4,51%

25.34%

46.18%

87.84%

j; Mean Time.for % insertion Measured time iceconde) 0.355 0.876 1.402 2.521 Tech. Spec. limit (soccads) 0.358 0.912 1.468 2.G86 L

elowoot 2x2 arra.v for % insertion l

I Measured time (secondo) 0.377 0.929 1.476 2.634 l

Tech. Spec. limit (secondo) 0.379 0.967 1.556 2.848 J>

l S

l e

is I.

l l

l i

l it -

=

a l

6-

. Table I-B (cont'd)

Control Rod Scram Testing Results Vermont Yankee Cycle 14 Full Scram - 21 March 1990 Maximum 87.84% insertion time (seconds) = 2.976 Tech. Spec. limit for slowest 87.84% insertion time (seconds) = 7.000 4.51%

25.34%

46.18%

87.84%

B23n' Time for %. insertion Maasured timo (seconds) 0.324 0.834 1.350 2.454 Tecit. Spec ~. limit (seconds) 0.358 0.912 1.468 2.686 glowest 2xP arrav for % insertion Moasured time (seconds) 0.341 0.860 1.402 2.553 Toch. Spoc. - limit (seconds) 0.379 0.967 1.556 2.848 Full Scram - 1 June 1990 Maximum 87.84% insertion time (seconds) = 3.012 Toch. Spec. limit for slowest 87.04% insortion time (seconds) = 7.000 l

L 4 111 25.34%

46.18%

87.84%

2 f

Mean Timo for % insertion l

b Moasured time (seconds) 0.254 0.743' 1.241 2.318

~ Tech. Spec. limit (soconds) 0.358 0.912 1.468 2.686 Slowest 2x2 arrav for % insortion Monsured time (seconds).

0.276 0.807 1.344 2.494 Toch. Spec. limit (seconds) 0.379 0.967 1.556 2.848 l

i-

~.. -

- - ~ - -

e.

7 Table II Power' Distribution Metsurements Vermont Yankee Beginning of Cycle 15 2nist Time

%.CTP

% Flow CHFLPD CMFCP MAPRAT 18 Oct. 90 1831 44.4 49.2 0.536 0.607 0.515 19 Oct. 90 0652 59.3 49.4 0.672 0.733 0.649 19 Oct. 90 2102 74.6 62.2 0.753 0.793 0.726 21 Oct. 90 0814 74.4 60.4 0.742 0.797 0.721 24 Oct. 90 1045 99.6 99.5 0.916 0.865 0.891 The Tech. Spec. limit for the three thermal limite above is '

.as than or equal to 1.0.

i l

l t

l 1

l

y, t

' O 8

a Table III Comparison of Process Computer and SIMULATE-3'-

Core Average Axial Power Distributions j.

-Vermont Yankee Beginning of Cycle 15 Process flode Comeuter SIMULATE-3 25 0.140 0.140 24 0.320'-

0.325 23 0.543 0.551 22-0.687 0.682 21 0.784 0.771

~!

20 0.869 0.877 19 0.963 0.966 18 1.019 1.023 17 1.086 1.099 16 1.174 1.176 15 1.206 1.199 11 1.202 126 l

12 1.227 1.216 l

.11 1.218

-1.214 10

'1.195

'1.211 9

1.241 1.242 8

1.271 1.283 7

l'.275 1.335 6

1.330 1.383 5

1.337 1.387 4

1.285 1.331 3

1.141 1.2.60 2

0.858 0.826 l

1 0.452 0.221.

4 e

\\

l

o e.

9 Table IV Comparison of Ten Highest Relative Radial Powers Varrr.ont Yankee Beginning of Cycle 15 Process Location Computer SIMULATE-3 29-12 1.263 1.266 25-16 1.230 1.246 33-20 1.245 1.245 33-18 1.262 1.243 35-18 1.237 1.243 27-12 1.259 1.241 27-10 1.233 1.241 25-12 1.235 1.239 33-16 1.262 1.267 29-18 1.231 1.222

- - - ~ - ~ ~

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~ ~ ~ ~ ~ - -

k

Figure I CYCLE 15 C00.E MAP r

10 vZax0ur y m f.E LYJ LYJ LYJ l LtJ LYJlLYJ I

~

44 021 1 057 0971294

536 03g t

LYJ l LY!

LYVILP/

LY';I Lys Lyy 025 192>)l LT; 43 l 17' 570 571 1 8306026

&iNlLW LTil LY:.@37 3

-- LYJ. Lyy 4 ;yy LW ) Lys Ln; i LiJ :. a '

LiJgl1N gn H5 g%9 a21l537

  • 65l 574 773;774 575 g 706 3 38 l 12; 370 I M6 g

LYJt1/tN ILYN LYN;LYM LYVt L(U LYVI LW LYN i LYV LYN I LYN t/ts lLYNl LYJ a /s LYSM61 6 35 6141022@-126176610 321 817 634i M45 633l639 30 05Jlf05l625 1

LYJ g LY:@. YN l LYiLY?ig LYV*a y, l LT/

LT LW I lyn T,

I LYS L W ILYJ LYJlLYJ 213l797 341 l57P

'69l(42 g;; j 646 OCO,010 647 l 778 6431 ~7 570 l842 7 h1 ;114 34 LYJl LYN LYY jLiN LYVI LYN LT/ J LYN LT/;LP/

LTI i LYV LYMi LYV LYM lLYV L W ILYJ 129] 0}5 532 1033 650lH1 S6l 349 5901391 3501 547 062 1 65' 34 l 59 3 0961130 34

$oYJ)LP/ LYJlLY.9 LYJlLTFD.Y?llLYV LYJ[LYV LYV I LYJ LT/ l LY..W I LYN LTJ ILYJ 33 005 l 853 7M i 654 105l594 065 594 0051066 5 99 l 066 595l 106 655 l'32 8541006 3g LiJ I LYM l 7.YM LYV LYN Li'll LW LT/ LYN LT/l LT/

L'IN l LW LYM l L W. (N l LW LYN l LYN lLYJ 1

l

-- ffw9l a65 653[#

04 f 6 59 866 870 l illi 6621663@' 314 l 60' 7901633W 1 17 873 6021789 606 8 13 A[YN l LY7 LYJilYV LYJ; LYV LYJ)LYJ W g LYJ LT/1 LYJ W l LYN LT/ lLYM LYN lf.YJ L7J f LW LYN LT 6o6 0 09 g(10 0H1l614 125g 670 013;014 671g 126 615 l 0132 611 l810 667 794 o90 [038 g

3 3

022 lb89

?)1 g

M( ' 1l ' 'Cj A'If l LY?l LT/lLYM LYViLYM L't V i L ih LYVILYV LYN I LW LYN I LT/ LYnILW LYN IANF LYM iLYJ i 675 d50 yA' 08 l 01%

e06l 679 892 I 623@04 O

y i

E9' pggl d5' 074 l 393 6'2l631 678) 305 682]691 74 G.AJlLT/ LYJI

  • YV@ VJ f LT/

LYJI LYJ LYYl LYJ LYV ' LYJ LYV lLYJ LYV lLYN LYV iLYJ LYJ lLW LYM g LYN 666 103 l620 10lg 6 M

'l 6 34 Col l 002 695l 042 691l 102 631 1110 687p302 627 1074 g4

)?) f626 601 9 LYJ LYVl LYJ LYV iLYJ LYV ;L Oi LW g LYJ LYN, 683 LYJ gL7V LYJ LW LW g LYV LYJ,LYJ f./iV) 044 69 3 r 104 63 3 l 112 LYV L(J (LYY g

689 fr34 619 1 0 76

803, 111,632 101;692 % 3 ; 696 00310 rA 697l gg 375 1623 LYU LT/ l LYN *LYV LYNO.YV i LYN LYNI LW LYH I LT<A.YM l LYV LP/I LW LYN f W LT3 l LYJ l

20 LYJ 'LYM ANF t I 99 QF A 3) 857 676 I89%

624l M 3 6% l R07 vMI 68 5 3 001 fia l 934 5 625 096 I677 9 60 l g A'. 9 00 l 02 0 w

I l

-) 19 ft I

16 LYJ lLYM LYNI LYV LYM iLYV LYJiLYV LYJ l LYV LYJI LYJ LW l LYJ LYV i LYJ LYV l LYN LYV ILYN LYM i LYJ LYNI LYY LYN I LY\\g g_92.l037 123 617I 004 ;13 I812 6631796 1

0438616 127I 672 0151016 673i g'M1 I 612 g

e l

13) lB91 795l e6n LYNjLYN t.XJ M 6) 609 7921 605 "YN ILW B68g472,120

.LYJ lLYNI LYS **TY I LYN LYYl LTM LW l LYN LTY! LII 876 1661 16 119 l471( 967 6601475 604l?91 6a8l 815 664l 665 LYJ l LYN LYM l LP/

LYJiLYL LYJg LYV LYJ1LYJ LYVI LYJ LYV I LYJ LW I LYN LYNILY3 i 069 5971 100,657 I784 8561908 14 __

0071 055 '93,356 10'l596 067, 600 0871 Oi)9* sol o

LT<OYN 0.YV j LYN LT/;363 598; 851 M.; 593 352) 50 8641 653 B36 505 ' 088l132 i LW !

LYN iLYJ LYN LYV ; LYN LT] LT LYNi LYY LYM i Li J i LY..

gg 652l 134 } 897 SA4 g 915 LYJ l LY?I i.YN i LT/

LYNI LW LYN 1 LW LYJ1 LYJ lyt l LYN LYV I LYN LYV l LDI LYN ILYJ 9411 583 7711644 0111012 6491 780 6451 772 8001116 e??91643 LT.1LP/o c%31 1944

--LYJ gg 1151747. A LYN LYN! LYN LWl LYN LYNI LW LYN I LYN wYN ILYN$

1 LYJ, LYN og 091.797I827 3231a19 636l 947 64d 641 3431 637 8201 624 B29 I7931 056 t

l LYJl LYJ LYJI LYN LYNI LYV LY!! LW LYV' LYS LYN 1 LYJ LYJ l LYJ 06 c4 71 0 71 12 3: e 39 7671 576 779 776 5771 768 84 01 124 072 l 043 LYNl LYM LTJ LT/

LYNI LYNI LYJ r

LYJ i l

04 027g ell! 879 573 573 8301 832:023 LYJ) LYJ LY) LYJ LYJI LYJ 02 Oni On 09d Ir0 c601 03:

1 01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 t

g LPM LOCATION (COMMON LOCATION I

F01t ALL TIP MACHINIS) 43 Q (fitM LOCATIO:t (LETTER UfDICATES 39 TIP MACHINZ) 3$

l G IPx LOCATION 31 A su LOCATION 23 19 I

l 13

(

11 1

1 l

3 r

2 6 to 14 18 22 26 30 34 38 42 l

I i

l

'p' 11 1

' Figure II Vermont Yankee Beginning of Cycle 15_

j Critical Rod Configuration Comparison t

08-l 43 4f 48 49-47-43 48 48' 48

[

39 I

I l

I 10 10 33 N

!b hk kN 4$-

kb 31 0%

10 08 l

27' 48 --

hb h3.

k9 48 kb kS' 4h kb N-23 (0

08..

10:

, 1, k

4h hk 15 08 08 u

hh 48 hk N

N kk 48 k$-

i 07 lb 03 i

-1%-AK/K Predicted Critical Pattern-02 06 10 14' 18 22 26 -30 34 38 42 02 06 10 14 18 22

26. 30 34 38 42 l2 43 kh hh kI 4E.

N N.

ht 43 39

($:

l8-I2' l2 35 47 49 48 h8-48 41 47 48 31 12.

42 12' 12.

12.

12-2r-42 49 48 4%

48-42 48 43 42 4%

42~

47 23 42 12.

48 12.

12:

12.

1, 40 47 48-48 48 48 47 48 1s-12 12 12.

Il y

u h[

4k kh-hk N

kk N

N 07 N

h 03

+1% aK/K_

Actual Critical Pattern Note: A blank box denotes rod position 00.

~_

~

Figure III 12 VERMONT YANKEE Total TIF Uncertainty 1'

i l

l 43 _______________________

39 -------------

l 35 --------

1 38 20 38 I -

31 --------

27 ---

20 12 20 23 ---

l l

19 ---

l 38 20 38 46 l

15 ---- ---

11 --------

l 07 -------------

1 I

03 _________________t 02 06 10 14 18 22 26 30 34 38 42 l

l TIP:

1362 DATE:

24 October 1990 CTP: 99.6%

i l

Core Flow:

99.5%

l Uncertainty:

1.5%

i

-