ML20062H043

From kanterella
Jump to navigation Jump to search
Forwards Preliminary Revision of Attachment C3.6 to Section 3.6 of FSAR Re Main Steamline Break in Main Steam Tunnel. Info Will Be Incorporated Into Next FSAR Amend
ML20062H043
Person / Time
Site: Byron, Braidwood, 05000000
Issue date: 08/10/1982
From: Tramm T
COMMONWEALTH EDISON CO.
To: Harold Denton
Office of Nuclear Reactor Regulation
References
4682N, 4682NN, NUDOCS 8208130277
Download: ML20062H043 (26)


Text

-

]/ orn First National Ptiza, Chicago, lihnois Commonwealth Edison 4

v Address Reply to: Post Office Box 767.

Chicago, Illinois 60690 Augus t 10, 1982 Mr. Harold R.

Denton, Director Of fice of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC-20555

Subject:

Byron Station Units 1 and 2 Braidwood Station Units 1 and 2 Main Steamline Break Subcompartment Analyses NRC Dockets 50-454, 50-455, 50-456 and 50-457

Dear Mr. Denton:

This is to provide advance copies of revised FSAR' information for Byron and Braidwood.

This information replaces information previously reviewed and approved by the NRC.

Enclosed with this letter is a revision of A'.tachment C3.6 to -Section 3.6 of the FSAR which documents the analysis of. the break of a main steamline in the main steam tunnel.

This event was recently reanalyzed to determine the effects of changes in fluid paths associated with installation of water-tight hatches between

- the main steam tunnel and auxiliary feedwater pipe tunnel in the valve rooms.

These hatches were installed for flooding considerations.

Other minor changes were made in this analysis to more completely model the pressurization transient.

The analysis l

. demonstrated that the structural integrity of 'the affected subcom-r partments will be maintained during a postulated main steamline break.

This information will be incorporated into the Byron /

Braidwood FSAR in the next amendment.

Please direct questions regarding this matter to this office.

One signed original and fifteen copies of this letter and j

the enclosure are provided for your use.

l Very truly yours, l

?

/

h T. R.

Tramm Nuclear Licensing Administrator 1m 9

8200130277 B20010 PDRADOCK05000gg 4682N A

E i

B/B-FSAR ATTACHMENT C3.6 - MAIN STEAMLINE BREAK IN MAIN STEAM TUNNEL I.

INTRODUCTION One of the design criteria for the main steam tunnel and valve room subcompartments is to retain functional integrity indef-initely, that is, to have the capability of withstanding peak transient differential pressures under a postulated accident mode.

It was the purpose of this study to determine the transient pressure-response in the main steam tunnel and the' associated l

safety valve roomsnin the first-and second quadrants au the n-time of a sudden and complete circumferential failure of a main steamline.

(

Four break locations were considered.

They are the lower I

valve room just downstream of the isolation valve;.the main l

steam tunnel just outside the valve room in the first quadrant; the main steam tunnel between the first and second quadrants; i

and the main steam tunnel just.outside the valve room in the second quadrant.

II.

ANALYSIS A.

Description of the Computer Code The analysis was carried out by using-the RELAP code, which l

is a multicell thermal-hydraulic transient analysis computer program.-

The basis for the computer code is a network of fluid control volumes (fluid nodes) and fluid paths (interconnecting control volumes) for which the conservation equations of mass, momentum, and energy are solved in space and time.

Superimposed on the network are computer subroutines which permit physical modeling of the reactor system, the' containment, plant subcom-partments, safeguard fluid systems and the pipe rupture flow.

B.

Simulation of the System 1.

Assumptions The following are the major assumptions used in this study:

a.

The initial conditions in the steam tunnel, the auxiliary feedwater tunnel, and the valve rooms are 14.7 psia of pressure at a temperature of 90' F and a relative humidity of 30%.

l C3.6-1

B/B-FSAR b.

-Only one break occurred per analysis.

c.

The Moody choked-flow calculation was used with a multiplier of 0.6 as required by the NRC for choked-flow check between nodes.

d.

Homogeneous fine mist for the steam / water-air system in the control volumes with complete liquid carryover was used to produce a conservative solution.

e.

The length of a flow path connecting any two control volumes was taken as the distance between the centroids of these volumes.

f.

The area of a flow path is the effective area (i.e., the cross-sectional area of the path excluding areas occupied by grating, pipes, louvers, etc.).

g.

Mass and energy release rate for a postulated main steamline rupture is included in Table 3.

h.

The doors and HVAC louvers / panels in'the upper chambers of the valve rooms are initially assumed closed or intact.

A differential pressure equal to 1.5 psi will blow open the, doors and panels to atmosphere.

2.

Analytical Model To determine the transient pressures and temperatures in the main steam tunnel and the safety valve'-rooms after a sudden failure of a main steamline, the main steam tunnel was simulated by five control volumes connected by flow paths.

The area of each flow path is equivalent to the net area of the steam tunnel.

l The subcompartments of the valve room in each quadrant were represented by four control volumes connected by flow paths.

The area of each flow path was equivalent to the total vent areas between subcompartments.

Figures 1 and 2 depict a plan of the system and the flow diagram of the analytical model used in the study, respectively.

Tables 1 and 2 give the dimensions of the control volumes and flow paths, while Table 3 shows the blowdown rates and properties versus time from a postulated ruptured main steamline as provided by Westinghouse.

l C3.6-2 N~

B/B-FSAR III.

RESULTS AND CONCLUSIONS A.

Results 1.

Pipe Break in the Main Steam Tunnel Three locations of a postulated main steamline break were considered in the main steam tunnel.

The first and second locations were just outside the valve rooms in the first and second quadrants (Nodes 6 and 8), respectively.

The third location was in the steam tunnel between the first and second quadrants (Node 7).

l Figures 6 through 14 show the differential pressures in the l

control volumes directly affected by the line break.

2.

Pipe Break in Valve Room A pipe break in the lower chamber of the valve room in the second quadrant (Node 5) was considered to give the most con-l servative differential pressure.

Figures 3 through 5 show the differential pressures in the affected control volumes after a line break.

Table 1 gives a summary of the peak pressures to the valves used in the design of the structure.

B.

Conclusions The integrity of the main steam tunnel, the auxiliary feedwater tunnel, and the valve rooms in both the first and second quadrants can be maintained during a postulated main steamline break.

C3.6-3 y

~

~ _.

TABL 1 SUBCOMPARTME97 DA.D S I ION s

$I hEAM dT IE OR VALVE ROOMS MAIN STEAM LIN!!'.B MI T

\\

\\

\\

m s

\\

'Q v A.\\

\\ \\\\ iz DDA DREAK CONDITIONS CALC. DESIGN t

g

\\\\ CROS'S-(

DREAK PZAK PEAK i

S~'g ' SECTIONAL INITIAL CONDITIONS LOC.

DREAK PRESS PRESS DESIGN VOLUME

!EhGIG, i s ABEA ME TEMP.

PRESS.

HUMID.*

VOL.

BREAK AREA DREAK DIFP.

DIFF.

MARGIN i\\

ft3

'F psia NO.

LINE ft2 TYPE psid psid NO.

DESCRIPTI'QN'Q g

v 1

Atrosphere 5xl lx103 107 90 14.7

.3 tD N

7 5

Main 1.4 Double-17.4 26.2 51

[.

2 2nd Quadrant 2.33 133.25 4895.7 90 14.7

.3 f

'4 '

Upper Valve Steam ended Chaniet Guillo-U1 tine g

7 3

2nd Quadrant 12.33 183.7 4895.7 90 14.7

.3 5

Main' l.4 Double-17.4 26.2 51 Upper Valve Steam ended Chan.ber Guillo-j.-

tine 4

2nd Quadrant - 24.00 213.0 6007.0 90 14.7

.3 5

Main 1.4 Double-19.7 28.6 45

}.

Lower valve Steam-ended Chamber Guillo-tine Main 1.4 Double-19.7 28.6 45 5

2nd Quadrant 24.00 213.0 6007.0 90 14.7

.3

,5 g Lower Valve

' Steam ended Guillo-Chamber t

tine 6

2nd Quadrant 19.00 31'7.0 13695.0 90' 14.7

.3 6

Main 1.4 Double-16.4 26.5 61 Main Steam Steam ended j

Tunnel Guillo-tino i

i I

Rela t. s ve humidity.

w l

i I

e

- #w - Weem *

  • s

~

4 t-l TABLE 1 (Cont SUBCOMPARTMEWh DSh8 T Olf MAIN STEAM LINE C M }

N IN!ST b

! E_L A

ROOMS

_ t% s

. i., i. ( h S. \\n \\\\ \\\\ \\

\\

\\ \\

\\\\ '

V

'\\

QU'

\\\\\\

Iy *}

DBA BREAK CONDITIONS CALC. DESIGN g

Q OSS3 BREAK PEAK PEAK V

E ION L INITIAL CONDITIONS LOC.

B RE.'.M PRESS PRESS DESIGN VOLUME

, HE GII7 R 'A\\

UME TEMP.

FRESS.

ItUMID.*

VOL.

BPEAK ARE?.

BREAK DIPP.

DIFF.

MARGIN NO.

DESCRIPTION f%(

'T )2 ft3

  • F pela NO.

LINE ft?

TYPE psid psid 4

7 Main Steam 19.

203.0 34865.0 90 14.7

.3 7

Main 1.4 Double-15.5 21.3 38 t

l Tunnel Steam ended Guillo-tine E

8 ist Quadrant 20.00 432.0 35016.0 90 14.7

.3 8

Main 1.4 Double-

'8.8 11.2 28

[

Main Steam Steam ended Tunnel Guillo-tino 9

1st Quadrant 12.33 133.25 4895.7 90 14.7

.3 5**

Main 1.4 Double-17.4 26.2 51 Upper Valve Steam ended Guillo-g Chanber tine f.

~

10.

1st Quadrant 12.33 183.7 4895.7 90 14.7

~. 3 5**

Main 1.4 Double 17.4 26.2 51 i.

Upper Valve Steam onded Guillo-

.l,.,

Charrbe r t -

tine i

I I'-

.11 let Quadrant 24.00 213.0 6007.0 90 14.7

.3 5**

Main 1.4 Double-19.7 28.6, 45 Lower valve Steam ended Cuillo-Chanber l

tine

[

i 3 g

t*

I

~

  • l Relat.ive humidity.

j Differential pressures calculated for let Quadrant valve chambers are also applicable to corresponding 2nd Quadrant valve cle..noet s.

f.'-

I

\\

8

=

~.<

t.

. TABLE 1 (Cont'd)

.SUBCOMPARTMENT NODAL DESC O

t MAIN STEAM LINE B(EAK IN EA M U! N A

N

\\

N d

DBA BREAK CONDITIONS CALC. DESIGN k(

\\

BitEAK PEAK PEAK C

\\

filTJ AJ.

NDITIONS LOC.

BREAK PRESS PRESS DESIGN

[

}\\ bm i

S gVQLt!ME y WhESS.

HUMID.*

VOL.

BREAK AREA BREAK DIFF. DIFF.

MARGIN VOLUME HEIGH RIM NO.

DESCRIPTION ft Q't

\\f psia NO.

LINE ft2 TYPE paid psid 2

?

12 1st Quadrant 24.00 21 0 90 14.7

.3 5**

Main 1.4 Double-19.7 28.6 45 Steam ended Lower valvo Guillo-8 Chaeber ttne f

13 lst Quadrant 29.00 432.0 17388.4 90

  • 14.7

.3 8

Main 1.4 Double-8.9 13.2 48

~

Steam,

ended f

Main Stean Guillo-Tunnel tine I

14 1st Quadrant 19.00 280.0 13529.9 90 14.7

.3 8

Main 1.4 Double-5.9 10.3 75 Steam ended Main Steam Guillo-5 3

Tunnel tinc

[

t i

l l

.t j._.

s Relative humidity,

    • Dif ferential pressuras calculated for let ' Quadrant valvo chambers are 'also applicable to corresponding 2nd Quadrant valve cha.bers.

I.

t

'j --

~__. _.

e i

TM2 2.

~

SUBCOMPARTMENT VENT WS 1 MAIN STEAM LINE BREAK I [Mhti EA T 'N O

M n s \\L \\ x F i

~~

FROM TO DESCRIPT N[

\\\\

v HYDRAULIC HEAD LOSS, K VENT VOL.

VOL.

.\\

2 DIAMETER FRICTION TURNING EXPAN-CONTRAC-PAT 1! NODE NODE VEW N T! Q L MI A

2 GT!!

NO.

NO.

NO.

Ji GNtilot($

J ft it K, ft/d LOSS, K SION, K TION, K TOTAL i

1.0656 1

14 1 Main Sceam.

1t 270.8 28.0 13.9 Buildinq Uncho@

1.5207 1

2 2

5 2nd Quadrant Upper Valve Chamber 121.0 16.4 5.7

/

?

to Lower valve chamber i

Unchoked

-}

'l 1.5207.*

3 3

4 2nd Quadrant Upper valve Chamber 121.0 16.4 t 5.7

/

to Lower Valve Chamber Unchoked l

l.5685 4

6 4 2nd Quadrant Lower Valve Chamber 73.0 17.2-4.5 to Main Steam Tunnel l.

Unchoked 5

- 6 5 2nd Quadrant Lower valve Chamber 73.0-17.2 4.5 1.5685 to Main Steam Tunnel 4

Choked (5) 1.5071 6

5 4 Openings uctween 2nd Quadrant 100.0 16.1 7.l' Lower Valve Ch.nnborn

~~

Unci 5keil 6

a a.

Sec figures 1 and 2.

Length / Area is the inertial term input directly into RELAP4/ MODS.

t e..

2 For break locations not indicated, j

Number in parentheses indicates break location which caused choke flow in the vent.

3 unchoked flow hind occurreal for the vent.

K _ _ _ _ _

' *='---=-__,____ _ _____ ________,

=

}

s i.

TABLE 2 (Cont'd)

SUBCOMPARTMENT VENT PAT!! DESCSI. I MAIN STEAM LINE BREAM IN MA_IN N E M

, ?.

nC\\h\\\\M \\l

)

'E l.*

FROM TO DESCRIPTION

\\

\\$\\ Ng \\k '\\V S

SYD!(AULIC HEAD LOSS, K VENT VOL.

VOL.

OF

\\

, MNGT@ DIAMETER FRICTION TURNING EXPAN-CONTRAC-l' PATl! UODE NODE VENT PATIlJ 8%

A)1EA

'I Ct!OKEDy(L}!OqEy j., ] \\ f t 2

f.ti ft K, ft/d LOSS, K SION, K TION, K TOTAL NO.

NO.

NO.

g 2.1860 7

6 7 2n[1 Quadrant is t

k 99 102.0 13.3 to Main Steam T nngF

\\

Unchokedi \\

Qv 8

7 8 Main Steam Tunnel 1st Quad-199.8 132.4 12.3 2.7530 rant Main Steam Tunnel f

Unchoked f

1.5207 9

12 9 1st Quadrant Upper valve Chamber 121.0 16.4 5.7 to Lower Valvo Chamber Unchoked 1.5120 10 9

10 Openings Between 1st Quadrant 100.0 11.2 4.5 Upper Valve Chambers Unchoked 11 - 11 10 1st Quadrant Upper valve Chamber 121.C 16.4 5.7 1.5207 to Lower Valvo Chamber Unchoked h

12 12 11 Openin'gs lictwcon 1st Quadrant 100'.0 16.1 7.l' 1.5071 Lower Valve Chambers l-Unetioked o

1 Sec Figures 1 and 2.

1 2 Length / Area is the inertial term input directly into RELAP4/ MOD 5.

Humber in parentheses indicates break location which caused choke flow in the vent. For break locations not indicated.

3 l

c unchoked flow had occurred for the vent.

s I

e ame +..

~

r t

TABLE 2 (Cont'd)

SUBCOMPARTMENT VENT PATH DESCRIPTION MAIN STEAM LINE BREAK IN MAIN STEAM TUNNELf0 V

,cTh h\\

h i

.. - e.-

FROM TO DESCRIPTION N

'\\k \\ ' \\

kk l

h{

AREA { g

's, 2k UtDRAULIC \\\\

HEAD LOSS, K

(~

VENT VOL.

VOL.

OF

\\ NQTil 5 UI TE,R%KICTION TURNING EXPAN-CONTRAC-l PATH NODC NODE VENT PAT!! FLOWI

,/h<- (t v

K, ft/d LOSS, K SION, K TION, K TOTAL *

!, j 2

.fti

\\t

  • NO.

NO.

NO.

CHOKED 3 UNC110KED g

Tunnbl.g 373 6 2.260 4

17.6 13 8

13 1s Oomdrant Main stc4 Unchoke-

  • ))i 14 13 14 let Quadrant Mair am TdFncl 2

.8 42.0 13.9 2.2600 g

Unchoked \\

y 1.5685 g

15 8

11 1st Quadrant Lower a ve tamber 73.0 17.2 4.5 f

to Main Steam Tunne Unchoked

/

a f)

~

1.5685

_ 16 8

12 'Ist Quadrant Lower Valve Chamber 73.0 17.2 4.5

~

l to Main Steam Tunnel l

=

j Unchoked 1.5120 17 2

3 Openings Detween 2nd Quadrant 100.0 11.2 4,5

.Uyper Valvo Charbers unchoked 2.900 18.

2 1 HVAC Panels in 2nd Quadrant 51.3 15.2 5.9 U qmr Valve Chambers I

CITJk27S~~~6) l l

.s

..'.Sco Figures 1 and 2

~

jl Length / Area is tho inertial term input directly into RELAP4/ MODS.

For break locations not indicated, Y

I; 2

si Nu-ber in parenthesen indicaten break Iccaticn which caused choke flow in the. vent.

3 anchoktd flow had occurred for the sent, y__._,.

~~--

.~.~_.m.

-. ~

-_om.

r s

.s 3

I TABLE 2 (Cont'

~

SUBCOMPARTMENT VENT. _

DESC I 1

MAIN STEAM LINE 53REAK ISP N,

A.i 9EL VAL ROOM

\\

FROM TO DESCRIPTION

\\ \\

\\\\. \\

l

\\\\

ItYDRAULIC HEAD LOSS, K

[I\\ () *. '

VENT VOL.

VOL.

OF NGTil2 DIAMETER FRICTION TURNING EXPAN-CONTRAC-l PATil NODE 140DE

. VENT PAT!!TLOW f

ft ft K, ft/d LOSS, K SION, K TION, K TOTAL NO.

I;O.

NO.

C110KEp!:qyR4:p,g\\

2.900 19 3

1 Door and IIVAC P :

s i 75.8 25.3 5.4 Quadrant Upper V.1, Chh 1 i

Choned (SK6)

V 2.900 20 9

1 IIVAC Pancis in 1st adrant 51.3 15.2 5.9 Upper Valve Chamber ChoEc~.1 ( S )

2.900 21 10 1 Door and IIVAC Panels in 1st 75.8 25.3 5.4 g

Ouadrant Upper Valve Chamber Choked (S)*

l 0.000

~

22 (a) 5 0~

5 Main Steam Line Dreak in Node 5 1.0 0.0 0.0 Fill 0.000 22(t)5 0 6 Main Steam Line nreak in tiode 6 1.0 0.0 0.0 Fill 0.000 22 (c) 5 0 7-Main Steam Line Break in Node 7 1.0 0.0 0.0 l.

Fill O.000 :

22 (d) 5 0 8 Main Steam Line Dreak in tJodo 8 1.0 0.0 0.0

-I Fill

- See Figures 1 and 2.

'.._., 2 Length / Area if the inertial term input directly into RELAP4/ MODS.,

t;un.ber in parentheses indicat.cs break location which caused choke flow in the vent. For break locations not indicated,

,i 3 unchoked fl'ow had occured for the vent.

Choking results for 2nd quadrant valve room.aro applied to 3 0t quadrant valvo room.

.t 5 t our cau. :. weru considered each having a difterent break location.

b

_ _ C h r.

- - - - - -...:p

.e-j "T, ' *

. n -7 ~ 7 --*
  • h TABLE 3 PTUbb'd!A \\ "' e.*4 LI!!E BLOWDOMI RATES AIID E!!THALPY FORN p{j\\(.)\\g#

TIME yFLO \\ \\

~~

ENTHALPY (SEC)

JtB/SMC)

(Btu /L3)

V 0.0 00 1,195.4 a

v 2.0 v

10,434 1,195.1 4.0 9,608 1,196.9 6.0 9,017 1,197.7 8.0 8,613 1,199.4-10.0 9,318 1,199.8 10.1 2,098 1,201.1 20.0 1,993 1,199.2 30.0 1,879 1,208.1

'50.0 1,625 1,206.1 75.0 1,064 1,203.0 100.0 814 1,201.5 mm-,

m.-m

Safety Valve og S

n

\\

s

\\,

/

i o'

\\. b.,, ',;

- - - t- - - -

~

/=k

'h[

\\

i1\\ ', #

l

\\

^'

Section View

)

h

{ \\\\

s I

2nd Quadrant I

lst Quadrant Reactor du Safety Valve Roon 3

I

/

I

,/

_.___g___

(

I i

Section View I

B-B i

l PIGURE 1:

MAIN S"' CAM TUNNEL VIEW PLAN

_ m._.! hJ l J. e,

e,46 dm N_ ^ M.CJpW-g gte,n.yyha ]-_NN=-

--ggg,. w hoW 4.w g 4, A2

/

- NODE O

- JUNCTION

\\',)Il8

- BREAK

)'

\\

\\

l LOCATIONS

,h \\[

/\\ s li' (s

\\

VA' Q

=

i V

7 9

10

~

12 11 16 15 8

13 14 14

,e V

~

FIGURE 2:

Nodalization Schematic NOTE:

A description of each of the nodes is given in Table 1.

~"~

'- - ~~~~"

-- '~--

' ~ ' ' ~ ~ "

^

30 NRINSTER tit [E(b'EhK IN E

G LBWER NO QUR0k V YE 800N (N00E 5) 3 es.-

N.

6%

b I

W 5

20.2 h\\^

15.

ode 2 J

A, -

~

a-10.2 e'\\

\\

V s doc.e3 z

A k )'

I N N it 89 Q E

\\

u-e N) o E

-5.7

,,i.i.

iiiig

.i.3.,

3 igg

..i.i.

i i ii 10-3 10-2 30-1 300 TIME (SEC) 30.

~

NRINSTERN LINE SRERK IN o

G LONER 2ND QURD. VRLVE ROOM (NGCE 5) 3 25.-

~

W E

20. 2

~

w nd s

E is.i p

a e-10.-

6 node 4 l

6 u.

5.-

E 0.-

a a-

-5.

i.i.iiiiig

. i.i.iiiiig

,,i.i.iiiii 10-3 10-2 10-1 100 TIME (SEC1 PIGU.7E 3 ':

PRESSURE TRANSIENT FOR NODES 2, 3, 4, &S 1

I

~~

w,..

s. ;emm O mwMW
  • Wm w,m~-

--- - M " * **- " L'~

==**~M'-

- ~ ~^ ^ ~~ ' ^*

A 20.

MRINSTEpt(QIf[d(ERKIN 5

G L8WER 2ND'QUE.

R VE ROOM (N00E'5) n.

x

~

15.-

g S

=

6x.s. x w

s \\)-

e 10.-

s

\\

/ s.{s.

a.

g Ns\\

s.

e t

'. NN.

~

5.-

,\\ \\

Hode 6 Node 7 6.x v N e

'hy E

"d 8

v

^\\

O*

o g-oo Z

-5.

i.i.i.,iiiig 3

.i.

iiiig i.ii.iiii 0

10-3 10-2 30-1 30 TIME (SEC) 10.0 8

NRINSTERM LINE BRERK IN G

LBWER 2ND QURD. VRLVE R33M (N20E 5) n.

~

~

7.5 -

W a:

c us c) 5 5.0 a.

_J i

c l

~

2.5 -

Node 13 I

w N

g Node 14 E

.0-

_J E

oo Z

-2.5-3.i.i.iiniig i

i.i.i iiiig i

i.iiiii; 0

10-3 10-2 10-1 10 TIME (SEC)

PIGURE 4 :

PRESSURE TRANSIENT FOR'N6 DES 6, 7,

8, 13, 4

14 9 W-ak aK% s

+h^""-*

E-

  • - ^
  • '*1..

.e MJ.'l s

  • "E

/

-' ~ ' ' '

10.0 =

^

E NRINSTERNLINE,[B$5 KIN G

LOWER 2N URD.jVBL 32M (N30E 53

-s s

s 75; gs,'y u

(% \\ '#N '\\

f 5.0

\\

. *qs

.J e

l

/

v s

2.5 -

f.

v-N Nodes 9 & 10 W

- (, i.,

(G [\\ M o

=G-v

.J Ee

-2 5 i

i ii iiiii i -

iii iiiii i

i i i iiiii 10-3 10-2 10-1 100 TINE (SEC)

'10.0 8

NRINSTERN LINE 58ERK IN G

~:

LOHER 2ND QURD. VALVE ROOM (NSDE 5) n.

75-w n:

p en to

~

wa:

5.0 -

,c M

2.5 -

Nodes 11 & 12 w

m tL.

G

.0 C

O D

-2.5 i

i.i.i iiiig i

3.i.i ii3ig i.i.i i,ii,g 10-3 10-2 10-1 100 TIME (SEC)

PIGURC 5:

PRESSURE TRRNSIENT FOR NSDES 9, 10, 11, 4

12

N f 9 W*"*tF -

---"-w~

'nmmmgi m

--h.#--

2 "^7

d\\

~

~

20.

NRINSTERN L(TIE.Bk' IN S

E 2ND QUROM ytlN$L'( e

)

\\s M\\ 4. N \\'h

~

15..-

g fs(.\\\\

',N \\

=

s s

A ' % "z.,, g x E

\\. \\s

\\.N w

\\

e 10.-

N, x\\)

n.

\\

/ 2& 3

. s N- \\x(,,) Q' V

_s 5

x 5.-

s' w

o) s g

9 x

o.

v o

J c

o e

Z

-5.

. i.i.

iging

.. i.i.

iiiig i.i.i.iiiii 0

1073 10-2 10-1 10 TIME (SEC) 20.

a O

NRINSTERM LINE BRERK IN y

2ND QURO TUNNEL (N20E 6) w 15.2 ww m

3 m

to w

=

10.-

l Nodes 4.& 5

~

G

~

w y

5.-

w m

w

~

tr.

14.

E o.

_s E

o c

2

-5.

i.i.i.i iiiig

..i i.i iiiig iii'iiiii l

0 10-3 10-2 30-1 30 TINE (SEC)

FIGURE 6:

PRESSURE TRANSIENT FOR N6 DES 2, 3,

4, 45 l

w

~.

...: ~.. -.

. _. ~

20.

~

MRINSTERM L,ItJk RERK IN O

[

-l END QURD UNNEL NGDE 6)

<m. N 4

} ',, '

g 15.-

e s,

s.

hs i

M Node 6

E 10.-

'<(',

^

( 's),

N 7'-). ' s 's '\\

Node 7 f

s s

5.-

-,s'., '

E

<'N' N '

w

/,'-

Node 8 e

s b

's..- 'N

.s

,..f( ') -

w'. x,.3.i.

-S.

giiig

,.i.e.iiiiig i.i.i.iii, 10-3 10-2 10-1 100 TIME (SEC) 10.0

~

0 MRINSTERM LINE BREAK IN E

~

2ND QURD TUNNEL (NODE 6)

I e

7.5 w

m Dw e

l E

5.0 -

I A

1 CC

[

Node 13s 2.5 -

zw e

E

\\ ode 14 M

L E

.0-E o

D Z

-2.5 i.

iiiig i.i.iiiiiiig i.i.iiiii i

i.

0 10-3 10-2 10-1 10 TIME (SEC)

FIGURC 7:

PRESSURE TRANSIENT FBR NODES 6, 7,

8, 13, 4

14 4

-d #

i od e

.<a*.M MO "M.M N

.mm.

v s9 N M h -ws s

<^

10.0 S

NRINSTERN LINE BJTERKi1N y

2ND QURO TUNNE IN80 'S 0

7 Si p\\D D s

~

j

[Q..\\., p.7.p :'

\\

E 5.0 -

,\\

[

CQ.,N.ty E

A. \\' '\\ '

~

Nodes 9 & 10 2.5 -

[,Y'\\

v g

s,N 'vN '

U

'DQ

^

0 3

9 gv e

i oe Z

-2.5

.. 3.i.i iiiig i.i.i.

s iig i.i.e.iinii; 10-3 10-2 10-1 100 T.IME (SEC) 10.0 S

NRINSTERN LINE BRERK IN y

l 2ND QURO TUNNEL (NGDE 6) v2 75-w M

a c)

E 5.0 -

a e

w l

2.5 -

Nodes 11 & 12 w

1 w

ts.

s

.0 a

e oo 1

z

-2 5 i

i..itiiig i.i.i.iiiig i.i.i.i.iiij 10-3 10-2 10-1 100 TIME (SEC)

PIGUP.L C:

PRESSURE TRRNSIENT FOR NODES 9, 10, 11, 12 y ama K, TtW p-sm = " ~

W* *M M WW W,'

Y,

20.

S NRINSTERN LINE BRERK IN E

2ND 4 IST QURO TUNNEL (NSDE 7) w 15.5 e

E

~

=

10.-

G.

d N\\

odes ' sd 3' b'

N 3 o

('s N NN (n'\\p }v x

N g

g g

a.1 i.s

-5.

i t

pi i

3.,.i iigig

,.i.i.iiiii 10~3 10-2 10-1 100 TIME (SEC) 20.

3 NRINSTERN LINE SRERK IN END 4 IST CURO TUNNEL (N80E 73 m

1s.-

w 5

m m

E 10.-

G.

p Hodes 4 & S s.-

zw 5

t E'

0-

.J 8

co 2

-5.

i.i.i.iiiiig

.i i.iiiiij i.i.iii;in 0

10-3 10-2 10-1 10 TIME (SEC)

FIGURE 9:

PRESSURE TRANSIENT FOR NODES 2, 3.

4, 45

's#*

"v.

4F "b

W~

.O-see 4.

._y 4w, 3-

--N^

S--

~

30.

~

S MRINSTERM LINE SRERK IN END 4 IST QURO TUNNEL t

E 7) 25.-

m

("N w

5 20.2 w

x

\\

E 15.2

h., A,'\\

&e's.

. Nh A

\\\\s\\ U '\\)9 g

C 10.2 y,

.N z

s MpN [e 6 w

x s%

5

,e<\\

NN s.-

s

7. s.

ys m

A E

}

Q

.. V)')

\\

u de 8 0._

vv E

o

^

\\)

\\g o

Z

-5.

i.i., i ivig i

i.i., iiiig

.3.i.i 3,,,

10-3 10-2 10-1 100 TINE ISEC) 10.0 O

NRINSTERN LINE BRERK IN END 4 IST QURD TUNNEL (N00E'73 m

1 m

7.5 w

0:

i, pw v2 E

5.0 -

A J

C Node 13

~

~

t 2.5 -

u N

Q:

w I

l Node 14 E

.0 3

m oo Z

-2.5 -

l i,iii.

iiiig i

iii.i igiig

..i.i.,iii; 10-3 10-2 10~1 100 TIME (SEC1 FIGUPI 10:

l PRESSURE TRRNSIENT FOR NODES 6.

7, 8.

13, 4 14 l

l

&c n-

..~ c.-a m w

=. - am -. :--- -w

~ ~ - -. - ~

-w

. 10.0 NRINSTERM LINE BREAK IN N O

y 2ND 4 IST QURD TUNNEL,(NODE J

7.s l A(Q

=

s w

\\

s 5

([.

\\

s m

m

/x(\\ \\ \\

'~.s ss E

5.0 -

s n.

,,g \\ s',,'\\

\\

c N

(xUodes 9.'

G E

2.s l (s \\'xx '

((b g '

y

> \\

E N

s Os s,

.0 o

f.

9 \\..

e o

o Z

-2.5 333 i gg i.i.i.

gigig 3.i.i it, 10-3 10-2 10-1 100 TINE (SEC) 10.0 O

NRINSTERM LINE BRERK IN m

END & IST QURD TUNNEL (NSDE 7) 1 e

7.5 w

g m

m E

5.0 -

~

n.

G Nodes 11 & 12 E

2.5 -

w b

e L

E

.0 J

G oc Z

-2. 5 -

'.i.35 i niig

..iii.iiiiig ii.iiiiig i

l 10-3 10-2 10-1 100 l

TIME (SEC)

FICUPJ: 11:

l PRESSURE TRANSIENT FOR NODES 9, 10, 11, 4

12 y

a w

h n.., _w

--b

-W

1

'10.0 D

NRINSTERM LINE BRERK IN

[

l 1ST QURD TUNNEL (Na0E 8)

Q,1-e v.Si g

rh'%.k V,\\\\'

(.

\\

m E

5.0 -

's'.

\\ \\

4 q\\

A J

p(,s e

s a

. cc x's Node 3

p f,

z 2.5 -

'x N

[4'.N V

w "y

/.\\ y., s

'. N g

b

~ \\ 'N, \\,1 '

.N W

NV E

o oZ

-2.5 i

i. i siig7 i.

i.i.

giiig i.i.i.iiii i,

0 10-3 10-2 10-1 10 TIME (SEC)

  • 10.0

~

O NRINSTERM LINE BRERK IN M

1ST QURO TUNNEL (NGOE 8) m 7.5 -

w 6

y D

w m

E 5.0 -

A

_J E

Nodes 4 & S w

2.5 -

g w

m w

L O

)

.0 o

_s cr oe Z

-2.5 i

i iiiig i

iii.i iiing i

3iini..

0 10-3 10-2 10-1 10 TIME (SEC)

FIGURE 12:

PRESSURE TRANSIENT FOR N6 DES 2, 3,

4, 45

~

M9 ssp, m 71 A f@t '*ht es a---

_1 4 'gkA,.

g why

!- eh saMM - +ee M b '"

4

g

.10.0 MRINSTERM LINE BRERK IN y

1ST QURD TUNNEL (NO : 8)

~

e 75 5 E

l Node C m

5 h

E 5.0 g

A N

bs d'Ab d

f" qQh(N$

.0

-s a

y.s v

25 10~3 g 10-2 10-1 10 i s Nj4 t i l i ' l'i'i i t ilj 1

ta lal 6 tis a 0 TINE (SEC) 10.0

~

O MRINSTERN LINE BREAK IN m

1ST QURO TUNNEL "a0E 8) m 7.5 -

E a

M E

5.0 -

Node 13 d

2.5 -

E y

Mode 14 h_

8

.0^

g oo 2:

2.5-i i., i giig i.i.i isiig i

i., ;gii, 10-3 10-2 10-1 100 TIME (SEC)

PIGUiU: 13:

~

PRESSURE TRANSIENT FOR NODES 6, 7,

8, 13, 4

14

'a a

y.

r e

T-

~'

W M

~10.0

~

S NRINSTERN LINE BRERK IN

~

IST QURO TUNNEL (N00E 8) a 1.5 -

w a:

Dm e

E 5.0 -

n.

E!

Hodes 9 & 10

/

,s s

u

.J 2.5 -

N 'N c'

,'y

.0 o

,,,gy

\\,\\

V g

8

.,.'s, Z

-2.5=

,y.;,,

10-3 V'-

M2 10~I 100

,..[ Q TIME (SEC) y \\}/}

\\

10.0

~

v S

NRINSTERN LINE BRERK IN M

1ST QURD TUNNEL (Na0E 83 m

7.5 -

w M

p a

E 5.0 -

a.

Nodes 11 & 12

^

\\

.m t

E 2.5 -

i w

I Q:

.0 I

E i

o o

l 2

-2. 5 -

i.i.i,i3 iiig

,i,3.i iiig i,i.i.i ii,,,

10-3 10-2 10-1 10 0 TINE (SEC)

PIGURE l::

PRESSURE TRANSIENT FOR NODES 9, 10, 11, 4

12

.a-

~

.s

~ - -

=-

-