ML20062K613

From kanterella
Jump to navigation Jump to search
an ORIGEN2 Model and Results for the Clinch River Breeder Reactor
ML20062K613
Person / Time
Site: Clinch River
Issue date: 07/31/1982
From: Bjerke M, Croff A
OAK RIDGE NATIONAL LABORATORY
To:
NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS)
References
CON-FIN-B-0009, CON-FIN-B-9 NUREG-CR-2762, ORNL-5884, NUDOCS 8208170303
Download: ML20062K613 (116)


Text

.

NUREG/CR-2762 ORNL-5884 An ORIGEN2 Model and Results for the Clinch River Breeder Reactor Prepared by A. G. Croff, M. A. Bjerke Oak Ridge National Laboratory uclear Regulatory Commission

' ,'u .

l

a. . _ - - _

NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the

-United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that i its use by such third party would not infringe privately owned (

rights.  ;

l i

Available from GPO Sales Program l Division of Technical Information and Document Control l U. S. Nuclear Regulatory Commission l Washington, D. C. 20555  ;

Printed copy price: $6.00 l l

and National Technical Information Service l Springfield, Virginia 22161  !

i

NUREG/CR-2762 ORNL-5884 l

=_-__

\

An ORIGEN2 Model and Results for the Clinch River Breeder Reactor Manuscript Completed: June 1982 Date Published: July 1982 Prepared by A. G. Croff, M. A. Bjerke Oak Ridge National Laboratory Oak Ridge, TN 37830 Prcpared for j Division of Fuel Cycle and Material Safety Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B0009 i

iii ABSTRACT Reactor physics calculations and literature information acquisition have led to the development of a Clinch River Breeder Reactor (CRBR) model for the ORIGEN2 computer code. The model is based on cross sections taken directly f rom physics codes. Details are presented concerning the physical description of the fuel assemblies, the fuel management scheme, irradiation parameters, and initial material compositions. The ORIGEN2 model for the CRBR has been implemented, resulting in the production of graphical and tabular characteristics (radioactivity, thermal power, and toxicity) of CRBR spent fuel, high-level waste, and fuel-assembly st ructural material waste as a function of decay time. Characteristics for pressurized water reactors (PWRs), commercial liquid-metal fast breeder reactors (LMFBRs), and the Fast Flux Test Facility (FFTF) have also been included in this report for comparison with the CRBR data.

1

v CONTENTS P, age, ABSTRACT . . . . . . . . ... . . ..... ... ...... . iii LIST OF TABLES . . . . . ... . . .... .... ...... . vii

1. INTRODUCTION . ....................... I
2. DESCRIPTION OF REACTOR PHYSICS CALCULATIONS AND BASES .. . 2 2.1 Sources and Processing of Cross Section Data .... . 2 2.2 CRBR Reactor Physics Calculations . . . ... . ... . 2 2.3 Results of the Reactor Physics Calculations . . ... . 5 2.3.1 Neutron spectrum . ............... 5 2.3.2 One group cross sections . . ... . .. .... 5 2.3.3 End piece activation ratios .. ....... . 7
3. DESCRIPTION OF ORIGEN2 REACTOR MODEL . .... ...... . 7 3.1 Sources of Input Data . ... ... ... .. .. ... 7 3.2 Fuel Management Information . ...... ...... . 8 3.3 Fuel Assembly Description . ............. . 9 3.4 Initial Fuel Material Composition . . . . . .. ... . 9 3.5 Summary Characterization of the CRBR ... ... .. . 9
4.

SUMMARY

CHARACTERIZATION OF CRBR FUEL AND WASTES . . ... . 16 4.1 Calculational Assumptions . . . . . ... . .. ... . 16 4.1.1 Spent fuel . . . . . . . . . . . . . . . . . . . 16 4.1.2 High-level waste and structural material waste . . ........ ... ... . 16 4.1.3 Comparisons .. . .... ....... ... . 18 4.1.4 Conversions . . . ........ ... ... . 18 4.2 Graphical and Tabular Characterization of CRBR Spent Fuel and Wastes ....... ...... . 20 4.3 Comparison of CRER Spent Fuel and Waste with Othe r React o rs . . . . . . . . . . . . . . . . . . 20

5. REFERENCES . . . . ..................... 21 APPENDIX A: 126-ENERGY-GROUP NEUTRON SPECTRA GRAPHS AND LISTINGS . . . . .... . ............ .. . 23 APPENDIX B: ONE-GROUP, SPECTRUM-AVERAGED CROSS SECTIONS FOR THE CRBR . . . ..... . ..... ... ...... . 31 APPENDIX C: FUEL MANAGEMENT DETAILS FOR THE CRBR ....... 39 APPENDIX D: CHARACTERISTICS OF CRBR SPENT FUEL, HIGH-LEVEL WASTE, AND FUEL-ASSEMBLY STRUCTURAL MATERIAL WASTES .... 43

/ D.1: Characteristics of CRBR Spent Core Fuel Assemblies . . 45 D.2: Characteristics of Blended CRBR High-Level Waste . .. 55 D.3: Characteristics of Blended CRBR Fuel-Assembly Structural Material Waste ........... .. . 65

vi Page APPENDIX E: COMPARISON OF THE CHARACTERISTICS OF FUEL-CYCLE MATERIALS FROM THE CRBR, A PWR-U, THE FFTF, AND A COMMERCIAL IJfFBR . . . . . . . . . . . . . . 75 E.1: Characteristics of Spent-Fuel Assemblies . . . . . . . 77 E.2: Characteristics of Blended High-Level Waste . . . . . 87 E.3: Characteristics of Blended Fuel Assembly Stnictural Material Waste . . . . . . . . . . . . . . . 97 APPENDIX F: CHARACTERISTICS OF CRBR HIGH-LEVEL WASTE AND PWR-U SPENT FUEL . . . . . . . . . . . . . . . . . 107 GLOSSARY . . .... . ... ........... . . . . . . . 117

vii l

LIST OF TABLES Page

! Table 1. ORIGEN2 fissioa product nuclides . . . . . . . . . . . . . . 3 l

l l

Table 2. Non-fission product nuclides included in reactor physics calculations . . . . . . . . . . . . . . . . . .. . 4 Table 3. Layout and dimensions of CRBR core models for XS9RNPM calculations . . . . . . . . . . . . . . . . . .. . 6 Table 4. ORIGEN2 flux paramete rs for the CRBR model . . . . . . . . . 7 Table 5. Physical chacacteristics of CRBR fuel assemblies . . . .. . 10 Table 6. Typical composition of stainless steel 316 . . . . . . . . . 11 Table 7. Initial composition of 1000 kg of CRBR heavy metal . . . . . 12 Table 8. Assumed nonactinide composition of CRBR oxide fuels . . . . 13 Table 9. Comparison of core fuel-discharge composition predictions . 14 Table 10. Summary characteristics for the CRBR . . . . . . . . . . .. 15 Table 11. Multiplicative factors for converting MTIHM~l to GWy(e)~1 . 19

1 AN ORIGEN2 MODEL AND RESULTS FOR THE CLINCH RIVER BREEDER REACTOR A. G. Crof f M. A. Bje rke

1. INTRODUCTION The prpose of this document is to describe the development of an

> ORIGEN2 1 ,2 model for the Clinch River Breeder Reactor (CRBR). The model is being developed to support thc: work of the Nuclear Regulatory Commission (NRC) and its subcontractors concerning the licensing '

activities for the CRBR.

The development of a model for ORIGEN2 involves a series of compu-tational and analytical tasks to provide the data libraries and input parameters required by ORIGEN2. The model development described herein follows the pattern and methods established during the development of models for a variety of thermal and fast reacto rs . 3-6 The first step is to acquire a general set of cross sections for the nuclides of interest and to process them into a format suitable for further, reactor-specific calculations. These cross sections are then used to calculate the neutron spectra characteristic of the various fuel zones within the reactor. These neutron spectra are a key result, and their further use as weighting functions for cross sections and fission product yields leads to the generation of CRBR cross-section 'and fission product yield libraries for use in ORIGEN2. These calculations are described in more detail in Sect. 2.

The model developer must simultaneously obtain information con-cerning (1) the physical description of the fuel elements and assemblies [used by the physics codes and by the ultimate model user],

(2) the fuel management scheme for the CRBR [used principally as input to the physics calculations and ORIGEN2], (3) the initial composition of the fuels and fuel assembly structural materials (used as input to the physics codes and ORIGEN2], and (4) the relevant irradiation param-eters from the reactor developer [used as input to ORIGEN%]. The result is a physical and compositional description of the materials going into the CRBR each cycle, the cross sections and half-lives (f rom prior work) of the nuclides while in the reactor, and the neutron flux exposure each material receives in the teactor. The details concerning this information and its sources are given in Sect. 3.

The information comprising the CRBR model is then used as input to the ORIGEN2 computer code to characterize the CRBR fuel cycle materials with respect to radioactivity, heat generation, and other character-istics. The CRBR model has been implemented through the ORIGEN2 code; the results of this implementation are described in Sect. 4 and are presented in the Appendixes. Detailed results are given for the CRBR

materials as well as overall results comparing CRBR with other reactors.

2

2. DESCRIPTION OF REACTOR PHYSICS CALCULATIONS AND BASES There are two basic steps involved in performing the reactor physics calculations necessary to provide the cross sections and flux parameters required by ORIGEN2. He first is to obtain and process system-independent cross sections into a form that is appropriate for the general type of reactor being considered. He second step involves using these cross sections to calculate the nuclear parame-ters characteristic of the specific reactor type and fuel composition of interest.

2.1 Sources and Processing of Cross Section Data l

The sources of the system-independent cross sections used in the reactor physics calculations and the processing of these cross sections into a library that is generally applicable to IJfFBRs are described in Ref. 7 and will be sum:narized here.

The cross sections for the fission product nuclides were obtained f rom ENDF/B-IV.8 The cross sections for the actinides and structural material elements were obtained from ENDF/B-V.9 All of these nuclides except 233U and 241 Pu were processed with the NPTXS and XLACS2 modules of the AMPX system.10 g , 233U and 241 Pu were processed with the NJ0Y codell because their cross sections were initially in a different format. The result was a 126-energy-group, cross-section library for the fission-product nuclides listed in Table 1 and the actinides and other materials listed in Table 2. This master library is appropriate for subsequent reactor physics calculations for IMFBRs.

2.2 CRBR Reactor Physics Calculations For the reactor physics calculations, the master, multigroup, cross-section library described in Sect. 2.1 aust first be processed into a situation-specific, cross-section library (working library) which is characteristic of a particular fuel composition and geometry.

This is done by using the NITAWL module of the AMPX computer code system. Wnen given information about the fuel region of a fuel element, such as the Doppler temperature, the coolant concentration, the dimensions, and the nuclide concentrations, the NITAWL module accounts for (1) the Doppler broadening of the resonances and (2) the fact that the effect of large resonances is diminished because there are relatively few neutrons at the resonance energy. He relevant dimen-sions and nuclide concentrations were obtained from Table 4.3-4 of Re. 12.

l This working library is then used by the XSDRNPM module of AMPX, which accounts for the spatial and energy self-shielding effects within the fuel materials. To do this, the code performs a one-dimensional, static, S 83 P , discrete-ordinates, neutron-spectrum calculation and then uses this spectrum as a weighting function for the input cross sections.

3 Table 1. ORIGEN2 fission product nuclides 3 l

l 72g, 73g, 74g, 75As 7 6g, 76 3, 773 , 78 3, 79Br 80Se 80Kr 81Br 8 2g, 82Kr 83Kr 84Kr i

85Kr 85Rb 86Kr 86Rb 86Sr 87Rb 87Sr 88Sr 89Sr 89y 90Sr 90y 90Zr 91Y 91Zr 92Zr 93Zr 93Nb 94Zr 94Nb 94Mo 95Zr 95Nb 95go 96Zr 96go 973o 98Mo 99Mo 99Tc 99Ru 100Mo 100Ru 101Ru 102Ru 103Ru 103Rh 104Ru 104Pd 105Ru 105Rh 105Pd 106Ru 106Pd 107Pd 107 Ag 108Pd 108Cd 109 Ag 110Pd 110Cd Ill Ag IllCd 112Cd 113Cd 113In 114Cd 115mCd 115In 115Sn 116Cd 116Sn ll7Sn 118Sn 119Sn 120Sn 121Sb 122Sn 122Te 123Sn 123Sb 123Te 124Sn 124Sb 124Te 125Sn 125Sb 125Te 126Sn 126Sb 126Te 127mTe 1271 128Te 128xe 129mTe 1291 129xe 130Te 1301 130xe 1311 131Xe 132Te 132Xe 133xc 133Cs 134Xe 134Cs 134ga 1351 135xe 135Cs 135Ba 136xe 136Cs 136Ba 137Cs 1375 , 138Ba 139La 140g, 140La 140Ce 141Ce 141Pr 142Ce 14'2 Pr 142Nd 143Ce 143Pr 143Nd 144Ce 144Nd 145Nd 146Nd 147Nd 147Pm 1473 , 148Nd 148Pm 148mPm 148Sm 149Pm 149Sm 150Nd 150Sm 151Pm 191Sm 151Eu 1529 , 152Eu 153Sm 153Eu 154Sm 154Eu 154Gd 155Eu 155Gd 156Eu 156Gd 157Eu 157Gd 158Gd 159Tb 160Gd 160Tb 160 Dy 161 Dy 162 Dy I

163py 16497 165Ho 166Er 167Er aAll 'eross sections are taken from Ref. 8 and documented in i Ref. 7. I l

l l

4 Table 2. Non-fission product nuclides included in reactor physics calculationsa 1H 231Pa 241Am 10B 233p, 242Am llB 232U 242mAm 12C 233U 243Am 14N 234U 2410m ISN 235g 2420m l 160 236g 243Cm 170 237U 2440 ,

23Na 238 Np 245Cm 52Cr 237 Np 246Cm 55Mn 238 Np 2470m 56pe 236Pu 248Cm 59Co 237Pu 249Bk 58Ni 238Pu 249Cf 92Zr 239Pu 250Cf 93Nb 240Pu 251Cf 9BMo 241Pu 252Cf 120Sn 242Pu 253Cf 230Th 243Pu 253Es 232Th 244Pu aAll cross sections are taken f rom Ref. 9 and documented in Ref. 7.

l l

l l

l

5 In the case of the CRBR, two one-dimensional traverses we re calculated.

The first was a radial traverse across the CRBR core, which was divided into 10 zones according to the type of fuel in each zone. The second traverse was an axial traverse, which was divided into 4 zones accord-ing to the type of fuel or the density of structural materials present in a particular area. The dimensions of these zones are given in Table 3.

2.3 Results of the Reactor Physics Calculations 2.3.1 Neutron spectrum The central result of the reactor physics calculations is the multigroup neutron energy spectrum in each of the fuel zones of the CRBR description included in XSDRNPM. These spect ra were calculated in a 126-energy group structure corresponding ta the structure of the cross-section library employed in the analysis. A listing of the multigroup neutron spectra, which have been averaged across similar fuel zones, is given in Appendix A, along with graphs of the neutron spectra.

As noted earlier, the XSDRNPM code has the capability to collapse the 126-energy group spectra into a coarser group structure specified by the user. Calculations by XSDRNPM were perfortned in which the 126 group spectra were collapsed into two different 2 group spectra for each of the following fuel types: co re [(Pu,U)02 fuel], inner blanket, radial blanket, and axial blanket. These 2 group spect ra are, in tu rn, used to calculate the ORIGEN2 flux parameters THERM, RES, and FAST according to the method described in Ref. 1. The values of the ORIGEN2 flux parameters determined by this procedure are given in Table 4.

2.3.2 One-group cross sections Another important result of the XSDRNPM calculations is the produc-tion of 1-energy-group cross sections by using the 126-group spectra as a weighting function for the 126-group cross sections in the working library mentioned earlier. The result is a single value for each nuclide in each of the fuel types that is suitable for input to ORIGEN2, but which nevertheless reflects the sophistication of the reactor physics codes underlying them. This type of calculation is possible only for nuclides for which multigroup, cross-section data is available, currently about 240 of the most important nuclides. These cross sec-tions are listed in Appendix B.

Table 3. Layout and dimensions of CRBR core models for XSDRNPM calculations Radial traverse Axial traverse Zone numbe r Description Outer radius, em Description Outer radius, cm 1 Inner blanket No. I 16.5 Core fuel 46.0 2 Core fuel No. 1 27.2 Axial blanket 81.6 3 Inner blanket No. 2 37.9 Cas plenum 203.9 4 Core fuel No. 2 48.7 End pieces 233.9 m

5 Inner blanket No. 3 57.5 6 Core fuel No. 3 68.6 7 Inner blanket No. 4 76.6 8 Core fuel No. 4 95.8 9 Radial blanket 118.6 10 Radial shield 143.2

7 Table 4. ORIGEN2 flux parameters for the CRBR model )

Fuel type THERM RES FAST Core 4.4637E-10 1.5935E-03 0.1511 Inner blanket 5.5863E-09 1.8448E-03 0.1073 Radial blanket 1.5628E-06 2.5831E-03 0.0778 Axial blanket 2.8291E-06 3.0646E-03 0.0558 l

2.3.3 End piece activation ratios The axial XSDRNPM calculations were also used to determine the activation rate of the stainless steel fuel-assembly structural material in the zones outside of the fuel zones (e.g. , gas plenum) as compared to the activation rate in the axial blanket zone. These rates were then used to determine the equivalent f raction of the axial blanket flux to which the fuel-assembly structural material nuclides had been exposed. These fractions are 0.19 for the gas plenum and lower fuel-assembly shield and 0.015 for the end pieces for all nuclides except 59 Co, which has activation ratios that are 3.5 times those listed.

3. DESCRIPTION OF ORIGEN2 REACTOR MODEL This section contains a summary description of the CRBR model for the ORIGEN2 computer code. Included are: a description of the sources of input data, such as cross sections and decay data, a discussion of the fuel management data upon which the CRBR model is based; a physical description of the CRBR fuel assemblies; a listing of the assumed initial material compositions; and a summary description of the CRBR model's irradiation characteristics and mass flows.

3.1 Sources of Input Data The sources of the cross sections and ORIGEN2 flux parameters were described in the previous section and will not be repeated here. In addition to these cross sections, there are many nuclides for which some cross-section data have been measured, but have not been expressed as a multigroup cross section. This information is typically expressed as a

8 thermal (0.0253 eV) cross section and a resonance integral. For those nuclides without multigroup data, thermal cross sections and resonance integrals were obtained from Ref.13, weighted with the appropriate ORIGEN2 flux parameters described in Sect. 2.3.1, and incorporated into the ORIGEN2 cross-section libraries.

The fission product yields from neutron-induced, actinide fission were obtained from ENDF/B-IV, weighted using the neutron spectra described earlier, and incorporated into the ORIGEN2 libraries.

Explicit yields are included for 232Th, 233,235,236 ,U and 239,241Pu.

The decay and photon data were obtained f rom a variety of sources, depending on the data type of interest. A detailed description is given in Ref. 14.

3.2 Fuel Management Info rmation The CRBR fuel management scheme is somewhat complex because the fuel pattern for fuel ages and locations in the reactor does not repeat for many years. The details of the CRBR fuel management scheme, which are based on information from Sect. 4.3 of Ref. 12, are projected for cycles 5 through 10 in Appendix C, Table C.1; for reference, a schematic of the CRBR core layout is given in Fig. C.1.12 The following summarizes the CRBR fuel management scheme af ter the first 2 cycles: 12

1. Initially, the CRBR contains 156 core assemblies and 82 inner blanket assemblies (including their respective upper and lower axial blankets). These are irradiated for 1 cycle (275 full-power days). At that point 6 inner blanket assemblies are discharged and replaced by 6 core assemblies, resulting in 162 core assemblies and 76 inner blanket assemblies. These are irradiated for another cycle, af ter which all core and inner blanket assemblies are discharged.
2. The inner radial blanket ring is inserted and irradiated for 4 cycles, at which time it is discharged and replaced in its entirety.
3. The outer radial blanket ring is inserted and irradiated for 5 cycles, at which time it is discharged and replaced in its enti rety.
4. No shuffling of fuel takes place except for the replacement of 6 inner blanket assemblies with 6 core assemblies noted above.

The detailed irradiation information that supports the values used in the ORIGEN2 calculations is given in Appendix C, Table C.2. This informatico is based on data given in Tables 4.3-7, 4.3-8, and 4.3-9 of Ref. 12.

9 3.3 Fuel Assembly Description A physical description of the CRBR fuel assemblies is of interest in the design of hardware to handle and transport the assemblies and in the prediction of the amounts of fuel assembly structural material wastes that will be produced by reprocessing the fuel. This description, obtained f rom Refs. 12 and 15, is summarized in Table 5.

Also of interest is the composition of the fuel-assembly structural

! material, which is assumed to be comprised entirely of stainless steel 316. 'The metal's initial composition 16 is used as input data for ORIGEN2 and is shown in Table 6.

I 3.4 Initial Fuel Material Composition The core fuel of the CRBR is comprised of an intimate mixture of uranium and plutonium dioxides, with the plutonium dioxide accounting for 33 wt % of the total (Pu,U)02 mass.12 The other fuel zones (axial, inner, and radial blankets) are composed of 2350 -depleted uranium dioxide tails from the uranium enrichment process. The initial compo-sition of a unit amount of the core and blanket heavy metal is given in Table 7.12,17 Also given in this table is the composition of the core heavy metal af ter 4 yr of decay to simulate preirradiation delays in the f abrication and storage phases. The most important effect of this decay time is the production of 241Am f rom 241Pu, which has a 14.7 yr half-life.

The second aspect of the initial composition of the CRBR fuels concerns the nonactinide content of the fuel, which is given in Table 8.18-22 All of these elements except oxygen are ppm-level impurities that result during the preparation of the fuel material and the fabrication process. The oxygen content represents the stoichio-metric quantity for a heavy metal dioxide.

3.5 Summary. Characterization of the CRBR The information generated as a result of the calculations, analyses, and input data described in Sects. 2 and 3.1-3.4 we re used by the l ORIGEN2 computer code to calculate the discharge composition of the various fuel zones. A comparison of the discharge composition predicted by ORIGEN2 with that obtained from Ref. 12 is given in Table 9. The agreement is excellent, with the exception of 241 Pu, which differs by about 11%. This is attributed to differing assumptions concerning the preirradiation and refueling decays during the calculations.

The discharge composition of the various fuel zones, in concert with the information developed previously in support of the CRBR model for ORIGEN2, was combined to yield the summary characterization for the CRBR and its fuel cycle that is presented in Table 10. The average

10 Table 5. Physical characteristics of CRBR fuel assembliesa Core and Inner and axial blanket radial blankets Assembly component lengths, cm Upper end hardware 30.4 30.4 Gas plenum 124.5 124.5 Upper axial blanket 35.6 Core or radial blanket 91.4 162.6 Lower axial blanket 35.6 Lower end hardware 109.2 109.2 Overall total 426.7 426.7 Fuel element total 290.6 291.5 Assembly shape hexagonal hexagonal Assembly flats, en 11.62 11.62 Fuel element arrangement triangular t riangular Fuel elements per assembly 217 61 Fuel element OD, em 0.584 1.285 Fuel pellet OD, em Core 0.491 Axial blanket 0.483 Inner and radial blanket 1.194 Fuel pellet density,

% of theoretical Core 91.3 Axial blanket 96.0 Inner and radial blanket 95.6 Fuel element pitch, em 0.731 1.378 Cladding thickness, em 0.038 0.038 Channel thickness, em 0.305 0.305 Channel height, em 314 314 Circumscribed volume / assembly, m3 0.0607 0.0607 Heavy metal / assembly, kg 60.35 100.85 (Pu,U)02 Per assembly, kg b 68.45 114.39 Stainless steel / assembly, kg 135.5 122.6 Assembly total weight, kg 204 237 abased on data in Ref. 12.

b(Pu,U)02 in the core and UO 2 in the axial, inner, and radial blankets.'

-l I

11 l

Table 6. Typical composition of stainless steel 316a,b Element Atomic number Amount, g/106 8 metal B 5 5 C 6 610 N 7 320 A1 -

13 165 Si 14 5,700 P 15 204 S 16 150 Ti 22 150 Cr 24 170,500 Mn 25 18,500 Fe 26 643,726 Co 27 150 Ni 28 135,500 Cu 29 900 Nb 41 100 Mo 42 23,400 Sn 50 40 Pb 82 30 aData from Ref. 16.

b Density = 8.02 g/cm3 .

F

12 Table 7. Initial composition of 1000 kg of CRBR heavy metala Material type Nuclide Fuel Blankets l

No decay 4 yr decay 234 U, g 0 6 235U , g 1,340 1,372 2,000 236U , g 0 16 238U , g 668,660 668,660 998,000 Total uranium, g 670,000 670,054 1,000,000 237 Np, g 0 4 236 Pu, g 0.005 0.002 238 Pu, g 198 192 239 Pu, g 283,932 283,900 240 Pu, g 38,610 38,594 241 Pu, g 6,600 5,444 242 Pu, g 660 660

, Total plutonium, g 330,000 328,790 241 Am, g 0 1,152 I Total heavy metal, g 1,000,000 1,000,000 1,000,000 a

Based on Refs. 12 and 17.

l l

f

Table 8. Assumed nonactinide composition of CRBR oxide fuels a Atomic Concent ration Atomic Concentration Element numbe r (g/MTIHM)b Element Numbe r (g/MTIHM)b Li 3 1.0 Mn 25 1.7 B 5 1.0 Fe 26 18.0 C 6 89.4 Co 27 1.0 N 7 25.0 Ni 28 24.0 0 8 134,454c Cu 29 1.0 F 9 10.7 Zn 30 40.3 Na 11 15.0 Mo 42 10.0 Mg 12 2.0 Ag 47 0.1 g u

A1 13 16.7 Cd 48 25.0 Si 14 12.1 In 49 2.0 P 15 35.0 Sn 50 40 C1 17 5.3 Gd 64 2.5 Ca 20 2.0 W 74 2.0 Ti 22 1.0 Pb 82 1.0 V 23 3.0 Bi 83 0.4 Cr 24 4.0 aData obtained from Refs. 18 to 22.

b Parts of element per million parts of heavy metal.

CStoichiomet ric quantity for (Pu,U)02 fuel.

14 Table 9. Comparison of core fuel-discharge composition predictions Predicted discharge composition, g/MTIHM Nuclide ORIGEN2 CRBRa 235U 952 1,002 238U 635,800 635,274 239Pu 226,900 223,570 240Pu 50,420 50,910 241Pu 6,746 6,067 242Pu 1,011 965 abased on Ref. 12, Table 4.3-4.

15 i

i l

Table 10. Summary characteristics for the CRBR Fuel region s Faramete r Fuel AB Fuel + AS IB RBb Fuel + AB + IB + RB Electric power, W(e) net 267.4 6.1 273.5 46.9 29.6 350.0 Thermal power *(t) 745.0 17.0 762.0 130.5 82.5 975.0 Average specific power.c 140.9 3.95 79.4 16.4 6.49 32.21 w(t)/wrls Average fuel burnup, 76,031 2131 42,870 8693 7977 22,600 mwd /MT1HM Effective irradiation dura- 540 540 550 530 1229 tion, full power days Refueling cycle length, 275 275 275 275 275 275 full-power days Average maber of 81 81 81 41 28.2 assemblies charged per cycle Average charge, kg/ refueling cycle 235U 3.6 4.4 8.0 8.3 5.7 22.0 Total uranium 1805.5 2193.5 3999.0 4134.9 2843.9 10,978 Fissile plutontun d 783.0 0 783.0 0 0 783.0 Total plutanium 889.4 0 889.4 0 0 889.4 Total (U + Pu) 2694.9 2193.5 4888.4 4134.9 2843.9 11,867 Average discharge, kg/ refueling cycle 235U 2. 6 3.6 6.2 5.9 4.0 16.1 Total uranium 1715.8 2149.0 3864.8 3960.2 2726.9 10,552 Fissile plutontun d 627.2 38.5 665.7 131.6 89.1 886.4 Total plutonium 766.7 39.6 806.3 138.3 94.9 1039.5 Total (U + Pu) 2482.5 2188.6 4671.1 4098.5 2821.8 11.591 aFuel = 36-in. (Pu,U)o2 region! AB = 002 axial blankets associated with fuel, IB = entire inner blanket

  • RB = entire radial blanket.

bWeighted average of inner radial blanket (4-cycle residence) and outer radial blanket (5-cycle residence).

cBased on rated power level.

d239Pu + 24tPu + 2394,

16

burnup of the core fuel is about 76,000 Wd/MTli
'4 However, when averaged over the entire core assembly, this value drops to about 43,000 mwd /MTIHM; when further averaged over the entire discharge batch of fuel, the reactor-average burnup is found to be 22,600 mwd /

MTIHM, which is about three-fourths of the burnup in modern LWRs.

l

4.

SUMMARY

CHARACTERIZATION OF CRBR FUEL AND WASTES ]

This section describes the graphical and . tabular characterization of CRBR fuel and wastes, compares the CRBR material characteristics i

with those of other reactors, and describes the calculational bases

! for the characteristics. The calculated results of the characteriza-tion of CRBR spent fuel, HLW, and SMW are presented in Appendix D.

Appendix E graphically compares the characteristics of spent fuel, HLW, and SMW for four different reactor types: PWR, FFTF, CRBR, and '

LMFBR. Appendix F compares the characteristics of CRBR HLW with those of PWR spent fuel. In all cases, the PWR is assumed to be operating

+ on a once-through, low-enrichment 002 fuel cycle.  :

i 4.1 Calculational Assumptions l The nuclear material characteristics were calculated based on ORIGEN2 reactor models for a commercial PWR,3 a commercial LMFBR,4 the FFTF,4 and the CRBR model described by this document. The reader is i referred to these documents for details concerning the models other J than that for the CRBR. Three nuclear materials are characterized in i this report: spent fuel, high-level waste, and fuel assembly struc-tural . mate rial waste.

I 4.1.1 Spent fuel The spent-fuel characteristics are for the specified spent-fuel material plus a commensurate amount of fuel-assembly structural mate rial. Conservatively, all nuclides produced during the irradia-tion are assumed to be present with the spent fuel (e.g., no tritium

loss through the cladding is assumed). The irradiation parameters and l initial fuel compositions are as described in Refs. 3 and 4 and in this report.

l 4.1.2 High-level waste and structural material waste The.HLW and SMW are both assumed to be produced by chemical  ;

reprocessing of spent fuel to recover the economically valuable pluto- i nium and uranium. The first part of the reprocessing sequence involves chopping the spent-fuel assembly with a heavy-duty shear, which cuts the fuel elements into segments a few centimeters in length.

{

The segments are then immersed in concentrated nitric acid to dissolve I

i i

l

  • - + - - ,+-s

,- ' + - - vw-m---+ -- e---s -y=- w ~ - - - - y-wye-_-

17 the oxide fuel matrix while leaving the fuel-assembly structural materials essentially intact. At this point, the volatile elements are f reed to escape f rom the dissolver into the off gas treatment system.

Af ter dissolution is complete, the st ructural materials are removed ,

becoming the SMW described below. The nitric acid solution containing the dissolved spent fuel is contacted with tributyl phosphate, which j removes the uranium and plutonium for separation and purification further downstream in the plant. The residual nitric acid solution, containing the remaining fission products, traces of uranium and plutonium, and all of the actinides other than uranium and plutonium, constitutes the liquid HLW.

Af ter its generation, the liquid HLW will most likely be concen-t rated by evaporation, heated to a high temperature to evaporate the nitric acid and convert the dissolved fission product and actinide nit rates to oxides (i.e. , calcined), and then incorporated into a monolithic solid matrix (e.g. , vitrified in glass). The SMW may be compressed to reduce its volume. It should be noted that there are many alternative treatment technologies for the HLW and SMW; those mentioned above are only examples that are presently regarded as the most likely to be used and have been assumed for the CRBR fuel cycle assessment.

The HLW contains all of the contents of the spent fuel, decayed until the time of reprocessing, except for the following species that

, have been removed: 99.5% of the uranium and plutonium, 99.9% of the I

halogen elements (principally iodine), and 100% of the tritium, 14C, and noble gases (krypton, xenon, and radon). In addition, because stainless steel is corroded slightly by the nitric acid, it is assumed that 0.69%

of the D4FBR, FFTF, and CRBR fuel-assembly st ructural material is p resent in the HLW.23 The SMW is principally comprised of the hardware that constitutes the fuel assembly, but not the fuel material itself. For the PWR, this is predominantly Zircaloy with some stainless steel and Inconel. For the LMFBR, the CRBR, and the FFTF, it is virtually all stainless steel (with some Inconel f rom the reflecto r, in the case of the FFTF). In addition, it is assumed that 0.05% of the nonvolatile components of the spent-fuel oxide (i.e., the HLW plus the uranium and plutonium) are included in the SMW. This is a result of the shearing operation, which may pinch the ends of some of the cladding segments so that the fuel matrix is not readily accessible to the nitric acid in the dissolver.

It is also assumed that 30% of the tritium produced in the PRR fuel is p resent in the SMW as a part of the Zircaloy cladding.

The time necessary for the spent fuel to be reprocessed, following ,

its discharge from the reactor, is assumed to be 160 d for the PWR and i FFTF, 90 d for the LMFBR, and 150 d for the CRBR.

18 1

, 4.1.3 Comparisons l In the recent past, a comparison has of ten been made of the inges- l tion toxicity of some fuel-cycle material with the ingestion toxicity of the uranium ore mined to produce that material. This has most of ten

, been done in studies involving UdRs (including the PWRs). If the total losses of uranium at the beginning of the fuel cycle are assumed to be 12% (10% during milling, 1% during conversion, and 1% during fabri-cation), and if the enrichment plant tails are assumed to be 0.25%,

then 7.16 metric tons of uranium must be mined to produce 1.0 MTIHM of f resh fuel. This amount of uranium ore, when in equilibrium with its

' shorter-lived daughters (i.e. , unen it is most toxic), requires 1.1 x 108 m3 of water to dilute it to the standards given in the Code of Federal Regulations.24 A comparison of the ingestion toxicity of uranium ore to that of

} a fuel-cycle material has also been made on a volumetric basis. The

^

! volumetric toxicity of carnotite ore, virtually the only source of uranium today, is about 105 .3 of water /m3 of ore. The toxicity of pitchblende, a very high-grade uranium ore, is about 108 .3 og wate r/m3 of ore.

These values are included for use as a comparison basis for the ingestion toxicity characteristic graphs given in the Appendixes to this report. The toxicity of the ore required to make 1.0 MIIHM of

PWR fuel can simply be superimposed on the toxicity graphs in the l'

Appendixes. The volumetric toxicities of uranium ores would require conversion (e.g., m3 of the graghs from a MTIKN basis to a volumetric basis water per a HLW) before superposition of the ore toxicities.

! 4.1.4 Conve rsions The conversion factor that is most of ten of interest is the i multiplicative factor used to convert " characteristic /NTIHM" to

" characteristic /GWy(e)" where the GWy(e) represents the amount of electricity that was produced by the fuel or wastes. These factors, calculated for the CRBR and other comparison reactors, are given in i Table 11. TVo aspects of this table are worthy of special mention.

Fi rs t , the FFTF has been included, even though this test facility does i not actually produce electricity, by employing the same conversion f actors as those used for the commercial LMFBR. Secondly, the conver-sion factors for the commercial LMFBR are given for a range of thermal efficiencies. The 31.6% value was the design basis in the original documentation. This relatively conservative value was selected since the design was for the first full-sized commercial plant. Howeve r, the U(FBR technology has been developed sufficiently in the inter-l vening years so that higher efficiencies would be likely. Thus, the conversion factor is also given at the 35.9% CRBR thermal efficiency  ;

and at an assumed maximum thermal efficiency of 40%, allowing the user to select the value most appropriate to the case at hand. l l

19 l

l l

l Table 11. Multiplicative factors for converting MIIIDF l to Wy(e)-l l Thermal Multiplicative Reactor efficiency conversion factor, type (%) MTIHM/GWy(e)

CRBR 35.9 45.03 PWR 32.9 33.62 LMFBR 31.6a 25.52 35.9 22.78 40.0 20.16 FFTFb 31.6 25.67 35.9 22.91 40.0 20.28 aAs-designed thermal ef ficiency.

bThe FFTF does not produce electricity; the values are included for comparative purposes.

20 4.2 Graphical and Tabular Characterization of CRBR Spent Fuel and Wastes This section briefly describes the detailed characterization of the spent fuel, HLW, and SMW associated with the CRBR fuel cycle. The characteristics examined for these materials are: radioactivity (Ci),

thermal power (W), ingestion toxicity (m3 water required to dilute material to 10 CFR 20 values 24), inhalation toxicity (m3 air required to dilute material to 10 CFR 20 values 24). All characteristics are presented as a function of decay time af ter discharge from the reactor for times ranging f rom 0.1 yr to 1 x 10 6 yr and are calculated with the ORIGEN2 computer code. The summary graphical and tabular output ,

that is presented in this report was generated by an auxiliary code, l ORMANG, which accesses the ORIGEN2 output, extracts the desired results, and produces the graphs and tables.

]

The results of this exercise are presented in Appendix D, with the characteristics of the spent core / axial blanket fuel, HLW, and SMW ,

given in Sects. D.1, D.2, and D.3, respectively. Both the graphs and l' tables present the total characteristics as a function of decay time.

In addi ion, the graphs and tables list the nuclides that are the principal contributors to the total; the graphs include a maximum of 14 contributors, while the tables include the first 23 contributors.

4.3 Comparison of CRBR Spent Fuel and Waste with Other Reactors In many instances, it is useful to compare the characteristics of thq same type of material from various reactors to gain a perspective on a particular reactor. This has been accomplished using the pre-viously generated characteristics for the PWR, the FFTF, and the commercial LMFBR25,26 and adding the corresponding values generated

, for the CRBR as a result of the work reported here. A comparison of the total characteristics for each reactor type is presented as a function of decay time af ter discharge, with both graphical and tabu-lar output given. Graphs and tables also show results for spent core / axial blanket fuel, HLW, and SMW and for the characteristics of radioactivity, thermal power, ' ingestion toxicity, and inhalation toxicity. These results are given for comparison in Appendix E, Sects. E.1, E.2, and E.3 for the spent fuel, HLW, and SMW, respectively.

It is also of interest to compare the CRBR HLW, a material that has not been extensively evaluated in a technical or licensing context, to the PWR spent fuel, which has received much greater attention. These data for comparison are presented graphically in Appendix F for the four characteristics mentioned above.

I

21

5. REFERENCES
1. A. G. Croff, ORIGEN2 -- A Revised and Updated Version of the Oak Ridge Isotope Generation and Depletion Code, ORNL-5621 (July 1980).

l 2. A. G. Croff, A User's Manual for the ORIGEN2 Computer Code, l ORNL/TM-7175 (July 1980).

3. A. G. Crof f, M. A. Bje rke, G. W. Morrison, and L. M. Pet rie, Revised Uranium-Plutonium Cycle PWR and BWR Models for the ORIGEN Computer Code, ORNL/TM-6051 (September 1978).
4. A. G. Croff, J. W. McAdoo, and M. A. Bje rke, LMFBR Models for the ORIGEN2 Computer Code, ORNL/TM-7176 (October 1981).
5. A. G. Croff and M. A. Bjerke, Alternative Fuel Cycle PWR Models for the ORIGEN Computer Code, ORNL/TM-7005 (February 1980).
6. A. G. Croff and M. A. Bje rke, Once-Through CANDU Reactor Models for the ORIGEN2 Computer Code, ORNL/TM-7177 (November 1980).
7. M. A. Bjerke and C. C. Webster, Neutron Cross-Section Libraries in the AMPX Master Interface Format for Thermal and Fast Reactors, ORNL/CSD/TM-164 (December 1981).
8. ENDF/B-IV Library Tapes 401-411 and 414-419, available f rom the National Neutron Cross Section Center, Brookhaven National Laboratory (December 1974).
9. ENDF/B-V Library Tapes 514, 521, and 522, available from the National Neutron Cross Section Center, Brookhaven National Laboratory (July 1979).
10. N. M. Greene et al. , AMPX: A Modular Code System for Generating Coupled Multigroup Neutron-Gamma Libraries f rom ENDF/B, ORNL/TM-3706 (March 1976).
11. R. E. MacFarlane, R. J. Barrett, D. W. Muir, R. M. Boicourt, The NJ0Y Nuclear Data Processing System: User's Manual, LA-7484-M (ENDF-272), December 1978.
12. Project Management Corporation, Clinch River Breeder Reactor Project Preliminary Safety Analysis Report, updated through amendment 64 (January 1982).
13. S. G. Mughabghab and D. I. Garber, Neutron Cross Sections, Volume 1, Resonance Paramete rs, BNL-325, 3rd ed. (June 1973).
14. A. G. Crof f, R. L. Haese, and N. B. Gove, Updated Decay and Photon Libraries for the ORIGEN Code, ORNL/TM-6051 (September 1978).

i 22

15. M. J. Haire and C. A. Rhodes, An Overview of ORNL Methods for Calculating Fuel Assembly Temperatures During Reprocessing (Applied Technology), ORNL/TM-7473 (November 1980).*
16. R. J. Beaver and W. R. Martin, Procurement of Type 316 Stainless Steel Reference Heat for LMFBR Research and Development Programs _

(Applied Technology), ORNL/TM-5196 (January 1976).*

17. R. C. Smith, L. G. Faust, and L. W. Brackenbush, " Plutonium Fuel Technology Part II: Radiation Exposure f rom Plutonium in LRR Fuel i Manufacture," Nucl. Tech. g,97-108 (May 1973).
18. W. Davis, Jr. , Carbon-14 Production in Nuclear Reactors, ORNL/NUREG/TM-12 (February 1977).
19. G. LaPier, Babcock and Wilcox Corp., Nuclear Materials Division, personal communication to A. G. Croff, Oak Ridge National Laboratory, May 9, 1978.
20. General Electric Corporation, Plutonium Utilization in Boiling Water Reactors: Phase II Semi-Annual Report, January-June 1971, NEDC-10586 (December 1971).
21. L. G. Wisnyi, LWB/LSBR Development Program: High Cross-Section Impurities in Reactor Core Materials, KAPL-3322 (June 1967).
22. Y. B. Katayama, Leaching of Irradiated LWR Fuel Pellets in Deionized and Typical Ground Water, BNWL-2057 (July 1976).
23. J. H. Goode and R. G. Stacy, Voloxidation of the UO9 Axial Blankets f rom Irradiated (U,Pu)O7 Fuel Rods (Applied Technology),

ORNL/TM-6635 (January 1979).*

24. Code of Federal Regulations, Appendix B, Table II, Title 10, Pa rt 20.
25. A. G. Crof f, ,M. S. Liberman, and G. W. Morrison, Graphical and Tabular Summaries of Decay Characteristics for Once-Through PWR, LMFBR, and FFTF Fuel Cycle Materials, ORNL/TM-8061 (January 1982).
26. A. G. Crof f and C. W. Alexander, Decay Characteristics of Once-l, Through LWR and LMFBR Spent Fuels, High-Level Wastes, and Fuel Assembly Structural Material Wastes, ORNL/TM-7431 (November 1980).
  • This report contains Applied Technology information and has limited distribution. Information about its availability may be obtained f rom DOE's Technical Information Center, Oak Ridge, TN 37830.

23 i

l l

l APPENDIX A.- 126-ENERGY-GROUP NEUTRON SPECTRA GRAPHS AND LISTINGS

24 5

.?

_b e  :

k I

k -

_b j m

d e

~

5

g i 8

D

..h ** \

.~ d i w

c ,

i

.D g

_s ,: 2

- u

. u o.

. e

_b_l a

c 8

E

t

_b 4

to w

44

_b

$~

b ~

s#6 oe l

s#c o#c s#t o#t s#1 o#: so l oo 39/XO'Ua3 - ISMWH131 IING M3d XO7J

Nv' 2

9 6

2

- ,'0

,1 8 ,

G ,

W ,

D L

N R

O

{

t ,8 I

,1 l

I e

8 u

,1 f

J1

, t e

k

, n a

, l b

,0 r

,1 e n

n

, i V R

, E B R

, C

,'0

,1G Y

n

, R i

, EN m

, E u r

, N t O c R

T e

p

,'0

,1E U s

, N y

, g

, r

, e n

, e n

,'0

, o

,1 r t

, u

_ e N

2

,8 A

,1 g

i

, F

,'0

,1

'0 ea 9a Oa  :.

w r ea .d o.o 1

wRXg i" ,"g EzHud h 5 a  :

xa'G

i \ l\1l 11l Ne 0 .

9 6

2 ,

8 G .

W .

D .

L N .

R O

l ,

\

\ . l e

, u 1

f jf t

e

\

. k n

a l

t

. b

! . l a

i

. d a

r R

B

. V R

. E C

, n Y i

. G m

. R

. E u r

. N t

. E c

. N e p

O s

. R T y

. U g

. E r

. N

. e

. n

. e n

. o r

t u

e

. N

. 3

. A g

i F

oa Ro g o4 o,-

0 oa uE5e0 ' U:aCNS !5 :,E sE lll l l jil '

,, lI 1

~-

9 .

8 6

2

- .g 8 ..

G .

W D

L .

N R

O .g

\ .

\

. l 1J e u

f I

,g t

. e k

r n

l a

. l I

b l

a

i

. x a

R

. V B

. E R C

.g

G Y n

. i

. R

. E m

. N u

. E r

. N O t

c

. R T e

p

, U s

E

. N y g

r e

n e

n

o r

. t u

e N

4 A

g i

. F Oe  :  :  :  : ="  : 3 =

gee 6 *!mJ N5 ae nd  :

ll , l ll l. l llll

-28

!able A.1. Flux per unit lethargy for CRBR fuels Group energy bandartes eV Rad 1al Axlal Inner Ene rgy blanket Uppe r 1me r Co re blanket blanket g roup 1 1.733303 07 1.22140E 07 1.239215-03 5.90649E-04 3.79583E-03 7. 46 4 2 4E-04 2 1.22140Y 07 1.00000' 07 9.725?S!-03 4. F 81409-0 3 7.97068F-02 E.82776t-03 3 1.00000' 07 a.18730' 06 3.50910E-02 1.714419-02 1.06868E-01 2.12226E-02 4 R.187 30E 06 6.70320E 06 9.47795?-02 4.71166F-02 2.87512E-01 5.781115-02 5 6.70520? 06 6.06530! 06 1.73187?-01 8.84322t-02 5. 22799E-01 1.092143-01 6 6.06510? 06 5.48810E 06 2.328353-01 1.17197 E-01 7.04743E-01 1. 52 4 37 E-01 7 5.44810E 06 4.49330? 06 3.62279'-01 1.86044E-01 1.09434F 00 2.264845-01 8 4.893303 06 3.67880? 06 5.17982t-01 2.59672E-01 1.574553 C0 3.13 66 3E-01 9 3.678802 06 3.16640E 06 6.49467E-01 3.46863'-01 2.10140' 00 4.24452E-01 10 3.16640E 06 1.01190E 06 9.27443?-01 5.04521E-01 2.81045T 00 6.40494E-01 11 3.01190? 06 2.96500E 06 9.69738?-01 5.27774E-01 2.93267? 00 6.82840?-01 12 2.86500E 06 2.72510E 06 1.03788? 00 S.67507E-01 3.14009E 00 7.42617E-01 13 2.72530E 06 2.59240? 06 1.171273 00 6. 506 26 E-01 3.5505ME 00 P.71897E-01 14 2. 59240' 06 2.46600E 06 1. 18551' 00 6.598ESE-01 3.58426d 00 8.86418E-01 15 2.4A6005 06 2.39 520E 06 1.26565! 00 7.19629E-01 3.814463 00 9. 79653 E-01 16 2. 39520? 06 2.15510' 06 1. 44560E C0 R.443753-01 4.33749E 00 1.19822E 00 17 2. 36 530 F 06 2.30690E 06 1.442779 00 8.46908E-01 4.315185 00 1.214532 00 18 2.30690! 06 2.23130 E 06 1.325459 00 7.462555-01 4.00148' 00 1.090143 00 19 2.23)30E 06 2.122'0' 06 1.23449? 00 6.73934'-01 3.7556*E 00 9.84943E-01 20 2.12250' 0' 2.01900? 06 1.18 8 36Y 00 6.392055-01 3.63091F 00 9.286683-01 21 2.01000' 08 1.92050E 06 1.22733t 00 6.56977t-01 3.76970' 00 9.80891E-01 22 1.92050t 06 1.92690! 06 1.247215 00 6.59725!-01 3.85210' 00 1.00598E 00 23 1.82680' 06 1.737709 06 1.448579 00 8.162 52 t-01 4.43680t 00 1. 219 55E 00 24 1.737701 06 1.653003 06 1.50487! 00 8.40057?-01 4.62688? 00 1.30691E 00 25 1. 653 00E 06 1.57240' 06 1.40917E 00 7.82572E-01 4.33332E 00 1.20568E 00 26 1.572403 06 1.49570' 06 1.535919 00 9.676023-01 4.72437E 00 1.36506E 00 27 1.49570E 06 1.42270E 05 1.615629 00 4.29615Y-01 4.95560' 00 1.45106E 00 28 1.42270' 06 1.35340! 06 1.65921' 00 9.58539 -01 5.093095 00 1.53103E 00 29 1. 35140t 06 1.28730' 06 1.44346E 00 7.91183t-01 4.46568E 00 1. 28 339' 0^

30 1.2A730' 06 1.22450E 06 1.762953 00 1.05571F 00 5.400345 00 1.64864E 60 31 1.224AP' 06 1.16 4A0E 06 1.99598E 00 1.19656E 00 '.07876E C0 1.959e73 00 32 1.16480! 06 1.10803E 06 1.8sP30t 00 1.105235 00 5.66121E 00 1.84594E 00 33 1.10800' 06 1.032A02 06 1.457801 00 8.25222?-01 4ss*6643 00 1.399627 00 34 1.00260' 06 9.51640' 05 1.35784M 00 7.877373-01 t.20JTit 00 1.27857. 00 35 9.61640! 05 9.071act 05 1.69835E 00 1.023373 00 5.22281E 00 1.69026: 00 36 9.071807 05 8.52940E 05 1.929012 00 1.21322! 00 5.874422 00 1.99 313E 00 37 8.629409 05 8.208%0E 05 2.36342' 00 1.53129E 00 7.13886' 00 2. 53164E 00 38 8. 20 A90E 05 7.90820E OR 2. 55977E 00 1.716681 00 7.65536E 00 2.73810! 00 39 7.80820E 05 7.42740E OS 2.662297 00 1.79464F 00 7.91807E 00 2.92203E 00 40 7.42740? 05 7.06510! 05 2. 60 973 t 00 1.78093E 00 7.71056' 00 2.91592E C0 41 7.06'10E 05 6.72060! 0% 2.81517E 00 1.93046E 00 P.346752 00 3.26237E 00 42 6. 7205 0E 0% 6.39280E 0* 1.11041E 00 2.127689 00 9.17968E 0) 3.77884E 00 53 6. 39280? 05 6.09100' 05 3.258735 00 2.229283 00 9.50883E 00 4.08053t 00 44 6. 08100 F 05 9.79440E 05 3.45483' 00 2.353801 00 1. 00 503 E 01 4.492553 00 45 *. 7P44 0 ? 05 5.50230! 05 3.37663E 00 2.34032' 00 9.75711E 00 4.47737E 00 46 5.50230' 05 5.23400E 05 3.63201E 00 2.49742E 00 1.04901! 01 4.99180t 00 47 5.23400? 05 a .97 870E 05 3.576449 00 2.45077? 00 1.03222E 01 5.04648! 00 48 4.97870! 05 4.50490? 05 2.50916 E 00 1.70467' 00 7.567703 00 3.69847E 00 49 4.504909 05 4.07620? 05 1.92817? 00 1.28 608E 00 5.632535 00 2.73727E 00 50 4.076205 05 3.68830E 05 2.23962t 00 1.51510t 00 6.53686E 00 3.239515 00 51 3.688309 05 3.33730E OS 3.01226E 00 2.08251' 00 9.712971 00 4.486119 00 52 3.337305 05 1.01970? 05 3.26415' 00 2.28006E 00 9.40541E 00 5.01982E 00 i

53 3. 01970F 05 2.*8500? 0% 3.1448%E 00 2.22606! 00 9.02746E 00 4.86371E 00 l 1.02611t 01 5.60164E 00 54 2.98500? 05 2.972005 05 3.581233 00 2.444853 00

29 Table A.! (continued)

Croup energy bandades eV Eie rgy Inne r Radial Arial group Uppe r Lower Co re blanket blanket blanket 55 2.97200t 05 2.94520" 05 3.69417E 00 2.52203F 00 1.06546E 01  %.90420E 00 56 2.945209 05 2.87250? 05 3. 26163E 00 2.31961T 00 9.32820' 00 5.16051E 00 57 2.87250E 05 2.73230! 05 3.01204! 00 2.197175 00 8.55047E 00 4.733779 00

?8 2.73240' 05 2.47240E 05 3.43098E 00 2.42813Y 00 9.628453 00 5.49643E 00 59 2.47240E 05 2.23710F 05 3.05714! 00 2.24445E 00 8.55158Y 00 4.97139E 00 60 2. 23710t 05 2.12800E 05 3.06729? 00 2.255039 00 8.52944E 00 5.04129E 00 61 2.128005 05 2.02420Y 05 3.06783E 00 2.25521F 00 8. 50515E 00 5.06468Y 00 62 2.02420E 05 1.92550F 0% 2.71103t 00 2.042342 00 7.46433F 00 4.46506E 00 63 1.92550E 05 1.81160E 05 2.99890! 00 2.197823 00 8.249393 00 4.982262 00 54 1.83160E 05 1.742205 05 4.07239E 00 2.79710t 00 1.13028? 01 7.03679F 00 65 1.742209 05 1.65710t 05 3.023092 00 2.20819E 00 8.30671' 00 5.22386E 00 66 1.65730E 05 1. 57 64 0 E 05 3. 29821t 00 2.359101 00 9.05965E 00 5.77751E 00 67 1.%7640E 05 1.499505 05 3.12446E 00 2.25920t 00 8.949*8! 00 5.52214F 00 68 1.49960E 05 1.42640? 05 2. 35481! 00 1.80982? 00 6.384753 00 4.11409E 00 69 1.42A40F 05 1.35690! 05 2.98275' 00 2.191599 00 8.09458E 00 5.25615E 00 70 1.3%690E 05 1.20070! 08 3.54336! 00 2.497A01 00 9.654623 00 6.40027t 00 71 1.29070 t 05 1.22770? 05 3.371145 00 2.38237E 00 9.17537' 00 6.234962 00 72 1. 22770' 05 1.16790E 05 3.29605? 00 2.31225' 00 8.84437E 00 6.11028E 00 13 1.15790' 05 1.11090E 05 3.028a92 00' 2.192123 00 8.18 517E 00 5.72866F 00 74 1.11090! 05 9.80370t 04 2.59661F 00 1.95176E 00 6.92943F 00 4.90629E 00 75 9.80370F 04 3.65170E 04 2.88110t 00 2.10100E 00 7.659489 00 5.56908! 00 76 8.65170E On 8.25000? 04 1.91024E 00 1.51576E 00  %.02437E 00 3.690209 00 77 8.250002 04 7.95000F 04 3.88043E C0 2.64797E 00 1. 03752 E 01 7.78866E 00 78 7.95000' 04 7.20000E 04 2. 39864' 00 1.818045 00 6.25707E 00 4.75915E 00 79 7.20000! 04 6.73790F 04 3.17424E 00 2.24955? 00 8.361203 00 6.50953E 00 80 6.737909 04 5.656209 04 2.65228T 00 1.94675E 00 6.90721E 00 5.58032E 00 81 5.656209 04 5.24750! 04 1.52649F 00 1.291585 00 3.90100' 00 3.195803 00 82 5.247509 04 4.63090? 04 2.50702? 00 1.84195E 00 6.42398E 00 5.33759E 00 83 4.63090' 04 4.08690! 04 2.43 879E 00 1.76857t 00 6. 24012E 00 5. 32481E 00 84 4.00F80' 04 0.43070E 04 2.04281? 00 1. 52666E 00 5.17144r 00 4.51789F 00 85 3.43070! 04 3.18240! Du 1.R4101' 00 1. 399 54t 00 4.63528' 00 4.09577E 00 86 3.19280? 04 2.4%000E 04 R.85571E-01 7.72373E-01 2.20397E 00 1.970475 00 87 2.8%000E 04 2.70000' 04 7. 97 513 E-01 1.10938E-01 1.97883R 00 1.77328E 00 88" 2.70000* 04 2.60580F 04 2.55478! 00 1.86438E 00 6.367729 00 5.64716F 00 89 2.60*80' 04 2.478R0E 04 3.24794E 0'0 2.15016E 00 8.23973E 00 7.47834E 00 90 2.47880' 04 2.35790! 04 2.253189 00 1.S59179 00 5.7204%E 00 5.33095' 00 91 2.357907 04 2.19750' 04 2.03453' 00 1.41547E 00 5.156853 00 4.89343E 00 92 2.19750E 04 1.93050! 04 1.01497E 00 1.388269 00 4.82323! 00 4.67902E 00 93 1.93050E 04 1.503409 04 1. 21706E 00 9.448777-01 3.00691E 00 2.97875E 00 94 1.90340? 04 1.17 000E 04 1.31874E 00 9. 55 4 29 E- 01 3.26053F 00 3.32613! 00 95 1.17090Y 04 9.11890? 03 1.12716E 00 8.17467F-01 2.780305 00 2.94668E 00 i 96 c.11880E 03 7.10110t 01 7. 70 80 E E-01 5.88778E-01 1.88212E 00 2.06675E 00 '

97 7.10170E 03 9.53090E 03 6.99848?-01  %.20421E-01 1.70235E 00 1.92997E 00 98 ".53080E 03 4.307403 03 5.55159F-01 4.17806E-01 1.34570E 00 1.58249E 00 a9 4.39740E 03 3.70740E 03 4.20747t-01 3.28125E-01 1.01242E 00 1. 22021E 00 100 3.70740' 03 3.15460? 03 2.94786E-01 2.47112E-01 7.05064E-01 8.662987-01' 101 3.3'46 0F 03 3.03940E 03 1. 37 7 50 E-01 1.264309-01 3.29515E-01 4.07724E-01 102 3.03540F 03 2.74650E 03 *.11727E-02 5.0e293?-02 1.22018E-01 1. 52772?-01 10 3 2.74650t 03 2. 6126 0 E 0 3 6.29787?-02 6.169529-02 1.49994!-01 1.87998F-01 104 2.612609 03 2.48570t 03 1.134314-01 1. 08 080E-01 2.69579E-01 3.39428E-01 10* 2.48"20E 03 2.248703 03 2. 22285?-01 1.87897!-01 5.27769E-01 6.64232E-01 106 2.24870' 03 2.03470F 03 4.04605?-01 3.09588?-01 9.61528t-01 1.23734E 00 107 2.03470E 03 1.58460' 03 4.951225-01 3.47162F-01 1.188699 00 1.68011E 00 108 1.58460? 03 1.234102 93 4.20939E-01 3.03948!-01 1.01099E 00 1.62146% 00 j

30 Table A.1 (continued) ___

Croup energy boundaries, eV Ene rgy Inne r Radial Antal 3roup Upper towe r Co re blanket blanket blanket 109 1.23410' 03 9.61120R 02 2. 999 8A E-01 2.43364E-01 7.043955-01 1.34872R 00 110 9.611209 02 7.4852Or 02 2.28014?-01 1.89417r-01 5.24620E-01 1.161623 00 111 7.48520E 02 4.54000E 02 1.166305-01 1.05295'-01 2. 57926 E-01 8. 04 580E-01 j 112 4.54000r 02 2.753607 02 5.47730E-02 5.63779E-02 1.16 4 0 0E-01 5.11209E-01 l 113 2.75360? 02 2.14450' 02 3.75079'-02 3.9F9565-02 7.78329?-02 4.40785E-01 114 2.14450' 02 1.67020E 02 2.61922?-02 2. 76 410 E-02 5.36917E-02 3.64315E-01 11" 1.67020t 02 1.013005 02 9.08149t-03 9.14473E-03 1.870*4E-02 1. 61065 E-01 l 116 1.01300P 02 6.14420? 01 4.817157-01 6.71605E-03 9. 84 588t- 03 1.506242-01 1 117 6.14420E 01 4.78510E 01 2. 496 08 E-0 3 3.98935E-03 5.221879-03 1.23338E-01 11R 4.78*105 01 3.7?670F 01 1.14 2 77 E-03 1.794203-03 2.45928E-C3 6.69359E-02 119 3.72670? 01 2.26030? 01 8. 45 6 04 E-04 1.097933-03 2.08124?-03 5.01095E-02 170 2.26030t 01 1.06 770E 01 1.78883E-04 2. 58 7 36 t-0 4 4. 92 2 88 E-04 2.09356E-02 121 1.0f770? 01 5.04 350t 00 4.49850t-05 6.33600*-05 1.44285E-04 7.11245E-03 122 5.04350E 00 2.37239' 00 2.19349t-05 2.89075E-05 1.23710?-04 5. 305 R 35-03 123 2.37239F 00 1.12 54 0 E 00 5.44760!-05 1.11819 E-05 5.179 22E-0 5 3.50477E-03 124 1.12540E 00 4.13990E-01 3.08484E-07 1.69124E-06 4.17 8 77 E-06 1.15353E-03 125 4.13990P-01 1. 00 000 P-01 5.169865-09 7.19801E-08 8.33189F-08 1.16 015 E-04 126 1. 00 000 E-01 1.00000F-35 2.120475-10 2.49279E-09 3.592535-09 1.04563E-05 i

i l

L_ m l

31 f

APPENDIX B: ONE-GROUP, SPECTRUM-AVERAGED CROSS SECTIONS FOR THE CRBR

32 Table B.1. One group, spectrum-averaged cross sections for CRBR fuels Cross Cross section (barns) l section Inne r Radial Arial ,

Nuclide type a Co ne blanket blanket blanket l 1

H- 1 N,G 1.99E-04 2.35E-04 3.46E-04 4.192-04  !

B - 10 N,A 2. 61 E 00 3.058 00 4.33E 00 5.16e 00 l B - 11 N,G 3.95E-05 4.338-05 4.99E-05 5.43E-05 C- 12 N,G 3 .16 E-0 6 3.09E-06 3.94E-06 4.518- 06 N - 14 N,P 1.40E-02 1. 2 2 E- 0 2 1.07E-02 9.8 28- 03

, N - 15 N,G 1.22E-05 1.15E- 0 5 1.04E-05 9.812-06 0 - 16 N,A 1.16 E- 0 3 7.69E-04 5.47E-04 3. 7 9 E- 04 0 - 17 N,G 6. 53 E-05 5. 4 9E- 0 5 4.61E-05 4.118-05 NA- 23 N,G 1.48E-03 1.80E-03 2.27E-03 2.40E-03 CR- 52 N,G 1. 95 E- 02 2.10E-02 2. 4 2 E- 02 2. 6 6E- 02 MN- 55 N,G 6.57 E-0 2 9.28E-02 1.58E-01 2.138-01 FE- 56 N,G 1.16 E-0 2 1. 31E- 0 2 1. 5 8 E- 02 1. 8 2E- 02 Co- 59 N,G 6.20E-02 9.28E-02 2.50E-01 3.898-01 NI- 58 N,G 2. 09 E-0 2 2.298-02 2. 61 E- 02 2.758- 02 GE- 72 N,G 5.15 E-0 2 5.478-02 1 E- 02 5. 8 8E- 02 ,

. GE- 7 3 N,G 3.42E-01 4.47E-01 4 E- 01 1.018 00

' G E- 74 N,G 3. 03 E-02 3.25E-02 S E- 02 3. 4 7E- 02 GE- 76 N, G 1. 92 E-02 2.43E-02 9 E- 02 4.64E-02 AS- 75 N,G 3.66E-01 4. 51 E- 01 8E-01 8.592-01 SE- 76 N,G 1. 57 E-01 1. 8 9E- 01 .66E-01 3.252-01 SE- 77 N,G 3. 62 E-01 4.27P-01 i.72E-01 6.878- 01 SE- 78 N,G 6.27 E-0 2 7.66E-02 1. 07 E- 01 1.318-01 SE- 80 N,G 5.45E-02 5. 89E-0 2 6.63E-02 7.208-02 SE- 82 N,G 9 .10 E- 0 3 9. 4 2E- 0 3 9.57E-03 9.558-03 BR- 79 N,G 6. 44 E-01 7.85E-01 1.20E 00 1.51E 00 BR- 81 N,G 3.48E-01 4.1 1 E- 01 5.95E-01 7.358-01 KR- 80 N,G 1.94E-01 2. 3 9E-c ' 4.10 E- 01 5.618-01 K R- 82 N,G 1. 47 E- 01 1.84E-01 4.31E-01 6. 0 2 E- 01 KR- 83 N,G 5. 02 E-01 5. 77 E- 01 8.54E-01 1.03E 00 K R- 84 N,G 5.17 E-0 2 6.54F 02 9.83E-02 1.288-01 KR- 85 N,G 3.84P-02 4.37E-02 5. 33 E-0 2 6.088-02 KR- 86 N,G 3.35E-03 3.69E-03 3. 94 E- 03 3.81E-03 RB- 85 N,G 2. 08 E-01 2. 3 8 E- 01 2.92E-01 3.32E-01 R B- 86 N,G 1.69E-01 2. 2 3E- 01 3. 6 5E- 01 4.848-01 RB- 87 N,G 1. 50 E-0 2 2.088-02 3.47E-02 4.608-02 SR- 86 N,G 7.03E-02 8.61E-02 1.22E-01 1. 5 4 E- 01 SR- 87 N,G 9. 99 E-0 2 1.16 E- 01 1.68E-01 1. 9 2E - 01 SR- 88 N,G 1.14E-03 1.12E-03 1.08E-03 1.052-03 SR- 89 N,G 2.10 E-0 2 2.298-02 2. 5 8 E- 02 2.738-02 SR- 90 N,G 1.30E-02 1.36E-02 1.44E-02 1.47E-02 Y - 89 N,G 2. 25 E-0 2 2.47E-02 2.72E-02 2.7 3E- 02 Y - 90 N,G 1.27E-01 1. 4 4E- 01 1.74E-01 1.959-01 Y - 91 N,G 4.11 E-0 2 4.67E-02 5.68E-02 6.488-02 ZR- 90 N,G 2. 29 E-0 2 2.44E-02 2.65E-02 2.67E-02 ZR- 91 N,G 8.23 E-02 1. 0 0E- 01 1.40E-01 1.728-01 ZR- 92 N,G 3.93E-02 4. 2 9E- 0 2 4.89E-02 5.268-02 ZR- 93 N,G 9. 21 E- 02 1.22E-01 2. 2 5 E- 01 3.148-01 Z R- 94 N,G 2. 08 E- 0 2 2.28E-02 2.54E-02 2.618-02 ZR- 99 N,G 1. 52 E-01 1. 7 5E- 01 2.19E-01 2. 5 5E- 01 L _

33 Table B.1 (continued)

Cross Cross section (barns) l section Inner Radial Axial Nuclide type a Core blanket blanket blanket ZR- 96 N,G 4 . 45 E-0 2 5.87E-02 9.35E-02 1.22E-01 N B- 9 3 N,G 2.09E-01 2. 4 4E-01 3.12E- 01 3.678-01 NB- 94 N,G 2. 3 6 E-01 2.87E-01 4. 4 9E- 01 5.648-01 NB- 95 N,G 3.45E-01 4.08E-01 5. 50 E- 01 6.64E-01 MO- 94 N,G 4. 87 E-0 2 5.28E-02 5.99E-02 6.5 2E- 02 MO- 95 N,G 2.88E-01 3. 4 3E- 01 5. 52E- 01 7.029- 01 MO- 96 N,G 5 . 89 E- 02 7.18E-02 1.24E-01 1. 6 8E- 01 MO- 97 N,G 2.71E-01 3.14E-01 4.10E-01 4.82E-01 MO- 98 N,G 2. 4 6 E-01 2.93E-01 4.18E-01 5.18E-01 MO- 99 N,G 4.62E-01 5.27E-01 6. 61E- 01 7.588-01 MO-100 N,G 7.82E-02 9,21E-02 1. 21 E- 01 1.45E-01 TC- 99 N,G 4.69E-01 5. 53E- 01 8.12E-01 9. 7 5E- 01 PU- 99 N,G 4. 76 E-01 5.70E-01 8.44E-01 1.05E 00 R U-100 N,G 1.60E-01 1. 8 9E- 01 2.52E-01 3.05E-01 RU-101 N,G 5.11 E-01 9.90E-01 8. 00 E- 01 9.432-01 PU-102 N,G 1.82E-01 1.98E-01 2.26E-01 2. 4 7E- 01 PU-103 N,G 4. 2 0 E-01 4.91E-01 6.99E-01 8. 4 5E- 01 PU-104 N,G 1.35E-01 1.58F-01 2.07E-01 2.468- 01 RU-105 N,G 3. 34 E-01 3.75E-01 4. 3 6 E- 01 4. 7 5E- 01 RU-106 N,G 7.94E-02 8.92E-02 1.PTE-01 1.15E-01 R H-10 3 N,G 6.69E-01 7.72E-01 1.10E 00 1.24E 00 R H-10 5 N,G 5.50E-01 6.297-01 2.04E 00 2.1 12 00 P D-10 4 N,G 2. 67 E-01 3.11E-01 4. 2 5 E- 01 5.15E-01 PD-105 N,G 7. 94 E-01 9.04E-01 1.16E 00 1.33E 00 P D-10 6 N,G 1. 57 E-01 1.82E-01 2.34E-01 2. 7 5E - 01 PD-107 N,G 5. 4 4 E-01 6.20E-01 8.12E-01 9. 4 7E- 01 PD-108 N,G 1. 71 E- 01 2. 2 2E-01 5.54E-01 7. 57E- 01 PD-110 N,G 1.48E-01 1. 7 6E- 01 2.39E-01 2.998-01 AG-107 N,G 6. 75 E-01 7.79E-01 1.05E 00 1.24E 00 AG-109 N,G 4.80E-01 5.87E-01 1.16E 00 1.43B 00 A G -111 N,G 6.48E-01 8.28E-01 1.34E 00 1.77E 00 C D- 10 8 N,G 1.94E-01 2.10E-01 2.39E-01 2.588- 01 CD-110 N,G 2. 59 E-01 2.98E-01 4. 3 4 E- 01 5.29E-01 CD-111 N,G 4 . 01 E-01 4. 6 7E- 01 6.35E-01 7.64E-01 CD-112 N,G 2.28E-01 2. 57E- 01 3.24E-01 3.742-01 CD-113 N,G 3. 83 E-01 4.64E-01 8.13E-01 1.07E 00 CD-114 N,G 2.85E-01 3.27E-01 4.28E-01 5.15E-01 CD-115 N,G 6 . 6 0 E-01 8. 91E- 01 1.63E 00 2.24E 00 CD-116 N,G 1.09E-01 1.19 E- 01 1.37E-01 1.528-01 I N-113 N,G 5. 8 3 E- 01 6.47E-01 8. 7 2 E- 01 1. 01E 00 IN-115 N,G 4.34E-01 4.96E-01 1.08E 00 1.15E 00 SN-115 N,G 4. 70 E-0 2 5.74E-02 8. 5 3 E- 02 1.063-01 SN-116 N,G 6. 00 E-02 6.93E-02 1.05E-01 1. 3 7E- 01 SN-117 N,G 1.99E-01 2.29E-01 3.003-01 3.54E-01 SN-118 N,G 1.13 E-01 1. 2 8 E- 01 1.63E-01 1. 91 E- 01 l SN-119 N,G 5.49E-02 6.44E-02 8.50E-02 1.028-01 SN-120 N,G 4.343-02 4.85E-02 5.93E-02 6. 8 6E- 02 SN-122 N,G 2.27E-02 2. 4 0E- 0 2 2.75E-02 3. 0 6E- 02 S N-12 3 N,G 1.10 E-01 1.23E-01 1.47E-01 1.65E-01 SN-124 N,G 2.86E-02 3. 3 6F- 0 2 5.46E-02 6.712- 02

34 Table B.1 (continued)

Cross Cross section (barns) section Inne r Radial Axial Nuclide type a Core blanket blanket blanket SN-125 N,G 2.87E-01 3. 52E- 01 4.96E-01 6.308- 01 SN-126 N,G 7.02E-03 7.10E-03 7.112-03 7. 0 4E- 03 SB-121 N,G 4 . 58 E- 01 5.22E-01 7.21E-01 8.478-01 SB-123 N,G 2. 60 E-01 3. 02 E- 01 4.48E-01 5. 4 8E- 01 SB-124 N,G 6.52E-01 7. 3 9 E- 01 8.90E-01 9.898- 01 )

SB-125 N,G 2.82E-01 3.28E-01 4. 3 7 E- 01 5.278-01 SB-126 N,G 4.11F-01 4.93E-01 7.03E-01 8.67E-01 TE-122 N,G 3.35 E-01 4. 07E-01 6.68E-01 8. 5 5E- 01 T E- 12 3 N,G 4.80E-01 5. 8 0E- 01 1.72E 00 1.898 00 T E-12 4 N,G 2.33E-01 2. 5 5E- 01 2.99E-01 3. 3 5E- 01 TE-125 N, G 3.46E-01 4.10E-01 5.61E-01 6.818- 01 TE-126 N,G 1. 03 E-01 1. 2 2 E- 01 1. 79 E- 01 2.252-01 TE-127 N,G 3 . 59 E- 01 4. 2 7E- 01 6.10 E- 01 7.533- 01 T M-12 8 N, G 9 . 3 5 E- 0 2 1. 01 E- 01 1.17E-01 1. 29E- 01 T E-129 N,G 1.17 E-01 1. 40E-01 1. 8 7 E- 01 2.258- 01  ;

TE-130 N,G 1. 4 9 E- 0 2 1.63E-02 1. 8 6 E- 02 2.012-02 TE-132 K,G 3.99E-04 3.68E-04 3. 21 E-04 2.95E-04 I -127 N,G 5. 35 E-01 6.51E-01 1.04E 00 1.33E 00 I -129 N,G 3.69E-01 4.33E-01 5. 81E- 01 6.99E-01 I -130 N,G 5. 48 E-01 7.19E-01 1.29E 00 1.75E 00 I -131 N,G 1. 39 E-01 1. 7 0E- 01 2. 3 5E- 01 2. 9 2 E- 01 I -135 N,G 5.98E-04 6. 2 0E- 0 4 6.45E-04 6.46E-04 XE-128 N,G 1. 67 E-01 1.96E-01 2.66E-01 3. 2 5 E- 01 XE-129 N,G 4. 07 E-01 4.94E-01 7. 7 6 E- 01 9. 74 E- 01 XE-130 N,G 1.07E-01 1.15E-01 1.25E-01 1. 3 0 E - 01 XE-131 N,G 2.15E-01 2.67E-01 7.42E-01 1.01E 00 XE-132 N, G 6.50E-02 7.19E-02 8.41E-02 9.30E-02 XE-133 N,G 1. 24 E-01 1. 9 3E- 01 6.29E-01 9.17E- 01 X E -13 4 N,G 3.23E-02 3.47E-02 3.76E-02 3.8 5E- 02 XE-135 N,G 7.56E-03 2.17E- 0 2 3.60E 00 6.418 00 XE-136 N, G 2. 82 E- 0 3 3.07E-03 3. 53E- 03 3. 8 8E- 03 CS-133 N,G 4.76E-01 5. 6 8E- 01 8. 79 E- 01 1.08E 00 CS-134 N,G 5 . 25 E-01 6.45E-01 1.01E 00 1.28E 00 CS-135 N,G 7.12 E- 0 2 9. 5 6E- 0 2 2.07E-01 2. 8 5E- 01 CS-136 N,G 2. 60 E-01 3. 2 4E- 01 5.06E-01 6. 5 2E- 01 CS-137 N,G 1.31E-02 1. 5 0E- 02 1.85E-02 2. 0 6E - 02 BA-134 N,G 1.09E-01 1. 2 8E- 01 1.98E-01 2. 5 8 E- 01 BA-135 N,G 3. 38 E- 01 4. 2 5E- 01 7.25E-01 9.4 9E- 01 BA-136 N,G 4. 54 E-0 2 5. 2 6E- 0 2 6.81E-02 8.12E- 02 BA-137 N,9 5.44E-02 6. 51 E- 0 2 8.80E-02 1.078- 01 BR-138 N,G 5. 71 E- 0 3 5. 3 9E- 03 4. 96 E- 03 4. 7 2E- 03 BA-140 N,G 4.81E-02 7.96E-02 1.62E-01 2. 3 2E- 01 LA-139 N,G 3. 97 E-0 2 4. 8 4E- 0 2 7.95E-02 1. 0 0E- 01 LA-140 N,G 3 . 06 E-01 4.05E-01 7.10E-01 9.648-01 CE-140 N,G 1. 73 E- 02 1.77E-02 1.84E-02 1. 8 4E- 02 CE-141 N,G 1.36E-01 1. 59E- 01 2.20E-01 2. 6 7E- 01 CE-142 N,G 3.24 E-02 3. 4 4F-0 2 3. 6 8 E- 02 3.778- 02 CE-143 N,G 2.63E-01 3. 4 7E- 01 5.76E-01 7. 7 8E- 01 CE-144 N,G 5.16E-02 6.018-02 7.74E-02 9.51E-02 PR-141 N,G 1.55E-01 1.95E-01 2.94E-01 3. 7 6E- 01

l 35 i

Table B.1 (continued)

I Cross Cross section (barns) '

section Inner Radial Axial Nuclide type a Core blanket blanket blanket PR-142 N,G 4 . 02 E-01 5. 0 5E- 01 8.49E-01 1.108 00 PR-143 N,G 3. 55 E- 01 4.498-01 8.10 E- 01 1.07E 00 l ND-142 N,G 3.83E-02 4.15E- 0 2 5.02E-02 5.59E-02 l ND-143 N,G 3 . 05 E-01 3.83E-01 6.37E-01 8.363- 01 ND-144 N,G 9.41E-02 1. 0 6E- 01 1.35E-01 1.612- 01 ND-145 N,G 3. 41 E- 01 4.26E-01 7. 21 E- 01 9. 4 0E- 01 ND-146 N,G 1.23E-01 1.33E-01 1.53E-01 1. 6 8E- 01 ND-147 N,G 6. 84 E-01 8. 7 3E- 01 1.63E 00 2.16E 00 ND-148 N,G 1.79E-01 2. 04 E- 01 2.82E-01 3.478-01 N D-150 N,G 2.21E-01 2.57E-01 3.42E-01 4. 0 7E- 01 PM-147 N,G 1.26E 00 1.55E 00 2.80E 00 3.54B 00 PM-148 N,G 7.09E 00 8.41E 00 1.57E 01 1.83E 01 PM-149 N,G 3.08E 00 3.68E 00 5.38E 00 6.70E 00 PM-151 N,G 4 .19 E- 0 2 6.60E-02 6. 09E-01 7. 81E- 01 SM-147 N,G 8.15 E-01 1.02E 00 1.93E 00 2.55E 00 SM-148 N,G 3.36E-01 3. 79E- 01 5. 01E- 01 6. 01E - 01 SM-149 N,G 1.43E 00 1.798 00 3.30E 00 4. 3 3E 00 3M-150 N,G 4.04E-01 4.81E-01 8.10E-01 1.04E 00 S M-151 N,G 2.22 E 00 2.76E 00 4.79E 00 6.12E 00 l SM-152 N,G 4.14 E-01 5.15E- 01 1.38E 00 1.692 00 l t SM-153 N,G 6.923-02 1.34E-01 1.12E 00 1.54E 00 1

! SM-154 N,G 2.11E-01 2. 5 5E- 01 3.91E-01 4. 9 5E- 01 EU-151 N,G 3.60E 00 4.36E 00 6.91E 00 8.65E 00 EU-152 N,G 4.50E 00 5.40E 00 8.193 00 1.018 01 EU-153 N,G 2. 28 E 0 0 2.76E 00 4.34E 00 5.41E 00-EU-154 N,G 2.71 E 00 3.28E 00 5.18E 00 6.44E 00

' EU-155 N,G 2.53E 00 3.05E 00 4.72E 00 5.92E 00 EU-156 N,G 6. 4 9 E-02 8.95E-02 4.80E-01 5. 9 9E- 01 EU-157 N,G 4 . 26 E-02 5.90E-02 3.89E-01 4. 8 2E- 01 G D- 15 4 N,G 9.73E-01 1.17E 00 1.76E 00 2.245 00 l GD-155 N,G 1. 96 E 00 2.35E 00 3.69E 00 4. 5 2E 00 l GD-156 N,G 4.51E-01 5.44F-01 8.69E-01 1.11E 00 GD-157 N,G 3.67E 00 4.89E 00 8.17E 00 1.112 01 1

GD-158 N,G 2.79E-01 3.338-01 4.73E-01 5.878- 01 GD-160 N,G 2.00E-01 2.28E-01 2.90E-01 3.41E-01 TB-159 N,G 1.40 E 00 1.75E 00 2.79E 00 3.61E 00 TB-160 N,G 1.46E-01 1.90E-01 5.55E-01 7.0 3E- 01 DY-160 N,G 1.95E 00 2.37E 00 4.04E 00 5.20E 00 DY-161 N,G 2.16 E 00 2.72E 00 4.51E 00 5.82E 00 DY-162 N,G 8.48E-01 1.04E 00 2.20E 00 2.77E 00 DY-163 N,G 9 . 49 E- 01 1.19E 00 2.10E 00 2.67E 00 DY-164 N,G 2.48E-01 2.85E-01 4.16E-01 5.10E-01 H O- 165 N,G 1.52 E 00 1.90E 00 3.10E 00 3.99E 00 ER-166 N,G 4.45E-01 5. 3 8E- 01 8. 31 E- 01 1.05E 00 ER-167 N,G 1.44E 00 1.82E 00 3.32E 00 4.30E 00 TH-230 N,G 1. 94 E-01 2. 61E- 01 6.90E-01 9.19E-01 T H-230 N,F 3.61E-02 2.65E-02 1.98E-02 1. 59E- 02 TH-232 .N,G 3.76E-01 4.46E-01 6.69E-01 8.35E-01 TH-232 N,F 1. 25 E- 02 8. 87E- 0 3 6. 51 E- 03 4. 9 7E- 03 PA-231 N,G 2.91 E 00 3.32E 00 4.30E 00 4.9 5E 00

36 Table B.1 (continued)

Cross Cross section (barns) section Inner Radial Axial Nuclide type a Core blanket blanket blanket PA-231 N,F 2.84E-01 2.28E-01 1.80E-01 1. 5 3E- 01 PA-233 N,G 5.22E-01 6.18E-01 9.32E-01 1.13E 00 PA-233 N,F 8. 04 E-0 2 5. 7 4E- 0 2 4.22E-02 3. 2 5E- 02

?A-233 N , GI 5.22E-01 6.18E-01 9. 3 2 E- 01 1.13E 00 0 -232 N,G 6.46E-01 7.42E-01 1.01E 00 1.182 00 0 -232 N,F 2.30E 00 2.393 00 2.912 00 3.333 00 U -233 N,G 2. 65 E-01 2. 98 E- 01 3.93E-01 4. 51 E- 01 U -233 N,P 2.71E 00 2.89E 00 3.47E 00 3. 8 5E 00 0 -234 N,G 6.03E-01 7.09E-01 1.14E 00 1. 41E 00 U -234 N,P 3.81E-01 3.13'-01 2.53E-01 2.18E-01 U -235 N,G 5. 4 8 E-01 6. 3 5E- 01 8.73E-01 1.05E 00 U -235 N,F 1.90E 00 2.07E 00 2.53E 00 2.888 00 0 -236 N,G 5. 4 4 E-01 6. 2 7E- 01 9.26E-01 1.12E 00 0 -236 N,P 1. 24 E- 01 9. 4 5E-0 2 7.69E-02 6. 7 0E- 02 U -237 N,G 4. 82 E-01 5.99E-01 1.02E 00 1.34E 00 0 -237 N,F 6.19E-01 6. 08E-01 5.90E-01 5. 76E - 01 0 -238 N,G 2. 97 E-01 3.14E-01 3.65E-01 4.10E-01 0 -238 N,F 5.25E-02 3.75E-02 2.76E-02 2.138-02 NP-237 N,G 1.49E 00 1.76E 00 2.56E 00 3.11E 00 N P-237 N,F 3.89E-01 3.14E-01 2.49E-01 2.128-01 NP-238 N,G 8. 76 E- 02 1.15E-01 2. 05 E- 01 2. 7 0E- 01 N P-23 8 N,? 5.83E-01 7.62E-01 1.41E 00 1.84E 00 PU-236 N,G 3. 84 E-01 4. 6 5E- 01 7.52E-01 9. 3 9 E- 01 PU-236 N,F 1.53E 00 1.52E 00 1.71E 00 1.838 00 PU-237 N,G 1.93E-01 2.25E-01 3.26E-01 3. 8 8E- 01 PU-237 N,F 3.69E 00 3.90E 00 4.65E 00 5.17E 00 PU-238 N,G 7.19 E-01 8. 4 0E- 01 1.15E 00 1.39E 00 PU-238 N,F 1.19E 00 1.15E 00 1.16E 00 1.19E 00 PU-239 N,G 4. 90 E-01 6.14E-01 9. 3 4 E- 01 1.23E 00 PU-239 N,P 1.84E 00 1.93E 00 2.26E 00 2.55E 00 PU-240 N,G 5 . 2 4 E- 01 6.77E-01 1.25E 00 1.67E 00 PU-240 N,P 4.24E-01 3. 54 E- 01 2. 9 5E- 01 2.633-01

?U-241 N,G 4.54E-01 5.28E-01 7. 4 9 E- 01 8. 9 8E- 01 PU-241 N,7 2.49 E 00 2.70E 00 3.37E 00 3.83E 00 PU-242 N,G 4 . 31 E- 01 5.12E-01 9.54E-01 1.09E 00 PU-242 N,F 3.07E-01 2. 4 3E- 01 1.92E-01 1.638-01 PU-243 N,G 3.72E-01 4.40E-01 6.58E-01 7. 9 6E- 01 PU-243 N,7 8.66E-01 9.21E-01 1.26E 00 1.47E 00 PU-244 N,G 2.26E-01 2.95E-01 5.45E-01 7. 3 5E- 01 PU-244 N,F 2.58E-01 2.02E-01 1. 57E- 01 1.312- 01 AM-241 V,G 1.37E 00 1.58E 00 2.22E 00 2.62E 00 AM-241 N,F 3.46E-01 2.68E-01 2.13E-01 1. 8 2E- 01 AM-241 N,GI 3 . 41 E- 01 3.95E-01 5.55E-01 6. 5 6E- 01 AM-242 N,G 7.83E-02 1. 03E- 01 1. 81E- 01 2.398- 01 AM-242 N,F 5. 22 E- 01 6.82E-01 1.23E 00 1.62E 00 AM-242 N,G 3.86E-01 4. 69E- 01 7.24E-01 8.99E-01 AM-242 N,P 4.00 E 00 4.44E 00 5.90E 00 6.90E 00 AM-243 N,G 5.29E-02 6.39E-02 1. 0 5E- 01 1.272-01 AM-243 N,P 2. 72 E-01 2.08E-01 1.60E-01 1. 3 2E- 01 AM-243 N,GX 1.00E 00 1.21F 00 2.00E 00 2.42E 00 I

l

l l

37 Table B.1 (continued) l Cross Cross section (barns) section Inner Radial Axial Nuclide type a Core blanket blanket blanket l

l CM-241 N,G 1.93E-01 2. 2 3E- 01 3.07E-01 3. 61 E- 01 CH-241 N,F 3.17 E 00 3. 3 5E 0 0 4.07E 00 4.56E 00 l CM-242 N,G 3.28E-01 4.19E- 01 7.44E-01 9. 8 9E - 01 l CM-242 N,F 1.99E-01 1.47E-01 1.11E-01 8.9 3E- 02 l C M -243 N,G 2.40E-01 2.90E-01 4.63E-01 5.68E-01 CM-243 N,F 2.66E 00 2.89E 00 3.91E 00 4.50E 00 CM-244 N,G 8.22E-01 9. 5 3E- 01 1.36E 00 1.60E 00 CM-244 N,F 4. 86 E-01 4. 00E-01 3.34E-01 2. 9 5E- 01 C M-245 N,G 3.08E-01 3.49E-01 4.51E-01 5.1 1E - 01 CM-245 N,F 2.63 E 00 2.80E 00 3.37E 00 3.74E 00 CM-246 N,G 2.30E-01 2. 7 5E- 01 4.09E-01 5.028- 01 CM-246 N,P 3.20E-01 2. 4 5E-01 1. 8 9 E- 01 1. 57E- 01 CM-247 N,G 3.02E-01 3.45E-01 4.79E-01 5. 57E- 01 CM-247 N,P 1.93 E 00 1.93E 00 2.01E 00 2.05E 00 CM-248 N,G 2.45E-01 3. 02E- 01 5.74E-01 7.378- 01 CM-248 N,P 3. 56 E- 01 2.82E-01 2.34E-01 2.0 6E- 01 BK-249 N,G 9.47E-01 1.26E 00 2.70E 00 3.59E 00 BK-249 N,F 1. 90 E-01 1. 4 4E- 01 1.1 1E- 01 9.14E- 02 CF-249 N,G 3.5BE-01 4. 21E- 01 6.41E-01 7.828- 01 CF-249 N,F 2.62E 00 2.853 00 3.56E 00 4.068 00 CF-250 N,G 4.12 E- 01 5.14E- 01 1.24E 00 1.56E 00 CF-250 N,F 1.11 E 00 1.01E 00 8.87E-01 8.17E- 01 CF-251 N,G 3. 08 E-01 3.56E-01 5. 71 E- 01 6.798- 01 CF-251 N,P 2.30E 00 2.42E 00 3.01E 00 3.30E 00 CF-252 'G

. 2. 87 E- 01 3. 31E- 01 4.44E-01 5. 2 SE- 01 CF-252 d,F 7. 72 E-01 7.35E-01 8. 8 2 E- 01 1.01E 00 CF-253 N,G 1.91E-01 2. 59E- 01 5.22E-01 7. 01E- 01 CF-253 N,P 6 . 81 E- 01 8. 8 9E- 01 1.68E 00 2.18E 00 ES-253 N,G 1. 47 E-01 2.16E-01 6.86E-01 9. 2 4E- 01 ES-253 N,GX 1. 02 E- 01 1.50E-01 4. 7 7 E- 01 6.42E-01 1/V N,G 7.17 E-0 4 8.30E-04 1.16E-03 1. 3 8E- 03 aN,G = (n, gamma) to a ground state N,F = (n, fission)

N,GK = (n. gamma) to an excited state N,A = (n, alpha)

N,P = (n. proton) l

39 APPENDIX C: FUEL MANAGEMENT DETAILS FOR DIE CRBR

Table C.I. Detatte of the GBE fuel cycle management for cycles 5-10 ruel annagement schedule, kg heavy metal (fuel assemblies)

Core Inner blanket inner radial blanket Guter radial blanket Cycle

  • Paramete r ruetb ne rul + e ruel-d u rue t + m ruel- a "ruel" + 2 *ruel" u "ruel" + M EOC4 Inventory 0 0 0 (0) 0 0 0 (0) 0 0 0 (0) 3744.0 2912.0 6556.0 (66) 30C5 + Cha rge 5190.2 4224.6 9414.8 '156) 4651.7 3618.0 8269.7 (82) 3403.6 2647.3 5190.2 6050.9 (60) 0 0 0 (0)

= Inventory 4224.6 9414.8 (156) 4651.7 3618.0 8269.7 (82) 3403.6 2647.3 6050.9 (60) 3744.0 2912.0 6656.0 (66)

EOC5 - Discharge 0 0 0 (0) 340.4 264.7 605.1 (6) 0 0 0 (0) 3744.0 2912.0 6656.0 (66)

= Inventory 5190.2 4224.6 9414.8 (156) 4311.3 3353.3 7664.6 (76) 3403.6 2647.3 6050.9 (60) 0 0 0 (0) 80C6 + marge 199.6 162.5 362.1 (6) 0 0 0 (0) 0 0 0 (0) 3744.0 2912.0 6656.0 (66)

= Inventory 5389.8 4387.1 9766.9 (162) 4311.3 3353.3 7664.6 (76) 3403.6 2647.3 6050.9 (60) 3744.0 2912.0 6656.0 (66)

EOC6 - Discharge 5389.8 4387.1 9766.9 (162) 4311.3 3353.3 7664.6 (76) 0 0 0 (0) 0 0

= Inventory 0 0 0 (0) 0 0 0 (0) 0 (0) 3403.6 2647.3 6050.9 (60) 3744.0 2912.0 6656.0 (66) 30C7 + ma rge 5190.2 4224.6 9414.8 (156) 4651.7 3618.0 8269.7 (82) 0 0 5190.2 4224.6 0 (0) 0 0 0 (0)

= Inventory 9414.8 (156) 4651.7 3618.0 8269.7 (82) 3403.6 2647.3 6050.9 (60) 3744.0 2912.0 6656.0 (66)

EOC7 - Discharge 0 0 0 (0) 340.4 264.7 605.1 (6) 0 0 0 (0) 0 0

= Inventory 5190.2 4224.6 9414.8 (156) 4311.3 3353.3 0 (0) p 7664.6 (76) 3403.6 2647.3 6050.9 (60) 3744.0 2912.0 6656.0 (66) o BOC8 ^ ma rge 109.6 161.5 362.1 (6) 0 0 0 (0) 0 0 0 (0) 0 0 0 (0)

- Inventory 5389.8 4387.1 9776.9 (162) 4311.3 3353.3 7664.6 (76) 3403.6 2647.3 6050.9 (60) 3744.0 2912.0 6656.0 (66)

EOC8 - Discharge 5389.8 4387.1 9776.9 (162) 4311.3 3353.3 7664.6 (76) 3403.6 2647.3

= Inventory 0 0 6050.9 (60) 0 0 0 (0) 0 (0) 0 0 0 (0) 0 0 0 (0) 3744.0 2912.0 6656.0 (66)

BOC9 + ma rge 5190.2 4224.6 9414.8 (156) 4651.7 3618.0 8269.7 (82) 3403.6 2647.3

= Inventory 5190.2 4224.6 6050.9 (60) 0 0 0 (0) 9414.8 (156) 4651.7 3618.0 8269.7 (82) 3403.6 2647.3 6050.9 (60) 3744.0 2912.0 6656.0 (66)

EOC9 - Discharge 0 0 0 (0) 340.4 264.7 605.1 (6) 0 0

= Inventory 5190.2 4224.6 0 (0) 0 0 0 (0) 9414.8 (156) 4311.3 3353.3 '7664.6 (76) 3403.6 2647.3 6050.9 (60) 3744.0 2912.0 6656.0 (66)

SOC 10 + marge 199.6 162.5 362.1 (6) 0 0 0 (0) 0 0

= Inventory 5389.8 4387.1 0 (0) 9776.9 (162) 4311.3 3353.3 7664.6 (76) 3403.6 2647.3 6050.9 (60) 3744.0 2912.0 6656.0 (66)

EOC10 - Discharge 5389.8 4387.1 9776.9 (162) 4311.3 3353.3 7664.6 (76) 0 0

= Inventory 0 0 (0) 3744.0 2912.0 6656.0 (66) 0 0 (0) 0 0 0 (0) 3403.6 2647.3 6050.9 (60) 0 0 0 (0)

"EOCu = eed of cycle z; 30Cy = beginning of cycle y.

36-in. (ru.U)o2 region.

"Compoette of upper (14-in.) and louer (14-in.) UO2 antal blankets.

36-in. U02 region at the same axial elevation as the core fuel.

I l 41 l

r5 .

2m.e .~e .. ..-

32e ~e.oe.

c. ..~

J c~ 1'.e. .. c. .a..- . o.

e.

.. .~. . . ~ e. ~

~ .~~.

a 3J ~~

~ . d ; * .:R*

244

~

Zds A A 244 das 62 J a n'

- - - ~

a

.4 2.83 ... ...

22 ... Jai RSR een JJJ 888 mee ...

l

~.1.g. g g

e

. e2 ~.~

eee ene e.~~~

~ .~~~ ..

.. . ~

.-- .~~ .

~ ~

. .e~~.~.

l .

e.

. ~ - .

o. .. .e 4
o. n. . 3. ~. . .R. . . . m. 3 3 8. ... .... . . .~ c.

.F -e

~

e. e e.

e.

o. e .%

~ .a e e.

e...

. e. . .-.

o-t a.t. n.

Lu . -. .

.~. .. . ~e A. A. ~ee . 8. ... .. c.

k AJJ 4JA~ AAd A  ; &. A .; d A .; J JA4 A

. o A J .A e e ~ e e - - a 1R K u

a . . ~..a. ... o

-~ -~ .n~ .e~ .*~ e 8 n. ..

4AA JAA AAA~ J. A .'

JAA -

AA4 d .; d

&*4 Ae m.

v m

~~. e2. eco -. 333 een .-~ --. ene 3

E. Add. Ada A .: A.

AJ A&A AA* JA; AA' R d i e; e

~- ~ - -

~~ ..- R.

. ~ ~ .

~.

1.; -

E e. C. .o. . o. .. e... e... m. ~. e.

t. . e. e. . . . . . . e. ~. e.. ~.~..

1 J

. $.18. ~

2*O ***

~ ~ R. O S 202

$*X  %"R. 2*l .

8 I

a. u K

5 -

a e.

ee. .o. e e. ~.. . .-. .-~ ~. e e. e 2 .. AJ A J J. J* Jid e.; A *8 4 A .: AA*R Jia e

~ ~

e . -~. ~~

. . ~ = .

~.

3 .

6 1 l

. s ... e. e. e. . .. e.. n. . ~ee. ..e. e.~.~. . . .. a. o. a.

~.

e. e

. . . . e

s. . o. . ... e r e. ~aR .. ~. -~R m.2

. e8.

. -~

... ~. .e

.R e - e...$.

. .A.~ A.

o S. o. m e. . ~n o

~.

e.

A

~ #

y

~ y + n. .en .-. ee. ee. .e. aca .. .

d . m &JJ JAA idd AAJ AA; Add JAJ J% J f, 4

. 5 -

. 227 e .

%3A .R R.. O :E3

.m~

~%$

.e~ S $ *S 230

-~ m~ ~S.

  • 8
o. o K 2. R1 m ~.e.. .

, ... e. m. .. .ee .~.. o. ..

.e

.e..

m

. . a. o. a.

..e.

.e b. .

~ .

e.

~.. .~.

.o e e

- . A .a. S e.-.

    • .~ e. S a~.

-+

~e.~.

~e

.e 2

4-~ .

u ~ g

~

t

  • 8 L e

.e.. .e..

. .... . ~.~.a.

e o e. ~

. . . . ~ . . . ~ . ~ . ~ . .. ~e.

3 J.

2 .-o e... - ....

e~..

e.

~mR -

eS

~.

e .R.. 39 ~-

R. 3- .~8 .

3 8

> e..

~e . . ... ~~~ ~-. ~~

8

~

K 8

~

2 + 1

.~

. .e..

E 2 22* 22 .

. & g e

m

. e. e. . . o.. ~..

. . . ~..

I

8. ~-
o. . -e .

~

... A n. A~.

e. . ,-.

C J.

5

.a .5

%. " 4

. . . . . . . 8 3 3 3 3 1 il* 1* o'  %

4 4

- 4- 4 3

. 2 .. B.1 e 2 '*

. e a ., e 3*e 3 4 .

3 S 5

. + + + . + . + . + .

O 3. .a.. + 3 + + 1 3." .

2. .

. . . I. l. . l.. .. l.g

. . 3

. . .J

p. 9. p. pg . g

. g. . 3 9 9 .

p A. . .

g- b .6

. D..

.h b

.h .b ..

h.

3 h.

g b . 8. h 8.

h e a a e

. 6

.a 8 W

. - 9 De j

$ b H . S

42

/ PL ANT NORTH O' m 6 ALTERNATE FUEL BLANKET 0156 FUEL ASSEMBLIES \W/ ASSEMBLIES l Q 76 INNER BLANKET ASSEMBLIES Q 126 RADIAL BLANKET ASSEMBLIES312 RADIAL SHIELD ASSEMBLIES g 9 PRIMARY CONTROL ASSEMBLIES Fig. C. I . Clinch River Breeder Reactor core layout.

43

(

APPENDIX D: CHARACTERISTICS OF CRBR SPENT FUEL, HIGH-LEVEL WASTE, AND FUEL-ASSEMBLY STRUCTURAL MATERIAL WASTES i

(

45 D.1: Characteristics of CRBR Spent Core Fuel Assemblies i

l

46 ORNL OWG 82-11788 LEGEND I C' o - PU239  :

a - CS137 ~
+ - PU240 '

x - PU241 o - AM241 v - SR 90 10' e - RH106

= - RU106 -

+ - PR144 i

fi e - CCl44

~

- NB 95 e - PM147 10' - r e - ZR 95  :

p  : o - RU103 -

l E -

)

9 10' -

au

- i s t i v xn n  : 1 E \' .'

{ -

$ 10' r y  :

x E

. 1 l

10' r 10' -  :

\

I' ' "' ' ' ' " ' ' " "

10" 10" 10" 10' 10' 10' 10' 10' 10' OECAY TIME AFTER OISCHARGE (3rl  ;

l I l Fig. D.1. Radioactivity of CRBR spent core / axial blanket fuel l as a function of decay time.

\

l l

Table D.I. Radioactivity of CRSE opent core /azist blanket fuel as a function of decay time Radioactivity (C1/NTIISI) f TOTAL PU239 C5137 P0240 PU241 &M241 SR 90 RH106 r7106 PP144 CE144 N3 95 1.000E-01 2.360E+07 8. 270E +0 3 2.60 3 E+ 0 5 6.396E+ 03 3.42 8E*05 2. 3 31E+0 3 9. 659E+ 04 1.66 4 E

  • 0 6 1. 6 6 4 E+ 06 1.59 3E+06 1.593E+ 06 2.812E*06 1.000 E+00 4. 729E + 06 8.270E+03 2.55 0 E* 05 6.396E+0 3 3.2 8 3E+ 05 2. 812E+ 03 9.453E*04 9.961 E+05 8.961E+ 05 7.148 E+ 05 7.14 8 E+ 05 1. 3 0 7E+ 05
1. 00 0 E+ 01 5.823E+05 9. 267* +0 3 2.071E+ 05 6.389E+ 03 2.128E *0 5 6.587 E* 03 7.630E+04 1.8 39 E*0 3 1. 8 39 E*0 3 2. 361E+ 02 2.3 41 E+ 02 4.56 7E-11 1.000E+ 02 6.8 96 E+04 8.245E+03 2.589E+04 6.3 30E+ 03 2.79 5E+ 03 1.195E+04 8.959E*03 2.437E-24 2.437E-24 0.0 0.0 0.0 3.000E+02 2.467E+04 c.199t + 03 2.54 8t+02 6.19E E+03 1.952E-01 8.744 E+ 03 7.669E+01 0.0 0.0 0.0 0.0 0.0 1.000 E+0 3 1.672 E+0s 3.035E+0 3 2.409E-05 5.753E+ 03 1.0 3 45-02 2. 845 E+03 4.452E-06 0.0 0.0 0.0 0.0 0.0 1.000E+04 8.482E+ 03 6. 200E +03 0.0 2.215E+03 4.96 3E-03 6.497 E-03 0.0 0.0 0.0 0.0 0.0 0.0 3.000E+04 3.813E+03 3.486E+03 0.0 2.65PE* 02 9.712E-04 9.7122-04 0.0 0.0 0.0 0.0 0.0 0.0 1.000 E+ 0 5 5. 2262 +02 4.641E+02 0.0 1.5895-01 3.225E-06 3.223E-06 0.0 0.0 0.0 0.0 0.0 0.0 3.000E+05 5.432 E+ 01 1.472E+00 0.0 2.7945-08 2.656E-13 2.799E-13 0.0 0.0 0.0 0.0 0.0 0.C 3 1.000E+06 3.841E+01 3.001E-09 0.0 2.767E-08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 y Radioactivity (C1/NTIIDE)

{y PR147 7R 9% RO103 R R10 3M CE141 ZR 93 NP237 P1233 3233 TR229 AC225 R A22 5 1.000E-01 3.553 E+ 05 2.119E +06 2.359 E+ 06 2.12 6E+ 06 1.5 7 9E+ 06 1.7 32E+00 7.521E-02 7.223 8-02 2.756 E-06 1. 0 4 8 E- 06 1.13 6 E-06 1.0 8 9 E- 06 1.000 E+0 0 2. 815E+ 05 6. 018E + 04 7.137 E* 0 3 6. 4 3 4E* 03 1.518E+ 03 1.7 99 E* 00 7.6 01E-02 7.591 E-02 3.052E-06 1. 0 4 9 E-06 1. 0 4 8 E-06 f.048E-06 1.000 E+01 2. 610 E+ 04 2. 056E-11 4.598 E-22 4.14 6E-22 0.0 2. 323 E+ 00 9. 0142-02 9.014 E-0 2 6. 318E-06 1. 0 52 E- 06 1. 05 2 E-06 1.0 5 2E-06 1.000'+ 02 1.230E-06 0.0 0.0 0.0 0.0 3.214E+00 4.194E-01 4.194E-01 1. 029 E-0 4 1. 411 E-0 6 1. 411 E-0 6 1. 411 E-06 3.000E+02 0.0 0. 0 0.0 0.0 0.0 3. 223 E* 00 1.087E*00 1.087E+00 7.766 E-04 8.729 E-06 8.729 E-0 6 8.72 9E-06 1.000E+0 3 0.0 0. 0 0.0 0.0 0.0 3. 222 E+00 2.278E+ 00 2.278 E+00 6. 252E-03 2.161E-04 2.161E-04 2.161E-04 1.000E + 04 0.0 0.0 0.0 0.0 0.0 3. 2095+00 2. 845E+00 2.845E+00 1.145E-01 3.899 E-02 3.889E-02 3.8 8 9E-02 3.000E+04 0.0 0. 0 0.0 0.0 0.0 3.180E+00 2.827E+00 2.827E+00 3.423 E-01 2.300 E-01 2.3005-01 2.300E-01 1.000!+05 0.0 0.0 0.0 0.0 0.0 3. 081 E+ 00 2.76 2E*0 0 2. 76 2 E+0 0 9. 88 6 E- 01 9. 019E-01 9. 019E- 01 9.019 E-01 3.000E+ 0% 0.0 0.0 0.0 0.0 0.0 2. 814E+00 2.590E* 00 2.590 E+ 00 1.965E*00 1. 9 8 5E + 00 1.9 8 5E+ 0 0 1.9 8 5E+ 00 1.000E+06 0.0 0. 0 0.0 0.0 0.0 2. 04 9E+ 00 2.065E+00 2.065E+00 2.191 E+ 00 2.196 E+ 00 2.196 E* 00 2.196E+ 00

I 48 ORNL OWG 82-11782 10' _ ,, ..., .., , . . , ., , , , . . . , , , , . . . , , . . . ,

LEGEN0 '
o - PU239

- a - PU240 -

, + - AM241 10' ' x - RH106 =

o - CS137 -

v - PR144 m - SR 90

- N8 95 10' : -

+ - P0213 _

e - ZR 95  :

g , _f3 a - PU238 T217 1 ui 1r x

~

n _

'42 g 10' ip

}\g" o- 1 r

E g - _

5 10' r E

e

~

E _ _

W 10" i--

10 r -

l

~

/ .

10 r -

/ -

10

10" 10' 10' 10' 10' 10' 10' 10' OECRY TIME arTER OlSCHARGE tyr)

Fig. D.2. Thermal power of CRBR spent core / axial blanket fuel as a function of decay time.

Table D.2. 1hermal power of CRBR spent core /azial blanket fuel es a function of decay time Thermal power (W/NT1HM)

TOTAL PU239 PU24 0 AM241 R H10 6 CS137 PR144 SR 90 N9 95 Po213 ZE 95 ?U238 1.0 00 E-01 9. 52 4 E + 04 2. 54 8 E

  • 02 1.991'+ 0 2 7. 74 3E + 01 1.5 9 6t+ 04 6. 4 49 E+ 0 2 1.171E* 0 4 3. 2 3 8E
  • 0 2 1. 3 49 E* 04 5.624E-08 1.073E*04 0.9 2 3E+ 01 1.000 E+0 0 1.964E+04 2. 54 8E +02 1.992 E+ 02 9.3 39 E+ 01 8.5 9 5E *03 6. 316 E* 02 5.254 E+03 3.168 E*0 2 6. 26 8 5+ 02 5.191 E-08 3.04 9 E+0 2 1.3 4 3 c + 02 1.0 0 0 E* 01 1.722 E+03 2.54 9E +02 1.99 0 F+0 2 2.19 7E+ 02 1.76 5E+01 5.131 E+ 02 1.735E+ 00 2.557 E* 02 2.191 E- 13 5. 206E-08 1.042E- 13 1.02 4 E* 02 1.000 ?+0 2 1.001E+ 03 2. 542E +0 2 1.970E+ 0 2 3.9 7 0!+ 02 2.3 3 8E-26 6.413 E* 01 0.0 3.002E+01 0.0 6.989E-09 0.0 5.276E+01 3.000E+ 02 7.521E+ 02 2. 527E +02 1.92 9E* 02 2.9 05E+ 02 0.0 6.311E-01 0.0 2. 571 E-01 0. 0 4.321E-07 0.0 1. 27 4E
  • 01 1.000 E+03 5. 221 E+02 2. 476E *02 1.791E+ 02 9.45 2E+ 01 0.0 5.968 E-0 9 0.0 1.492E-08 0.0 1.069E-05 0.0 1. 2 3 2 t-01 i 1.000 E+0 4 2.606'+ 02 1.911?+ 02 6.890 F+ 01 2.1592-04 0.0 0.0 0.0 0.0 0.0 1.925 E-03 0.0 2. 3 7 6E- 19 3.000E+04 1.162E*02 1. 074E + 02 8.279 E* 00 3. 226 E-05 0.0 0.0 0.0 0.0 0.0 1.139 E-02 0.0 0.0 1.000E*05 1. 5 04 E + 01 1.430F+01 4.448E-03 1.071E-07 0.0 0.0 0.0 0.0 0.0 4.466E-02 0.0 0.0 3.000E+05 9.778 E-01 4. 53 5E-02 8.696E- 10 9.296E-15 0.0 0.0 0.0 0.0 0.0 9.8 26 E-02 0.0 0.0 1.000!+ 06 8.071E-01 0. 26 6E-11 8.615E-10 0.0 0.0 0.0 0.0 0.0 0.0 1.0877-01 0.0 0.0 g Thermal power (W/MTIltt)

~

h AT217 C4242 FR221 LA140 4 C225 TH229 NP237 RU103 U233 U236 CO 60 CS134 1.00 0 E- 01 4. 847 E-09 4.*62E+0 3 4.38 4 F-08 9.41*E + 0 3 3.96 9E-08 3. 2 06E-08 2.29 8E-03 7.8895+ 0 3 8.010E-08 1.756E-04 2. 335E+ 02 6.714E+ 02 1.000 E+00 4. 474F-09 1.135E + 03 0.04 6 E-08 1.72 3E-04 3.66 2E-08 3. 2 08 E-08 2. 323E-0 3 2.38 8E+ 01 8. 872E-08 1. 8 0 3 E- 04 2.075E*02 4.961E+02

1. 00 0 E+ 01 4.487E-08 A.729E +00 4.058E-08 0.0 3.6 7 4E-08 3. 216 E-08 2.756E-03 1.538 5-24 1.836r-07 2. 26 3E-04 6.35 0E* 01 4.408E+01 1.000'+ 02 6.023E-09 4. 46 4 E +00 *.44 7E-O R 0.0 4.9 3 0E-08 4.318 E-08 1.282E-02 0.0 2.991 E-06 f .8 53 E-04 4.58 7E-0 4 1.7 8 0 E- 12 3.000 E+0 2 3. 725E-07 1.793E+ 00 3.36 9E-07 0.0 3.04 9P-07 2.669 E-07 3. 322E-02 0.0 2.258E-05 1.690 E-03 1.725E-15 0.0 1.000'+ 0 3 9.2185-06 7. 369E-0 2 9.3 36E-06 0.0 7.5 4 65-06 6.6 082-06 6.963 E-02 0.0 1.018r-04 5.042E-01 0.0 0.0
1. 000!+ 04 1.659E-03 1.110!-19 1.501 E-03 0.0 1.3 5 8E-03 1.190E-03 8.694E-02 0.0 3. 329E-03 3.180 E-02 0.0 0.0 3.000E+04 9.813F-03 0.0 8.875 E-03 0.0 9.0 3 3E-03 7. 036E-0 3 8.638E-02 0.0 9.052E-03 4.651E-02 0.0 0.0 1.000!+ 05 3.849 *-02 0.0 3.481E-02 0.0 3.150'-02 2.759E-02 8.444E-02 u.0 2. 873!-02 4. 8 42E-02 0.0 0.0 3.000*+ 05 8.469E-02 0. 0 7.659 E-02 0.0 6.93 3E-02 6. 071E-02 7.914E-02 0.0 5.710 E-02 4.814 E-02 0.0 0.0 1.000E+06 9.36ME-02 0. 0 8.471E-02 0.0 7.66 7E-02 6.714E-02 6.3 08E-02 0.0 6.36 6E-02 4. 716 E-02 0. 0 0.0 5

lg5 '

50 ORNL OHG 82-11776 LEGEND -

o - SR 90 -

i a - PU239 10' + - PR143  :

x - PU240 -

o - RA226  :

v - AM241 m - RU106 10 ia = - CE144 l + - CS137  ?

b 10". c I _  :

C -  :

E g

o .

10 -

l  :

7

~ '

i  : .

g .

U 10'  :- . .

,. x tw_ x - t  :

e  :

I N .

10' .

1 ld - .

l 0 I 1a I 11& 0 I 11 E $ $ & $ L 10" 10' 10' 10' 10' 10' 10' 10' DECAY TIME AFTER OlSCHARGE tyr)

Fig. D.3. Ingestion toxicity of CRBR spent core / axial blanket fuel as a function of decay time.

i Table D.3. Ingestion toxicity of CRat spent core /extel blanket fuel as a function of decay time Ingestion toxicity (m 3 wate r/MTIMM) 00240 8&226 &M241 RN219 RO106 CE144 T'1229 PB210 T07&L S# 90 P0239 PR143

1. 000 E-01 5.126E+ 13 8. 381E + 10 8.48 4 E+ 08 5.053? + 13 6.56 2t+ 08 9.698 E-0 3 2.989E*08 7.101 E-01 8.53 4 10
4. 597E+ E+3.667E 10 e.173

+ 10 E+1.345E+ 10 1.345 00E*0 0 2.53 3E-01 2.510E-01 1.000E+00 1.800 E+ 11 8. 203E +10 8.49 4 E+ 0B 2.561 E+06 6.561E+08 1. 526 E-02 3.606E*08 7.120 E-01 1.000E+01 7.2692+ 10 6. 622E + 10 P.48 2E* 09 0.0 6.555E+ 08 2. 48 2E-01 8.446E* 08 3.417E+ 0 0 9.4 35 E+07 1.201E+07 1. 3 4 8 E+ 0 0 1.9 7 2 E- 01 6.4 9 3E + 08 9. 588 E* 01 1. 53 3 E*09 8.395 E+01 1.250 E-19 0.0 1.810E*00 1. 3 9 4 E

  • 01 1.000!+0 2 1.135E+ 10 7. 77 3E+09 8.46 0E* 08 0.0 0.0 1.119 E* 01 4.0 9 E E+02 3.000E+02 2.721E+09 6. 651E +07 8.412 E+ 08 0.0 6.357E+09 1.7 78 E* 03 1.121E* 09 3. 820 E+ 0 2 0. 0 5.902E+08 2.973E+04 3.64 9E+08 2.44 9E*03 0.0 0.0 2. 770 E+ 02 8.517E*03 1.000 E+ 03 1.783 E+ 04 3. 861E +0S 8.24 3 E+08 0.0 0.0 4.98f E+ 0 4 4.4 76E* 05 1.000!+0 4 8.678'+ 0e 0. 0 6.361E*08 0.0 2.273E+08 1.493E+06 8.333E*02 1.340E*05 0.0 2.9 50 E* 05 1.57 3E* 06 2.727E*07 5.247E+06 1.2455+ 02 8.407 E* 05 0. 0 0.0 3.000!+04 3.953E+08 0.0 3.576E+08 0.0 0.0 1.157E* 06 3.610E*06 1.000E+05 7.148!+07 0.0 9.762E+07 0.0 1.6 3 0 E + 04 1. 2 04 E+ 07 4.13 4E-01 3.432E*06 0.0 1.%10E+05 0.0 2.9 6 5E-03 1. 393 5* 07 3.58 9E-08 4.853 E*06 0.0 0.0 2.M4 5E+06 4.17 8E* 06 3.000!+05 3.046?+07 0.0 4.879E+06 0.0 0. 0 2.814E*06 1.8 3 3?+ 0 6 1.000E*06 1.996'+07 0. 0 3.095E-04 0.0 2.9 3 9E-03 6.116E+06 0.0 y H

Ingestion toxicity (m 3 veter/MTImO PA225 CF 137 1129 NP237 PU238 P0210 05134 PU241 AC225 FA223 SR 89 PA2 31

1. 00 0 E-01 1.118E+00 3. 4 32? +09 4.950 E* 05 1.28 6t* 04 2.76 2E +08 2.377E-02 3.760E+09 8.789E*08 1.165E-01 3. 0 4 3 E- 02 1. 28 3 E+ 11 1.9 51E- 01 1.000E+ 0 0 1.075 E+ 00 3. 361E +09 4.984 E+ 0* 1.3C3E*04 3.22 7E+08 3. 340 E-02 2.77 83+09 S.418 E*08 1.075E-01 3.051E-02 1.4 08E+09 2.255E-01 1.000E+01 1. 079 E+09 2. 730? +09 4.98 4 E+ 05 1.5415+ 04 3.16 9E+08 2.819 E-02 1.34 8E* 08 S.4 59E+ 08 1.079E-01 1. 4 65 E-01 3.5 6 8E- 11 5.319E-01 1.000E+02 1. 448t+ 00 3.412E+08 4.98 4 E* 05 7.171E+ 04 1.6 3 4E + 0 8 1.992 E* 00 9.96 2E-06 7.170E*05 1.448E-01 3.597E*00 0.0 4.026E+00 3.000E*02 8.959 E+ 00 3. 359E
  • 06 4.98 4 E+ 05 1.8%9t+ 05 3.9 4 ** +07 5. 851 E+01 0.0 5. 005 E+02 8.959 E-01 1. 6 37 E + 01 0.0 1.460!*01 1.000 E*0 3 2.216 E *02 3.176 E-01 4.98 3r* 05 3.89'E+ 05 5.981E* 05 1. 273E+0 3 0. 0 2. 692 E+ 01 2.216 3+ 01 1.050E+02 0.0 0.161E+01 1.000E+04 3.9895+04 0. 0 4.991E*05 4.864*+05 7.357E-13 6.395E+04 0.0 1.273E+01 3.989E+03 5.743E+03 0.0 4.4E7E*03 3.000E+04 2.360E+05 0.0 4.977E+05 4.832E+05 0.0 2. 247E+05 0.0 2.491 E+00 2. 360E+04 3. 603E+ 04 0.0 2. 9 0 2E + 0 4 1.000E+05 9.257Ee0% 0.0 4.961E+05 4.724E+05 0.0 5.157E+05 0. 0 8.269E-03 9. 257 E+ 04 1.471E+05 0.0 1.14 4E+ 05 3.000E+0 5 2.036E+ 06 0.0 4.918E+05 4.428t+05 0.0 5.969 E+ 05 0.0 6. 813E-10 2. 03 6 E*05 2.08 0 E+05 0.0 1. 618 E+ 05 1.000!+06 2.252E+06 0.0 4.768E+05 3.529E*05 0.0 2. 620 E+05 0.0 0.0 2. 25 2E* 05 2.091E+ 05 0.0 1. 6 2 63 + 05

52 ORNL DWG 82-12756 LEGEND 10 r PU239 ,

c 9 e 40

- - 9_ g TH

- -  : o- 24 _

' v- 23 10  :

a - N '37 -

a- RN IS

+ - CMm 2

~

i .

e - PA2 _

m - PU24 _

m - RU10 10 --

e - TH23 ,

r . o - CE141  :

E  : t E -

y -

b 10" ,

7 E

.E_

g  : r = = _g = =

-= . _

G 10 -

N i

- \ w 5

i--

\: ,

\ l

_ j i 10 r -

~

=  :

10" - _

10' 10 10' 10' 10' 10' 10' 10' 10' DECRY TIME AFTER O!SCHARGE tyi Fig. D.4. Inhalation toxicity of CRBR spent core / axial blanket fuel as a function of decay time.

l l

Table D.4. Inhalation toutetty of OtSR opent core /astal blanket fuel as a function of decay time Inhalation toxicity (m3 atr/IfTItte) fy$ TOTAL PS239 PU240 PU241 TR229 AM241 PU238 NP237 RN219 CM242 PA231 PU242 1.000 E-01 2.428 E+17 7.070E +16 5.46 8F+ 16 5.861E+ 16 2.68 9E+07 5.979 E+ 15 1. 973E* 16 3.858 E* 11 1.065E+06 1. 588E+ 16 4.3 89E+ 06 1.77 9E+ 13 1.000E+ 0 0 2.222 E+17 7. 070E +16 5.46 8E+ 16 5.613E+ 16 2.689E+07 7. 211E+ 15 2. 30 5E+16 3.899E+ 11 1. 068 E+ 06 3.949 E+ 15 5. 075E+ 06 1.7795+ 13 1.000E+01 2.030E+ 17 7.068t+16 5.463 E+16 3.6 39'+16 2.697E+07 1.689 E+ 16 2.264!* 16 4.624E+ 11 5.126E+ 06 2.34 3 E+ 13 1.197E* 07 1.7 7 9 5 + 13 1.000E+02 1.680E+17 7. 050* + 16 5.411E+ 16 4.780E+ 14 1.62 0E+07 3.066E+16 1.167E+16 2.151 E+ 12 1. 259 E + 08 1.554E+ 13 9.061 E+ 07 1.78 3E+ 13 3.000E+02 1.485E+17 7.009E + 16 5.297E+ 16 3. 33 6E+ 10 2.23 9E*08 2.242 E+ 16 2. 817E+ 15 5.577E+ 12 5.73 0E* 08 6. 24 2E+ 12 3. 28 5E+ 08 1.7 8 85+ 13 1.000 E + 0 3 1. 253E + 17 6. 87 0E + 16 4.918 E+ 16 1.76 8E+09 5.54 0E

  • 09 7.298E+15 4.273E+13 1.169 E+ 13 3. 673E+ 09 2.564 E+ 11 1.8 3 6 E+ 09 1.789E+13 1.000E+04 7.199 E + 16 5. 301? + 16 1.89 4E+ 16 8.48 6E+ 08 9.07 0E+ 11 1.667E+10 5.255E-05 1.4 59 E+ 13 2.010 E+ 11 3. 8 6 4M- 0 7 1. 03 5 E+ 11 1.7 6 0 E+ 13 3.000E+04 3. 212 E + 16 2. 990 E + 16 2.27 2 E+ 15 1.661 E+ 08 %.89 PE+ 12 2. 491 E+09 0. 0 1.450E+13 1.261E+12 0.0 6.305E+11 1.69 8 8+ 13 1.000*+0 5 4.037t+ 15 1.9695+15 1.358E+12 5.512E+0% 2.314E+13 8.268E+06 0.0 1.417E+13 5.148E+12 0.0 2.57 4 E+ 12 1. 49 9E+ 13

?.000E+05 1.064 E+ 14 1. 259F +13 2.388E+ 05 4.542E-02 5.09 0!+13 7.177E-01 0.0 1. 329 E + 13 7. 279 E+ 12 0. 0 3.64 0E+ 12 1.0 4 7 E + 13 1.000E+06 8.593 E+ 13 2. 570F +04 2.366t+05 0.0 5.63 0E+ 13 0.0 0.0 1. 059 E+ 13 7. 318 E+ 12 0. 0 3. 659E+ 12 2.9 8 8E+ 12 on Inhalation textetty (a3 at r/tfTIlet)

AC227 SR 90 AM242M, SR 89 ZR 95 U233 CM244 1236 1131 ff!$ 33106 TM230 CElte 1.000 r-01 4.268 E

  • 15 4.571E + 06 4.087E+ 19 2.054E+0? 8.339M+14 5.955E+14 1.2835+15 1.087R+ 15 3. 533E*05 2. 4 86 E+ 14 8.316 E+ 08 5.8 51E+ 14 1.000E+00 2.298 E+15 6.195'+06 1.4 33E+ 15 2. 665E+ 05 8.16 3t+ 14 5.930E+14 1. 408E+ 13 3.087E+ 13 3.913 E* 05 2. 40 2E + 14 8. 53 4 E+ 0 9 2.88 ? E* 02
1. 000 ' + 01 4.717t+ 12 4. 573 ?+ 07 6.007 F+ 11 1. 28 0F+06 6.58 9E+ 14 5. 692 E+ 14 3. 56 8E-07 1.055E-02 8.102E*05 1.7 02E+ 14 1. 072E+ 09 0.0 1.000 E+02 6. 251E- 1% 2.309E+09 0.0 3.14 8 E+ 07 7.7 3 5E + 13 3. 776 t+ 14 0.0 0.0 1. 319 E+07 5. 4 32E+ 12 3.2 4 4 E*09 0.0 3.000!+ 02 0.0 1. 36 9 E + 10 0.0 1.4 32E* 08 6.618E+11 1. 517 t+ 14 0. 0 0.0 9.962E+07 2. 573E + 09 7. 9 9 9E+ 0 9 0.0
1. 000 *+ 0 3 0. 0 6.592'+10 0.0 9.180E+ 08 3.9 4 4E+ 04 6.233 E+ 12 0. 0 0.0 8.016 E+ 08 4.786 E+ 00 2. 3875+ 10 0.0 1.000 E+ 04 0.0 7.211?+11 0.0 5.025E+ 10 0.0 9.367E-06 0.0 0.0 1. 468E+ 10 4. 780 E+ 03 1.505 E+ 11 0.0 3.000 E+ 04 0.0 1.955E+12 0.0 3.153E+11 0.0 0.0 0.0 0.0 4. 390 E+ 10 4.7 79E+ 00 2.202E+ 11 0.0
1. 0 0 0 * + 0 5 0. 0 4.ge2E+12 0.0 1.287E+12 0.0 0.0 0.0 0.0 1. 267 E+ 11 4. 776 E+ 00 2.29 2E+ 11 0.0 3.000!+05 0.0  %.2092+12 0.0 1.820E+12 0.0 0.0 0.0 0.0 2.519E+11 4. 768 E+ 00 2.2 79 E+ 11 0.0 1.000f+0' O.0 2.283'+12 0.0 1.929E+12 0.0 0.0 0.0 0.0 2. 909 E+ 11 4.7 40 E+ 00 2.2 32E+ 11 0.0

55 l

l D.2: Characteristics of Blended CRBR High-Level Waste

56 ORNL OWG 02-11792

~

LEGEN0 o - TC 99 10' -

~

a - CS137 _'

~

+ - PU233 x - AM241 -

o - ZR 93  :

. v - RH106 _

1 m - Rul06 10'  :. = - SR 90 E + - CS13S .

e - PR144 u - CE144 .

m - SM151 -

e - PU240 g 10' -

n - PM147 -

iE i  :

!E  : _ _

3 o

[ 10'

^

i-.  :  :

g . .

!I

=

i i

\  :

( _

10' -

- -- I I -

I -

10 8

4  : IIE _II 5 \i  !-
2 10" 10" 10' 10' 10' 10' 10' 10' 10' DECRY TIME AFTER O!SCHARGE tyl Fig. D.5. Radioactivity of CRBR blended high-level waste as a function of decay time.

Table D.5. Radioactivity of mSt blended high-level waste se a function of decay time Radioactivity (C1/MTIMM)

TC 99 C5137 A9241 ZR 93 58106 R0106 SR 90 CS135 PR144 09144

{1"j TOTAL PU239 4.384E-01 4.429t*06 9. 400E +00 1. 358 E+ 05 2.27 7E

  • 01 1.0 3 7t+ 03 9. 5 98 E-01 6. 581E+ 05 6.581 E+ 05 5. 33 7E+04 1.0 76t+ 00 6.12 7E* 05 6.12 7 E+05 4.9 31 E-01 4.010E+06 9.400?+00 1.356E+05 2.277E*01 1.0 3 7E + 03 9. 620 E-01 6.33 8E+05 6.338t+ 05 5.331r* 0 4 1.076 E+ 00 5. 8 3 5E+ 05 ~.8 3 5E+05 5.753?-01 3.515E*06 9.400E+00 1.354E+05 2.277E+01 1.3 3 7E +0 3 9. 6 53 E-01 5.99 0E+05 5.990 E+05 5. 321E*0 4 1. 076!+ 00 5.42 4!* 05 5.4 2 4E+05
f. T 7 4 E- 01 3.134E+06 9.400E+00 1.351E+05 2.277?+01 1.0 3 7E* 0 3 9. 687E-01 5.661E*05 5.661E+05 5. 310E *04 1.0 76E+ 00 5.041E+ 05 5.041E+ 05 7.395E-01 2.83 3E+06 9. 401E+00 1.34 9 E+05 2.27 7E+ 01 1.0 37!+03 9. 719E- 01 5. 350E* 05 5.3 50E+ 05 5. 3 00E+ 04 1.0 7 6E+ 00 4.6 8 6 E+ 0 5 4.6 8 5E+ 05
m. 217 E-01 2.588E+06 9. 400E +00 1. 34 6 E+ 05 2.277E+ 01 1.0 37E *03 9,752 E-01 5.056t+ 05 5.0565+ 05 5. 29 0E+ 04 1.0 76t+ 00 4.355E+ 05 4.35 5E+ 05 9.038E-01 2. 3 86 E + 06 9.400E+00 1. 3 4 3 E* 0 5 2. 27 7E + 01 1.0 3 7E+03 9.785 E-01 4.779E*05 4.779 E+ 05 5.280 t+ 04 1.076E+00 4.0 4 8E* 05 4.04 8!+ 0%

1.15 0 * +0 0 1. 9 3 5'

  • 06 9.400E+00 1.336E+05 2.277!+01 1.337E+03 9.882E-01 4.0343*05 4.034E+05 5.247E*C4 1.076E+00 3.250E+05 3. 2 50 E + 05 1.411E+00 1.603?+06 9.400E+00 1. 32 8E+ 05 2.277E* 01 1.0 3 7E+0 3 9.983 E-01 3. 37 2E+05 3.372E+ 05 5. 215E+04 1.0 76E+ 00 2.5772+ 05 2.576t+ 05 2.411E+00 8.8415+05 9.400E*00 1.297 E* 05 2. 277E+ 01 1.0 3 6 E+ 03 1. 0 36 E*00 1.69 5E*05 1.695E* 05 5. 093 E*04 1.076E+00 1.0 57t+ 05 1.057t+ 05 9.411E+00 2.975t+0% 9. 400E+00 1.211 E+ 05 2.277E +01 1.3 3 4E+0 3 1.138 5+ 00 2.15 4E+ 04 2.154E+04 4.741E*04 1.076 E+ 00 7. 30 9 E*0 3 7.3 0 95+ 03 1.041E+01 1.439F+05 9.399E+00 9.608E+04 2.277E+01 1.3 2 SE + 0 3 1. 3 85 E+ 00 2. 22 3 E* 01 2.19 2 E+ 01 3.737t+04 1.076E+ 00 9. 305 E-01 9.9 0 5E-01 3.041E*01 9. 764 E + 04 9. 399 t +00 E.05 2E+04 2.277E+ 01 9.9 9 5E* 02 1. 622 E*00 2. 33 4E-05 2. 3 34E-05 2. 322E* 04 1.0 76E + 00 1. 819E-0 9 1.819E-08 1.0045+02 1.883F+04 9. 307t +00 1.201 E* 04 2.274t+ 01 R.97 3?+ 02 1.752 E+ 00 2.905E-26 2.905E-26 4.387E+03 1.076E*00 0.0 0.0 3.004 *+0 2 1.232 E +03 9. 301E +00 1.182E* 02 2.262E+ 01 6.512E +02 1. 756 E* 03 0.0 0.0 3.757E*01 1. 3 76t+00 0.0 0.0 1.000E*03 2.725 E+ 02 9. 369t+00 1.118 E-05 2.22 tE* 01 2.119E+02 1.755E + 00 0.0 0.0 2.18 2 E- 06 1.076E+00 0.0 0.0

?.000 E*0 3 5. 899E+ 01 9. 308E + 00 9.53 4 E-26 2.106 E+ 01 8.97 9E +00 1. 754 E* 00 0.0 0.0 4.620E-27 1. 0 75 E* 00 0.0 0.0 1.000E+04 3.944?+01 9.099E+00 0.0 1.743E*01 2.158E-03 1.748E+00 0.0 0.0 0.0 1. 3 73 E+ 00 3. 0 0.0 3.000E*04 2.554?+01 8.525E +00 0.0 9.950E+00 4.000E-04 1. 732E+ 00 0.0 0.0 0.0 1. 0 6 6 t + 00 0. 0 0.0 1.000E*05 1.430E+01 6.789E+00 0.0 1.332E+00 1. 32 6E-06 1.678 E+ 00 0.0 0.0 0.0 1.0 44 E+00 0.0 0.0 3.000 E+ 05 9.478'+00 3. 541E

  • 00 0.0 4.219E-03 1.151E-13 1. 533 E+ 00 0.0 0.0 0.0 9. 8 30 E-01 3. 0 0.0 (n 5.000E*0 5 7. 400E+ 00 1. 847 E +00 0.0 1. 3 31E- 05 9.4 8 7E-21 1. 400 E* 00 0. 0 0.0 0.0 9. 2 55 E- 01 0. 0 0.0 %J 1.000?+06 4.957F*00 3.630E-01 0.0 1. P 4 4 E- 10 1.8 4 92-3 8 1.116 E* 00 0.0 0.0 0.0 7.960E-01 0.0 0.3 Radioactivity (C1/MTIMM)

{1;j S9151 PU240 P9147 MB 95 N P237 PA233 U233 TH229 AC225 PA225 FR221 17217 4.394!-01 2. 686 E + 03 1.433E+91 1.719 E+0 5 9.53 8E+ 05 7.3 0 73-02 F. 295E-02 1.74 0E-09 2.184 E-09 3.893 E-07 2. 7 46 E-07 1. 8 9 4E-0 7 3.8 9 4 E- 07 4.0 31 E-01 2. 685E + 03 1.433E+01 1.69 4E+ 05 4.572t+ 05 7.3 09E-02 7. 3 00 E-02 3. 48 7E-08 2.18 4 E-09 2.182 E-07 1. 093 E-07 2.182E-07 2.18 2E-07 753E-01 2. 68 4 t + 03 1.433E+01 1.658E+0% 3.402!* 05 7.311E-02 7. 3 05 E-02 6.110E-08 2.185E-09 6. 88 2E-08 2.8 40E-08 6.88 3 E-08 f .8 8 3!-08 6.874E-01 2.682E+03 1.433E+01 1.62 2E* 0 5 2. 512'+ 05 7.314E-02 7. 3 09 E-0 2 8. 73 5E-08 2.185E-09 2.024 E-08 8.619 E-09 2.02 5E-0 9 2.02 53- 08

7. 39 5 E-01 2. 68 0 E
  • 03 1.431E*01 1.M8 8 E
  • 0 5 1. 8 4 5E + 05 7.317E-0 2 7. 313 E-02 1.13 6 E-0 7 2.18 6 E-09 6. 9 3 0 E-09 3.764E-09 6.831E-09 6.P31E-09 8.217E-01 2.679E*03 1.433E+01 1.554 E* 05 1.350t+05 7.32 0E-0 2 7. 316E-0 2 1. 399E-07 2.187E-09 3. 35 3 E- 09 2. 574 5- 09 3.353 t-09 3.3 5 3E-09 9.038!-01 2.677E+03 1.433E+01 1.520 E+ 05 9. 84 4E+ 04 7.32 2E-02 7. 319 E-02 1. 662 E-07 2.188 E-09 2.4 77 E-09 2. 282 E-09 2.4 77E-09 2.4 7 7E-09 1.150E+00 2.672t+ 03 1.433E*01 1.42 4F+ 0 5 3. 775E + 04 7.3 31E-02 7. 327 E-02 2. 4515-07 2.19 3 E-09 2.195E-09 2.193 3-09 2.19 5E-09 2.19 5E-09 1.411E*0 0 2.f 66 E
  • 03 1.433E+01 1.330E*05 1.355 E+04 7.3 3 9'-0 2 7. 3362-02 3.287E-07 2.200 E-09 2.19 7E-09 2.19 8E-09 2.197E-09 2.197E-09 2.411E+00 2.646t*03 1.434E+01 1.021 E+ 05 2. 698t + 02 7.3 73E-02 7. 374 E-02 6. 84 6E-07 2.249 E-0 9 2.249 E-09 2.2 49E-09 2.24 9E-3 9 2.2 4 95-09 5.411E*00 2.585E+03 1.435E+01 4.621E+04 1.82 3t-03 7.47 4E-02 7. 473 E-02 1.69 3E-06 2.590 E-09 2. 590 E-03 2.590E-09 2.590 E-09 2.59 0E-C9 1.041E*01 2. 394 f + 03 1.438E+01 3.291 E+ 0 3 1.191 E-20 7.8 07E-0 2 7. 8 07E-02 5.03 3E-06 5.767 E-09 5. 767E-09 5.767E-09 5.767 E-09 5.76 7E-09 3.041E+01 2.0M2F+03 1.440E*01 1.670E*01 0.0 8.46 3E-02 8. 463E-02 1.215E-05 2.191E-08 2.191 E-08 2.191E-09 2.191E-08 2.191E-08 1.0045*02 1.197E+03 1.433t+01 1.551E-07 0.0 1.3612-01 1. 061 E-01 4.13 9 E-0 5 1.9 4 8 E-07 1. 94 8 E-07 1.948E-07 1.9485-07 1.9 4 8 E- 07 3.004E*02 2.565!*02 1.403E+01 0.0 0.0 1.559!-01 1.559E-01 1.570E-04 1.9843-06 1. 98 4 E-06 1. 9 8 4 E- 06 1. 98 4 E-0 6 1.9 8 4E-06 1.00 0E* 03 1.1695+00 1.303F+01 0.0 0.0 2.445E-01 2. 4 45 E-01 7. 933 E-04 3.108 E-05 3.108 E-05 3.108E-05 3.10 8E-05 3.10 8E-05 3.0 00?+0 3 2. 386 E-07 1.054E+01 0.0 0.0 2.954E-01 2. 854 E-01 3.177E-03 3.6983-04 3.698E-04 3. 699 E-04 3.698E-0 4 3.6 9 8E-0 4 1.000E*04 0.0 5. 017E *00 0.0 0.0 2.8 6 5E-01 2. 86 5 E-01 1.17 3E-02 4.034 E-03 4.03 3E-0 3 4. 0 3 3E-03 4.03 33-0 3 4.0 3 3E-0 3 3.000E*04 0.0 6. 019 E-01 0.0 0.0 2.8 4 7E-01 2. 8 47E-01 3.466E-02 2.334 E-02 2.334 E-0 2 2. 3 34 5-02 2. 3 34 E-02 2.3 3 4E-02 1.000t*05 0.0 3.598t-04 0.0 0.0 2.783'-01 2. 783 E-01 9.970E-02 9.099 E-02 9.099 E-02 9.099 3-02 9.099E-0 2 9.0 9 9E-02 3.000E+05 0.0 5.770E-11 0.0 0.0 2.608E-01 2.608E-01 1.979E-01 2.000E-01 2.000E-01 2. 0 00 E- 01 2. 0 0 0E-01 2.0 0 0 E-01 5.000E+0% 0.0 5.742E-11 0.0 0.0 2. 4 4 5 E-01 2. 4 45E- 01 2. 291E-01 2.331E-01 2.331E-01 2. 3 31 E-01 2. 3 313-01 2. 331 E-01 1.000E*06 0.0 5.724!-11 0.0 0.0 2.079E-01 2. 079 E-01 2. 2 06 E-01 2.219 E-01 2. 219 E-01 2.219 E-01 2.219 E-01 2.219E-01

l 58 ORNL DWG 82-11786 10' LEGEND _

o - PU239

\ a - AM241 h + - RH106 x - CS137

  • o - PR144 10 5

, v - SR 90 -

m - P0213 a - PU240

+ - RT217 e - FR221

+ a - NP237 10' -

~

m - AC225 _

~

e - TH229

'; o- U233 E -- _

I C

E 3 10'  :

_a E 10' r

$ E amme e e e e e c. 3 E

= =  :

10" r 10 .  :. _

7

/

10

10" 10 10' 10' 10' 10' 10' 10' DECRY TIME RFTER 01SCHARGE Igr1 Fig. D.6. Thermal power of CRBR blended high-level waste as a function of decay time.

I 1

Table D.6. Therust power of man blended high-level umste se a function of decay time Thermal pauer W/NTIlOO fII$ TOT &L PS239 49241 R P10 f CS137 PR144 SR 90 P0213 PU240 AT217 FR221 BP237 4.384E-01 1.904E+04 7.0193-01 3.44 6 E* 01 6.312t + 0 3 3.3 6 4E*02 4. 504E+ 03 1.78 9E* 02 1.928E-08 4.462 E-01 1.662E-09 1.503 5-08 2.23 3E-03 4.9313-01 1.735E+04 7.018E-01 3.44 6 E+01 6.079E* 03 3.36 0E *02 4. 289E+ 03 1.78 6!+02 1.00 05-09 4. 462E-01 9.312 5-09 8.422E-09 2.23 4E-03 5.753E-01 1. 527 E + 04 7.019E-01 3.44 5E+ 01 5.74 55+ 03 3.3 5 3? +02 3. 987 E* 03 1.78 4!* 02 3.408 E-09 4. 462E-01 2.9 37E-09 2.657E-09 2.23 53-0 3 6.574E-01 1.362E+04 7. 019 E-01 3. 44 5E*01 5.4 30E

  • 0 3 3.3 47E*02 3. 7 CSE+03 1.78 0E*02 1.002E-09 4.462 E-01 8.640E-10 7.814 5-10 2.23 53-03
7. 39 5 F-01 1.2285+04 7. 018E-01 3.44 5E+01 %.131E* 03 3. 3 4 0E*02 3. 444 E+ 03 1.776t+02 3.382E-10 4.462 E-01 2.915 E-10 2.E 36 E-10 2.23 6E-03
9. 217 E-01 1.117E*04 7.018E-01 3.44 5E+ 01 4.850E+ 03 3.3 3 4?+0 2 3.2 01 E+ 03 1.773E+02 1.660E-10 4.462E-01 1. 431 E-10 1.2 94 E- 10 2.2 3 7E-03 9.039E-01 1.024T+04 7. 01 PE-01 3.44 5E* 01 4.54 3E+ 03 3.12 E!+ 02 2. 975E+ 03 1.770E* 02 1.226E-10 4.462E-01 1.057 5-10 9.5595-11 2.23 8 E-03 1.150E*00 8.144?+03 7.018E-01 3.4 4 4 E* 01 3.86 9E*0 3 3.30 9E+02 2. 389 E* 0 3 1. 7583+02 1.087E-10 4. 453 E-01 9. 367 E- 11 8. 47 2 E- 11 2.2 4 0E-0 3 1.411E*00 6. 605?+ 03 7. 018E-01 3.444t*01 3.234E+ 03 3.23 9E*02 1. 894 E+ 03 1.74 8t* 02 1.088 5-10 4. 463!-01 9.376E-11 8.4 8 0E-11 2.24 3E-03
2. 411 E* 0 0 3.353 E+ 03 7. 019 E-01 3. 44 2 E+ 01 1.626t + 03 3.213E* 02 7. 772E+ 32 1.70 6t+02 1.114 E-10 4.464 E-01 9. 598 3- 11 8. 6 81 E- 11 2.2 5 3E- 03
5. 411E+00 8.883?+ 02 7. 019 E-01 3.435E*01 2.06 6E+ 02 2.9 9 9E*02 5. 372 E* 01 1.589E+02 1.282 E-10 4.468 E-01 1.105 E-10 9.99 5 E- 11 2.2 8 45-03 1.041 E+ 01 4.210e+ 02 7. 018!-01 3.4C4P+ 01 2.132?-01 2.3 9 0E+02 7. 2813-03 1.253E+02 2.855 E-10 4.477E-01 2.461 E-10 2.22 6 E-10 2.3o 6E-03 3.041E+01 2.721 E+ 02 7. 016 E-01 3.320 E+ 01 2.23 8E-07 1.4 9 9E*02 1. 337E- 10 7.782E* 01 1.085E-09 4.483!-01 9. 351E-10 8.458*-10 2.58 7E-03 1.C04!*0 2 8.122F+ 01 7. 007E-01 2.981 E+ 01 2.79 6E-29 2.9 ? ?!*01 0.0 1. 471E+01 9.645 E-09 4.462E-01 8.313 E-09 7.518E-09 3. 2 4 4E-03 3.004t*02 2.556'*01 6. 971E -01 2.16 3 E+ 01 0.0 2.9 29E-01 0. 0 1.259E-01 9.8 23E-08 4. 369E-01 8. 466 E-08 7.657E-08 4.76 4E-03 1.900E+03 8.3275+00 6.844E-01 7.04 0E+ 00 0.0 2.770E-08 0.0 7.313E-09 1.539E-06 4.057E-01 1.3262-06 1.199E-06 7.4 7 4E-03 3.000 ?+0 3 1.355?+ 00 6. 491E-01 2.95 0E-01 0.0 2.36 2E-28 0. 0 1.5495-29 1.831E-05 3.282E-01 1.578 E-05 1.427E-05 8.72 4E-03 1.0 00 ?+ 0 4 7.603Y-01 5. 3729-01 7.170E-05 0.0 3.0 0.0 0.0 1.997E-04 1.562E-01 1.7 21 E-0 4 1.557E-04 8.757E-03 3.00 0 E + 04 3.734E-01 3.066E-01 1.329E-05 0.0 0.0 0.0 0.0 1.156E-0 3 1.874E-02 9.959 E-04 9.007 3-04 8.7 01E-03 1.000?*C% 9.996 E-02 0.106E-02 4.406E-08 0.0 0.0 0.0 0.0 4.5053-03 1.120E-05 3.883E-03 3.5125-03 8.50fr-03 3.000!+05 7.449 2-02 1.300F-04 3.925E-15 0.0 0.0 0. 0 0.0 9.900 3-0 3 1.797E- 12 8. 533E-03 7.7183-03 7.9 7 2!-03 Ln 5.00i?+0% 7.375 E-02 4.103E-07 3.151E-22 0.0 0.0 0.0 0.0 1.1594-02 1.78 8E-12 9.9 48 E-03 8.997E-03 7.4 7 23-03 ND 1.000 E*06 6.190 E-02 5. 69 4 E-12 6.141 E-4 0 0.0 0.0 0.0 0.0 1.099 E-02 1.782E-12 9.4 68E-03 8.504 E-0 3 6.3 5 5E-03 Themst power Whffil90 fy7$ 1c225 ?p229 9233 MB 95 25242 P3238 ER 95 SB1269 cstle 15243 c!144 Po214 4.384E-01 1. 36 0 E- 09 6.692E-11 5.057E-10 2.f 57t+ 03 1.115E +0 3 4. 464 E-01 1. 46 0E+0 3 1.32 5 E-02 3.249 E+02 6.8 83 E-02 4.06 4 E+ 02 1.1423-11 4.931E-01 7.622 E-09 K. 64 2 E-11 1.014 E-09 2.19 3E+ 03 1.02 4 E*0 3 8. 620 E-01 1.176!+03 1. 3253-02 3.190E* 02 6.883E-02 3.871E+ 02 1.3195-11 5.751E-01 2.404?-09 6.fett-11 1.77 6 E- 09 1.6 32E+ 03 9.02 0E *02 1. 423E+00 8.494 E*02 1.32SE-02 3.103 E* 02 6.8 8 3 E-02 3.597 E+ 0 2 1.30 6E-11
6. 57 4 E-01 7.071 E-10 6. 68 5F-11 2.539E-09 1.2 05E+ 03 7.94 4E+02 1.916E+ 00 6.137E+ 02 1.325 3-02 3.019 E+02 6.8 83 E-02 3.3 4 4 E+ 02 1.3 0 0E-11 7.395E-01 2.3865-10 f. 68 9E-11 3.30 2E-09 8.850E+ 02 6.9 97E+02 2. 350E+00 4. 4 34E*02 1.325 E-02 2.93 7E* 02 6.8 8 3E-02 3.108E+ 02 1.2 9 8E-11 8 217E-01 1.171E-10 6. 691E-11 4.06 6E-09 6.474E+02 6.16 3E+02 2.732E+ 00 3.204E*02 1.325E-02 2.857E+02 6.883E-02 2.88 9E+02 1.29 75-11 9.0 38 E-01 8. 651 E- 11 6. 694E-11 4.83 0E-09 4.722E+ 02 5.4 3 0E +02 3. 068 E+00 2.315E+02 1.325 E-02 2.779 E*02 6.8 8 3 E-02 2. 685E+ 02 1.29 7E- 11 1.150E+00 7.668E-11 6. 70 9 E- 11 7.12 4 E-09 1.811t+02 3.714E+02 3.852E+00 8.731E*01 1. 325E-02 2.558E+ 02 6.882E-02 2.156E+ 02 1.29 85-11
1. 411E*00 7.6753- 11 A. 730E-11 9.?54 E- 09 6.501E *01 2. 48 8E+02 4. 410E+ 00 3.111E+01 1.325 E-02 2. 343 E+02 6.8 82E-02 1.709 E+0 2 1.2 9 95-11 2.411 ?+ 00 7. 857 E- 11 6. 891E- 11 1. 99 0E- 08 1.29 4E+ 0 0 5.4 9 9E *01 5. 279 E+ 00 5. 94 8 E-01 1.325 E-02 1.674 E+02 6.8 82 E-02 7.014 E+ 01 1.3 0 9 E- 11 5.411E+00 9.047E-11 7.92 3E-11 4.921E-08 8.7425-06 3.3 3 5E+ 00 5.448 E+00 4.158E-06 1.325E-02 6.107t+ 01 6.880 E-02 4.8 48E* 00 1.451T-11 1.041E+01 2.015E-10 1. 764E-10 1.46 3 E-07 5.7122-23 2.70 7E+00 5.227E* 00 2.717E-23 1. 325E-02 2.118E* 00 6.873 E-02 6.570E-04 5.6 8 9E-11
3. 041 E* 01 7.655E-10 6.704E-10 3.5312-07 0.0 2.4 71F+00 4. 8 05E*00 0.0 1.3 24 E-02 2. 631 E-03 E. 8 60 E-0 2 1.207E- 11 5.8 2 0E- 10 1.00 4E+0 2 6. 805 E-09 5.959 E-09 1.20 3E-06 0.0 1.79 6t+ 00 3.566 E*00 0.0 1.3243-32 1.5872-13 6.815E-02 0.0 1.4582-08 3.004E+02 6.930E-08 6.069E-08 4.M6 5E-06 0.0 7.214E-01 1. 487E+ 00 0.0 1.322E-02 0.0 6.689E-02 0.0 2.916E-07 1.0 00 E* 0 3 1. 08 6 F- 06 9.5085-07 2.30 6E-05 0.0 2.9 6 4E-02 6.3 23 E-02 0. 0 1.315 E-02 0.0 6.263E-02 0.0 5.733E-06 3.000 E+0 3 1.292 E-05 1.131E-05 9.23 4 E-05 0.0 3.25 4E-06 6.966 E-06 0.0 1.2975-02 0.0 5.19 0E-02 0.0 5.27 5 E-05 1.000E+04 1. 4 09 E-04 1.234E-04 3.4 09 E-04 0.0 4. 46 63-20 9.56 0E-20 0. 0 1.236E-02 0.0 2. 6 90 E-02 0.0 3.27 0 E-04 3.000 E+04 8.153E-04 7.140F-04 1.000E-03 0.0 0.0 0.0 0.0 1.076E-02 0.0 4.110E-03 0.0 1.1513-03 1.000 E*05 3.178 E-03 2.784 E-03 2.898 E-0 3 0.0 0.0 0.0 0.0 6.623E-03 0.0 5.661E-06 0.0 2.585E-03 3.000E+09 6.985 t-03 6.117E-03 5.794 E-03 0.0 0.0 0.0 0.0 1.656E-03 0.0 5.910E-12 0.0 2.7 06 E-03 5.000 E+ 05 8.1432-03 7.1325-03 6. 56 0E-0 3 0.0 0.3 0.0 0.0 4.141E-04 0.0 5.819E-12 0.J 1.7 6 9 E-03 1.000 E+0 6 7. 751E-03 6.788E-03 6.bl4 E-0 3 0.0 0.0 0.0 0.0 1.294!-05 0.0 5.691E-12 0.0 4.98 3E-04

60 1

i ORNL DHG 82 11780 LEGEND o - SR 90 10,, mm a PU239 =

+ - RA226

~

~

), .

x - AM241 ]

o - TH229 v - RU106 10 io r

\. e - RA225

,. cgg44  :

  • - PB210 m - * - PU240 s - SN126

, j

~

n e - PR143

- e a - NP237 g 10 -

o - CS137 C  :

E o  :

g t a

S 10' r m .

o \

.5

~ -

>. o h 10' -

7 R  :

1  :

a p

  • I _

'~ -

10' -

mem-e =

e

=\=====- .

10' _. ,

_ S_

i l

' ' ' ' ' -' ' " ' ' " " ^^' '

10' 10 10' 10' 10' 10' 10' 10' 10' DECAY TIME AFTER OlSCHARGE lyl Fig. D. 7. Ingestion toxicity of CRBR blended high-level waste as a function of decay time. l

\

l l

l l

Table D.7. Ingeetten tenietty of met blended high-level unete se a tenettom of decay ties lessettom toxicity (e3 unter/wrneO fyN3 TOTAL SR 90 PS239 91226 A9241 T5229 30106 R&225 CE144 P3210 P7240 SN126 4.39 4 E-01 3. 6675+11 9. 027E +10 4.554E* 06 9.303E-03 2.59 3E+08 5. 461E-03 6.581E+ 10 5.492 E-01 6.127t+ 10 2.087E-01 2.866E* 06 3.46 8E+0%

4.9 31E-01 2. 912 E

  • 11 9. 016 E + 10 4.554 E+ 06 9.3 04E-03 2.59 3E+ 08 5. 461E-0 3 6.33 8E+ 10 2.180E-01 5.835E* 10 2.0 8 3 2-01 2.866 E+ 06 3.46 8E+05 5.75 3E-01 2. 456 E + 11 m.9992+10 4.594 E+ 06 9.30?r-03 2.59 3E+0 8 5.4622-03 5.990E+10 5.679 E-02 5. 424 E+ 10 2.078E-01 2.86 f E+06 3.46 8E*05 6.574E-01 2.247E*11 8. 981E *10 4.55 4 E+ 06 9.3 07E-03 2.59 3E+08 5. 463E-03 5.661E* 10 1.7243-02 5.041E+ 10 2.0 73E-01 2.866E+ 06 3.4 6 8t+05 7.395E-01 2.112 E+ 11 9. 964E+10 4.55 4E+ 06 9.3 092-03 2.59 3E+08 5. 465E-03 5.350E*10 7.529E-03 4.685 E+10 2.0 68E-01 2.866 E+06 3.46 8E*05
8. 217 E-01 2. 007E
  • 11 8.94 6E+10 4.554E+ 06 9.311E-03 2.593E+08 5.467E-03 5.056 E+10 5.148E-03 4.355E* 10 2.062E-01 2.866 5+06 3.46 8E + 05 9.038E-01 1.920E+ 11 8. 979E *10 4.554E* 06 9.313E-03 2.59 3E+08 5.470E-03 4.779E* 10 4.565E-03 4.04 8E+ 10 2.0 57E-01 2.866 E+ 06 3.46 8E+05 1.150 E+ 00 1.718 E+ 11 n. 87f E +10 4.55 4 E+ 06 9.32 0E-03 2.592E*08 5. 482E-03 4.034E+10 4.38 6 E-03 3. 250E* 10 2.04 2E-01 2.8 66E+ 06 3.4 6 8E+05 1.411E*00 1. 561 ? + 11 8. 821E+10 4.554 E+ 06 9.330E-03 2.59 2E*08 5.5 00E-0 3 3.372E+10 4.396E-03 2.576E+ 10 2.026 E-01 2.867E*06 3.46 8E+05 2.411E*00 1.2012+11 8. 613E + 10 4.554 E+ 06 9.4 00E-03 2.59 0E+08 5. 623E-03 1.695E+10 4.498 E-03 1.057E+ 10 1.9 64E-01 2.a6 8!* 06 3.4 6 8E+05
5. 411 E+00 8.764 E+ 10 8. 021 E* 10 4.554E+ 06 1.042E-02 2.98 5E+ 08 6.475 E-03 2.154E+09 5.18 0 E-0 3 7. 309 E+08 1. 7 925-01 2. 8 70 E+ 06 3.4 6 85+ 05 1.041?+01 6.612E+ 10 F. 321E +10 4.594 E+ 06 4.08 6E-02 2.56 2E+0 9 1. 4 42E-02 2.192E+06 1.153E-02 9.905E*04 1.331 E-01 2.976 E+ 06 3.46 8E+05 3.041?+01 4.116 t + 10 3. 927E + 10 4. 553E+ 06 4.18 0!- 01 2.8 9 9 E +08 5. 478 E-02 2.334E+00 4.383 E-02 1.819 E-03 9.9 36E-02 2.879E+ 06 3.4 6 75+05 1.00 4E+ 02 8.00f t+09 7. 421E+09 4.947E+ 06 1.04 7E* 01 2.24 3E+08 4.870 E-01 2.905E-21 3.8 96 E-01 0.0 1.530E+00 2.866E+06 3.465E+05 3.004F+02 2.547E*09 6. 394 E+ 07 4.52 4E+06 2.09 4E+ 0 2 1.62 8t+ 0 8 4.960E+00 0.0 3.968E+00 0.0 4.779E+01 2.806E+06 3. 4 61 E + 05

> 1.000E+03 6.190E*07 3. 691E *00 4.44 2E+ 06 4.1185+ 03 5.29 8E+07 7. 770E+ 01 0.0 6.216E+01 0.0 1.2 35E+ 03 2.6 06 E+ 06 3.4 4 4E+ 09 2.000E+ 0 3 9.627E+ 06 7. 814 E-21 4.213E* 0 6' 3.78 92+ 04 2.14 5E+ 06 9. 245 E+02 0.0 7.3963+02 0.0 1.136E+04 2.108 E* 06 3.3 96E* 05 1.000 E*04 5.709 3 +06 0. 0 3.496E+06 2.349E+05 5.396t+02 1. 0 08E+ 04 0.0 8.067E+03 0.0 7.044E+04 1.00 3 E+0 6 3.236E*05 3.003E+04 3.976 t + 06 0.0 1.990E+06 8.2662+05 1.00 0E+02 5. 835E* 04 0.0 4.668 E+04 0. 0 2.479E+ 05 1.204 E+ 05 2.817E+05 1.000!+05 3.666 E+ 06 0. 0 2.86 4E+05 1.857t+ 06 3.316E-01 2. 275E+05 0.0 1.820E+05 0.0 5.568 E+05 7.197E+ 01 1.73 4P

  • 05 3.000E+05 3.84 3t+06 0.0 8.43 8E* 02 1.94 4E+06 2.87 8E-08 4.9 99E+ 05 0.0 3.9 99 E+ 05 0.0 5.829 E* 05 1.154 E-05 4.3 3 5E+04 c3 5.0 00E+05 3. 028t+ D6 0.0 2.662E* 0 0 1.271E* 06 2.3 7 2E-15 5. 828E+ 05 0.0 4.66 2 E*05 0.0 3. 810 E+ 05 1.14 8 E- 05 1.08 4E +04 ed 1.00 0 E+ 0 6 1.6 97 2+ 06 0. 0 3.69 9 E-05 3.579t+ 05 4.6 21E-33 5.547E+05 0.0 4.438E+05 0.0 1. 073E+05 1.145E-05 3.38 8E+ 02 Ingeetton textetty (e3 wate r/MTDWO fijf PR143 NP237 CS137 SR 89 PD107 19243 P0210 AC225 PU238 C5134 SE 79 PN219 4.384 E-01 9.264 E + 10 2. 436E +04 3.4 8 9E+ 09 2.445t+ 10 4.9 4 3E+04 5. 353E+ 05 2.397!-02 7.786 E-02 2.69 4 E+ 06 3.547E+ 09 8.3 6 0E+04 1.6 3 2E +00 4.931E-01 3.334 E+13 2. 436E +04 3.49 5E+09 1.8595+ 10 4.9 4 3E+04 5. 353E+ 05 2.453E-02 4.364 E-02 5.202E* 06 3.483E+09 8.360E+04 1.5 01 E + 00 5.75 3 2- 01 7.197E + 09 2.437E*04 3.47 8E+ 09 .1.232E+ 10 4.?t 3E
  • 04 5. 353 E* 05 2.5262-02 1.376E-02 P.585E+ 06 3.3 88 E*09 8.359t+ 04 2.078t+0C f .574 E- 01 1.554E+09 2.439E+04 3.471 E+ 09 8.159E+ 09 4.9 4 3E+04 5. 353 E+ 05 2.587E-02 4.04 9 E-03 1.156E* 07 3.296E+ 09 8.3 59 E* 04 2.4 3 9E *0f
7. 395E-01 3.355E*08 2. 4397+0 4 3.465E+09 5. 40*t+ 09 4.94 3E*04 5. 353E+ 05 2. 63 9E-02 1.366E-03 1. 418 E* 07 3.206E+09 8.359E+ 04 2.6 06 5+ 00 8.217E-01 7.243E+ 07 2. 440P+ 04 3.45 8'+ 09 3.58 0!+ 09 4.94 3E+04 5. 353E+ 05 2.683E-02 6.705E-04 1.649E+07 3.119E+09 8.3593*04 2.6 8 95+ 00 9.038?-01 1.564E*07 2. 441E + 04 3.452 E+ 09 2.372E+09 4.9 4 3E+04 5.353E+05 2.719E-02 4.953E-04 1.851E+07 3.034 E+ 09 8.359E+ 04 2.741E + 00 1.150 E* 00 1.575 E +05 2. 4 4 4E + 04 3.4 32E+09 6. 896E+ 08 4.94 3E+04 5.353E(05 2.780E-02 4.390E-04 2.324E*07 2.792E+09 8.359E+04 2.855E+00 1.411E+00 1. 211E+ 03 2. 44 63 + 04 3.411E*09 1.86 5E+ 0 8 4.94 3?+04 5.352E* 05 2.812E-02 4.394 E-04 2.661 E* 07 2. 558E+ 09 8.359 E+ 04 2.967E*00
2. 411E + 0 0 9. 4 99 3- 06 2. 4 5 9 E + 04 3.13 4 E+ 0 9 1.24 0t + 06 1.9 4 3 E +0 4 5. 352E+ 05 2. 804E-02 4.4 99 E-04 3.18 6E+ 07 1. 828E+ 09 8.3 59E+ 04 3.44 3E+00 S.411E+00 0.0 2.491E+04 3.110E+09 3.643E-01 4.943E+04 5. 350E+05 2.58 8E-02 5.180E-04 3.29 8 E+07 6.667t+09 8.359E+ 04 4.6 2 6E+00 1.041?+01 0.0 2. 602 E +04 2.46 9M+09 0.0 4.943E+04 5.345E*05 1.902E-02 1.153E-03 3.154 E* 07 2.312E+07 8.358 E+ 04 7.86 2E+00 3.041E+01 0.0 2.821*+04 1.555 E* 09 0.0 4.94 3E+04 5.3355+ 05 1.420E-02 4.38 3E-03 2.900E+ 07 2.873E+ 04 8.356E+ 04 1.2 01E + 01 1.004E*02 0.0 3.538E+04 3.08 6t+ 0e 0. 0 4.943E+04 5. 3 00E + 0 5 2.18 6E-01 3.896E-02 2.152E*07 1.733E-06 8.350E+04 1.6 7 0 E
  • 01 3.004E+02 0.0 5.195E+04 3.038E+06 0.0 4.94 3E+ 04 5.2 02 E* 05 6. 827E+00 3.968 E-01 8.974 E* 06 0.0 8.332E+04 1.9 7 2E + 01 1.000E+03 0.0 8.191E + 0 4 2.873 E-01 0.0 4.943E+04 4.871 E+05 1.764E+02 6.216 E+00 3. 816E+ 05 0.0 8.270E* 04 3.4 2 75+01 3.000 E+ 03 0.0 9. 515E +04 2.450E-21 0.0 4.941E+04 4.037E*05 1. 62 3E+ 03 7.396 E+01 4.204 E+01 0.0 8.096t*04 1.13 9 E* 02 1.000?+04 0.0 9.551E+04 0.0 0.0 4.938E+04 2.092E+05 1.006E*04 8.067E+02 5.769 E-13 0. 0 7.513E* 0 4 7.84 3E+ 02 3.000!+04 0.0 9. 499 E +04 0.0 0.0 4.9 27E +0 4 3.197 E+ 04 3.541E+ 0 4 4.668E+03 0.0 0.0 6.0692+ 04 4.7122+03 1.000E+05 0.0 9. 277 E+04 0.0 0.0 4.891E*04 4. 4 02E+01 7.955E*04 1.820E+04 0.0 0.0 2.876E*04 1.913 E + 0 4 3.000E+05 0.0 8.695E+04 0.0 0.0 4.78 75+04 4. 596 !*05 8.32 7E+04 3.999E+04 0.0 0.0 3.4 0 4 E* 0 3 2.705E+ 04 5.000E+05 0.0 8.149E+04 0.0 0.0 4.69 6E +04 4. 525E-05 5.44 3E+04 4.662E+04 0.0 0. 0 4.028E+ 02 2.721E* 04 1.000E+ 06 0.0 6.93tt+04 0.0 0.0 4.443E+04 4. C 26E-05 1. 53 3E+04 4.4385*04 0.0 0.0 1.93 8 t+ 00 2.72 0E+04

r 62 ORNL OWG 82-12760

~ ~

LEGEND 10 r - RM241 ,

. (=c ce c a - PU239

+ - TH229

x - PU238

. o - PU240 v - CM242 10" a - NP237

- RU106 _

m. mi : . . .
  • Cl44  :

j }\7 - '\N 7g - 90

-A M TH2 <

10"  :- s- U241\ _

I r  :

\' -

244\  !

E - -

) -

1 Y 10"  :

7 s  :

. I p

b 10 r l  :

g i "'

t i

a  :

di 10" r  :

6 10 r -

10' 10" 10' 10' 10' 10' 10' 10' 10' OECAY TIME AFTER DISCHARGE tyrl Fig. D.8. Inhalation toxicity of CRBR blended high-level waste as a function of decay time.

)

l

- . - - c _ ~ _ . _

-. . . __c__. .-

Table D.S. Inhalation tonicity of SSR blee8ed high-level unete as a function of decay tima Inhalattom tosicity (a3 air /NTIIBO ffyj TOTAL A4241 PU239 TE229 PS238 PU240 CN242 NP237 RG106 CE144 SR 90 AM242N

4. 38 4 E- 01 2. 332 E
  • 16 5.186 E + 15 3. 79 5E+ 14 1.092E+ 05 1.92 4E+ 14 2. 388 5* 14 7.56 3E+ 15 7.307 t+ 11 3. 29 4E+ 15 3. 063 E+ 15 8.98 3 E+ 14 4.78 0E+ 14 4.9 313-01 2.239E+ 16 5.1865 +15 3.79 5E+ 14 1.092E+ 05 3.7162+14 2. 388 5+14 t.949E+15 7.309E+ 11 3.169 E+15 2.918 E+15 8.972E+ 14 4.77 8E+ 14
5. 793 E-01 2.116 R + 16 9.18 6 5 + 15 3.79 5 E+ 14 1.092E+ 05 6.132E+14 2. 388E+ 14 6.120E+ 15 7.311E+11 2.995E+ 15 2.712E+ 15 8.954 E+ 14 4.777E+ 14 6.57 4 5-01 2.010 E+ 16 5.18 6E
  • 15 3.795E+ 14 1.093E+ 05 8.25 8E+14 2. 388 E+ 14 5.390E+ 15 7. 314 E+ 11 2. 8 31E+ 15 2. 520!+ 15 8.937E+ 14 4.775E+ 14
7. 395E-01 1.9185+ 16 5.18F E +15 3.795E+ 14 1. 093E+ 05 1.013E+15 2. 388 E *14 4.747E+ 15 7.317E+ 11 2. 675 E+ 15 2. 343E+ 15 8.919E+ 14 4.773E+ 14 8.217E-01 1.838 E + 16 5.19 5E + 15 3.795 E+ 14 1.093E
  • 05 1.17 85 +15 2. 3 88t+ 14 4.18 2E+ 15 7.320E+ 11 2.52 0E+ 15 2.17 7E+ 15 8.9022+ 14 4.771E+ 14 9.038E-01 1.76EE+16 5.185E+15 3.795E+14 1.094E+ 05 1.32 2E+ 15 2. 389 E+ 14 3.684E+ 15 7.322 E+ 11 2. 389 E+ 15 2. 024E* 15 8.884 E+ 14 4.16 9E+ 14 1.150 E+ 00 1.594 E+ 16 5.19 4 E + 15 3.79 5 t+ 14 1.09 6t + 05 1.66 0E+ 15 2. 389 E+ 14 2. 520E+15 7.3 31E+ 11 2.017t+ 15 1.625E+ 15 8.832E+ 14 4.76 4E+ 14 1.411E+00 1.462 E* 16 5.14 4E +15 3.795E+ 14 1.100E* 05 1.901E+15 2. 389E+ 14 1. 68 8E+ 15 7.339E+ 11 1.686E+15 1. 28 8 E+ 15 8.77 8 E+ 14 4.75 85+ 14 2.411F+ 00 1.196t+ 16 5.181E
  • 15 3.795E+ 14 1.12 5E+ 05 2.27 6E+ 15 2. 390 E* 14 3.731E+14 7. 373 E+11 8. 476 E+ 14 5. 287E+14 8.571E+ 14 4.73 75+ 14
5. 411E+ 0 0 1.023E+ 16 5.110E+15 3.795E+ 14 1.295E + 05 2.3 4 8 E+ 15 2. 392E+ 14 2. 26 3E+ 13 7.474 E+ 11 1.077E+ 14 3. 654E+ 13 7.981E+ 14 4.67 2E+ 14 1.041 E+01 9.523E+ 15 5.124E + 15 3.79 5E+ 14 2.88 4E+05 2.253E+15 2.396E+ 14 1.837E+13 7.807E+11 1.096E+11 4.992 E+ 09 6.290 E+ 14 4.4 6 4 E+ 14
3. 041E+ 01 8.727E+ 15 4.997E + 15 3.195F+ 14 1.09 65+ 06 2.0 71E + 15 2. 399 E+ 14 1.677E+13 8.463 E+11 1.167E+05 9. 09 6E+01 3.90 85* 14 4.075E+14 1.00 4F+ 02 7.063 E+ 15 4. 486E +15 3.789 E+ 14 9.740E+06 1.53 7E*15 2. 388 t+ 14 1.218E+13 1.061E+12 1.452E-16 0.0 7. 384E+ 13 2.9 61E+ 14 3.004E+02 4.645?+19 3. 25 6E + 1% 3.77 0 E+ 14 9.920E*07 6.410E+14 2.3395+14 4.895E+12 1.559E+12 0.0 0.0 6.323E+11 1.19 0!+ 14 1.000!+03 1.692++15 1. 06 0E + 15 3.701E+ 14 1.554E+ 09 2.7 26E+13 2.171E* 14 2.011E+11 2.445 E+12 0.0 0.0 3.672E+ 04 4.88 8E+ 12 3.000!*03 5.808E+14 4.290E*13 3.511E+14 1.849E+10 3.003E+09 1. 756E+ 14 2.200E+07 2.854E+12 0.0 0.0 7. 77 63- 17 5.3 51 E+ 08 1.000E+04 3.818t+14 1. 019E + 10 2.90 5 E* 14 2.017E+ 11 4.121E-05 8. 362E+ 13 3.030E-07 2.865E+12 0.0 0.0 0.0 7. 3 4 4E-06 3.000E+04 1. 8115 + 14 2. 000E
  • 09 1.64 85+ 14 1.167E+12 0.0 1. 0 03 E+ 13 0. 0 2.847E+12 0.0 0.0 0.0 0.0 1.000 E+05 3. 056E* 13 6.632E +06 2.220 E+ 13 4.549E+ 12 0.0 5.997E+ 09 0.0 2.783E+12 0.0 0.0 0.0 0.0 3.000E+05 1. 373E+ 13 5.7* 7E-01 7.032 E+ 10 9.998E+ 12 0.0 9.617.E+ 02 0.0 2.609E+12 0.0 0.0 0.0 0.0 en 5.000E+0 5 1. 485E+13 4.73 3E-06 2.219E+ 08 1.166t+ 13 0.0 9. 571 E* 02 0.0 2.445E+12 0.0 0.0 0.0 0.0 ca 1.000E+06 1. 3512+ 13 9.24 3E-26 3.074E+ 03 1.109E+ 13 0.0 9.540!+ 02 0.0 2.079E+12 0.0 0.0 0.0 0.0 Inhalation toxicity (m3 air /MTil40 ff!$ T9230 P0241 C9244 C5137 AR24 3 CH243 PU242 ER 95 SR 89 PR147 U233 CS134 i 4. 38 4 3-01 2.119 E + 04 2.388t+14 1.972E+14 1.418E+14 1.0 71E + 13 1.185E+ 14 7.174 E+10 2.8 8 2E+ 14 2. 4 4 6 E+ 14 8.596E+ 13 4.3 49E* 03 7.9 8 2E+ 13 i 4.9 31 E-01 2.162 E + 04 2.382E+14 1.96 8 E+ 14 1.416t+14 1.071E +13 1.183E+ 14 7.176E+10 2.321E+14 1.859E+14 8.472E+ 13 8.7185+ 03 7.83 6t+ 13 i 5.75 3 5-01 2. 230 E + 04 2.373E+14 1. 96 2 E + 14 1.413E+14 1.0715 + 13 1.181 E+ 14 7.18 0E+ 10 1. 677E+ 14 1.232E+14 8.290E+ 13 1.528E+ 04 7.6 2 3E+ 13 6.574 E-01 2.307E+ 04 2.363E+14 1.956E+14 1.411E + 14 1.071E
  • 13 1.178E+ 14 7.18 4 E+ 10 1.212 E+14 8.159 E+ 13 8.112E+ 13 2.184E+ 04 7.415E+13 7.395E-01 2.3972+04 2.394E+14 1.950E+14 1. 4 0 8 E+ 14 1.071E+ 13 1.176t+ 14 7.1883+ 10 8.754 E+ 13 5.435 E+ 13 7.9 38E+ 13 2. 84 0E+ 04 7.213E+13
8. 217 2-01 2. 502 E + 04 2.345E+14 1.94 4 E+ 14 1.40$E+14 1.0715+13 1.174E+ 14 7.19 2E+10 6.325E+13 3.580 E+ 13 7.768E+ 13 3.497E* 04 7.017E+ 13 9.038E-01 2.625E+04 2.335E+14 1.938E+14 1.403E+14 1.0 71E+13 1.171 E* 14 7.196E+ 10 4. 570 E+ 13 2. 372E+ 13 7.6013+ 13 4.154 E+ 04 6.8 2 6E* 13 1.150 E+00 3.120!+04 2.308E+14 1.919 E+ 14 1.395E+14 1.071E+13 1.164E+ 14 7.209E+10 1.724 E+13 6.896 E+ 12 7.122E*13 6.127 E+ 04 f.28 3E+ 13 1.411E*00 3.8895+04 2.279E+14 1.90 0 E+ 14 1.387E+14 1.07 0E+ 13 1.157 E+ 14 7. 221E+10 6.142E+ 12 1. 865E+ 12 6.648 E+13 8. 217E* 0 4 5.75 65+ 13 2.411 E+0 0 9.686 E+04 2.172E*14 1.P2 9 E+ 14 1.354E+14 1.0 7 0E + 13 1.129 E+ 14 7. 27 0E+ 10 1.174E+11 1. 240 E+ 10 5.104E+ 13 1.711E+ 05 4.112E+ 13
5. 411 E+00 5.7R9 E+05 1.880E+14 1.631E+14 1.26 4E+ 14 1.07 0E+ 13 1.050E+ 14 7. 415E+10 8.209E+05 3,64 3E+0 3 2.310E+ 13 4.23 2E+ 05 1.50 0E+ 13 1.041 E +01 5. 563 E + 06 1.162E+14 1.112 E+ 14 1.003E+14 1.06 9E+ 13 8.232E+ 13 7.88 4E+ 10 5. 364 E-12 0.0 1.6 45E+ 12 1.258 E+ 06 *.20 2E+ 11 3.041E+01 3.044E+07 4. 436E +13 5.172 E+13 6.318t+13 1.06 7E+13 5. 061E+13 8.761E+10 0.0 0.0 8. 349E+ 09 3.037E+ 06 6.4 6 33+08 1.00 4E+02 2.538 E+ 08 1. 52 7E + 12 3.54 9 E+ 12 1.253E + 13 1.06 0E+ 13 9. 223 E+ 12 1.12 7E+ 11 0.0 0.0 7. 7 53 E+ 01 1.035E+ 07 3.8 99E-02 3.004 E+0 2 1.682E + 09 1.604E+09 1.681E+ 09 1.234E+ 11 1.04 0E+ 13 7.121 E+ 10 1.526E+11 0.0 0.0 0.0 3.9263+ 07 0.0 1.000E+ 03 9.575 E+ 09 1. 420E +09 2.310 E-02 1.167E+04 9.7 4 2E+12 2. 8775+ 03 1.781E+ 11 0.0 0.0 0.0 1.983 3+ 08 0.0 3.000E+ 0 3 3.368 E+ 10 1. 206E +09 1.921 E-02 9.952E-17 8.07 3E+ 12 2.159 8-18 1.786E+11 0.0 0.0 0.0 7.941E+08 0.0
1. 000 E+0 4 1.1373 + 11 6. 814E +08 1.421E-02 0.0 4.183E+12 0.0 1.76 3E+11 0.0 0.0 0.0 2.932E+ 09 0.0 3.000 E+04 3.0793+ 11 1. 333E +0 8 1.921E-02 0.0 6.394E+11 0.0 1.701E+ 11 0. 0 0.0 0.0 8.666E+ 09 0.0 1.000E+ 05 6.928t+11 4. 421E+05 1.921E-02 0.0 8.805E+08 0.0 1.501E+11 0.0 0.0 0.0 2.49 3E+ 10 0.0 3.000 E+0 5 7. 265E + 11 3. 643R-02 1.9 20E-02 0.0 9.19 2E+02 0.0 1.049E+11 0.0 0.0 0. 0 4.94 9E+ 10 0.0 5.000E+0 5 4.739E+ 11 3.001E-09 1.9185-02 0.0 9.050E+02 0.0 7. 331E+ 10 0. 0 0.0 0. 0 5.728 5+ 10 0.0 1.000E+06 1.341E+11 5. 84 9E-27 1.912E-02 0.0 8.8 51E+ 02 0. 0 2. 993E+10 0.0 0.0 0. 0 5.5165+ 10 0.0

65 l

t l

D.3: Characteristics of Blended CRBR Fuel-Assembly Structural Material Waste l

l

66 ORNL DWG 82-11793 10' r LEGEND ,

o - MI 59 a - NI 63

+ - MN 54 x - TC 99

+ - FC 55 10' , v - C0 60 _

- m - C0 58

- PU239

+- C 14

  • - PU240 5

m - CS137 10 ,

m - NB 94 .

~

l = - AM241 p - -

n - PU241 5 -

U s '

f 10'  :

s C i:

s

  • p -

amenw-c e e s e e l_+

10' r ,

8 10'

~

r gj /j-[_Jd_j 3'

d

{

\~ -

_ Mty

.a

.  ;;\\ ,;

\

_m N

10" r 9

% (

-a ' ' ' ' ' ' ' "' 1 "

10 ' " - - ' ' " ' ' " . ' "

10 10* 10' 10' 10' 10' 10' 10' DECRY TIME nrTER DiSCunRGE (3ri Fig. D.9. Radioactivity of blended fuel-assembly structural material waste as a function of decay time.

i l

7able D.9. Radioactivity of blended fuel-eseeably structural material unste as a function of decay time Radioactivity (C1/MEll40 TC 99 EE 55 CO 60 CO 58 P0239 C 14 PU240 CS137 ff$ T OT AL WI 59 WI 63 RW 54 4.384E-01 1.491E+05 1.842P+01 6.017E+02 5.880E*04 5.203E-01 2. 657 E+ 04 1.301E+04 4.555E+04 2.278E+00 1. 6 23E+00 1.4 3 4E+ 00 f.7 93E+01 4.9312-01 1.369E+05 1. 8 42 E +01 6.015 E*0 2 5.62 5E+04 5.2 03 E-01 2. 618 E+04 1.292E+04 3.744E+04 2.278E+00 1. 6 23 E + 00 1.4 3 4E+ 00 6.7 8 4E+ 01 5.753 E- 01 1.221 E+ 05 1. 842E *01 6.011 E+ 02 5.26 3E+0 4 5.20 3E-01 2.561E+04 1.278E+04 2.791E+04 2.2 78t+ 001.1.623E+00 1.434E+00 6.772E+01 6 23E+00 1.43 4E+ 00 6.75 9E* 01 6.574E-01 1.104E+05 1.842E+01 6 307E+ 02 4.92 4E+ 04 5.20 3E-01 2. 506E+04 1.264E+04 2.081E+04 2. 278 E+ 00 7.3953-01 1.009 E+ 05 1.842E +01 6.00 3E*0 2 4.607E+ 04 5.2 03E-01 2. 452E+ 04 1.251E*04 1.551E+ 04 2.278E+ 00 1.6 22E+00 1.4 3 4E+ 00 6.74 6E+ 01 8.217E-01 9.314E+04 1. 842E +01 6.000 E+ 02 4.310E*0 4 5.20 3E-01 2. 3 99 E+ 04 1.237E*04 1.156E+04 2.278E+00 1.6 22E+00 1.43 4E*00 6.7 3 3E+01 9.038E-01 8.662!+04 1. 8 4 2F + 01 5.996E* 02 4.03 3E+ 04 5.203E-01 2. 347E+04 1.224E*04 8.618 E+03 2. 278 E+00 1.622E+00 1.43 4E+ 00 6.72 0!* 01 1.150E+00 7.212E+ 04 1.842E*01 5.985E+02 3.30 3E + 04 5.2 032-01 2.197 E+04 1.18 5E+ 04 3.569E+03 2.278E+ 00 1.622E+00 1.4 33E+ 0 0 6.6 8 2E+ 01 1.411E+00 6.161E+04 1. 842F +01 5.973 E+ 02 2.674E+ 04 5.20 3E-01 2. 050E+ 04 1.145E+04 1.404E+03 2.278E+00 1.6 22 E+ 00 1.43 3E+0 0 6.64 2E* 01

2. 411 E+0 0 3.881 E + 04 1. 8 42E +01 5.92 8 E+ 02 1.18 95+ 04 5.2 0 3E-01 1.570B+04 1.004E+04 3.926 E+01 2.278 E+00 1.622E+00 1.4 3 3E+ 00 6.4 9 0E+ 01 5.411E+00 1.568!+04 1. 84 2E +01 5.796 E+ 0 2 1.047E+ 03 5.2 033-01 7.057 E+ 03 6.765E+0 3 8.5785-04 2.278 E+ 00 1.6 22 E+ 00 1.4 33E+ 00 6.05 6t+ 01 1.041E+01 2.978E+03 1. 842E + 01 *.375 E+ 02 3.172E-61 5.202E-01 4. 9 07t+ 02 1.8163+03 2.502 E-19 2. 277E* 00 1.620E+ 00 1.431 E+00 4.8 06E+01 3.041E+ 01 6.803 E+02 1.8 42E +01 4.423 E+ 02 2.914E-08 5.2 025-01 2. 372E+ 00 1. 308E+02 0.0 2. 276 E* 00 1.616E+00 1.42 8E+ 0 0 3.02 8E+ 01 1.004E+0 2 3.104 E+ 02 1.841E+01 2.728E+02 0.0 5.2 01E-01 1. 864 E-08 1. 312E-02 0.0 2.271E+00 1.6 02E+00 1. 418E+ 00 6.0 07E+ 00 3.004E+02 8.784E+01 1.P17E+01 6.046E*01 0.0 5.197?-01 0.0 4.931E-14 0.0 2. 258E* 00 1.564E*00 1.3 88 E*0 0 5.9125-02 1.000E+03 2. Sf 6 5+01 1.826F+01 3.096E-01 0.0 5.186E-01 0.0 0.0 0.0 2.213E+00 1.4 37E+00 1.28 9E+ 00 f.5 91E-09 3.000 E+0 3 2. 360E+ 01 1.795E+01 8.844E-08 0.0 5.15 2E-01 0.0 0.0 0.0 2. 089 E+ 00 1.128 E+00 1.042E+ 00 4.767E-29 1.000E+04 2.060E+01 1.689E+01 0.0 0.0 9.036E-01 0.0 0.0 0.0 1. 70 8 E+ 00 4. 8 3 6E-01 4.9 6 3 3-01 0.0 3.000E+04 1. 597 E
  • 01 1. 42 0! +01 0.0 0.0 4.719E-01 0. 0 0.0 0.0 9.60 2E-01 4. 302E-02 5.9535-02 0.0 1.000E+0 5 8.281E+ 00 7. 745E +00 0.0 0.0 3.757E-01 0.0 0.0 0.0 1.278E-01 9.029E-06 3.559 E-05 0.0 3.000E+05 1.578E+00 1. 369E +00 0.0 0.0 1.9 6 0E-01 0. 0 0.0 0.0 4.044E-04 2.799 E-16 5.762 E-12 0.0 cn 5.000E+05 3.562E-01 2.420E-01 0.0 0.0 1.022?-01 0.0 0.0 0.0 1.278E-06 8.678E-27 5.730E-12 0.0 -J 1.000E+06 3. 332E-02 3.179E-03 0.0 0.0 2.0095-02 0.0 0.0 0.0 7.992E-13 0.0 5.7062-12 0.0 Radioactivity (C1/MED40 ER 93 ac225 EA225 AT217 PI213 fI$I BB 94 19241 PU241 RO 93 SR 90 EH229 ER221 4.384E-01 6. 051 E- 01 5. 22 0E-01 7.168 E+ 01 5.34 0E- 01 2.67 0E +01 4. 8 02 5-04 2.18 5E-10 2.19 0 E- 10 2.18 7E- 10 2.19 0E- 10 2.19 0E- 10 2.19 0E- 10 4.9 31 E-01 6. 051 E-01 5. 28 3 E-01 7.149 E+01 5.34 03-01 2.66 6E*01 4. 813E-04 2.185E-10 2.187E-10 2.196 E-10 2.187E-10 2.187E-10 2.18 7E-10 5.75 3 E-01 6. 0515- 01 5.3765-01 7.121 E+01 5.34 0E-01 2.6 61E+01 4. 829E-04 2.18 5E-10 2.1862-10 2.18 5E-10 2.186E-10 2.186 E-10 2.186E 10 6.574E-01 6.051E-01 5. 469E-01 7.09 3 E+ 01 5.34 05- 01 2.65 7E +01 4. 846 E-04 2.18 5E-10 2.1853-10 2.185E-10 2.185E-10 2.185E-10 2.18 5E-10 7.395E-01 6. 051 E-01 5.561E-01 7.065E+01 5. 34 0E-01 2.651E+01 4. 862E-04 2.185E-10 2.18 55-10 2.185E-10 2.1853-10 2.18 5E-10 2.18 5E-10 8.217E-01 6. 051 E-01 5. 654 E-01 7.03 7 E+ 01 5. 34 03-01 2.6 4 7E *01 4. 879 E-04 2.18 53-10 2.18 5E- 10 2.18 5E- 10 2.18 5E- 10 2.19 5 E- 10 2.18 5E- 10 9.038 5-01 6.0 51E-01 5.74 5E-01 7.009E+ 01 5.34 0E-01 2.641E +01 4. 895 E-04 2.186E-10 2.18 5E-10 2.18 5E-10 2.186E-10 2.186E-10 2.18 65-10 1.150E+00 6.051 E-01 6.018E-01 6.927E+01 5.339E-01 2.625E*01 4.944E-04 2.186E-10 2.186E-10 2.186E-10 2.1865-10 2.186E-10 2.186E-10 1.411E+00 6.051E-01 6. 304 E-01 6.84 0E+ 01 5.3393-01 2.60 9E+ 01 4.9943-04 2.186E-10 2.186 E-10 2.186 E-10 2.186 E-10 2.186 E- 10 2.18 65- 10 2.411 E+0 0 6.051E-01 7. 36 45-01 6.519E* 01 5.33 85-01 2.5 4 8E +01 5.18 3 E-04 2.187E-10 2.1872-10 2.187E- 10 2.18 7E-10 2.1872-10 2.187E-10
5. 411E+00 6.050E-01 1.024E+00 5.64 2E+ 01 5.335E-01 2.3 72E+01 5.6935-04 2.190E-10 2.190E-10 2.190 E-10 2.19 0E-10 2.190E-10 2.19 0E-10 1.041E+01 6.0482-01 1.720E+00 3.487 E* 01 5.324E-01 1.87 0E+01 6. 928E-04 2.213E-10 2.213 E-10 2.213 E-10 2.213E-10 2.213E-10 2.213E- 10 3.041E+ 01 6.044 E-01 2. 370E +00 1.331E+ 01 5.303E-01 1.161E+01 8.114E-04 2.312E-10 2. 3123-10 2. 312E- 10 2. 312 E-10 2.312E-10 2.312E-10 1.00 4E+02 6.029 E-01 2. 513E +00 4.58 0E-01 9.23 0E-01 2.19 5E+00 8.765 E-04 3. 564E-10 3.564E-10 3.564 E- 10 3. 564 E- 10 3.564E- 10 3.56 4E-10 3.004E+02 5.988E-01 1. 835E+00 3.24 3E-05 5.0275-01 1.87 9E-02 8.783E-04 2.327E-09 2.327E-09 2.327E-09 2.327E-09 2.3272-0 9 2.32 7E-09
1. 000 E+ 0 3 5. 847 E-01 5. 971E-01 2.131E- 06 4.3764-01 1.091E-09 8.781E-04 5. 054E-08 5.054 E-08 5.054 E-08 5.054 E-09 5.054E-08 5.05 4E-08 3.000E+ 03 5.461E-01 2. 416E-02 1.810 E-06 2.944E-01 2.311E-30 8.773 8-04 7. 289E-07 7.289E-07 7.289E-07 7.289E-07 7.299E-07 7.2 8 9E-07 1.000E+04 4.3005-01 1.345E-06 1.02 3 E-06 7.356E-02 0.0 8.744 E-04 8.55 0E-06 8.550E-06 8. 550E- 06 8.5505-06 8.5502-06 8.550E-06 3.000E+04 2.172 E- 01 2.001E-07 2.001E-07 1.398E-03 0.0 8.666E-04 5.039E-0 5 5.039 E-05 5.039 E-05 5.039 E-05 5.039E-05 5.03 9E-05 1.000E+ 05 1.9903-02 6.640E-10 6.64 0 E-10 1. 32 5E-09 0.0 8. 3 95 E-04 1.974E-04 1.974E-04 1. 974 E- 04 1.974E-04 1. 97 4E- 04 1.97 4E-04 3.000F+05 2.251E-05 5.76 4E-17 5.471 E-17 8.17 4E-27 0.0 7.6683-04 4.344E-04 4.344E-04 4. 34 4 E-04 4.344E-04 4.344E-04 4.3445-04  !

5.0 00 E+ 0 5 2. 521 E- 08 4.749E-24 4.508E-24 5. 04 3E-44 0.0 7. 0 04E-04 5.064E-04 5.06 4 E-04 5.064 E-04 5.0 6 4E-04 5.06 4 E-0 4 5.06 43-04 1.000E+ 06 9.702E-16 9. 255 E-42 8.78 4E-42 0.0 0.0 5.5848-04 4.821E-04 4.8215-04 4.821E-04 4.821E-04 4.821E-04 4.821E-04

68 ORNL DWG 82-11787

LEGEN0 o - NI 59 a - C0 60

+ - PU239 10'  : x MN54 '

o - C0 58  :

v - PU240 m - AM241 a - N1 63 10'  : * - FE 55 _

  • - NB 94 5

[ 10  :

h  ! $

3 .

= .

Q 10  :

"; =

=\ Q = = = -

e r. T _1 _ \1 E

x M \

y 10 r

i  :

10 r '-

10  :

i

. ]

5 10

10 10' 10' 10' 10' 10' 10' 10' OECAY TIME AFTER OISCHARGE tyr)

Fig. D.10. Thermal power of blended fuel-assembly structural material waste as a function of decay time.

1

Table D.10. Thermal pasar of blended fuel-assembly structural material umste as a fumetten af decay time Therunt power (w/WEIIBO NI 63 FE 55 P0213 1T217 ff7j TOTAL wt 59 CO 60 P0239 15 54 to 58 PU240 18241 e .3 8 4 E-01 8.161 E

  • 02 1.173?-01 2.006 t+ 02 7.0212-02 2.92 8t +02 2.727E+ 02 4.464E-02 1.73 4E-0 2 2. 390E-01 3. 6 54 E+ 01 1. 08 4 E- 11 9. 3 4 6 E- 12 4.9312-01 7. 511 E + 02 1.173 E-01 1.99 2 E+ 02 7.021E-02 2.8 01E+02 2. 242!* 02 4.464E-02 1.755E-02 2. 389 E-01 3. 6 01 E + 01 1. 0 8 3 E-11 9.3 3 3 E- 12 5.7532-01 6.711E+02 1.173E-01 1.97 0E+ 02 7.0215-02 2.6 2 0E+02 1. 671 E+ 02 4. 46 42-02 1.786E-02 2. 387E-01 3.523E+01 1.082E-11 9.327E-12 6.57eE-01 6. 074 E + 02 1.1732-01 1.949 E*02 7.021E-02 2.452E +02 1. 246E* 02 4. 4642-02 1.817 E-0 2 2. 386 E-01 3.446t+01 1.0925-11 9.326E-12 7.395E-01 5. 561 E
  • 02 1.173 E-01 1.928 t+02 7.021E-02 2.2 9 4r+02 9. 285E+ 01 4. 464!-02 1.847E-02 2. 384 E-01 3.372E+01 1. 08 2 E- 11 9. 3 2 6 E- 12
8. 217 E-01 5.141 E
  • 02 1.173E-01 1.907E+ 0 2 7.021E-02 2.14 6t+02 6.9 21 E* 01 4. 46 42-02 1.878 E-02 2. 383 E-01 3.299 E+01 1.08 2E- 11 9.3 2 62-12 9.039E-01 4.793E+02 1.173E-01 1.887E+ 02 7.021E-02 2.00 8E +02 5.159E+ 01 4.464E-02 1.908 E-0 2 2. 391E-01 3. 227E+ C1 1.082 E-11 9.32 6E-12 1.150E+00 4.034E+02 1.173E-01 1.927E+ 02 7.021E-02 1.6 4 5E +02 2.137t+01 4.464E-02 1.999E-02 2.377E-01 3.022E+01 1.08 2E-11 9.3 2 7E- 12 1.411E+00 3.501E+02 1.1732-01 1.76 5E+ 02 7.0212- 02 1.331E+02 8.4 08 E+ 00 4. 46 33-02 2.094 E-0 2 2. 372 E-01 2.819E+01 1. 08 2 2- 11 9. 3 2 8 E- 12
2. 411E+0 0 2.380 E+02 1.173E-01 1.54 8 E+ 02 7.021E-02 5.92 2E+01 2. 351 E-01 4.46 3E-02 2.446 E-02 2. 354E-01 2.159E* 01 1.0835-11 9.3323-12 5.e11E+00 1. 202 E + 02 1.1732-01 1.04 3E+ 02 7.020E-02 5.211E + 00 5.136E-06 4.4 6 2E-02 3.402E-02 2.302E-01 9.705E+ 0 0 1.08 45-11 9.3 4 7E- 12
1. 0 41 E+ 01 2.939E+01 1.173 E-01 2.79 9E+ 01 7.018E-02 1.57 9E-03 1. 498 2-21 4. 457E-02 5.713E-02 2.135E-01 6.7485-01 1.0955-11 9.4425-12 3.041E+01 2.65'E+00 1.1722-01 2.016 t+ 00 7.014!-02 1.4 51E-10 0.0 4. 44 8 E-02 7.874 E-0 2 1. 8 36 E- 01 3. 2 62 5-0 3 1.14 5 E- 11 9.8 6 7E- 12 1.00 4 E+ 02 4.652 E-01 1.1722-01 2.022E-04 7.000E-02 0.0 0.0 4.415E-02 8.3 4 7E-02 1.08 4 E-01 2. 563 E- 11 1.764E-11 1.5 21E- 11 3.00 4 E*0 2 3. 2512-01 1.17 0E-01 7.60 3 E- 16 6.960E-02 0.0 0.0 4.32 25-02 6. 095 E-02 2. 4015-02 0.0 1.1523- 10 9.9 30E-11 1.000E+03 2.514E-01 1.163!-01 0.0 E.8212-02 0.0 0.0 4. 013 2-0 2 1. 9 8 4 E-0 2 1. 23 0 E- 04 0. 0 2.5022-09 2.15 7E-09 3.000E+03 2.182E-01 1.143E-01 0.0 6.439E-02 0.0 0.0 3.246E-02 8.027E-04 3.512E-11 0.0 3.609E-08 3.11 1 E-0 8
1. 00 0 E + 0 4 1. 805 E- 01 1.075E-01 0.0 5.2642-02 0.3 0.0 1.545E-02 4.467E-06 0.0 0. 0 4.2333-07 3. 6 4 9E- 07 3.000E+04 1.2442-01 9.043E-02 0.0 2.959E-02 0.0 0.0 1.854E-03 6.648E-09 0.0 0.0 2.495E-06 2.15 0E-06 1.000 E+05 5.380E-02 4.931E-0 2 0.0 3.940E-03 0.0 0.0 1.108E-06 2.206E-11 0.0 0.0 9. 776 E-06 e.4 2 5E-06 3.000?+05 9. 048?-03 8.717 E-0 3 0.0 1.246E-05 0.0 0.0 1.794E-13 1.915E-18 0. 0 0.0 2.1513-05 1.8543-05 en
  • .000 E+ 05 1.8192-03 1.541E-03 0.0 3.938E-08 0.0 0. 0 1.784E-13 1.578E-25 0.0 0. 0 2.507E-05 2.161E-05 up 1.000 E*06 2.3f 1!-04 2.024E-05 0.0 2.463E-14 0.0 0.0 1. 777E-13 3.07e E-43 0.0 0. 0 2.3 8 75-05 2.057E-05 Thermal power (W/MTII40 ER221 4 225 NB 9e TN229 NP237 U233 TC 99 U236 P0214 CS137 PO218 PN222 ff73 4.38 4 3-01 8. 453 E-12 7.649E-12 6.16 6 E-0 3 6.68 52- 12 1.117E-06 2. 532E- 11 2. 609E-04 1.073E-07 6.321E-14 1. 6 8 3 E-01 4. 2 7 2E- 15 3.9 0 63-15 4.931E-01 8. 441 E- 12 7. 6 39E-12 6.16 6 E-03 6.6 8 5 E- 12 1.117 E-06 2. 5 58 E- 11 2. 609 E-0 4 1.074 E-07 3.63 3E-14 1. 6812- 01 5.216 E- 15 4.76 9E- 15
5. 75 3 E- 01 8.436 2-12 7. 6355-12 6.16 6 E-0 3 6. 685E-12 1.1182-06 2. 596 E- 11 2. 609E- 04 1. 075 E-07 1.79 t E-14 1. 678 E- 01 5. 4 6 2E-15 4.9 9 5E- 15
6. 57 4 E-01 8. 435E-12 7. 63 er-12 6.166 E-0 3 6.68 6E-12 1.1182-06 2. 634 E-11 2. 609E-04 1.075E-07 1.131E-14 1. 6 7 4 E-01 5. 6 9 4 E- 15 5. 2 0 7E- 15 7.395E-01 8. 435E- 12 7.6 3e t-12 6.166 E-03 6.686 E- 12 1.119E-06 2. 672 E- 11 2. 609E-0 4 1.076E-07 9. 075E- 15 1. 6 71E- 01 5.9 3 2 E- 15 5.4 2 43- 15 8.217E-01 8. 4 352- 12 7. 634 E-12 6.16 6 E-0 3 6. 686E- 12 1.119E-06 2.711E- 11 2. 609E-04 1.077 E-07 8. 455 E-15 1.6 68 E-01 6.1775- 15 5.6 4 9E-15 9.0 38 E-01 8. 435E- 12 7. 634E-12 6.166 E-0 3 6.68 6E-12 1.12 0E-06 2.749 E-11 2. 6095-04 1.078 E-07 8.43 5E-15 1. 665 E-01 6.42 9 E- 15 5.87 9E- 15 1.150E+ 00 8.435 E-12 7. 6 35E-12 6.166E-0 3 6.687 E-12 1.121E-06 2. 864E-11 2.609E-04 1.081 E-07 9. 335E-15 1. 655E-01 7.281 E-15 6.65 8E-15
1. 411 E* 0 0 8.436 3-12 7. 635E-12 6.16 6 E-0 3 6. 687E- 12 1.12 3E-06 2.985E- 11 2. 609E-04 1.084E-07 1.051E-14 1. 645E-01 8.20 8E-15 7.5 06 E-15 2.411E+0 0 8. 44 0E-12 7. 639 E-12 6.165E-03 6.690E-12 1.12 9E-06 3. 503 E-11 2.609 2-04 1.096E-07 1.611E-14 1.608E-01 1.2585-14 1.15 0 E- 14 5.411E+00 8. 453 E-12 7.651E-12 6.165E-03 6.701E-12 1.15 6E-06 4.978 E- 11 2. 609E-04 1.13 0 E-07 4. 610 E- 14 1. 500 E- 01 3.5 99 E- 14 3.291E-14
1. 0 41 E+ 01 8.539 E-12 7. 72 9E-12 6.16 3 E-03 6.76 95-12 1.2 95E-06 1.005 E-10 2. 6095-04 1.245 E-07 4.019 E-13 1.1913-01 3.137 E- 13 2.86 9 E- 13 3.041F+01 8.92e E-12 8.0772-12 6.15 8E-03 7.074E-12 1.7113-06 2. 2 45 E-10 2.609E-04 1.474 E-07 3. 44 2 E-12 7.500E-02 2.6 8 8E- 12 2.45 8E- 12
1. 004 E* 0 2 1. 375 E- 11 1. 245E-11 6. t e 4E-03 1.090E-11 3.4 7 5E-06 9.776E-10 2.6 08E-04 2.273E-07 6.852E-11 1. 488E-02 5.3 49E-11 4.89 2E-11 3.00 4 E+ 02 9.981 E-11 8.128E-11 6.10 2E-0 3 7.1192-11 7.75 7E-06 5.741E-09 2.606E-04 4.5232-07 1.152E-09 1. 465 E-04 8.9 91E-10 8.22 2E-10 1.000E+03 1.9 50 E- 09 1.76 5E-09 5.95 82-03 1.54 6 E-09 1.54 0E-05 4.142 E-08 2.6012-04 1.203E-06 1.857E-08 1. 3 85 E- 11 1. 450 E- 08 1.3 2 6E-08 3.000E+0 3 2. 813E-09 2. 546E-08 5.564E-0 3 2.23 0E-08 1.8 9 2E-05 1. 899 E-07 2.58 4E-04 3.066E-06 1.538E-07 1.181E-31 1.201E-07 1.098E-07
1. 00 0 E+ 0 4 3.3 00 E- 07 2.997E-07 4. 391 E-03 2.616E-07 1.9 0 32-05 7. 3 04 E-07 2.52 5E-04 7.196 E-06 9. 2 3 2 E-07 0. 0 7.20 8E-07 6.5 912-07 3.000E+04 1. 945E-06 1.7' 0E-06 2.213 E-0 3 1.54 2E-06 1.8 9 0E-05 2.180 E-06 2.366E-0 4 1.049E-05 3.273E-06 0.0 2.556E-06 2.3 3 7E-06 1.000E*05 7.620E-06 6.897E-06 2.02 7E-04 6.040E-06 1.84 8E-05 6.290 E-06 1.8843-04 1.092E-05 7.774E-06 0.0 6.07 0E-06 5.55 0E-06

?.000E+05 1.676E-05 1.517E-05 2.293E-07 1. 329E-05 1.7 3 2E-05 1. 250 E-05 9. 829E-05 1.086E-05 1. 024 E-05 0. 0 8.011E-06 7.32 6E-06

5. 00 0 E+0 5 1. 955 E- 05 1.769E-05 2.569 E-10 1.549E-05 1.62 3E-05 1. 4 47 E-05 5.127E-05 1.079E-05 9.3 09E-06 0.0 7.26 8 E-06 6.6 4 6E-06 1.000E*06 1.861E-05 1. 68 4E-0 5 9.886E-18 1.475E-05 1.381E-05 1. 393 E-05 1. 007E-05 1.063 E-05 7. 54 2E-06 0.0 5.8 8 8 E-06 5.3 8 5E-0 6

70 ORNL DWG 82-11781 10' --

LEGEN0 o - PU239 ~

a - NI 63

, + - CO 60  :

_ 4 x - RA226 .

% o - MN 54 10' , $ v - N! 59 -

g a - SR 90 -

= - NB 94 -

+ - PU240  :

_ . _ . _ _--~ e - RN219 _

z - C0 58 10' -

, e - PB210 _

e - MO 93 5 E o - AM241  :

C _

E b '

t 10' r  :

2 -

ro c ^

c e

T.?

A : 11 7. \

c\ c \ .

x - - -z -1  ;; a -

c 10 5

- =k .

b. . -;

~

S  : .

a s

10' r -

I 10'  :  :

\ -

10' 10 10 10' 10' 10' 10' 10' 10' DECAT TIME AFTER O!SCHARGE ty)

Fig. D.ll. Ingestion toxicity of blended fuel-assembly structural material waste as a function of decay time.

t,

Table D.11. Ingestice toxicity of blended fuel-assembly structural material usate as a fumetton of decay time Ingestion toxicity (m3 meterhfTIIBO fAj7 TOTSL P0239 WI 63 CO 60 91226 Ms 54 51 59 SR 90 WS 94 PU240 PN219 CO58

4. 39 4 E-01 1.784 ?+09 4. 557E + 05 2.006 t+ 07 4.3 37E
  • 08 4.72 0E-06 5. 880E+ 08 9.211E+04 4.516E+0? 2.017E+ 05 2. 967E+ 05 1.284E-03 5.0 61E+08 4.9312-01 1.624E+09 4.557?
  • 05 2.005E+ 07 4.3 06t+ 08 4.9 5 5E-06 5.625E* 08 9.211E+04 4.511 E*07 2. 017E+ 05 2. 867E+ 05 1.* 8 9E-03 4.161E+08 5.753E-01 1.451E+09 4.5572+ 05 2.00 4 ?+ 07 4.26 CE
  • 08 5.06 3E-06 5. 263 E+08 9. 211E+04 4.502 E+07 2.017E+ 05 2.867t+05 1.304E-03 3.101E+ 08 6.5742-01 1.320E+09 4.557E + 05 2.002 E+ 07 4.214E+09 5.27 7E-06 4.924 E* 09 9.211E+04 4.492E* 07 2.017E+05 2. 867E+ 05 1.322 E-0 3 2.312E+08 7.395E-01 1.216E+09 4. 557E+ 05 2.001E+ 07 4.169E+ 38 5.8 9 8E-06 4.6072+ 08 9.211E+ 04 4.4 84 E+ 07 2.017 E+05 2. 867E+ 05 1. 34 0E-0 3 1.72 3E+ 08
8. 217 E-01 1.131 E+ 09 4. 5%7E +05 2.000 E+07 4.124E+ 08 5.72 4E-06 4. 310 E* 08 9. 211E+0 4 4.475E+ 07 2. 017E* 05 2. 867 E+ 05 1. 3592-03 1.2 8 5E+ 08
9. 03 9 E- 01 1.060E*09 4. 557E + 05 1.994 t* 07 a.08 0E+ 0e 5.95 7E-05 4.033 E* 08 9.211E+04 4.466E+0 7 2. 017E+ 05 2. 867 5+05 1.378 5-03 ?.57 5E+07 1.150E+ 00 9.04 5E+ 08 4. 557? + 05 1.99 5E+ 07 3.9493+ 08 6.6 97E-06 3.303E*08 9.211E+04 4.4 41 E*07 2.017 E*05 2. 867E* 05 1.435 E-0 3 3.9 6 63*07 1.411E+00 7.933E+08 4.556?+05 1.991E*07 3.816E+ 08 7.55 0E-06 2.674 E+08 9. 211E*0 4 4.413E+ 07 2. 017E+0 5 2. 867E+ 05 1.498E-0 3 1.56 0E+ 07 2.411E*00 5.563E+09 4.5*6E+05 1.976E+07 3.346E+08 1.157E-05 1.189E+09 9.211E+04 4.309E+05 2.017E+05 2. 867E+05 1.789 E-0 3 4.36 2E+05 5.411?+00 3.098t+08 4. 556t + 05 1.932E+ 07 2.25 5E+ 08 3.3112-05 1. 047E+ 07 9.211E+04 4.012 E*07 2. 017 E+05 2. 8 66 E+05 2.712E-03 9.53 2E+00 1.041E + 01 1.139t+09 4.555E+05 1.79 2E+ 07 6. 052E+ 07 2.9 9 65-04 3.172E+ 0 3 9. 210E*04 3.163 E* 07 2. 016 E+05 2.863E+05 7.159 E-03 2.77 9E-15 3.041t+01 4.221E+07 4. 552E + 05 1.541 E+ 07 4.35 9E+ 06 2.47 2E-03 2. 914E-04 9.208E*04 1.964E*07 2.015E+0% 2.857E+ 05 2.C715-02 0.0 1.004E+02 1.488E+07 4. 54 3? + 05 9.095E+ 06 4.372E+ 02 4.9219-02 0. 0 9.203E+04 3.713 E+06 2. 013 E+05 2.8 36 E+ 05 9.06 95-0 2 0.0 3.00 4E+0 2 3. 722 t+ 06 4.517E+05 2.015E+06 1. 64 s t- 09 8.271E-01 0.0 9.187t+04 3.178t+04 1. 996!* 05 2.776E+ 05 3.519E-01 0.0
1. 00 0 E
  • 0 3 1.208E+06 4.4272+0% 1.032E+04 0.0 1. 3 3 4E+01 0.0 9.131 E* 04 1.8465-03 1.949E+05 2.577E+05 1.829E+00 0.0 3.000!+ 0 3 1.007 E+ 06 4.179E + 05 2.94 8E-0 3 0.0 1.105E+02 0.0 8.974E*04 3.909E-24 1. 820 E+05 2.08 5E+ 05 9. 83 6E* 00 0.0 1.0 00 E + 0 4 6.980 E+ 05 3. 416t +05 0.0 0.0 6.6 3 0E* 02 0.0 8.446!+04 0.0 1.433E*05 9.926E+04 7.657!+01 0.0 3.000E+04 3.548t+05 1.920E+05 1.0 0.0 2.351E+03 0.0 7.102E+04 0.0 7.240E+04 1.191E+ 04 4.62 8 E+02 0.3
1. 00 0 F+ 05 8. 385 E + 04 2.557?*04 0.0 0.0 5.59 3E+03 0.0 3.873E+04 0.0 6. 6 3 3E+03 7.119E+ 00 1.86 4t* 0 3 0.0 3.000 E+0 5 2. 321 E+ 04 8.099?+01 0.0 0.0 7.370?+03 0.0 6.846E+03 0.0 7.502E*00 1.15 2 E- 06 2. 6 3 0 E+ 0 3 0.0 1.210E+03 0.0 8. 4 0 4 E-03 1.146 E-0 6 2.64 5E+0 3 0.3 'J 5.0 00!* 05 1. f l9 t+ 04 2.55FE-01 0.0 0.0 6.6 8 6E + 03 0.0 F' 1.000E+06 1. 28 R E + 04 1.599E-07 0.0 0.0 5.417t+03 0.0 1.590E*01 0.0 3.234E-10 1.141 E-06 2.644 E* 0 3 0.0 Ingeetton toxicity (m 3 wererhfTIIst) fi"j P8210 90 93 49241 75229 R A22 5 TC 99 FE 55 EU106 CE144 PC 210 25137 NP237 4.39t?-01 1. 0 4 4 E- 04 1.790?+05 1.305E+ 05 5. 463E-04 4.373!-04 2.601E+03 3.321E*07 3.2 92 E+07 3.065 E*07 1.199 E-05 1.74 5 E+ 0 6 1.218E + 01 4.931E-01 1.042E-04 1.79 0E +05 1. 321 E+ 05 5.463 E-04 4.37 2E-04 2.603 E+ 03 3.273E+07 3.171E*07 2.919E+07 1. 2 27 E- 05 1.74 3 5+ 06 1.219 E + 01 5.7532-01 1.040E-04 1.780E+05 1.344E*05 5.463E-04 4.3712-04 2. 6 01E+03 3.2 02E+ 07 2.997E+ 07 2.713 E+07 1. 2 6 4 E-05 1.74 0 E+ 0% 1.219 E+ 01 6.%74F-01 1.0372-04 1.79 0E + 05 1.167E+ 05 5.46 3E-04 4.3 71E-04 2.6 01 E+ 03 3.13 3E*07 2.8 32E+07 2.522E+07 1.294E-05 1.737E+06 1.220E+01 7.195t-01 1.0352-04 1.79 0E *05 1. 310 E+ 05 5.46 42-04 4.371E-04 2. 601E+ 03 3.065E*07 2.676E+ 07 2. 34 4E+07 1. 320 E-05 1.73 3 E+ 06 1.2 2 0 E + 01 9.217E-01 1. 032 E-04 1.740E+05 1.413E+05 5.464E-04 4.371E-04 2. 6 01E+03 2.998E+07 2.529 E+ 07 2.179 E *07 1.3425-05 1.730E+06 1.221E
  • 01
9. 0 38 E-01 1. 030E-Os 1.79 0E +05 1.43 6E+ 05 5. 464'-04 4.371E-04 2. 6 01 E+0 3 2.93 3E+07 2.391 E+07 2. 02 5E*07 1.361E-05 1.7275+06 1.221E + 01 1.150E+00 1.022E-04 1.79 0E +05 1.50 5E+ 05 5.46 tE-04 4.3 71E-04 2. 601 E+ 0 3 2.74 7E*07 2.018 E* 07 1. 6 26t+ 07 1. 391E-05 1.717 E+ 06 1. 2 2 3E+ 01 1.411E+00 1.014E-04 1. 790E *05 1.57 6t+ 05 5.465E-04 4.372?-04 2.601E+0 3 2. 562E+07 1.6875+07 1. 28 9 E+ 07 1.407E-05 1.707E+06 1.22 4 E+ 01
2. 411'+0 0 9. 837'- 05 1.779E+05 1.841E+ 05 5.46 7E-04 4.373E-04 2.6 01 E+ 0 3 1.963E+07 8. 480E+06 5.289 E+ 06 1. 4 0 4 5-05 1.6 6 8 E* 0 6 1. 2 3 2E + 01 5.411 E* 0 0 9. 017 E- 05 1.778 E +0 5 2.560E* 05 5.476E-04 4.3915-04 2. 601 E+ 03 8.821E*06 1.078E+06 3. 6 56E+ 05 1. 300 5-05 1.5 56 3+ 06 1.261E
  • 01 i
1. 0 41 E
  • 01 7.7123-05 1.775E+05 4.299 E* 05 5.<31E-04 4.4 2 5E-04 2. 601 E+03 6.13 4E*05 1.130 E+ 03 4. 955E+01 1.102 E-05 1. 2 3 5 E+ 0 6 1.412E+01 3.041E+01 2.15 t!- 04 1.768t+05 5.92 63+05 %.78 0E-04 4.62 45-0 4 2. 6 01E+ 03 2.965E+03 1.203E-03 9.100 E-07 3. 077E-05 7.779E+0 5 1.86 6E+01
1. 00 4E+02 7.365 E-03 1. 74 3E +05 6.28 2E+ 05 8.909E-04 7.127E-04 2. 6 00 E* 03 2. 330E-05 1.498 E-24 0. 0 1. 052E-03 1.54 4E* 05 3.79 0E*01 3.004E+02 1.915E-01 1. 676E+05 4.587E+ 05 5.81'E-03 4.654E-03 2. 599E+ 0 3 0.0 0.0 0.0 2.7 36 E-02 1. 519 E+ 03 8.4 61E+01 l 1.0 00!*0 3 4.000E + 00 1. 459E+ 05 1.49 3R+05 1.26 3E-01 1. 011E-01 2.593E+ 03 0.0 0.0 0.0 5.715E-01 1.4373-04 1. 67 9E
  • 02

[ 3.000E*0 3 3. 312E

  • 01 9. 814E + 04 6.041E+ 03 1.822E+ 0 0 1.45 8E +00 2.576 t* 03 0.0 0.0 0.0 4.732 E+ 00 1.225E-24 2.06 4E+02 1.000E+04 1.988 E+02 2. 452E +04 3.362 E-01 2.13 8E+ 01 1.710E+ 01 2.518E+ 03 0.0 0.0 0.0 2. 8 40 E+ 01 0.0 2.075E*02 3.000E+04 7.050!+ 02 4.661E +02 5.003 E-02 1.260E+ 02 1.3 0 8t+02 2. 3595+ 03 0.0 0.0 0.0 1.0075+02 0.0 2.0 6 2E+ 02
1. 000 E+ 0 5 1. 674 E + 03 4. 416E-0 4 1.66 0E- 04 4.9 3 6E+ 02 3.9 49E + 02 1. 879E+03 0.0 0.0 0.0 2.392E+02 0.0 2.016E+02 3.000!+ 05 2.210E+03 2.725E-21 1. 441 E- 11 1.086E+ 03 8.68 7E+02 9.800 E+02 0.0 0. 0 0.0 3.157E+02 0.0 1.8 8 9E* 02 5.000E+05 2.005t+03 1. 681E-3 8 1.187 E-18 1.26 6E+03 1.013E+ 03 5.112E+ 02 0.0 0.0 0.0 2.864E*02 0.0 1.7 71E + 02 1.000E*06 1.624E*03 0.0 2.314E-36 1.205E+ 03 9.64 2E+02 1.0 04 E* 02 0.0 0.0 0.0 2. 321E+ 02 0.0 1.5 0 6 E + 02

72 1

ORNI. DWG 82-12761 LEGEND 10" -

o - PU239 -

6 - PU240 H229 go-e - e " "-* 60

-*- c. - -

o. g4

^^

10"

^

r -- m 241 --

N = - t '237

+ -- RN e P ?38 19 -\

e - PU' 2 e - TH2 0 10" - -

m - PR23 -

E o - C0 5, 5

E -

l t ,

'o 10" r -

7 5

g ,

G 10 r ,

7  : imame-a -e- m-e--e- e .- a j= g __. , 7 i

R -

N D -

l

.{g

. \

l 10' r f A e '/

=

10' -

10' 10' 10' 10' 10' 10' 10' 10' 10' DECRY TIME arTER OlSCHARGE (3r)

Fig. D.12. Inhalation toxicity of blended fuel-assembly l

l structural material waste as a function of decay time.

Table D.12. Zahalattaa toxicity of blended fuel-assemb!y structural material unste as a functica of decay time Inhalation toxicity (a3 air /MTD90 PU241 WP237 PU238 PN219 PU24 2 fy$ TOTAL PU239 PU240 TR229 CO 6 0 M5 54 AM241 8.3842-01 2.334E+14 3.797E*13 2.389E*13 1. 09 3E + 0 4 4.3 3 7E +13 5. 880E+ 13 2.610E+ 12 2. 389E+ 13 3. 655E+ 08 9.749E+ 12 1.926E+03 7.17 6E+ 09 4.9 31 E-01 2. 2 58 F + 14 3.797E +13 2.389E+ 13 1.093E+ 04 4.30 63 + 13 5. 625 E+ 13 2. 641E+12 2.3 83 E+13 3.69 6F+08 9.8 34E* 12 1.93 3E+ 03 7.176 E+09

?.753E-C1 2.162E+14 3.797E +13 2.389E+ 13 1.09 3E + 04 4.26 0E+13 5. 263 E+ 13 2.68 8E+ 12 2. 374E+ 13 3.658E+ 08 9.9492+ 12 1.956E+ 03 7.1765+ 09

4. 924E+ 13 2.734E+12 2.364E+13 3. 659 E+08 1.005 E+ 13 1.98 3E+ 03 7.176t+09 6.%7 t !- 01 2. 08 2 E + 14 3. 797? +13 2.3 8 9 E+13 1.09 3E+0 4 4. 214E +13 1. 014E+ 13 2.010E+ 03 7.17 6E+ 09 7.395E-01 2.013E+14 3.797E *13 2.38 95+ 13 1.09 3E* 04 4.16 9E + 13 4. 607E+ t3 2.781E+12 2.3 55 E+13 3. 660E+08 8.217E-01 1. 95 4E + 14 3.797t +13 2.19 9E+ 13 1.09 3E+ 04 4.12 4E + 13 4. 310 E* 13 2. 82 7E+ 12 2. 346E + 13 3. 662 E+ 08 1.021E+ 13 2.0 38E+ 03 7.17 6E+ 09 9.03RE-01 1.903E+14 3.797E+13 2.389E+13 1.093E+04 4.0 8 0E*13 4. 033 E+ 13 2.87 3E+12 2.3 36 E+ 13 3.663 E+08 1.028 E+ 13 2.06 6 E+0 3 7.1763+09 1.150!*C0 1.780'+14 3.797E + 13 2.38 9E+ 13 1.093E+ 04 3.94 9E
  • 13 3. 303 E+ 8 3 3. 009E+12 2.309E+13 3. 66 8 E+08 1.04 3E+ 13 2.153E+ 0 3 7.1765 1.411E+00 1.684E+14 3.797E*13 2.3995+13 1.093E+04 3.816E + 13 2. 674 E+ 13 3.152E+12 2.280 E+ 131.3.0 6673E+ 4 E+ 13 08
2. 6 1.05 8 4 E+ 3E+ 136 E2.+ 247E+

03 7.17 09 03 7.176E+ 09 2.411E*00 1.460++14 3. 797t + 13 2.399E+13 1.09 3E+04 3.34 EE+13 1.189E+ 8 3 3.682E+ 12 2.173 E+13 3. 696E+08

1. 881 E* 13 3.792 E+08 1. 04 6 E+ 13 4.05 8 5+ 0 3 7.17 7E+ 09 5.411E+00 1.213E+14 3.797E + 13 2. 38 8F+ 13 1.095E+ 0e 2.25 5E + 13 1.0 47 E+ 12 5.121E+12 7.17 95+ 09 1.ce1E+01 9.880E+13 3.796!+ 13 2.38 6F+ 13 1.106E* 04 6.05 2E
  • 12 3. 8 72E+ 08 8. 599E+ 12 1.162E+ 13 4. 236E+ 08 9.7 03E+ 12 1. 074E+ 04 3.041E+01 8.757t+13 3.7935+13 2.181E+13 1.15fE+04 4.35 9E
  • 11 2.914 E+ 01 1.185E+

1.256E+13 1.527E+1113 1.137E+

4.438 E+ 0912 5. 599E*

4.981E+ 08 8.359 12 1.360E* E+12 05 7.19 5E*3.107 09 E+04 7.18 3E+09 1.004 E+ 02 7.955P+13 3.786F+13 2.363E+13 1.782E+04 4.372E+07 0.0 9.17 4E*12 1.08 t t+07 2.538E+ 09 1.188 E+ 12 5.2 7 8E+ 05 7.212E+ 09 3.00 4E+0 2 7.136E+ 13 3.76 4 E + 13 2.313E+ 13 1.16 3E+ 05 1.6 4 st-040.0 0.0 2.986E+12 7.102E+05 5.037E+09 1. 708 E+ 10 2.74 4 E* 06 7.216 t+09 1.000E* 0 3 6.140!+13 3. 699E + 13 2.14 8 E+ 13 2.527E*06 0.0 0.0 1.20;?+11 6.033E+09 6.191E+09 1. 50 3 E+ 06 1. 4'5 E+ 07 7.191E+ 09 3.000!+03 5.235E +13 3.482E +13 1.7 37E+ 13 3.6a5E+ 07 0.0 0.0 6.723E*06 3.409E*05 6.225F+ 09 2.061E-08 1.14 83* 08 7.101E* 09 1.0 3 0 E

  • 0 4 3.676E+ 13 2. 847E+13 8.271E+ 12 4.275E+ 08 0.0 0.0 1.001E*06 6.671E+04 6.185E*09 0.0 6.94 2 E+08 6.851E+09 3.000!+04 1.702E + 13 1. 600E + 13 9.92 2E+ 11 2.52 0!+ 09 0.0 0.0 3.320E+03 2.213r*02 6.047E*09 0.0 2.796E+0 9 6.0 4 4E+09 1.000E+ 05 2.1F2 E+12 2.131? +12 *.9 32E+ 0 8 9.872E+ 09 0.0 0.0 2.882E-04 1.8 24E-0 5 5. 667E+ 09 0.0 3.9 4 5E+ 09 4.2 2 4E+ 09 3.000F+0 5 4. 878? + 10 6.74 0E + 09 9.6 0 3r* 01 2.172E+ 10 0.0 0.0 2.375E-11 f.503E-12 5.312E+09 0.0 3.967E+09 2.9 5 2E+ 09 %J 5.000E+05 4.371E+ 13 2.130E*07 9.55 0!+ 01 2.53 25* 10 0.0 0.0 4. 627E-2 9 2.928E-30 4.518 E* 09 0.0 3.9665*09 1.2 0 5E+ 09 LJ
1. 00 0 E+ 06 3.936 5 + 10 1. 3 3 2 E +01 9.510!* 01 2. 410E* 10 0.0 Inhalation toxicity (m3 st r/MTD9t)

CElte FE 55 SR 90 WI 63 192421 U233 fy$ TB230 PS231 CO 98 LC227 CN242 PU 106

4. 49 4 F+ 11 3.0 09 E+ 11 2. 3 91E+ 11 2.17 83+ 02
4. 39 4E-01 2.120E + 03 6.16 7E + 0 3 2.277 E+ 13 4. 872++ 02 3. 78 3E+ 12 1. 6 46 3+ 12 1. 532E+ 12 8. 856 3+ 11 3. 007 2+ 11 2.39 0E+ 11 2.2 0 0E+ 02 4.9 312-01 2.162E+03 6. 213E *0 3 1.872 E+ 13 4.9172+02 3.47 6E+ 12 f. 585 E+ 12 1.46 0E+ 12 8.727 E+ 11 4. 488E+ 11 5.753E-01 2.225 E+03 6.28 0! +0 3 1. 39 6E+ 13 4. 98E E+02 3.0 61E+ 12 1. e98 t+ 12 1.357E+12 8.538E+ 11 4.879E+11 3. 0 05 E+ 11 2. 38 9 E+ 11 2.2 3 3
6. 57 t E-01 2.290E
  • 03 6.34 8E+0 3 1.04 0 E+13 5.056E* 02 2.6 965+ 1* 1. 416 2+12 f.261E+12 8.353E+11 4.470E+11
3. 002E+ 11 2. 3 83.004 8E+ 11E2.29

+ 11 83 2. 38 9 E+ 11 2.2 6 5 E+

+ 02 7.395 E-01 2. 357E +03 6. 415E +03 7.755E+ 12 5.12 6E +02 2.37 5E + 12 1. 338 E+ 12 1.17 2E+ 12 8.172E+ 4. 45311 E+4.1146 2E+E+

3.000 1111 2. 38 7E+ 11 2.3 31E+02 A.217E-01 2.425E+ 03 6. 49 tE +0 3 5.74 0 E+ 12 5.197t+02 2.092E+ 12 1. 265E+ 12 f . 089E+12 7.995E+ 11 4. 4 44 E+ 11 2.9 9 8 t+ 11 2. 38 6 3+ 11 2.36 4E+ 0 2 9.0 34 E-01 2. 494E+ 03 6.550E+ 03 a.309E+ 12 5.268t + 02 1.8 4 3E+ 12 1.195 E* 12 1.012E+12 7.822E+ 11 2.46 3E+02 1.150E+00 2.712 E+03 6.746E+0 3 1.78 5E+ 12 5.487E+ 02 1.261E + 12 1.0 09 E+ 12 8.129E+ 11 7.325E+ 11 4. 419 E+ 11 2.992E+ 11 2.383 E+ 11

1. 411 E+ 0 0 2. 959 E+ 03 6. 993F +03 7.072E+ 11 5. 72SE + 02 8.4 4 4E + 11 8. 4 33 E + 11 6. 44 4 E+ 11 6.833E+11 4.391 E+ 11 2.987 E+ 11 2. 280 E+ 11 2.

2.411E+0 0 4.051E+ 03 7.739E+03 1.96 3E+10 6.697E *02 1.8 67E* 11 4. 240E+ 11 2.645E+11 5.234 E+11 4.287E+11 2.961E* 11 2. 37 0 E+ 11 3.013E+ 02 5.411E+00 9.748t+03 1.010E *0 4 4.28 9F+ 05 1.01 f E+ 03 1.132E+ 10 5. 388t+ 10 1.828E+ 10 2.352F + 11 3.993E+ 11 2.8985+ 11 2.3375+ 11 4.281E*02

1. 0 41 E+ 01 3. 93 3 E+ 04 1.802E+04 1.2512- 10 2.6 83E + 03 9.18 8E*09 5. 651E+ 07 2.477E+06 1.636t+10 3.147E+11 2. 688 E+ 11 2. 233 E+ 11 8.641E+ 02 3.041E+01 f . 6 e 0E + 05 3.422E+04 0.0 7.76 3E+0 3 8.38 7E *09 6.016 E* 01 4.550E-02 7.906E+07 1.954E* 11 2.312 E+ 11 2.0 39E+ 11 1.9 31E+ 03 3.401E*04 6.09 5E*09 7.489E-20 0.0 6.213E-01 3.695E+10 1.364E+ 11 1.481 E+ 11 8.4 0 8F+ 03 1.004 E*02 1.125E+ 06 9. 4597 + 04 0.0 0.0 0.0 3.162E+08 3.023E+10 5.951E+ 10 4.9 37E+04 3.00:5+02 6.243E+06 2.984E+05 0.0 1.320E + 05 2.44 9E*09 0.0
6. 86 0E+ 0 5 1. 3 0 6E+ 08 0. 0 0.0 0.0 1.837E+01 1.548E+08 2.445E+09 3.562E+05 1.000 F+0 3 2.940 E+07 1. 372 E +06 0.0 0.0 0.0 3.89 0E-20 4. 422E+ 01 2.677E+ 05 1.6 33E+06 3.000E*03 9. 648?+ 07 7. 376E +06 0.0 3.689E+06 1.195E+04 0.0 3.674E-09 6.28 2E* 06 2.871E+ 07 1.5162-10 0.0 0.0 0. 0 0.0 0.0
1. 000 E+ 0 4 3.204 E+ 09 9.74 2E +07 0.0 0.0 0.0 0.0 0.0 0.0 1.8 7 5E + 07 3.000E+04 8.759 E + 08 3. 471E + 08 0.0 1.735E+08 0.0 0.0 0.0 0.0 0.0 5.410E+ 07 6.991E+08 0.0 0. 0 0.0 0.0 1.000E+05 2.084E+ 09 1.398E+09 0.0 0.0 0.0 0.0 0.0 0.0 1.075E*08 3.000E* 05 2.756E+ 09 1.972E+09 0.0 9.861E+08 0.0 0.0 0.0 0.0 0.0 1. 2 4 4E+ 08 9.918E+08 0.0 0.0 0.0 0.0 5.000E+05 2.498t+ 09 1.99 4E+09 0.0 0.0 0.0 0.0 0.0 0.0 1.19 8E+ 0 8 1.000E+06 2.031E+09 1.983*+09 0.0 9.914E+08 0.0 0.0

l 75 )

l l

l l

l APPENDIX E: COMPARISON OF THE GARACTERISTICS OF FUEL-CYCLE MATERIALS FROM ME CRBR, A PWR-U, M E FFTF, AND A COMMERCIAL IMFBR 4

1

77 E.1: Characteristics of Spent-Fuel Assemblies i

o 1 a _ _

78 ORNL-OWG B2-Il767 v r] *=7 Y Y Yq vv7 F rq T T e rg I E TF T TT4 LEGEND 7

10 LMFBR CORE ASSEMBLY -

a - CRBR CORE ASSEMBLY

+ - PWR-U

. x - FFTF 11  :  :

10' r  :

p  :

~

5 g . .

E -

Y 10'  :

C -

~

5 .

{ . .

h o

10'  : ,

E  :  :

li - -

10'  :

1 j i .d 1 R & a 1 11 R 1 0 I i1 I $ iA I E EA A 10 10' 10' 10' 10' 10' 10' 10' i

DECRY TIME AFTER OlSCHARGE tyri Fig. E.1. Spent-fuel assembly radioactivity.

79 i m

"A 35 E.++8 8 8 8.,8 + 33325 o .N , N . . .. e e .M .wmew M .w NM WeNWmpem@@.

.g . .e--re.eMMN I

H U

w N' W' e' r' M P 5 N e e' .'

G w

POPNNmesee@

C0000000000 p

  • N ., b N N E .3 4 M M M Iah W h 00000000000 00000000000 Hw 00000000000 e o e o e e e o e e o PerPMPPMPMe h

i^E E. G. B. $. s. 3 8 8 8 8 8 8 8 8 8 8 8. G. 2. E. E.

    • M U M N .1 M Pheepece M N M M N MF@@@O6W N N N M N M N .M .' .

m l

-- .e.- OPheeO.. MOO

@ e m,8 e m p-OrcOraceMN-Sec. WO@

w NU e e e e o e e e e e o e e e e o e o e o e y jw Mewhome@eNeeMNNepehoe u

1 ----COO.--NNNNMmes,c.

C00000000000000000000

]g; an 9 9 0 N .93 M N .o NMMMMNNMNHHMMNMM 9

Eh O O O O O O O O O O O O O O c- D O O O O O

% M% C000000000D0000000000

  • Hw CD00000000C#000000000 4

Pe eMo u e,e .ePNcPherPMcPMPMcMP o e e e o e e e o e e e e e o 3

M I

% h p

a

& W^ k@t@teermeemmNNNewe 0000000000000000000 m,

e g u m, M M . u v u e u m, N u m . m ., N N U meWWW 8 PmmO.ereePWO.NW@meme NbM eemmNmp

gn P. M.M. e.M. N. ee. p e.O NoF.e Pe O. . N eN e@ @ P. ut e O.

ee#N-erMNNeeene-emN e

9 3w 3^

E

' ---OOOO- -NNemeece h 000000000000000000 NMMNNM1MMM>NMNNNMNN l$

. m 0000000000000000000 DO00000D00000000000 Nw 0000000000000000000 e e o e e o e e o e e o e e o e e e e PMcPNeePNmPMPMPMPMP h

y^5

. 3 8. . 8 8 8. . 3 3 5 N5

e. .....eNNN.

W g' Opm8N.NNmWN* n.-

. N N.

Me e. o d e s . N M .e*

E

.n w NeewN-e . e . Ne o.

Mere 8

-O-NNMeseew C0000000000 g

N s'N V H H M .4M M M Imh O0000000000 00000000000 yyk CD000000000 e e e o e e e e e o e WVpFMPPMWMP

80 ORNL-DHG B2-11773 v vg vvg y v v] Y T 77 9 Y 773 r 5T] F EW T Fv1 5

10 LEGEND _

o - LMFBR CORE ASSY a - CRBR CORE ASSY

+ - PWR-U

= - FFTP 10' r ,

10' -

b .

E s

3 10' r n:

y .

~

E . .

iE 10, r  :  :

6 -

lE -

10'  :  :

10" r -

10

10" 10' 10' 10' 10' 10' 10' 10' DECAY TIME AFTER DISCHARGE (gel Fig. E.2. Spent-fuel assembly thermal power.

81 b

commeNNemOO e C0000000000 r * * ** * ** ****

E EMD t' w M h3 su M 93 ht M On@@ONPNeOm d

  • WPO@meserm l E'3w GP Pe@e "o e . Oe Oo Ne Pe E. Ge
  • Newewnewnw M

G w

E -O-NNm .cce OcOOOOOOOOO 9 + +++e*****

b' 6' 61 M M M b M b' M M 30 w h C O O O O c c' O O O e C0000000000 kw OOOCCOOCOCO e e e e e

.e .e .o .em .e .em-m-

~ . .mmnn mmnNNNNN-DO e

E

$.880.,8000.,0000000000000

+ +

MMM. .. w . . ,, w . . M . MsMM3MMw

+ ++

N wCOEecceMcNONw@

"sg w o r m f e m e e @ P m O e N F" e@@NNS NmOF E ,3

.Na <NmMOe-m-amNeeNeN e e e o e e o e o e o e e e e e e e o e e w permNemNNwee"@hrmPN""

b y

"O"POOOppeNNNNMmee@me D

P 0000000000000000000 g 9 8 9 0 *+ + ++e**++++ee**+

ea M M M M M M b M t' M M M M ha D' M D3 ha D3 M N h

lyw C00000000000000000000 wh 000000000000000000000

$a kw OOOOOOOOOOOW 0c0000000 e e o e o e o e o e e e o e o e e e e o e 5 "mgeeNgwNowemowmememe e

8 a

7 '

O n aamemmmmNNNN---DO--

E 0000000000000000000 z

M

+ + ++** *****+++++*O 9 M

M M P3 D D3 M 65 M M M M 93 D1 M M M k? O M j @

  • M e' @ @ @ N e O M e e E N O M M P P ete e W N M m m m W W F M O O @ r 0 N G gy 3 P,W, W

, O,M,M,W , , ",W

, ",W N,O,M,M,N,O,M,P, y g #NeemmweePN*VNecemm 2 E a ---. COO---NNmm.....

0000000000000000000 t t i +++ + ++ e*** ++++++

Enb M M M M >< M M M M M M O' 6' M O' M k M ba D000000000000000000 ywh 000CO00000000000000 0000000000000000000 e e o e o e o e e o e e e e e o e e e emcwNetwNmenemeneme k

a pemmNNNNeww E C0000000000 E ++++** + +* 0 O d

D3 t M.N---

~n% NwNONNO@O6M

. SthaD'44M .SM a' N D3 -

3 ObO g .w Oe FoheCoOeNoWe "e e e e g

g e -- e n e N -- e e h eOpNNemecce U OOFOOOOOOOO 9 + 8 e*** + *++

M N pa M pi M M et M M M 8m M 0n000000000

% k OOOOOOOOOOO HV C0000000000 e e e e e e e e o e e PPPPmPPMPmP t-

l I

82 ORNL-OHG 82-11770 V

T TN 5 E TY] Y s vq W T U Yq U T T U v7 W T rq W v rwu 10" LEGEN0 .~

o - LMFBR CORE ASS a - CRBR CORE ASSY -

+ - PWR-U x - FFTF 10 : ,

10 : ,

p .  :

r N

b g 10"  :- ,

n  :

E -

2 -

C 10'* : ,

G o -

H 10'  : -

10'  :

10' 10 10' 10' 10' 10' 10' 10' 10' DFrAv T'ME AFTER OlSCHARGE tyr)

Fig. E.3. Spent-fuel assembly ingestion toxicity.

i 1

83 h

w^

TE 1*

ok *:;28.S.88880

.. + +

~2o ,MMmwwwuusM meWee@@dN@m g

a 8u w e m@demeWwNme MPOPO h 8 3 CeOe No @ e #e "o e o e e e y y, w@Nm9me@NNN F5 M

0

-OeNNmaeve@

C0000000000 g e*********

W eJ 9: h2 hi et M N M N D' Iah

  • k C0000000000 OOOOOOOOOOD Hw 00000000000 e e o e o e o e e o e weermeeMeme h

we UE .N.------Oece...e,C..

NH e+++++++++e++

e w w e v e w e e e w C, Oe+++ee++

OOOOOOO OE

")

ge N W F M F N N D1MD M M N D*M F b1M M W M FfwffegNewmemme99@@mm k Ou @D@@DN@>@ MEN @m9*>mGet

". *I

~ Pewe M.P.N.GE.@eN.W.W.W.h.e e e@. W

. m.P.S.Me @

g h I. PreWeNeee@N"P@smNPNec a

" c M F3 8

o ----OOO---NNNNeme.ee@

O000000C0000000000000 g g g g e+++++++++****+e*+

9 M M M M N M N M 91 N 6' M N N M b N L N N M e lmh

  • k 000000OS0000000000000 C00000000000000000000 m Hw OOOOOOOOOOOOCOOOOOOOO e o e e e e e e e o e e e e e e e e e e e e

& PerEPNOPNcPPMcPMemPme t

3

] h on o o MNw*wwwwweOQ9@W>>>>

n em up wwwwwwwww*eOOOOOOOO I

g OE WN

          • ^+ + * ++ +++*****

b FNNFWD M r M Di r E M N M M M M M ONrNPO46WWMMW@eNOmm

. l#

wmOWCompemPOWOmoece en@=e@MOcNa-eeeemen m u p e e o e o e e e e e e o e e o e e e e y e O"#MNNNNw"Neme@OreN H

eewoOOcemeNNmmeepe@

0000000000000000000 g e p *+ + +++++***+++++

N M b1 N M N H M b' M N N M M M b H N N inh w h 0000000000000000000 0000000000000000000 Hw C000000000000000000 e e o e o e e e e o e e o e e e o e o PM(PNMW PNmPmPM"MPMP h

wa tE

-- M -Oc e,.r>

W gN + ++ + e "wumuvuMMewu

"+ *. "* O 0 0 0 0 0 0 h

MOhNg@NMere 8we e"P"Oh@OPme

  • I

~ @ O. W. eN em e.@eP

,e e M. e. m.

meNvm-neem E

ew 8 M g -O-NNM....@

q 00000000000 g ++++++++ee

$4 M M $161 S. N 91 N R M gg C0000000000 C0000000000 pw C0000000000 e e e e e e e e o e o 99WwmVWmpMe

84 ORNL-OHG 82-12749 10" , ,

- a 10" r '

10" r  :

E

5. 10" r s

E

.5 - '

LEGEND Q 10" -

- LMFBR CORC ASSY _

~

= a - CRBR CORC SSSY l + - PWR-U -

w  : x - FFTF 2 . .

b o

10" r I

s .

10" r  :

10" r '

10*

10 10' 10' 10' 10' 10' 10' 10' DCCAY TIMC AFTER DISCHARGE tyrt Fig. E.4. Spent-fuel assembly inhalation toxicity.

1

85 ,

h o

M UA WE ME FWFMMMMe@##

W m

OM ****ewerepe

  1. g + + +++++++++

NNStD'NStN N NN N 8gh PSPWemeMONM mm FOONMO*@@MF M

8 M 4 w@fGOMwmeN9 9 e e o e o e o e e e o "p "a we F#P8MN"8@88 m

...NN-.....

D0000000000 0 * ****+ +++*

NNNNNNNNNNN gQ C0000000000 C0000000000 pw C0000000000 e e o e e e e e e e o eyewMewmeMe h

o w

UA Yh OM FMWMMMMhbMMMPFMFM@@8d w "e "6 "* *"+" "++++4

" " " " " "e "e

+ "+ "+ "+ *+ "+ "+ "+ "+

N N N N N N h3 M N N N N M t N N t W N D' N l

@ @ C e O M e h m P e p e e b e m'O 8 0 W m .. -neCee --e-One- we--

W

  • wg e OpmeesNOWMe@*bMe,o"e o e e e o e e o e e e e e e e e e o r We o e M Ma bheweeweFre##mMNerPMN g 23

=

M 8

- - --OOO---NNNNmMaaeee g

- O. O. O. O. + O+ O+O. O O. +O.+++*O O. O*+O O

+ O O. O O O. O e 93 M N N N N N N N N N N N N N N N N N N N A l ,h C00000000000000000000 j w h 00000000000c000000000 kw C0000000000@O00000000 h e e e e e e e e o e o e o e e e e o e o e w eMgWPNYeNeePMeemPMPMP 1

3 h

~ z" n i 15 enenweweeeeee.ce.Mm OM PPP" Pee *P"PPPPP" p"P Mg +++++ + +++++++++++++

N N N N N N M N N N N ha Di N N h N N 61 ggh CMemOMeceMPwMNMosee ww ONeMeeNoeN"Wemebeme j WG E

NPOOGONe@OPOMPO@hSW e e e e e e o e e o e o e o e o e o e N PPwe@@PehPWMPPbNMew 9 "1"3 5

b l A wwwcOOcepwNNmMpec@e O000000000000000000 e e e**++++++++**++++

NNNNNNNNMMNNNNNNNNN lQ wh C00000000000000000O 0000000000000000000 kw 0000000000000000000 e e o e o e o e e o e e o e e o e e e P M O P N M r. P N M e M e m P M P M P h

o

^

%. E *******ee.

U ++ +++ ee++e+

NNN g N - n N h1 wNM N N ti M M w e mMere.mNeem NM@NEdeNGO.

O@ err E e o e o e o e e e e e

" WWMMNNetFNe e l~g 8

-O-NNM-awee C0000000000 0 + +++ +++e++

93 Di N N N 9163 N N N N Imh C0000000000 00000000000 ywh C0000000000 e o e e e o e o e o e PpFPMPPMpMy

87 e

a i

t E.2: Characteristics of Blended High-Level Waste I

W

88 I

(

ORtL-DWG 82-11763 10' r LEGEND _

o - FFTF

A - BLENDED CRBR :

+ - PWR-U x - BLENDED LMFBR .

1& . .

10P r  :

E .  :

E - .

s g . .

N i$ 10' r

p . .

5 ~

g o

8 10' -

g -

g

=  :  :

ld  :

10' r ,

10 10" 10' 10' 10' 10' 10' 10' 10' DECRY TIME RFTER OlSCHARGE 3L rl

, Fig. E.5. High-level waste radioactivity.

I

~ -- . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

q,

' ~

y, -

+

, v

~

w ..

Table E.5. Itigh-level usate endioactivity Blended OtSt PWR-U FFTF Blended commercial IMFBR Time Radioactivity Time Radioactivity Time Radioactivity Time Radioactivity (yr) (C1/MTIltt) (yr) (C1/MT1191) (y r) (C1/MTIltt) (yr) (C1/MTIFBI) 4.384E-01 4. 42 9 E + 06  % 380E-01 3.822 E+06 5.380E-01 1.008E+07 2.774E-01 1.007E+07 4.9 31 E-01 4.010t+06 7.380E-01 3. 027 7+ 06 7.380F-01 7. 372 t+ 06 3.3217-01 8.895t+06

  • .75 3 E- 01 3.515E+06 9.380E-01 2.485E+06 9.380E-01 5.842E+06 4.143E-01 7.568E+06 6.574!-01 3.13 4 E + 06 1. 4 3 8 F+ 0 0 1. 72 3 t + 06 1. 238 E+ 0 0 4. 652 t+ 06 4.964E-01 6. 594 E + 06 7.395E-01 2. 833 E+ 06 2. 43 8E+ 0 0 1.305t+04 1.438E*00 3.843E+06 *.785E-01 5. 856 E + 06 8.217E-01 2. 58 8E+ 06 3.438E+00 6.777t+05 2. 4 3 8 t+ 0 0 2.053E+06 6. 607 E-01 5. 279 E + 06
9. 03 8 E- 01 2.386t+06 * .438E+00 4.300E+05 5. 43 8E+ 0 0 6.364t+05 7. 42 8 E-01 4.816E+06 1.150 E+ 0 0 1.935E+06 1. 04 4 E+ 01 2.975t+05 1. 04 4 E + 01 3.593E+05 9.892E-01 3. 837 E+ 06 1.411E+00 1.603E+06 2.044E+01 2.213E+05 2.044E+01 2.557t+05 1.250E+00 3.156E+ 06 @

2.411E+00 8.841E+05 3.044F+01 1.736E+05 5.04 4 E* 01 1. 306 E + 05 2.250E+00 1. 739 E+ 06 5.411E+00 2.975E+05 1.004E+02 3.382t+04 1.00 4E+ 02 4.761E*04 5.250E+00 5.4465+05 1.041 E* 01 1.439E+05 3.004E+02 5.531E+02 1. 50 4 E+ 0 2 2.0765+04 1.025E+01 2.909E+05 3.041E+01 8.764E+04 1. 00 0!+ 03 1.020!+02 3.004E+02 6.514E+03 3.025E+01 1.766E+05

1. 00 4 E* 0 2 1.883E+04 3. 00 0 E+ 0 3 5.490E*01 5. 004 E+ 02 4.014?+03 1.00 2 E+ 0 2 3. 7975 + 04 3.004 E+ 0 2 1.232E+03 1.000E+04 3.903E+01 1.000E+03 1.732E+03 3.002E+02 2.727E+03
1. 000 E+ 0 3 2.725t+02 3.000E+04 2. 4 31 E + 01 3.000 E+0 3 1.924E+02 1. 000 E+ 0 3 7.210E+02 3.000E*03 5. 8 99 E + 01 1.000E+05 1.675 E + 01 1.000E+04 9.915E+01 3. 000 E+ 0 3 2. 4 E 0 E + 02 1.00 0 R*0 4 3.944t+01 3.000t+05 1.181E+01 3.000E*04 6.260E+01 1.0 00 F+0 4 1.491E+02 3.000E*04 2. 554 E + 01 1.000E+06 6.140 E + 00 1.000E+05 3.7175+01 3.000E+04 6.676t+01 1.00 0 E* 0 5 1.430E+01 3.000E+05 3.055E+01 1.000E+05 2. 9 96 + + 01 3.000E+05 9. 4 78 E + 00 1.000E+06 1.982E+01 3.000E+05- 1.979 3+ 01 5.000F+05 7. 40 0t + 00 5.000F+05 1.550E+01 1.000E+06 4.957E+00 1.000E+06 1.032E+01 l

l l

90 ORNL-DWG 82-11774 LEGEND -

o - FFTF 10' -

a - BLENDED CRBR _

~

+ - PHR-U i

x - BLENDED LMFBR .

10'  :  :

10'  :

E  :

r -

y .

e 10'  :

y  :

g  :

g .

r

$ 10'  :

E 10" r ,

l O  :

I 1 E i1 Ad R I i i aid j b a llI 1115 l 11 k i k 11 h 1 kaka 10" 10' 10' 10' 10' 10' 10' 10' DECRY TIME AFTER DISCHARGE tyr)

Fig. E.6. High-level waste thermal power.

l

I Table E.6. Righ-level unete thermal power Blended G ut Fut-U FFTF Blendad commercial 1JEFBt Time Thereal power Time Therust power Time Thereal power Time Therest power (y r) (w/NT11st) (yr) (w/MT11st) (y r) (w/wTim) (y r) (w/NT11st) 4.384E-01 1.9 0 4 E + 04 9. 38 0 E- 01 1.710!*04 5.380E-01 4.723E+04 2. 774 E-01 4.428'+04 4.9315-01 1.735E+04 7.380E-01 1.323E+04 7.380E-01 3.474t+04 3.321* 3.971 t + 04 5.753E-01 1.5275+04 9.381E-01 1.080E+04 9. 38 0 E-01 2.714E+04 4.143E-01 3.435E+04

, 6.*74E-01 1.3A2E*04 1. 43 8 E +0 0 7.325E+03 1.239E*00 2.104E+04 4.46 4 E-01 3.021E*04 7.395?-01 1.228E+04 2.438E+00 4.075E+03 1.418E*00 1.688E+04  %.7PME-01 2.693F+04 9.217E-01 1.117E+04 3.439E+00 2.600?+03 2.438E+00 8.14 4 R+ 03 6.6 07 E-01 2. 427'+ 04

9. 038 F-01 1.024?+04 5.438E*00 1. 4 8 6 E+ 03 5.438E*00 2.054E+01 7.428E-01 2.209E*04 1.150E+00 8.144t+03 1. 04 4 E + 01 9. 257 E + 02 1.044*+01 1.189 5+ 03 9.892'-01 1.731T+04 1.411 E+ 0 0 6.605E+03 2.04aE*01 6.707t+02 2.044?+01 9. 533 E + 07 1.250E+00 1. 395 t
  • 04 e 2.411E+00 3.353E+03 3.044t+01 5.218E+02 5.044E+01 6.039t+02 2.250E+00 7.137t+03 Fd 5.411E*00 8.883t+02 1.004E+02 1. 041 E + 02 1.004E+02 3.563!*02 5. 250!+ 00 2. 05 8 E+ 03 1.041E+01 4.210E+02 3.00 4 E*0 2 6.495t+00 1.504E+02 2.640E+02 1.025F+01 9.775? + 02
3. 041 E+ 01 2.721t+02 1.000E*03 2.240E+00 3. 00 4 E + 0 2 1.772E+02 3.025E+01 A.104E+02
1. 00 4 E+ 0 2 8.122E+01 3.000?+03 7.739M-01 ".004E+02 1.244E+02 1.002?+02 1.7695+02 3.004F+02 2. 556 '+ 01 1. 009 E + 0 4 4. 594 E- 01 1.000E+03 5.571t+01 3. 00 2 E + 02 5.7662+01 1.000E+03 8.327E+00 3.000E+04 1.888E-01 3.000E+03 5. 046 t+ 00 1.00 0 !+ 0 3 1.993E+01 3.000F*03 1.355E*00 1.000E*05 7.230E-02 1. 00 0 t+0 4 2.101t+00 3.000E+03 4.920E+00 1.000E*04 7.603E-01 3.000!*05 7.918E-02 3.000E+04 1. 071 E + 00 1.000!+04 2. 78 6 E + 00 3.000 !+0 4 3.734E-01 1.000!*06 7.394E-02 1.000F+05 4.101E-01 3.000E+04 1.104t+00 1.000E+05 9.996E-02 3.000E+05 4.266E-01 1.000 E*0 5 2.5163-01 3.000E+05 7.449!-02 1.000E+06 3.642E-01 3.000E+0% 1.751E-01 5.000E+05 7.375E-02 S. 000 E+ 0 5 1.680E-01 1.000E*06 6.1905-02 1.000E+06 1. 350 E-01 v

92 ORNL-OWG B2-Il771

.., , , . . , . . , , . . , , , , . , ., m LEGEN0

~ ~

~

o - FFTF a - BLENDE0 CRBR 10" ._ + - PWR-U ,

x - BLENDED LMFBR _

l O  : =

E 3i 10' -

E  :

g . _

g . .

10' r 3 1  :  :

U 10' r

5  !

10* r ,

10' 1 10' 10 10' 10' 10' 10' 10' 10' 10' DECRY TIME ArTER OlSCHARGE tyl Fig. E.7. liigh-level waste ingestion toxicity.

1 I

93 h

um "U h <

.g NNeewwwwwwwwCOwmWWWW%gh.

h y" w w w w w.w .

..... w w.w ......

w w w w w C. O. O. O. O. O. O. O. i

& DA M D3 D' D3 b Df M M k' Di M M M M M D M St D' Dt D- M h GNOcMMEOPNPO*@@FNPP@eNP w l ~# O@w@@@e*@hNPNWMWeNP@@Me g a c - D M O . - O M. n. Ne O e c. e. . ee -.. D. O. N O G

o. m Me -o ee ee -e -oMe M . e e N - - a - e - M N - - - .e 8

w perprepFOOOerNNMmeere@@

00000000000000000000000 eeee e e e t

  • q M M M DJ M M M 99 DI M M den M M De M N D3 W M M M e

m lmh PN"MerbmNocorONNCOOOOOOO w h e

ewtONPW OCNNOOOOOOOOOO Hw PMe.rPwSFNNNOOOOOOOOOOOO e e e o e e o e e o e o e e e o e o e e e e NMS&W.EP@PN("MPM*M"MPMO" h

um U

- ---------OOe.. rrrrre y *. *.P. P.P.". P.e. p.e. e. O. O eO. O. O. O. O. O. O. O.

.b D8 F F DJ M 99 DJM M MStMD1D MbUbWMM MONMeeMeeeewpM'mMOpeOe g

m ,"g dePObewegeregMeM@@O@g

- . . ee.ne eo M e a.n.a.. . .. .. eo .Me -e o.w .Oe N o eee M

MSOMMNPPP@PWP@@MPPNNF y b -

ow

. t M

l pePOOOOweeNNNNmmence@

w w

9 Cg 6060 0 0 0 0 0 0 0 0. D. 0 0 0 0 0 0 0 0. O.

em D1 M M M M M M M M M M k N M M N M M M M D3

& Sh COOWE@EOmemem8 OOC 0000 g W h emeMMMmedeOOOOOOOOOOO M UW Me V. M e e N oE e0 6. O e Oo Oe oO *f D.OeCoOe Oe Oe O e O e O o

UIh@PPNUIPN@PPMOPMPMPMP o .b -

7 tE g -- ----------Cerwe<e..

g ok M

p. r. e. e. p .". w p. . P.r. e. O. O. O. O. O. O. O. O.

"2 M v M w M M M e w M r M M M M D, w M M

  • . en-orwe-weMOOMee-re g

e Ow

-s M"bMMNOperNNeCO@OWhe or-omNerNMemorNee.

N * * * * *

  • e e * * * * *
  • e * * * *
  • I m IMMMUNN"""NNP@MNNN" 4 _-

M eveOOOOwwwNNMMedert C 0 tO0 O O.

  • C C.00000000000200+

M V N D1 D1 D' M N M M M DE M M M V M M Di gQ .C .O OMMMM

, , m @ M E d .d .e OOOOOOOOD W#OOOOOOO pw M.PIM e eW o 8 e 8e 8eCoOeOeOeOeOe O.OeOe C.Oe O.

Ch@PNMM PNMemPMPMPMw h

on U

-- ----------COcernewe<wew

  • w w w w w w w w e. r. *. O O. +O. O. O. O. O. O. O. O.

M M M D3 Di D' M D M Dr M M bt Di M D M N N M N D' M 8M h. P N e h W M O m' e e e N W @ P O M P @ @ M S F tw&dwCNewCwwwCRONOW4mN@

l wemee eN eP O o Pe Pe O.

e N F.@e e ".O. O. P. W.P.F. W. W O. e @e gm MNNNNNPPPPS$$@N@@@MMMMP F"

I. -------.OOO--NNMM......

m O0000000000000000000000

  • 0 0 0 0 0 9 9 M M M M M M 91 M M M N N N DJ M D3 M DJ M DJ 65 N M lQ eSeMechEOPee" deOOOOOOOO M e r e - M e - - - . e. O O O O O O O O O D Hw Me @ e boO eM e Ne oe eosee et O.

o OO e Oe O e O.

e O eO. OoOeOe Oe W W W'W D G P " P N O P M P M PMPMPMOP I

~ _ __ _ _ _ ]

94 l

ORNL-OHG 82-12750 10" -

LEGEN0 _

o - FFTF  :

a - BLEN0E0 CRBR : -

+ - PWR-U x - BLENDE0 LMFBR j l _

10 _

10" r  :

E  :

C -

i E

L g 10" -

m  :  :

a -

w U 10" r

.o X

E  :

l O :

)

10"  :- -

10

10 10' 10' 10' 10' 10' 10' 10' 1

DECAY TIME RFTER 0iSCHARGE Igr1  ;

Fig. E.8. High-level waste inhalation toxicity.

i 1

1 I

Table E.8. , High-level unste inhalation toxicity Slended CRSR Mat-U FFTF Slended commercial IMF4R Time Inhalation toxicity Time Inhalation toulcity Time Inhalation toxicity Time Inhalation toxicity (yr) (m3 air /MT1HM) (yr) (m3 air /MTIlWE) (yr) (m3 air /MTIltt) (yr) (m3 str/MTim )

4.3842-01 2.332 t + 16 T.390E-01 2.079 E + 16 5.380'-01 1.110 ? + 17 2.774F-01 8.030E+16 4.9 31E-01 2.239t+16 7.380?-01 1. 8 60 ? + 16 7.380*-01 9.909t+16 3.3212-01 7.7s5?+16 5

5.75 f ?- 01 2.116 t + 16 9.340E-01 1. 700 E + 16 9. 3 9 0 E- 01 9.052 E + 16 4.143E-01 7.377t+16 6.%74E-01 2.010?+16 1.438t+00 1.440E+16 1.239E+00 8.284E+16 4.964!-01 7.063!*16 7.395E-01 1.914E+1F 2.438E+00 1.197t+16 1.438t+00 7.741t+16 5.79*E-01 6.793?*16 8.217'-01 1.839E+16 3.438t+00 1.073F+16 2.439t+00 6.699E+16 6.507E-01 6. 557 t + 16 9.93tE-01 1.766t+16 5. 4 3 8 t+ 0 0 9. 6775 + 15  ?.439E*00 6.1515+16 7.429E-01 6. 350' + 16 1.150?+00 1. 59 4 ?+ 16 1.044E+01 9. 406 E + 15 1.044F+01 5. 999 t + 16 9.892E-Ot 5. 857 E + 16 1.411E+00 1.462t+16 2.044E+01 3.04 4 E+01 6.688E+15

5. 4 56 t + 15 2.044E+01 5.044E+01
5. 797 t + 16

%. 299 t + 16 1.2%0F+00

2. 250 E + 00 5.483E+16 4.741 E
  • 16 2.411E+00 1.19 A t + 16 5.411E+00 1.023t+14 1.004F+02 2.249E+15 1. 00 4? + 02 4.6*9t+16 5.250t+00 4.159 5 + 16
1. 041 E* 01 9.523?+15 3.00 4 E+ 0 2 1.052E+15 1.504E+02 4.148 t + 16 1.025E*01 3. 4 77 ? + 16 3.0 41 E+ 01 8.727E+15 1. 00 0 E + 0 3 4.310!+14 3.004E+02 3.028t+16 3.025E+01 2.683E+16
1. 00 4 E + 0 2 7.063t+15 3.000 E+ 0 3 2.041E+14 5.004E+02 2. 092 E + 16 1.00 2 ? + 0 2 1.743E+16 3.004E+02 4.64*?+15 1.000E+04 1.417t+14 1. 00 0!+ 0 3 9.624T+15 3.002E*02 1.053t+16 1.000E*03 1.692E+15 3.00 0 E* 0 4 7.176t+13 3.000!+03 1. 782 E + 15 1.000F+03 3. 761 E + 15 3.00 0 E + 03 5.809E+14 1.003E+05 1.815E+13 1.000E+04 1.04 2 E + 15 3. 000 E + 03 1.410!+15 1.000!+04 3.818E+14 3.000 E+ 0 5 1. 616 t + 13 3.000E+04 5.029F+14 1.000E+04 9.601?+14 3.000!+04 1.811E+14 1.000!+06 1.644E+13 1.000E+05 1.09%E+14 3.000r+04 4.757E+14 1.000E*05 3.056E+13 3.000E+05 8.16 2 E + 13 1.000E*05 7.938E+13 3.000E*05 1.373E+13 1.000!+06 8.029P+13 3.00?t+05 3.096 ? + 13

%.000 E+0 5 1.485'+13 5. 00 0 !+0 5 3.284'+13 1.000t+06 1.351*+13 1.000!*06 2.927E+13

97 i

E.3: Characteristics of Blended Fuel Assembly Structural Material Waste i

t

98 ORNL-DWG 82 11769

~

LEGEND o - FFTF SMW 10' a - BLENDED CRBR

+ - PWR-U l x - BLENDED LMFBR 10' -

1

- 10'
-

r  : -

E ~

.3 .

o

~

w 10' r -

t  : _

e 3 10' -

~

a:

E ld  :

el 10" r 4 1 111! R R E 1 1. a Al 1 1 1 I i tAl iR AAA k n ad m AAI maw 10" 10' 10' 10' 10' 10' 10' 10' DECRY TIME AFTER DISCHARGE (3r1 Fig. E.9. Fuel-assembly structural material waste radioactivity.

1

Table E.9. Puet-seaembly st ructural material unete radioactivity Slended Mat Pint-U FFTF Blended couamercial IMFSR Radiomettwity Time Radioactivity Time Radioactivity Time Radioactivity Time (yr) (yr) (C1/MTiltt) (yr) (C1/MTIlgt) (y r) (C1/Prfilst)

(C1/NTiltt) 4.395E-01 1.491E+05 5.390E-01 4.009 E + 04 5.380E-01 4.4tSE*05 2.77tE-01 1.830t+05 4.931?-01 1.369E+05 7. 38 0 E-01 2.811M+04 7.380'-01 2.610E+05 3.321E-01 1. 596 t+ 05

%.753?-01 1,221E+0% 9.380E-01 2.189E+04 9.380!-01 1.656*+0% 0.143E-01 1.31eE+05 E.%7t!-01 1.104'+05 1.438E*00 1.566t+04 1.239'*00 1. 0 50 F + 05 4.9 6 4 E-01 1.108E+05 1.39'E-01 1. 009 E + 0% 2.438E+00 1.16%?+0s 1.e38E*00 7.42nE+0e * . 795E-01 9.4549+ 04 8.217 E-01 9.314E+04 3.4382+00 9. 476 5 + 03 2.439t+00 3.160t+04 6.607'-01 9.19 4 t + 04 9.039E-01 m.E 62 E

  • 04 *. 836E+00 6.7e0!+03 5.438t+C0 A.943F+03 7. 82 8t-01 7.192E*04 1.150E*00 7.212E+04 1. 0 4 4 '+ 01 3.405E+03 1.04t?+01 2.313t+03 9.892t-01 5. 201 t + 04 1.411E*00 6.161E+04 2.044E*01 1.352t+03 2.044T+01 a.943t+02 1.290!+00 4.014t+04 ND 2.411t*00 3.881E+04 3. 04 4 E+ 01 8. 2589 + 02 5.044F+01 3.971*+02 2.250M+00 2.051**04 5.411E*00 1.568E+04 1.00e!+02 3. 388!+ 02 1.00eE+02 2.413t+02 5.290E+00 5.800E+03 1.041E*01 2.9783+03 3. 00 4 E + 0 2 7.844E*01 1.904E+02 1.645?+02 1.025E+01 1.003*+03 3.041E+01 6.803d+02 1.000E*03 9.709t+00 3.00er+02 6.538E+01 3.02%E+01 3.571**02 1.0042+02 3.10tE*02 3.000E+03 7.5132+00  %.004E+02 2.916t+01 1.00 2 E+ 0 2 1.433t+02
3. 00 4 E + 02 8.78tE+01 1.00 0 E + 04 6.429E+00 1.000!+03 1.651?+01 3.002 E + 02 3.984E+01 1.000 E*0 3 2. 566 E + 01 3.000E*04 4.821E+00 3.000E+03 1.27eT+01 1.000 E+0 3 1.131T+01 3.000E+03 2.360E+01 1.000E+05 2.48tE+00 1. 00 0 E
  • 04 9.265E+00 3.000E*03 8.292 E + 00 1.000E+04 2.060!+01 3.000E+05 6.183E-01 3.000!*04 5.145E+00 1.000E+04 6.116 E + 00 3.000 E+ 0 4 1.597E+01 1. 000?+ 06 1.682E-01 1.000!*0% 1. 6 3 9 t + 00 3.000E+04  ?.719E*00
1. 000 E *0 5 8.281?+00 3.000!+05 2.797E-01 1.000E+05 1. 5559 + 00 3.000E+05 1.578 E+ 00 1.000E+06 3.1%3 E- 02 3.000!+05 3.0782-01 5.000!+05 3. 562 E-01 5. 000 E+ 0 5 9. %56 E- 02 1.000E+06 1.3323-02 1.000!*06 3.1293-02 l

I

100 i

r ORNL-DHG 82-11775 LEGEND 10' , - FFTF SMH _

a - BLENDED CRBR

+ - PWR-U -

x - BLENDED LMFBR ld  :  :

10' - -

5 .

g .

r .

2 10'  :  :

5 .

E g -

E 10  :  :

y 10  :  :

10  :  :

10

10 10' 10' 10' 10' 10' 10' 10' DECRY TIME AFTER DISCHARGE tyl Fig. E.10. Fuel-assembly structural material waste thermal power.

1

Table E.10. Fuel-assembly structural material umste thermal power Blended man rwt-U FFTF 31 ended commercial IMFBt Thermal power Time Thermal power Time Therum1 power Time Therust power Time (yr)

(Fr) (w/nlm) (yr) (w/MTim) (yr) (w/nlm) ' (w/nlm) 4.384E-01 8.161E+02 M.380E-01 2.268E+02 5.380E-01 2.540E+03 2.774E-01 9. 851 E + 02 4.931E-01 7.5IIE+02 7.380?-01 1.720E+02 7. 38 0 E-01 1.462?+03 1.321E-01 8.547!+02 5.753 E- 01 6.711E+02 9.380?-01 1.437E+02 9.380E-01 9.05mE+02 4.143E-01 A.987t+02 6.074E+02 1.438E+00 1.160t+02 1.239E*00 5.585'+02 4.964E-01 5.792M+02 6.574E-01 4.870E*02 7.3955-01 5.561E+02 2. 419E+0 0 9.664E+01 1.438E+00 1.871E+02 5.785t-01

'8.217E-01 5.148E+02 3.438E+00 9.331M+01 2.438'*00 1.638t+02 6. 6 07 E-01 4.153E+02 9.038E-01 4.793E+02 5.43mt+00 6. 2P6 E+ 01 5. 43 8 E + 0 0 4.229E+01 7.428E-01 1.592E+02 1.150E*00 4.034E+02 1.044?+01 1.203E+01 1. 04 4 E + 01 1.674t+01 9.892E-01 2.503F+02 ha

1. 411E+ 00 3.5 01E+ 02 2.044E+01 9.901E+00 2.044E+01 5.141E+00 1. 250E + 00 1.877t+02 C3 M

2.418E+00 2.380!+02 3.044!*01 2.801E+00 5.044E+01 1.1079+00 2.250E+co 9.190!+01 5.411E+00 1.2 02 E+ 02 1.000E*02 3.115t-01 1.00 4E* 02 8.4509-01 5.250E+00 2.702t+01 1.04tE+01 2.939E+01 3.004 E+ 0 2 1.364R-01 1. 50 4 E+ 0 2 7. 403 t-01 1.025E+01 5. 819 E

  • 00
3. 0 41 E + 01 2.6578+ 00 1. 00 0!+ 03 7.310E-02 3.004E+02 5.906E-01 3.0 2 5E + 01 1.256E+00 1.004E+02 4.652E-01 3.000E*03 5. 554 E- 02 5.004?+02 4.9699-01 1. 0 0 2'+ 0 2 6.4989-01
3. 004E+ 32 3.251E-01 1.000E+04 4.640E-02 1.000E+03 3.882E-01 3.002E+02 4.1763-01 1.000!+03 2.5145-04 3.000E*04 3.276E-02 3.00 0 E *0 3 2.847E-01 1.000E+03 2. 329 E-01 3.000E*03 2.182 E- 01 1.000E+05 1.485E-01 1.000E+04 2.01At-01 3.000E*03 1.464E-01 1.000E+04 1.8 05E-0 5 3.000E+05 2.775E-C3 3.000E+04 9.932E-02 1.000E+04 1.005E-01 3.000E+04 1.2442-31 1.000E+06 2.240E-04 1.000E+05 1.892E-02 3.000E+04 4.993E-02 1.000E+05 5. 3 8 0E- 0 2 3.000E*05 2.230E-03 1.000E*05 1.3252-02 3.000E+05 9.0485-03 1.000E*06 6.308E-04 3. 00 0 E* 05 2.421E-03 5.000!+05 1.819E- 0 3 5.000E+05 1.0945-03 1.000!+06 2 . ? 61 E- 0 4 1.000E+06 6.1212-04 s

102 ORNL-DWG 82-11772 LEGEND o - FFTF SMW .

10, a - BLENDED CR8R m .

+ - PWR-U

_ x - BLENDED LMFBR -

10' r E 10' r  :

C E E  :

is _

10' r m

1 .

p _

b 10' r  :

?

o -

10' r -

l 10'  :- ,

-10' 10 10" 10' 10' 10' 10' 10' 10' DECRY TIME RFTER DISCHARGE lyrt l

Fig. E.ll. Fuel-assembly structural material waste ingestion toxicity.

l I

Table E.11. Fuel-eseeably structural meterial weste ingestion toxicity wa-U FFTF 31 ended coenercial IMFBa Blended Otsa Time Ingestion toxicity Time Ingestion toxicity Time Ingestion toxicity Time Ingestion toxicity (y r)

(yr) (yr) (m3 water /MTIMM) (m3 wate r/MTilat)

(yr) (m3 wate r/MTIttt) (m3 water /IfrIntt) 8.390E-01 2. 0565 + 09 5.39 0E-01 * . 096 E + 09 2.7742-01 3.544E*09 4.384E-01 f.784E*09 3.017t+09 3.321F-01 2.380t+09 4.9312-01 1.62 4 E+ 09 7.390'-01 1. 64 2 E + 09 7.39 0 E-01 9.38 0 E- 01 1.359t+09 9.390E-01 1.950t+09 4.143E-01 1.669E+09 5.7533-01 1.4512+39 1.275E+09 4.964E-01 1.343E+09

6. 574 E- 01 1.320E+09 1.438E+0f 9.280E+09 1.2389+00 2.439E*0' 5.409E+09 1.438t+00 9.328'+09 5.7ASE-01 1.139E*09 7.395E-01 1.28tr+09 4.A09E*09 6.607F-01 9.900E+0e 8.217E-01 1.131E+09 3.438E" 3.877t+08 2.4382+00 9.038E-01 1.060!+09 5.439E- 2.779 t + 09 5.438E+00 1.869E*08 7.428t-01 8.751E+09 1.044E+01 1.881E+08 1.04 4 t +01 1.232F+08 9.892E-01 6.503E+08 Fd 1.15 0E + 0 0 9.045E+08 8.282E+07 1.250E+00 5.169E*0g C3 1.4 TIE +03 7.933E+08 2.044E*01 1.1583+08 2.04mE+01 "

2.411E+00 5.563E+08 3.044E+01 8.491t+07 5.044E+01 4.289E+07 2. 250 E

  • 0 0 3.002E+08 1.004E+02 2.310t+07 1.004t+02 1.9 9' E + 07 M.250E+00 1.464E+09 5.411E+30 3.098E+08 1.167 9 + 07 1. 025 E+ 01 8. 516 t + 07
1. 0 41 E + 01 1.139E*08 3.00 4 E+ 0 2 3.303E+06 1. 50 4 t + 0 2 1.000E*03 6.518E+05 3.004E+02 *. 457 E + 06 3.025E+01 5.069E+07 3.04tE*04 4.221E+07 1.00 2E+0 2 1. 489 t + 07 1.004E*02 1.48EE+07 3.000E*03 4.920E+05 5.004E+02 3.690t+06 1.000 E+ 04 3.764E+05 1.000E + 0 3 2.600t+06 3.002E+02 3.7095+06 3.004E+02 3.722E+06 1.000E+03 1.597Ee05 1.000E+03 1.2 9 8E* 06 3.000E+04 2.012E+05 3.000E*03 1.832E+06 1.0 00E+ 05 5.256t+04 1.000E+04 1.271E+06 3.000E+03 9.420E+05 3.000E+03 1.007E+36 1.000E*04 6.138t+05 1.000E+04 6.980E+05 3.000E+05 3.187F+04 3.000E+04 6.091E+05 3.300!+34 3.548E+05 1. 000 E* 06 1.362E+04 1.000E+05 1.330!+05 3.000E*04 2.864E+05 1.000E+05 8.3 8 5E+ 04 3. 0 0 0 E + 0 5 6.678t+04 1. 00 0 E
  • 0 5 9.660!+04 3.000E+05 2.321!*04 1.000!+06 2.933E+04 3.000!+05 7. 06 5 E + 04 5.000!+05 5.000E*05 5.2472+04 1.63 95+ 04 1.600E+06 2.665E+0a 1.000E+06 1.2885+04

104 ORNL-OHG 82-12751 10" r 10 r ,

~

? .

1 -

! 10 -

~

s E .

p LEGEN0 10,,

? o - FrTF SMW -

} -

a'- BLENDE0 CRBR

+ - PWR-U

> x - BLENDE0 LMFBR l

C '

S 10  : _

l 5 s

l 10' ,

10'  : -

10' 10 10' 10' 10' 10' 10' 10' 10' DECAY TIME AFTER DISCHARGE tyl Fig. E.12. Fuel-assembly structural material waste inhalation toxicity.

l Table E.12. Fuel-assembly st ructural unterial waste inhalation toxicity l l

FWR-U FFTF Blended commetrial IJEFBR Blended CRBR Time Inhalation toxicity Time Inhalation tonicity Time Inhalation toxicity Time inhalation toxicity (yr) (yr) (m3 air /MTIMM) (yr) (m3 air /MTIHM) (yr) (m3 str/MTilet)

(m3 air /MTilDt) 5.380?-01 6. 241 ? + 14 2.774E-01 4.109t+14 f 4. 39 4 E-01 2.334t+14 5.380E-01 1. 305 E + 14 5.191E+14 3.321F-01 3.963E+14 2.258E*14 7. 39 0 E-01 1.153E+14 7. 3R O E-01 I 4.931E-01 9. 38 0 E-01 4.E05t*14 4.143E-01 3.792E+14 5.753E-01 2.162E+14 9.340t-01 1.0495+14 3.657E+14 1.438?+00 8. 917 t + 13 1. 23 8 E+ 0 0 4.193E+14 4.964E-01 6.574E-01 2.082E+14 3.953E+14  %.79%E-01 3.547E+14 )

2.013E+14 2.439E+00 7. 416 E + 13 1. 439E* 0 C

7. 395 E-01 3.532E+14 6.607E-01 3. 458 E + 14 {

8.217E-01 1.95 4 E + 14 3.4399+00 6.698E+13 2. 4 3 8 '+ 0 0 3.394E+14

  • .9565+13 5.4383+00 3.217E+14 7.428E-01 j 9.038E-01 1.903E+14 *. 430'+00 3.080E+14 9.89 2 E-01 3.224E+14 g t

1.150P+00 1.780E+14 1.04 4 ? + 01 4.983 ? + 13 1.044E*01 l i

1.684E+14 2.044E+01 4.036E+13 2.044R*01 2.920E+14 1.25 0 E* C0 3.113E+14 o 1 1.411E*00 2.25 0 E* 00 2. 889 t + 14 Ln 2.411E+00 1.460E+14 3.044E*01 3. 575t + 13 5.044t*01 2.667E+14 1.004E+02 2.473E+13 1.004E+02 2.452?+14 M.250E+00 2.666F+14 5.411E+00 1.213E+14 1.02 5 E +01 2.391E+14 9.880 E + 13 3.000E*02 1.546E+13 1.%0 4 E* 0 2 2.312E+14 1.041E+01 2.060E+14 3.029E+01 2.084E+14

3. 041 E+ 01 8.757E*13 1.000E*03 *.828 ?+ 12 3.004E+02

%.004E*02 1.891?+14 1.00 2 E+ 0 2 1.6365+14 1.004E+02 7.955E+13 3.000E+03 5.775 E + 12 3.002?+02 1.190E+14 7.126 E* 13 1.000!+04 3. 55 89 + 12 1.000E+03 1.688E+14 3.004E+02 3.00 0 E+0 3 1.412E+14 1.000F+03 8.466t+13 1.000F+03 6.140E+13 3. 000 E

  • 0 4 1.340*+12 1.000E*05 1.863E+11 1.000E+04 9.870!*13 3.000E+03 6.520!+13 3.000 E* 0 3 5.235E+13 1.000E*04 4. 287E + 13 3.67 6 E+ 13 3.000E+05 4.451E+10 3.000E+04 4.544E+13 1.000E+04 1.000E+05 5.791E+12 3.000E+04 1.79st+13 3.000E+04 1.70 2 E + 13 1.000E*06 3.412E+10 2.328E+12 3.000E+05 1.713*+11 1.000E*05 1.000E+05 2.162E*12 3.000E+05 2.020 E+ 11 3.00 0 E+0 5 4. 878 E + 10 1.000E+06 1. 328 5 + 11 5.000E+05 1. 791 E + 11 5.000E+05 4. 371E + 13 1.000E+06 1.341ge11 1.000E+06 3.936E+10 l

l

107 l

APPENDIX F: QlARACTERISTICS OF CRBR HIGH-LEVEL WASTE AND PWR-U SPENT FUEL l

l I

1 1

1

108 ORNL DWG 82-12752 10' LEGEND _

~

o - PWR-U

a - CRBR .

10' -

10' r 7 E  :  :

5 . .

p - .

.3 o 10, 7 7 c  :  :

y - .

g . .

o 3 8 10  :

7 g  :  :

g  :

t 10'  :

10'  :

7 0 $ I ll111 [ l la j ik 0 I 11 I $ $ kik I1 $ k kid 10" 10' 10' 10' 10' 10' 10' 10' DECAY TIME ArTER DISCHARGE3t ri Fig..F.1. Radioactivity of blended CRBR high-level waste and PWR-U spent fuel as a function of decay time.

109 Table F.1. Radioactivity of blended CRBR high-level waste and PWR-U spent fuel as a function of decay time Blended CRBR HLW PWR-U spent fuel Time Radioactivity Time Radioactivity (yr) (Ci/MTIHM) (yr) (Ci/MTIHM)

4. 38 4 E-01 4.429E+06 1. 0 00 E- 01 1.173E + 07
4. 931 E- 01 4. 010 E + 06 3 . 000 E- 01 6.334E+06
5. 753 E- 01 3. 515 E+ 06 5.000E-01 4. 336 E + 06
6. 57 4 E-01 3.134E+06 1.000E+00 2. 5073 + 06 7.3 95 E- 01 2. 833 E + 06 2.000E+00 1.386 E+ 06
8. 217 E- 01 2. 58 8E+ 06 3.000E+00 9.221E+05 9.0 38 E-01 2.386E+06 5.000E+00 5. 775 E + 05 1.150E+00 1. 935 E + 06 1.000E+01 3.935E+05 1.411E+00 1.603E+06 2.000E+01 2. 8 08 E+ 05 2.411E+00 8. 841 E + 05 3. 0 00 E+ 01 2.129E+05 5.411E+00 2.975E+05 1.000E+02 4. 096 E+04 1.041E+01 1. 439 E+ 05 3.000E+02 4. 280 E+ 03 3.041E+01 8.764E+04 1. 0 00 E+ 0 3 1.742E+03 1.004E+02 1. 883 E + 04 3.000E+03 7. 6 97 E + 02 3.004E+02 1. 232 E+ 03 1.000E+04 4. 676 E+ 02 1.000E+03 2.7258+02 3.000E+04 1.933E+02 3.000E+03 5. 899 E + 01 1.000E+05 5. 524 E + 01 1.000E+04 3. 944 E+ 01 3.000E+05 3. 433 E+ 01 3.000E+04 2. 554 E + 01 1. 000 E+ 0 6 2.013E+01 1.000E+05 1.430E+01 3.000E+05 9.478E+00 l 5.000E+05 7.400E+00 1.000E+06 4. 957 E + 00 l

110 ORNL DHG 82-12753

~ ~

~

LEGEND o - PHR-U 10' 6 - CRBR r _

~

10'  : ,

- 10'  :-  :

E E C ~

E -

3 e 10' r -

S  :  :

g -

y -

t

$ 10 g  :

iE E  !

1' 10" r 10 r 10

10 10' 10' 10' 10' 10' 10' 10' l

OECAY TIME AFTER OISCHARGE Igri Fig. F.2. Thermal power of blended CRBR high-level waste and  !

I PWR-U spent fuel as a function of decay time.

l 1

l i

l

111 Table F.2. Thermal power of blended CRBR high-level waste and PWR-U spent fuel as a function of decay time Blended CRBR HLW PWR-U spent fuel Time Thermal power Time Thermal power (yr) (w/HTIHM) (yr) (W/MTIHM) 4.384E-01 1. 9 04 E + 04 1.000E-01 4. 778 E+ 04

4. 931 E-01 1. 735 E + 04 3. 000 E-01 2.631E+04 5.753E-01 1. 527 E + 04 5.000E-01 1. 843 E + 04 6.574E-01 1.362E+04 1.000E+00 1.046E+04
7. 39 5 E-01 1.228E+04 2.000E+00 5. 389E+ 03 8.217E-01 1.117E+04 3.000E+00 3. 329 E + 03 9.038E-01 1. 02 4 E + 04 5.000E+00 1. 826 E+ 03 1.150E+00 8.144E+03 1.000E+01 1.132E+03 1.411E+00 6.605E+03 2.000E+01 8.644E+02 2.411E+00 3.3 53 E+ 03 3.000E+01 7.190E+02 S.411E+00 8.883E+02 1.000E+02 2. 843 E + 02
1. 041 E+ 01 4.210E+02 3.000E+02 1.261E+02 3.041E+01 2. 721 E+ 02 1.000E+03 5. 474 E+ 01 1.004E+02 8.122E+01 3.000E+03 2. 278 E + 01 3.004E+02 2.556E+01 1. 000 E+ 0 4 1. 352 E + 01 1.000E+03 8.327E+00 3.000E+04 5.205E+00 l 3.000E+03 1.355E+00 1.000E+05 1.053E+00 1.000E+04 7.603E-01 3.000E+05 5. 853 E- 01 3.000E+04 3. 734 E- 01 1.000E+06 3.907E-01 1.000E+05 9. 9 96 E- 02 3.000E+05 7.449E-02 5.000E+05 7. 3 75 E- 02 1.000E+06 6.190E-02 l

112 ORNL DWG 82-12754 LEGEND o - PWR-U .

a - CRBR 10" - -

10 r k10" r  :

E  !  !

g

[" 10 -

7 U 10'  :

R  : .

s  :

10  :

10'  :

. s 10' 10 10' 10' 10' 10' 10' 10' 10' I

DECAY TIME RFTER DISCHARGE tyc1 Fig. F.3. Ingestion toxicity of blended CRBR high-level waste and PWR-U spent fuel as a function of decay time.

1 1

113 Table F.3. Ingestion toxicity of blended CRBR high-level waste and PWR-U spent fuel as a function of decay time Blended CRBR HLW PWR-U spent fuel Time Ingestion toxicity Time Ingestion toxicity (yr) (m3 water /MTIHM) (yr) (m3 water /MTIHM) f l 4.384E-01 3. 667 E+ 11 1.000E-01 5.16 OE + 13 l

4.931E-01 2.912E+11 3.000E-01 1.732E+12

5. 753 E- 01 2.456E+11 5.000E-01 4.605E+11 6.574E-01 2.247E+11 1.000E+00 3.482E+11 7.395E-01 2.112 E + 11 2.000E+00 2.889E+11
8. 21 ? E-01 2.007E+11 3.000E+00 2.605E+11 9.038E-01 1. 920 E+ 11 5.000E+00 2.332E+11 1.150E+00 1. 718 E + 11 1.000E+01 2. 018 E+ 11 1.588E+11 1.411E+00 1.561E+11 2.000E+01 1.254E+11

~

2.411E+00 1.201E+11 3.000E+01 5.411E+00 8.764E+10 1.000E+02 2 . 477 E+ 10 I 1.041E+01 6. 612 E + 10 3.000E+02 1.107E+09 3.041E+01 4.116 E + 10 1.000E+03 3. 866 E+08 1.004E+02 8. 006 E + 09 3.000E+03 1.506E+08 3.004E+02 2.547E+08 1.000E+04 9.431E+07 i 1.000E+03 6.190 E + 07 3.000E+04 5.502E+07 3.000E+03 9. 627 E+ 06 1. 000 E +0 5 5.485E+07 1.000E+04 5. 7 09 E + 06 3.000E+05 5.955E+07 t

3.000E+04 3.976E+06 1.000E+06 2. 713 E + 07 1.000E+05 3. 666 E + 06 3.000E+05 3.843E+06 5.000E+05 3. 02 8E + 06

1. 00 0 E +0 6 1. 6 97 E + 06 l

{

l

114 ORNL CWG 82-12755

l I 7 Y I T Y Y Yv44

  • '] v w] v v] ,i 10" i 2 - -::- LEGEND _

o - PWR-U

A - CRBR l 10 -

10"  :- ,

E  : .

C -

r . .

L g 10' r

m .

E .

1 e . .

U o

10"  :

R -  :

R  : .

10" -

10" r ,

' ' "" "" "" ~" "" "" "-

10

10 10' 10' 10' 10' 10' 10' 10' Fig. F.4. Inhalation toxicity of blended CRBR high-level waete and PWR-U spent fuel as a function of decay time.

l

115 Table F.4. Inhalation toxicity of blended CRBR high-level waste and IVR-U spent fuel as a function of decay time Blended CRBR HLW PWR-U spent fuel Time Inhalation toxicity Time Inhalation toxicity (yr) (m3 air /MTIHM) (yr) (m3 air /MTIHM)

4. 3 84 E- 01 2. 332 E+ 16 1. 000 E- 01 1. 200 E + 17 4.931E-01 2.239E+16 3.000E-01 1.127 E + 17
5. 7 5 3 E- 01 2.116 E + 16 5.000E-01 1. 088 E+ 17
6. 574 E- 01 2. 010 E + 16 1.000E+00 1.035E+17 7.395E-01 1.918E+16 2.000Z+00 9. 84 0 E + 16
8. 217 E-01 1. 838 E + 16 3.000E+00 9. 567 E + 16 9.038E-01 1. 76 6E + 16 5.000E+00 9.221E+16 1.150E+00 1.594E+16 1.000E+01 '8.605E+16 1.411E+00 1. 462E+ 16 2.000E+01 7.691E+16 2.411E+00 1.19 6E + 16 3.000E+01 7.023E+16 5.411E+00 1.023E+16 1.000E+02 4.917E+16 1.041E+01 9. 523 E+ 15 3.000E+02 3.084E+16 3.041E+01 8.727E+ 15 1.000Z+03 1.763E+16 1.004E+02 7.063E+15 3.000E+03 1.152E+16 3.004E+02 4. 64 5E + 15 1. 000 E+ 0 4 7. 097 E +-15 1.000E+03 1.692E+15 3.000E+04 2. 670 E+ 15

~.000E+03 5. 808 E + 14 1.000E+05 3. 714 E + 14 i 1.000E+04 3. 818 E + 14 3.000E+05 8. 887E+ 13 3.000E+04 1. 811 E + 14 1.000E+06 6.815E+13 1.000E+05 3. 05 6 E + 13 3.000E+05 1.373E+13 5.000E+05 1.485E+13 1.000E+06 1.351E+13 l

l

117 GLOSSARY GWd Gigawatt-days = 109 watt-days mwd Megawatt-days = 106 watt-days MTIHM Metric tons (106 g) of initial heavy metal Fuel element The smallest structurally discrete part of a fuel assembly that has nuclear fuel as the principal constituent; also called a fuel pin or a fuel rod Fuel assembly A grouping of fuel elements that remains intact during the charging and discharging of a reactor core Pin cell A cylindrical model of a fuel element used in a reactor physics calculation Fuel channel Hexagonal, sheet metal can surrounding each fuel assembly to prevent cross-flow of coolant between assemblies LMFBR Liquid-metal (cooled), fast breeder reactor. " Fast" refers to the fact that the neutron spectrum is high-e ne rgy, i. e . , not the rmal.

FFTF Fast-Flux Test Facility in Richland, Washington HLW High-level waste LWR Light-water reactor ORIGEN2 A computer code for calculating the radionuclide composition and characteristics (radioactivity, thermal power, etc.) of nuclear materials such as spent fuel and wastes ORMANG A computer program that processes ORIGEN2 output to produce publication quality graphs and tables PWR-U Pressurized-water reactor fueled with low-enrichment UO2 SMW Fuel assembly structural material (cladding) waste CRBR Clinch River Breeder Reactor to be located in Oak Ridge, Tennessee

NRC Fru 336 1. REPORT NUMBER (Assigned by DOC /

(7 7H U.S. NUCLEAR CEXULATORY COMMIS$1oN NUREG/CR-2762 BIBLIOGRAPHIC DATA SHEET ORNL-5884 L TITLE AND SUBTETLE (Add Volume No., of moraproan) 2. (Leave blek)

An ORIGEN2 Model and Results for the Clinch River Breeder Reactor 3. RECIPIENT'S ACCESSION NO.

7. AUTHORGl 5. DATE REPORT COMPLETED A.G. Croff, M. A. Bjerke " "'" l^"

June 1982

9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS //nclude lep Codel DATE REPORT ISSUED MONTH l YEAR Oak Ridge National Laboratory July 1982 Oak Ridge, TN 37830 s. (te <e umas 8 iLeave omki
12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS //nclude Zep Code) 10 PROJECT / TASK / WORK UNIT NO.

Division of Fuel Cycle and Material Safety Office of Nuclear Material Safety and Safeguards II, CONTR ACT NO.

U.S. Nuclear Regulatory Commission Washington, DC 20555 FIN B0009

13. TYPE OF REPORT PE RIOD COVE RED (/nclusive dares)

Technical Report

15. SUPPLEMENTARY NOTES 14. (Leave olmkl
16. ABSTR ACT Q00 words or less)

Reactor physics calculations and literature information acquisition have led to the development of a Clinch River Breeder Reactor (CRBR) model for the ORIGEN2 computer code. The model is based on cross sections taken directly from physics codes.

Details are presented.concerning the physical description of -the fuel assemblies, the fuel management scheme, irradiation parameters, and initial material compost-tions. The ORIGEN2 model for the CRBR has been implemented, resulting in the production of graphical and tabular characteristics (radioactivitf, thermal power, and toxicity) of CRBR spent fuel, high-level waste, and fuel-assembly structural material waste as a function of decay time. Characteristics for pres-surized water reactors (PWRs), commercial liquid-metal fast breeder reactors (LMFBRs),

and the Fast Flux Test Facility (FFTF) have also been included in this report for comparison with the CRBR data.

17. KEY WORDS AND DOCUMENT ANALYSIS 17a DESCRIPTORS CRBR radionuclide inventory neutron spectra spent fuel toxicity fission products spent fuel radioactivity l computer code cross sections 17b. IDENTIFIE RS.OPEN-ENDE D TERMS l
18. AVAILABILITY STATEMENT 19 SE CURITY CLASS (Th.s recorr/ 21 NO OF PAGES Unclassified Unlimited 2ogegT*M (rn,s o,p/ 22 PRICE s

Ntc roRu sas 0 7n

+.

.e UNITED STATES f 5 0u%TM Ct ts5 ZA#L r'

NUCLEAR REGUMTORY COMMISSION '

restact a at ts paro WASHINGTON, D.C. 20565 '

WasM D C Pi Atf tf he M OFFC ALBuSit.ISS Ff NALTY FOR PRIVATE USE. $300 .

/

o h

i I s

)

N

/

s Y

f 1 i .h I

, , +

$ R f

/ ,

J

.r I 1

~ t l

\- l

', l :I

( -t

' v 1

.i ,

. > s.

___