ML20062K105

From kanterella
Jump to navigation Jump to search
SAR for HN-100 Series 1 Radwaste Shipping Cask, Revision 0.Three Oversize Drawings Encl.Aperture Cards Are Available in PDR
ML20062K105
Person / Time
Site: 07109086
Issue date: 07/23/1982
From: Pettigrew M
HITTMAN NUCLEAR & DEVELOPMENT CORP. (SUBS. OF HITTMAN
To:
Shared Package
ML20062K094 List:
References
STD-R-02-006, STD-R-02-006-R00, STD-R-2-6, STD-R-2-6-R, NUDOCS 8208170023
Download: ML20062K105 (115)


Text

.

l I I SAFETY ANALYSIS REPORT FOR THE HN-100 SERIES 1 RADWASTE SHIPPING CASK I

STD-R-02-006 Revision 0 I

Referencing 10 CFR 71 Type "A" Packaging Regulations I

I I

~

Hittman Nuclear and Development Corporation Columbia, Maryland 21045 I

3 l

[d u l

I

),1

..L y

g u

8208170023 820728 l

g goa noOcx o71090eg

lI PROPRIETARY DATA

.I ll I

I SAFETY ANALYSIS REPORT FOR THE HN-100 SERIES 1 RADWASTE SIIIPPING CASK STD-R-02-006 Revision 0 I

I I

Referencing 10 CFR 71 Type "A" Packaging Regulations I

I I

l I

I I

Hittman Nuclear and Development Corporation Columbia, Maryland 21045 I

l I

mwn

I Document Number:

Rev:

Rev Dote:

I HITTMAN NUCLEAR &

STD-R-02-006 0

7-23-82 DEVELOPMENT CORPORATION

Title:

SAFETY ANALYSIS REPORT FOR THE HN-100 SERIES 1 RADWASTE SHIPPING CASK Supervisor Prepared Director Transpor-QA R:v.

Rev Date by Engineering tation Manager D

f, f.

0 7-23-82 417 l.2-B. AcwE i

I I

I I

I I'

I I

I I

I I

I H NDC-Ol(A)

Pogs of I

$0$$$

l PROPRIETARY DATA I

I I

I l

NOTICE I

This Safety Analysis Report and the associated drawings are the property of Hittman Nuclear & Development Corporation, l

Columbia, Maryland.

This material is being made available a

for the purpose of obtaining required certifications by the U. S.

Nuclear Regulatory Commission, enabling utilities and

.g other firms producing radioactive waste to be registered l

users of equipment and services supplied by Hittman Nuclear &

Development Corporation, and enabling equipment to be manufactured on behalf of and under contracts with Hittman l

Nuc1 ear & Development Corporation.

Parties who may come inta possession of this material are cautioned that the information is PROPRIETARY to the interests of Hittman l

Nuc1 ear & Deve1opment Corporation, is not to be reproduced from this report and the associated drawings, or facsimiles made of these drawings without the express written consent of the Hittman Nuc1 ear & Development Corporation.

i I

I I

I li l

I amm

I L

PROPRIETARY DATA I

1.

GENERAL INFORMATION l.1 Introduction The ILNDC IIN-100 Series I radioactive waste shipping casks were con-structed during the period 1971 to 1974. The casks have been in continu-ous service since construction and are used primarily to transport radio-active waste from nuclear power plants to licensed shallow land burial sites. A number of changes have been made in the casks and several au supplements and revisions have been made in the original application and Certificate of Compliance. The consolidated application incorporates all of the previous submittals.

I 1.2 Package Description I

1.2.1 Packaging

.I The llN-100 Series 1 Shipping Cask is a top-loading, shielded con-tainer designed specifically for the safe transport of Type "A" quan-tities and greater than Type "A" LSA radioactive waste materials between nuclear facilities and waste disposal sites. The radioactive materials can be packaged in a variety of different type disposable containers.

Typical configurations for the internals and their model designations are as follows:

.g W

M_odel Number Cask Internals llN-100/170 One large disposal container llN-100/2-80 Two large stackable liners llN-100/18 Eighteen 30 gallon drums llN-100/14 Fourteen 55 gallon drums IIN-100/8 Eight 55 gallon drums l-1 I

libe%V

I PROPRIETARY DATA I

The IIN-100 Series 1 Shipping Cask is a primary containment vessel for radioact ive materials.

It consists of a cask body, cask lid, and a shield plug being basically a top-opening right circular cylinder which g

is on its vertical axis.

Its principal dimensions are 81 inches outside 5

diameter by 81.6 inches high with internal cavity of 75.5 inches inside diameter by 74.5 inches high.

1.2.1.1 Cask Body The cask body is a steel-lead-steel annulus in the form of a vertical oriented, right circular cylinder closed on the bottom end.

The cask is a right circular cylinder 81.5 inches high by 82.75 g

inches in diameter. The cask cavity is 73.5 inches high by 75.5 m

inches in diamater. The cask side wall consists of a 3/8-inch thick inner steel shell, a 1-3/4-inch lead shell, and a 7/8-inch thick outer steel shell. The base is a 4-inch thick steel plate which is welded to the inner and outer steel shells of the side wall. A steel flange is welded to the inner and outer steel shells of the side wall to the top.

The lid is a 4-inch thick steel plate which is stepped to mate with the steel flange.

The cask closure is sealed by a Viton or BUNA-N 0-ring gasket located between the lid and steel flange.

Positive lid closure is accomplished by thirty, 1-inch studs.

The lid contains a centrally located 4-inch thick stepped steel shield plug. The shield plug is sealed by a Viton or BUNA-N 0-ring gasket, and sixteen, 1/2-inch studs are used to pro-vide positive closure. Tie-down is accomplished by four tie-down j

lugs welded to the cask body. There are two or three casks lifting lugs, three lid lugs, and one shield plug lifting lug.

1.2.1.2 Cask Lid I

l l

The cask lid is tour inches thick which is stepped to mate with the upper flange of the cask body and it.s closure seal. Three steel lifting lugs are welded to the cask lid for handling.

The cask lid also contains stepped opening for a shield plug at its center.

1-2

PROPRIETARY DATA I

1.2.1.3 Shield Plug The shield plug is four inches thick fabricated to fit the stepped opening in the cask lid.

It has a gasket seal and uses sixteen hold-down studs to provide positive cask closure.

The shield plug also has a lifting lug located at its center to fa-cilitate handling.

I 1.2.1.4 Cask Closure The shipping cask has two closure systems:

(1) the cask lid is closed with 30 one-inch diameter studs and a 0-ring seal, (2) the shield plug is closed with sixteen 1/2 inch studs and uses an 0-ring seal system similar to the seal system used for the cask lid only smaller.

1.2.1.5 Cask Tiedown System The shipping cask tiedown system consists of two sets of I

crossed tiedown cables.

Four shear blocks or a shear ring affixed to the vehicle load bed firmly position and safely hold the cask during transport.

1.2.1.6 Cask Internals The IMDC HN-100 shipping cask can use a wide variety of inter-r.al containers and configurations.

The containers include; custom fabricated steel containers, steel drums, plastic containers and I

drums, high integrity containers, sealed containers constructed of other metals and materials and racks to secure irradiated and con-taminated components. The internal configuration may include; one large disposable container, two large stacked containers, fourteen 55-gallon drums with pallets, eighteen 30-gallon drums with pallets.

Shoring will be placed between secondary container's in cases where excessive movement could occur during normal conditions of trans-1-3 1lMWM

I PROPRIETARY DATA I

port.

Shoring is not required for large containers and filled drum pallets designed to fit the cavity with minimal clearances.

W 1.2.2 Operational Features The HNDC HN-100 radioactive waste shipping cask may include a number of required and optional accessories.

These include:

cavity, drain plug, rain cover tiedowns, signs and mounting brackets, placards, mount-ing brackets, lid lift lug covers and security wires and security wire brackets.

1.2.3 Contents of Packaging I

1.2.3.1 Type and Form of Material The materials transported in the HNDC HN-100 Series 1 cask will consist primarily of process waste and include bead ion exchange resin, powdered ion exchange resins, activated carbon, powdered carbon, diatomaccous earth, granular and fibrous filter media, filter sludge, blasting grit and crud, stabilized incinerator ash, irradiated and contamined materials, filter cartridges and solidt-fied liquids. The materials may be dewatered, solidified, absorbed or solids. The radioactive materials will be primarily by-product materials but may include source and transuranic materials in Type A quantities and greater than Type A quantities as low specific activ-ity materials.

Fissile materials in exempt quantites may be trans-ported.

1.2.3.2 Maximum Quantity of Material Per Package The raaximum quantity of material that may be transported in the HNDC HN-100 Series 1 cask will be:

I 1-4

I PROPRIETARY DATA I

o Type A quantities o

Greater than Type A quantities of low specific activity radio-active materials.

I o

Materials and containers with weights not exceeding 14,500 pounds.

I Cask, contents and container with weights not exceeding 50,000 o

pounds.

l Activity levels not to exceed 200 mR per hour on the surface of o

the container or 10 mR per hour at two meters from the sides of the trailer.

1.3 APPENDIF I

The llNDC llN-100 Series 1 radioactive waste shipping cask is con-structed in accordance with liittman Nuclear and Development Corporation Drawing Numbers:

STD-02-028, Revision 3 (Figure 1-1)

STD-02-029, Revision 3 (Figure 1-2)

STD-02-030, Revision 2 (Figure 1-3)

II I

I I

l-5

'I bD0bkh

E PROPRIETARY DATA I

2.

STRUCTURAL EVALUATION 2.1 Structural Design 1

2.1.1 Discussion The HNDC HN-100 Series 1 cask has a number of structural components which are vital to the safe operation of the package.

The design and performance requirements of these components are discussed in the fol-I lowing subsections.

2.1.1.1 Cask Closure The lIN-100 Series 1 cask has a four inch thick steel cover.

l The cover is secured to the cask using 30 one inch studs. The studs provide metal to metal contact between the cask and the cover and compress an 0-ring seal to provide a positive closure. The closure I

is designed to withstand an internal pressure of 8 psig or a corner impact without elongating the studs an amount that would allow leakage.

The shield plug located in the center of the cover is secured with 16 one-half inch studs. An 0-ring seal is used to provide positive closure.

I 2.1.1.2 Cask Lifting Devices Three types of lif t lugs are used on the IIN-100 Series 1 casks.

These are:

Unreinforced lugs for use with lift beams.

(Option 1)

Reinforced lugs for use with lift beams or long cable. (Option 2)

I 2-1 1lBBGWR

I PROPRIETARY DATA I

Radial lift lugs for use with short cable slings (45 ) or lift beams.

(Option 3)

Three Option 1 and 2 lift lugs are used on each cask which are equally spaced on the circumference of the cask.

Two Option 3 lift lugs are used. The lugs are designed to withstand a 3 g abrupt lift without yielding the lugs or the welds.

I 2.1.1.3 Cover and Shield Plug Lifting Devices The three equally spaced lift lugs are welded t.o the cask cover. These lugs are designed to withstand a 3g abrupt lift using short cable slings (45 ) without yielding the material. The lugs 3

will tear out. or the welds will fail should these lugs be used to lifL the casks.

The integrity of the package would not. be impaired by the failure of the lugs.

A single lift lug is welded to the center of the shield plug. This lug is designed to withstand a 3g abrupt lift without failure.

2.1.1.4 Tiedown Devices l

r The tiedowns for the HN-100 Series 1 cask consist of steel plates welded to reinforcing plates which are welded to the outer shell of the cask. Four equally spaced tiedowns are on the pe-riphery of the cask.

The portion of the t.iedowns which are struc-turally part of the cask (i.e., reinforcing plate and attachment to l

the cask) are designed to withstand, without generating stress in l

excess of yield strength, a static force applied to the center of gravity of the package having a vertical component two times the weight of the package with its contents, a horizontal component E

i along the direction of travel of ten times the weight of the package E

with its contents and a horizontal component in the traverse direc-l l

tion of five times the weight of the package with its contents.

In l

addition, the tiedown lugs are designea to fail under excessive loads before the outer shell of the cask ald be damaged.

2-2

I PROPRIETARY DATA I

2.1.1.5 Free Drop I

The IIN-100 Series 1 cask is designed to withstand a one foot free drop on any surface without loss of contents or reduction of I

shielding sufficient to increase the exteraal radiation dose to more than 1,000 millirems per hour at three feet from the external sur-face of the package. The IIN-100 Series I cask is designed to absorb j

l the energy from f ree fall by deformation of the steel structure.

In i

the case of the top corner drop, the cover and the studs which secure the cover to the cat,k must be capable of withstanding the I

force generated by the contents times decelleration.

For both the top and bottom corner drops, and side drop, the welds and structural members must be capable of withstanding the decelleration forces.

2.1.1.6 Penetration The outer shells of the IIN-100 cask are constructed of steel I

l having a minimum thickness of 7/8 inch and the impact from a 13 pound rod falling from 40 inches will have no effect on the package.

2.1.1.7 Galvanic, Chemical and Other Reactions I

The cask is constructed from heavy structural steel plates.

All exterior surfaces are primed and painted with high quality epoxy.

There will be no galvanic, chemical, or other reaction among l

the packagieg components.

(References 10 CFR 71, Section 71.31).

I 2.1.2 I)esign Criteria The structural analysis is based on the following criteria:

I 2.1.2.1 Stresses in material due to pure tension are compared to the minimum yield of that material.

The safety factor is 2-3 I

N0hh

~

PROPRIETARY DATA I:

l found by dividing the minimum yield by the calculated stress. A safety factor greater than 1.0 is required for acceptability.

See Table 2.3.3 for minimum yield and ultimate stress values used in the analyis.

5 2.1.2.2 Stresses in material due to shearing is analyzed using the "tiaximum Energy - Distortion Theory" which states the shearing elastic limit is 1[I = 57.7% of the tensile clastic limit t.

As with 3.1.3.1, a factor of safety greater than 1.0 is required for acceptability.

2.1.2.3 Weld filler material rod is E70 Grade.

Analysis is based g5f on American Welding Society Structural Code DI.1-79.

For fillet welds, shear stress on effective throat regardless of direction of loading is 30% of specified minimum ten-sile strength of weld metal.

For complete joint pene-tration groove welds with tension normal to the effective area the allowable stress is the same as the base metal.

Fillet weld allowable stress = (68,750 psi) (0.3)

= 20,625 psi In order to be more conservative, a weld efficiency of 85%

is also added.

Since all weld have been nondestructively examined, weld efficiency is known to be greater than this.

I:

I 2.2 Weights and Centers of Gravity I

  • I i

2.2.1 Gross Package Weights The respective gross weights of the cask components and its I

designated radwaste loads are as follows:

2-4 i

E L

PROPRIETARY DATA

~

^

Cask Body 29,000 pounds Closure Lid 6,000 pounds Shield Plug 500 pounds Tota 1 Cask Unloaded 35,500 pounds HN-100-LC Disposable Container and Waste 14,500 pounds

  • HN-100-55 (14 drums of I

Radwaste) 12,500 pounds HN-100-30 (18 drums

^

of Radwaste) 11,500 pounds Calculated Total Gross Weight 50,000 pounds

  • The maximum weight of contents for the HN-100, Series 1, Unit 5 L

is 11,620 pounds.

2.2.2 Center of Gravity I

Item Weight Arn Moment Cask 35,500 lbs

. 40.75" = 1,446,625 in.-lb Liner 2,000 lbs 39" 78,000 in.-lb

=

Waste 12,500 lbs

. 38" 475,000 in.-lb.

=

50,000 lbs 1,999,625 in.-lb.

Center of Gravity = 1,999,625/50,000 CG = 40.0 in.

I 2.3 Mechanical Properties of Materials I

g The HN-100 Series I casks were constructed at various times by s.v.r.1 fab,1cators. 1ab1e 2.3. m 1sts tee.at.,1ais _ e 1n ts. con-2-5 I

llb0d6M 1e

TABLE 2.3.1 MATERIALS OF CONSTRUCTION 4

(Certified Minimum Yield / Ultimate Strength, psi) 1 IINDC llN-100 Series 1 i

RADWASTE SillPPING CASKS i

Unit Cask Tiedown Lift Number Body Lugs Lugs _

IIN-100- 1 A516, Grade 55 A203, Grade E A516, Grade 60 (42,000/64,800)

(61,100/78,500)

(52,000/71,000) i l

IIN-100-2 A516, Grade 55 A203, Grade E A516, Grade 60 (42,000/64,800)

(61,100/78,500)

(52,000/71,000)

IIN-100-3 A516, Grade 55 A203, Grade E A203, Grade E l

(50,700/64,000)

(61,100/78,500) 61,200/77,300 i

HN-100-4 A516, Grade 55 A203, Grade E A203, Grade E i

(43,000/64,800)

(61,100/78,500)

(58,300/81,900) i T

HN-100-5 A515, Grade 70 A515, Grade 70*

ASIS, Grade 70 W

(45,100/75,600)

(50,400/79,300)

(43,900/75,100)

O T

lllU

--i 3>

'3 4:

C3

-d m

m m

m m

m m

m m

m m

M M

M M

M M

I

~B l

PROPRIETARY DATA

!I i

j struction of the cask bodies, lift lugs and tiedown lugs.

Table 2.3.2 j

lists the minimum yield and ultimate strength of materials based on ASTM Standards. Table 2.3.1 also lists the certified yield and ultimate jg strength of the materials used in the critical components of the cask.

}

These are significantly higher than the minimal values based on ASTM l

Standards. Table 2.3.3 lists the values for minimum yield and ultimate strength used in analysis of critical components.

For non-crit.ical components, the values listed in Table 2.3.2 were used for analysis.

The weld filler material used in the casks has a minim m ultimate strength of 68,750 psi.

I l

Table 2.3.2 Minimum Yield and Ultimate Strength Based on ASTM Standards i'I MATERIAL YIELD STRENGTH ULTIMATE STRENGTH j

(Psi)

(Psi) l l

l5 A516, Grade 55 30,000 55,000 e

A203, Grade E 40,000 70,000 A515, Grade 70 38,000 70,000 I

Table 2.3.3 Minimum Yield and Ultimate Strength Used in the Analysis of Critical Components Minimum Yield Ultimate Strength (psi)

(psi)

Cask Body 42,000 64,800 Tie-Down Lugs 61,100*

78,500 j

Lift Lugs 43,900 71,000

  • A minimum yield of 50,400 psi is used for the HN-100 Series 1, Unit No.

5.

!I 2-7 ig l5 Ib0hh

l 1

I PROPRIETARY DATAt l

2.4 General Standards for All packages 2.4.1 Chemical and Galvanic Reactions [71.31(a)]

The package contents will consist of process waste materials encap-sulated in disposable drums or containers which are placed within the shipping cask. All dispesable containers placed within the shipping rask are required to have positive sealing closures.

IIen ce, there are no significant galvanic or chemical reactions between the package contents and the shipping casks.

Further, the exposed internal surfaces of the shipping cask are protected by a suitable primer and an inert epoxy coating.

e 2.4.2 Positive Closure [71.31(b)]

Both types of specification drums (30 gallon and 55 gallon) have positive closures.

The large disposable containers will be permanently sealed with a container cap.

All disposable containers are placed within the shipping cask which has positive closure for the cask lid to the body flange surface and also between the shield plug and the cask lid flange E

surface.

Hence, there is no possibility of inadvertent opening of either E

the disposable containers or the shipping cask.

I 2.4.3 Lifting Devices I

2.4.3.1 Shipping Cask [71.31(c)(1)]

Two types of lift lugs are used on these casks.

The options are as follows:

(See Appendix 2.10.1, for analysis and <letails).

Options 1 and 2: Three equally spaced lugs are welded to the upper steel flange and the outer steel shell of the cask body.

The lugs may be flat plate (option 1) or reinforced (option 2).

The cask, with Option 1 lugs are lifted using a lift beam.

Cask with 2-8

I PROPRIETARY DATA I

Option 2 lift lugs may be lifted with long cables. The lifting lugs I

are designed to lift three times the weight of the cask with stresses less than yield strength.

Option 3: Two lugs are welded to the upper steel ilange and the outer steel shell in diametrically opposite sides of the cask.

The two lugs are designed to lift three times the weight of the cask using cable slings with stress less than yield strength.

The cask can also be lifted with lift beams or chains.

I 2.4.3.2 Cask Lid [71.31(c)(2)]

The lifting device for the cask lid consists of three equally spaced clevis pin lif ting assemblies, attached to sti f fener bars which are welded to the cask lid.

These lifting devices will sup-port three times the weight of the cask lid with no streses in excess of their yield stress. See Appendix 2.10.1 for analysis and details.

I 2.4.3.3 Shield Plug [71.31(c)(2)]

The lifting device for the shield plug consists of a single clevis pin assembly attached to a lug which is welded directly to the upper or outside of the steel plate which is the shield plug.

This lifting device will support three times the weight of the shield plug with no stresses in excess of its yield stress.

See Appendix 2.10.1 for analysis and details.

I 2.4.3.4 Non-Lifting Attachments Covered or Locked [71.31(c)(3)]

Both the cask lid lifting device and the shield plug lifting device will be covered to prevent their being used to lift the shipping cask.

I 2-9 I

$0bb$

PROPRIETARY DATA It 2.4.3.5 Lifting Device Failure [71.31(c)(4)]

6 All lifting devices are designed such that excessive loads will j

result in failure at the weld joints.

These types of failures will j

l not impair the shielding or containment properties of the shipping cask.

i 2.4.4 Tiedown Devices [71.31(d)]

(

i 2.4.4.1 Tiedown Forces [71.31(d)(1)]

The tiedown devices consist of four ratchet binder or turn-buckles and cable assemblies attached from the tie-down adapters on the cask to tiedown lugs on the trailer body.

Additionally, shear blocks or a shear ring firmly position and hold the cask on the trailer bed.

The tie down lugs have been designed to allow the cask to withstand a vertical force of two times the weight. of the cask, a transverse force of five times the weight of the cask, and a longi-tudinal force of ten times the weight of the cask with no resulting I

excessive stresses.

See Appendix 2.10.3 for the analysis and de-W tails.

I 2.4.4.2 Non-Tiedown Devices [71.31(d)(2)]

I The length of the tiedown cables prevents the use of anything but the tiedown lugs for package tiedown.

There are therefore no structural parts of the cask which could be employed to tie the package down which do not comply with 10 CFR 71.31(d)(1).

2.4.4.3 Tiedown Device Failure [71.31(d)(3)]

I The four tiedown adaptors on the cask periphery have been designed so that loads transmitted by the tiedown cables under worse conditions will neither damage the outer steel shell nor cause the tiedown adaptors to fail.

The tiedown system analysis is shown in the Appendix 2.10.2.

I

I PROPRIETARY DATA I

2.5 I

Standards for Type B and Large Quantity Packaging Not applicable.

l 2.6 Normal Conditions of Transport I

2.6.1 Heat Since the package is constructed of steel and lead, temperatures of 130 F will have no effect on the package.

2.6.1.1 Summary of Pressures and Temperatures il l

The cask contents are either solid, solidified, or dewatered resin. The temperatures and pressures to which these wastes are exposed are not suf ficient to generate gas formation.

Further, the I

various individual containers within the cask are sealed precluding any possible interaction between waste types. IIence, there is no possibility of gas formation which might reduce cask packaging effectiveness.

2.6.2 Cold The steel materials selected for forgings, plate, and bolting each retain structural integrity at temperatures down to -40 F.

I 2.6.3 Pressure The cask can withstand an external pressure of half an atmosphere.

A description of this is contained in Section 4 " Containment," spe-cifically 4.2.1.

I

~"

I m ar

I PROPRIETARY DATA g

2.6.4 Vibration i

The cask tiedowe.s firmly position the package as to minimize any vibrational effects.

In addition, all cask external devices are firmly I

attached (either by welding or bolting) to the cask.

2.6.5 Water Spray I

The cask is sealed by an 0-ring gasket seal with suitable holddown bolting to assure it is both water and pressure tight.

In addition, the radwaste is contained within sealed containers constructed of steel, i

plastic or other materials in the cask cavity.

2.6.6 Free Drop I

I l

The cask has been analyzed to insure its structural adequacy to withstand a one-foot drop, striking any cask surface, onto a flat hori-zontal surface. The analysis is in Appendix 2.10.3.

2.6.7 Corner Drop The specified condition is not applicable since the package weight is greater than 10,000 pounds.

I 2.6.8 Penetration I

The impact of a vertical steel 1-1/4 inch diameter, 13 pound cylin-der from a height of four feet will not puncture the cask outer steel shel1.

In addition, there is no externally mounted equipment on the l

cask, the damage of which due to this transport condit. ion, would limit gi the cask structural adequacy or hinder its function.

I I

2-12 i

I PROPRIETARY DATA 2.6.9 Compression I

This specified condition is not applicable since the package weight is greater than 10,000 pounds.

2.7 Hypothetical Accident Conditions Not applicable.

2.8 Special Form I

Not applicable.

2.9 Fuel Rods I

Not applicable.

I 2.10 Appendix 2.10.1 Lifting Devices.

2.10.2 Tiedown Analysis.

I 2 1o a

- r < ~~ "< e -

I I

I I

I 2-13 I

nuwn

I PROPRIETARY DATA g

2.10.1 Lifting Devices 2.10.1.1 Cask Lift Lugs The 3 lift lugs. ire designed to lift 3 times the weight of the cask.

Therefore, each lug will see a vertical force of 3(50,000 lb)/3 lugs = 50,000 lb.

I The lift lugs are constructed of either A515, Grade 70; A516, Grade 60; or A203, Grade E.

For analysis purposes, fy = 43,900 psi and fu = 71,000 psi, g

I based on lowest value for the material listed above.

5 i

Option 1 50,000 lb Flat plate -

^

Wen. W only) 3 Tearout v

o = 50,000 lb/(2)(1)(2.88-0.94)

DIA.

a :. 12,886 psi s

S.F. = (.577)(43,900)/(12,886) 5"

= 1.96 I" "A thick I

Bearing O

E B

S.F. = (43,900)(.9)/26,666 = 1.48 I

I PROPRIETARY DATA I

Tension o = (50,000)/(1)(5-1.88) = 16,025 psi

[o h S.F. = (43,900)/(16,025) = 2.73 I

r 1

k'e ld A3/4"

%f4n I

~

~

o = 50,000/(7\\+5+7 )(.75)(sin 45)(.85) 0,, = 5545 psi l<----

5 "

V3/4" S.F. = 20,625/5545 = 3.72 Option 2 (Reinforcing plates made of either A515 or A516 Gr 70, f = 38,000 psi) y (non-vertical lift)

I

_/

\\_

A 50,000/cosa 50,000 lb

^

n 8"

8 50,000/tana bl B

l t

Cask Body 3.62 Hl3"

/

I H

W

/>, i i

h typ.

Cask

/

I Body

/

7h"

/

1" l

M I

V

/

/

I 2-15 t

PROPRIETARY DATA I

q.,

d a

Neutral Axis 3"

'eutral Ls 2

1" l IA Y

l y _ -y- = (5)(1)(t)+(2)(\\)(3)(Ik + 3/8)

- 3 8

r g

,s

,s A

(5)(1) + (2)(3)(\\)

3/a" f-- 5,,

y = 1.016 SECTION B-B 3

2 t!oment of Inertia = 1

- y = 1(bh /12) = Ad

= (5)(1)3 (5)(1.016 - 0.5)2 1.748 ina I

+

=

l 12 O}( }

I =

(3)(h)(th + 3/8 - 1.016)

= 4.464 ini 2

+

12 I = 6.21 in4 T

I o due to beniling -

tg = (50,000 ton u)(3.62)(3.^,75-1.016) 50,000 lb 50,000/cosa a = 38,000 = 68,757 Lan a 1 h tan a= 0.5526 50,000 tana 57,129 1 a = 28.93

/s50,000 85's" l

Maximum sling length

/ !////

7 gn

/

kl-3/8/

I 85.5" : 7.13 ft

=

/

sin 28.9 i

E The minimum sling length is 7.13 ft.

5 2-16

I PROPRIETARY DATA I

E weia anaivsis or litt tug (option 2) g (non-vertical lift) j i

l s

O f

(3 sides

~~

Neutral -

I Axis

/'

r _5"q

  • _ 2(7 )(3-3/4) = 2.8125

- 2(7 ) + 5 I

Shear I

= (50,000/cos 28.9)/[7.5 + 5 + 7.5][.75][ sin 45][.85]

o I

= 6,334 psi I

Moment l

[(50,000 tan 28.9 )(3.62) + (50,000)(.5)]

= 20 = [(2.8125)2(2)( )(2/3) + (5)(2.8125)](3/4)(.85)(sin 45 )

3 g

o, 124,917/17.43 = 7,165 psi

=

T

  • Y "s' * "m

= 9,563 psi S.F. = 20,625/9,563 = 2.15 I

I I

N 2-17 L

i I

I I

I I

c

-~

I I

I I

I I

I I

I I

I I

I I

lI PROPRIETARY DATA

!.I I

!E

"'t

!W j

Material for option 3 is specified as A516 Grade 70.

,=

1 fy = 38,000 psi fu = 70,000 psi (50,000)(3) = 75,000 lb j

2 45 sling angle i

1 75,000 2-1/8" 106,066 lb ear Out l

thick

}

g h

a = 106,066/(2)(2-1/8)(2.75-1.03125)

) g 2.0625" M,./

' 75,000 8

i lI 14,520 psi

=

1 j

S.F. = (.577)(38,000)/14,520 = 1.5

!I i

Bearing (l\\" Dia. Pin)

)ll

{

g 106,066/(2-1/8)(1b) = 33,275 psi o =

}I j

S.F. = (.9)(38,000)/33,275 1.03 Tension i

106,066/(2-1/8)(5.5 - 2.0625)

=

T 14,520 psi

=

S.F. = 38,000/14,520 = 2.6_l, t

2-19 nr e

I l

PROPRIETARY DATA I

4 Ee1 I1 i

Shear i

a = 106,066/[14 + 14 + 2-1/8] [1] [.851 (sin 45] = 5,858 psi 75,000

/\\

tioment 2(14)(7) 2(14) + 2.125

/s A

> 75,ma I 2"

(75,000)(3 + 9.5) = 2 og [6.5)2(2)(1/2)(2/3) +

9.5 l

(2.125)(6.5))

(.1)(.85)(sin 45)

L 16 o = 18,578 psi g

6.5

= ]"s

+l P"

OT B

V d

S.F. = 20,625/19,480 = 1.06 y"

1

\\ 1" 2.10.1.2 Tie Down Lugs for Lifting Cask (Inadvertant Use) j If it is assumed the entire load is carried by two tie-down

(

lugs, the Section Modulus (n) = bh /6 where b=1.5",

thickness of 2

lug; and h:6", the width of the lug. S=9 in.3 flaterial has a minimum yield of 61,100 psi.

I

$l 3'

Each Iug wii1.see

= 75,000 1b 2 lugs l

I I

2-20 l

I PROPRIETARY DATA 10" g-i 8

M=M

=

l 10" O'

I s

('5'

(

i"} = 50.151 Psi l

/

3 53o/

s.F. = 61,100/50,151 = 1.22 Neutral Axis 2(10)(5) x=

-=

3.84 in I

2(10) + 6 l

Weld g

= (75,000)/(10+6+10)(1)(sin 45)(.85) = 4,800 psi as Moment -

2 2

I

= IA[(6 /12) + r j I

= 2{(1)(sin 45)(10)[(100/12)+(1.16)2]} + {(6)(sin 45)(1)

(36/12)+(3.84)2}

g I

= 212 in4 g

"n

_ Mc _.(45,136)(17.16)(3.84) = 14,030 psi 4

l o

= Jo

+0

=

2 14,828 psi r

s 3

l s.F. = 20,625/14,828 = y I

lI 2-21 mwm

iI!

PROPRIETARY DATA g!

2.10.1.3 Secondary Shield Lift Lug B

B I t

1 Weight of Shield Plug = 500 lb 1/2" i

thick

{

3g lift for 1 lug = 1,500 lb j

.43 y

?!aterial is 516 Grade 55 (flinimum)

(

l-1/2 1,,

i i

,94 f

= 30,000 psi l

Y l

llL"V i

v v

f

= 55,000 psi g

Tear Out l

j o, = 1500/(2)(1/2)(1.5

.94

.22) = 4,411 psi S.F. = (.577)(30,000)/(4411) = 3J Bearing I!

Il

= 1500 /(1/2")(1/4" dia pin) = 12,000 psi B

S.F. = (.9)(30,000)(12,000) = 2.25 i

tI!

Tension i

lIl a

= 1500/(1/2)(2 438) = 1,920 psi

[

t S.F. = 30,000/1,920 = 15.6 I

lI!

l 2-22 li 1

8 PROPRIETARY DATA I

l l

Weld 1500/(2 + 0.5 + 2 +.5)(.25)(sin 45)(.85) = 1996 S.F. = 20,625/1996 = 10.3 2.10.1.4 Primary Lid Lift Lugs I

Material is A516 Grade 55 I

f = 30,000 psi 6500 lb Y

in A

9192 t hick f = 55,000 psi u

.875 \\

^

Weight of primary and see-76

'I ondary shield plug = 6500 lb W" 3 2-1/2" I

l-1/2 1/2"Y b

3g lift with 3 lugs = 6500 x

lb/ lug 45 sling angle

>=

I Tear Out I

= 9192/(2)(1)(2.5 - 1.5

.4375) = 8170 psi s

S.F. = (30,000)(.577)/8170 = 2.12

W Bearing l

l

= 9192/(1)(1/2" dia pin) = 18,384 psi 8

l S.F. = (.9)(30,000)/18,384 = 1.47 l

5 l

I 2-23 D00tM l

E' PROPRIETARY DATA g

Tension l

0

= 9,192/(1)(.9767) = 9,411 psi t

T S.F. = 30,000/9,411 = 3.18 Il l

Weld Shear o - 9,192/(6 + 1 + 6 + 1)(.5)(sin 45)(.85) o = 2,185 psi s

I, Moment (6500)(1.5) = 2 og [(2)(3)2(1/2)(2/3) + (t)(3)!(.5)(sin 45)(.85) 1802 psi o =

g Z

Z 0.

= Jo

+ O

= 2832 psi 3

M S.F. = 20,623/2832 = 7.28 I

l I

I I

I.

1 l

2-24 g!

W

I PROPRIETARY DATA 2.10.2 Tiedown Analysis 2.10.2.1 Tiedown Loads The cask tiedowns consist of four cable and turnbuckle or ratchet binders assemblies and shear blocks at the cask base which firmly position and hold the cask to the truck platform.

The fol-lowing analysis shows the ability of the cask tiedown lugs to with-stand combined loads due to a 10g longitudinal, Sg transverse and 2g vertical loads.

I

[

u u

-A N

N I

N x

I aE

^

7 q

V h

J 9

I E

< v r-\\

/m N.

I 49" X

33"--)4--- 33" X

49" I

1 n

n I

Z X (,

  • CG 59" av.

65" av 40 I

a I

81.8"

)

6" av 2-25 I

h h

t

I PROPRIETAliY DATA g

2.10.2.2 Cask Center of Gravity item Weight Arm Moment Cask 35,500 lbs 40.75

=

1,446,625 lb.in Liner 2,000 lbs 39

=

78,000 lb.tn Waste

_12_,500 lbs 38

=

475,000 lb.in 50,000 lbs 1,999,625 lb.in Center of Gravity = 1,999,625 CG - 40.0 in.

I 2.10.2.3 Tie Down Forces Reference frame with respect to the trailer is shown on the tie down drawing (Page 2.16) up - down z; front - rear x; side - side y accelerations: X axis - 10 g's Y axis - 5 g's Z axis - 2 g's 2.10.2.4 Tie Down Lengths Average tie down lengths =

d(49)2 + (26.75 + 33.75)2 + 592

=

J49 + (60.50)2 + 592 2

=

J2401 + 3660 + 3481 49542 97.68"

=

2-26

I PROPRIETARY DATA 2.10.2.5 Tie l'own Tensions Tie down tensions revolved by vector direction Along X axis T = 0.502 97.68 60.5 Along Y axis T = 0.619 I

I 97.68 I

59 Along Z axis T = 0.604 L

97.68 I

2.10.2.6 10C Horizontal Longitudinal Force Overturping moment due to 10G along X axis 10 (50,000 lbs) 40 = 20,000,000 lb-in

=

Each rear tie down must restrain half of the above moment or.

20,000,000 x 1 = 10,000,000 in-lbs I

2 Tension in tie downs 10,000,000 = (65) x (0.502 x T)

+ (40.9 + 33) x (0.064 x T) 10,000,000 = 32.63 Tg + 44.64 Tg 77.27 T

= 10.000,000 g

TE = 129,416 lbs I

2-27 UT M

I PROPRIETARY DATA I

2.10.2.7 SG ik rizontal Transverse Force Overturning moment due to SG along Y axis 5 (50,000 lbs) 40.0 = 10,000,000 in-lbs

=

Each side tie-down unit must. restrain half of the moment or:

10,000,000 x 1 = 5,000,000 in-lbs I

Tension in side cables:

50,000,000 = (65)(0.619)T

+ (40.9 + 26.75)(0.604)T I

5,012,500 = 40.24 T + 40.86 T T = 5,012,500 + 81.1 T = 61,655 lbs 2.10.2.8 2G Vertical Force Not vertical force = 2G - W W

= 50,000 lbs 1

Each cable must rest rain of net vertica' force I

50,000 + 4 = 12,500 lbs 0.604 T

=

12,500 lbs y

T.

= 20,695 lbs y

2-28

i it i

PROPRIETARY DATA

!I i

2.10.2.9 Total Tension

}

lI T, = Tg+T

+T y I

)

= 129,416 + 61,655 + 20,695 iI i,

= 211,766 lbs F = 211,766

= 127,896 97.68

!I 2

i 49 + 60.5 F = 211,766

= 168,766 lb H

97.68

!I 2.10.2.10 Analysis of Tiedown on Cask Shell The tiedown loads are transmitted into the cask shell as ex-ternal moments. These moments are the product of the tiedown forces I

and the offset distance between the line of action of the tiedown force and the attachment plate.

I 1

e i

V 1

i i

offset distance = 1.75"

=

C}nt l

v l

Ft I

/

i.

1 i

F

=F

= 127,896 lb 4

v z

F

=F

= 168,766 lb h

j M = Circumferential moment = (168,766) (1.75) = 295,340 #in.

m M = L ngitudinal moment = (127,896) (1.75) = 223,818 #in.

L l

ilb6W!l

l I

PROPRIETARY DATA t

I Reference for method of calculation: b'elding Research Council, Bulletin No. 107 (kTC 107), Stress in Cylindrical Pressure Vessels from Structilral Attachments.

T = r/ t = radius to thickness ratio (pg. 2, WRC 107) = 40.3/

.875 = 46.0 C = 1/2 the circumferential width of the loaded plate (pg. 2, 1

WRC 107) = 13/2 = 6.5 1/2 the longitudinal width of the loaded plate (pg. 2, bHC C =

2 107) = 13/2 = 6.5 B = C /r (pg. 2, k3C 107) = 6.5/40.3 = 0.16 y

y B = C /r (pg. 2, k3C 107) = 6.5/40.3 = 0.16 2

Check that 5 _< T _< 100 I

I I

I I

lI I

I I

2-30

I I

PROPRIETARY DATA

)

\\

Nomenclatur e Applicahic to Cylmdrecal Shells B

+

B

< 1 V,

2 2

concentrated shear load in the cir.

=

1 2

cumferential direction, lh 0.3 1.2 V,.

concentrated shear load in the lon-I gitudinal direction, Ib 31, external overturning nmment in the m

circumferential din ction with re-I spect to the shelb in.15 jf external overturning moment in the

=

t General Nomenclature longitudinal direction with re-normal stress in the ith direction on spect to the shell, in. Ib a,

=

I the surface of the shell, psi R.

mean radius of cylindrical shell, in.

shear stress on the ith face of thejth 1 length of cylindrical shell, in.

ru direction halflength of rectangular loading in c,

I stress intensity - twice maximum circumferential direction, in.

S shear stress, psi e,

- halflength of rectangular loading in membrane force per unit length in longitudinal direction, in.

N, the ith direction, lbfin.

T I

wall thickness of cylindrical shell.

=

bending moment per unit length in in.

Af, the ith direction, in. Ib in.

f x

coordinate in longitudinal dire < tion K.

membrane stresa concentration fac-of shell I

tor (pure tension or compression) coordinate in circumferential direc-y bending stress concentration factor tion of shell K.

denotes direction. In the case of i

cylindrical coordmate in cin um-e spherical shells, this will refer to I

ferential direction of shell the tangential and radial direc.

f g,,

tions with respect to an axis a

attachment parameter

=

normal to the shell through the 3,

cg n, I

center of the attachment as eg g, g,

m shown in Fig.1. In the case of R. 'T; shen parameter cylindrical shells, this will refer C,, C, multiplication factors for N, and

=

to longitudinal and circumferen.

N, for rectangular surface, given tial directions with respect to the in Tables 7 and 8 axis of the cylinder as shown in K,, K, coefficients given in Tables 7 and S Fig. 2.

Af, jf, bending moments in shell wall in I

=

denotes tensile stress (when asso-

+

the circumferential and longi-ciated with a )

tudinal direction with reciaxt to denotes compressive stress (when the shell associated with,,)

N, N, I

membrane fone< in shell wall in the E

modulus of elasticity, psi circumferential and longitudinal P

concentrated radial load or total direction with respect to the shell distributed radial load, Ib normal stress in the circumferential direction with respect to the shall, psi normal stress in the k,ngit udinal di-General Equation a,

=

[

I in the analysis of stresses in thin shells, one pro-psi rection with respect to the shell, ceeds by considering the relation between internal shear stress on the 1 fate in the +

r,,

membrane forces, internal bending moments and direction with respect to the I

stress concentrations in accordance with the follow-shell, psi ing:

shcar stiess on the # faie in the x r.,

K* T

  • K, T2-'

"""" * ' b "* ' ' " ' h '

n a,

shell, psi l

I 2-31

1 P,ROPR,li:!.I,ET.

A R,,Y i, D A.TA, I

l Ii, i

T us i

i 1

l!

i '

i'

.~-

7:

l u

,,t,

,,i,i

_3 r

r, l

t i I.,

u i

i

.. J. n,,..l.,.

..i4

-.i.

.}.

Ww,

i.,..

a._

g-.+r.

to 1,

it,

,7 4.g.

p t

%q.

g7.

-. Qt 4.

tT-

. i.

e, n,

_ A~E

., l b-H--h

+t t

t 4

t,i T-

+

4 5 LE- -

+~ * --

  • - + -
  • f
  • -*~f

}]-.y 7 ji

.;_ g g

,!..{

.l

'}

_._c :.. p. u.: :,

.
i t-1,.L U
,l;'

l l

~+:!a l,a/+_. _,,..i '.!!,.%.

ya.

. ]..l-,

~

y.c m,

,e 1.,

{3,

,,;;i, g.

p J 3. L{.a.,

_4_

4.,

.1 r__ q__Ag,. g g.... t L __1,.

- pg.

p j ;;

i

.i..

q, ) 1, g

e

.s

. k. {-.j1,,

L

+

l-frvhrm t M 1tn a rr t 2+4 u 4g_ysT m. q p rr ~. ---T ltrr!

i i 5

., s.

y7 V. L _ T. +T 4

n p.ur; i

3 4 e

._~

_b

__.7

-_ _.J [.p,g i t %. IfQQ w C. g-(p:t H

. _4 N

F j

J!

} -.I'

> u#

.t_ %:.

u. c q.t

_ u.;. -

o-. t u_

c-Q;, C.2, J t L} +t,

4.

2

m. 4 p g, 4.-1 p y'f.%.q:. w g

{..

..i.+--

-- t

...4-

.p.

p'5 e %:

v -

.y

,,-- m'.;p"4

  • 4;N 2

2

. s: crp r= 1 po 1

j

_-u a WH

1. 9 t-

. -- w 3

'm : ;,;.'N w.;.

,. y-::

I'.

1

'E

=

6-:

.W a ta-u;~u.; r t_rnh; s.:

... LLt:m 4 ;g..w.L: a N iL; s. M.LL.L.4L L L :::

._ u.:

  • rt L-s
a.;.A7.;; ;

~ :'

C...L.L,L,L La' T. m. e u. t T N W"~

_,_4_._1*'.

.:. 1.*T+

. m..,,. m c.

_. +

.+

g..

b--

e

..4_

a_L _ L I.._ f

- {4..{p~ fit F[_.

C

.j

1. i.TT yi QWQ*'. TT F i,TF.

=*-

m I

. gw q.

1 g

j2-..

j,.

m;_..

3 y

_ 1 - _ _e,

.g. {p g. g y.g}-

L_,

jhj

'--[q

..g

.{._... ja W~ -+

.**%]

]d-7

-f-Q L p-T}Tir "I 7[ [ FP' 1 @4v M"

m

-v d

.T.ua Lpay : m r'4 m

u-_ f'..,_/g.c k.__

-.w

.l_

a u v. xp

\\_'.t -L.

- Ie I 1

- I I

pp f_. }'.

l 7

[91 A jo'o.-

z

,p:,[" +p+y.g y+

r + - }w_gzif.q

-!m

+

- t... a +i

p.. -.gna -.

a 24J Lp

_. p a_4 _a{-4

....:: [ 1.

i.d ; d.'

i...

c Y

  • ;.+ :::: '...._.

. :/.

i t,_.,

. _F.,..

J,. g_ q.7-..

,_7_.r.. _,.

g....

.r

,g 9

g

.q

4. 4

. 1, 4....} g.,,,1,;,

, p. }-

., p. ;.

,7, a_

..a4,,4

,. 4

.. -4., f..,.,.

yp_

1 e_..

_[{

3

.7 r__

q.

4

. a EL.L -p,34 m. :

=

.i.

.,Ja g.

..f.,..

,m a_a

_f

- J.!

. it.i

+..u.

up

.._ ; p t i 1_.1 w

.c h,,f 4 3..l g g.,

4,

._ f #'

4-'

. m.f

_,.;.1

t.. -. 2 I

l I i 1 9 i

{

m3

/

4

.i.

6

{,4_ +. +

._ - H.,,. w.}

_1 ja _

a t...,

_ g r

i

. f

.p.3-j.._.i4!

3-

. }. -.

+

.1

_.t..

._n:_;_

._..u..' _. _.__ u...-.__ _.{ _... _

. 2.2 i

}

n.

Tr ;

-,... r. r,

, i l

.+-r.:

+

s p

a i, y

_. -_4...

e,.

.{..

. }.,.., J y 7,

}

l

}

4.

.1 4

_ _l t

t 4

p.A.

s_.._

4.ap.

_4

.g p

. y; nl 4 4'.

..q

..c u

_.. ~

E

b,p- ';,,1,

g i

._ a

~.

_. 4 7.. f

q.

1,. g

.. r

.. - } l_.El j j

q7 u

7 u_

.h

. Lt 1

t.

a.,

.#{..q

.; q, 4 1{

_ t L

4

. p 7

u.. ; [_

_ __._A

y. 4 4 i

!((I

.i 4._

g ;i !

o y.

i ~

7 i

3 I

i

t., '

i :

i,

!i i

i i

l 1

'i i

u_ _L_1._.-_._._L _L.! L L

.J _!_Q a._cih i

a

2. ;

.a.

7

::l t llt: :

i i

[

'. f f, i. }, f, l!,.,

M,....

1..

4

.l.

._..1

.i ad.16-1{

Ie i i

ii t ii i 4

p. __ _ q

,, p,,

2._. _ } _... 4

..~ 4 a

i; m_

0 00S Cio 01S 3 20 02S 0 30 O SS 040 0 43 OSO 0.16 m

Fig. 3A-Membrane force N,j(M /R, 'i) due la an enternM c"cumfemntial moment M, on a cucuhr tylinder l

i i

i 40

.s t,. > w 3,,,.s!.. / / 4

' 32

{

5 4

i Il1 l l {ll lll ll

!il!

\\

!i L

.a j

il 1l6!r i

t 1

l l

j i

! i i ',

i t_

_..r. _. _..

',4.,

. { f'..l

.}...,!

-l - 't }

k

.,?.i '..

i

}.

f

?

.I l

4 II

= f g

l j

.4 f

n_!,

4_

__..a,

_.m m ___. 4..

,v...

. m - _. I..

.o I

_s

.r.i I.i i

_L.-..

l

.I

{,

.jt.j

[..

4 -.

,ii.

g

., *i I

L

._+3_ y_

i

.i i

.i l

9. - -.,.

.{

'9.j4-*-'

t

  • 6

,' ' '9 '.

l l*

t

}.t

il' 1

s_

t t

.f' 9l'l 6

g l

u i i

{,4

. t.

1, ;;

+

i 417 j

L

.+, ;

lt j

+

1 6

,,, t 4

i_.t_. _!i_i

.. -3 4

_p q_.

.. a...

d.{ i

.. gl j...

J.,.}.

s

_4

4. _4.p 4

4i },

4.. }.
};t.

j },, r

}

4 e_ _-

9 i

c.

. u

. 4,7..; p f g -

q p.

_.g.

I a....

9

.. p

. - +.

j

.+ ++

. 4.,

i 1

41.

3

  1. 3 n_

_]_W_--..

IL yI '

.L._4

-;d4..

1_M 14. 1 --.4 _ i LL. -.Q_l 4 11

]-

'4 J_.

-!1

]

1!

' !.i l

~

a__.

3...

+

i} ;

w

  • ]

l'.~_~.

wW' WW~ '.+ = + -+i

-5+H '

=

55'.**

I

- U..a l_L ; *. J '.. !,

- + - - -

r t*

  • 1

!1

~ ~ ~ _.

~.I J. J..... '.....

4

...i

.,..a......

.4 a.

. a 1

L __nr--

"p;m T T[i1 ] ]'l c : 1

=

. _i_"_pn cr

'I i iTli

!.1' } al1..p 4 9,p '.

ii

u. h 1. p' q

._ u l

.4 4.f _g L

. g.

r

___?_:

' ;4..L 4i '.p.

J4 4,.

ly m4..,a -

7. -_m. _ 7.w

. y g;_ m4..:. 4 i_ y

..,4 i

t 7.p.i _ _.; a_f_ },,_p e

ii 1

=

4

.i

.rgi

4..,

m 2

1 i,

5 i,

T__r_T "_-..

3 t, T._ ".-~

4 w._L_ 'p

_l-H -._ M..h h.

F J

TFTV~

a 4

I 4

4. t _ F.

4y.

~

~

d

.i 4_

m 7__

y

_4L 41

.,.4

_ {4, j F}+

F4

.}

' i

{_.

_4 7--- --h-1 :-hh!-f -h-bt F.

M 4

'I

f.

Ih;i!

ll

--)

=

ff

{

I

. b:=., -+! :,.j-+: !-+1+, &

i-

_b r1:

t

i e

- r i

r rt7. p 1tt

!t

    • t t

4 e

i 4 ' t t

t:

t

i;
*

~-

.._r n; u. 22;.
1. ac.; a
L;a; :e l,

~. -

,:+ T ;.
*i; ie;'

ll.

.J,.

i e

I 0.08

. i I,6 6.

3 MMN-.

r.

n i

.. i

,,i.,

' W N n w w'.

.. -,. +-rey 8

' '"T

4. k(*%' %i~ t7 9 -"i 1 1

"e e

-~

s-

.' 4 I.Q} U

}

-.r_ q _q

.y ~.. y.2 y,.

E.. yj-a.1ys tt y

$o. - 9

.4 7

T's _.

.i. ;

. d.4 -i 1' L.

.,. id..

._L, a

+

s

. ~

6 e

%,,i i,

i:

I

't b

N,..~p b

I [iY

)h ]._ I~j i. [._ _.

4;.

~

f

_ 4

+

7,. - _--g,-

4.,_

i n b- ;I ifhN ")t-b; --

i&

H M

)

o.

kPt-

! l((:

8 gg

_q jj'

.j 1j

- !i; i

!l j'

li tLf.

j, i

~

g g.u -

.g.q q.

t 1

4. :.4 r.::;,

t

}**,t:

'}.:

= n

.!. t,

E j;;;

L.b;-; ;

i, I

1.
  • 2 l l 1.!

.i 1

1.: ; !'

s

._ _ 2 u _

-.u.

..a 4

Ip, 4

, +..

e

_ l2

'.+

1 f j

,,y t

,4 s

41

---.p--

q. _

- y {_g..

p.

)_

.j { 73

{7 j

t s

q s

I,.

I{

j j

l 7

gj I

I-t a

5 I

I' l'4 A

I

.'l l

i l.l t'

t-l l i ji

+

l

, j.

Ti -*

T;

},' * '

I i-l l

'l i

8

  • f.

l j k'!

  • 1.

! L.I I

i I

-}4

i d

p

!lllj

'..?.1 M

-+-

l

1~t 1

l p

.g I 6 !j!.J Lt.1

_li!. l{+ i_LL'!

l:

4.

'J 4

4 i6 i i 4

i e i.

6 '

' '1_

w!

i L :_ i

' if O

OT 00 0'

020 0 25 OM 0 35 040 045 0 50

.16 I

1' Fig 1 A-Moment P/,/(M. /R.s) due to an enti.ro il c.rc umferentui mome nt M on a ortuin ryhnfer j

.%I s o v. w a

.q.. ll.

k 4

I b

i

I k

4,! O,.

NROPklETARY DATA O

g i

, i,

t:

j j j t

}i.

f

{..j j.

'p'.

-j

-l 3

I-

_. _cm'

\\ {'

i t

l i

w q, goa t s_

_ __.q j

1e!

L@ v = x.

; (gg L - - *w. -

t

.. s l

1 es

: t: N'N. N' I

l

! ! bloo

'N ip %,F.

N

.v 1

_4 4

[_t

-{ ! IT d'lM !h Dd C.'{.

l l!

I' i!iII

! %+ : i c..

T40 's 'vs&s 5.0

- I[,g~ VpM ' I N'S ' e'D %

.a.

  • ~

J' M

T't i. $.! YQ CM l

I f e 'h. 4p.,hM(W' QN Q2$, [ qj ]" '

T 1

f,.

f 4

3, 4

,.+ 1. i. I J kI

'.-! !_j_ D

^

s N

y gN.s 5 Q Q.

h s

{h!

.{

j'i 1.. I...-

N

^

' ' ' ' ' ^ ~ ~ ~ ~ ~ -

T n: - ~ ~

%~ ~Q-~ %'Q. N C * "-

~~h'..,..

.T...

. t..

+

n h wN 4 2

~

i ;.

ii.C F

! ?;; i

. 1 N

b.h le-, ' !

, _.* !' ~ 7 +...-

.3

"%Q g

3

  • ! i Q,,'

t' e i!!

'1

  • t i '

1

  • ' I i '

.tJ

.h.

[

4 7 1. '.t..]. 4 N

i d.

J,

!*j.yi 1.

t _..'

4

}...

M; 4

3 9 4

g

i. l. )

-44 4 4 4

i._I L_

l 4_ -.

q_4 s..j a I-

..._.. { -- _ -

  • 7 2 1 7

e Jp p, I- [ yC a.

-4 1-.

3

".. ! +; ;-,

-}

}

}.

- 7,l

-- +

  • 4, _._

g m,

,l.

,,.

  • 1.

t-T. t..

4 i t. '. &

j l t

-}- 4

.ri

, 4

.j-4

+

f 7.-'..

-4

i. -

.i_

'_'.t'_.

r.

g_.

_._.p 4_.

,4.

5..- 41

.4

+.

  • f h__

_ ~, f' I

^

^f

~

~

'.. +

. + 7,_

t F

7.-...

=

s_i y

3

. 1 i

l

. 7 Q._

i I.

.i.

4 4

t..-

_,y_...

y_,

.._, 9, 1

-,1, '. '.

t

  • i, T - '

, ' ~ *

  • i e _..-

.... _y

.}-..)

-J 4

4 99 i f 9 4 6

}

i 7

4.4.

. -+

+6 6 4...

4

.u 9

-p- -I ~. 4 L }.

i F_

+..

__.4___-__

a_

.a.

4 i__.

,. ;,1 l l ie t

i 6 -

44}

(-~ 9 1

4_L

.p.

i 1

4 -

a i i f.pmi.....

4 3_

f.f.

._ j 4_.

4 I

f_

f g

=11.

j E

s_

7:.j -

l l

'l. _ ' -.

.'.7-,,

a

..o.

a.,

sp.

s _,

_. 3 7..

, 7,

  • o

' 8

,7

.{4

{

I A

s __

_.+

. _.94

, ; t t

'.__6 4_.._

... f --_.

d

. 4_7

..j i.

A P

4

.t 1

+

oi {

5.

6 t_..

_/ _

4_

-._- )...-

. -; 4 4

{!

i

+

3__

_ j

[

.y { ;

F

!! i 5

t t

tii.

~

i

..., i. '

T*

I,

1 p

4.....-6-.

6

+

6 6

6 6

-6 4

?

0 20 0 ?S O 30 0M n 40 0 4 *,

oto 0

C OS 0 60 SE 16 Fig 38-Membrane force N,/(M,/H. 's) due to an enternal brv.ito bnal moment Mr nn a cucubr cylir-dar IG

ili,

,s in S/.,i/s 2-34 I.

i t._

u

,i H,

,.v.

t_.

j j

s._. e l

l.,

i i

i i

E J

,g g

I il I

l E

l i

e

},i.

l 9

'}

}{

l i

.rs=

=-

wme------H

-~ E-t--

+v

-I-h- +rt k--

-h I

__..1 _._L 4pb :'s y v !.

ii! !

.i j

--i r'!

.l-8--

L-i,

~i.

}.

'[.jj t

=

. 4

-H

+ 4-j i

  • j,fr++ - - -

+-+-

4

- Z..~l_.1.

l 1[

~

t

,t,t c

..a...

i,

.j

_ a_

I

.I.,

l I.

m _ -,_}

. L_

,,,.4 t

t

?,

t

'f e_

_-41,

..a-.-.

t 4

i i.

}.

.j 4

i t

{

r_

_9 _

y-. ; L m-

. I.-

r.

- m-e g p=s ygnn=..

_ qm_ -

=-.

-tw w

e-

. JT:

_=.

Tg i ;...

2p F

,. 4

. q

{

]

.T_

-~

I M.44 i

_l m

J.

t. g! L n

-__p{i!._

_p ) ~j [m[}-

. m.

4

_s_.

i L:

J

..I.-l.i d.7 Q., ;

i-

lf

_L

.1

=_. A.-

.pp._

1-2 1. :.

.::+

u t

I t.-

J.2 :

- 4. :

i n

2

=

= := r.r:_._:_:~. r_:

.-r::

y ii::

i

.a :. -

    • i.;
iy I

+.-dE!=z :7 ::t to :::n : :

"t :

i 1'.

  • 1:

Mv _i_;J_.... i i _4

. r* ~::

j^:!lll T: :

~ r: r*-

i: :

4. rat +-tn y M._. 4;.;-h:; ;L;!!:

',, "..!..I;;;

-t+ t-4 4

9 r i-,.-

9

.q~

+r,-._

_4 4-,

' i *

$ g,.,_

_ _..9 j

9

}

I

_. @k. - N',N} _

t__

_q.....

h_.._ +_

.7....

Mp.

~

~

4 t_.__._.

. {...__.

g.

4, p

t

. _,4

.. i. A 1 -

41

.e.

1 LLL

. c{ pt'_.l ' -{.

__.._{ _

_L. _ _ __

._._'. J._

.k.

4_ _

a_c.,,f i

.p

_. J.

I q

3.,.

w

. 3

~..

. n O

\\b'

, + '

2M Ft U

.s

.._,.,a.-w_ %L g*

u

~

t ~ l.

3.1

_ S.D W-+s a

4 m

f r' sNy il %&$aF N',ji _li !

i

.I;i m.i t

w i,s it; s I

i ~.;;,;

y. 4 sy, s. !,,- 4.,.!

s

=

3.-

l - 3. ug:.;

.2a

.y a.

i

v.. w isi.

s t t i w

h m.s r

.t N :_s.u w p m

..yd :+..%, ;, ;N

.ma 4

.4,:.

's
*;:

' y __4._,.. +r ;t

-+

n, N, :

m;- u

. ;m_._r1_

u s

w.,

.s.

.~.

s,,..,

3.,

,_4

.m

-m

_t..

s, e i 1, s I

am_._ _,q f

_L

._... _ -- A_ ".

s r r; ng s.

s

_gg...._ s.m cp

  1. 4N._ 4-.._~...A

~

r

.__.i E

N g _5

_5 8-

- H E

h 2 H %

W c---

s s

,!m,3 B

y.

._;.y s s

u, m.m

3

-(.

t-1 2

a s.

...,s s

.m._

._=

_ 4

.p.N;.s_,3 +s--kg.- ?' ~ L+ H4 t+ ! =t s

s 3

. : C 1

- -i 8

w +i

+M 3 +U s & % :.mn v i t

e

%,fr_^h.....s_ri-

+i_gjJ.y 11 -= =

.+

j::,, M_... 4 m,fa d M 3.,. n. 4. -b y LIJ 21 M

[22 2

=

] v_ h y ! N,,

, N, N.

t 4_, 4-+! +_;_,+ +1, * [.

7t i

'-' l :

'i;t- : :.

l

_...-._ w jijl!

  • j!t
  • jl I

$ L, yj,'

-t +t-+ -- -

,1++4 i.il.

.i.s

. i,

,.i

.+,

g 4

q s

7

.p.

r-4, _

.. r___

__s._4 41.-

_.. _}.

_i p.

, = -.

2 =

7 7

4 i

g s_ i.~

~

.1

._M4___

I J.

Iu. !l

..__L.{.

=

,~.-

. _i

___. __hI_[.__.

_.IT il d_

_u

_..._L i

a_

.+

_h_:_k f

_h [

.}[

. f ;!.

l,f fpli.if 4

it 5 't

. i:

.,l n} - tT t

~P I

w L_y,_

.j;r..

l,,!,!

.. i: 1

_t.!;.;.

i :!z. ;-

1 i,

..,! 1 t

.i 1.1 4.

i

-t-4-t p iiji4____1['m,

.ie 1-p m.

4 t_._

_m_

e-

+,

_. 2

. % _. m_

.,_,.m O

COS 0 80 0

0 20 02S 0 30 0 35 040 04S O So I

Fig. IB-Moment M,/(MdR,,,J) due to an external longitudireal moment Mt on a circular cylinder j Stress on the longitutnal plane of symmetry) 42 Stre.m m Sh,Ils I

O! bob

[

2-35

I p gar UTM i p.=rl l rr I r i.

l i 'l. t P:RO.PR. I.E"AM, E "A i'

.I ;

J 4; -

u ll I

t r

s__.

. m... r. m.,.-._ r,_.-+.-*-v-I..r--'

,F it r, r.

t r.r.-*

i e. r r-*

Th;Ijn- '

~. '.

=p rt.. - - -i rn. ;t_dp.

___?._ i _. _?_ ' _p,- m_-g;p 9 %,

&r

&[ -[*t, 7

[

T-IT i

myd~.--M.W3i;-

tr:.t 7

t tm+,

'- (

] -:

4 tg,y h -jt

-- t} 1 it ', *

~

--+- "

t

'Ta n[

/n wi 1

N,

.,r,

.t

- rm i.

tur

= : ;.:

Udd Ti~

t 3'

' !I t

.bS._. h... M-}d u W @ te '

N

..... ^J' M iik)} H..d..i g

N %. %.

5

... i.. r_

,.i 17 7 r,.....:xt un ng--

s ti:

. c

.1

/a'zy_ yb2 4U.

-~~r~

rerr' wn

.D-m;1 1

u_q g' n..

M.- 4 3

L

-iy_ '

M: '

h.,/..

.,,:._%, ; :4-}-

+44-[

.L L'- J1

.W w-

'+--

' [t., c p -t.,.

i p -t, %.k 7-[."

+

1/

..,i,i.

~-

i [b Mi " 3M_,.,Yti MN1 i ! t-+

.r. _ - -.

,_ ? r "

41

+

c, 4444;;

f l

3.3 n-n u-m &'_ _. 4#;_ 4 w,,.

/p

.e;e Tr-ax

. ; i ;~ t-y x4 i

3/ =Eyh i9

, 'W - " T " %'._. m -

. 1

+:

al i

sh i

=/==/=.'= n V.r

=

. =

.}; -..

==n n :..

+ :

m.

_. a==
r= - -

-t,

.
r: ; u 4 9._ _ :-. _r =~~_,_.__._2._ ; r_en.en.r;r :::n.p:.

r r :.2 %.,,

t

. y prp W6,,

4.

L.

triTrq

--+'

q [a I..

Atg.1.,_.a L4;l-.

_ 1.-_p{:1y pm u J

pT' u..

w u_

Z 7:

+

/m M<

i i

~.t~ 4': E i

",7 %. 1ii bp7 i f--~ tit 7 y 44 4 f._..___.- g.y; _L Wp L. _ g-:

_J p __

j 1-+,d b -f-- +T rTpt 2

3 4

9; M+ r.;-+

,c

/

t

= '-

rt

+-

g_m ilh l

.-.,_,__._g

'f I

=

. yi

.-t-.g-H l

~b J M_.

g

_ - _4 f__

r_.

l r....

/

4 4 2..e..

..+_.w_.

si.'

(- g {

'i

? iI

' Kih I

j

. _..1.

i j_ j

.. a _ _4_

_._4

_ y,.,'

j_

_-_. _. _.__{_.

-+-

7

)

1

.q_

5-

+

ya_A h..

g.,,.;

_L. _.

_.-f

_m

-y,

_____..rp

.g_

_._L 1+ t,.

L-'

..b, p

1.

I

.d d.d.

/_ /

_ _r-u

__._q._..

g 4_ -

.Q

.c_-,

...e g

J L

. +..

f R-f1 E

' T

'_; 4 [ 4_ % 4 J g.4-._

g

._.. i.,.

-*-+~~~T_*

^

e._.._

_ __4_

s 5_ _

2 u

.. m_n s ' s.

g _ _ _ _ _

G~

..,_ __ i..

.Q_

k..

.... _2.2.

I

_l j

s_.

.i

.3 g

((

.1.

, _l I

_e

__.__J O

0 05 0:0 Og gg 020 0 25 0 30 0 35 040 045 0 50 Fig. 4A-Membrane force N./(M,/R 'd) due to an enternal circumferential moment M, on a circular cyhnder Sbcucs sn ShcIls tI 2-36

I I

ymSP10PRIETARYiDATA p =

t e_ _..._

j,

i s-I' -

l ll,,

ail}l,l s !,, a..ii

!,,3,;,

1 *

,. i-2 l..

4 M

' ~ ;

_==.

m__

.;y_ W s_.,

2 t -

  • i 1

r-

"- i i

{ {i

.I I

.,'i i,.i ;..

ii i

. +

_+4._

-e 4

.H-,e 4,,,.

4

.e__.

_. fl._l2.2 [

.f h{ 2. !] ].,{ j

. j_{ {

.I ! !. ! j j 1. l '{ ]...{ [ j i

li t l j]. I l [1 I

1 7_... ____

. J., e W.

.,,. 4.4 j _;. ;., g. p __ _-..

_, si-4

.,4 1

a i.

2,,

4

...a

4.. 4 i i
. 4 r.. LJ t,

q.4.+_ g..

1 9 f" I

~~'~

i!I

_4._ i, ;

, 4.,l_ +.

.t y..r.-.-.i+. - +. -.

s-

.,~

~I

%.~'

*~'L', 'lI f

i '

1'

  • 4

.d. ~.T*{*

._ '. ~._ ~ - '.

. _4. '

T, _

' ' '- T T Y. t^ '

1 q. { {' ~ '

l,9 6

1

_. 44 1

4

_-. __4.g J ((.g. e L,{..-}.._. p tg, 3

... L M id,q.p.

_ _1_L_}_p p.

ep q _ _

. _. _ p 4.p44. _ s.l._

.. +.._.

H...

.4 u

4.j 1, l 4.1, 4, -. i

.e 4

r 3

s

'~-~~~.'

}

t.

-'i j M~

j

-i j

~~Y ~

r-

-..t

,_L : *'

^ '. - ~ ~ ~'-O - - " -~"b'-

4 t-

-h. - + -H j2y

~ n..

L; ;'-

'2

~:-*--: t r

-c;:"

.,' ~

g

+-

1 t

T

  • l'_* W{I. 1

+-

G_.T._-_.,i i_.-.. - :$. 4 4.+.. -

- *- * :'Y* '

* -- ~ '
  • ~~**:' ^

-~'Y.,~.*~.

.. ' ~ ~ ' '

1

.. 4.._

.-t-

._t+a_.--+_.... - ~ _. -

_ + _,.. _

.r%

+..

_ - +.

4 i

-+-e-

- t ** -

+***

ev + + - +

  • * +-+-

-t-+

+*

_ q 4.+._4.,--+

.o 4-. _. - _-

. _-+4_

-.y

(

%d 9-t-

-1

  • bl"p~

.p...

i,.

_g.f',..

T

  • f '*" ' ' ' j

_4.._

.y.

j

-._I e

i y

4 1

_. t

. g i

t t '

-.i_ _

+

t_

4 g _ s. p_. 4, 47 r,

i 8

.. L_ _LL I -

_+_p_

l 1

.,.h l_

_h }.

L [.

j t

[.E_

... - f._. f.,

_f.

d.

I

.-4--+--+-

6-.

_.+

.+4 4 p l

1.1.L__.._

. Lid _7 L -upu p 4_}.

. 1 j.

.{.,-

..+.4.a_

_, _. ~.

i

'l.{

t 1

L R..._._..

.M { ~

....__i._- _ rC _,

i-. t. ' 22.:_ _r

._.!,l_ _ ' _.

jzi._L 4

z CMIT-' Il 1...7' g

= r =.j' u'.[..,

___d

_ __g,

_4" C l i 7 i'

._..._,_i4_, _ _. _. * - : -- ~

~ - - -

' ~. - - ~ ~ ~ - + - --

- ~ - -,

+-- - - ;

.;+.

-.+-+.-+-w+-

-t

+..

l

- - ;r *,.

a,.,..

i

=~

~

j 41 y

.. A.l. wl ! l kL.n O

I I

_1 4_i_4_{+ Lm.T 1. Z 4 L_

.u L44.L' 4.J.u4 u _g c

p _L.L..w.4_;

J_

g t

_ Lm 4f _'

i 1_. x a.

' ' i 4 g'.k,. %+_,,,,%.

4_;.4 _,_': c W:.N_ MQC M r-ca.k_, % ; --I&.- -

N 1" --

M --

I r_.:----

m-g w

M -

NNQM;. ;

DTT- %.f P" 3

0.041-F t-W

--h; ** 'T :.mg-,,. _

~ - d..-~V ug

.,_tiip g

. -lz.

r.

. *i:

N_..

...i.

=

. q _,.

}..

5.w 1

u

~%

.J-. 2 N_%

4

.t t.

. !......e__.yw, 3

. % ! r.,, Z,, -. -y_,30

._.__ 4.-

. L3Q_. _ _

Id25 _

s s.-

= = - - =.. _.m.

.s m, g -..

3.,

i

..,,b'--t_----*--+I 1

.,, r

== ~,, J"Z -, ;.,.- - -._.q. q. r. h'M5 k

%.-.i..,_

6 a

- '. ~

.,___;..,._~~ "- n 505- ~ - -,-. : roo E

+., ct s

,_._.-,_4 141- -2 u

f5 va 2

i.

+

8-

,!L

-- ~, _.4 %

i i t_+.. _, _L.L._

.-._~._A

...I'T [~_., _.

!, _. t

_.2.. _,i_r.., _,. _ ' - _

i w

44 I

_ A_.

, I

_.__.1 i i

~ _..

.- i 4

e y-j g -,

.p,--,-

, y., r_p -.,,_ m -

.y.

11, _

i r.

t 3

j l4 -}.f.L _.

}1 r_

}l-

I!!

i j

l t I t

,,3

.t r,i.

+,.. '..t L.

I

+

.e.

p

=

i g '

1,

l t

9

j m-

_t

_._._,-.-._.m, 0

0 05 0 :0 0 S 0 20 0 25 0 30 03S 040 045 O SO I

Fig. 2A-Moment M./(M,/R,#)*due to an enternal circumferential moment M, on a circular cyhnder 0.16 Sh rne x in.% fis XI 0d661 D

I

. PROPRIETARY DATA r,_,

l t i t t I

4

, I i 4 i 1

4___

t !

r1 s 1

  • t
  • lill e

3 I ij

' ~.. _ _

i i

, p 6.i 9

3_

.._1._,

4..

+

+s

..J

+4.i_.J-

9...

._1. _ L-y.

]I t 4-4 {

s

,.' I

!l

}

a t.

.... t.

!k I

i i

.,1 l.'

l

) ? So0,

g t

4

lJ

$.o t

2

..} H..

l3lli ll,'i 5

a_-

f. i..

e too t.t

.i,;,t

. i,,

1 4 ii(;i..

i 6 t

' ;,i i

i

)

4

.lj jj j

g I

,.. i !

F-

- j -j,iy M, ge

[+;

i I+

7 kf.fj f h +jh e

t s_

_. _ 14 _ _j_!

.N a

_. _. ;.a. 7

,3 t i.

d v.L.

p

,1 1 L.

1 -i,4

'- U

~

T,[-] {

,' O.3 TT,1i ITkl Tl 1 1 l

m. # %

71-p, },.gj j, '4 l

4..

.s.3. m u, p--.

r r _s

~

s- - 1.

2

,fn e

.r_y

~. -


._s-,.

-p.

7 W L

.a-yq

..a.

1,9 na. Z 1'

T.50

,.y-.

---i I

n:2 2

=-.

u,_ -

q.

{

s.e_,_

.. _,. 7 1.. _A. -%'

.I

.. +

36 a

..l.,,

++ -+ +-

t e' {I

.l

, 1 6

,p,=,.

.,4 2 a

mj.

,_ L____

. ;.., 7. d9

...a 1

4_+

,, 4 9.

..+a9

_1._'_

,3

, 4 +y.

4

,_3 4 +. 4._ -

4 4y

,.4 J y_

}

.y,

. y.g.4_ t-._. L.9

..q..{.g r_..e

, _. -, _... _ _ _ ___q,j.

s_

[

.g

..p i_. _

.hLk L

d

_ #;.M...! 5.

, +, +

tt+

~

I

_l

.A,

..,_.+ i_. i p.yml O

.,' d

_1_ l,, l j Q,.

qpt.

_j_4 t.

L. _. r r

a__

J f'

j.

4

_vu.

_4_

__.4._

F c'

isto 3 _ _.

T-

'e

'2 t f _i - i

?

j 9-

{.._,

.p.

1st...

!{

}

j..

f 4

[.

i

p..

I l

3 J

,y h j a-. /.!
l' ;

I lf f 7

v 1

{

c.

l

/

1

.: ti a

l 14 i.

. & y,{

r._

.*.4-+

i_

...t1

...,. 9 _,f,..,t -

+., -

t q.4.h

, 4-4 4 g 7];,

5 s _..

.y

,1 4

1 )..

.t 4.

~

}

g

?_

4 i. m.1 (

.}_+.

L4 e_

j e

1 4

Fl 4,j

[y

{

s_J

..i!/

i )

];}

4_a

. --. f.

4._1__

,.7i

74 ja

+

..t.

1..

3 4

3 {

+. }.4 4 g 1,.

i

{%

+

4

}

__4_...

_Li i.i... M,.i_L. _i_ p.1.

_ _ _a._.

-j.

' (l a-h 2[

p'2

_ + - _ _ _ _.

_ _.. a__-____,.

4 ;_ _;

=_-

p.

g '{

d y..__

os _.. 'J.

l i;)ij.!.

e _.._

_ I.

e_.

I

,44 94.y.

{.}. } ~1, g _

-f F- -

g- -

aa 44,J.

.l I

) ll g.

5_._. _.

_._y

}

l, 4

2 3,

a.__;

1.i--

__ J y ;

1.1

.jj,!

f{

!.l

i. i !
a. j 2-

.;._ ; L L.l _...;, ' _ t i 1

~

g..

6 i

~~

i

.__e

___s_m O

005 O IO C l*-

0 20 0 2 ",

0 30 0 35 040 0 45 O SO Fig. 48-Membrane force k.16 d

/(M /R.'d) due to an esternailongitudinal mornent M t

i on a circular cylinder N w es m.% Hs 47 2-38

I T-} l l, m, J, fIl1,,

!,,. m, PROPRI,E, TAR,Y.D.ATA.

m i

i_

w,-

g., +L,.

g, _. -,

t',l p

I i

. _. __r! !

4-1 i

.. i i

i --

_J, i_I. 1,,1 i

t l,

e-

__... _q 1..

j

, i,

i

% q.,-p 1 24_;

.l

. q ;} $

.__+.

_.y. A q

I

. a=-es.-s= -=2a +4-J_

i 4-{.d, I.

. _. _ _ _ _ _L,,a _ _

r i >

m._a

=

r.

i,t g

=a==_.

u._

1 t

p

+

r au_._.--

-..u.

. u.

-l 1}_3_._

b_1_d.

j g

art-t:t:1 Lil t; t

...... 1

_t..e t _ t-4_,..

llj'{1{

i tl t

t-t ! f f f f-t *' t

-i

- * -t-t-- t-t

+

t-

-t r

+t t t

.p 7

....p 4 t,,

7}t.,t.

J,J.{

-p p

  • H -

8-l

}

} t-4 j

}t f-t o

p _.9

I

' Q.4_4.g;. j_ _

1 _p,1 '

5, p, o.

. ni 4 r 4

r_-

, _,..+

. __ ;_ l_.-...l._l..._li a;_.j_S -h 4 4 -.

'l;

- 2 i

l 4

{

-,_,_,.7.,,_._f _.,L_},

.,_,9_

t :

t ;.,

c_g:-1

-g..

f.

. m 7.,.

.[ _

_ {_

.f:;.,_... ' _. _

4

  • 1 j

.1,.

g&,9

. m.

4 i

u, a.

._Q

_.}J_._._. _.

s 1.

.yi { l 1

=..

+

f_$_l. ' '

._14 i

-~

1 2-u:

E U-@@h ~ F 2H[- l-

-b

-l i m --

T.- 1_ t-t-.2:c...+ -

-_c re. -.-

..... +_-

at t=_. we.-

. - - +

-~; n* n: nI _ *-." :. i *._.

1

  • ~'-*-**:-*~'C-C n*.;*.!'. _
  • U_ :_

~*

r....-

_4

_. _ _ +... _.. _....., _ _...

m r _- 4._+.

A

_+._.

~.-.-+- n f..-..... -.

~

+.

g.

._+%

.m

.a

- - - + -

sm

-J-p,

,

  • m, % Q,.- -

II

.,-,-+-.w-I_q 7_.-.

l'

-m-.,_.-~ _. - -. -. - -. -., -.

L._L4 f.{ {..}.L4_a.._

a.. t. 2 444..'_f4J..!' -h g

  • t *t t

--% p'W. r..f. -.

' 4-

.7p

.W J e- -..- g 'I %,,;%, % %M+P.id C,, gj_A___+-...

L

--4

- i

& w q:

.. w'

's--

Y'.

. _m

  • \\m m

- 5t t-k 2_.

i-N I i

N u!

O.g gy g:Mi I-L a

n;s

- Q%[ L rM2

%p?m%ym

,g 93 4_,

_ s

'h+

MMWW Mt? a.A.

+

L,( 2 dm

+

.s

-m.

-,? g- -- % 5 'N,

Lri: 3

-*t : g 4!

=

i..:. :

,g -Aq - +-

.=

A m - r- + r

?j 4,~._%. m g

- 2 *--

3 n ; _,g

-E..a. t
v :s +

.s s:

s _. __.-.- y 793.

y

' ^

k,

-* k 4. b g

.... _ q (

N L ;% *.

N' t

)s..~

N h.s},, s.

.l h

h

.a

. 4_ p... s.. i..

_ p. n.

b_, --. %.. N _. _ N..,

_m.

i_.5.

~I r

i

_ P

.m im

, L_.

. %, g.

%.s 7

- 1

-.. '%. 4 N

s 7 r-

  • ]

1.w

__ L.

K

- g'T T-

g

- p w

-N ;

w.

. o' %

r i mi um n ' s rd

- a:

+

_-m =t I-Leg' l.i3 (

K.

l

._. j 3 i

.. s

-.h'

~. -kP.

  1. ~T _ '

'_T* T.

.4.'

. y,' _,'.Q' N.., _.-

"~

2

.__y, T

t=~

4 _N 4

_m ;

d.c@-+--5.."-

_ yb+p P W: t +i

- i.

J-T. t:** -: TA H-'

i 7

  • '~

". 4 -

13. =i- _=tw

_r c

s:

g --

g

--$55fc-i?'il

~ E-W._ i.j M T-i7 Q C

-4, 4 F

a.-

B

. r_. _ :_ 2_

..s 30

~

_ rr _

. _ " -~~- :. =_==: n a_n. _..-

_m g

u

-i

--zn- :_I:Cr

_ :Cr_;. -

'.g:

'% p-N, L._._ _

-_M *- -- "2: 72-
;. (-

.s tpDo.-

4 _.-

, s

,I

_! ^. _

.1 *-- ' ".Z'.. *~~-'

s'

.N %

+.

y

-g..

D

~-

i r y

]

I y i T i i,i_.k._

T-t-_-

--p 0-+

,n-

j. -

g m

4 s-

+

F_

E

. ___ _ \\

4

.N.____..

5;

--j

}3 t

,~

_{'_ _LL__ T ]'CT

~'~

~

~ ^ ~

'" ~

~

ZT_~TZZ.__c_

I

,g d

F

- jf f r;j s

'1 t

- j

. 7a

. 3_y. ;_

i r

~ !

m_ L,_.

U:_-T C

. Mt..

,I

^

~'-*-*~*'.r._.._:* _ :. *._._:.-.

__p.

.. o. e.-

i i..

._s_.+_.~_.X..

5

+ - +

. ~.

+ -

ii

, _L-

_ L._4_ _. _ _ _ _ _ _..

O 0 05 Oto O IS 020 0 25 0 30 0 35 040 0 45 0 50 I

0.16 Fig. 28-Moment M,/(Mi/R,,4) due to an externallongitudinal moment M, on a cucutar cyhnder (Stress on long:tud r,at plane of symmetry 44 Sla m < in She ll, W

' 39 IB0h M

PROPPJETARY DATA l.

1m

,-c-... s s.,,;, <.m, s,........ c,,,..,,.., s,.,,.

M L

M c V

u,

t. A,.i. 4 L....-

3.

c.....eP.........

g

. M/

L/2 M

/ ~v"'

P=.T a.4..i s.. s.

i

m. 8JN.t.

T

~T- ~

D b

c.... m.....

.. i t.

L...u-...

m t. 221/6... it.

D'

  • ~AT TAC H W EN Y ROUND m.UL.I4 E
  1. N. ' '

Au

"^

=

g, 58.

L. 4 vt -/27116.

r e

s..... c............. L q-y 7\\

T f O Il

.,......i.4.m.,

_l-Rm L C

2. c..,

v......a......

r.Cf1f..

61 6 -' e i d "

W CL

/

A n..h.

e

4.... '. -

NOTt E.e e r.Il 8......i.....

v....a

4....

a.: tG.2...

CYL1NDRIC AL sHELL F..=

a 4.....

c.. 6 i...i...,

s i a a n a 5 -.. i...............................x...

F. s.

e.,

.......4..,....i+.

a.

.t e,

eo c.

ct o,,

ee
  • k f' N

~~

~

~

l~

3c or 6

o s e

4C Pra.

f 6

g

" (/.o ) sP 1C or

.a 4

+

p

=

,c.1 7 =

..N..a,=;9

" (.. '.%i)..;, =.

58

-;k(g tMsl+Ng

.. :-dn "(-.:n)'.'r**

WMMW

-2H33 GM3 mm ~2NU

~

'~

.:'...co "(.'.;,)..;,=

-m2 -sw en +en MMkgM l

~

C'.u 3, "( : < ) Eh =

-e m +s m +m2 -rez MMitM34 4]

'.'s..'.:.~.:% * '~~

i.nsi 3 sis msy 3svo an oi uns not uur l

q;-

A=

3). l, a

,.. ),

+

+

+

ic.1

=

" a z=

.. a c r

..'/...a 6 "(..L )..L,

=

S$d!MMM 42tt

-+'2n */2a. +/2 u a

l

....o g,

" L. L )

..'~l,.

MD3k%3$$$$4 wr/4 w7a +/ca w,n

~

&W&&

. ';..e i. 9

"(...:.o)..%,=

-n7e -n 70

+t87o +n7o

&M$t}RE${$

l nll 6 E =g " (.. :D) - [Ri =

-tzte +n.m +, nip mei n

.........ii.~....

.s n....... e. z.

/Y/// /0370 kl///

/0370 /40e2 /AUe (7Ce2 f043e E

s........

m.

..r...,

r a. -: T.o 3,..(T

+

+-

t-t-

+-

t t-f-

g a,y wy %

wa

. MMEM

= --

... =

s'n wz v?< p2 l

s ganggagg

= = - -

~

......_..i...._...

'~........r.

74/R 74/f 7$/f 7'y'/9 5422 5422 SL22 G22 COMBINED STRESS INTENSITY - SM y.% NL. 3 N9 if

'L. 3

.I Mo

'). I a c. c' (dnh hkS1) a.N 2i.Ns.A 21.IN 15.t x Mo

'2 !. > - Me

1) When T / 0, S = large.st abno'ute macnitude of either

,23.7 4)2 + 47 2}or

}2 + 47

),

S =.1/2 [0

+0 i /(0

-0 2

x h

b

2) When T = 0, S - largest absolute magnitude of either S=0x' UQ x - 04)

UE IC N./(M,./R.,'4) so determined by (C ) from Table 4.3 caiculat.on o, stresses t

a (see para. 4.3).

4.3.1 STRESSES RESULTING FROM IIADIAI, I OAD, 4.2.2.5.2:

When considering bending moment P.

(M.): # = K,.f[sT where K is given in Table 4.3.1.1 Circumferential Stresses (o.):

t 8.

Step 1.

Using the applicable values of d and 3 10 Stresses in Shells a

lI PROPRIETARY DATA

!I jE 2.10.2.11 Summary

l

}

The maximum stress developed in the outer shell at the tie down lug backing plater is 34,000 psi.

Based on the actual rrinimum yield for the material 42,000 psi, the safety factor is 42,000/34,090 =

1.23.

2.10.2.12 Analysis of Cask Tiedown Lugs i

)

The HN-100 Series 1 cask tiedown lugs analyzed for a 10g, Sg, j

and 2g combined loading condition.

i I

Mounting Plate

!=

Outer

=5.94 en l

(Ref.)

Adaptor Lug

)

\\ 1.00

+

3.12 dia.

/

y n

I l

O pin dia. = 2.75" b=9. 4 i

]

.75 P

/

Pe "a" (ger,)

h

/

h i

1.44 min.

jl 1.75" f

';.. P g, -

!W A

p il l

From Table 2.3.1 and Table 2.3.3, the tie down lugs on the j

HN-100 Series 1 casks (except for Unit 5) have a minimum yield of lgE 61,100 psi and an ultimate strength of 78,500 psi.

The loading on the lugs will be 211,766 psi.

The tie-down lugs on Unit 5 have a minimum yield strength of 50,400 psi.

!I il 2-41 ID00tM m

I PROPRIETARY DATA I

2.10.2.12.1 Bearing Streos in Pin Ifole The allowable stress in bearing based on projected area of pin in reamed, drilled or bored holes is:

3 F

= 0.90 F, bp

= 0.90 x 61.100

= 54.990 psi For the tie down lug the bearing stress is:

911'766

53,476 psi f

b 2.75 x 1.44 Safety Factor (yield) = 54,990 = 1.03 g

53,476 g

2.10.2.12.2 Tensile Stress (in Plane M-M)

F=

= 52,149 psi (5.94 - 3.12)(1.44)

, 00 Safety Factor (yield) =

= 3,37 52,149 I

I I

I

~'

I l

5

I PROPRIETARY DATA il 2.10.2.12.3 Tear Out Due to Shear l

Allowable Shear Siress = 0.577 x 61,100 = 35,255 psi iI

(

A A y'

= V1.56" - 1.375%

g N

= 0.74 y

= 1.56 - 0.74 = 0.82 in.

M 2

y l

I a

0.82 + (3.75 - 1.56) = 3.01 Y i w

211,766 f

=

= 24,428 psi 2 x 3.01 x 1.44 I

Safety Margin (Yield) =

= 1.44

, 1. 375 24,428 I

1.56 2.10.2.12.4 Weld Strength Analysis I

Stress in the weld attaching the tie down lug to the I

reinforcing plate are a combination of shear stress plus bend-ing.

Direct Shear Stress f =

= 13,645 psi s

1 x 0.707 x 24,82 x.85 I

Bending Moment M = 1.44 x 1 x 211,766 = 152,472 in 1bs 2

I g

n.m

PROPRIETARY DATA I

t 9.94

<l I<

l

<1

_ (2)(9.94)(4.97) - 3.826

,s 2(9.94) + 5.94 5.'94

~

n 3.826 g

l l M Meut ral Axis I

M = Compressive Moment + Tension Moment

= 2 (Tension Moment)

= 2f [(5.94)(3.826) + (3.826)2 (2)(1/2)(2/3)}

(1)(sin 45)(.85) t -

= 3,904 psi 34.45 Combined Stress f = 3'(13,645 F + (3,9 4)* = 14,192 ps i Allowable Shear Stress = 0.3 x 68,750 20,625 psi

=

20,625 Safety Factor =

= 1.45 14,192 2.10.2.: 3 Restrictions on the Use of Unit _5 Since the HN-100, Series 1, Unit 5 cask have a lower minimum g

yield strength than the other casks in this series, the gross weight 3

and contents must be restricted. The weight restrictions for Unit 5 are as follows:

I 2-44

I PROPRIETARY DATA I

I Calculated bearing stress in tiedown lugs under conditions specified in 10 CFR 71.31(d)(1):

53,476 psi.

Certified yield strength of tiedown lugs used on llN-100 Series 1, Unit 5:

50,400 psi.

t I

Reduction in load required to reduce stress in lift lugs to yield:

53,476 - 50,400 = 5.75%

53,476 l

Required reduction in package gross weight:

50,000 lbs x 57.5% : 2,876 pounds Allowable weight of contents to avoid stresses in excess of I

)

yield:

l 14,500 lbs - 2,876 lbs = 11,623 lbs 2.10.2.14 Failure Under Excessive Load The tiedown lugs are designed to fail first under excessive load and preclude damage to the package.

Based on the ultimate strength of the shell material, the force required to cause ex-I tensive deformation of the shell would be:

l l

64,800 F = 211,766 x

= 403,600 lbs.

34,000 I

The Jugs would fail due to combination of bearing and tensile I

stresses.

Based on the ultimate strength of the lug, failure would occur with force if:

I 2-45 libWiW

I l

PROPRIETARY DATA I

j Bearing 1

l i

f 78,500 x 2.75 x 1.44 = 310,860 ihs 4

i lensile I

78,500 x (3.75-1.56) x 1.44 = 247,558 lbs Accordingly, a tensile failure of the lug will occur before the i

cr.sk shell is damaged.

2.10.3 Free Drop i

l Since the package weighs in excess of 30,000 lbs., it must be able l

to withstand a one foot drop on any surface, without loss of contents.

2.10.3.1 One Foot Drop on Bottom Corner Energy to be absorbed = 50,000 lb x 12 in.

5 flaximum energy = 6 x 10 in. Ib I.

Energy will be absorbed by crushing of corner.

Bottom Steel 4" Thick Plate 3

I I

2-46 l

l

I PROPRIETARY DATA i

g The volume of the crushed ungula, assuming the worst case of a W

45 impact angle is caiculated by the tollowing equation:

3 i" 9 V

=R

{ Sin Q -

- QCos&}

g 3

f W

g Q

I

\\

\\

~%

\\

b 2e I

The volume of steel that must be crushed to absorb the energy from a one foot drop is calculated using the minimum yield strength of A516, Grade 55 steel (30,000 psi). This results in the maximum deformation of the steel.

V = 600,000 + 30,000 = 20 cubic inches.

g The angle Q of the crushed ungula is calculated using the equation on the previous page:

For Q = 17 2-47 illlBQGW

i j

PROPRIETARY DATA l

f 3

V = 40.7 (0.29237 - 0.00833 - 0.28374) g

(

= 67,419 x 0.0002996 = 20.2 in3 5l m

Therefore tot.al enegy absorbed for 17 is 606,000 (101%)

I The maximum crush distance is calcuated:

b = R (1-Coso)

= 40.7 (1-0.95656) 1.78 in.

=

The vertical crush distance wilI be 1.77 + 6 = 1.25" As shown on the figure below, the crushed volume will extend into the weld a very short. distance on the impacted corner.

Botton Steel 4" Thick Plate

- - _ =

~U__f 1.25" 9

1.78" 4

I I

2-48

I PROPRIETARY DATA The decelleration force exerted on the cask is calculated as t

the product of the maximum contact surface area and the yield strength of the steel (30,000 psi).

The area is calculated:

I

}

- (xy + b sin' E)

A =

U 2

a where for a 45 angle = 0 R = 40.7 in.

a = R/cos 45 = 40.7 + 0.7071 = 57.56 I

b = R = 40.7 in.

h = 1.78 in.

C = R-h = 40.7 - 1.78 = 38.92 i

y = VR" - C* = 11.9 x = C/cos 45 = 55.04 Sini 0.95645 = 73 = 1.274 radians I

,g = n (57.56)(40.7) - [(55.04)(11.9)+(57.56)(40.7) sing 55.04) 2 57.56

= 3679.9 - [655 + 2984.6]

= 40.3 in2 Decelleration Force = 40.3 x 30,000 = 1,209,000 lb I

Decelleration = 1,209,000 + 50,000 = 24.2 g's I

2-49 0100d6W@

PROPRIETARY DATA I

The maximum decelleration force will occur with steel having g

the highest yield strength.

The A516, Grade 55 steel used in the W

HN-100 Series I cask may have yield strength as high as 50,000 psi.

The decelleration forces based on this value are as follows:

3 V = 600,000 in Ibs + 50,000 psi = 12 in g

Q U

l b = 1.45 inches z

A = 29.87 in g

F = 29.87 in2 x 50,000 psi = 1,493,823 lbs l

G = 1,493,823 lbs + 50,000 lbs = 29.87 g A value of 30 g's is used in the analysis of the effects on the balance of the cask.

= !

(

I I

2-50

PROPRIETARY DATA 2.10.3.2 Effects of Bottom Corner Drop on Balance of Cask The 30 g decelleration will be transmitted to the outer por-tions of the cask.

This force will be composed of two components, one force will act laterally with respect to the bottom plate.

The other component will act axially with respect to the plate.

Summary of cask component weights as used in the following drop analyses Primary Lid 6,000 lb Shield Plug 500 lb Outer Body Shell 6,065 lb Inner Body Shell 2,010 lb Bottom Plate 5,900 lb i

Lead Shield 13,900 lb Waste Contents 14,500 lb I

This includes the weight of tiedown lugs, backing plates, etc.

4 The following design criteria and assumptions are the basis for the bottom corner drop analysis. The following load distributions are con-sidered:

I 1-Load from primary lid and shield plug will be distributed to the inner and outer shells in accordance with the shelI cross sectional areas.

I 2-The inner shell will receive loadings at its connection to the upper bottom plate consisting of:

I 2-51 M0 dam

I PROPRIETARY DATA I!

I I.

I t

Cask Cover I

I Inner Container

/

Decelleration Forces Contents f

Qv g

Inner Shell N'

Lead Shield Bottom Plate y

Outer Shell s

I E

Co me r Innace 5

\\\\\\\\\\ANNNNN N I

Reaction Fo rce I

Bottom Corner Drop l

I 2-52 I

l

i i

l PROPRIETARY DATA

!I i

1 T.oad from lid and shield plug Load from self weight of inner shell j

Load from waste considered to act on one-half of the j

j shell perimeter nearest corner of impact I

Load froin one-half lead shield considered to act on the half of inner shell perimeter not receiving waste loading.

I 4

All other loads on the inner shell will be considered to act uniformly around shell perimeter.

1 l

3-The outer shell will receive loadings at i ts connection to the bcttom plate consisting of:

l Load from lid and shield plug Load from self weight of outer shell 1

i Load from one-half of the lead shield considered to j

act on that half of the shell perimeter nearest the 3

corner of impact 4-The botcom plate will receive loadings consisting of:

Loads transferred through the inner shell weld 4

j Load from self weight of the bottom plate 1

1 l

!I i

i 2-53 eld 006M f

,___,___,.m..,.,-------------,~,-------v

~

PROPRIETARY DATA ll Cask Analysis l

1.

Load f ron! Primary Lin and Shield Plug I

Decelleration Forces 0-' /

a Shear Area

/

f

[ofWeld

'l

/

f

,7 y/--

.s I

+

g%,

,/

y I

/

4 Decelleration k,g Forces l

J N

/

I

\\

l.

1/2" Rea n

Loading = (6,000 + 500) 30 = 195,000 lb Lateral force = 195,000 (sin 45 ) = 137,885 lb Axial force = 195,000 (cos 45 ) = 137,885 lb 2

2 2

l Inner shell area = n/4(76.25 _ 75,5 ) = 89,388 in 2

- 79.75 ) _ 221.(>29 in 2

2 Outer shcIl area = n/4(81.5 Total Area = 311.017 in2 Inner area = 89.388/311.017 29%

outer area = 221.629/311.017 = 71%

2-54 I

I PROPRIETARY DATA I

Force on inner shell = (137,885)(0.29) = 39,986 11. lateral I

and axial l

Force on outer shell = (137,885) (0.71) = 97,898 lb lateral and axial 2.

Stresses Developed in Inner Shell and Attachment Welds N

N 3/8" s

__4 5

.I gj z,V s\\

l

^

3/8" 60

\\

I A

7/8" 450 UPPER LOWER

~.

ATTAQ! MENT ATTAQlMENT 7/8" 450 I

I Stress in weld around perimeter of inner shell at cask lid 39,986 lb/n(75.5)(3/8)(0.85) = 528 psi I

I

~

l agm l

e i

l l

PROPRIETARY DATA l

l Total Stress = [f (528) = 748 psi Safety Factor = 20,625/748 = 27.6 Stress in weld connecting inner shell to bottom plate l

t Total force =

self weight of inner shell lid and shield plug ( of weight acting on \\ of

+

shell)

+ waste i

Total force = (2,010/2)(30)(sin 45 )+(39,986/2)+(14,500)(30)

(sin 45 )

i i

= 348,903 lb Lateral Weld Stress = 348,903/n(75.5/2)(2)(3/8)(0.85)

= 4,614 psi (lateral)

Axial weld stress is caused only by lid load and shell self weight 39,986 + 42,638 = 82,624 Axial weld stress = 82,624 lb/n(75.5)(3/8)(0.85)

= 1,093 psi Total Stress = 44614Z + 10932 4,741

=

l 2-56

PROPRIETARY DATA 2

2 Axial shell stress = 82,624/(76.25 - 75.5 )(n/4) = 924 psi I

which is less than weld stress.

Shear shell stress = lateral force / area 1

[(2,010)(30)(sin 45 ) + (39,986) + (14,500) (30) (sin 45 )) = 8,730 psi 2

2 (76.25 - 75.5 )(n/4)(1/2)

Safety Factor = (.577)(42,000)/8,730 = 2.77 3.

Stresses Developed in Outer Shell and Attachment Welds I

Stress in weld around perimeter of outer shell at cask lid I

97,898 lb/n(79.75)(.875)(0.85) = 525 psi both axial and lateral Total stress 4 (525) = 7 3 psi Safety Factor = 20,625/743 = 27.75 Stress in weld connecting outer shell to bottom plate Lateral force =

load of outer shell i

+

lead shield I

lid and shield plug (the \\ supported by

+

outer shell)

= (6065/2)(30)(sin 45 ) + (97,898/2) + (13,900/2) (30)(sin 45 )

= 260,710 I

Lateral stress = 260,710/n(79.75/2)(0.875)(0.85) = 2,800 psi 2-57 I

b0hhb

PROPRIETARY DATA Axial Load = (6065)(30)(sin 45 ) + 97.898 = 226,556 lb Axial Stress = 226,556/n(79.75)(0.875)(0.85) = 1,215 psi Total Stress in Veld = J(2,800)Z (1215); = 3,052 psi

+

I Satety Factor = 20,625/3,052 = 6_.75 2

Axial stress in outer shell = 226,556/(81.5 - 79.752)(nf4)

= 1,022 psi 42,000 psi yield

(

Lateral shear stress in outer shell 2

2

= 260,710/(81.5 - 79.75 )(n/4)

= 1,176 psi < 24,248 psi yield (shear) 2.10.3.3 Cask Lid Loading-Top Corner Drop The decelleration forces that will be generated during a top corner drop will be the same as those generated in a bottom corner drop.

Since the weight and drop distance are the same, any dif-ference will be due to the yield strength of the steel.

Using minimum strength steel (30,000 psi) the 1.78 inch deformation from a corner drop will damage one or two studs at the point of impact but will not affect the integrity of the package.

With high strength steel (50,000 psi) to 30 g decelleration force will exert relatively high loads on the closure bolts.

Impact at the upper corner of the cask will result in the cask contents pushing against the cask lid.

The contents of the cask, it should be noted are positioned to limit actual movement to one (1) inch or less. The loading on the cask lid is realized in the studs.

2-58

4!I PROPRIETARY DATA il i

The studs stress is therefore equivalent to the inertia load of the I

contents and the inertia force of the lid itself.

The following j

l maximum weights of these constituents have been conservatively l

estimated. The maximum load will occur with materials having the i

i highest yield strength.

A decelleration force of 30 g's has been used in this analysis.

14,500 Content wt. =

1 l

l-Cask lid wt. = 6,500 Total wt. w = 21,000 l

I f,

TN YG y

I T6

-Y////'

Y

I e

C o

l L1 LD Impact loading on cask lid closure studs.

I 2-59 DB00iM

l I

PROPRIETARY DATA I

The maximum loaded stud is that one furtnest from the point of impact. The torce acting on this bolt is designated at:

I'15 Taking the summation of moments about point "0."

Sum of stud load = G (Weight Lid + Contents) Cos QxR The maximum stud load, P

"""N"""

15' I.15 m

at n

mo er a u s @aw(! on <Wecuon wM a at rigid lid) will be L

L

= i xP IS 2R The moment exerted by the studs can be expressed as:

I'i x P 1'2 M. = L. x

=

i P 15 15 2

t g

'R 2

The sum of the st ud moments will be:

L __+ L2

+L3

,t 2 2

2 2

+L2)p (2R)2

+

1 q

g p

2R 2R

+ 2R ]

{15 l

2

+L 2 (L

+ L 2 2

+L

+

+L 2

2

=

i 2

3 4

t4 R

=

[20.37 R2 2

2R l 15

+

=

R I

= 22.37 R P

=

15

= (22.37 x 40.7) P

= 910 I>15 15 2-60

1 l

g PROPRIETARY DATA Where:

1 L = R (1-sin 78 ) = 0.0218 R L 2 =.00047 R2 i

7 L 2 = R (1-sin 66 ) = 0.0865 R L 2 2

2 = 0.0075 R2 L3 = R (1-sin 54 ) = 0.191 R L 23 = 0.0365 R3 I

L = R (1-sin 42 ) = 0.3309 R L 2 = 0.1095 R2 4

4 L3 = R (1-sin 30 ) = 0.5 R L 2 0.25 R2

=

3 Le = R (1-sin 18 ) = 0.691 R L 2 0.477 R2

=

6 L = R (1 - sin 6 ) = 0.896 R L 2= 0.802 R2 7

7 Ls = R (1 + sin 6 ) = 1.105 R L 2 = 1.092 R2 3

L9 = R (1 + sin 18 ) = 1.309 R L 2= 1.713 R2 I

9 L o = R (1 + sin 30 ) = 1.5 R 2

Lo = 2.25 R2 l

3 i

L

= R (1 + sin 42 ) = 1.669 R L 2 11 it = 2.786 R2 l

I L12 = R (1 + sin 54o) = 1.809 R L 2 12 = 3.272 R2 L33 = R (1 + sin 66 ) = 1.914 R L 2 33 = 3.661 R2 L

= R (1 + sin 78 ) = 1.978 L

2= 3.913 R2 t4 34 L s = R (1 + sin 90 ) = 2R 2

Ls =4R2 i

i g 2.14 = 20.37 R2

~

I me i

PROPRIETARY DATA I

Equating the stud moments to the moment exerted by the contents and cover:

l 910 P

(

15 P

15 The head studs are one inch in diameter and are fabricated from ASTM A320 Grade L7 or equivalent steel.

The studs have a root diameter of 0.8466 inches and an area of 0.563 in2 The stress in the outer stud will be:

f = 19.921 + 0.563 = 35,389 psi The yield strength of A320 steel is 105,000 psi and the ulti-mate strength is 125,000 psi.

The safety f actor for the studs is:

105,000 S.F. = (yield) =

- 2.97 35,389 I

The maximum elongation will occur at the bolt located in the L

Position.

The maximum elongation will be:

15 PE _

19,921 x 2 g

e _ At 0.563 x 29 x 10

g e = 0.00122E 2 = 81.5 - 79.75 = 1.75 in e=

(0.00122)(1.75) = 0.002 inches The elongation is a small fraction of the compression of the o ring seal.

I 2-62 l

I PROPRIETARY DATA l

2.10.3.4 Stud Spacing The center-to-center stud spacing is:

80.25 x n S=

=

= 8.4 inches N

30 The minimum stud spacing suggested by the cask designers guide is:

6t S.

=

+ 2a M + 0.5

+ 2 x 1 = 7 + 2 = 9 inch

=

1.0 +0.5 The spacing of the studs corresponds closely to suggested minimum spacing.

I I

I l

I I

2-63 libuWR

I PROPRIETARY DATA l

2.10.3.5 Side Drop 81.5 l

,c 81.5 o

l W

i v

- _ i.

ie 1G%99-(*.h'

  1. / A#0 #/d's'_#//

^ deformation (Assumes side drop on entire side, not including flange, to determine maximum decelleration)

I Energy (50,000 lb)(12) = 600,000 in-lb I

p I

I I

I g

g&s r

r-40.7 c

I w

m mv 5

I I

2-64

)

I PROPRIEIARY DATA Volume = (600,000 in-lb)/42,000 psi = 14.28 in3 3

Area of segment = 14.28 in /81.5 in =.1753 in2 2

Area = 1/2 r (0 - sin 0) =>

0 = 0.109 rad = 6.25 V = [\\(40.7)2(0.109 - sin 6k )) 81.5 = 14.5 in3 (611,555 in-lb)

-+10 2%+

I h = r(1 - cos A) = 40.7 [1-cos (6.25/2)] = 0.060 in 0.060 in < 0.375 inch outer plate Surface area =>

C = 24 h(d-h)

= 24 (0.060)(81.5 - 0.060)

= 4.43 in area = (81.5)(4.43) = 361.6 in2 I

F = (361.6)(42,000) = 15,187,269 lb 15,187,269/50,000 = 303 g's

.hhh/,e -

NN NN Nx x1/

\\N3 'N'N[

g

,,#N8 ff y/87 / N /(~/' (v (~S

n n

i l

i I

I I

I i

1"

^

\\\\ \\\\ \\\\ \\ \\\\\\

l

>-x" \\ 'N / /

/

1.375 The lid will contact at surface "A" before any major shear force is applied to the closure bolts. The lid will take the de-celleration forces along the surface at "A" as bearing, and as shear along the plane of where the gasket corner intersects the lid.

I 2-65 1lD&VR

I PROPRIETARY DATA I

The bearing force on the surface at "A."

(6500 lb)(303)/(81.5)(4-1.75) = 57,644 10,740 psi S.F. = (.9)(42,000)/10,740 = 3.5 Shear (77.5)2(n/4) = 4,717 in2 Shear area =

o = (6,500)(303)/4,717 = 417.5 psi s

S.F.

(.577)(42,000)/417.5 = 58 I

Shear of cask body at surface "A."

(Assume only 1/2 of cask body) l o = (6,500)(303)/(1/2)(n/4)(82.752 - 77.75 )

2 o = 6,250 psi E

c W l S.F. = (.577)(42,000)/6,250 = 3.88 2.10.4 Penetration The minimum outer shell thickness is 7/8 inch and the impact from a

{

13 pound rod will have no ef fect on the cask.

2.10.5 Cyp ress ion This requirement is not applicable since the package exceeds 10,000 pounds.

I 2-66

I g

PROPRIETARY DATA I

3.

TIIERMAL EVALUATION 3.1 Discussion I

The RN-100 Series 1 cask will be used to transport waste primarily f rom nuclea r electric generating plants. The principal radionuclides to be transported will be Cobalt-60 and Cesium-137.

The shielding on the g

cask will limit the amount of these materials that can be transported as 15 follows:

Specific (

(}

Gamma Total Isotope Energy Activity _

Activity mev pCi/ml Ci

.I Cobalt-60 1.33 5.0 23.2 f

Cesium-137 0.66 140.0 650 l

(1) Based on cement solidified waste at 10 mR at six feet from cask.

(2) Based on 164 cubic feet of solidified material.

I 3.2 Summary of Thermal Properties of Materials 1

i With the maximum amount of these materials that can be transported in the IIN-100 Series I cask, the heat generated by the waste will be as follows:

.I I

3-1 I

1lbBGWR

I PROPRIETARY DATA g

Heat Total Generation Activity Total Heat (watts / curie)

(curies)

(Watts)

(BTU /hr)

Coba1L 0.0154 23.2 0.35 1.19 Cesium 0.0048 650 3.12 10.7 The weight of waste per container will be about 13,000 pounds.

Based on a specific heat of 0.156 BTU per degree F., 2730 BTU's or over 10 days with cesium would be required to heat the waste one degree Fahren-heit.

Accordingly, the amount of heat generated by the waste is insig-nificant.

I I

I I

I I

I I

I I

I 3-2

l

'I PROPRIETARY DATA

,I 4.

CONTAIhtENT l

4.1 Containment Boundary

.I The shipping cask is a vessel which encapsulates the radioactive material and provides primary containment and isolation of the radio-active material from the atmosphere while being transported.

I 4.1.1 Containment Vess_e1 The cask is an upright circular cylinder composed of layers of structural steel with lead for radiation shielding, between the steel sheets. The lamina are of 3/8 inch inner shell, 1 3/4 inch of lead shield and a 7/8 inch outer steel shell.

The heavy steel flange con-necting the annular steel shells at the top provides a seat for a Viton, I

Buna-N, or equivalent gasket seal used to provide a positive atmospheric isolation when the lid is bolted down by thirty (30) equally spaced 1 inch diameter studs. The shield plug is located in the center of the cask lid, has a Viton, Buna-N or equivalent gasket, and is bolted to the outer portion of the lid with sixteen (16) equally spaced 1/2 inch studs.

I 4.1.2 Containment Penetrations The HN-100 series I has a drain with plug assembly the latter con-(I sisting of a lead filled 1-1/2 inch steel pipe and pipe plug.

The drain port is located at the perimeter in the cask wall just above the cask's bottom plate. The penetration hole is angled laterally at 45 to prevent shine, should the plug be removed while waste is in the cask.

I lI 4-1 ND0 bks

I PROPRIETARY DATA g

4.1.3 Seals and Welds I

Both the primary lid and secondary shield plug are sealed by means of a Viton, Buna-N, or equivalent material "0"-ring.

4.1.4 Closure The forgoing procedures f or the primary lid require each stud to be tightened to 190 ft-lb to 210 ft-lb.

I The equivalent tension (F) in each stud is F = T/Kd where T is the torque d is the stud diameter, and K is the torque coefficient (= 0.15)

Therefore, F = (210 ft-lb)(12 in/ft)/(0.15)(1 in)

F = 16,800 lb/ stud.

I The weight of the lid and shield plug is 6,500 lb.

I I

I 4-2 I

I PROPRIETARY DATA I

Total force exerted on the gasket ring is:

I (30)(16,800) + 6500 = 510,500 lb Area of "0" Ring = (78 in) (n)(1/2 in) = 122.5 in2

'I Total pressure on gasket material I

510,500/122.5 in2 = 4166 psi I

The torquing procedure values ensure that there is sufficient pres-sure on the gasket to seal the cask.

Similarly, the shield plug torquing requirement is 35 to 40 ft-lb.

I F = (40 ft-lb)(12 in/ft)/(0.15)(0.5 in)

I F = 6400 lb/ stud.

I Weight of the shield plug is 500 lb.

Total force on shield plug gasket is (6400 lb)(16 studs) + 500 102,900 lb.

Area of gasket = (18.125)(n)(.375) = 21.35 in2 Pressure on gasket = 102,900/21.35

= 4820 psi This is sufficient to maintain the gasket seal.

I I

I

'~'

I mei

I PROPRIETARY DATA I

4.2 Requirements for Normal Conditions of Transport 4.2.L Release of Radioactive Material An internal pressure of 7.5 psig is the normal condition that may cause a release of radioactive material.

I The force exerted on the primary lid from a 1/2 an atmosphere dif-ferential pressure is:

2 (7.5 lb/in ) (75.5 in)2(n/4) = 33,577 lb I

on a per stud basis, I

33,577 lb/30 studs 1120 lb/ stud Add this force to the pre load, 1120 + 16,800 = 17,920 lb.

Eb = Il7,920 lb)(2.25 in) - 0.0025 in 6 = AE 0

(.844)2(n/4)(29 x 10 )

This is very small and not enough to break the gasket seal and signifi-cantly reduce the package effectiveness.

Similarly, t he shield plug experiences a force of (7.5 lt>/in )(16.5 in)2(n/4) = 1605 lb 2

On a per stud basis, 1605 lb/16 studs = 100.3 lb/ bolt I

4-4

I PROPRIETARY DATA l

Added to the pre-load tension 100.3 + 6400 = 6500 lb/ stud 6 = PL/AE = (6500)(1.25)(.4041)2(rt/4)(29x10)

.0022 in

=

This distance is too small to break the seal and signficantly reduce the package effeetiveness.

I 4.2.2 Pressurization of Containment Vessel Due to the nature of the waste contents, no vapors or gases could form to pressurize the vessel and significantly reduce the package ef-fectiveness.

I 4.2.3 Coolant Contamination I

The vessel contains no primary coolant, therefore this section is not applicable.

I 4.2.4 Coolant Loss The vessel contains no primary coolant, therefore this section does not apply.

I 4.3 Containment Requirements for the flypothetical I

Accident Conditions I

This section does not apply since the vessel is not a type B pack-I age.

Mb0hh h

I PROPRIETARY DATA g

?

5.

SHIELDING EVALUATION j

j 1

5.1 Iiscussion and Results j

i

I j

The analysis was performed using the SPAN 4 computer code.

This code, developed by the U.S. Atomic Energy Commission, is under limited j

distribution regulations, detailed descriptions of the code calculations are prohibited by the government.

l tj

,3 5.2 Source Specification

)

j The primary analytical parameter during the analysis was the Depart-ment of Transportation shipping limit of 10 ?!R/hr at a distance of two j

meters from the cask surface.

Packaging conditions of both solidified waste and dewatered resin were considered.

The allowable contents are shown both in terms of the specific activity of the waste form, and the surface radiation levels (for the large containers).

1 i

5.3 flodel Specification I

i 1

j SPAN 4 calculates gamma-ray fJux in rectangular, cylindrical and spherical geometries by integrating appropriate exponential kernals over a source distribution.

The shield configuration is flexible -- a first-i i

level shield mesh using any one of the three geometries is specified.

5 Regions of this same geometry or of other geometries having their own f

(finer) meshes, may then be embedded between the first-level mesh lines defining second-level shield meshes.

This process is telescopic --

third-level shield meshes may be embedded between second-level meshlines il i

Il ilBBQWM

'~'

l l

l PROPRIETARY DATA I

in turn.

All meshes may have variable spacing.

Sources may be located arbitrarily with respect to any shield mesh,

=

All kernals used assume exponential attenuation.

Ily ray training, the straight-line distances between points in the source and close points are found to be used in calculating the attenuation.

Integrals are evaluated by Gouss-Lengendre or Lobatto quadrature Accuracy is depen-dent on the accuracy of the library data and on the orders of quadrature used.

I 5.4 Shielding Evaluation I

The graphs presented in Appendix 5.5 document the shielding capa-bilities of the llN-100 casks as analyzed by the SPAN 4 computer code.

The specific activity is given in pCi/ml; for ease of use the usage waste volume of the container is given below.

Maximum Dewatered Itesin Container Usable Volume (cf)

Prior to Soldification (cf)

I IIN-100- 1 13t> (125.4)n 103 I

Drum 7.3 I

I I

I

  • Volume in parenthesis represents a maximum solidified waste volume that is less than usable volume due to weight limitations.

5-2

i

g PROPRIETARY DATA 1

5.5 Appendix 4

Shielding Capabilities l

5.5.1 Cask Specific Activity as a Function of Gamma Decay Energy for liittman Nuclear Radwaste Shipping Cask, Design IIN-100 Series 1 and 2.

i f

5.5.2 Dose Rate at Side of Bare Liner as a Function of Gamma Energy l

for liittman Nuclear Radwaste Shipping Liner, Design llN-100.

4 5.5.3 Cask Specific Activity as a Function of Gamma Decay Energy for

'1 Hittman Nuclear Radwaste Shipping Cask, Design llN-100 Series 1

,i and 2 (Drums).

I E

1

}

i l

4 i

S i

l

I 5-3

\\l 1lB&VR

10

l..

,--.r-.r 3 -,

t I

IPR 0'PRidTARY DATA r

- p g M u

J 7

l+

a,

+

it t.

i YT !

t ij i *-

H*

T

'l

.T CASK SPECTFTC AC'ITVTTY AS A

'E p'~~~'

..._ dh_ p{ I' ]~h."i[}~

l F11NCTION OF GAMMA DECAY ENERGY

{

(

4._.

7-.-

. f--

___.._ L-.,;...,

-19,4 o;. }

i

+.

FOR i

i i

i 3._

.d.1.I f_._ _h 'd-q.. -

l HITTMAN NUCLEAR RADWASTE SHIPPING CASK z_.

d1i I'

I' DESIGN HN-100 SERIES 1 & 2 (LINER)

--t o

l,ii

.. l i;i 2

n.. 10 r i

-_ _ _. +, _ -..

. + -

l 9 _.

.. - + -.

._.A.

- -...p.-

, +.

8..

r _... _

... m _ -...

.4.--

6._

is tl i i lil

. 3

-i.._+_r-._

i

-.. _.. - _7..

t 4

{

}i !

i t

i 5____

-u_,-..--

3 - p'

---.r---

---y-t

!p-t. r i-r e l.. P et- -+r T-+'1

..-...-._7'

^

m. _.

.___.___.a?.. _ _ _ __-...-.1_... ~ - _..

t

\\L, i i_

i pi u \\ +' ;:

i

, _.y

+

o 3------

I

'I

- - - -- - - ~ ~

---4---

f

j 4'i
{i liii i

-e N

\\

l '

', p !..

I g

2 _ __ -

_L.L t

+

!.l3
)i.

P; i

)

7.7 r

-h Ii

.,, 7-r.._

j!

l{ \\

l i

> i i,4 i

+

2

~

lll lA+\\'.'

r i

.i

-- i

+-

10 i i i,

-.t -,..-

.- - t

,ic

,i 9

w.g

,_+4_

e..--.- + -. -. + - + - - +. -....... -.,. _.

+

t f

'i 8..._.

4-.

i

_..-t---.

.+

7.

I!

!I !

.T m\\ bi'

_. _._~t f _; 4 i._._.- _' d

~

i_ -.

_4._..i_-.,.

...}'-...

i. ___.

_.t_.

e _.

ill:

i

-,i 1

..i_.

.._7

.a Li1 j l iN \\ i W'

' ' I-l.

, i-t -.

' I 7

._....i._.

i

+

s __

f.._.____

___i l! j-y FA\\ l \\ i -t [

li'

'f6!

_.\\

' 'I i'

t 4.__

..1.4 0 W,.,.

i u--_.-

.t.-.

a.

j i

a l t l

I

\\.

'...,i.

\\

I

.i

. - + -

j i

3..

l Iij

> i s

. N' i

1

~ +_ _

\\
i i

jil j !'

ei 1 <

.2.._

$1 f t 1 t !_.!

i. : '. - - -. -

.._i 3':

,z d2ei i !. i l4 1, i

i I

1 o

- : +

i

.a N. e.

i I

t !i i

,l i

i g,*

i i

l

\\.', n L<

..l 1_.--o' 8' ' '

O 10 v

r

,, i 1

s g

i

._.-_7

-7 1

x.

N

9. _

,- q. + L 4 5 + L4.

.t l

'_.N _._..,._..._ _._ u -._.

u s._.

t!t i

i ! \\x 7--

.! i

--4 1 i i

w i

i i

-+-+--

- + -

+ - - + - - -

s i 8 iI i'i_

.V

\\ 'w

~

l l

ue e

6.

't i 8 i i

l I

i y! N 5._.

i I f ' i -k Iii

+ik 41

.I N

O l

~

h<

l L

+Y h-k@d_y-g 400ciR/hr :

T(q.4' ;4

.,;.~

8o,- -

i T.

.gN" '; 3.,,, o contarr 2

'E.

T --- -

ig:I-t TT

-.=

i i44 1 w

D._.;_o f liner / conc i

P_ O t

i a_

Itii

[I t

~ I'N i ' _.'_

rete i

'N i-x a_.-

+

g

- ii!

d. -.

l u

i

!IIi 1

- r

- x t

c.

2..

m, '.._

_.....o

. -. -A 1.- 2.

I t

t 8e c>

~

-.,. i.

1,

' ['-

~:

!q m N$

2E! I I fl !!!

!..L !. \\. -.

1..

.S 10, m. R. /h.r a. t,2 b,..K}l )l Iliner/ con retc,

lIliner/ res.in I

a Il,-

1 ' '. ;,

1'

!, ', 1 ll';

. a

'I 7

'.+_

I'

.i

=

pl i

t e

,i ;

[0o 4 e+

+

4 4

~

1 y

. i j,i ii.

,i r +- - r- +

-m- ~ 4 --


r----

-" *~-

.--t-*---

- - r- - -'--

i ii i

,,,i i

i O

I "U

i i

T.

itis.

iii, 1.1 -

. i _,.,i

. ~I a

L..

s 4

4-.

til

..}_ll }

,,,a.

}

,4

. 'T..

m_q_.__

.i j.t4 4

h_

.._L.

'1 i_i_L

.} j ;

.i i.

i j

~

h l'

HFF i l

.& ; i !.

4 i

7 t

3.

]_ 1.-

--t---

- - +

{'

_l

! li

- } t- -'

.j

' j 4

.!I

(

n.

i.

2.

h_.N.h'!' ! '.], E^,!!...Ii ! !..,: !

., y.

.IA,

~, -,

_., o t_..

.g

.I.

0,3.+ +..__j.

1.

i,,

O o.3 1.0 1.5 2.0 2.5 Camma Energy (MeV) 5-4

lI PROPRIETARY DATA 4

I:

I I

I I

l I

i i

i,i

!l DOSE RATE NI SIDE OF !!ARE T.INER AS A f.

FITNCTTON OF GAMfA ENERGY l

fll 1: !

FOR

.iI l

)g

j',-lt IITTTMAN NUCT,FAR RAl> WASTE Silll'I'ING 1.INER

]3 10e DESIGN HN-100 i

i 3 j

Based on 10 mR per hour at two 1

meters from side of cask.

l 10' I

l i

D i

i i

t' O

i l

j i

u o

d C

g 10' u

0

.5 1I 4

i 1

e J

p I

5 l

l 1!

o i


l----

1 i

5 10 w

i je-I o

3

'l

'! t j*'.

.y l

!: i i

4 o

y t

OC f

e

, i? :

e l

0 f

18+ }

j 10'

_ 4 1

i l

l 1 J13 C

l C

l I

4 p; j

I t

1 i

% l.

I

_ resin 1

i l

l 10 -g-l,,

. concrete

!l 4

Ii

'il! I! I' i'

2 10 i

4 0

0.5 1.0 1.5 2.0 2.5 i

Gamma Energy (ffcV) 1 OdaM 4

I to' P

i.l i M %

, 1 1

IPROPRIETARY DATAI f

1.

7.

4 1

g i

j.

.i.

- i l il I T' l ti * ' ~ f '.

CASK SPECIFTC ACTIVITY AS A g

'-- 4.1.-j..hJ

~I * *

[ I ' ~' [Il FUNCTION OF GAMMA DECAY ENERGY LT 4__.___.

m._

.{_.q.p { j {. i..

FOR 3_-.

71 -

i.!j.

.4 IIITTMAN NUCLEAR RADUASTE SilIPPING CASK DESIGN 11N-100 SERIES 1&2 (DRUMS)

!i

-ll.

_.:.i.lr_.

a_

l.

. l'.

I; l

I i

3 i

4 Ii

o, i 4

t

+

{

l I

j

(

t

('

I L. _10 i

i*

i

..i j

i 9._._

.}..

.-i-. -

{

7-.

Y

  • _.,. ' _; ' {__.. __

.._ q._.. -.. _...,

.. J,. - -

L a _...

i h.,

.u_.,.,_1_.,_,.

... _.,... _. + -

4.

--_._y.

-_9._.-..-

h 1

^

w.

g I

j g'

--__--r...-

_--r-t t

s__

--}- -+-.. t j -

7

..7

~ 1 -h, j -

p.

4.+.

l

-..a

-t

+

t

(;g4,,ri,gq.... y.g i

.,4 i

F U 4,.

1 t i a.__

3____.

.c3 i

]

l

. j i

4n t
.l

\\ ; -

-1 1

l.

1 l

. j_

2_'n'

i. i l i e

1.

m r.

p!

2.2'. _! +. _..

1 1 1

.I t

5

+

.A._...,.

.\\

w

_w:.

r : -

. + +..

l

-t i 6 4.. 1 t.

4. (

.,C a*

+

i 1_0_24 o;

t,

.. _. _. _ _ _..7.,...-.

1

. w a; _ a w.. _ _... +...

i.

., %q.

y

,1

.v _.- _. j.....

s.-_.

t 7._

i I

i I

3 7. _..

. i

..___.m

.._.?.

-j i !

\\ Qj ; i l \\ i i

6.__.

. i N Ui

. i

: I i

1 N

..f'._.._.

1 s._ _qt

a. g y q q

_. _!_.j;,-. _._.!_:

mel t

.p.

,t

_ _ + -...

i W-H: A-

_ _ _. ~ - 4uF t-.

._e f _. g I l

m.

4 l

3 n

h h

l i ' g&

..a

- l.

. p f :

i r4 l;i 4

i l

.i

- _._s......! _ -. _

!g a,.

5_ s j:,!!;: t. i l.t' :

i N

, a

..... ~. J t. _.-

u

...A N,.

l %..

t..

l.

o

>v 10.g....

94i i

.\\

g g [

f i 2 a

9

.. _, -.q_o e o.,

- - +..

s 1

d y

._,2 L.p. 4 4

-p -.}t,g.;

. I., -..

l 9,

.p 9

s.-

! ri-

,- 9_p.

.,6-

.r x

.s sh

'_'.a+__.__..

.u!.. _ '

.L

-*i'

.- v-.-' t -'e ~' W- ', 't 's" *...

'P^--

gt.

. t,-

s 7._.

4.

d __2.,o.

i p

e i

i Dj<

t'4-I I

i !

u l, *C l

N' s'

1 s._

.i i

i-'L L

  • 9 l

\\N l

U

~~-4, -;' ' - ~ ~. ~

I :. w'E.

._n_.' '.o drum /toncrete

.T..i..

i

. _,'_.a.

U

=

_ g.-

4.

~

Q,

--p H +- -H4

-Hf",

Q@if;*,'^ q if {Hf 5

200 mR/hr q

E h I'J g'g jj.;

. 4j i

j[

T

~*~~'.1

~

M COntdCt

3 D l%

f"d C.

6 9

f.,.

m.

g M i'l li!

}

I '

i l

s.

44_'

3

. d rum / r es in,

+ -

.e t

2 a; ;

.t..

l 3-T '_ r :

.i _

3 x

..a

,1 l

1 i

e 6 p e i

i.

g

,a, 4

l l

I 6

i i i.

I i

drum / concrete 14 0

i

+

+

o 10

.t p a~._....i

..,.f 10, mR. /h.r.

y, 1,

j ;.

l,._ p.

. 4 _, -._~..

_.s a +. p..

_._ p u

7 ;

8

. _. p t.. 4_

jjt_ _7 g._i. 4 +4 cpl

.y g. 7.

, : drum,/ renin.

4{_..

7 g

1_..

41.6 6

,t

.4-.

W i

jl,.

t.. {

j;j; l

l l l

ii' 7-.._.i_ : ;

i

+

5

.. i.

.._tn

. 4 q.p..p! j {

.I'.H.4-4f..

._A

_e_ -,_L p i.4-.j 4

,i.}

j p

.i i

1 i

4 4. 1 1..

2 p

l..

4

!i l

{ilj.

j!,'

l'.

!j.

i j

l

...'_.i i

i

!i I

_-_f h _n b. !

}

l

_1

..4_..

i 4

3.

i f

'h._

I t

2.

~

t }

t

[t

.. - + _..

.. p. _z..

a.__-.-

i :

i i

4. -. in i._.;. _*

M.

.4__

.-,; 1 !!

Ijil l

,lj, l

10 1 4

i 1

i

.0 0.5

_ _. _..1.0 1.5 2.0 2.5 m.

Canma Energy (MeV)

E PROPRIETARY DATA I

1 6.

CRITICALITY EVALUATION Not applicable.

1 1I iI

I

.I I

ig l

!I i

1 4

!I l

!I i

!I 4

!I 4

ll 6-1 lb0hh 4

I PROPRIETARY DATA 7.

OPERATING PROCEDURES Customers that use the HN-100 casks are supplied a copy of the Rad Services Manual. This manual describes the services that will he sup-plied and contains a section on operating procedures.

Included in this manual are the weight limitations, and type and quantity of licensed material limitations. The operating procedures describe the inspection of the trailer and cask upon arrival at the site, the opening, loading, closing procedures, and the forms that need to be filled out prior to the I

cask leaving the customer's site.

An example is shown in Appendix A.

This is all in accordance with Subpart D to 10 CFR 71.

Inspections performed under the operating procedure are done by the customer prior to loading. The cask, by the driver prior to leaving the site, at. scheduled stops during transit, and after arriving at the co-signee's site.

Inspection includes that cask has not been significantly damaged, closure of the package and any sealing gaskets are present and free of any defects, checking of the maximum loose and fixed contamina-I tion levels on the cask, and that the cask has been loaded and closed in accordance with written procedures. This is all in accordance with Section 71.54 of Title 10.

Radioactive Shipment Record describing the shipment and giving the information required by Section 71.62 of the Title 10 are required to be filled out in Triplicate. One copy is telecopied to lilTTMAN prior to shipment leaving the site and a copy is mailed to HITTMAN as soon as possible after the shipment leaves the site.

The other two copies ac-

'I company the shipment to the cosignee.

An example is contained in Ap-pendix 7.1.

I I

7-1 I

lluchWT

i I

PROPRIETARY DATA g

7.1 Appendix I

cm,,_ e 11,, _, _

I I

I I

I I'

I I

I I

I I

I I

z2 g

Page 1 of 19 I

I I'l{O.1ECT COVElt Sil!0ET Document Title -

I CASK IIANDLING 1)flOCEDUllE I

Project Document Nurnber IINDC-0-001-1, Ite v. 2 I

for IIN100S and IIN100 Series 1 Shielded Transport Cask I

I Ilittman Nuclear & Development Corporation I

9190 lled Hranch Iload Columbia, Maryland 21045 I

I I

I It ef: Std. Doc.

N/A

[tey, 1

l l

Proce(lure No.

!!N DC-O- 001 - 1 Page 2 of 19 I

I ItI: VISION L(X; Il E Y.

DATE ENGINEEltING Q. A.

Pi t OJ. MGlt.

ECN #

I

/

V'~f f])

f I

I I

I I

I I

I Il I

I I

l'rocedure llNDC-O-001-1 Page 3

or 19 I

I.

PURPOSE I

The purpose of this procedure is to provide instructions for loading /

I unloading the llN100 Series 1 and IIN100S radioactive waste shipping casks.

I l

II.

RESPONSIBILITY It is the responsibility of the user of a United States Nuclear I

Regulatory Commission (USNRC) certified package (cask) to assure the following:

1)

He has the Certificate of Compliance for the cask and all referenced documents.

I 2)

He is a registered user of the certified cask.

3)

Under his Quality Assurance Program, the cask is inspected to verify its compliance with the terms and conditions of the Certificate of Compliance.

I 4)

The cask is loaded and closed in accordance with an appropriate written procedure.

5)

The cask is loaded in accordance with the Certificate oi Compliance.

6)

The shipment meets all the Department of Transportation, U.S.

Nuclear Regulatory Commission, Burial Site Disposal Criteria and Burial Site License requirements.

I I

lib 6WI

Procedure llNOC-O-oo I - 1 P y,e 4

of 19 NOTE:

If there is a problem meeting any of the above requirements, immediately notify the regional HNDC Operationn Of fice.

I III.

PROCEDURE 1.0 When ordering the cask, assure the following:

1.1 Waste to be shipped in the cask is either Low Specific Activity [49 CFR 173.389(c)] or Type A quantities of Normal or Special Form [49 CFR 173.389(d), 49 CFR 173.389(g) and 49 CFR 173.389(1)].

I 1.2 Burial site disposal criteria and/or licenses and current copies of 10 CFR and 49 CFR are in your possession.

1.3 Waste is packaged or will be packaged in an acceptable manner in accordance with the Department of Transportation (49 CFR),

U.S. Nuclear Regulatory Commission (10 CFR), and the applicable burial site requirements (burial site Didposal Criteria and/or W

Licenses).

I 1.4 Certificate of Compliance USA /9086/A for the liN100 Series 1 or USA /9089/A for the IIN100S and all referenced documents are in your possession and your site is a registered user of the cask.

1.5 Your site has an approved U.S. Nuclear Regulatory Commission Quality Assurance Program in accordance with 10 CFR 71.51.

NOTE:

If there is a problem assuring any of the above, inaned i a te l y notify the regional HNDC Operations Office.

1 I

I Procedure llNDC-0-OOl-1 Page 5

of 19 I

2.0 Receipt Inspection 2.1 Survey the empty cask and the vehicle to determine the maximum l

loose and fixed contamination levels.

Loose contaruination levels should be less than 2,200 DPM/

2 2

100 cm Beta-Gamma and less than 220 DPM/100 cm Alpha.

.I Fixed contamination levels should be less than 0.5 mrem /hr.

NOTE: Fixed contamination greater than 0.5 mrem /hr but less than 50 mrem /hr require the cask to have a Yellow II lable.

I Under such conditions the empty cask must be a Radioactive Shipment and be accompanied by properly completed Radioactive Shipment Records.

NOTE:

If cask is received with contamination levels in excess of those above immediately notify the regional HNDC Operations Office.

I 2.2 Inspect Tiedowns 2.2.1 Inspect tiedown lugs and shackles on cask and trailer I

for cracks and wear which would affect their strength.

2.2.2 Inspect tiedown cables to assure they are not loose, or damaged (frayed, crimped, etc.).

2.2.3 Inspect tiedown ratchets / turnbuckles to assure they are in proper working condition.

I NOTE:

If there is a problem with any of the items in-I spected, immediately notify the regional HNDC Opera-tions Office.

I iI mwn

invironie unot.-u o

<-e l'une _Q__ o f __it L I

2.3 Inspect Cask 2.3.1 If cask is equipped with raincover, remove raincoser g

and inspect cask lid holddown nuts to assure all 30-W 1" nuts are present and undamaged.

I 2.3.2 Check to assure that cask lid (primary lid and shield plug) lifting lug covers are with the cask.

2.3.3 Remove cask lid in accordance with step 4.1.

2.3.4 Inspect primary lid holddown studs for damage.

2.3.5 Inspect primary lid gasket for cracks or tears which would affect proper sealing.

i NOTE: Cask must be properly scaled prior to shipment.

2.3.6 Inspect interior of cask for standing water.

NOTE: Water must be removed prior to shipment.

l 2.3.7 Inspect interior of cask for obstructions to loading.

2.3.8 Inspect interior of cask for defects which might affect the cask integrity or shielding afforded by cask.

Ei 2.3.9 Inspect the shield plug holddown nuts to assure they are all present and not damaged.

2.3.10 Unless it can be veri fied through other means, verify that the shield plug gasket has no cracks or tears which would affect proper sealing as follows:

I I

Procedure ilNI)C-0-00 l-t Page _,7 of __jit

I 2.3.10.1 Remove the shield plug from the primary l

cask lid in accordance with steps 4.2.3.6, 4.2.3.7 and 4.2.3.8.

1 2.3.10.2 Inspect the shield plug holddown studs for g

l5 damage.

l 2.3.10.3 Inspect the shield plug gasket for cracks or tears which would affect proper sealing.

ll l

NOTE:

Cask must be properly sealed prior to shipment.

il 1

2.3.11 If loading drums, install shield plug (if removed)

I onto primary lid in accordance with steps 4.2.3.11 4.2.3.12 and 4.2.3.13 and proceed to step 4.2.1 or 4.2.2.

2.3.12 If loading preloaded liners, install shield plug (if removed) onto primary lid in accordance with steps 4.2.3.11, 4.2.3.12 and 4.2.3.13 and proceed to step 4.2.4.

2.3.13 If loading waste into liner inside cask, proceed to 1

step 4.2.3 (omitting steps 4.2.3.6, 4.2.3.7 and 4.2.3.8 if shield plug was removed).

4 J

NOTE:

If there is a problem with any of the items inspected above, immediately notify the regional HNDC Operations l

Office.

!I I

e il

. no n i

l l'rocedure llNIX:-0-001-1 3'

I l'aj'y _g_ of 39_

g I

l 3.0 Removal of Cask from trailer l

l NOTE:

If it is necessary to remove cask f rc.n trailer proceed as i

follows:

1 3.1 Loosen ratchet binders / turnbuckles as necessary to remove pins from shackles at cask end of tiedown system.

I 3.2 Remove pins from shackles.

3.3 Loosen cask shear blocks as necessary.

3.4 Using the (3) cask lift lugs and suitable rigging lift cask off trailer and place cask in proper position for loading.

I' Cask Weight - HN 100 Series 1 - 35,500 lbs.

IIN 100 S

- 26,000 NOTE: Do not use cask lid lifting lugs to lift the cask.

4.0 Loading Cask l

l 4.1 Remove the primary full diameter cask lid as follows:

I 4.1.1 If cask is equipped with a raincover, and it has not been removed, remove the raincover from the cask.

Ii 4.1.2 Disconnect the cask lid from the cask by removing l

the 30-1" holddown nuts.

l j

l 4.1.3 Remove the three (3) cask lid lifting lug covers.

l I,!

l II' II'

l l' roc ed u re 11NIIC 001-1 W

Page 9

of 19 I

4.1.4 Using the three lifting lugs to accommodate suitable rigging and exercising caution in the handling of the cask lid due to possible contamination of the underside of the lid, remove the cask lid.

I Lid Weight IIN100 Series 1 - 6,000 lbs ilN100S

- 3,770 lbs 4.2 Loading can be accomplished by one of the following methods:

I 4.2.1 In cask loading of seven (7) drum pallets.

NOTE: Review Pre-release Checklist (Attachment 1) or similar site document and shipping papers to assure I

that inspections required on checklist or site docu.nent are performed during the cask loading process as necessary and that the information required i

on the shipping papers is determined as necessary.

I J

4.2.1.1 Using the slings provided and exercising caution in the handling of the pallet due to possible contamination, remove the top pallet from the cask.

.I Pallet Weight - 750 lbs 4.2.1.2 Exercising caution to avoid placing drums on the pallet lift slings, load seven (7) drums on the pallet in the cask.

I Maximum Drum Weight - 800 lbs I

I bD0bb

I'ro c ed u r e llNDC-0-0Dl-l l'a g e 10 o f _10,

/ ~ RIBS 9

'f l

-D4uM3 I.

l I

AlBBED PALLET l

SKETCil 1 NOTE:

1.

New pallets are ribless, but should be loaded with the same drum pattern.

2.

For rcuimum shielding, load higher dose rate drums in the center position and the positions toward the front and rear of the trailer.

4.2.1.3 Place the top pallet back into the cask.

Pallet Weight - 750 lbs l

4.2.1.4 Exercising caution to avoid placing drums on the pallet lift slings, Icad seven (7) drums on the pallet. in the cask (see Sketch 1).

4.2.1.5 Proceed to Step 4.2.5.

4.2.2 Loading the seven (7) drum pallets outside the cask.

l c

NOTE:

Review Pre-release Checklist (Attachment 1) or similar site document and the shipping papers to l

assure that inspect. ions required on the checklist or site document are performed during the cask

I

l'rocedu re IINix:-0-001-1 Page 11 of 19 I

loading process as necessary and that information required on the shipping papers is determined as necessary.

4.2.2.1 Using slings provided and exercising I

caution in the handling of the pallet due to possible contamination, remove both the pallets from the cask.

Pallet Weight - 750 lbs 4.2.2.2 Load seven (7) drums onto each pallet (see Sketch 3).

I Maximum Drum Weight - 800 lbs 4.2.2.3 Lift one of the loaded pallets and place it inside the cask.

For maximum shielding, assure proper orientation of pallet (see Note 2 of Sketch 1).

I Maximum Loaded Pallet Weight - 6,400 lbs 4.2.2.4 Lift the other loaded pallet and place it inside the cask on the top of the first pallet.

For maximum shielding, assure proper orientation of pallet (see Note 2 of Sketch 1).

Maximum Loaded Pallet Weight - 6,400 lbs l

4.2.2.5 Assure easy access to the pallet lifting I

slings for removal of pallet at burial I

site.

I l

ElDAV?i i

Procedu re llNI)C-O-DO l-1 g

Pa y,e 12 of 19 3

I t

l 4.2.2.6 Proceed to Step 4.2.5.

4.2.3 In cask loading of liner i

i t'

NOTE:

Review Pre-release Checklist (Attachment 1) or similar site document and shipping papers to assure that inspections required on checklist or site document are performed during the cask loading process as necessary and that the information required on the shipping papers is determined as necessary.

4.2.3.1 If necessary remove cask from trailer in accordance with steps 3.I through 3.4.

I, 4.2.3.2 Using the slings provided, place liner in the cask.

Enipty Liner Weight - 1,350 lbs 4.2.3.3 Install shims / shoring between liner and l

cask as necessary to secure in position.

4.2.3.4 Using the three (3) lifting lugs on the cask lid to accommodate suitable rigging lift and place cask lid on cask using alignment pins to assure proper posi-tioning.

Lid Weight - IIN100 Series 1 - 6,000 lbs 1[N100S

- 3,700 lbs 4.2.3.5 Secure the cask lid to the cask as follows:

I'

Procedure llNDC-0-001-1 Pa p,e 13 of 19 lI 4.2.3.5.t Install the 30-]" holddown nuts.

I 4.2.3.5.2 Tighten the holddown nuts in accordance with Torquing Procedure IINDC-0-1001 or HNDC-0-100S as appropriate.

4.2.3.6 Remove shield plug holddown nuts.

4.2.3.7 Remove the shield plug lifting lug cover.

l f

d 4.2.3.8 Exercising caution due to possible contami-nation of the underside of the shield plug, remove the shield plug.

I Shield Plug Weight -

liN100 Series 1 - 500 lbs llN100S

- 230 lbs 4.2.3.9 Load the waste into the liner through the shield plug opening.

I 4.2.3.10 Install the liner lid, plugs or caps onto the liner.

I 4.2.3.11 Place the shield plug on the cask using j

the shield plug guide pins for proper positioning.

lI l

NOTE:

Care should be taken to avoid damage to the gasket.

lI J

L--

j j

Procedure llNDC-O-OOl-1 El l

Pa p, e 14 of 19 3

i l

I i

l Lid Weight - IIN100 Series 1 - 500 lba IIN100S

- 230 lbs I'

4.2.3.12 Secure shield plug as follows:

4.2.3.12.1 Install the 16-1/2" shield plug holddown nuts.

I 4.2.3.12.2 Tighten the shield plug holddown nuts in accordance with Torquing Procedure t

IINDC-0-1001 and llNDC-0-100S as appropriate.

4.2.3.13 Install the shield plug lifting lug cover.

l 4.2.3.14 If cask is equipped with raincover and the cask was not removed from trailer, install raincover.

4.2.3.15 Proceed to Step 5.0 of this procedure if cask was removed from trailer.

Otherwise proceed to Step 6.0.

I 4.2.4 Loading preloaded liner.

I NOTE:

Review Pre-release Checklist (Attachment 1) or similar site document and the shipping papers to assure that inspections required on the checklist or site document are performed during the cask loadiag process as necessary and that information required on the shipping papers is determined as necessary.

I

I l'rocedu re llNix:-0-001-1 Page 15 of 10 I

1 4.2.4.1 If necessary, remove cask from trailer in l

accordance with Step 3.1 through 3.4.

i l

i j

4.2.4.2 Assure lid, plugs or caps are is installed on liner.

l

)

4.2.4.3 Using the lifting slings provided, place liner into the cask.

Full Liner Weight -

IlN100 Series 1 - 14,500 lbs. maximum llN100S

- 17,000 lbs maximum i

4.2.4.4 Install shims / shoring between liner and cask as necessary to secure in position.

4.2.5 Install the primary full diameter cask lid as follows:

I 4.2.5.1 Using the three (3) lifting lugs on the cask lid to accommodate suitable rigging, lift the cask lid and place it on the cask using the alignment pins for proper I

positioning.

Lid Weight - HN100 Series 1 - 6,000 lbs l

HN100S

- 3,770 lbs lI 4.2.5.2 Secure the cask lid in accordance with i

Step 4.2.3.5.

l r

l 4.2.5.3 Install tamper proof seals.

l lI 1

0 10164 1 6

1

^

Procedure UNac-0-001-1 l'a ge 10 o f __1g_

4.2.5.4 If cask is equipped wit's raincover, E

install raincover.

W 5.0 If cask was removed from trailer, proceed as follows:

5.1 Using the three (3) cask lift lugs and suitable rigging lift cask and place cask in proper position on trailer.

See Sketch 2 for proper orientation.

Loaded Cask Weight -

IIN100 Series 1 - 50,000 lbs llN100S

- 43,000 lbs I.

I I

am_

- um 7btxN 7DocN x

I s

gsE M T!A MARKS on suo6 orcAsK AND DEtX OCTDMitJR g

1F PMSEHT g

SKETCII 2 5.2 Install shackles through the end of the tiedown cables and attach to cask tiedown lugs by screwing pin through shackle and hole in lug.

5.3 Tighten the cask shear blocks to secure the cask in position.

I I

t i

l'roced u re ilNDC-O-001 - 1 I

page 17 of 19 I

i i

i i

5.4 Tighten ratch binders / turnbuckles as necessary to secure cask on trailer.

5.5 If cask is equipped with raincover, install raincover.

6.0 Prepare cask and vehicle for shipment as follows:

?

6.1 Perform Radiation surveys of cask and vehicle and complete the necessary shipping papers, certifications, and Pre-release Checklist (Attachment 1) or site equivalent.

1 I

6.2 Placard vehicle and label cask as necessary.

7.0 Unloading Cask I

7.1 Survey the cask and trailer in accordance with applicable site requirements.

7.2 Remove cask lid in accordance with Step 4.1 of this procedure.

7.3 Exercising caution due to possibly high dose rate, connect slings from liner or pallet to a suitable lifting device.

Maximum liner weight - 17,000 lbs Maximum pallet weight - 6,400 lbs 4

l 7.4 Exercising caution due to possible high dose rate, lift tiner or pallet clear of the cask and place in disposal area.

i f

NOTE:

Care should be taken to avoid damage to lid gasket.

7.5 Repeat Steps 7.3 and 7.4 for second pallet.

f l

OdtM i

A

m l' r oc ed u r e 11 NI)C-0-001-I l'ny,e 3y_ o f yL_

I l

7.6 Install cask lid in accordance with Step 4.2.5 of this procedure l

i 7.7 Survey the cask and t railer for release in accordance with applicable site requirements.

1 I

.I I

l I

I i

l l

I II:

l I

l l

I I

I I'

I I

L

l Procedure llN1)C-0-001-1 W

Page _19 of 19 I

l PRE-RELEASE CllECKLIST Date Shipment No.

j W

Transport Co.

Time of Arrival at Site Time of Departure from Site Initial 1.

Inner Container (s) Scaled 2.

Inner Container (s) Secured in Place 3.

All gaskets and gasket sealing surfaces inspected and free of defects i

4.

Cask Lid and/or Shield Plug Closure Bolts Torqued / Ratchet Binders Tightened 5.

Tamper-proof Seal Inspected 6.

Lift Lugs Covers Installed 7.

Cask Tiedowns Inspected 8.

Cask Properly Labeled 9.

Vehicle Properly Placarded 10.

Surveys Completed and Recorded 11.

Shipping Papers Properly Filled lI Out and Signed Signature Title Date ATTACIU1ENT 1 libOWN

5

!I PROPRIETARY DATA

.I i

8.

ACCEPTANCE TESTS AND FIAINTENANCE PROGRA?1 8.1 Acceptance Tests il 1

tlaterials are specified under the ASTtt and ASt!E codes.

Weliter qualifications and weld procedures are in accordance wit.h AS?1E or AWS Codes.

Non-destructive testing of specified welds includes visual, 1iquid penetrant, or magnet.ic particle as describeil in the ASTr! Code I

Upon completion of the lead shielding pour, a gamma scan is done of the cask wall to determine lead thickness, and an existence of any voids or impurities in the poured lead.

The gamma scan contains an acceptance criteria for verification that nominal lead thickness is 1-3/4 inches.

I The HN-100 Series I casks were pressure tested when originally fabricated to verify the adequacy of the seals and cask when subjected to an internal pressure.

I-8.2 ffaintenance Program Cask maintenance and repair is controlled by the Quality Assurance Program. The casks and trailers undergo a routine technical inspection at least once every four months.

These inspections involve checking cask for contamination, damage to interior or exterior, gaskets, studs, signs f

and placards, shielding and tiedowns. These inspections are covered by W

Cask Flaintenance and Repai r procedures. An example is shown in Appendix 8.3.

jI 8-1 1l%GWR i

a

-w


w-


,--a sama-,-

a m--m a

a--mumAumk 4

m nmm a

  • E

=Ah--

-sa-

-A Ah


a--A

-A4 w

l I'

I 8.3 Appendix

.I Cask Maintenance and Repair Procedure I

I' i

I I

I, I

O l

I I

I I

I 8-2 I'

1 i

I Document Number:

Rev:

Rev Date:

j HITIMAN NilCLFAR &

ll N 1 )C-O-U O l O

3/1G/81 D EVELO PM E N T j

CORPORATION

.U 'I':

Cask Maintenance & llepair I

Quality i

Rev.

Rev Date Director Maintenanc a Assurance Joerations Supervisor Manater j

,,/h('

j-

.-[

- '/

0 3/16/81 3

i I

i

.I I

i i

IC i

i i

I II l

i lI i

lI t

l l

H NDC-Ol(A)

Page 1

of G

gg

~

l No.

Rev.

Date hitle:

l IINDC-O-001 0

3/1G/81 Cask Maintenance & Itepair 1.0 pullp0SE This procedure describes the administrative controls to be a

exercised over the periodic maintenance and repair of radwaste g

shipping packages.

2.0 GENEllAL 2.1 The administrative controls described herein shall apply to the following maintenance activities:

a) periodic maintenance and parts replacement required by the package approval and/or necessary to maintain a

the package in a mecl,.tnically safe and sound condition g

,in con formance with the package approval; b) repair of noncon forming package structures, components, parts or appurtenances as necessary to return those items to a condition in conformance wit.h the package approval.

2.2 The requirement.s of this procedure do not apply to routine inspections o f packages required prior to shipment of radioactive material.

2.0 primary responsibility for implementing the requirements set forth in this procedure rests with the Maintenance Supervisor.

'2.4 The Maintenance Supervisor shall be responsible for the assignment and supervision of individuals, including con tractor personnel, performing package maintenance 3

activities required and controlled in accordance with 3

this procedure.

2.5 The Maintenance Supervisor shall insure that the ind i vi dual:

a ss i gneti maintnuanen dnlios are Iamiliar wiih operaLions involved and with the requirements of the package approval.

I 3.0 pEltlOl)1C MAINTENANCE pitOGitAM 3.1 The periodic main tenance prot; ram shall include the followin main elements:

a) routino inspection of the package at the disposal site after unloading; b) routine maini.cnance on a scheduled basis ei.ther at ilNDC's headtinarters or in the field.

l

[lNDC-0MAh

l l

!I 1

No.

Rev.

Dat e title:

0 HNDC-O-001 3/16/81 Cask MainLenance & llepa1r i

l 3.2 Routine Inspections (Disposal Site)

I i

3.2.1 Routine inspections at the disposal site are not l

required but should be performed to ensure the early identification of problems.

l 3.2.2 Responsibility for rout ine in s pec t io::s at the dis-ig posal site shall rest with IINDC personnel assigned to the jg site.

]

]

3.2.3 The Ma intenance Supervisor sha ll be responsible for communicating to the llNDC personnel assigned to the f

site the inspections to be performed.

This comm.unication may be verbal, written or both as deemed appropriate by

}

the Maintenance Supervisor.

i 3.2.4 IINDC personnel assigned to the site shall report any conditions which could constitute a nonconformance with the package approval immediately to the Maintenance Supervisor who in turn shall be responsible for initiating y

a Corrective Action Memo (CAM), if appropriate, in accord-i!

ance with Section 16 of HNDC-C-200.

I 1

1 3.3 lloutine Scheduled Maintenance i

i" 3.3.1 Routine scheduled maintenance includes those

)

maintenance activities performed for the purpose of I

verifying a package's con formance wi th package approval requirements and to ensure that the package will continue to conform to those requirements during the period of use prior to the next scheduled maintenance.

l 3.3.2, Routine scheduled maintenance should include as j

a minimum, the following maintenance activities:

j a) visual inspections and measuremen ts o f package structure, components, parts and appurtenances for 4

!E wear, damano and con formance to package approval

E requarumanLs; i

l b) adjnsLments and realignmenLs; a

c) replacement of worn or de lec t i ve parts, including gaskets, o-rings, studs, unts, binders, signs, canvas j

covers, Lie down cables, cable clamps, lifting lugs, l

Liedown lugs, shield plug studs, chains, im[,ac t skirt, l

l etc.

I 3.3.3 The Maintenance Supervisor shall be responsible om-H NDC-02(A)

Page _1. of G

Wuuun h

I No.

Rev.

Date

Title:

)

HNDC-O-001 0

3/16/81 C sk Maintenance & llepair for preparing written instructions and/or checklists for the performance of routine scheduled maintenance.

3.3.4 These instructions and/or checklists may be generic in nature or specific to a particular package or package type.

Where measurements or tests are re-g quired to determine the conformance of the package or g

part.thereof with the package approval specific acceptance or rejection criteria must be included in the written instructions and/or checklists along with specific re-quirements for calibration or calibration checks of measuring and test equipment to be used.

3.3.5 The Maintenance Supervisor shall be solely re-sponsible for the preparation, use and control of the written instructions and checklists delineating requirement g

for routine scheduled maintenance, g

3.3.6 Each package shall receive routine scheduled

,s

(

)

maintenance at least once every four (4) months.

s 3.3.7 The Maintenance Supervisor shall be responsible for scheduling routine scheduled maintenance for each l

package.

W 3.3.8 Rout.ine scheduled maintenance may be performed 3

either at ilNI)C's headqua rters or in the field as l

determined appropriat.e by the Maintenance Supervisor.

3.3.9 The Maintenance Supervisor shall maintain a log of all routine scheduled maintenance work done on each packago.

The log shall include the following information, as a minimum:

a) unique log ent.ry number for work identification purposes b) package identification c) date(s) maintenance performed and Iveation d) names of individuals involved c)

Tag numbers for materials and parts issued from the f

QA controlled storage area and used for package mainte-

'a

nance, f) summary description o f work performed ( re f erence may I

HNDC-02(A)~

Pooe. i of._ !L.

f w

~., -. %

No.

Rev.

Date

Title:

M. g,.

I IINDC-O-Oul O

3/16/81 Cask Maintenance & llepair i

j be made to instructions or checklists used)

I j

g) summary descript ion of package condition as found i

during routine scheduled maintenance, including non-j conformances identi fi ed.

If any Corrective Action jg Memos (CAMS) were issued as a result of conditions g

found adverse to quality these should also be listed.

3.3.10 The Maintenance Supervisor shall be responsible I

for keeping the llegional Operalions Managers aware of i

schedule requirements for routine scheduled maintenance, l

3.3.11 The lleg i on a l Operations Manager shall be re-sponsible for the timely notification of the Maintenance Supervisor of the availability of each package for routine scheduled maintenance.

4.0 REpAllt pit 0GitAM i

4.1 Itepairs to packages required as a result of accidents or other incidents causing damage, or as a result of improper i

maintenance, use or operation o f the package shall be l

I reported, documented and con t rol led in accordance with the requirements of Section 1G, " Corrective Action", of 11N DC-C-2 00.

4.2 The MainLenanee Supervisor sha]1 in aJl cases be the

" Action Designee" identified on the Co rrec t i ve Ac t ion Memo (CAM) f o rm for repair activities required in order to

I correct a delect or other nonconforming condition.

4.3 The Mai,ntenance Supervisor shall determine on a case by

l case basis the need for special maintenance procedures lW for perf(arming the repairs.

Such procedures may be I

written on the CAM form and/or attached to it.

The

.E format and content of such procedures shall be at the

{g discretion of the Maintenance Supervisor except that l

where miasurtmonts or t<*<ts are required to di t t' rm i ne Lhe j

conformance

<>f the package <> r pa r! L he re< > f w l t h the

{

packnne approvaI specifie acceptance or re.j ec t i o n criteria I

must be i nc l utted in the wrillen procedures along w i t. h

{

specific recluirements fo r cal ibra L ion or cal ibra t ion

{

checks o f measuring and Lest equipment to be used.

4.4 The CAM form and atLachments thereto shalI serve as the log o f package ropa i: activities.

The i n forma t ion desc r i be. '

f g" in Article 3.3.D, items (b) through (f) shall be included on the CAM.

i l

N0b

I I ;tle:

Nr.

Rev.

Dat e I

HNCC-O-001 0

3/16/81 Cask Maintenance & ltepair I

4.5 Indiv'iduals identifying a need for package repair shall report such conditions in accordance with the require-ments of Section 16 of IINDC-C-200.

4.6 The Maintenance Supervisor shall be responsible for initiating a CAM when conditions requiring repair are identified during routine scheduled maintenance and/or when such conditions are reported to him verbally by either IINDC or user personnel.

I I

I I

l lI:

Il l

l I

O I!

i i

l H NDC-02(A).

Page_fi_ of n i

!