ML20062B377

From kanterella
Jump to navigation Jump to search

Summary of 900919 Meeting W/Util & Sandia Re Fire Protection Portion of Probability Safety Assessment
ML20062B377
Person / Time
Site: South Texas  STP Nuclear Operating Company icon.png
Issue date: 10/15/1990
From: Dick G
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
TAC-73009, TAC-73010, NUDOCS 9010240327
Download: ML20062B377 (139)


Text

{{#Wiki_filter:-

 .n       o-gag [c.g 6    4 ht Ib UNITED STATES E *-

[4 g NUCLEAR REGULATORY COMMISSION j WASHINGTON, D. C. 20b65 t f

           '% , , , , , #                         October 15, 1990
      ' Docket Nos. 50-498 and 50-499 LICENSEE: Houston Lighting & Power Company (HL&P)

FACILITY: South Texas Project, Units 1 and 2

SUBJECT:

MEETING TO DISCUSS FIRE PROTECTION PORTION OF THE SOUTH TEXAS PROBABILITY SAFETY ASSESSMENT (PSA) (TAC NOS. 73009 AND 73010) The subject meeting was held on September 19, 1990, in Rockville, Maryland. A list of attendees is shown in Enclosure 1. Review of the South Texas-Probability Safety Assessment (PSA) has been underway by the staff and its contractor,SandiaNationalLaboratories(Sandia),andthismeetingwasone of several held to support the review effort.

            .Thelicenseemade'twopresentations(Enclosures 2and3),whichsummarizedthe results of the PSA and how the licensee proposes to use an ap
             . basis for changes to the plant Technical Specifications (TSs) proved .

PSA as a The licensee has submitted 22 proposed changes, which are awaiting review by the staff. Prior the basisto for thediscuss meeting, ion at the meeting.the A copy of the staff sent and questions the licensee seven questions the licensee's written responses are provided in Enclosure 4. Additional information (detailed information regarding the development of Fire Scenario A004-FS-01) in support of the answer to Question 4 of Enclosure 4 is included as Enclosure 5 to this memo.

            'The answers provided by the licensee were generally sufficient to answer the staff's questions. During the discussions and followup to the licensee's answers, three areas of need for additional information were identified. The areas are as follows:
1. The licensee is requested to discuss.the relevance of the Rancho Seco annunciator control panel fire on the South Texas PSA. (SNL will provide information on the fire to the licensee.)
2. The licensee is requested to assess the contribution to core damage frequency from fires originating in control room cabinets which were previously screened from the analysis.
3. The licensee is requested to assess the contribution to core damage frequency from fires in the turbine building which could fail offsite power.

o u )N p( 9010240327 901015 PDR F ADOCK 050004981 ktp i PNU. j

    /                                                                                                        J
   ,       o                              ,      ,

1 October 15, 1990 2 The licensee agreed to provide the requested information. A walkdown is scheduled to take place at the site on October 24, 1990. The objective will be to select specific fire areas for independent verification of the assumptions used by the licensee in the PSA model. (ORIGINAL SIGNED BY) George F. Dick, Jr., Project Manager Project Directorate IV-2 Division of Reactor Projects . III, IV, Y and Special Projects Office of Nuclear Reactor Regulation

Enclosures:

As Stated cc w/ enclosures:  ; see next page ' DISTRIBUTION 56iitet meJ Myirgilio NRC & Local PORs GDick FMiraglia EPeyton JPartlow OGC PDIV.2 Reading EJordan PDIV-2 Plant ACRS(10) JLinv111e MSlosson NRC Participants OFC :PDIV.7/LA :PDIV  : IV-2:A/D;  :  :  : +

     ......:. h ........:....-2/P NAME :E
GDick:j
                                            .:ff......y'
                                             . Linv111e DATE   :10/10 /90       :10/// /90      :10/// /90         :              :              :

OFFICIAL RECORD COPY Document Name: STP MTG REPORT /73009 & 73010 I l l L

..o a l i l ct w/enr.losures: Senior Resident inspector Jack R. Newman, Esq. i U.S. Nuclear Regulatory Commission Newman & Holtzinger, P.C. I P. O. Box 910 1615 L Street, N.W. , Bay City, Texas 77414 Washington, D.C. 20036 l Mr. J. C. Lanier Licensing Representative Director of Generation Houston Lighting and Power Company City of Austin Electric Utility Suite 610 ,

   ;721 Barton Springs Road                   Three Metro Center                    '

Austin, Texas 78704 Bethesda, Maryland 20814 Mr. R. J. Costello Bureau of Radiation Control . Mr. M. T. Hardt State of Texas l City Public Service Board 1101 West 49th Street , P. O. Box 1771 Austin, Texas 78756

  • San Antonio, Texas 78296 Rufus S. Scott -

Mr. R. P. Verret Associate General Counsel Mr. D. E. Ward Houston Lighting & Power Company Central Power and Light Company P. O. Box 61867 P. O. Box 2121 Houston, Texas 77208 Corpus Christi, Texas 78403 Mr. Donald P. Hall ' INPO Group Vice President, Nuclear Records Center Houston Lighting and Power Company 1100 Circle 75 Parkway P.O. Box 1700 Atlanta, Georgia 30339-3064 Houston, Texas 77251 Regional Administrator, Region IV U.S. Nuclear Regulatory Commission 611 Ryan Plaza Drive, Suite 1000 Arlington, Texas 76011 Mr. Joseph M. Hendrie 50 Be11 port Lane

  • Be11 port, New York 11713 Judge, Matagorda County Matagorda County Courthouse 1700 Seventh Street Bay City, Texas 77414 Mr. M. A. McBurnett Manager, Operations Support Licensing Houston Lighting & Power Company P. O. Box 289 Wadsworth, Texas 77483
= s: o=

l

'i ENCLOSURE 1 B

ATTENDANCE FOR SOUTH TEXAS PSA MEETING SEPTEMBER 19, 1990 Name Organization , George Dick NRC 1 Harold Vandermolen NRC Christopher Grines NRC Millard Wohl NRC Glenn Kelly NRC Nilesh Chakshi NRC + Roger Kenneally NRC Amarjit Singh NRC i Erul Che111ah NRC A.W. Harrison HL&P , , Michael E. Powell HL&P , Richard Murphy HL&P John Lambright Sandia Steve Nowlen Sandia John W. Stetkar PLG , Karl Fleming PLG Nathan Siu MIT Alfred O. Guidry Bechtel ,

O O - mcwsta 2 HOUSTON LIGHTING & POWER PROGRAM TO MEET GENERIC LETTER 88-20 REQUIREMENTS FOR

           " INDIVIDUAL PLANT EXAMINATION FOR SEVERE ACCIDENT VULNERABILITIES" BY M. E. POWELL DIVISION MANAGER PLANT ENGINEERING DEPARTMENT HOUSTON LIGHTING & POWER COMPANY

O s 4 1 l OVERVIEW

                             .             IPE REQUIREMENTS                                                         l r

l

                             .             HL&P'S PLANT ANALYSIS STATUS PROGRAMMATIC REQUIREMENTS                              ,

i

SUMMARY

OF RESULTS . i .- UTILITY INVOLVEMENT l

                                                                                                                  ?

l-I e

                                                                                                                  +
                                                                                     \

I IPE REQUIREMENTS , i l i

                    . GENERIC LETTER 88-20 SPECI."IES THAT AN IPE INCLUDING A SYSTEMS ANALYSIS AND CONTAINMENT PERFORMANCE               ,

ANALYSIS BE SUBMITTED WITHIN 3 YEARS (AUGUST, 1992)

                    . THREE APPROACHES AVAILABLE INCLUDE IDCOR (IPEM),

LEVEL I PRA PLUS CONTAINMENT ANALYSIS OR ANY OTHER , METHOD SUBMITTED AND APPROVED BY NRC l <

                    . MUST REFLECT CURRENT PLANT DESIGN l
                    . FOLLOW SUBMITTAL GUIDANCE OF NUREG-1335 1

r

                     . SUBSTANTIAL UTILITY INVOLVEMENT t
                     . PLAN SUBMITTED SPECIFYING THE APPROACH AND SCHEDULE FOR COMPLETION
                                                                                   ?

I

                                                                         --  ~   ~
  ..                                                                                                                                                             l CURRENT STATUS                                                  ,

i

. ON APRIL 14, 1989 HL&P SUBMITTED TO THE NRC THE
                              " SOUTH TEXA5 PROJECT PROBABILISTIC SAFETY ASSESSMENT l                              

SUMMARY

REPORT" WHICH UTILIZES CURRENT METHODS AND  ; INFORMATION.

                         . THE SOUTH TEXAS PROJECT ELECTRIC GENERATING STATION                                                                                .

l (STPEGS) PROBABILISTIC SAFETY ASSESSMENT (PSA) CONSISTS OF A LEVEL I PROBABILISTIC RISK ASSESSMENT l l (PRA) INCLUDING EXTERNAL EVENTS AND AN UNCERTAINTY I ANALYSIS.

                         . THE ASSESSMENT INCLUDED SUBSTANTIAL UTILITY PERSONNEL INVOLVEMENT AND INDEPENDENT IN-HOUSE REVIEW.                                                                                     I
                         . DOCUMENTATION FOR THE " FRONT END" ANALYSIS AS SUBMITTED SATISFIES GL 88-20 REQUIREMENTS.
                         . INCLUDES THE ABILITY TO ADDRESS CURRENT PHENOMEN0 LOGICAL ISSUES.
                         . THE PLANT ASSESSMENT HAS RESULTED IN CHANGES IN                                                                                  -

DESIGN AND PROPOSED PROCEDURES.

                         . DETAILED DOCUMENTATION IS CURRENTLY UNDER REVIEW BY THE NRC AND SANDIA NATIONAL LABORATORY.

1'

l-

        . o PROGRAMMATIC REQUIREMENTS FOR PRA ANALYSES l
            . CONSULTANT QA PROGRAM AND PROCEDURES
            . HL&P QA PROGRAM AND PROCEDURES COMPUTER ENVIRONMENT CONTROL MODEL CONTROL COMPUTER CODE VERIFICATIONS PERFORMANCE OF ENGINEERING CALCULATIONS l

USER QUALIFICATION 1 L PLANT & PROCEDURE MODIFICATIONS ERROR HANDLING

            , PLANT MODEL VALIDATION AS BUILT CONFIGURATION
               -   UNIT 1 VS, UNIT 2 l-PEER REVIEW l

SUPPORT ANALYSES i.

                                  .yy,,p_ ..,-,., _, , ,,- y--,..,.,.--- , ,,,, - - ,, , . w.,..wm,_...,_,. .,_,,,, .._ , .,_,... ._,___., , . , ,g_,_,   , , , , ,

_ .y .

s . STEAM GENERATOR TUBE RUPTURE (9*..) 1 a. n:! ?::' -

                                                              ' 'j 't-l.
                                            .l. Ylj$:f     "         '

B:l RE ACTOR TRIP (7%) h-J.;c;q.' ,, "

                                                   .J
                                                   ;;,.                .yt...

c' ,: o..; l' ' ,,j:;Y,. ,bS' j,, ,

                                       ..r..e,:n:;;;"lji:.          !.

i!Ji;R

                                      .w. sa r        h!.M;' ..?w:,y" . yg. :e.W-cM..:m::..
                                     . , .9                            .W :,.'.,.,U                                                               LOSS OF ELECTRICAL AUXILIANY JlS.[;Y                                              I! . 
                                                                                       ,O' . - "$$.: .

BUllDtNG HVAC (7'.)

                                          .j : -$ d k;;.S:,,,. - -                    .
                                                                                 ,/.::. '.#::-                  ..            g.j,. , .;,

LOSS OF s - Y- jijjhj: fhhk ' OFFSITE .<.n Y, h$ +5: ' .. ~ POWER

                                                    . ~ '

i.. . .. d, togs op g Ain ($3%)  : FEEDWAT ER (6t.)

m. < i G. r :e A.a ,;.. . . > , '.?.
wsa. ,

p* ' '

  • L I .

TURBINE TRIP (5%) s.w. sb U* LOSS OF ONE 125V DC

                                                        ,,                                                                                     BUS (5%)

ALL OTHER EVENTS (7 '..) TOT AL CORE DAMAGE ALL EXTERNAL EVENTS FREQUENCY g g,7.,,) 1.67 a 10* PER YEAR CONTRIBUTIONS TO CORE DAMAGE FREQUENCY MADE BY SEQUENCES GROUPED BY INITIATING EVENT 1

    .   ,                                                                  j
  .                                                                          1 UTILITY INVOLVEMENT IN PSA                        .

I . THE LICENSEE STAFF INVOLVED IN COMPLETING THE PSA INCLUDED FOUR FULL TIME ENGINEERING PERSONNEL. 1

          . AT THAT TIME THE AVERAGE STAFF EXPERIENCE LEVEL EXCEEDED FOUR YEARS ON THE STPEGS PSA, SIX YEARS IN PERFORMING PRA, AND 11 YEARS IN NUCLEAR POWER ENGINEERING.
          . BACKGROUNDS INCLUDED LICENSING, DESIGN ENGINEERING, L             THERMAL-HYDRAULIC ANALYSIS, ACCIDENT ANALYSIS, l

NUCLEAR NAVY, AND PERFORMANCE OF PRA ON OTHER PLANTS, , INCLUDING ZION, INDIAN POINT, AND SEABROOK. l' l . DIRECT, FULL-TIME SUPPORT OF THE PSA COMPLETION ACTIVITIES IS ESTIMATED TO HAVE BEEN 15 MAN-YEARS. l l i i 6 l

j < .'. . g ENCMSURE '3: ] RISK-BASEDJANALYSIS.0F 4 . TECHNICAL SPECIFICATIONS: FOR j

SOUTH TEXAS PROJECT-  :

q ELECTRIC GENERATING STATION h u 1 ~ a ? .  :

                                                                                         ^

BY-1 RICHARD P. MURPHY { PRINCIPAL ENGINEER 4 j PLANT ANALYSIS DIVISION , 3 HOUSTON LIGHTING & POWER COMPANY  : T

                                                                                         .i

[

(]- , 4 IMPACT OF TECH = SPECS ON PLANT AVAILABILITY. y .0 . LIMITED CREDIT IS.GIVEN IN'THE CURRENT STPEGS TECH SPECS FOR THELTHREE TRAIN DESIGN AND THE ADDITIONAL SAFETY EQUIPMENT. WHEN A PUMP,-FOR EXAMPLE, IS , DECLARED INOPERABLE IN A "TWO TRAIN" PLANT ONLY ONE REMAINS AVAILABLE, WHEREAS AT STPEGS TWO MUST REMAIN i AVAI LABLE.- THE PLANT CAN BE BROUGHT-TO A STABLE CONDITION WITH ONE TRAIN AVAILABLE EXCEPT IN THE CASE OF THE LOW FREQUF,NCY DESIGN BASIS LARGE BREAK LOCA. 0- LC05 CONTRIBUTE TO PLANT UNAVAILABILITY. O THE MORE EQUIPMENT UNDER. TECH SPECS, THE-HIGHFR THE PROBABILITY OF ENTERING AN LCO. O THE MORE LCOS A' PLANT ENTERS, THE GREATER THE CHANCE FOR SHUTTING THE PLANT DOWN.AND INCREASING PLANT UNAVAILABILITY. O THE STPEGS TECH SPECS REQUIRE TW0'00T OF THE THREE ESF TRAINS TO BE AVAILABLE BASED ON A LOW FREQUENCY POSTULATED DESIGN BASIS LARGE BREAK.LOCA; IN THIS CASE, ONE TRAIN-OF EQUIPMENT WILL BE EFFECTIVE-EXCEPT IN THE INSTANCE IN WHICH-THE'AVAILABLE TRAIN FEEDS THE BROKEN LOOP, WHICH IS VERY UNLIKELY. STPEGS IS MORE LIKELY TO ENTER AN LCO DUE TO THE ADDITIONAL EQUIPMENT. THAT MUST BE AVAILABLE. O AS'A RESULT, STPEGS MAY EXPERIENCE A PLANT. AVAILABILITY SOMEWHAT LESS THAN THE US AVERAGE BECAUSE IT HAS MORE SAFETY EQUIPMENT. (TSSl-WP1/ SLIDE-3) I

                                                                                                                               +            =
                                                                                                                                                                            ~
                                                                                                                                                                                    ~ '
                                                   .%_                                 ,          -w..                                          -                                        . . .
                                                                                                                                                                                                                       ,                                    :~

4

                                                                             ~ .                                                -
                                                                                                                                                                                                                                       .e.      -

.J . A'

     ,  e-                                                                                                                             J                                                                                                          --

y E[-

                                                                         ~~
           ~

TlWEEE TRAIN DESIGN IEEAT SINK AIS ELECTINCAL DEPENDENCY [ m-A ) - -. - )\-

                                       \

m-C 3

                                                                                                                                                                                                        \-
                                        \                                                                              \                                                                                  \
                                          \                                                                             \                                                                                   \

k k k N-8 N--C

                                                 ---( AFW-A )                 (ECW-8 ---yg (ECW-A                                                                                                               ___ . AFW-8)                         (ECW-C ---g                                        _--

AFW-C ) (AFW-0 3f/l m-A g/j g; 3-C ./

                                                                                                                                                                                                     -C l

1 1 1 I I I J (CCW-A ( CCW-B f----- (CCW-C ---~~I I I I l 8  ! RCFCo-A - RCFCo-B --J RCFCo-C - I I 'I I - I I RHR PUMP-A 3- IIHR PUMP-8 J PUMP-C d _.c -g _. c Nx-8). _.c ex-C) 1 1 1 1-("?IT) (%""f) ' (L*=t) . (w)  : M.AT SNK DEPDWDeCY

                                                                                                                                                                                                                                  ---* ELEC1NCAL DEPDIDDICY
  • NOTE: AN ECW PUMP 1RA#t CAN SERE AS A EAT SINK FOR TWO EQ4 TRAINS. , gg 6

4

                                     -                 . g-   .%..i  -2            %              -7,.  - - .                       ps y.~   -_w-s     , . . . . . , - , .      ,..we.o-.      4- y    , ,             - ~ - * -                       v-       f_y,,~%,4           ,.-- .--         y-

T STPEGS Emergency' Core Cooiing System-CONTA2NMENT RWST (Two Charging Pumps Not Pictured)- SUMP -.__-

                                                                                              .  "_A "

c .: RC OT. 4,, D f l . I LOOP 1 [-)(~ A HHSI TRAIN "A" LHSI TRAIN "A" EG LOOP 1

                                        -      ~   ~"

b 'D [ b RHR Heat Exchanger-A> - CONTAINMENT SUMP "B" EG [h [ O - - LOOP.2 Ih V -~ ~ HHSI TRAIN "B"

                                      /                                  LHSI TRAIN "B" cuc~m                     v 4< G            a ,<           / k      -

p LOOP 2'- Exchanger-B-CONTAINMENT

                                                                                        .S, UMP "C"'_
           *[EsT *-V                  /,I                              /     )(jQ                 <g_f_

1 LOOP 3 G [ - ~ HHSI TRAIN "C"

                                    ~

[ LHSI TRAIN "C" kc '" -d LLOOPU3 V-h-T N RHR Heat y > <-a Exchanger-C

                .\.
     .s,.
                    ~
       ,' f i..                                                                                                   ,
 ;        4-        ab1   ,
        +3                                                                                                    i
   ;.,                                           STEPEGS-TECH SPEC' SUBMITTAL e                                                                                              ..

o SusMITTED TO THE'NRC FoR REVIEW IN. LETTER ST-HL-AE-3283,

                              -DATED FEBRUARY 1,-1990, t

1 s O THE STPEGS PSA' PLANT MODEL IS'USED TO-ESTIMATE IMPACT OF

                              . TECH SPEC ~. CHANGES.

O CORE' DAMAGE FREQUENCY (CDF) REPRESENTS THE FIGURE OF MERIT , FOR THIS SUBMITTAL. 1 o A BASE CASE IS ESTABLISHED USING REALISTIC REPAIR TIMES FOR THE STPEGS-3-DAY ALLOWED OUTAGE TIMES (A0T) AND MONTHLY SURVEILLANCE TEST INTERVALS (STI). < t 0 SENSITIVITY STUDIES'ARE USED TO SHOW THE IMPACT OF THE' . PROPOSED 10-DAYLA0T AND QUARTERLY.STI FoR STPEGS TECH SPECS

                            ,   ON~AN INDIVIDUAL-AND COLLECTIVE BASIS.
                                                                                                         'i 9

6.~ i 1

                                                                                                         ')

P (TSS1-WP1/ SLIDE-TS)- k 1

                                   .        , -          .      _      ~                               . _             _    .          .                .
          -,. t o ra '             ,
                                                                                                              . ATTACHMENT 3                                   ,      d L.                                                                                                     GE Jb                                                                                                                                     Page 2-7; i

Table 2-1 , List of Technical Specifications Evaluated: 4

a. >

l Current- Proposed

  • r it ' Technical' ACT STI 'ACT STI Specification ' System (Days) (Days )-- '(Days)- (Days) ,

Chemical and. Volume ' 3.1.2.4 3 N/C 10 N/C.

                                                                                                                                                 ~

Control (i.e. Charging Pumps) '

 %-                                    4.3.1                Reactor Protection                         N/C             62          N/C.          92 4.3.2                Engineered Safeguard                       N/C             62          N/C           92                   j Teatures Actuation                                                                                        1 l

3.4.2.2 -Pressurizer Safety 15 min N/C 1 Hour _N/C , Valves ' 3.4.4 Pressurizer PORVs 1 Hour N/C 6 Hours N/C 1( 3.5.1 Accumulators 1 Hour N/C 12 Hours N/C 3.5.2 Emergency Core- 3 N/C. 10 N/C - Cooling ,

                                                                                                                                                                       \
                               ~3/4.5.6-                    Residual Heat Removal                        3             92          10         184 4.6.1.7              Containment Ventilation N/C                                31          N/C-        '92                  9
                                                                                                                                                                   .t

[ 3/4.6.2.1 Containment Spray 3 92 10 184 j 1 ^\ t 3.6.2.2 Containment Spray 3 N/C 10 N/C L Additive l { 3/4.6.2.3 Reactor Containment 3- 31 10 92 L ran Coolers 3.6.3 Containment Isolation 4 Hours N/C 24 Hours 'N/C  : 3.7.1.1 Steam Generator . 4 Hours. N/C 24 Hours N/C Safety Relief Valves i

                               -3/4.7.1.2                   Auxiliary Feedwater.                         3             31          10           92 L,                                      3 . 7 . 3'           Component Cooling                            3            .N/C         10           N/C                   j Water                                                              *

.1 (TSS1-WP1/ TAB 2-1) I. a r__ _- ____.-___.___l_._'___.___i__._______________ _ _ _ . _ _ . _ _ . - v.--

j-

                                                          .                   " ATT AChMENT & - .

J' g ST PAGE W hJ/ OF320 ~ X '; Page 2 , Table 2-1 (cont'd) g List of Technical Specifications Evaluated Current proposed' s u Technical ACT STI A07- STI  ! specification system (Days) (Days) (Days) / (Days) 3.7.4 Essential Cooling 3 N/C 10 N/C-Water ,

                '3/4.7.7                   Control Room HVAC            (1)              31           (2)             92 4.7.13                Electrical Auxiliary         N/C           12 Hours        N/C           24 Hours ~

Building HVAC 3.7.14 Essential Chilled 10 L' L

                                         ' Water 3               N/C                          N/C<
                  '3.6.1.1                 Diesel Generators            (3)              N/C          (4)            .N/C         i 3.6.2                 DC Electrical Sources        (5)              N/C          (6)             N/C f
                                                                                                                                  ~

l l-i~ g NOTES: l . N/C No change (1) 7' days for the first inoperable train of control room HVAC and 24 hours for the second~ train of three. (2) 10 days for the first inoperable train of. control room HVAC and 72 hours for the second train of three. (3) 72 hours for the first inoperable standby diesel' generator and 2 hours for the_second diesel' generator. . 1

                               .(4)      10 days for the first inoperable standby diesel generator and 12 hours for the'second diesel generator.

(5) 24 hours for Channels I and IV battery chargers; and 2 hours for any battery and Channels II and III chargers. i (6) 72 hours for any battery charger and -* 24 hours for any battery. (TSS1-WP1/ TAB 2-1) y

 %      v ;,

ENCIASURE 4. . REVIEW QUESTION 1: i L1. The staff observes that the-combined reduction. factors-(a

  • combination of assigned, geometry factors and severity factors)-

documented in Table 9.3-8 seem to be lower than those documented-

                ~ in other PRAs. For example, the reduction f actor used for 4.16KV -       ,

switch gear rooms seem to be substantially lower than used in the Diablo Canyon PRA (1.0) and NUREG-1150 risk' analyses. Based on a review of existing deterministic fire analyses (such as ' areas of cable' location identification, postulated cable (and l other transient combustibles)' burn and/or heat load. calculations, associated time dependent suppression probability distributions) provide the basis for the appropriateness of the use of'these reduction factors for the critical fire zones, including the 4.16KV switch gear room. If no supporting analyses exist at this. time, the licensee should provide detailed'

         .       rationale (zone-specific qualitative arguments) .regarding the:

applicability of the reduction factors used for all-critical fire zones. Sensitivity analyses of the assignment of higher , conbined reduction-factors to each fire zone to develop.  ! perspectives of the impact on overall core damage frequency-could be used.to support the qualitative-arguments.. Response: It is important to understand - that fire frequency: reduction f actors were applied onlv .to the 40 fire scenarios' listed in STP PSA' Table 9.3-1. All other fire scenarios initiated from the 190 zones: presented in Table 8.5-2 were determined .to be quantitatively insignificant contributors to core damage at STP without the application of fire zone geometry or severity f actors.

            ~Thus,fcvaluations for the vast     majority of possible fire scenarios in.the STP PSA were. based only    on the conservative unmodified total annual fire frequencies listed     in the third column of Table 8.5-2.

The reduction' factors that are ' documented in STP PSA Table:9.3-8 were based primarily on the engineering. judgment and experience of the PLG fire risk analysts. They are supported by.the database for fire event occurrences that was available when the STP: PSA ' fire analysis was performed in 1987, and they were derived from more detailed deterministic fire growth and damage models in previous fire risk analyses that'had been performed by PLG. In lieu of providing detailed reduction factor derivations for each- i fire scenario in Table 9.3-1, this response presents the results from sensitivity studies that demonstrate the quantitative unimportance of these fires without considering the effects from  ; global reduction f actors in each zone. This approach was adopted'as a more effective method for presenting the STP PSA fire scenarios

              'in their ;:oper quantitative perspective than simply defending the specific numerical reduction f actors that were applied in each fire
             -zone. These sensitivity studies followed the original fire screening analysis process with four changes.

h hi i

        '(1) All _globalifire f requency reduction f actors' were removed -from
                           ~

the analysis of;each fire' scenario. The'first level-of screening, event tree quantification, and the second' level of

  • screening were all; based on the_ unmodified total fire initiating event frequency for each zone listed in the third column of: Table 8.5-2. (For example, the total reduction f actor for fire scenario ZO52-FS-01 from Table 9 3-8 was set = equal to 1.0.)

(2) The 10% numerical screening criterion for comparison.offeach ~ fire scenario end state with its corresponding internal event-

               . failure impacts was_ replaced by an even:more conservative 1%

criterion. Thus, in the first level of screening, an end state-was eliminated from further consideration:only if its fire-induced frequency of equipment damage was less than 1% of the frequency of the same damage caused by internal initiating events and system failures. (3) The sensitivity studies were based on the analyses and results documented in'the STP PSA final report. The original fire scenario screening analyses were performed at - a stage in the study when preliminary quantitative _ results were available from tho' analyses of all important internal initiating. events and system failures. Changes to the models for testing and maintenance unavailability- f or some systems near the end of the study and completion of the event tree analyses for all-internal initiating events _resulted in some: quantitative changes to the-original screening calculations. The sensitivity studies incorporated these changes so that all numerical-calculations can be derived directly from information documented in the STP PSA final study report. The most notable-of these changes was the replacement of the numerical criterion for core damage frequency used.in1the second and third levels of screening. The original analyses used a value of 2.0E-07 per, o year, which was approximately one-tenth of one percent-of the-

                     . preliminary inter.nal event core damage frequency. Since the final STP core damage frequency from internal events is approximately 1.7E-04 per year, this screening criterion was' reduced to 1.7E-07.    (Refer to the response to Question 5 for more information on this criterion.)

_(4) Specialized reduction factors that account.for the fire zone geometry and fire severity were applied only.to selected fire

                      . scenario end states in the third level of screening. These reduction factors were developed only.after the analyses had identified specific sets of critical component failure modes and cable faults that dominated a fire scenario end state's contribution to core damage. The example for fire scenario 2004-FS-01 end state 11 in the response to Question 4 illustrates the derivation and application of one set of these reduction factors.

I, /

g- 1s , I't should be'noted that none'of the reduction factors discussed in. item' (4) have been included in any of the sensitivity study results g _ reported in this response to Question-1. ,

          .                                                            ~

The details of these sensitivity studies are too voluminous. to i

             -formally ~ include in_this response. However, the examples for fire-scenario 2004-PS-01 in the response to Question 4 are derived from
             'its; sensitivity study, and they illustrate all important f acets of the analysis process. All supporting calculations for the original fire- screening analyses and these sensitivity studies, with
             -appropriate explanatory ani.ctations, are available_for review at                p the HLt.P offices.

1 The' sensitivity studies showed that 29 of-the-40 fire scenarios

             -f rom Table 9.3-1 could-be eliminated from further consideration                 ,
             -without~ the application of any fire zone geometry or severity                   !

factors. Table 1-1 lists the end states that did not meet the revised screening criteria for each of the - = remaining 11- fire scenarlos. i The example .fer fire -scenario 2004-FS-01 in the response to-Question 4 shows that application of justified and well-documented-geometry.and severity factors reduces the estimated ' core damage: trequency in end state 11 from approximately.1.25E-06 per year to .i apprcximately 1.63E-07 per year.- (The discussion for that analysis notes that even this result contains some conservatisms t. hat could be reduced' by a more thorough examination of all control cable-functions,. identification - of specific tray routings for all critical' cables, and consideration of-the relative timing between fire-induced faults and independent component f ai' lures. ) Thus, the  ! total effective reduction factor for this. end state is_ 1 approximately 0.13; i.e., a factor of 7.7. Although it is :not ~1 prudent to extrapolate from a :one-specific analysis to a general i 3 conclusion, if a=similar reduction factor were'to be achieved for '! each of the other end states in. Table 1-1, only.three would remain j aoove tne 1.7E-07 core damage frequency screening criterion: zone- ~] 4 '2016 end states 43 and 44, and zone 2122 end state 43. In fact, of H

   ,           -the 21 end states in Table 1-1, 12 would. fall.below this screening
                                                                                             ^!

criterion with a reduction factor of less than 3; 5,would f a l'1 below the criterion with a redu'ction f actor in the range f rom 3 to , Sr and 2 would fall below the criterion with a reduction factorrin 1 the range from 5 to 10. j

                                                                                            '0 J

The results in Table 1-1 confirm the original conclusion that fires in these zones are quantitatively unimportant contributors to the  ;

               .f requency -of core damage at STP. The underlying sensitivity studies           ,
              ' have assumed that every fire in each of these zones will damage.g_ll           q critical cables in that zone. Even without the application of any-             i reduction factors to account for the fire zone geometry or the severity of fires necessary to damage a critical set of components, an upper bound estimate for the total core damage frequency from the fires in Table 1-1 is approximately 1.5E-05 per year. If this              ]

total were added to the core damage f requency from all other events p L analyzed in the STP PSA, the final mean core damage f requency would d

i 7,V 3,

 .                                                                                             I.

incre'ase.from approximately-1.7E-04 per. year to approximately ,

               'l.8E-04 per.... year. It must be emphasized that this increase'is the-maxinum possible ef fect from all these fires. if' absolutely no,        ,      ,

creditc is: taken for any geometry or severity reduction factors.. .

               .Although the bases for these reduction ,f actors are of ten challenged in open reviews of contemporary. fire risk studies, all modern fire analyses-acknowledge that some-reasonable numerical credit nust be assigned to. account .for the fact that not every fire in a particular zone will damage all the critical components and cables in that zone. The relatively insignificant damage experienced' during the majority of actual fires in nuclear power plants and the extensive plant-specific fire mitigation features in the. STP' plant         ft design clearly support this conclusion.

t t. k 4 -=

                                                                                       . q b

a i t i l 1

cr - 3 f

     ,4 '   g 'd Table 1-1.   . Sensitivity Study Fire ' Scenarios That: Do !!ot' Meet Screening criteria Before Application of Fire Zone              .

Geometry- and Severity Factors , Estimated Total Fraction of Fire 'End Core Damage Frequency Without STP Core Damage , Zone State Geometry and' Severity Factors Frequency ' ZOO 4 11' '1.25E-06 0.00735

 ,,                           12                    5.34E-07                    0.00314 7; ,

q_ ZOO 6 9 5.56E-07 0.00327 ' Z010 5' 3.17E-07 0.00187 Z016 43 3.61E-06 0.02124

  • 44 1.55E-06 0.00912 2026- 17 4.94E-07 0.00291 -

18 2.11E-07 0.00124 19 2.11E-07 0.00124. 34 1.99E-07 0.00117 4 36 8.31E-07 0.00489 52 6,72E-07 0.00395 , 2031 9 3.25E-07 0.00191 ZO42 9 2.16E-07 0.00127

                  'ZO47      53                    4.21E-07.                    0.00248 59                    1.81E-07                     0.00107 66                    5.14E-07~                    0.00302        l 72                    2.20E-07                     0.00129-2122      43                    2.02E-06                     0.01188 g                   0139        4                   2.47E-07                     0.00145
                  .Z142      74                    2'.26E-07                    0.00133      ,

TOTAL 1.48E-05 0.08709 i 1 t i i

m . ,

             ,V        vr
                                                       ' REVIEW QUESTION 2 1.fFor-control room fire scenario'(Scenario 6), the 1.C.mnsee has
  • c assigned a severity factor in the range-of 0.072 co_0.0015 to
                                        ~
                             ' evaluate the propagation characteristics of the postulated cabinet (panel) fires. Experimental tests conducted at SNL have-               ,

shown that a' postulated panel fire could virtually damage the entire panel within a relatively short period of time (e.g.,

        '                     five minutes). Thus,-the staff questions the licensee's i                       assignment of the lower severity factor for.the panel fires (relative to those used in the Diablo Canyon PRA and NUREG-1150 c

risk analyses). Therefore, the licensee should provide a detailed rational (qualitative arguments) regarding this 1 assignment of the lower severity factors for the panel fires > ' These rationales should not be limited to panels located only in the control room.- 3

 ,               s Response: In assessino tne acpropriateness of the severity factors listed in STP PS A Table 9. 4-2, a number of points are relevant.                .

(1) Although experiments do snow that large fires in electrical panels (not including McCs and high voltage switchgear)~can be. S initiated *, most (if not all) of the electrical panel fires that have been actually observed in nuclear power plants have 'v been small. The SNL tests provide an indication of the f possibilities for fire propagation, but they were not conducted 1 in a manner to support the derivation of the frequency vs. severity characteristics experienced in actual nuclear power a plant' fires. Examination of the fire occurrence database , provides more useful insights into -this necessary information. Table 2-1 ' lists 13 electrical panel and relay fires included in the PLG database (Reference'l). This database'is an-extension of .the SNL fire database '(Reference 2). Based on the descriptive narratives included in the database, none 'of the-13: , fires.seems to have caused widespread damage. For two of the earlier events, Reference 4 estimates damage radii of 1 foot or less.-A more recent review of the narratives for the events in i Table-2-1 was also performed-in support of this Response

   ,~

(Reference 5)-. In this review, it was possible to estimate  ; i damage radii for 8 of the events. (The narratives for the remaining 5 events do not provide enough information to allow.. ' - such estimates. ) The conclusions f rom this review are that none 1 of the events -had a damage radius greater than 1 foot and that J

                            *It should      be noted that even in a controlled experimental situation,. the initiation of a self-propagating cabinet fire is not necessarily a simple task. Reference 3 identifies a number of f actors that can -af fect the likelihood of propagation. For example, Lin.the experiments discussed in that reference, the wires t.ad to be l

carefully preheated prior to ignition. If tac wires were not preheated at all, or if they were preheated too much, ignition could be achieved, but the fire tended to self-extinguish. O \ I

   ~

p

           + _ >

1 p x fs , n

   ,p.,p                    y-1 o          o,          '

most of the n events were substantially smaller. Therefore, the i En results from this review of actual nuclear-power plant panel m i ~ fire data ' indicate that the curve shown in STP PSA Figure 9.4-1 ,,

may actually be somewhat pessimistic. Figure 9.4-l'was the i e ,

basis used to develop the panel fire severity factors l~n Table 9.4-2. Tn , f(2) . Firezsuppression, although not explicitly modeled with a L j _ ^; separate = f actor in this analysis, clearly' cannot be ignored in the continuously manned control room. (It may be argued that, l at least in the case of control room fires, the relatively

        <                             quick detection and suppression-of these fires has led to the-lack of-any large panel fires in the database.)-As in the Diablo Canyon PRA (Reference 6), the severity factors used in-the STP PSA' fire analysis implicitly include the effects from
 e suppression efforts on the likelihood of' fire damage *, When this implicit model for detection and suppression is taken into account, the assessments reflected in the curve of STP PSA Figure 9.4-1 are reasonable; e.g. , .that 90% of all control room                  '

panel fires have effective damage radii less than 2.5 feet. (2) The minimum effective fire damage radius needed to cause the ,, damage modeled in STP PSA control room fire scenario 6 is

                                     = approximately 3 to 4 feet. Based on the observations documented in the first two points above, it is evident that most actual panel fires (especially control room' panel fires) are simply not large enough to cause damage over such large distances.

T he.re f o re , relatively .small valuesfor the ef fective severity l factor for these panel fires are appropriate. (4) The severity factors used in the STP PSA fire analysis are , entirely consistent with ~hase used in the Diablo Canyon PRA, q sinct botn studies used tra sane basis curve; i.e., STP PSA Figure 9.4-1. Differences in the numerical results obtained in- ,J the two studies are due tc differences _.in the damage scenario

                                                                                    ~

definitions and the contro;. panel geometries. The effective-severity f actor of 1.0 used in che NUREG-1150 analysis' of Surry-control room tiras (r.eference 7) is considered to be too conservative for a en_listic plant-specific risk analysis.4 For i example, this factor implies that all fires in benchboard 1-1 (recerdless of jnitia'l size, ignition source, fuel geometry, etc.) will>cause damage to a'11 critical components in that panel.

                                 *It    should be noted that the fire severity factor definition                         J presented on STP PSA final report page 9.4-3 accounts for the damage.actually caused by the fire, not the potential damage:that could be, caused if the fire were not suppressed. This definition deviates somewhat - f rom that=used in fire risk studies in which growth and suppression are nodeled explicitly, and it may be a slight source of confusion.                                                                 l 1

6fl

1

         ;r   : .- id o

(5) Tables'2-2 and 2-3 show that the overal] reduction f actors used

                        ~
 ,                                                                                                1
                          -in the STP PSA,1whichLaccount for the enmbined effects of-control ~ panel-geometryJand fire severity, are numerically _        ,,

comparable to those used in the Diablo Canyo'n PRA~. In f act, the . t effective-total' reduction factor-for the' entire control room-(i.e.,-the' sum of the reduction factors for each-of the

   $                      scenarios, which quantifies the total fraction of control room             :

fires.that may cause significant damage) is considerably larger - l I. < in-the STP'PSA (0.179) than the total reduction factor for the s Diablo Canyon PRA (0.086) and that for the NUREG-1150 -analysis-of Surry (0.084)4 This'may be due to plant-specific dif ferences  ! in the control panel geometries, but it is also almost _. -

 ,                         certainly influenced by the greater level of detail in the STP         -t h                         PSA control room fire analyses. The STP PSA analyses evaluate-
       ,                   23 different control room fire scenarios, compared to 5 in'the 3                           Diablo Canyon PRA and only 1 in the NUREG-1150 analysis of Surry,
                     -In summary, the severity f actor curve shown in-STP PSA Figure 9.4-1          7 forms the basis for.all the panel fire severity factors addressed in this question. ~ The, observations noted above indicate that'this             y curve may, in fact, be a pessimistic representation of the effects from, actual nuclear power p.lant panel fire experience,.both inside.           ;

l and outside the control room. The STP PSA curve is identical to the E curve used in the Diablo Canyen PRA. The relatively small values' for the severity factors listed in STP PSA Table 9.4-2 are due to , the.following facts. j . (a) Key components on the STP contro) panels are generally l separated by a substantial distance. Thus, some period of time is required for a fire to propagate before it

i. affects a critical set - of equipment. _,

(b) The effects from fire detection and suppression are- , already included implicitly in the STP PSA fire severity' curve. The numerical values of the STP PSA reduction f actors do ' not necessarily contradict the SNL experimental results, since the experiments clearly demonstrate that self-propagating panel fires are not easy to start under arbitrary conditions. Finally,-the i combined reduction factors for individual scenarios, which include f l geometry and severity considerations, are consistent with those used in the Diablo1 Canyon PRA. The total reduction factor for the STP control room is : larger ' (i .e. , more conservative) than that for Diablo Canyon or Surry.

                                                                                                   'f l

3: .

     ,? ..*.                                                                                ,

i Table :-1. Relay and Electrical-Panel Tires in the PLG Database

                       ... Fire       Fire        -

Other ID Location. Size Duration Class References 156' Sprdg.Rm- ~S 00:45 1B,1A BWR-2 IX E p68 289*, 40** A-54*** .

           -166 . Aux Bldg      M.       00:12-1C,1A      BWR-2 IX E p75 327*, 41**      !

169 ' Aux Bldg: M 1C,1A BWR-2 IX E p100 461* r 188 Ctrl Bldg S 1B,1A B-4C*** 225 Ctrl Room M <00:05 1B,1A PWR-2 IX H p48 266*- 271- Othr. Bldg- M 1B,1A . 295 S 1B,1A BWR-2 IX B p33 199*- 318 Othr Bldg. M' 1B,1A .: 331; Ctrl Bldg M 1B,1A i 336 Comp Room M 1B,1A <

           .384   RX Bldg.      S                  1B,1A    -BWR-2 XIV B p154 632*

397 Ctrl Room P 1B,1A BWR-2 XIV B p91 395*  ! 398 Ctrl Room P 1B,1A BWR-2 IX C p19 113*  ! NOTES:

1. Radius of fire 156 estimated to be 0.5 f t sphere (Ref erence 4) . *
2. Radius of fire 166 estimated to be 1 ft sphere (Reference 4).
3. The ID number in this table generally coincides with the l Incident Number (INO) assigned in Reference 2.
4. .The following qualitative guidelines apply to Fire Size: 3 L = Large- Affects multiplefcomponents, may require ~1arge-- F
                                   - scale suppression afforts (e.g., offsite fire          !

department, multiple hoses). M = Medium Single component damage, can be. extinguished by-onsite fire brigade, several hand-held , , extinguishers.

                .S = Small          Localized damage, can be extinguished by one
    ,                              . person-without assistance.

P = Precursor Fire never propagates, likely to self- t extinguish. ) p 5. Fire Durations,li'ted in hours: minutes. . , j 6. Class column spec;fies Ignition Class, Fuel Class: t Ignition Class: 1A = In situ ignition source, normally present (e.g.,: hot surfaces) i 1B = In situ ignition source, component failure

                                      .1C'= In situ ignition source, human' error 2D = Transient ignition source, used in room 2E =. Transient ignition source, administrative violation                       <

Fuel-Class: 1A = In situ fuel, anticipated (e.g., insulation)  :

                                                                                            ~
                                      '1B = In situ fuel, unanticipated (e.g., wrong material) 2C = Transient fuel, used in room 2D = Transient fuel, stored in room
7. Other

References:

*          = Reference 8.
                                        **   = Reference 4.
                                        *** = Reference 9.

c

     ,s . jc e-
               -Table 2-2.       Mean: Reduction Factors Used in the STP Controi Room Fire Analysis Mean Reduction Scenario ' Panel     Size   -Factor     Damaged Equipment 1          1       L    0.0019     3 Trains'ECCS 2          1       S    0.028      3 Trains CCW 3          2       S    0.028      3 Trains CCW 4          1       M    0.0053     3  Trains'CCW, 1 Train ECW 5          2       M    0.0037     3  Trains CCW, 2 Trains ECW 6        1/2      L^   0.0028_    3  Trains CCW, 3 Trains ECW 7          3      M    0.0043     2  AC Buses 8          3      M    0.0043     2 AC' Buses 9          3      L    0.0023'    3 AC Buses 10         22/1      S    _0.012     3 Trains AFW Ventilation 11        22/2      M    0.012      CCW and Charging Ventilation-12        22/2      M. 0.0090     3 Trains.ECH 13       -22/2      S       NA      2 Trains ECW Ventilation 14        22/2       S      NA      2 Trains ECW Ventilation 15        22/2      M     0.0064     3 Trains ECW Ventilation 16        22/4       L    0.0091    2 Trains EAB HVAC, Control Room:

Envelope Supply / Exhaust, Outside Air Makeup 17 22/4 L 0.0091 2 Trains EAB HVAC, Control Room Envelope Supply / Exhaust, Outside Air Makeup 18 22/4 L 0.0037 3 Trains EAB MVAC, Control Room Envelope supply /Exnaust, outside Air Makeup 19 4 S 0.012 Small LOCA 20 6 M 0.0097 2 Trains S/G Control

21. 6 M 0.0097 2 Trains S/G Control 22 6 L =0.0027 3 Trains S/G-Control 23 6 L 0.0032 4 Trains S/G Control TOTAL- 0.1792 NOTES:
1. 1/2. indicates that fire occurs at interface between panels 1 and 2.
2. Fire. Sizes: S = Small M = Moderate L = Large 4

1

3. NA for Scenarios 13 and 14 indicates that these scenarios were not analyzed separately. Their impacts are bounded by Scenario 15.

w-

        . ;.e !                   ,.-
                   ,kkl
                                                -Table'2-3.- .Mean Reduction Facto Used-in the-Diablo' Canyon PRA Control Room Fire'An lysis (Ref erence -- 6);

Mean-Reduction Scenario . Panel Size. Factor Damaged Equipment i VB-1 S 0.025 ASW, CCW 2- VB-2A S 0.044 Small LOCA 3 VB-2B M 0.0022 Small LOCA, Charging Pumps

 ,T                                                   4      VB-2/3    M    0.0055      Small LOCA, ATW 5      VB-4      M    0.008B      3 Trains AC Power TOTAL                   0.0855 NOTES:
                                                   ". VB-2/3 indicates that fire occurs at interface between panels VB-2 and VB-3.
2. Fire Sites: S = Small M.= Moderate L = Large 4

I _I 4 1 P k :.

7 ' p

                 ;4 ' e -

References:

1 PLG, Inc., " Database for Probabilistic Risk Assessment of Light .. 11ater Nuclear Power Plants", t PLG-0500, Volume 8, Fire Data,

                               -R?vicion'O,__ September 1990.
2. Wieelis, W.T., " User's Guide for a Personal-Computer-Based Nuclear Power Plant Fire Data Base", NUREG/CR-4586, SAND 86-0300,
 ^                              Sandia National Laboatories, August 1986.
3. .Spletzer, B.L., and'F. Horine, " Description and Testing.of an
'M                             ' Apparatus for Electrically Initiating Fires Through Simulation 7                               of a Faulty Connection", NUREG/CR-4570, SAND 86-0299,. Sandia-National Laboratories, June 1986.

4, Fleming, K.N., W.J. Houghton, and F.P. Scaletta, "A Methodology for Risk Assessment of Major Fires and its Application to an

  ,                             HTGR Plant", GA-A15402,. General Atomic Co., July 1979.
                                                                                                       ;-l
5. Bromley, 47., .

personal communication to N.O. Siu, August 29, 1

                               ~1990.                                                                    _j
                                                                                                          .i
6. Pacific Gas and Electric Company, "Fianl- Report of the Diablo Canyon Long Term Seismic Program", Chapter 6, Probabilistic Risk R Analysis, July 1988; PLG, Inc., "Diablo Canyon Probabilistic

(' Risk Assessment", PLG-0637, Appendix F.3, Diablo Canyon' Fire s Risk. Assessment, Draft Report,- August 1988, i

7. " External Event Risk Analyses: Surry Power Station",:  :

NUREG/CR-4550, Volume 3,-Revision 1., Part 3, prepared for the g U.S. Nuclear Regulatory Commission by Sandia National * ' Laboratories, September 1989. m.

8. S.M. Stoller Corp. , " Nuclear Power. Experience", updated monthly.

4 9. Dungan, K.W., and1M.S. Lorenz, " Nuclear Power Plant Fire Loss-Data", EPRI-NP-3179,_ prepared for the Electric Power Research- l Institute by Professional Loss Control, Inc.,-1983. -i

                                                                                                         'I 4

7- w - J,#f - is- , o REVIEW QUESTION 3

                              - 3'.. i : I t is-noted.that the statements (refer to pages 8;5-15 dnd      *
                                    -9.4-1) regarding the. dominant contributor (panel; fires as             !

opposed to transient combustible fires).to the initiating frequency of the control room fires (4.08E-3 per reactor-year) Jappear to be inconsistent. Current operating reactor experience shows that the. panel-fires dominate the initiating event-frequency of the control. room fires. Provide clarifications regarding the above inconsistent statements made in the PRA..

                                                                                         ~

t Response: The entry for control room fire zone- 2034 in the-  ; i

                               " occupancy" column of STP PSA Table 8.5-2 is somewhat misleading o                               and should be revised or clarified.- It is true that relatively              '

! L*' - small- amounts of transient combustibles are present in all nuclear power . plant control rooms. However, as noted in the - question, < experience has shewn that cables.are clearly a major, if not the dominant, . source of fuel for the most important fires in this zone. o' The control room-fire analysis presented in STP PSA Section 9.4 is-

                     ,          consistent with this observation and with other PRA analyses because'it-focuses exclusively on panel fires. The final sentence            '

in - the first- paragraph on page 9.4-1 may also lead ' to some' confusion because it may be interpreted that the frequency of fires in a particular panel depends on the ratio of the panel area to the total control roon area. The subsequent analysis (refer to Equation 9.4) correctly uses the ratio.of the' individual panel area to the tota) canel area in the control room. ,This calculation-is,also consistent. With the assumption - that panel fires dominate the control-room fire frequency.

\ ]

i{. A

        +

p > 1] i, , yo j 4 i f j i r g i i, REVIEW-QUESTION 4-4.: For fire scenario'2004-FS-01, provide the derivation procedure _ used-for.the initiating fire frequency, discussions.related to assignment'of an additional' random failure (0.01) in resulting-seque'nces, and discussions related to other additional f ailures - assumec prior to screening. ' Response: The evaluation of fire scenario ZOO 4-FS-01 will be used to illustrate'all important facets of the STP PSA fire analysis methodology. Sections 8 and 9 of the STP PSA final' report' provide 3 summary . documentation to familiarize the reader with the l basic elements of this methodology and background information for:its , numerical input data. Brief examples are provided to illustrate a some of the more fundamental steps. However, as_is the case.withi '[ nearly.all aspects of PRA, .it was necessary in the formal study y! report to_ strike a balance among tutorial information, details of J i backup calculations, and sheer volume of the document. All: '! supporting. ' calculations for the screening analyses,- with appropriate explanatory annotations, are available for review at 4_ the HL&P_ offices. 1 The evaluation methodology described in the id. lowing sections ~ for f ZOO 4-FS-01 was applied to each of-the 190 fire zones identified in STP PSA Table 8.5-2. The screening process was comprehensive and 1 systematic. It was designed to efficiently identify fire scenarios that'could measurably contribute-to core damage. Each postulated fire ' scenario was run through the successively more detailed' evaluation steps until there was-full assurance that the fire need

                                                                               ~

3 not'be considered further as a quantitatively important contributor to core damage or plant risk. In most' cases, fires were eliminated L l _ after.a preliminary "high_ level" comparative numerical analysis. A small Tnumber of scenarios, identified in STP PSA Table 9.3-1, required more detailed analyses. Scenarios that were quantitatively' significant.enough-to survive the full screening evaluation were _

                                                                                                     }

f ormally- propagated through the STP event tree models. Final'ly,- the; ' detailed backup-documentation provides a fully traceable path that i begins with the original scenario- definitions from the spatial  ;

                     -interactions analysis and ends -with the final         fire = scenarios -    "j quantified in the PSA results.

It should be noted that the evaluation presented, below f or ZOO 4-FS- l 01 deviates in one important way from the-methodology described.in STP PSA report Section 9.3. Preliminary review comments and questions have raised concerns about the derivation and application of " reduction factors" to modify the frequency of fires in each of-the 40 scenarios listed in Table 9.3-1. The response to-Question 1 '! above. addresses this issue more completely. Tne evaluation of fire scenario 2004-FS-01 presented below has removed all general area-wide. reduction factors from the analysis. Specialized factors'that account for the fire zone geometry and the fire severity are ap' plied only in the final step of the evaluation process for

                              . - . . . . , , , ~ , . . .

C

p ' ,_.

.  : selected end states wheret the critical cables, locations, and fire- - induced equipment. failure modes are fully defined. Task 1.3 Derivation of Fire Scenario Frequency 1 Tire frequencies were allocated to zones within the Mechanical and Electrical Auxiliary Building (MEAB) in a.five-step procedure. (1) Area factors were computed for each zone based on the percentage of building floor area occupied by the zone._ This  % value is shown in the " Percent Area" column'in Table 8.5-2. For Zone 2004,-the area factor is 0.01408. (2) Modification factors were assigned to reflect the' zone occupancy,and traffic characteristics. These modification j f actors were assigned using_ a limited set of rules reflecting , the judgment of the analyst concerning the relative

                                                                                                                              ^

frequencies of fires .for dif ferent zone. characteristics. For  : example, areas containing only power cables and control cables were assigned a modification factor of 0.75; areas l containing switchgear were assigned a modification f actor of , 1.875 (the highest possible value); areas containing only j _ piping and with ' low traffic levels.(people are in the room 25% of the time or less) were assigned-a modification factor of 0.125 (the lowest possible value). The qualitative bases' for these factors are documented in the " Traffic" and  ;

                           " Occupancy" columns in Table 8.5-2. ItLis acknowledged that                                       1 the assignment of these modification f actors depends to some extent on the individual fire analyst's judgment and                                       _

j experience. However, this process 1provides a reasonable-and consistent method of numerically accounting for the general d

      <                    notion that the frequency.of fires.in a given zone is influenced by the zone's location'and its contents, in                                            .)

addition to its size. For Zone l2004, the_ modification factor ;i is-1.875. l (3) ' Zones were examined on an individual basis during plant walkdowns, and a number of the modification factors were adjusted to reflect special' conditions in the room. In the' case of Zone 2004, no such modifications were judged necessary. (4) Normalized area-modification factor products were computed 1- 4using the following formula.

                                                          ,,             F3(i)Fm ( I) r *>C(i) = { F    3 (j) Fe(j) where Fa(i) = area factor for Zone i developed in Step 1 F (i) = mo<iification factot for Zone i developed in Step 3

e < ( c,, l 7 o; 4 and the: summation is perf ormed over all :enes. The numerical ~ valueTof.the normalization. factor.in the denominator of-this-- ',- f ormula - is approximately 0.9507. Thus, for Zone 2004, the normalized-area; factor-modification-factor product is 0.02777. Thin value is shown0 in the "h 7 cent i of Total for ~' Building. Category" column in Table 8.5-e. (5) -The 'normali:ed area f actor-modification f actor products were used to. allocate the building fire frequency according to the-following formula, e, i" MEABI a,mb e AMEAB = 0.0Wp The final fire frequency for Zone 2004 is therefore 0.00133 fires per year. - Task :. Identification of Component and System Impacts s Table D-6 in ' Appendix D of the STP PSA final report contains

        ,                      detailed     inventories of     all PRA-related equipment' and     cables located in each fire zone. This table is.the product of the spatial ~

interactions ' analysis described in report. Section 8. Table: 4 reproduces this information for Zone 2004. Each component and cable in every fire zone was examined by the STP PSA principal investigator. and plant modelling task leader 1 to , determine the impacts 'from postulated open circuits and short circuits that could be caused by a fire in the zone. In many cases,

          '                     it was noted that a short circuit in a partiuular power or control.           i
                              ' cable: could have a significantly dif f erent effect on equipment operation and plant. response than would be caused by an open circuit in the same cable. Thus, this review provided the method for translating the fire rone inventory information into a'setrof.

O possible physical. and functional impacts- that could be ' evaluated'in the.STP PSA-systems and event-tree models. Tables 4-2 through 4-4 4 present this information for Zone.2004. Since Zone 2004 is the ESF Train A switchgear room, it is not surprising that fires in this- one could have a significant" impact

                              . on the availability of Train ' A equipment. However, Tables 4-2               >

y . through 4-4 also note possible impacts on equipment in other ESF.

                         '~,* trains and non-ESF equipment that is important to the risk model.
      %                        These. . impacts include open circuits that prevent PORV 655A from
                               -opening, short circuits that cause PORV 655A to open spuriously, i

short circuits that cause the reactor. head vent valves to open, i short circuits that isolate the normal charging flow path, short circuits that disable the positive displacement charging pump.

                                .(PDP) , and short circuits that isolate component cooling . water
                               .(CCW) flow to reactor containment fan cooler (RCFC) Train C.

? k!!!!

i-m - g , .. t > . l T a s k ' . Preliminary Screening Evaluation  ; 4

 /                   The possible-impacts from the fire scenario were next examined to      '

determineLa preliminary categorization of the fire event according to the f our classes described in STP PSA report Section 8.5.3. This classification was based on the . combined set of all identified 3 impacts,= assuming that every fire in the zone would cause the. worst  ; possible combination of open circuit and short circuit failures.- o Fire scenario ZOO 4-FS-01 was determined. to cause an initiating event (Class 1) and to affect equipment in more than one ESF train (class 3) . None of the possible impacts from any fire in this zone lead directly to core damage. 4

 ~j                 - The frequency of the fire scenario ~ was next compared with '. the corresponding frequency of the same set of combined impacts caused by an internal initiating event.and random system failures. This "high level" comparison determined whether the fire scenario was already bounded numerically by internal event sequences that would lead to core damage at much higher frequencies than the worst possible combination of fire-induced f ailures. Table 4-5 documents comoinations of internal initiating events and system f ailures thatt      ;

lead to the same impacts as fire scenario' 2004-FS-01, .with their  ; corresponding point-estimate frequencies. Assuming that all fires l l in this zone cause the worst possible combination of equipment !~ failures, the total frequency for fire scenario Z004-FS-01 is i- 1.33E-03 event per year. Comparison of this frequency with the l estimates in Table 4-5 shows that the possible fire-induced failures .are not numerically bounded by the corresponding. combinations of internal events. Therefore, fire scenario ZOO 4-FS- 1 01 was retained for~more detailed analysis. l l It should be noted that no reduction factors were applied to the f requency of fires in 'any zone through this point in the evaluation 1

                    - process. All event classification and screening was perf ormed' based on the assumptions that the worst possible combination of equipment' I

failures-would-be caused by every fire in the zone and that these failures would occur 'at the full frequency of all fires in :the zone. It should also be noted that only 40 of the fire scenarios-i l initiated-from the 190 fire zones listed in Table 8.5-2 required j further analysis beyond this point in the evaluation process. These l 40 scenarios are listed-in STP PSA report Table 9.3-1. Task 4 Development of Fire Scenario Event Tree and Impact End l States-L Fire-induced short circuits-in equipment power or control cables of ten cause responses that are much dif ferent from open circuits in l l the same earles. For example, in fire scenario ZOO 4-FS-01, a l sustained "h>t" short may cause pressurizer PORV 655A to open l spuriously ard lead to a small LOCA event scenario. An open circuit may prevent the valve from opening for the bleed and feed mode of core cooling. In order to differentiate between the physical and functional imoacts f rom these possible fire-induced f ailure modes, simplified evsnt trees were constructed for each of the 40 fire l 1 l l

Q,

           .y0          >

scenarios _ listed.in Table 9.3-1. These event trees;also identified  ! simple ' operator recovery actions- thaticould mitigate the fire impacts through manual operation of components or use of alternate

                ' equipment not af f ected by the fi're. Figure 4-1 shows the event tree   '

for' fire scenario ZOO 4-FS-01.

                                     ~

To understand the' logic of this event tree, consider'the first two top events, PL and BF. Top Event PL fails if a sustained " hot"- r

                !short circuit causes pressurizer PORV 655A to open spuriously and remain open. A fundamental assumption in these event trees was that no credit was taken for fire-induced failures that could mitigate the impacts from other fire-induted faults          Thus, it is assumed           .

that an open circuit prevents PORV block valve MOV0001A . from- d closing to isolate the resulting small LOCA. On the failure path i from; Top Event PL, the only other top _ events questioned are PD and

                'FC.: This logic accounts for the f act that normal charging flow is                ,

not' sufficient to mitigate the effects from a' stuck-open PORV and, i therefore, the status of the charging system is insignificant to the ' progression of ~this event. Since RCFC Train C provides a ~ method I for removing core decay heat during high pressure . recirculation scenarios, its. status is relevant during a small LOCA. Success of Top Event PL occurs if there is no sustained " hot" short circuit that keeps PORV 655A open for an extended period of time. Under this condition, Top Event BF models. the . ef f ects f rom an' open circuit that prevents PORV 655A from opening. The STP PSA event model success criteria require both pressurizer PORVs to be opened for bleed and feed cooling. Therefore, failure of Top Event ~ BF q

                ' disables this siternate mode of core cooljng if it is required                   >
                .following a loss of all steam generator' heat removal. The remaining              !

top events are questioned after both success and failure of Top Event BF, because the status of the chargir.g: system, the PDP, and i RCFC ' Train C is relevant for possible event scenarios that may .

                 . proceed from any plant transient.

It should now be recognized that the event tree evaluates the  ; _possible status of only a small subset of all the equipment that~ may be affected by the fire. The remaining equipment.is collected  : L .in a set of " baseline" system failures. It is assumed that every i l fire in the zone disables .a_J_1 the equipment in this baseline set. Table 7 4-6 lists the baseline set of failures assigned to fire scenario Z004-FS-01. Combinations of' the event tree top event N i ? successes and failures- determine the physical and functional g impacts from the corresponding fire-induced short circuits, open ' scircuits, and operator actions. These impacts are collected in "end l states" that characteri e each path through the event tree.~The event tree end state impacts are then added to the baseline system , failures to fully specify the plant-level im' com each event

tree path. Table 4-7 lists the combined bas ' event tree impacts for each end state defined,in Figure '

f The event tree is quantified using the fire - a frequency as i l the initiating event frequency. (It is at point in the evaluation process that the first " reduction fo_ ., c' were applied L- , w i a m-_

m

      ' :,r;     .

9> during the original- fire screening analysis. These reduction factors?have been removed ~from this evaluation of fire scenario . ZOO 4-FS-01.) It should be=noted that the conditional. frequency of ' '

                     . fire-induced _ open circuits was assumed to be 1.0 f or all event tree quantification runs. Thus, unless the fire causes a short. circuit'            s in a1 cable, the cable was assumed to experience an open circuit. In         i 1-            .the event, tree ' f or fire scenario ZOO 4-FS-01, the conditional             i Irequency of -a' sustained _" hot" short- ' circuit- that keeps the          L pressurizer PORV open until.the core uncovers was assigned a value-         3 of 0.0125. This means that' Top Event PL fails during 1.25% of the         4 fires in zone 2004. The assumption of a conditionally guaranteed l
    '                .open circuit = also. means- that Top Event BF fails during the                ;

remaining 98.75% of the fires- in zone ZOO 4. These assumptions  ! preclude the: combined success of Top Events PL and BF, and they '

                     . eliminate any frequency from appearing in_the first 60 sequences from Figure 4-1..                                                          _j Task'5. First Level of Scenario Screening Evaluation The first level of quantitative screening compared the frequency of each event tree end state with the corresponding frequency of the same set of combined impacts caused by an internal initiating event and random system failures. This process is similar to the preliminary screening described:in Task 3. However, it is more focused, because specific combinations of fire impacts and their.             (

relative contributions to the total fire scenario frequency have 1 been clearly ~ delineated by the event tree analysis. Quantification of the event tree for fire scenario 2004-FS-01~ resulted in the total fire frequency being allocated among 6 of the 1 20 possible impact end- states. The noted assumptions about , conditionally-guaranteed open_ circuits eliminated the possibility. l for--the-fire to cause any of the impacts in the remaining 14 end states; e.g., end- states that- have both Top Events PL andt BF i successful. : Table 4-8 summarizes the combinations of ~ internal. events that are equivalent to each of these 6 fire-induced impacts. L; The table -also includes a point-estimate quantification'of each set i of internal events that is derived from the initiating event data, systems analyses, and human reliability analysis documented in the r STP PSA final report.

                     ' Table' 4-9 provides a summary of the quantitative results and the-t bases for screening each end state for. fire scenario 2004-FS-01.             ,
                      .The first column is1the total fire-caused frequency of each'end .            '

state - f rom -.quantification of the fire scenario event tree. (It should -be noted' that all fire frequency reduction f actors have been

                     . removed-from this analysis. The sum of the end state frequencies in Column 1 is equal to the total fire frequency for zone 2004;      i.e.,-

1.33E-03 fires per' year.) The second column in Table 4-9 lists the equivalent internal event f requency f rom Table 4-B. The first level of screening compared the values in Columns 1 and 2. If the frequency of the fire-caused impact was less than 1% of the equivalent internal event impact, the fire scenario end state was eliminated from further consideration. (The original screening \ l. I L l-

3  :.-ei l evaluation used a criterion:of 10%_for this' comparison. The bases-f or that _ criterion'are discussed in the response to Question 6. The it criterion used for_ this analysis provides a substantially larger .. margin of conservatism in this step of the process, but' it does not significantly ; af f ect the overall' results. )' A "yes" in the third column of Table 4-9 indicates that the particular end state requires further evaluation in the next level;of screening; a."no"- in this column indicates that the end' state has been eliminated at this level. None of the end states f or fire- scenario ZOO 4-FS-01 I were eliminated at the first level of quantitative screening.

                              -Task b Second Level of Scenario Screening Evaluation None of the end states from fire scenario 2004-FS-01 lead directly
                                                           ~

to core damage. In every case, additional system failures must occur before the fire-induced scenario can damage the core. The number, types, and comb! nations of these additional f ailures depend on the specific impacts caused by the fire scenario end state. The second level of the quantitative screening precess evaluated the dominant conditional system failures that must occur to achieve core damage during each fire scenario end state that survived the-first level of scrcening. This process requires a ._ thorough understanding of the STP PSA event models, systems analyses, and i human reliability analyses. The evaluations for this analysis of fire scenario ZOO 4-FS-01 are based on the detailed results from the internal events analyses documented in.the STP PSA final report. (The original. fire scenario evaluations were based on the'results from intermediate versions of the internal events quantification.) The evaluations for two of the end states from fire scenario 2004-FS-01 are used to illustrate this level of the screening process. The end states are number 11 (a' transient initiating event with failure of AC power Train A, DC power train A, and the PDF) and number 19 (a nonisolable small LOCA initiating event with failure of AC power Train A, DC power Train A, and the PDP). . Table 4-10 summari::es the dominant additional system f ailures that must occur

for end' state 11 to progress to core damage; Table 4-11 provides the corresponding information for end state 19.

The detailed fire impacts on individual power and control cables shown-in Table 4-1 were carefully reexamined during this level'of

                                 'the screening process. Notes that address conservatisms in the original     impact  analysis    assumptions  for' end   state    11   are documented in Attachment 4.1 to this response. One of the more' important pieces of information that was discovered during this reexamination was that it is necessary' to have a fire-induced sustained short circuit in the PDP control cable in order to disable the PDP..The preceding steps of this analysis shown in Tables 4-3 through 4-5 and Figure 4-1 had conservatively assumed that an open circuit in this cable would disable the PDP.

Theref ore, the evaluations in Attachment 4.1 and Table 4-10 account f or the conditional likelihood that the fire will cause a sustained short circuit in this cable. l t 1 3

7 , lL  ;, : 'e i j

                 . Table ' 4-10 shows- that the total core' damage frequency from: the:
                  . dominant event segnences. initiated by fire scenario ZOO 4-FS-01 end' state 11 is approximately 1.25E-06 per year. Table 4-11 shows that                            ,,
                  -the corresponding . core ' damage frequency- for end state 19 ;is                                OOI?-rC       PC rower Cable                                  4t S SE C 8 tA

( tectet OOO f -C C CC Centrol Catle VES STCitA C HC888 000 8 -rc FC Power Cabte  % E S SECf 84 CHCl40004-CC CC Centeel Catte DFS SECttA CteC84 0004 -PC PC Power Cette DES SECitA . C e rt tOOOO4 -C C CC Coattet Cable %ES SEC8tA C ertit3OOO 4 -PC PC Power Cable %FS Srtf14 C ravafJ74 77 ACC CC Contret Cable %fG SEADA C teva 074 7 7DCC CC Centret Cable %ES ************* IttSSitC ***************** C esF Sr rnC SA IC I ns t r ataea t a t i on Cable D T S t ttS t sN7 ~ CSet1SOSO8 Arc FC rowee Cable DES Ctesrstv4 CSvtsttOOOS ACC CC Centrol Cable %ts CesSretvA CVA8 # 'OOO3-C C CC Centrol Cetle VE S DI-PIB - tvas suOOO3-rc PC r,wer Cabte vts of-rs Cvrt100 t o t DCC CC Control Catte vtS US-PS Cvrt100 t o t tf rC PC Powee Cable vtS Of-f 5 , , , . , -, , -. .. - ~.. . ,. , - , ,- - . . .- . .. --- - - . - . . - . .

e. Table 4-1 ( Pa rt.' 3 o f 4 ) . Fire Scenario:3004-rs , TADLE D-6 trentinued) .

  • tvrtW)olO?AC C CC Centeel Cable VF3 of-ric CvvaOO?OS-CC. CC Centeel Cable vtS Of-Cesc C vvtW BOOO 3 -C C. CC Centret Cat!* TES DI-Cem C vytntoOO1 - rc FC Powee Cable if it fit -rst? -

D E S t31 - 3 p t CvVtut00t ? CC CC Centret Cette %f S Of-t fit CVvtM700 8 2- rc PC Power Cable' 4t S DR-Cit 0 C VVf M 80023 -C C CC Cee. trol Cable CvvrtOOO?S-rc FC Power Cable vts Of-COM

CvveW304 AS-CC CC Centret Cable vtS DI-tDI Cvvittfoit.5 PC PC rewer Catte. VFS Of-ttri VES Of-rp C vvru ert 17 7 ttC C CC Centret Cable 4t S Of - t-D CVvtsOO377ftrC FC Power Cabte DES Sects tiCDCSO t 3 4 -C C CC Centrol Cable
                                                                                            -VCS SttCit rCt>CSO334-rc FC Power Cable                                   VCS SDCil pcr ts?OOO S -CC     CC Centret Cette Dcr es?OOOI-rc FC Power Cette                                  its Secti D.rDC etOOOI Art rc Power Cebte                                %fS SEIAtI D.fDCif000f t'rC PC Powee Cable                                DFS SE 80f t D.tDC e socO? Arc FC rower Cable                               DCS SCtAtt in entf rODO?frC PC Power Cable                                 DES SEIDSI st8D f tsoOO t of*C   PC Powee Cable                            tf5 SCfAtt D E S SE CtJA t asr ts?OOO f -C C CC Centrol Cable t e rr ts?OOO2-C C CC Centrol Cable                             DFS SECisA D E S Sf C tsA

[ tsettOO t OI AC C CC Centeel Cette brS SF CesA f ast rulOSOt erC PC Power Cable it S SF CisA t esSC?OIO t Ar c CC Centeel Cable D E S SF C asA E tsvrutOI ? t -C C CC Centrei Cable NES f ut A ftreit?til-CC CC Centrol Cable D E S F 438 8 risvC 3 7 8 42-CC CC Centret Cette

                                                                                             )[S restC f tsvr t ? I 41-CC    CC Centeel Cette CC Control Cable                          WES F8880 t tsvf 8 7 8 4 4-CC f eCf tstOOO3 -CC     CC Control Cable                          %fS N CitA serf tss OOOS -rc     rt rewer Cette                            VtS STCffA 98Ci talOOO2 CC CC Centeel Cable                                VFS SFCl?A e sci t# 8 000?-rc rc rewee Cette                               vr9 SFCl?4 VES CtstS(R.

e sC VttOOOO S - C C CC Centrol Cable

                                                                                             % E S L t8 t sot-s eC vrutOOO I -rc FC Power Cable                              t[S CritSf 3L seCvrtOOOO6 -C C CC Centret Cable PC Power Cable                            v[ G Cts t sot _

s eCVtt0000 A- f'C tof f ts?OOct -CC CC Centros Ceble DES SCA34 pr[f ts?OOO3 -PC PC Power Cable )ES SEADA sat r t#2OOI 4 -CC CC Control Cable 9t'S SCAtta e st r es?OO s 4 - rc rc Power Cable t F S Stat:A s elvaO7647- CC CC Centrol Cable SCS SrADA t eE VA07650-CC CC Centrol Cable _bES SEADA tfS SEADA ffCVAU7658-CC CC Centret Cable 4ts senna ffCVAG7656-CC CC Centret Cebte vrS SEApA stEvA076S7-CC CC Centrol Cable gts ttstVA ttSVA07434-CC CC Centrol Cable vtS etSfvA etsvAnJ434-rc FC-t'ower Cable VCS tr; tert ttSVAnF4?q-CC CC Control Cable 4ES ttSIVC stSVAU F 434-CC CC Centegl Cable ~ vES ttSivri ttSVA07444-CC CC Centret Cable VES ScrOrtv4 f tsvrt3 74 8 t -CC CC Control Cable DES SCPfWrVA ftsvit374 t t -rc PC Power Cable %ES esseeeeeeeese it!SSitPC eeeeeeeeeeeeeeeee - PPSRIEIA SW Switchgear SW Switchgear- YES **s e s se ess e e

  • titSStrec eeeeeeeeeeeeeeee. .

rMSuCOOOfA

                                                                   -_ _                                                                                                       ,e v-r ~ -R y w._
                                                                                                                                                                                                                        =      : .

w Table 4--1 (Part 4 of 4) . l' ire Sceraio 2024-FS-01 rt t C'#00014~ tC Iand Center YES SEIA ~ t't t CteOOOR ACC CC'Centret.Catte %FS SEta Pt 8 Cf8000l APC PC rower Cat to 4ES SE1A re t res ino.*A tC tead Center NE S T.E S A f*t t (t:OoOTACC ~ C C C oa t e el Catte N E S Ci t h . Pt t (**000?Af*C . t*C rewer Cabie %ES TE$4 reetC C OOO t a etC Noter-Centeel Center its Srta trwtC( cofftAr*C PC s'evee Cable rt te(C pots;A DES TT f A etC fset se Ceateel Ce en t ee %ES SFIA restsC C Oooras*C rc f*ewee Cable stS St t A rewtCCOOO3 arc rc rewee Cable %ES SECuA re strCC OOn t A Prtr*C C OOp1 As*C trC tta t or Centeel Co ter  % E S SF t A - t*C rn..ee CabIe ifs SEta res( At'OI s t trC frela, Cablacts its ..........-.. tt s r. s tre . . . . . . . . . . . . . . . . . - nCvriOOOOfACC CC Centeel Catle VF S Ft.53 nCventooot Arc rc rower C=6Ie 4tS rh55 nCvne toAS S AC C CC Centres Cable %fS PASS ncv5 OA57ACC CC Coatrol Cable 4tS lovpf f8 r */Sfl1650AC C CC Centeel Cable 4t S 97vit t 88 w/Af 8006 4 - C C CC Ceatrol Catte DES St oGI A Si nt eroeO A.CC CC Coateel Catte vts e......e..... ti t e,S I tse . . . . . . . . . . . . . . . . . S t rate.O s O t arc rc f'evee Catte %fs $sitGl4 StritSOIOOArt FC rower Cable DES St itSI A Siva*)on31-CC CC Centeel Catte its Stesta S I'ct41400 t ^f C CC Caateel Cette VTS SitCSA Sivr4tOoOta(C CC Coateel C.ble vf G SeptSta SettntoOOgarC rc rower Ca6te

                                                                                                                                         %ES StatST A S t vens000 A AC C CC Coatral C.ste                                                       VE S 58#8SI A S e vent 900s. arc rc rewer Catte                                                        % E S Sse rs s a S t of wFJOOft^CC CC Coateel Cette                                                       stS SaststA S t ventOoonar*C rc rower Cette                                                          vt S 58#G14 S t ve ntOO t t A(C CC Caateel Cable                                                     it s StatSta SivrwtootterC PC t**wer C.ble                                                            %f S S88151 A S lotMF10 t rA( C CC Centeel Coble                                                       %[5 $98G14 S i vranoo t ? arc rC r=wer Cette                                                        vrS Ssarsta SIvre t90 3ACC CC Centeel Cable                                                          %f S St st%3 A SavfurpoI3erC rc Powee Catte
                                                                                                                                        %E S $19:584 Sivtutoo t e AC C CC Coatret Catte                                                       vfs StsGtA S t vrwinO s a ar*C        rC rewee Cable
                                                                                                                                       *fs titGIA S 8 ven w+o t 6ar c CC Ca teat Catte                                                     Nt**. Stil Cta SI vru nnis p AC C (C Centeel C.h t e S t ortono s par *C        rc rewee C,si t e                                             st s St te".1 A S ivrulOO t t M C CC Co teel C.68                                                        45 5 $8 tGIA vtS Stl*SIA Sivf 470(238 arc PC rower Ca6te                                                          %FS IMitSIA
                                       ~7 9 C Of f"e t t>t stf t) f tnt FUrt teet n Ats^t_ ySIS I t t t stftt p 113 Ottarit IT AT IVE SCF#f f tsst#O 808 CLASS                 I 3 I I e CVIDCt f r#CS - f.

828 fatetanets S^rt AS 2004-EE-01 8:39 lite AC T C a t t CtJft V t.1 A

 %ygg;g
                                                          '>         b f,

e t ke

                                      ,             =
                                                               +
                                +                . n' i . ... D                          0                               ,

72 of

                                                                                                                                     ~
                                             . TableLd'2.-             bpenCircu'itEffEcts?forFire' Scenario-{004-FS-Ol' o       ;,a u initiating Event                      Loss of~ Main Feedwater to all-Steam                   '

a l' ' Generators with Coincidents closure of. Ti, o all MSIVs , t p'

                        ,                         Support Systems                      ' AC Train A Faile'd DC Train A: Failed                                            si ECW Train'A Failed lj,                                                                                    CCW Train'A Failed                                                .

p ECH Train'A Failed (see Note.1 in l m

, Table.4-4). . .

b',' EAB HVAC; Train A Failed'(see Note 11' in Table 4-4); ' 2( } DC Train D. Battery Chargers Failed. .- t; ' '

  ,                                                Secondary' Heat                      MSIVs Closed.                                                    I
m. Removal Steam Generator A PORV; rails to Open  !

L , ATW~ Train A railed 1 b # -r RCS Heat Removal ~ HHSI Train A Falled [ j y Bleed and Feed Cooling Failure Caused

 !                  .                                                                    by Pressurl:er PORV 655A Fails to Open '                      !i H"                                                RCS Inventory Control                 HHS1 Train A Failed-                                            ;

LHSI Train A' Failed j p 1 Charging Pump B Failed (see Note 2'in' t Table'4-4)

                                                                                                                   /                   9                 .

a Positive Displacement' Charging:-Pump j jf ' Failed (see Noteg2 in Table 4-4) .

                                                                                                                                         ,               j L                                                                                       Pressurl:er' PORV 655A Block Valve                             4

[' MOV0001A Fails to Close '! ca Recirculation Cooling HHSI Train A-Failed , LHSI1 Train.A Failed  ! U , RCFC Train'A Failed i Recirculation Suct' ion Valve MOV0016A. " Falls to Open' ]

                                                                                                                                                      -t n

O'  : Containment Heat LHSI Train' A Failed j

                                                  . Removal                              RCFC Train A Tailed                                             ,

Y .. Fission Product CS Train A Failed Scrubbing RCFC' Train A-Failed .!

       "                                                                                                                                              j Containment Isolation Supplemental Purge Supply Isolation                             '

Valve MOV0001 Fails to Close 3

                                 ,                                                        Supplemental Purge Return Isolation                            !

W Valve.MOV0006 Fails to Close '} O .

                                                                                                                                                        .?

i 1 ,' i

                                                                                                                                                         +

m. I' (  ! 1 , J

e

  %e ,..
           . Table 4-3. Short Circuit Effects for Fire Scenario 2004-FS-01

'. Initiating Event Low Pressuriter Pressure Safety .. Injection from Open Pressurizer PCRV 655A Support Systems ECW Trin A Failed CCW Train A Failure caused by Trip of Pump A, Opening of MOV0642, and Closure of MOV0643 ECH Train A Failed (see Note 1 in Table 4-4) EAB HVAC Train A Tailed (see Note 1-in Table 4-4) Secondary Heat AFW Train A Failure Caused by closure Removal of MOV7525 RCS Heat Remosal HHSI Train A. Failure Caused by C1:sure of MOV0004A and MOV0006A Eleed and Feed Coling Failure Caused by Closure of Pressurizer PORV 655A Block Valve MOV0001A Pressurizer PORV 655A Opens RCS Inventory Control HHSI Train A Failure Caused by Closure of MOV0004A and MOV0006A LHSI Train A Failure Caused by Closure of AOV0864, MOV0018A, and MOV0031A Pressurizer PORV 655A Opens (see Note 3 in Table 4-4) Loss of ECCS Train A Suction from RWST Caused by Closure of MOV0001A Charging Pump B Failure Caused by Clcsure of MOV8377B (see Note 2 in Table 4-4) Letdown Orifice Block Valve MOV0012 Cpens (see Note 4 in Table 4-4) Loss of Nornal Charging Flow Caused by Closure of AOV0205, MOV0025, and MOV0003 (see Note 5 in Table 4-4) Reactor Vessel Head Vent Valves SOV3657A and SOV3658A Open (see-Note 6 in Table 4-4) Recirculation Cooling HHSI Train A Failure Caused by Closure of MOV004A and MOV0006A LHSI Train A Failure Casued by Opening of AOYO851 and Closure of AOV0864, MOY0018A, and MOV0031A RCFC Train A Failed

60$% , C #

                                                                             .                                   m           i.'                             .
                                                                                                                                                                                             +..

gi: ,; - ,;

                                                                  ,l++                      -                                                              .

e u , i ? '6_ 3 .[i ,y

         './ . i                       f'                                                                 ,

s

  ,_ : % 'i                                                                                                                            -

p.. 4 m <.

                                                                                                                                               ~         -

o g :, ' ;', F;;p .. ,

Table.4-3.- ,f(Part;2 of-2) Short Circuit-Effects for-Fire Scenario-h -17, . ZOO 4-FS-01  !

a  ; u . y ._;-[p :. JRecirculation Cooling- Less of CCW Flow to RHR Train A Caused,  ; by Closure ;of AOV4 531, MOV0012, _ and : y~~- (continued)2 b MOV0050  : [l ,

                                                -                                                                                Less.of'CoolingiFlowito.RCFC Train:A'                                  '

n , Caused by. Closure of MOV0060, MOV0063,;  :, MOV0064, and MOV0067. . . . . . i F , _ Loss.of Cooling: Flow to RCFC Train.Cl , , Caused _by. Closure of-MOV0208 , g? '

                                    ..b-                                                                                                                                                                         ,

Same Impacts as' Recirculation! Cooling E , [ Containment Heat l

 !8                    4
                                                  ,           fRemoval-                                                 .,

6%  : Fission .' Product RCFC Train A Failed 1

                                                                 ' Scrubbing.
                                                                                                                                 ~CS Train A Failure Caused by. Closure                                                   !
  's,s, y, of MOV0001A                  '

4 --

                                                                                                                           ,                                                                                             ]
                              -h                                                                                                                                                             .

Supplemental ' Purge' Supplh Isol$tiork ' 1 F-. L 9l, ' . Containment; Isolation  : y y # valve _MOV0001 Opens .; f Eupplemental' Purge Return: Isolation; ,

                                                              ,'                                                                  Valve MOV0006.' Opens-                                                               '!

a, e

                 ;i,                                                                                                                                                                                                      ,
 ),,           ;
     ..'     t
                                ,                                                                                                                                                                                      ;f
   ,                           i                                                                                                                                                                                          ,

i ;

g. g.g , 1 g R? ' '

Q: l< ,

                                                                                                                                                                                                               .       .p
                                                                                                                                                                                                                       'f

_g _a, gw1 o , , m i ;a (? . g b

                                                            ,{'.'

4 b t ,

 , ,       'hi
                                      '->' '.                                                                                                                                                                          .p fo:                                                                                                                                                                                                                     !

r

                       'lj f
                                                                                                                                                                                 .                                         e 2    -

E E I' i i 4 , i l,- f, .

                                                                                                                                                                                                                       .{

c d\)  !* gyu ;o j ' m,, . - , ,

    -; O c                          ,          5<                     '

de; , 6b r . A i i . l' o '^ [i ?(  ; [? 7

                                                                        ~

[ ,

                                                ,oTable 4-4.                  Assumptions'and-Thoughts Underlying the railures Noted for Fire Scenario 2004-FS-01 F                        -
                                                      '1.foper'ators must start ECW Train C,                   ECH Train C, and EAB HVAC .

R Train C to maintain at least two' trains of EAB HVAC running with 600 tons chiller capacity available.' , . 2. ' Charging. Pump B ' disabled by open circuits in pump power and control cables and by open circuits in room cooler power and-control cables. PDP disabled by open circuit in pump' control. cable ~. Open circuits cause letdown stop valve LCV0465 to remain open. A letdown-line'LOCA (outside containment) will occur if [F G - Charging Pump A f ails and LCV04 68, MOV0013,= MOV0023, Land MOV0024 L F fail to closer-a letdown line LOCA (inside containment) will. . 4 occur if Charging Pump A: fails, MOV0023 or MOV0024' closes, and h , LCV0468 and MOV0013 fail to close. An RCP' seal return line LOCA , L . will occur if ' Charging Pump A f ails and MOV0077 and MOV0079 f ail j s 'to close. The conditional likelihood of a LOCA is

                                                                          - (CHA) [ ( LCV04 68 ) (MOV0013 )    (MOV007 7 ) (MOV0079 ) )

g: .where l H CHA = Unavailability of Charging Pump A LCV04 68 = Letdown Li ne Stop Valve . LCV04 68 " Fails; , to Close , MOV0013 =-Letdown Orifice Block Valve MOV0013LFalls :i h to Close . .

      .c          t MOV0077 = Seal Return Line Isolation Valve MOV0077

[ , Tails to Close MOV0079 = Scal Return Line Isolation Valve MOV0079 , Tails to Close  ! 3 10pening of Pressuriter PORV 655A! caused by.short circuit in valve control cable. If'AC Train A load centers.E1Al and E1A2

  • are deenergi:cd at the.t'ime of the initiating event, the operators'cannot isolate the open PORV by closing block valve-
                                                             . MOV0001A. - PORV 655A is powered f rom DC bus E1A11. 'It L f ails to.              ,

4: the closed position on loss of power. Therefore, this fire'

                                                            -scenario cannot cause a sustained short circuit that keeps PORV 655A open for.an extended period of time (i.e., a small LOCA)
                                                              . withLsimultaneous loss of all power from DC bus E1A11.-If the short circuit occurs first, the conditional likelihood of a LOCA
                                                              .after-loss of AC.and DC power is m                                                                                                      (P0655A).

J ' where P0655A = PORV 655A fails to Reclose After Loss of DC Power

                                                                                                                                               .i N
  ~

l

    ,    e

[e l' p g e .c - l' o 1 v: y I 9' Ts bl e -' 4 -4 .- 2iPart. 2 of[2)' Assumptions and Thoughts Underlying the g .' ' Failures Noted. Tor' Fire Scenario 2004-FS-01

       !,[                         4.z Refer.to Note 2 above. Since letdown orifice block valve MOV0012'                                  ,
is in: parallel-with block valve MOV0013, the status of MoV0013 does not af fect the likelihood of a letdown line LOCA if MoV0012 is open. The conditional likelihood of -a- LOCA' is' ,  ;
                                                                            +

(CHA) [ (LCV04 68) (MOV0077)(MOV0079)) 5.' Normal.RCP'neal injection-flow remains available.if. charging - flow control valve AOV0205 closes,-charging line containment' ' isolation valve MOV0025 closes,,or normal 1 charging valve MOV0003 closes.i If' AOV0205 is closed, the operators -can restore charging; , flow by: locally opening manual bypass, valve CV0255. If MoV0003 , is closed, the operators can restore charging flow by opening  ; alternate charging valve MOV0006. Normal charging flow cannot be restored of MOV0025 is closed. Refer.to flotes 2 and 4 above.: If  ! MOV0025 is closed,,or if the operators-fail to restore flow j

       ,                                 through the bypass-lines, a letdown,line LOCA will occur if LCV0468. fails to close. Charging Pump A remains available for-normal RCP seal in]ection ficw. The conditional likelihood of ~a                               -

g LOCA'is ' (LCV0468) + (CHA)(MOV0077)(MOV0079) {

                                   '6. Reactor head-vent valves SOV3657A and SOV3658A open from short                                   ;

fE circuitsLin their control cables. A LOCA will not occur unless i one of the two normally-closed vent _ valves SOV0601 or SOV0602 'is , l alsofopened. 3

                                                                                                                                    'h
                                                                                                                                   'l
                                                                                                                                  '[

v i . l h-

                                                                                                                                  -[      ,

y 4 t 5 h

                            ~~                                                                                                          ,

4 _ 1 T

g .f , 4 , , , bg? el h ~ $ i.n ' It' L . . b Table 4-5. Frequencies of1 Internal Events with the Same Combined Impact.as Fire Scenario' ZOO 4-FS ,, i i 4 Open Circuit Effects 1 General Transient Initiating Event Frequency:. _ 14.3/yr Unavailability of AC Train A: 2.85E-04 ,

f. Unavailability of Bleed and Feed Cooling:- 4.80E-02  ;

p Unavailability of.PDP,(Excluding TSC Diesel): 9.30E-02 ,

 "                                                                                                                            l
                           " Independent" Scenario 1 Frequency:
                                                          ~

5.47E-06/yr .. p - . P! * ' Loss of DC. Bus ~E1All Initiating Event Frequency: 3.32E-03/yr - Unavailability of PDP (Excluding TSC Diesel): 9.30E-02 r -

                           " Independent" Scenario 2-Frequency:                          3.09E-04/yr                      ,    ;

h V. .

 !                      . Loss of Offsite Power Initiating Event. Frequency:-

1.29E-01/yr Unavailability.of AC Train A (After Recovery):

  • 3.0 E-02 h Unavailability of Bleed and-Feed Ccoling: 4.80E-02_ l Unavailability-of PDP (Including TSC Diesel): 1.95E-01 .;

( j

                            " Independent"LScenario 3 Frequency:                          3.62E-05/yr Short Circuit Effects 3.32E-03/yr.                         ;

t Loss'of DC Bus E1All Initiating Event. Frequency:- Unavailability of PDP.'(Excluding TSC Diesel): 9.30E-02  : Unavailability ~of.P.CFC Train C: 8.84E-02  : q " Independent" Scenario 1 Frequency: 2.73E-05/yry

 +                                                                                                                             c p:

Nonisolable Small LOCA Initiating Event: Frequency.: 5.83E-03/yr 2.85E ' Unavailability of AC Train A: . Unav'ailability of RCFC Train C: L 8.84E-02

                     ,      '"Indepen' dent" Scenario 2 Frequency:                        1.47E-07/yrf                         ,

i 1 i i r h

e , 7.y'V 99 ~ , ,

        ;,                               y                    t ':: J : y,                                       1{             a                                                                                 p
                                                                                                                                                                                                                                                                    }!

s 4- sy

                                                                                                                                                                                                         '3 y- ., p                                                         o'p                   ,

s 4

                                                                     -          -         ,~'                                      ' '                                                                                                                                     ,

e l:'. ' K. . _ . , . .

                                                                   - TableE 4 6..

g-

                                                                                                                   , B'aseline' Failures J f or Fire Sconario 2004-FS-01'          ,

M- '

             '                                                      L Basel'            i he'L Iditlating'-                                   Loss;.'of Essential-DC Bus EIA11'                                                            .'-

n,

  .i           <

tEvent- ' ' r j flin 4 BaselInefSystem AC Power Train'A E ->

                                                  ...               ' Failures-                                                                DC Power Train A                                           '

l

        .        -s 1                                                                                                                        - ECW Train A                                                                                                                 i L ; i -C 6; - * .

CCW Train A. ECH Train A~ . H'

                                                                                                                                             . EAB HVAC Train A                                    >                                     -        ,'

[ ... Steam Generator A PORV-Fails.to open a N AFW Train A %v WJ V ' W '

                                                                                               ?

HHSI Train A i1 ' E' LHSI Train A  ! QJ J' j/m

                                                                                                                         ,                     RCFC Train A CS: Train A-E                        ,
                                                                                                                                                                                                                                                                 ".9 d
!O                            ,                                                                                                                  Charging Pump B               .
                                                                                                                                                                                                     >                                                 4 ,         d h'                       '

Recirculation Sucticn Valve MOVoul6A Fai'Is ,

                                                                                                                                                                                                                                                                        .i

, to Open ,

                                                                                                                           .                     Prescuri::or PORY 655A Block Valve MOV000'1A'.

L.; ; q'.. 4 Fails to Close > ,

                                                                                                                                                                                                                                   ,                                i Letdown Orifice Block Valve MOV0012 Opens

[. , ' ' , l[

                                                                                                                                              - Reacter Vessel' Head Vent Valves lSOV3657Ai                                                                              l b'c, O                                         .#                                                                                                      and SOV3658A open                                                                     n                       ,

j g .L , Supplemental Purge Supply IsolationL. Valve" -  : f, L L; MOV0001 Opens ,

                                                                                                                                                                                                 .           . _                                                    Ll m y,                                                                                                                                              Supplemental Purge Return Isolation Valve'                                                                               i g- ,                                                                                                                                              MOV0006 opens                                                     m                 ,

i

                                                ~

) +' t s y ( '. L-i I j

i' ' . ' >
                                                                                                                                                                                                                                    ' ,.                                   h.

P ! ' ', p . v 4 4i 9 , d D , p ji< , t h h)_1, ] g ' ', , ,t; b l I t r' ..; hb s

                                                                                                                                                                                                                                                                        ]

(

                                                                                                                                                                                                         ,1                                                               j

(.. g.

                                                                                                                                                                                                                                                                        .t IO                                                                                                                                                                                                                                                                         #

\; 'j.

                +                                                         j.                                                                                                                                                                                       ,7
'lf e.-

i

                                  ,                                        .s                                                                                                                                                                                         -

1 e * - f., . 3 i , , A&Q Ij : , t }

v. lt .' (

J. '

> i 6, ' ';

1 V - r r M ' {

                                                                                                                                                                                                                                                                         ')
                  !                                                N; _-
                                                                                                                                                                                                                                                                        .g lp ' r !!;         ,                              ,

i

                                                                   ..._s>         .G                                                                                                                                                                                      ;

m:

                                                                                                                                                                                             +

c_, 'i - , 4- ' ,; . , ' ' !:, _ ,

                                                &               ,                                                 -p ;

y t. i n 1

               ~'                                                             ,                           ,                                 .                                                           :

iTable 4 . Event Tree:End State' Impacts for, Fire scenario! ' 2004-FS-01-(Refer?to Figure.4-1 and Table 4-6)i ,i

                    +                                                                                                                                                ,'                       et S
                                                    . End State _                 '

Failed Equipment Impact 3

                                                                                                                                                                                                     .y
                                                        '1          . Baseline                    ..
                                                                                                                                                                                       ,         .j 2          , Baseline, RCFC C                                                                                                                  i
   ,.~~
                                                                    . Baseline,lPDP                                                                                                                     ;

3 4, B a s e l i n e ,.': R C F C C , . P D P - _ . -i 3 5 Baseline, LossLof Charging _ _ _ r ' 6 -Baseline, Loss.of-' Charging','RCFC C

                                                       -7              Baseline, Loss of' Charging, PDP                      _            .

8- Baseline, Loss lof= Charging, RCFC C, PDP s M. 9 Baseline, Loss of Bleed and Feed  ;' 10 Baseline,-. Loss of> Bleed and Feed,-RCFC C_ , M Baseline, Loss of' Bleed..and Feed,,PDP ,_ 'p til' 12: Baseline,: Loss'of, Bleed and Feed, RCFC C, PDP * ' 'j] L- ,

                                                     .13 -             Baseline,LLoss of Bleed and Feed,. Loss of Charging:

i;l[ E

                                                     -14               Baseline, Loss of Bleed and Feed, Loss of Charging,                                                                MJ V                                                                     RCFC C                            *
J 5 15 Basel'ino, Loss of Bleed and. Feed.. Loss of' Charging,- a t:M PDP~ '

19 16' Baseline,; Loss?cf Bleed and' Feed, Loss of-Charging, _ RCFC C,~PDP

                                                                                                                                                                                  ']4 Baseline, PORV'LOCA-                                                                                                          0 17 18'           LBaseline,' PORV'LOCA, RCFC C                                                               .

i

                                                      >19              Baseline,T ORV        P         LOCA, PDP                    ,

20 Baseline,-PORV.LOCA, RCFC C, PDP . . 9

 .. ;                 i .. .
                                                                                                                                                                             . i h't J.-                                                                                                                                                                                                 l p
                                                                                                                                                                                              ,-tt

[;= _

                                                                                                                                                                                             ;lt
                                                                                                                                                                           , .               v t                           ?C t                                                  -

3

 '.                                                                                                                                                                                                't h

1 w

                                                                                                                                                                                             'j-p-

o l g, 1

                                     ,                                                                                                                                                                  b 1

!4- j

               .t                                                                                                                                                                                        ,

i

e d -e . Table 4-8. Level 1 Screening: Equivalent Internal Event Impacts for End States from Fire Scenario ZOO 4-FS-01 End Internal State Internal Event Failures Event Frequency 11 L1DCA, PDH 3.08E-04/yr 12 L1DCA, PDH, CTE 2.72E-05/yr 15 L1DCA, CHC* PDC 1.82E-05/yr 16 L1DCA, CHC* PDC, CTE 1.60E-06/yr 19 SLOCA, EAA+DAA, PDH 4.18E-07/yr 20 SLOCA, EAA+DAA, PDH, CTE 3.70E-08/yr Split Tracti:n* Description Value LlDCA Loss of DC Bus EIA11 Initiating Event 3.320E-03/yr SLOCA Nonisolable Small LCCA Initiating Event 5.830E-03/yr CFE RCTC Train C Ta11ure 8.835E-02 CHC Loss of Charging (AC Power Train A 3.291E-02 Failed) DAA DC Power Train A Failure (AC Power 4.869E-04 Train A Failed) EAA AC Power Train A railure (Offsite 2.850E-04 Power Available) PDC PDP Failure (Excluding TSC Diesel, 1.664E-01 Loss of Mortal Charging) PDH PDP railure (Excluding TSC Diesel) 9.297E-02

  • NOTE: Initiating event frequencies are documented in STP PSA Table 7.6-1. System failure split fractions are documented-in STP PSA Appendix F.

F y'a ,

                                                      +
                                                                      'n                                                                                         >
                                 .fU

( .s o p g ' u . ,

                                                                  " Table 14-9. . Annual-End State I.mpact< Frequencies for, Fire Scenario'
  • 1 d

2004-FS-01 (Total Fire Scenario Frequency: 1. 3 3 E-03/yr)'

g. >

u -:

              " . ,                                                                                                                                                              ~

Annual LAnnual. Censidered:for . Cons'idered for , f;. , > , - Frequency;, Frequency, Further Analysis,'Further Analysis, ' J" ,End Fire- Internal- First Level of 'Second Level of- i

              < ,                                                        . State Caused-         Event            Screening'                  Screening-                                                     !

o- , 1 f~ . -1 ,0 i

1. 2 0 <

3 3 o-b g , 4- o. . (, ' 5 .0 t G 6 0- ..i (_ , .

                                                                                  -7                    0-                                                                                                                      ?
                                                    ,?                             8                    0                                                                                                                .1 V:X                       .y                                                       9                   /,                                                                                                                      ;

E ' 10 0 d FM 11 '9.16E-04 3.0BE-04 Ves Yes "' l

                                                                              .12'               3.93E-04         2.72E-05              Yes                              Yes                                               ii r                                                                               13.     >               0.                                                                                                                    o

[ 14 0- ,

;                                                          l-                   15               3.12E-06         1.E2E-05'-            Yes                                !!o                                 .

L. 36' 1.34E-06 1.60E-06 Yes 11 o j 17- 0 ,

!l{-                                                                            18                    ' OL                                                                                                                     .
                                                                              -19                 1.16E       4.18E-07              Yes'                              -ilo                         >
                                        ,                                      .20          ~4.99E-06             3.70E-08              Yes                              : tio -   4 4'                                                                                                                                                                                                                        .
                                  ,                                                                               i p
                                                                                                                                                                                                                     . . .a
                                                                                                                                                                                                                   ',5-
                ..                                                                                                                                                                                                             L N               t r                                                                                                                                                            ?
                                                                                                                                                                                                                             -t
                                                                                                                                                                                                                         \f f4 4                                                                          t J    '.f,I c

g .

  *                        +
g.  !

U1'; e Ep. > *

  • x +

y  :. j

b. ,

y 4 e

       ;< s                             t
   *' g                                     '           

i 6 ~ '

         , ,                                                                                                                                                                                                                   i g
                                                                            /
! =.  :

t

                                                                                                                                                                                                                         ~f
                                     .                                                                                                                                                                                         t t

J ,? f

         , q-c.

y; -  ; 4 _ p -. -

                                                                                                                                                                                                                         ~*

6; , 3 ;. M $l; , i _ y

 .*   . o l

Table 4-10. Level 2 Screening: Evaluation of Dominant Additional Failures to Cause Core Damage from Fire Scenario ZOO 4-FS-01 End State 11 ,, End State Frequency: 9.16E-04/yr Additional Failures to cause Core Damage:

1. AFW B, ATW C, AFW D
2. ECW B, ECH C, Smoke Purge, (ATW D or PDP)
3. ECW B, Fan C, Smoke Purge. (AFW D or PDP)
4. ECW C, ECH B, Smoke Purge, ( AFW D or PDP)
5. ECW C, Fan B, Smoke Purge, (AFW D or PDF)
6. ECW B, ECW C, Smoke Purge, ( AFW D or PDP)
7. ECH B, Fan C, Smoke Purge, ( ATW D or PDP)
8. ECH C, Fan B, Smoke Purge, (AFW D or PDP)
9. ECH B, ECH C, Smoke Purge, ( ATW D or PDP)
10. ECW B, CCW C, PDP
11. ECW C, CCW B. PDP
12. ECW B, ECW C, PDP
13. CCW B,'CCW C, PDP Approximate conditional Core Damaae Frequency:
1. CDC 3.784E-04
2. WBE* CLG
  • 0S 0 3 * ( AFR '- PDJ 1) 1.045E-04
3. WBE* FCN
  • 0S03 * ( AFR ' + PDJ 1 ) 9.969E-05
4. WCM*CLE*0S03*(AFR'+PDJ1) 2.482E-06
5. WCM*FBH+0S03*(AFR'+PDJ1) 1.113E-07
6. W2 3 *0S03 * ( AFR' + PDJ1) 2.744E-05
7. CLE* FCN
  • 0S 0 3 * ( AFR ' + PDJ 1 ) 1.199E-05
8. CLG*FBH*0S03*(AFR'+PDJ1) 5.639E-07
9. CLD* 050 3 * ( AFR ' + PDJ 1) 1.197E-05
10. WBE*K14*PDH1 1.279E-04
11. WCM*K13*PDH1 1.865E-04
12. W23*PDH1 2.873E-04
13. K23*PDH1 1.206E Approximate End State Core Damage Frequency: 1.25E-06/yr l

1

p?**y p . -O , y bY W w.

!;               a:                . Table 4-10.
                                                      -(Part.2 of 2)' Level 2 Screening: Evaluation of                                   l
 @-                   ,                                Dominant Additional Failures to Cause Core Damage from t

i Fire Scenario 2004-FS-01 End State 11' ' u . ,. c Split- j (,,

                     <                Fraction
  • Description. Value .

1 i,1 UE '

                                        ~AFR'~       AFW Train D Failure-(After Turbine.           7.836E-02
                                                    . Recovery)              .     .

m CDC AFW Trains B, C, and D Failure. 3.784E-04 ( CLD ECH Trains B and C Failure 6.824E-04 4 3  : H CLE ECH Train B Failure 1.522E-02 i I' CLG ECH Train C Failure' 4.710E-02 < s, ~' FBH EAB HVAC Fan Train B Failure 6.825E-04 FCN= EAB HVAC Fan, Train C Failure 4.491E-02.  : K13- CCW Train B Failure 1.092E-01 5 K14- CCW Train C Failure 5.503E-03 , K23' CCW Trains B and C Failure 6.563E-04 i M- -OS03 Operator Failure to Start Smoke Purge- 4.960E-02: ' PDH1 PDP Failure-(Excluding TSC Diesel, 1.837E-01 i P Including Centrol Cable Hot Short) n' PDJ1 PDP Failure (Including'TSC Diesel, 2.754E-01 j{

    .,                                                Including Control Cable Hot Short)                                                :

WBE ECW Train B Failure 1.265E-01 i i; > WCM ECW Train C Failure- 9.296E-03 , W23 ECW Trains B and C Failure 1.564E-03  !

                                                                                                                                    t
  • NOTE: System' failure split fractions are'd'ocumented in STP NSA Appendix F. Operator action split fractions are documented 3 j in STP PSA' Table 15.4-53. Modifications to PDP< split < , l

[, , fractions to account for fire-induced control cableLhot j p" , shorts are documented in. Attachment 4.1 to this Response. 9 e<  ; {l he e

r .;

e , 0 c . i I k h , g fi-hje - o  : 4 u'em .

.o '. 4 Table 4-11. Level 2 Screening: Evaluation of Cominant Additional Failures to Cause Core Damage from Fire Scenario 2004-FS-01 End State 19 , End State Frequency: 1.16E-05/yr Additional Failures to cause Core Damage:

1. ECW B, CCW C
2. ECW C, CCW B
3. ECW B, ECW C
4. CCW B, CCW C
5. ECW B, ECH C, Smoke Purge
6. ECW B, Fan C, Smoke Purge
7. ECW C, ECH B, Smoke Purge
8. ECW C,. Fan B, Smoke Purge
9. ECH B, Fan C, Smoke Purgo
10. ECH C, Fan B, Smoke Purge 11.'ECH B, ECH C, Smoke Purgo
12. HPI B, HPI C
13. nic B, REC C
14. RCFC B, RCFC C, OL
15. RCFC B, RCPC C, REC B. (LP: C or HX C)
16. RCFC-B, RCFC C, REC C, (LP: B or HX B)
17. RCFC B, RCFC C, LPI B. LPI C
18. RCFC B, RCFC C, LPI B, HX C
19. RCFC B, RCFC C, LPI C, HX B
20. RCFC B, RCFC C, HX B, HX C
21. ECW B, RCFC C, OL
22. ECW B, RCFC C, (REC C or LPI C or.HX C) 23.'CCW B, RCFC C, OL
24. CCW B,'RCFC C, (REC C or LPI C cr HX C)
25. ECW C, RCFC B, OL
26. ECW C, RCFC B, (REC.B or LPI B or HX B)
27. CCW C. RCFC B, OL
23. CCW C, RCFC B, (REC B or LPI B or HX B)
 ,o .., d Table 4-11.         (Part 2 of 3) Level 2 Screening: Evaluation of Dominant Additional failures to cause Core Damage from Fire Scenario 2004-FS-01 End State 19                    ,

Approximate Conditional Core Camage Frequency:

1. WBE*K14 6.961E-04
2. WCM*K13 1.015E-03
3. W23 1.564E-03
4. K23 6.563E-04
5. WBE*CLG*0S03 2.955E-04
6. WBE*FCN*0S03 2.818E-04
           '7. WCM*CLE*0S03                                              7.017E-06
8. WCM*FBH*0S03 3.147E-07
9. CLE*FCN*0S03 3.390E-05
10. CLG*FBH*0S03 1.594E-06
11. CLD*0S03 3.385E-05
12. HIB+2*PA* HIC +PAB 7.750E-04
13. RAB 4.548E-04
14. CFC*0LO2 2.002E-05
15. CFC*RA*(LA+RXC) 2.420E-07
16. CFC*RA*(LA+RXC) 2.420E-07
17. CFC
  • LAB 8.012E-07
18. CFC*LA*RXC 7.650E-08
19. . CFC* LA
  • RXC 7.650E-08
20. CFC*RXB 1.893E-07
21. WBE*CFE*0LO2 7.656E-05
22. WBE* CFE * ( RA+ LA+ RXC ) 2.161E-04
23. K13
  • CFE
  • 0LO 2 6.609E-05
24. K13 *CFE* ( RA+ LA+ RXC) 1.865E-04
25. WCM*CFD*0LO2 2.788E-06
26. WCM*CFD*(RA+LA+RXC) 7.86BE-06
27. K14*CFD*0LO2 1.650E-06
28. K14
  • CFD* ( RA+ LA+ RXC) 4.658E-06
                            ~

Approximate End State core Damage Frequency: 7.42E-08/yr

                           'd h           ,

c , 3 Table 4-11. (Part;3'of f) Level 24 Screening: Evaluation of Dominant Additional Failures to Cause Core Damage from ' Fire Scenario 2004-FS-01 End State 19 ,,  ; Split?

                                   , Fraction
  • Description Value i

I CFC ' RCFCeTrains B and C Failure '2.922E-03 >

                                          'CFD                   RCFC.-Train B Failure                               4.378E-02             ';

CFE. RCFC Train C Failure 8.835E-02  : CLD

                                         .CLE ECH Trains B and C Failure ECH Train.B Failure 6.824E-04 1.522E-02 j

E- CLG- ECH Train C Failure 4.710E-02~ FBH. -EAB HVAC Fan-Train B Failure 6.825E-04 i FCIP :EAB HVAC Fan-Train ~C Failure 4.491E-02

  • HIB- HHSI Trains B and-C Failure 2.063E-04  ;

[T ' HIC HHSI Train-B.(C) Failure 6.864E-03 , l L K13 CCW Train B Failure 1.092E-01 l

                                          -X14                   CCW Train C Failure                                -5.503E                                            'K23                   CCW Trains B and C Failure                           6.563E-04            .<

LA LHSI . Train B (C) Failure 1.041E-02 j LAB 'LHSI Trains B and C Failure 2.742E-04: , OLO2 Operator Failure to Depressuri:e 6.850E-03 ., for LHSI (Small' LCCA event) *

                                        '0S03)                  l Operator Failure to Start'Snoke Purge               4.960E-02 17 PA                  ECCS Common Train B (C) Failure                  '3.799E-02             -1 PAB                    ECCS Common Trains B and C Failure                '4 . 714 E           f JM                   Recire. Suction. Train B (C). Failure               6.40BE-03            -'
                                          ' RA B                  Recire. Suction Trains B and C Failure              4.548E-04             1 RXB)                  RHR Heat Exchanger Trains B and-C Failure           6.477E-05             4 RXC:                  RHR Heat Exchanger Train B (C) Failure
                                                                                                   ~

2.515E-03 WBE- ECW Train B Failure 1.265E-01 . WCW ECW Train C Failure 9~296E-03 h W23 'ECW Trains B and C. Failure 1.564E-03 e , l' 'i I i- .

  • NOTE:, System failure' split fractions are' documented.in STP PSA  !

Appendix F. Operator action split: fractions are' documented  ; in STP PSA Table 15.4-53, i

                                                                                                                                           ;5 r

r v e s e t '

  • 4 cm 4 lp j{ $7 ;, _
          . y              3
                    %.                                                       J',                                              ;
                      >4 y

f Table 4-12. Ident'ification of fire ~ Frequency Reduction-Factors , g for Fire Scenario 2004-FS-01~End States 11 and 12 ul ..

                                                                                                 ^
   ,dj                                           FIRE ANALYSIS REDUCTION FACTOR NOTES                                         !

ZONE: 2004 P LOCATION: EST-A Switchgear Room - END STATE: 11/12 (Sheet 1) l

 $'                                                                                                                        I F                           CRITICAL CABLE 8: . A.' Pressurizer POP,V 655A control cable U,                                                        (RCVS00655ACC)

U Pressurizer.PORV 65SA Block Valve MOV0001A f =

                                                          . power cable and-control cable (Eithert                            .

RC"M0001APC RE RCVM0001ACC) [-J [ B. AFW Punp A circuit breaker ATW Pucp A power. cable (ATPMS0001-PC) t ATW Pump A Yentilation Tan motor contactor  ; AFW Punp is Ventilation Fan power cable and j eentrol cable (Either: ATTU2n001-PC EI  ! AFFU20001-CC) 1 j C..PDP control cable (CVPM00102ACC) ] NOTES: .1.' We need to estimate the f raction of these fires that will cause each of the t following'conbinations of faults ('

                                           -(letter designations refer to sets of cables noted
                                          .above):

A: An open circuit in the PORV cable, or a , sustained.h0tlshort in either block valve cable B:'An open circuit in any AFW punp or~ fan cable- l C: 'A sustainoa het short  ! A and B: Any conbination of the faults noted above for A and.B' l 4

                                      "2..The frequency of this end state already accounts-for!a                          l nominal reduction factor of 0.10=for the conditional                              '

frequency,of a sustained 1 hot short circuit in the: PDP j control: cable, if it is affected by.the fire. 1 r I y i L-5

                -s.

}{f%U; qWlnjfQ -3 ,

                                                    "'                                   ^
                                    ~

r< 1 [ ', ;-f ; n b 4/mE f.s# dT able 4-12.' (Part 2 of 2)Identificatien of Fire Frequency  ?

              ,               Jn                               Reduction Factors for Fire Scenario 2004-FS-01
  ' si If , '                          End' States 11 and 12                                      ,

v s;. T < , FIRE ANALYSIS REDUCTION FACTOR NOTES [M[y, L [

                                ~l iT                                                      ZONE: 2004 g(f                              '

LOCATION: EST-A Switchgear; Room ,[ ppf J END STATE: '11,12 (Sheet 2) t J Vil(iI f' tr -

                                                                                                                                       \
  'yO +p -                                     CRITICAL CABLES: A. ECW Pump A circuit breaker
  • E '* ,' ECW Pump A power cable and control cable-(Elther: EWPM00101APC gr.EWPM00101ACC)

'" ECW Pump A Ventilation Fans control cables

                                     .,                                    (Both: EWFM20001-CC and EWFN20002-CC)      -

j

                     ',        ,i,                                                                                                      .
                      .                                             B. CCW Pump A     circuit breaker w,7                                                                       CCW Pump A   power cable and control cable

'g % . (Either: CCPM00101APC gr CCPM00101ACC)' 7 1 CCW Pump.A Ventilation Fan motor contactor T CCW Pump A Ventilation Fan power cable and O control-cable (Either: CCAHU0001-PC EI 4[: CCAHU0001-CC) "jb C. PDP: control cable (CVPM00102ACC) , 5 4 t I-h - NOTES:'1. We need to estimate the f raction of these fires that will-H" < cause each of the following combinations of faults

                     'g (letter designations refer to sets of cables.noted
                                                          .above):                                                          '

A: An open circuit in the pump. cable, or open' circuits in both fan cables y B: An open circuit in any CCW pump or fan. cable E C: A sustained hot short . A and C: Any combination of the faults noted above for s A and C B and C: Any combination of the f'aults noted above for-

      ,                                                                  B and C

' , 2. The frequencyLof this end' state already accounts for a-

                                                           . nominal reduction factor ot 0.10 for the conditional L                                                            frequency of a sustainod hot chort circuit in the PDP
          ';                                                control cable, if it is affected by the fire.

p, N 1

{; * .M ',

                                                ~, .,,

C' X - - '- 4 c >

     ;[               ,

i t , Table 4-13.; Fire' Frequency ~ Reduction. Factors for Fire Scenario-- 2004-FS-01 End States 11 and 12~

                                                                                                                                   ..       i
                                                                     .                                                                      l 1
                          .Cor.ponents                                                Designator                      Value" i
AFW Train A - FRED (ATW A). 0.15  !

ECW Train A FRED (ECW A) ' 10.12 ' CCW Train A . , ,. . FRED (CCW-A) 0.16  ?! Pressurizar PORV 655A FRED (PORV) 0'023 L -PDP- FRED (PDP)' - 0.012  : AFW Train A and' Pressurizer-FORV FRED (AFW A,PORV) ' O.023: L ECW Train A and PDP' FRED (ECW A, PDP): - 0.012 -:

 ,                         CCW Train A and PDP'                                       FRED (CCW'A,PDP)                 0.012                ,

I c; a

'-                                                                                                                                          f r                                                                                                                                           :

i

o i

I 1 I i

                                                                                                                                            +

l- f !' i f

                                                                                                                                          'I t

i I i W sc . . . ~ J.,-. 4 . . . 4- , _ - . - . , . , ._.., w ,. ..

p",4, VV q qw k b: , Ll,'

  ~

Table 4-14. - Level.3, Screening: Evaluation of Dominant Additional N '. Failures-to cause Core Damage from. Fire Scenario "004-FS-01 End State 11

                              -Additional Failures to Cause Core Damage:
                                  -l. FRED (PORV), ATW A, AFW B, AFW C, AFW D
 ,                              '2.    . FRED (AFW A), AFW B, AFW C, AFW D, Bleed + Feed M                                 3. FRED (AFW A,PORV), AFW B, AFW C, AFW D l                                 4. FRED (ECW A), ECW B, ECH C, Smoke Purge, ( AFW D or PDP)

F '5. (1-FRED (ECW A)), ECW A, ECW B, ECH C,-Smoke Purge, "X" B

6. FRED (ECW A,PDP), ECW B,.ECH C, Smoke Purge, (AFW D or PDP1)

F 7. FRED (ECW A),+ECW B, Fan C, Smoke Purge,: (AFW D or PDP) 8.-(1-FRED (ECW A)), ECW A, ECW B,-Fan C, Smoke Purge, "X"

                                  ~9.1 FRED (ECW A,PDP), ECW B, ran C, Smoke Purge,- ( AFW ' D or PDP1)
10. ECW C,-ECH B, Smoke Purge, "X" p
11. ECW C, Fan B, Smoke Purge, "X"
12. FRED (ECW A),:ECW B, ECW C, . Smoke Purge -( AFW D _ or PDP)
13. [1-FRED (ECW A)), ECW A, ECW B, ECW C, Smoke Purge, "X" 14 .- FRED (ECW A,PDP), ECW B, E C'..' C , Smoke Purge, ( AFW D or PDP1).
15. ECH B, Fan C, Smoke Purge, "M" l" '16.:ECH C, Fan B, Smoke Purgo, "X"
17. ECH B, ECH C, Smoke Purge, "X" 18.= FRED (ECW A), ECW B, CCW C, PDP 19.LfRED(CCW A), ECW B, CCW C, PDP s '20. (1-FRED (ECW A)-FRED (CCW A)), ECW A,'ECW B, CCW C, "Y" 21.n(1-FRED (ECW A)-FRED (CCW A)), CCW A, ECW-B,'CCW C, "Y"
22. FRED (ECW A PDP), ECW B, CCW C, PDP1
23. . f RED (CCW- A, PDP) , ECW B, CCW C, PDP1
                         > 24. FRED (ECW A), ECW C, CCW B, PDP                                             '
25. FRED (CCW A), ECW C, CCW B, PDP
                             .26.-(1-FRED (ECW A)-FRED (CCW A),, ECW A; ECW C,'CCW B, "Y" 27.-(1-FRED (ECW A)-FRED (CCW A)),-CCW'A, ECW C, CCW B,1 "Y" 12 8 . FRED (ECW A,PDP), ECW C, CCW B,. PDP1
29. - FRED (CCW A, PDP) , ECW C, CCW B, PDP1 30.- FRED (ECW A), ECW B, ECW C, PDP
31. FRED (CCW A), ECW B. ECW C, PDP 32.E(1-FRED (ECW A)-FRED (CCW A)), ECW A, ECW B, ECW C, "Y" 3 3 '. : . ( 1-f RED ( ECW A) -f RED (CCW A) ) , CCW A: ECW B, ECW C, "Y" 3 4. FRED (ECW A, PDP) , ECW B, ECW C,.PDP1 13 5 . FRED (CCW A, PDP) , ECW B, ECW C, PDP1
                                     ~
16. FRED (ECW A), CCW B, CCW C, PDP 37, FRED (CCW A), CCW B, CCW C, PDP l38. (1-FRED (ECW A)-FRED (CCW A)), ECW A. CCW B, CCW C, "Y"

_c. '39.-(1-FRED (ECW A)-FRED (CCW A)), CCW A, CCW B, CCW-C, "Y" 14 0 .: f RED (ECW A, PDP) , CCW B, CCW C,. PDP1

                               ' 412 FRED (CCW A, PDP) , CCW B, CCW C, PDP;l 3                                NOTE: !' X " = A FW D + f RED ( PDP)
  • PDP1 - ' 1- f RED ( PDP) )
  • PDP l

[ "Y" = FRED (PDP)*PDP1 + " 1 -: RED ( PDP) )

  • PDP ,

l l a b .E[

F l

  .* c Table 4-14.           (Part 2 of 3) Level 3 Screening: Evaluation of Dominant Additional Failures to cause Core Damage from Fire Scenario 2004-FS-01 End State 11                                      s p       Approximate Conditional Core Damage Frequency:
1. (0.023)*CDA- 7.835E-07
2. (0.15)*CDC*0BA 2.725E '
3. (0.023)*CDC 8.701E-06
4. ( 0.12 ) *WBE
  • CLG
  • 0S 03 * ( AFR '-PDJ ) 9.690E-06
5. ( 0. 8 8 )
  • W21
  • CLG
  • 0S0 3 * ( AFR '- ( 0. 012 )
  • PDJ1+ ( 0. 9 8 8 )
  • PDJ ) 6.849E-08 t 6. ( 0. 012 ) *WBE* CLG
  • 0503 * ( AFR ' + PDJ 1) 1.255E-06
7. ( 0.12 ) *WBE* FCN
  • 0S0 3 * ( AFR '- PDJ ) 9.240E-06

< 8. (0.88)*W21*FCN*0S03*[AFR'-(0.012)*PDJ1+(0.988)*PDJ) 6.531E-08 , [ 9. ( 0. 012 ) *WBE* FCN *0S03 * ( AFR ' + PDJ1) 1.196E-06  !

10. WCM* CLE* 0S0 3 * ( AFR ' + ( 0. 012 )
  • PDJ 1+ ( 0. 9 8 8 )
  • PDJ ) 1.924E-06' L 11. WCM*FBH*0S03*(AFR'+(0.012)*PDJ1-(0.9BB)*PDJ) 8.630E-08
12. (0.12)*W23*0503*(AFR'+PDJ) 2.543E-06
13. ( 0. 8 8 ) *W31 *0S 03 * [ AFR ' + ( 0. 012 )
  • PDJ 1+ ( 0. 9 8 8 )
  • PDJ ) 2.361E-08
14. (0.012)*W23*0S03*(AFR'+PDJ1) 3.293E-07
15. CLE* FCH *0S03 * ! AFR '- ( 0. 012 )
  • PDJ 1- ( 0. 9 S 8 )
  • PDJ ) 9.297E-06
16. CLG*FBH*0S03*(AFR'+(0.012)*PDJ1-(0.988)*PDJ) 4.372E-07
17. CLD*0S03*(AFR'+(0.012)*PDJ1+(0.988)*PDJ) 9.282E-06
18. (0.12)*WBE*K14*PDH .7.766E-06
19. (0.16)*WBE*K14*PDH 1.036E-05
20. (0.739)*W21*K14*((0.012)*PDH1+(0.988)*PDH) 4.648E-08 1
21. (0.739)*WBE*K24*((0.012)*PDH1+(0.983)*PDH) 8.237E-08
22. (0.012)*WBE*K14*PDH1 1.535E-06
23. (0.012)*WBE*K14*PDH1 1.535E-06
24. (0.12)*WCM*K13*PDH 1.133E-05
25. (0.16)*WCM*K13*PDH 1.510E-05 y
26. (0.739)*W24*K13*((0.012)*PDH1-(0.988)*PDH) 8.896E-08
27. ( 0. 7 3 9 )
  • WCM* K21 * ( ( 0. 012 ) = PDH 1 + ( 0. 9 B B )
  • PDH ) 8.258E-08
28. (0.012)*WCM*K13*PDH1 2.238E-06 j
29. (0.012)*WCM*K13*PDH1 2.238E-06 p
30. (0.12)*W23*PDH 1.745E-05
31. (0.16)*W23*PDH 2.326E-05
32. (0.739)*W31*((0.012)*PDH1+(0.988)*PDH) 1.372E-07 ,
33. (0.739)*W23*K11*((0.012)*PDH1-(0.988)*PDH) 1.235E-07  :
34. (0.012)*W23*PDH1- 3.448E-06
35. (0.012)*W23*PDH1 3.448E-06
36. (0.12)*K23*PDH 7.322E-06
37. (0.16)*K23*PDH 9.762E-06
38. (0.739)*WAA*K23*((0.012)*PDH1-(0.988)*PDH) 4.286E-08 j
                                                                                                           ~
39. ( 0. 7 3 9 )
  • K31 * ( -( 0. 012 )
  • PDH1- ( 0. 9 8 8 )
  • PDH ) 2.047E-07
40. (0.012)*K23*PDH1 1.447E-06
41. (0.012)*K23*PDH1 1.447E-06 Approximato End State Core Damago frequency: 1.63E-07/yr

y, e L .

               -Table 4-14.         (Part=3 of 3) Level 3: Screening:. Evaluation of Dominant Additional Failures to Cause Core Damage f rom
                                          ~
                                                                                         '                   l
                                  ' Fire Scenario 2004-FS-01 End State 11                            ,,

Split  ; y> Fraction * .Value Description r

',                     AFR'       AFW, Train    D Failure (After Turbine         7.836E-02 W                                -Recovery)                       ,

CDA AFW Trains A, B, C, and D Failure 3.406E-05 - CDC. AFW Trains B, C, and D Failure 3.784E-04 CLD ECH Trains B and C Failure- 6.824E-04 , i CLE ECH Train B Failure 1.522E-02 4 CLG- ECH Train C Failure 4.710E-02 L FBH- EAB HVAC Fan Train B Failure 6;825E-04

                   'FCN           EAB HVAC Fan-Train C Failure                   4.491E-02                  i E                      K11        CCW Train A. Failure                             1.136E-03.                ,

E13 CCW Train-B Failure 1.092E-01 K14 CCW Train C Failure 5.503E-03 l K21 CCU Trains A and B Failure .1.278E-04 K23 CCU Trains B and C Failure 6.563E-04 K24 CCW Trains A and C Failure 9.368E-06  : r K31 CCW Trains A, B, and-C. Failure 2.945E-06 OBA Bleed and' reed Failure .(Transient Event) - 4.802E-02 , OS03 Operator Failure to Start Smoke Purge 4.960E-02 PDH PDP' Failure (Excluding-TSC Diesel) 9.297E-02 PDH1. PDP Failuref(Excluding TSC Diesel, 1.837E-01 Including Control-Cable Hot Short) PDJ -PDP Failure.(Including'TSC Diesel) -1.949E-01 , PDJ1 PDP Failure (Including TSC Diesel, 2.754E-01 , Including Control Cable Hot-Short) WAA ECW Train A Failure 9.394E-04' WBE ECW Train B Failure 1.265E-01 WCM ECW Train.C Failuro 9.296E-03 i W21 ECW TrainseA and B Failure 1.215E-04  ! U23 ECW Trains B and C Failure. 1.564E-03 -! W24 ECW-Trains A and C-Failure 1.172E-05, l W31' ECW Trains A, B, and C Failure 1.973E-06 l.. y

  • NOTE: System failure. split fractions are documented in STP-PSA Appendix F. Operator action split fractions are-documented in STP PSA Table 15.4-53. Modifications to PDP split fractions to account'for fire-induced control' cable hot -

shorts are documented in Attachment 4.1 to this Response.- Speciali:ed fire inpact reduction f actors are documented in , Attachment 4.2 to this Response. y v - m- - -

                                                                               ..      . -           -                   ,.                                        ~      - - -        .

e

                                                                                                                                                                                  .1 Figure 4-1 (Part!1 of 4).            Event Tree for Fire ' Scenario Z00'4-FS-01                                                                                        ,,

EtJD R3 C1 R1 C2 R2 PD FC SEO ST ATE IREG. IE PL OF C3 I 1 0.0000t-01 I I I------.. 2 2 0.0000E-01 g I I................. 3 3 0.0000t-01 . I I

                                                                                                                                                &         4    0.0000t-01 g                ,                 I                                           I........

i i g ----~.. 5 1 0. 00 M E -01 g I g g 3

                                                                                   '             ---------I------..                             6 F

2 3 0.039Jt-Of 0.00ME-91 I I ---------....... I t 0.33ME-99 a I f ' I-------. 8 9 4 0.0000t-99 t 5 I I t I I.......................... 0.0300E-01 I........ 10 6 I I I

0. M00 t -01
                    ,'         'g                                                                I ---"------- ....                          11           7 i

I-------- 'I * ***

  • I'03 1 I 11 1 0. MM E -0 3 8 I I"-'-"----"--""-"----------------------------. 14 2 0.0JME-OS 8

I I t ' I--...... 0.0000E-Of I ---------........ 13 3 I i 3 16 4 0.03 M E -O S I I I------.. 1 1F 1 6.0000f I I I................................... 0. M M E -01 f g g ' ' I-------.- 18 2 0, MM E -0 3 I I --------------.. 19 3 I I I--------. 20 4 0.0000t I I 3 21 3 0. MM E -01 t i I" "---- --------------.. 6 0.00001-01 I I  !........ 22 t I 3 I I I................. 23 F 0.0000t-01 8 3 1 I-----... 26 8 0.MME-M ' g g g

                                                                                                   --------------- -                        25            5    0.G000E-01 I                3 26            6    0.M0J E -M
                                                             ~~"-----------------I                             I-------

I I g I..... .......... 2i r a.000M-03 I I I

c - W,-~ k.,v-

     .                  ;j, C-
                                                                                '                  ~

4 e r i f ( JV

                                  -            ---                                                --                .                ----==~-ene                               -ee           -        a--e.
                                                                                                                                                                                                                                                                   '.}

eOOCma  :" .. e u ,

                        , e       e o e-e e e a.eO                e OwO e Pe oe O eO      C oe Oe oe O  e eOoOe ne oi O     C eo eo ee ee eO O O. OOPooO,e e e eC         e o. O. O. O. o, O, O, o, On 73Oe O                       OOO.. O.

s O. e'e e e O e e e . , O, C, ;

                       -Q-        w es* eu ens ese een              .ew w  w .ew e,w .e w w ep w awe.s w e.sw w w ew w w w w w w e.sw w w m
                                 . O O n o as en o e o o 84 o o o e o e o e o o o C D o o o o e o o o o o o vs                                                             ooo w

e e.e e.a eu e.e e.e een au w w e.s ene ese e.# e.ne w es, e.s in, w ene w v. J. o c o c e O o o o o o o o o o o o o o o o o o o o o o o o o o o o o O ~

  • o o o .e ocowococooOweOOomOce o e e o o - ats o o Ooeoeoe onewooemen g - .n.ne.o. n nn. nn.Cno.nnon.o >e e n C. .no.oc. oc. o. o c.oooO.oC.oO.o0.oo. o e 0 0.oo.oO.oc.o O.oo. nn. o &o C o.

e D. 0n0.o o .n* o

                                                                                                                                                                   .
  • n a c. 0 0 a O.c.o O.
                                                                                                                                                                                                  .                  e     . o. C. o .m .e. n o                         '

1

                                -000000000000000000000000000000 COOOO*dOO                                                                                                              N O O w N O O .e NCO~                        OO~         OO -

W

               - O F.

Z< . .- ~ m '

        <                 b-                              ~ m . c . . ~ m . - ~ m w e . ~ . e . ~ . e . . t> O - ~. =. . o* .~= ~ m ., e.*                                     .*            .=
                                                                                                                                                                                                         . O - ~ , 0
                                                                                                                                                                                                       . .=                  ..~. m   .

e . . . e IA - .{ O ..e- m ms.. w ~~m ~-mmewe - m m o ., ~., m < < e<e<%. . ...

                                                                                                               ., One.   - ~ m rence.ces        . . e. . ~. m. e. e.              . ~ . o ~~ m~~~~
                                                                                                                                                                                . ..e~                     w e ~ % . , 0. ..~ .m. . m. u. -

I W-t 0 0 0 0 0 8 4 e t0 4 0 I I I 8 4 4 0 $ t 0 0 0 0 0 9 0 8 0 9 0 0 0 0 0 8 8 9 1 4 9 4 4 4 4 6 6 6 4 4 4 4 % % 4 9 % q I e t-t 0 4 .1 -6 9 440 9-e00803 0 00 t0et e0O a tei eI ee Be 3e 4e 44 e eeeI ee a0 e I i i1e0e0e0et at 8e I9e0000$0e04004Ieeet eI se ee ee 3e 8e 09 83 eg e.e g g ee g g 3-4 e !4 . e 8 0 0~t's g 8 0 t 4 4 e'e a e 6 0 8 e e a e e t t t e t t 8 0 0 e e I I 4 I e 4 0 e 8 0 0 4 e a 3 0 t g e O 4 0 t t t I 8 8 0 8 8 4 0 0 8 8 4 5 0 '4 I t e e i 4 0 4 4 9 I e 4 0 I e-t.1 I t t 0 0 t i 9 a'0 4 B.4 0 $ 6 e e e d 9 e e a e e e e 0 0 0 0 9I 0B 0$ $0 84 84 00 e0 Ie ei 4,t O I $ B e e t t 0 0 $ $ 0 8-0 6 0 t t 8 4 e t t t t g 4 4 4 g a 4 6 9 g-l 4 I 4 3 0 0 I 't 0 0 0 41 1 0 e e i e e i t t I 8 e 6 0 $ e a e 4 4 9 e 4t 0 t t t 3 0 g e g g g I g 4 g g g gy g g e-

            - (,f)                   t 6a 6             e4 4          08 ee               e ee                                                         e ee
            . g.g g<

0 e tI e

                                                      =e ee 0 e e

t e e 0

                                                                                        .,e   t      e.

e

                                                                                                           .e g
                                                                                                                 .e e  ee ee 01 6e i      e      e    .      e .e 0       t        .I e   s       0t         t i e .e 8 g g eg g g
                                                                                                                                                                            ..0 e .t .e g . . . . g eg                                te     . e.e .-

e a , ' I l -1 t 0 $ i 0 8 t-i t e t e t i t e t 4 i e e I e i e 0 e t 8 i e- i . .. 8 4 0- , I 0 0 0 0 e t 8 0 t 6 1 3 e g 0-et - 0 6 0 0 $ 0 t 9 0 0 4. 1 0 0 0 0 0 8. e e t 4 4 8 a e e e e 8 t I t t 4 t t 3: e 3 6 e I ~ O. 8 0 0 6 e 5 0 4 t e e 4 e e e' e .t. -g- e !

                                        .I       6      4       4     0       4     3         0      e                    I
            ' Q                          t       I t     0               e      0    0      8       9        4       4       I     I        e      I. I      e      e     .s      e'   <g s
                                                                                                                                                                                                                                                              ;e-{

e e e 0 e e a a e -e I I i 6 s a e e e e I e e g e e

            , p                          4       e              e     i       e     e         i            9     I        e      t      i    a      e       e e                 ,

i i 4. . i 4 0 i i i i t e 1 4- .. gi e p ee i - gi e i e t4 i g.i e ee t i ei 49 i i. o,Q g .e p .e i . i 8- e i e . . I g p .e - 4 . g g g g..- t 1 e 0 e i i . . .

                , , ,                                   t             t             I                t           4                           e t              t                           I e                          i                t             i               e            5'            t            0
                  ,W                                                  t                              e           0               e           I              4                0             I               e l              0             I             6 3             3            4                  ;
                ,5 -

4 0 0 0 0 t t 8 0 .4 8 4 4 4 I e i I e i- I e 1 4 g 4 8 I s t I a b l. 1 4 4 0 0 0 t g 3

                                                        $             l             6                4            6              6           8-                              4             I O. a.e                               .i 0                                              e
                                                                                                                                                                                                                        .e 3            t-g.

i e i e e e t

                                                      ,0 t                e.                          e           e              e i

e- - e i e t .e .e i 4-ca I 4 t 0 4-e e e i e- e t. t 4 0 1 0 0- O t > 0 e e e t 6 4 e :0 Q t 4 4 I 4 4

                                                                                                                                                                                                                                                  =0                   ?

y: 8 I i e 9 9 i 6 e e e i 0 i e i 0 0 8-0 8 i e

                                                                                                                                                                                                                                                  .I 4-
                                                                                                                                                                                                                                                                    -)
                . P9                     0                                                                                                                                                                                                          t g na                    ie 1

i6 4 4 8 4 0i 0 e e e U t t 9 e e e t t i t 6 t-i 9 e e e-

             ' N-                        4                                          0                                            t           t                                                                                                      e t '.                                           0                                        0' O-                                                                                                                         '             '                                              '

i . '. e i

                                                                                                                                                                                                                                                   't
                                        .O 4

g 6 I 4 e-. 0 4

  • 0 4 9 4 y I e e 4 s 1

e 0 4

              "    U-Wg i

t i 0 .e .e .e 0 0 I

                                                                                                                                                         -0 t

i t .e .e . 0 i i i e ,!

               .*%L                       6                                          i                                                        e              e                                             e I                                          I                                                        t              I                                              1 4                               t                                          t                                                        t              8                                              8
                  .-4J                    e                                          t                                                        s              t                                             4 g-                    t                                          6                                                        i              e                                              e t                                          i O                     I i

I

                                                                                                                                                           -i l.

9

                    >-                    0         e        .e t

4 . 4 uu ;l t , l e i t t

                     -e t

I ' ' 0 0 ' -

                 =='                      3                                                                                                    i             e-                                                                                                    . l'~

ef M I .I e

g. ,e =a .e .e .-..e t.
              ~                            , .

0 0 ' ' e i e e N I O

                                       , t
                                                                                                                                                          -4 I 4J            ~:

m ,.m.

                                                                                                                                                                        .e                    .e
                  .u                                                                                                                                         t                    .i                                      .e     .e              .,e         u
          ,    , es      V                                                                                                                                   e
              . c.        -                                                                                                                                  8 i -

0 0 m t.1. - . 3 gg ------------------------ ---------- cv

                                                                                                                                                                                                                                                                    -4' u                                                                                                                                                                                                                                                ,

ll3 CP

                   , ,,, J,                  -        -----                                                                     ----                            .                                             ---- ----                          .e W                                                                                                                                                                                                                                            i
                         *~
                                                                                                                                                                                                                                                                      +

7 9 i y gl , ?e \ ~

                                                 ,e              ~ e .           e w                            . e              . e.               ~.--oo.                     DD .

C': eDr'* w w .e OOC'CeO**=eOPOOOOoeO, e e ee e e e=e o e s e e e e a e~s e e t

  • O r> .= = 0 o O e e O O O n w we w aw w w ew w w w w w e oeeeeeeeeaee4 U w n 3 m e e* c e e o n e e o o aa .ew w w ew w we w w w w w w we w w w w aw w w w d

swooe eneooneD oo o o e m =) n N e e e = a- , g %rin wOooeooeoooeDooNDD e e n n e % n n e e n o n e 9 o na n =eic et .Dse.N O O oo .m na .momnonee

                                                                                                                                                                      .N o o e o o o e e m o o e rs e ee en en ee ee -e   C oe oe ee e    s O O. O      e ee c. o n e o n e D n e a n o o D                                 N N O O .e. w o O w N O O w N O O w NeO                                                           e e e ee a e e o e a e e e                                      .

O N e O O N e O O e N O O N = O 0 N .* W. OH

 \-                                   Y,, $                                                                                                                                                                         5 yp        .= .= =                                                                               .*.

N e D o = N.= D = . .o

                                                                                  = . =.=
                                                                                        . =N . =m
                                                                                                . . =e e.m. ==Ik    . = D O.=.=       N
                                                                                                                                      .=.#.De  C.= .=  .*emN.a ea=m=a.em     .o . =e..m      's e.W.
                                                                                                                                                                              = .=     A.e..D em           .NO rw e D e .= N m w e e o% e e. o .* N                                    +8 em e A e D C .* N m er em e h
                                          @. eeDDDDDDDDDD                                                          o .o .Q= o"          .e o O w
                                                                                                               .=.=.===g=.=                           em O   . .= O.-Ce.e.D.        **.=NN D.aoem=         =m
                                                                                                                                                                                              =N m    .=
                                                                                                                                                                                                 =N.=*#    w w=
                                                                                                        =
                                                                                                                                                                    .                                  .N .N

( - 4 $4 I4e0

                                                  -0                 4%  0 I ee ieeeae ea teI -e      i 4 e0 t0 40eI te 4e4t 08 t8 t.t            0 t t I e -I t 1 4 0 t e 4
                                                                                                                                                              't
 #' 1                                                                                                                                                     t 3 e 4 g 9 e a 0 ' 8 0                                    $

B0 8 0t t4I84000 00 0 0 84 I0i 0t t0 i0e0i 0e8I 6t t0 4: 0 0e0t 0t 6 t0et.I 0 0 tI e e a0 e0440 1 00I tI

                          .-P"8
                         . Q                       0 1       $   4    4   4    4 e     0 0    0  4   8 0 t t I e 0 4 9 0 t t 8 0 0 0'S- 4 4 4 4 4 4 40'I 9     9 0    0     0   I e  t 8  4              t et 4I 4I 0e 0t tI 0e 0t 04 0I 0I 0I 0e'
                          -0                       t 4 4 4 4 I I I I e Itte tI l 1 8 0 0 0.I $ 0 0 0 0 4 I 6 4 6 3 0 I e t I t I              '4 8

4 e9 lI 04 80 9 t,f) - U 8 0 lI .e 8 ,- 6e t e 0--t , 8.e9,8 4 0 e0 to e e e.,i ese a .e e 88 t 4 84 Q. g 1 t 0 t I e 0 0 I 4 i 4 t-6 I

                                                                                                                                                                                                                  'li t 0'                                  1       I       $       6     6        4      0 3                 $        t      e         4       0 I      8       0       0       t 0      0      0      4         t       0        t 47                            4       5       6       0       a t        I-     4         4    -t       t      t         t       8 0         0 e
                                                                                                                                                                                                  .t
     '                       g.                            0       t -     t       0      8 9

I 8 0 4 4 0 0 t 0 0 I 9 e 3 a t t e I f 4 4' 4 I t t O e 4 4 0 6 8 6 e i 4 4 4 4 4 4 e- 0 4 0 N 61 00

                                                                                   $      e 00 e       e       i         9      9     0       0        e 0      0 i

t 0

       .I C                 4 t

t 8 o 0 .I ene t 8t t e e.e .e t I i I e e6 e I gB t

 )e' ! .                  -. .),         e 8              I 6              t t

0 t t t 6 I 9w 1 4 g 9 i e e I I t y 6 t e i e 0-i- t . . 1 0 4~ t t C t t t 9 t t 0 0 e t I t 4 t I t a e 1

                           'U            N                t e              e                                                                1                1
'                          :   J---      ~

t t 6 i 1 a 0 e I i a t 0---- I f 0 0--~~

                              *O                          t              i I                                              t                 i                e i

e i d' 4 I L 4 l I e i 4 1 6 4 6 1 4

                               ,d                         1              0 t
                                                                                                                                                       't                 i               4 I               t                                               t I

u i e t t 0 't e 6 I

             -i.              'at        N 4               1 i

0 e 4 i- t i

                                                                                                                                                                                                                    'i 8

L. 5 t

                                       .g                4 e----                                         6 -.

4----

                                                                                                                         -0.                            t 0

0 i 4 4 1  ! N e t 8 i 1 e I

                          .O                             i I                                               t 4                9 I <'                                                                                                                                                   t                t 44                          5 t

0 i i i 0

                                                                                                      'I t                t                t t                                                                                              t
g' U *'" B e t 5 3 4 g g i 4. I I-e I

e t 9 to e-- i 6

                                                     't
                           'h                            t                                             It '                                                             0 e

e 0 e 4 I

                           ' *)                          t 0                i c-                       O t

t y 6 e t

                                                                                                                                                                                         ,                           I
                                        -                4--4 c= >3..       y                e i-
                                                                                                                                                                        .i 6

t e e i d s' 4 0 I i 4 e

l. , e t 0

t: e M 4 I n = 4--e.g 6 t 0

                             -o                         t e

6 i t t M  ! 0

                            .M          M      --

0 l u U I O t 6

                                                                                                                                                                                                                    ,i 1                               0.e                                                                                                                                                     I                            i

't w ' l 0 a e( g- C: 0 Y I e e I w I U~ , w z J

                               +

k

                                               -~~~-----------------~~-------~~--

W

w%vm y.w-l, Mow -mwm.mgn. em1m.a,

                                                                                                                                                                                                                    ~

t - -m -. tp m. g. e,s n#m nn .. n4 n s < y

 %s%y' s                                         ' );                        UW Q                                   8y f 'r                  *~

w n

                                                                                                                                                                                                                                                                                 ,                              i ('

5O' . [.$

                                                                                                                                                                                                                                                                                                                   ~
  ';cr e M-
  !k!jO                                   vqu              M                   U"q",{k [IU y                              i , ors                    14I      <       ,-

4

i. ' $yU jpis ;lh[$ iN['f { d 3- t I !f 3D f

j'.b i

                                                                                                                                                             -).   /

x-nei

                                                                                                                                                                                                            ~~     , ,

r f

                   ) '-i                              l _'

[h,'4941 %w9R m[!d{_rigure

                                           +, - 4H                             u -- .                                                   4Y1.5
                                                                                                                                           ~

J(PartJ4fof 4)t Event'fTreeifor 1 Fire ScenariofZ O'04 -FS -011-

                                                                                                                    ~O' Y:; IT* , [- N-\

m.

 }y                                       n                                                                                                                                                        ,

LN , 2 0 NW , N-R YM ;pn M@g6 m Too k-Event. -Descriotion of'Too-Event' Failure yW R NE :y%;m [ ', 5x s x s P6 PORV;LOCAE(S). p%. A"' w, del 4 P , BF2 < PORV -!!ot ! Available for BleedEand ' Feed f(O): h.g C3 Charging lAOV0205-Closedi(S) ' pg ' g" (~ l Operators 1 Fail toTLocal'ly?open CV0255j(M) L R3' gn ~ t C1 Charging- MOV0025; ClosedL (S)l

                                                                                                                                                                                                                                                         '~

h??i efg , W.g

R11 lC2 Operators =Fa11'to; Locally:Open;MOV0025?(M).
                                                                                                                                                                                     -Charging MOV0003 Closed'(S)~                           .
                                                                                                                                                                                                                                                                           ,1-C M,                                                                            MA .v                                  i R2;                                              Operators Fail to?OpenJAlternate Chargingj
                                                                                                                                                                                                                        ~                                                                                  ,

M Mi <

MOV0006-(M)-

..% + d,lV ' 4 PD PDP Failed-(0)- Wo A. y, m;; r,o

                                         'i FC                                               RCFC C CCF Valve MOV0208 Closed 1(S)              -

m-

                                        - [I                    I p') s-b,6[-4. . , -
NOTES:l 1. J(S)'- indicates Einpact frem a'short. circuit-indicates inpactJfron an open, circuit _ x

&s%W!p;f.% 2.. 3.-(M) . (0)I ~ indicates -an operator action

             ..                   n .
 .i, iht       t        i          bt           .

l.I! !. 5 4 c .{.-w' .) 9 1 l j yl j ~ F .a r i e

  • 113; ' ' 4

[ C)U ({- ., ( j gif {. , "lM r , , . . . . iG: f = , [ ,

      <                      W           r e s
                                                                                                                                                                                                                                                                                      '4,'
                            'q3                                                                                                                                                                                                                                                                  ).

TJ.j 1; ' 4 p; . jt3 1 , e i?' y ' c' yl) lf N; s Y-  ! ..

        %D'
  @ W ,41 4

y3 e - m, -& , s t i: 6,0;W %p )r 1=

  .                                                                                                                  >                  r
g. ' _:q /

O t.*' {i-->

                                                                                          .               :                 .p-                                                                                                                                                           i Kl                          ; -                        c d                                                                                                                                                                             ,([

-). { j - 1W !.,'

                                                                                                                                                                                                                                                                                                                 ~
                                     .. Yh.~                                          .

in bh. id!'  ; 8 . m y' d - !,_ g; )',o b .'

                                  <p..,
    .f                                 d-s:-                               . i p'.-                                                                                                          >            \

p: 3 ,. . i < t.f..; c

             .r 3-a ,                                                                    ,i
                           .?h- .l*',                                                                                    -
  ' "j--k[.
                            ;i{ %                                                                                 -. j j                                                                                                                                                                                      +

s, 2 W(:. s c ~ ,I  % 3_.

                                           , i>

v; a

                                                                                                     , a'c q                                                                    ,
                                    ! \
                   <~.'                  y        .6                             i
                   ;'h                             g y
                            .N.
                                        , ?..W> >                     ,

4 - t i .'d.'{ N ,.i I i 4 < 4

                      'i ' .4                                                             li.

tk E ,.,I .b '

                                                         . d [; ,                               .e

! g.i 22 L mi. Dh.. "!',- .j .y l yby lg .

         > . 2
                                                                  ~

r } j u. p - . . . , A e . u. . ' a tj i I( , l

                                                 'T '.': i

_!h_-- , ,1,~ C, Jf ,i

. ,y . '

f .,jc I - s w' b i' '. , _y, ,i M it- i

                                                                                                                                                                                                                                                                                                                     ;g w&i                    - M-                                                                                                                            .

s l ' ' ly Os i*' 7.E } - % I s - . \ . _ _ . . . . . . , . t  ; ,,

n,, . s e - 4 , 305 .. y  ; g L ~ 1

                                                 -RESPONSE TO QUESTION 4                          .l ATTACHMENT 4.1 s'           _
                                                                                                  ]
              ,                                                                                   q NOTES ON SCREENING' EVALUATION FOR                         *
          ,                             FIRE SCENARIO ZOO 4-FS-01 END STATE 11                       ;

t,,

                        -Fire   scenario 2004-FS-01 was initially modeled as disabling-
    @                    essential AC power Train A, essential DC power Train A, and the-            '
        ;.               positive    displacement      charging   pump    (PDP). That    model      J p;                        conservatively bounded the actual fire impactsLfor the purposes of          ,

A the initial screening evaluations. However,. specific elements of 4 the bounding model introduced excessive - conservatism into the evaluation = of End State 11. In particular, this fire-does not ,

                        . directly disable the PDP. As noted in the attached list of af fected    H cables, the fire does disable essential AC power Train A-and.'its        H associated systems. The fire.also affects power and control cables for several components throughout ' the CCW system, the PDP, and            1 9                    pressurizer PORV 655A. The affected components are:                           l s

COMPONENT COOLING WATER MOV0291. The. fire damages.a power cable and a control cable for normally-open MOV0291 in the CCW supply line to the.'RCP thermal i barrier coolers. This valve is a parallel path to normally-open' 'l MOV0318, which' is not aff ected by the fire. (MOV0318 receives power

                        .and. control signals from essential Train B.) Therefore, even if a fire-induced short' circuit causes MOV0291 to close, the impact on thermal barrier cooling is-very minor.

MOV0542. The fire damages a power cable and a control cable for-normally-open MOV0542 in the CCW return line from the RCP thermal barrier coolers. This valve is a parallel path to normally-open. MOV0403, which is not af fected by the fire. (MOV0403 receives power Land control signals : rom essential Train B.) Therefore; even.if a fire-induced short circuit causes MOV0542 to close, the impact on. thermal barrier cooling is very minor. t MOV0208. The ' ire damages a power cable and a control cable for normally-oper. MOV0208 in the CCW Train C return line from RCFCs 11C and 12C. Ar. open circuit in either cable will cause the valve to remain open and has no impact on RCFC Train C availability. A' fire-induced sustained short circuit may cause the valve to close if it  : energi:es the motor contactor closing direction coil. These control cable faults'have no, impact on CCW Train C availability. Fire-induced sustained ~short circuits that close MOV0208 and disable RCFC Train C are modeled explicitly in End States 12, 16, and 20. I

;;,p f, ;s d % , '
     ,                  +" +' ci
               ' e&
               ,                                                                                                                                  r RESPONSE TO QUESTION 4                                        ,

ATTACHMENT 4.2

                  ,                                                                  REDUCTION TACTOR ANALYSIS CONE:-                                      2004 CONTENTS:                                   1 4160V Switchgear-E1A (14 cabinets) 3 ' 480V Load Centers-E1A, E1J, E1S' (14 vertical divisions) 3 480V MCCs-E1A1,E1A2,E1A40'(24 vertical divisions) 13 -Misc. Cabinets (e.g. ,; auxiliary relay: cabinets) jr         4 5 4160/480V Transformers-1A1,1A2,1J1,1J2,1S
                    ,         SCENARIOS: Breaker fire, transformer fire, cable fire, bus-fire, transient fire.

RELEVANT DATA: P Relative Fire Frecuency Data (Reference 1) Fire *vne Nunber Note Breaker 13 1 Transformer 5 2 Bus 3 3 Cable 2 4 Transient 1 5

                                                                          . TOTAL                    24 NOTES:                                  1. Events 14, 121, 123, 132, 141, 154, 159, 254, 268,                           '

342, 357, 368,.382.

2. Events 193, 251,'363, 383, 394.
3. Events 235, 246, 256. -
4. Events 8,_298.
5. Events-309, 310, 311, 313, 315,'and'316 all were small welding fires in the switchgear room during cold shutdown at San Onofre 1. Inclusion in this database is conservative. (They are included as-a single event because the fires are_ judged to be dependent.)

Roon Geonetry Floor Area: 3,641 sq ft (Reference 2) (roughly 74 ft-x 50 ft (Reference 3)) Cei' ling Height: 25 ft (next floor elevation is 35') Lowest Cable Tray Height Above Floor: 9 ft (Reference 3) Lowest Cable Tray Height Above Switchgear: 2 ft (Reference 4) Cable Tray Width: 2 ft (Reference 3) Typical Cable Tray Run Length: oO ft Maximum Cable Tray Run Length: 124 ft (room length + width)

fq" J ;7.. cM "l < $[ q .~ y > i- #: ,p7 h >: 0 <, j F; , 1 1

            . .s an Location of Kev 4160V Breakers IPeference 5)
       '"1 Breaker ~ Cubicle      '

j E Ecuiement '(Reference'6) .5 ' L 300 Ton Essential Chillers '4 ECW Pump 7 AFW Pump 8 3 CCW Pump 11 :l 4', , BREAKER FIRE: 7 a_ (1). Roughly 13/24 switchgear< room fires. involve breakers-

fr - . . "

(switchgear and MCC). E"g (2) Assume that there.are 5 breaker cubicles per vertical l division for the 480V Load Centers and MCCs. Therefore,

                                                    ~

i- , there are b  :) 14 - 5*14 A 5*24 = 204 =r C* breaker' cubicles in this :one. (3) The conditional frequency of a breaker fire involving , i; breaker X, given a fire in the switchgear room, is then 'i f(BKR) = f(fire cin~ breaker XIfire in. switchgear room)

                                                        = f (fire in any breakerlfire in switchgear room)              -ci
                                                             *f(fire in breaker Xl fire in any breaker)

(13 / 2 4 ) * (1/ 2 04 )- t

                                                        = 2.7E-03                                                          l TRA!1SFORMER' FIRE:
                                      ,(1)--Roughly 5/24 switchgear room fires involve transformers.

(2) The conditional' frequency of a fire in transformer X, given a fire in the.switengear room, is then -t 6* f(XFR) = f(fire in transformer Xl fire in switchgear room)

                                                        = f(fire in any transformerifire in switchgear             "

room) *f (fire in one transformerifire in any . 3 transformer) ,l

                                                        --(5/24)*(1/5)
                                                        = 4.2E-02                                                      1 h

r b 4 . N. .' _ _ . _

1

. 9,
v. -: Jo;
                ,e                            t                                                                                i
                           . l .1 n43                            -BUS TIRE::

n - t - '(1)LRoughly: 3/24 switchgear room fires involve- busses. - (2) Assume that 1 bus is associated with each switchgear, load' a center, or MCC.  : (3) The conditional frequency of a fire in bus X, given a. fire T in the'switchgear room, is' then:

                                                                                                                          .i
h. f (BUS) = - f (fire in bus X! fire in switchgear room)
                                                          = f(fire in any busifire in switchgear room)
              ,                                                  ' f (fire in bus Xl fire in any bus).

( 3 / 2 4 ) * (1/ 7.)

                                    <                     = 1.8E-02 E                                   LCABLE' TIRE:

(1) Roughly 2/24 switchgear room fires involve cables. Note . f6 that ~ Event 8, which is one of the two fires in-the ,

                                                . database, . involved thermal overload of cables and has since'            -
                                                - been remedied.
                                         -(2) From Reference 3, the total area of' cable trays-within na room appears to be greater than the floor area of the room                 ,
                                                                                                                             ~

itself. (3) conservatively assume that a critical set of cables,has a f r.un length of 124 ft (the-maximum run length for a cable)'. The cable tray area is then a

          ,                                         2*124 = 248 sq ft I                                          (4)oThe conditional frequency of a fire in cable tray X, given
                                                                 ~

a fire in the switchgear room, is then , s f(CAB) = f (fire in cable tray Xl fire Lin switchgear . room)

 ' w" L              ,
                                                            = f (fire' in any cable trayj fire -in switchgear room) i"                                                              *f(fire in cable tray XIfire in any cable tray)         '

J .) - (2/24)*(248/3641)

          *                                                 =.5.7E-03                                                      t TRANSIENT FIRE:

(1) Conservatively assume that 1/24 switchgear room fires  : involve-transient fuel.

                                          .(2) It is expected that most transient-fueledEfires will be.                    >

very.small (e.g., involving small amounts of trash). Conservatively treat the small transient fires as 1-ft

         ..^                                     -diameter oil fires.                                                      ;

(3) Conservatively assume that a critical set of cables has a run length of 124 ft (the maximum run length for a cable). The cable tray area is then i 2*1241= 248 sq ft 3

I Il i l si

   ,   o          ,

o-I . . . l (4) Althoughsa 1-ft' diameter' oil fire can damage a cabinet, it must be fairly:close to.do this'(Reference 7). The-area-fraction-associated:with this damage scenario is much- ., smaller than that associated-withLcable tray damage. (5)_ The Surry analysis (Reference 8) uses a modified version of COMPBRN III to-predict that a 1-ft oil ~ fire has-tc occur within 2 ft of a cable tray (horizontal distance) to cause Edamage.- (Note that analyses treating uncertainty-in the code and its' inputs show that some small percentage of~ fires can:cause: damage at greater. distances.with some low probability. ) It also shows.that the 1-f t. fire cannot cause damage:to trays 10 ft above the floorb Conservatively assume that all 1-f t oil fires can damage the trays in this-zone. The critical area is then 6*124 =L744 sq ft (6) The Surry analysis (Reference 8) assumes that 70% of all-transient-f ueled fires are equivalent to 1-f t diameter: oil' fires.,Seabrook (Reference 9) assumes a severity fraction of approximately 0.05 for the cable spreading room. This includes _the reducti.on-associated witn transient fire occurrence - the equivalent f raction (O'.05/ (1/24)) would be

                                 ' greater than.1.0. The Indian Point Probabilistic-Safety Study-(IPPSS) values appear to be consistent with Seabrook.

(although IPPSS also includes area fractions). UseLthe Surry value (although it is believed to be strongly. conservative)..

(7).The conditional frequency of the loss of cable tray X due-to:a transient-fueled fire, given a- fire in the switchgear
                                  . room, is then f(TRN) = f(loss of cable tray X due to transient fire l fire in switchgear room)'
                                             =

f(transient firejfire in switchgear room)

                                                 *f(transient fire equivalent to l' oil-firej transient fire)
                                                 *f(transient fire damages cable tray Xl l'    oil fire)
                                             =

(1/24)*(0.70)*(744/3641) 6.0E-03 ,

?

r l

nm n , 0,"s1 , o I w q ;- e i ~

          \                >
                    ,/           : OTHER ' ASSUMPTIONS :-

o (1) Power to a E 4160V load passes through: the'4160V bus and a 4160V breaker. * (2) Power to.a load powered from an'MCC in this room passes. through:Lthe-4160V bus, a 4160V breaker,_a 4160/480V transformer, L a 480V load center breaker, .a '480V bus, a 480V load center breaker, an Mcc " bus"', and a 480V Mcc contactor/ breaker. Thus, a fire.in any of 4 breakers, l 3 buses, or 1 transformer can lead to loss of power to the load. (3) The likelihood of power cable,. bus,- breaker, or transformer - fires. leading to hot shorts that energize 3-phase. motors is i ' negligible.- Spurious motor: actuation due to' fire can be caused only by hot shorts'in_ control' cables. '

                                       - (4)~Only small fires are considered in this worksheet. It is
assumed elsewhere.in the fire' analysis that 10% of all ,

switchgear room fires are "large".and' lead to loss of all -' equipment in the room.-(This is believed to be conservative, since none of the 24 fires in the database have been that large.) P i t l ~l 1^ 1 ? l i l i 1

                'l                                                                                             i, k

e i

          , - . ,nr b' '

4O. , Y, =  !

i (J r ~ m , NO9;l*I! 3d , E ,< ' 4 . w <

                                                                                                                                        ?
; l , 7. . . .p                  .

f: j,9 , ,

                         ;si   !-

MNk >ISCbHARIO-SPECIFICREDUCTION, FACTORS:, 7 ' m'

                                                        ~

!v '

                                                       -(1) z Scenario' Al Sheetu l (Reference 10)':

L w. 4 e 4 + 9 1, y, -(Open? circuit in PORV ' control cable RCVS00655ACC)h 0R o "' (Hot,short in block valve control' cable RCVM0001ACC) .

                                                                                                                                        't
                                        .\

q Dh f4 Conservatively assume'that cables'are'in separate cable j trays. Damage can be caused by a cable fire or.aitrar.sient-

                                         >                      fire, g.w                            'W L f" :                                                         FRED (PORV)      =

2*(f(CAB) + f(TRN)) I4 <

                                                                                 =

2*(0.0057 +-0.0060)'

                                                                                 = 0.023
,1 0.t
}i g}S' ,

n ' (2) Scenario B, Sheet 1 (Reference 10): 1;7 y "rp

                                                                                               ~
                                                                   .(Loss of power to AFW Pump A) OR i
                   #v                                               (Loss of power to AFWLPump'A Vent'ilation Fan)".                        '

m, , q ,c In terms of fire events. ' d M/ ((Fire in.4160V bus) OR-  :! 16 (Fire-in ATW Pump A-Breaker) OR . 4 %( ' (Open circuit in AFW" Pump A power: cableAFPMS0001-PC))

 ,                                                                                       OR~

tii; 4 ((Fire in 4160V bus) OR . . JM (Fire in 4160V supply breaker-to transformer) OR IM

      ?
                           ,                                          (Fire in. 4160/480V. transformer) OR
              "".                                                     (Fire in load center supply breaker from transformer)-OR Q[L . #.                                                               (Fire.in 480V load. center bus) OR iT)

(Fire in 480V load centerisupply breaker 1to: MCC)-OR' (Fire in.480V MCCibus)-OR (i.9 ' (Fire in AFW Pump A Ventilation Fan: motor contactor)10R %i , 4 (Open circuit in Vent Fan power 4 cable , AFFN20001-PC)c OR jMf (Open circuit in' Vent Fan control. 4:able AFFN20001-CC) ) E'V , .,

                                                               . Conservatively assume that all cables are in different-

{b.

19JM, trays.

un  ; fj_i .tl$ FRED (AFW A)-= 3*f(BUS) + 5*f(BKR) e f(XFR)

 ~ 4,                                                                                 t 3*(f(CAB) + f(TRN))-
          . g~
                                                                                   = 3*(0.018) +"5*(0.0027) + 0.042
                             ,                                                        + 3*(0.0057 + 0.0060)-                              .
  1. = 0.15 n A P, i (3)-Scenario C, Sheet 1 (Reference 10):

f

              /                                                     (Hot short in PDP control cable CVPM00102ACC).                         s
L '

li ic Damage can.be caused by a-cable fire er a transient fire.

             "n ;
                                                                # RED (PDP)    =

f(CAB) + f(TRN)

                                                                               =   0.0057 + 0.0060
                                                                               =   0.012 E 4-                                                                                                                                     [

lls

          ,p;               . , ; - *~ ,

no gn , e-1 -

      'h                                  ( 4 ) f Scenario; As and' B ,, 'Sh'eet l'(Reference 10):

((Open^ circuit in PORV control ~! cable RCVS00655ACC) OR '

n '
                                                     .( Hot short ~in block valve control cable RCVM0001ACC)).

l AND- [(Loss of power to AFW Pump A) OR .

                                                                                                                               .i
                                                     .(Loss of power to ATW Pump A Ventilation Fan)).

1 Damage (can be caused only by cable or' transient fires. 2 cables are involved in Scenario A, and 3 cables are

                                                         ~
        ,                                        invo1ved in Scenario'B. In the worst case, there are 2 trays carrying the critical cables. (Note that this                           'l assumption contradicts' the assumption used in the analysis, "I'
   ,. 1 of. Scenario B.)                                                                  ;
                                               . FRED (AFW A',PORV)-=.2*(f(CAB)'+ f(TRN))
                                                                           =-2*(0.0057 + 0.0060).
                                                                           = 0.023 m                                                                                                                   ^
  ' j.                                     (5) Scenario A,        Sheet 2 (Reference 10):
                                                                                                                               .i 1 ,,                                                (Loss >of power to ECW Pump A) OR                                             :
       ' i,                                         '(Loss of power to ECW Pump A-Ventilation Fans).

Note =that the MCC'for the ECW Pump A Ventilation Fans is. < outside of~the switchgear. room. ' ;g In terms of-fire events: s ((Fire in!4160V bus) OR. (Fire in ECW Pump A Breaker) OR ' (Open circuit .in .ECW Pump A power cable EWPM00101APC) OR- -

                                                                                                                               ;}

(Open circuit in ECW Pump A control cable .EWPM00101ACC).)- OR - 4 m' i ((Fire in 4160V bus) OR (Fire in 4160V supply breakerito transformer) OR ,'s

 !._,~' "

(Fire in 4160/480V transformer)-OR (Fire in load center supply breaker f rom transf ormer) OR' y (Fire in 480V -load center bus) OR (Fire in 480V load' center 1 supply breaker to MCC) OR (Open circuit in ECW Pump A Ventilation Fans control e q. cables EWFN20001-CC-and EWFN20002-CC)) Assume both fan cables are in the same' tray, Assume other rables are in different trays.

 .(

FRED (ECW A) = 2*f(BUS) - 4*f(BKR) + f(XFR) L + 3*(f(CAB) + f(TRN)]

            '                                                      =

2*(0.018) + 4*(0.0027) + 0.042.  : f' + 3*(0.0057 + 0.0060) [ = 0.12 H i

6f ,  ;. <

      ,q; _= , ; ..e     >
                                ~~

( m a~ . (6)! Scenario B,~ Sheet 2L(Reference 10):

                             ;(Loss Lof ' power .to L CCW ~ Pump- A) . OR ; .                    ,'   ll
                             ;(Loss of Epower to CCW Pump A: Ventilation Fan)'.

4 In terms of= fire events:-

                             -((Fire in 4160V' bus).'OR' (Fire in-CCW Pump A Breaker) OR
                                         ~

T

                                   -(Open circuit.in CCW Pump A power cable.CCPM00101APC) OR
                               '.(. Open circuit in CCW Pump A control cable CCPM00101ACC)]               ,
  .                                                        OR

((Fire in 4160V bus) OR " (Fire in 4160V. supply breaker to transformer) OR I (Fire in 4160/480V transformer) OR I (Fire in load center supply breaker from transf ormer)1 OR (Fire in'480V load center bus) OR i (Fire in 480V load center supply breaker to MCC) OR (Fire in 480V MCC bus) OR (Fire.in CCW Pump A Ventilation Fan motor contactor) OR- 1 L (open circuit in Vent Fan power cable CCAHU0001-PC) OR (open circuit in Vent Fan control. cable CCAHU0001-CC)] , Conservatively 1 assume that all cables are in different trays.- .i fR'ED(CCW A) = 3*f(BUS) + 5*f(BKR) t f(XTR)

                                                       + 4*(f(CAB) + f(TRN))                           3
                                                     = 3*(0.018) + 5*(0.0027) + 0.042
                                                       + 4*(0.0057 + 0.0060)                              ;
                                                     = 0.16 (7) Scenario C,                Sheet 2 (Reference 10):                           i (Hot short in PDP control cable CVPM00102ACC).               .

Damage can be caused by a cable fire or a transient-fire, j FRED (PDP)-= f(CAB) + f(TRN) 0

                                               = 0.0057 + 0.0060 y                                                   '
                                               = O.012.                                                1 (8) Scenario A'and C, . Sheet 2 (Reference 10):

(((Loss of power to ECW Pump A) OR ' i (Loss of power to-ECW Pump A Ventilation Fans)) - AND

                              -(Hot short in.PDP control cable CVPM00102ACC).                          ]
                                                                                                         ~

Conservatively assume that the PDP' control cable is in the same traycasLone of the ECW cables listed in (5) above. Then: i L l FRED (ECW A,PDP) = f(CAB) + f(TRN)  !

                                                          = 0.0057 + 0.0060
                                                                                                       .i
                                                          = 0.012                                        i i
                     .' % i                         +

1

 $g';,f              q; s, e ,                                                                                                           ,

a-( '; s- ' , /. p' i'J <

y . ( ,
                                                   '.s:3 b
 .u - .                                                              ,                                                                ,

r9. , '

                                                        -(9)l: Scenario'B and C, Sheet 21(Ref erence 10) :.

L' , -((Loss of power to CCW Pump A) OR ,'

   '~

1 .(Loss of power to-CCW Pump A Ventilation Fan)) AND

                           \                                            (Hot short in PDP control cable CVPM00102ACC).                 i Conservatively assume-that the PDP control cable is in the h                                                                 same tray as one of the CCW cables listed in (6) above.             t Then                                                                 .

1, L - . t ). FRED (CCW A,PDP) = f(CAB) + f(TRN)- t i

                                                                                        =-0.0057 + 0.0060
 @                         t'                                                           = 0.012 m

[ , i

                                               , SUlmARY OF REDUCTION FACTORS:
 ,4 Scenarlo                     Ecuinment              fPED l
         ;,.--,                                                                                                                       3
                   .-1. y   .

A, Sheet'1 PORV 0.023 ar- ' ~B, Sheet 1 AFW A 0.15

                                                         -L C , Sheet 1                     PDP                   0.012              -,

A and'B,- Sheet.1 AFW A, PORV

                                                                                                    -             0.023               l A, Sheet-2                      ECW A                 0.12 B, Sheet 2                      CCW A                 0.16                l C,-; Sheet 2                     PDP                 'O.012                ,

[, A ,and. C, Sheet 2 ECW A,.PDP 0.012  ; e .B and C, Sheet 2 CCW A, PDP. 0.012 j 4 I

  $ b,:t..ci n ;

'\

         'l's i t_
i.

bl g, 'w & n 't lp i n :. , l ,9j; d 't I 1 g f : l ff, i ['

i, 1

i I t

puew~m-O s l

REFERENCES:

(1) PLG, Inc., " Database ~for,Probabilistic. Risk Assessment of. , :in , Light Water Nuclear Power Plants", PLG-0500, Volume 8,' Fire = Data, Revision 10,' September 1990.. (2) STP PSA final 1 report, Table 3.5-2. - , s

                 .(3) Electrical / Electrical Auxiliary Building Cable Tray Plan -                               ^f Switchgear Room, Elevation 10'-0", Area IF,- Drawing                                            '

3-E-20-9-E-2819, Revision 13. - u .

                                                                                                              ' a.     .

(4)' Photographs.of Zone 2004, R.P. . Murphy, August 2, 1990. (5)- R.P. Murphy, c. August 27, 1990. }

                                                                                                          ,       '?

(6) Electrical / Electrical Auxiliary Building Equipment a

,                       Arrangement _ Plan - Switchgear Room, Elevation 10'-0",-

Drawing 5-E-02-9-E-1853 Revision 11. (7) . Power Authority of the '* no Of.New York and Consolidated" m Edison 1 Company of No,- ie:! , nc., " Indian Point-Probabilistic Safety S n.: "; Section 7.'3, Fire Analysis,. November 1981.

                                                                                                      ;n (8) " External Event Risk Analyces: Surry-Power Station",

NUREG/CR-4550,. Volume 3, Revision 1, Part.3, prepared for. the U.S. Nuclear Regulatory. Commission by Sandia National LLaboratories, September 1029, pages 5-19 and 5-20.  ; (9) PLC, Inc., "Seabrook Star.On Probabilistic Safety .

                       ' Assessment", PLG-0 3 0v , So c; ;;n 9. 4, Seacrook' Fire Analys'is,                          ,

prepared for Publie .;or .ec C;npany of New Hampshire.and Yankee Atomic' Electric C npany, December 1983. (10) J .~ W . Stetkar, Fire Analys.s Reduction Factor Notes, Zone ZOO 4, August-29, 1990. i

                                                                                                                 .i
                                                                                                                      ?

I a I I 4  ! 1 k

                                                                        .                                            1 i

t-jo ,W-L REVIEW QUESTION 5 ( -

5. On page 9.3-4 of-the PRA, the-second level of fire screening:is .,

stated to be- atj a f requency of 2. 0E-7/yr. In Table 9.3-9 of the; PRA, 11-out of-the'24Eendstates are apparently screenedsusing this criteria. While this criteria by itself has' not completely. eliminatedJthe fire area given in the example, it did significantly' contribute to its elimination in-that approximately 50 percent of the endstates were screened. Provide

           - the basis for the selection of 2.0E-7 as the screening criteria.--

Response .The STP PSA fire scenario screening analyses were. performed atia stage in the study when preliminary quantitative results were.available from the analysis of all important internal initiating' events and_ system failures. These preliminary-results indicated with some confidence that the final mean' core damage-frequency from-internal events .:ould be in the range from 1.0E-04. per year _to 3.0E-04 per year. The1 numerical criterion. applied in, the second.and third levels c: :no screening analysis eliminated a fire scenario end state f rom t urtner- aetailed consideration if its-maximum possible contribution tc the frequency of core damage,was-less than-approximately one-tentn'cf-ene percent'of the internal? events total; i.e., less than approximately 2.0E-07 per year. It should be ;noted 'that many of the fire scenarios that were eliminated by this criterion ha"e actual core-damage frequencies much lower than.2.0E-07 per year. In fact, of the 'l l end states cited-in STP PSA Table 9.2-9, only end state 20=was expanded-to - estimate 'its total ' contricutien to core damage . bef ore 'it was. eliminated by this criterion. The-:requencies associated with the other.10 end states are tne :requencies of plant impacts that fall far short of-core damage :.e., :ther independent system failures- . must occur before any of these. tU end states leads to core damage.' The example.for scenario 2004-FS-01 in the response to Question 4-shows that at-this level of the screening analysis, the estimated core damage f requency f rom fire-induced f ailures typically retains considerably- conservative assumptions and represents; a maximum upper bound estimate to the actual total.

Section 2 of the ~ STP PSA final report notes that-the mean total core damage frequency fron internal initiating events is approximately 1.7E-04 per year. This conclusion fully supports the use of 2.0E-07 as the original screening criterion in the second and third levels of the fire-anal /nic.
       -w wy y -
   +
r. ,

l REVIE*J QUESTION 6 I

6. On page 9 ?3-4.of'the PRA, endstates are quoted as being screened -
                                                                    ~

F _

                    .at-10. percent.of-the equivalent. internal event' frequency. .
                   ' Referring to.the example given in Chapter 9 of'the.PRA, approximately one-third of the -fire area endstates are screened            )

by this (10_ percent) criteria. It must be noted that typically j much more- chance for recovery exists for internal event' f ailures as compared to fire-related failures. Therefore, the potential exists that if further development of the= fire scenarios occurred their relative contribution with respect to similar internal events endst'ates' night significantly be altered. Provide the rationale for the selection of the screening. , criteria of 10 percent.

                                                                                                ]

u Responset The STp .pSA fire scenario screening analyses . were performed at a stage in the study when preliminary quantitative . g results were available from the analysis of all important internal initiating events and system fallares. Those analyses had already accounted f or important operator recovery actions. For .the internal event-impacts most frequently usou in the fire. scenario' screening 1 process, the most.important.or'these recovery actions are manual startup of the positive displacement charging pump,' initiation,of U i the smoke purge mode of EAB W/AC operation, and local efforts'to ~ restart the -turbine-driven AFW pump a f ter a spurious trip. With .the d exception of the diesel generator recovery model .used -in ;the analysis of loss of 'of f site power events, none of the other J recovery analyses for the STP PSA take~ credit for repairs of failed

                                     ~

h equipment. j i The 10%! screening criterion for ::re scenarios was applied to the l totalEfr'equency of the comparacle internal event impact, includina j consideration of the internal event _ recovery _ f actors. Thus, the 1 frequencies of nearly all the internal event impacts had already , been. reduced to account for reasonable recovery efforts before the i fire scenarios were compared and screened using this criterion. j Since.no additional recovery actions were considered for the fire i oscenarios, the application of a numerical criterion of 10% ensuredJ that the fire-induced contribution to each end state impact would  ; remain a small fraction of the equivalent recovered internal event l impact.. j j While it is certainly true that fires.can present plant operators j with confusing and. stressf ul sets at stimuli, erroneous instrument-readings, and unexpected -equipnent response, it should 'also be. jJ acknowledged that reasonable recovery actions are possible during, j many fire scenarios. The Brounn F^rry fire demonstrated an extreme ! s case,of innovative and succesn t'u ! operator response. In a less  ! severe fire that damages only 1 '" action of the plant systems, it certainly seems reasonable to account t or relatively simple actions to: start standby equipnent, .acally manipulate accessibic components, and disconnect r au :: o.i control circuits. A b 1

        .;o[ j -pi              ,

4 l

                                                                                                           ,i It. should; be noted that- the
                                                                    ~

sensitivity : analyses that. were-performed .in . response to. review - Question -l' used ' a much more conservative screening criterion;of 1% of the equivalent recovered , internal ~ event --impact. (The 1% criterion i s a l s o .-- u s e d in ' the  ! example for fire scenario ZOO 4-FS-01 in the response to-Question- W; 4.); Application.ofithis criterion had no significant effect on'the-

 ,                number of fire scenario end states eliminated at'this level of the-                        '

screening process, nor did -it-alter.the overall conclusion from the-fire analysis t h a t ,.f i r e s are- a very small - contributor - to the ifrequency of core damage.at.STP. s. I e s i s fI 0i h M J. 4 r i

OM np , w c,

                                                                        .                               .l
+          4 ihLy                                                                                               ,       ,

v-REVIEW' QUESTION 7' '! U '

7. In response to previous questilons (HL&P letter ST-HL-AE-3414),,

g m

              ' ~
                           'the111censee1 stated that the total, core. damage frequency             '.

b resulting from fire-initiated. events is approximately. .

 , M.                      '5.0E-7/ year. On page 9.4-23 of the:PRA,- a simple summation of control room core. damage frequency-yields 8.02E-7/ year. Explain                ;

i] , this difference. .; A

  • Response: The total' contribution to STP core damage f rom! fire- ,

initiated.eventsais approximately 5.06E-07 per. year as stated in-- the referenced letter. This is approximately 0.3% of the~ total STP - N. ' core damage frequency of 1.7E-04 per year. The responses in the

.                       referenced letter also provided details of the four_most important control- room' fire sequences that dominate this total. Three of,

[ these sequences . are initiated from fire scenario - 18 in STP PSA-

k. -Table 9.4-3, ~ and the fourth sequence is initiated 'from fire f -scenario 23. .,

l '

                     , Table     9. 4-3   presents the     results from the control room fire scenario screening; analysis. It is esse'ntially equivalent to Table 9. 3-9. f or the' analysis o f MEAB fire scenario -ZO52-FS-01. (The
                                 ^

( y '

                     - same type of screening. process was applied to the control room' fire            ] '

scenarios asfis described for other plant fire zones in STP PSA-

  ;i                    final" report Section . 9.'3. This process is also outlined -in - the 1 example for : fire . scenario 2004-FS-01 in the response to Question'             ;

4.) A source of confusion has apparently been caused by the heading for the last-column in Table 9.4-3. This column presents the total-estimated' core damage f requency that could result- f rom each control  ; room; fire scenario. As noted en'STP PSA. final report page 9.4-19, ou this f requency was quantif ied "by using conservative. values for the . I ifailure frequencies of'componente that have to fail-independently j of thel fire for core damage to' occur". Thus, the. frequency values

                                                                                                       'y 4                         in the'last column of; Tab 1,e 9.4-3 are -simply consistent upper bound-in                       estimates that-are usedlin the third level of screening for~the

[ control room fire:scenaries.-They are not precise estimates of:the actual. core damage ~ frequencies that would result from formal propagation of each scenario through the event tree models. As noted on STP PSA final 13 port page 9.4-20, control room fire scenarios 10, 18, and 23 from Table 9.4-3 exceeded the 2.0E-07-per o1 year numerical screening criterion and were subsequently quantified ' in the final plant model. results. The sum of the actual core damage frequencies-initiated'from these tnree fire scenarios is the

                        -5.06E-07 per year total cited in the previous response.

4

      .c i

4

W1 4 o;4. :ov' "i , J m r' ef

   &             Movo235. The fire. damages..a power cable-and a_ control cable for-normally-open MOV0235=in the-CCW supply line to the nonessential i

cooling loads. This. valve is in series with normally-open MOV0236, ,

                 ~ which,is not affected by the fire. (MOV02361 receives power and -

control ~ signals from essential Train C. ) If it is -.necessary to isolate these, cooling loads, MOV0236 remains available to close normally from. automatic or remote manual signals. The operators may also locally.close MOV0235 using~its handwheel. If a fire-induced. i short circuit- causes MOV0235 to close, the -operators can deenergize .;

                 'the. motor circuit and manually reopen the. valve before any of the              i nonessential loads are restored to service.                                    t i

POSITIVE DISPLACEMENT CHARGING PUMP. H-

                 ~PDP. The fire affects a control cable for the PDP, but does not
                 -affect a power cable for the pump. A review-of.the attached HL&P-cable routing information has identified this cable as providing:

the lube oil pressure interlock signal for PDP operation. Logic.  ; Diagram 9R-17-9-2-4 24 04 (Rev. 7) and Elementary Diagram 9-E-CV30-01 , (Rev. 5) show that this interlock circuit is normally open when the pump is running. If the fire causes an-open circuit!in the cable, the PDP can be started from the control room, and it will continue to run~ind.efinitely. However, it will not trip automatically from a= low lube oil pressure condition. If the' fire causes a sustained short circuit'in'the cable, the pump control circuits will. sense a , f alse low -lube . oil' pressure signal, and the pump cannot-be started. (This signal will also trip the pump if it is already running when !- -the short occurs.)~ Section 9.3.2 of the STP PSA report notes that -! a '" generic" value of 0.10 is assigned f or the conditional frequency

                                                 ~

l ! .of sustained hot shorts-- .in control. cables. Therefore, the appropriate. conditional frequency for PDP failure in End, State 11 is: PDP Failure = (Sustained Hot Short) OR (No Hot Short) * (PDP Fails Independently) If normal AC power is available, this'value is: i PDH1 = (0.10) + (0.90)*(PDH)

                                               = 0.1837 If 'the PDP must be powered from the TSC diesel generator, this
                 .value is:

PDJ1 = (0.10) + (0.90)*(PDJ)

                                               = 0.2754 l

1 i-l 7

ifhV,4;. 's-4 ' PRESSURIZER PORVL655A-PORV655A and ' MOV0001 A. The fire ~' damages a- control cable for , pressurizer PORV'655A and a rever cable and a control cable for its= normally-open. block valve MOV0001 A.. An open circuit or c a - short circuit in the PORV control cable may prevent. automatic or remote manual' operation.of the valve and disable the bleed and feed mode of direct core cooling. (The STP~PSA event model success criteria-require both pressurizer .PORVs to be opened for' bleed and feed'

           ' cooling.).End State 11 also~ includes the impacts from fire-induced susta ined - - short circuits in either cable .fer PORV block valve MOV0001A. These'short. circuits may cause the' block valve to close:

if they energize the motor contactor closing direction coil. The actual equipment _ failures that occur in fire scenario ZOO 4-FS-01 End State 11 are: Essential AC Train A

                                  -Essential DC Train A Pressurizer PORV 655A
                                                                                                                                                       ,,'     ~

u I - r-

                                                                                                                                                                                                              ,- .. - ,-;       5 ~. S'I        ' l   .'.,I,,        . ,e[ '"

m m.. . . _m_ . m'g

                                                                                                                                                                                                          =

2 - - y-l _

                                                                                                                                                                            ..       ENCLOSURE;5 '                         .
                                                                                                                                                                                                                                                    .-jp57                 m
i. -.

SOUTH TEXAS PROJECT FIRE RISK ANALYSIS' l l l i i John W. Stelkar

                                                                                             - September 19,1990 1                                            I ENGINEERS = - APPLIED SCIENTISTS ~= MANAGEMENT CONSULTANTS .

g PLG W tBeach = CA-g

                                                                                                                                                                                        .Washirxfon = DC o.
  .-'-.,w-                  m.      tat         *ae. s_ -em   g 6G* -9 7,ee        *-+*,-M.7        '.p                   --c'p. 8.#'   e-%s*p--- -gwg                              a1_q9.em-gg
                         .-                                                                          . g.%w-Ce-" -'-+FeL             p                    9.-          - _                            ry    ,-'p-a*L d
                                                                                                                                                                                                                        %     a r    =g- .y+,y,g       - ,_ _ _
                                                                                                                                                         +
3. .

SPATIAL INTERACTION: ANALYSIS - L A SCREEN!NG ANALYSIS OF THE ENVIRONMENTAL HAZARD S.CENARIOS

             .       APPROACH                                                                                                                                    !

ESTABLISH LOCATION OF PRA COMPONENTS ESTABLISil HAZARD SOURCES IDENTIFY ENVIRONMENTAL llAZARD SCENARIOS. ~ ESTABLISil PLANT IMPACT FOR ENVIRONMENTAL HAZARD SCENARIOS ~ RANK ENVIRONMENTAL IIAZARD SCENARIOS BASED ON CONSERVATIVE-- FREQUENCY ESTIMATES e IMPORTANT RISK CONTRIBUTORS TO BE ANALYZED IN DETAIL'

                                                                                                                                                                -i F
                                                                           +

Pickard, Lowe and Garrick, Inc.  ;

              ~ . . .      --    ...   ;   -.:-...-,,.--a,
                                                         .          . ,; . 2. _ , . . . _ . . - _ _ _ . . _ _ _ _ _ _ _ , , _ _ . . . = _ _ _ _ . ,

4 LOCATIONLO.F PRA COMPONENTS q q COMPONENTS WITHIN EACH LOCATION TABULATED-CABLES ARETHE MOST IMPORTANT COMPONENTS l . l LIMITATION OF THE INFORMATION SOURCES  ! l L 4 I i 4 Pickard, Lowe and Garrick, Inc.

                                                                                                                                         .j
                  ,            ,           -  2- . . . . . ._ .- ,. -.. . _ _ . . - ..          . _ . . ..s.. . .__ .- . - , .

Fire flarard and Failure Model CRITICAL LOCATIONS e FIRES'CAUSINGLAN INITIATING EVENT AND/OR FAILING REDUNDANT OR DIVERSE VITAL EQUIPMENT-e VITAL EQUIPMENT IS DETERMINED lN PLANT l ANALYSIS PART..OF A PRA e EVERY LOCATION IN THE PLANT HAS TO BE CHECKED e AUTOMATED METHODS

  • RESULTS ARE PLANT SPECIFIC i

Pickard, Lowe 'and Garrick, Inc. . _sy .m .- . . , , _ . . , sp . . , . . . , . . .#.,, . 9m,s- ., , , ,, ,, , . . . , . .

y ;. _ ;p. - w . --.

                                                                                                                                                                                                            -. ~
                                                                                                                                                                                                                           .~
                                                                                                                                                                                                                                                       - _.; . .mz
                                                                                                                                                                                                                                                         ~

m, , - .,3;..;;m . _n{a

                                                                                                                                                                                                    ,                               _ -_.        * ~                          +

w-

                                                                                                                                                                                                                                                                                         . _~   :

a

                                                                                                                                                                                                                                                                                 ~
                                                                 'ri re ' Scenario 2004 -PS-01 Tct b l e 1 - 1.                                                                                                                                 -
                                                                                                                                                                                                                                                                                                               .}
q'
                       .....s.

Dt fli D irac _ , y =: ClertrReal Auelliary.Du!Iding - t s tC a t t ura tsas tC - . f$r-A Swttchgear fien= t tst A t IDet 1.s r.s t:ssA ttsf4 -2004

                     !.C l 93^11111 14; S Ict:A f ort 2001-rS-OI t6 etalt.f tn 1 %TE                      IS Tire and Smote
                        *' t !.tWsit t 1%r0 + .CC Cante=I Cable (C Ctectrical Cabinet IC fastrv+entation Ce6te tC tned C e.e t e r itC 11 ster Control Center PC Power C.ble ftC fariog Cabinets Sif Switchgear f ra t r .sa s t ei t reel an transfer .r
                      'l l !;fttsaftttt Itat t l Allnes : A r iftE rftf ats' Aest tir tite StrisitCES Ita 2).

4D P A tl8 tir I'f1(H'AC A t ittf f a- I' A f f f 1 % f'C

  • L (IC At_ I IC D.

b ~ Pf tOf*ACA T !Uti 10 - t!!!f fC

                     *P tilflCatit C f t A ttitif S -
f. 9 Allpi t filisat. SCf tsAn t ti DC T A tl.

s e es'. f graf 3 5 fil S lft 1 C 18 D it) 1883'l JffetC. 19 80 l' I' flC J S ITr $ F C IF D AfsD AD aM f fit ( 4DJ8

                  **vssit      r.*.I       II I( l 13:4; ptift SrstitsMt fit 5% S 11 f t Oft II V f Otfif'fif ff f 178 2006. If8C t e mit 8 I f ul                            ?,e tt tH L, / 6 st3 8 CAST'S DO PJOI DAf sAf;C F 49 f f f tr tif Iet f i tf- -

It

                           ".C f esArvio f fil nortsC Y -                  1. 3.IC -3 / ) ft .

Di Pfl4 T Qif f r*1f t88 Af f I C l[D fotstr ID f O'fif* tyrC Ar r ecoovis - CC CC Ca.* trol Cable Cf8tt'.'1 fif f t ett tfC E AtiPOOOOI-PC rc rower Cable %I S SAf 3fI t

                                                                                                                                                       %f P. SAf all i Ar t is?OOO1 CC C f.C Centrol Cable                                                                                     bl S SAf tit i At f Is?oung rc FC s' ave r - Cab i e
                                                                                                                                                       %f S SA8 til t of P rt'".UGO I - rC ' PC rever Cabie                                                                                   %fS SATun3 Ar vat:75ty-CC CC Centrol Cable Arv(,Sootes rc .fC Control Cable                                                                                        %IS ............. 'ttBSSirsc .................
                                                                                                                                                      %E S S^8 883 8 Ar *.*C $on t o PC PC-rower Cable                                                                                       %f G $^8 til l Ar or:f375?3 CC - CC Control Cable                                                                                    .%t s SAf tet Ar etess7 323-rC rc Power Cable                                                                                         %fS Saftett (C Aensoool- rc . CC' Cant r e t Cable                                                                                  %t 5 SCe nsA C res nNWO R - TC PC reaner' Cable                                                                                   - VI S Sf fl84 C t erans s pierC CC Centrol Catte                                                                                      % f S Sf f eta -

CCrretos ose# C PC'rewer Cable - )F S Scrs#4 CCvan95'99 -C C CC Cent rol Cable TFS C8t'8s A - - e.' d i gr ,.. -m.,.i e m-W e see .r' er-y.w* w-ws--' .*i.*--m4----.,i ..g.r -W -N - *Py'

                                                                                                                                                                                                  -              '+""f      ' * ' -*#-' 'e"T ' % TM*'    W*i't                          w___     -T'     **
                                                                                                                              --  c           ---
                                                                                                                                                             ,            g , .,                           ,

r . . 9,

                                                                                                                                                                                                      ~

Table 4-1 (Part 2~of 4)'.: - Fire Scena rio 200 4-FS--01'

                                                                                                                                                                                          ?~             .

C C es s;610l ? C C. 'CC Centrol Cable VE S StilerA J C C os413OI ? -PC . '. rc Powe r ' Cab l e VCS SrH8E A 1 - '; o% C C s t Ut'O

  • 0 - C C. J CC Centrol' Cable  % C S Sitt f A' C Cter:ve050 rc . rC rower C ab l e Vrs SitHfA
                        . CCuus0057 CC ' CC Control Cable'                                its OI-PCC' CCVisOOo3? PC 'rC Power Cable                                  %ES DI-PCC -

C C wff

  • DOS F - C C CC Central Cable. . VE S SrC t t A. SF Cl?A CCvritio05 7 rc rc rower Cabt* VCS SfCifA.SrCe?4 C r ve n soo *> 7 CC CC Centrol Cable  % t s tr C i l A. Gr C l ?^

C Cvrusco3 ?rrC."rc'rever Cable. VE S Sr CI t A, Sr C l?A C C Ur u t00 AO- C C 'CC'Coatrol Cable vtS SrCl24 C C vf u soot P C f'C rever Cable ,

                                                                                      ~) CS Sr C 3 24 .                                            u CCwutocA1 (C (C Centres Camle.                               -%fS SECl2A                                                                                                 ^.. J CCUlHP10A3 FC rc Power Cable                                c%fS STCl?A
                                                                                                                                                                                                        ~
                       . C C'A tlMVf 4 CC ' CC Cestret Cnse                           ALS ST Ci t A C CetuponAl-rc rc reve r Cable                                  MS StCllA C C Vituou A F -(C j . C C C en t r e t C a b l e           ~ W S STClta                                                                                            '

CC er:ot19e.7-rc rC rever Cable Vr5 SrCilA C C es u son A7 - r c CC Centret Cable %C3 CrctgA,srCl?A-C Ct ensonA7-8 C rC Power Cable it s Src s sn trCl?A C C vrit'eO 70 ( C CC Contre!' Cable ' %C S SrC i t A. Gr C 3 ?A C C va:U.'070 rc FC Power Cable W S Sr C i l A. tr c t ? A ' py CCtrWr?on.fC- CC Control Cable %fS STCllC.SrCl2C C C vs t'F'?Oli oc FC rever-Cable %CS SrCllC. SrCt pC C C ve tt v.735 ( C CC Centrol Cable %ES CCu-t I3: C CvrtunFIS rC PC rower Cable %ES r.Cu-st33 (Cvf ulo??l -f C CC Centeel Cable %fS UI-IDC C C vf uso?7 0 PC PC Powee Cable  %[S DI-fDC~ C C yr su0 t s # - C C CC Centrol Cable %ES DI-PCC ( C es spo li. P C PC Power Cable

                                                                                        %ts US-PCC C C v8 stW. t? i C CC Centrol Cable                             trS fil-IDC C ( vt H trs *,1 ? - r C PC Power Cable                         VFS ttf-IDC C C *. 'N tor 1? ( C CC Central Cabt.                           vi c SCCasA C C *.-r ee ne,. t ? s-C  PC raver Cable-                       tFS SCCtM C C *. e n 1s. 9 3 ( C CC Coateel Cable                         VfS SCCBM C C oru P: A 4 't . r c rc rower Cable                         VES SCCuo C Cve st enf r es C C CC Cont rol Cable                       %E9 UI-CPC C C t t ttto rr n rC VC Power Cable                           vl5 UE-crc Crut0077? 4C CC Centret Cable                                  DES US-CPC C r vr son s t?. t*C      PC Power Cable                       %CG UI-Crc C e sat r 80017 - C C CC Centrol Cable                         % ES MECeth (f sAf ttso33 7 PC PC rower Cable'                             *.e5 SECllA.

(seo n 0001 -C C CC Coatret Cable  %[S SECitA C8tClet 0001 -PC FC rower Cable VFS SFCitA CasCtat 000 5 CC CC Control Cable - if S SFCitA C : Cost cong - rc ' PC rower CabI,

                                                                                     %CS STCIM.

Cearf ul0001 CC CC Central Cable %CS SCCIM Csis r tt0005 rc FC Power Cable WS STCIM Cir.'AH19 7 7AC C CC Control Cable  %[G STAGA C e svoD7 4 7 7tlCC CC Conteel Cable %ES **********o** .~ tti ss t rJC ****ee**eesseeese ' C ast 58 8 88f " A SC fastev+entation Cabie-C Srrie.o s o s Arc FC rgwer Cable trS t ras e rtu . ~

                                                                                     )( $ C f s".rft V A CSvettsocnIACC' CC Control Cable                               W S Crsss stvA C vAs u s0DO S - C C CC Contrel Catle                          if S D8-r5 Cvasn:0095 rc PC Power Cable'                                  vtS OS re CverspO B O t flC C CC Centrol Cable                           *fS Uf*ro Cvre rsalOlftrc rc Power Cable                                 rC G Ut -rII          ,

m 4

 .__.     .__ _    _~                      _ ;_ __                _         - _

n~ . n. ,2 u 2, c,, _ . 4- _ .. .- C _ _ , , _-

                * - ^ ~ '.               r
                                           ~

r f ': '

                                                                                                                                                                                                                                          , n. _;_ ,_.__ ~_ . u-Q-_
                                  ~

e, s

                                         ;. ,                                   "33
                                                                                                                                                                   -m
                                                                                                                                                                                      .                                  ~     >        =

w g;

                                                                                                                                                                                                                                                                              - j,, c 3              -
.,? ~
                                                                                                                                                                                                                                                                                      . ' . Q, Tabici4-1]              Parto3 of 4f..- Fire Scenario 2004-PS-01'                                                                                                                                                      '
                                                                                                                                                                                                                                                                           ' ~~

2TADtE D-(itentleved) ^ "

                                                                                                                                                                                                                                                                                 ;}~i CvritoolO?^CC:LCC Cantret:CabIe1                                                           yrs DI-rpr                                                                                                                                                 '
CvvA00?OS-CC CC Control Cable- TC S DI-CitC '

Cvvt M t000:f - C C - CC Cantrol Cable < TCS HI-Cito x Cvvensnool rc... PC Paver C ab le it rl U S -Ceto . O C vVt toco l ? - C C 'CC Centrol Cable lifS US-4Irl' CVviulool2 rc rc rawer-Cable it s 08-103 C VvitoOo?5 -C C CC Centrol Cable- NF S UI-Cit 0 - C VvrtOOO?5- rc FC Power Cable ' T r S 0 8 -C180 C vvrtt 30 4 #.5 C C CC Contral Cable DrS til-S ts! CVvil1301/.5- PC PC r awe r Cable ' %r3 888 -8 Di _ C Vvest'u l1186f C (C Canteel' Cable' ' YES U S -rit revriosa IF JfirC PC rawer" Cable ' % r 5 U I-f'fl ISC DC'io l li - C C CC Contral Cable YC'l St1Cl l pc pce;o s :lt - PC PC rawer: Cable %CS fipCll Oct es?o00 s - C C CC Central' Cable YES SOCl3 fica ss?opol-rc PC Powe r Cable ti.rt:Csonoo g Arc . rC Powe r Cable DCS SitCll it.S SC I All DJft C t #000 3 rPC PC rever Cable '%rs 501018 ft.stsC8sopo?At'C _ rc rowe.. Cable 105 CESAll f* st1Cetoon?strC PC rawer Cable DCS 50808 8 p.rra s fenoo t erC PC Paver, Cable itS 508A88-g od rs?noO S M C - C C C on t r a l Cable

                                                                                                                    ' )[ S SCCtfA                                            -

I t N ta?OOD?-( C CC Centrol Cable it'S SCCtf A ' '. f earttontolerC 'CC Contral Cable %CS SCCt8A r e scr u nn l ol arc cc raver Cable brS SrCasA 8 es".s ?stlo g At C CC Cente.I Cable vr $ SFCt#4 t ess ttoo l ? l - t C - CC Central Cable %CS SEC4tA fuvs17: 43-rC CC Control Cable T C S Ft814 titvCl7892-CC CC Cantrol Cable - )[ G Fl8 B D.. t en r e 181F rC CC Cantent Cable irs r888C tar.tsis41-CC CC Control Cable . VCS rtslO t a( s' a s s or.n l - C C CC Control Cable brS dCilA su f ratopol rc PC rawer Cable

                                                                                                                     %[S crc 8ta ser e rit ono.?-C C CC Centeel Cable                                                          YtS St~Cl2A-serr est poo? PC PC rawer Cable                                                                VCS Srct?A e sc ot taoon g - r c CC Centrol Cable
                                                                                                                     )CS Cf 8 8 Sf14.

s ar ettoono s - r c PC rawer Cable t rS CtalSot. I tC Os tooOc t. -C C CC Ceestral Cable )[9 Cells 87t_ 88CUrtitOOO A - rc PC rower Cable ' DC S CfflStit s er r rr?ono t - C C CC Control Cable VCS SIADA I4 8 ts?opol-rc FC rever-Cable 4CS SEADA fatFff?opti CC CC Control:.Ceble itS SCottA s et.r ts?ool g - rC rc Power Cable 105 SCArtA - l et. voil7/ C C CC Cantrol Cable TCS StattA s er vAtl?t.',0 C C CC Control Cable VCS Cr A!!A s er vA07t.5 8 - C C CC Control Cable Vr'I Sf'AttA ser van 7t.51.- CC CC Cantrol cable '415 SratsA-servaf37/ 57 CC CC Centrol Cable _ - V r 5 St. Art A e t'WAu P i l e - C C CC Control Cable ,VCS ttSIVA stSveflF18 4-rc PC Power Cable' TCS8858VA

                                                                                                                                             ~

ttSvar3 F i?1-C C CC Control, Cable VCS fl% BVit - fo;voofilt-CC CC Cantrol Cable' D C S 8898 vc st';vAus t i g CC CC Cantrol. Cable *C S 88SIVD ' (t*;Vfi'IF 4 I I CC CC-Conteel'Cabiej - J VIS SCPUffVA

                  #s-;vis17 9 t i -rC - PC rawer Cablon                                                           DCS SCrtM8va                                                                            _

rnSis if I A ' Sal Switch 9 ear; %CS'************e #18:5 878C se***eeeeeeeeeeee ensuCountA f;t8 Swl t c h p ea r

                                                                                                                  *EE *************                       I USI'#O *****************                                                                                                  '
                                                                                                                                     ~
  • i..

42 4 c, . . . . - . i.e .c re.-- y .y =-e- .huahg -M'* w w-vs.a4W- r#-* -1'-W 7y a$W " .'-yy E.' - t M 'a -

                                                                                                                                                                                                                                                            %en    =mi

9q l " d

                  =-                           -

s y v

                                             ~ ;

m.-. y ' s L e . w v. o-n_ G

                                                             ^
 ~                                                                                                                                                                                                                                                                                                   _

e e

                 .n
    ~-                                                                                                          *                                 *                                                                                                                                              -
                                                                                                                                                  *                                                                                                                                            =
                                                                                                                *
  • p
 .                                                                                                              *
  • ew

_- C r f cs t

                                                                                                             !                                 I S                                  ;

S ". I t 1 i w

                                                                                                            #                                 f 1                                                                                       *                                  *                                                                                                                                        .
                  ,0                                                                                      . *                                 *
                      -                                                                                   E
  • S * *
                                                                                                         .*
  • n F *
  • f
                                                                                                                                                                                                                                                                                              +r
                      -                                                                                                                   A
  • i M -N s

0 4 4aA4AAAAA4t. AA*355TT I

  • AA4AAAAAAAAAAAaaAaAAAAA I f 3 Sg 3 i' t I $ t; I t f t "e. ". 5 (C se.'r; e; Ss S d *s S ; '; ;'t; l't; 'tt di CI MI CI*;et St f

t 8 l t t 3 t R t t l CI l

  • t t 0S ***

3 1 t t 8 i 0 5SSSSSSS.SSSSS*l'55S.Vv4 0ECCErTrrCrFr*t.

                                                                                                                       *At                          Hi4 s   8 f enap          t uf mte rtt f i p a t I I t s 8

t f a i t r 2 f rst 8 t 5*SS5SSS'" SSSSSSSSSSSSSSSt t 8 t a a t Mel o t e t s t t e . t S t SSSSSSSSSSSSSS'f M%TFMi%% rIfCCCf f f t SSSSS4SSS5;t rrCTF1 l t t rirF SSSSSS$SSSSSSsSS5S c .

                  ._ o                      1                                                                                                                                                                                                       v i                                                       %% D ) % % 4 vb i% % % 1 iiiD b t % % I%f%fstDiF                                                                       % vb   t fi bfrf    % i%   tf84%   f g  r         3
                  ,. a                                                                                                                                                                                                                              3 A

, .r

                  .e                                                                                                                                                                                                                               3
                                                                                                                                                                                                                                                                                               +

c s t y

                 .S                                                                                                                                                                                                                                n n

u i

                  ,e                                                                                                                                                                                                                               r
                                                                                                                                                                                                                                                                                    .         g o

_h 1 . F r r e r r w e e e r .- t t.e t n

                                                                                            . t                                                                                                                                                   r

_) . e e n e s 3 C C C ri

          ; l4.                   . e'                                                                   s g

e .l l .

                                   . l             .t              e o l

a t e rt eeee e e , e e e' e e f_ rb ert e er ee r e e=t enb t l t t l l 3 t t l l e- . e e e t t h. t e al e al t t t l t

o. t. l l t i l at a aa b e cb > t et en eb en t t

n C b t.a.Cb n e. aeaaaaeaa e t b nt . e- bCtCCCCCk b at i a a at at at a l aI*t aletalebt a a CCCtChCtCbC>CbCbCCb a en at eas S Cel Cal CCCCCCCCCl cte l l l l CCt 4 e a a a a Cs V e.ca . l a - a eeesCl a Cte Cle Cle Cse Cte C t Cl C a a( a . e r oaooo i t edtreee r wt eeea rr rr ree grat rr et r r tr trtrt reset e rt trretr r re r e r e 'e e re e r ro r A 5

                         =     r 0

t r mnwanwt eoooooaoer wvteaae ewl n v n n n n n v w n n n v n e. =t et et et et et

                                                                                                                                                                                                                         . n-                 s r

I

h_ eeeeeeeen = wnvnwnwnv nwnw et e f Pa Orr rti CrCCCCCrf
  • eeeee oaeeaeooeatooeo rn
  • s tCPt ' Cr l e t f.

P. t 'l A

        -        j.           CCcCCCCCtCCcrCCcCCCCCCcCCCCCcCC(CCCrCrCrCrCrCPCrCCPCr t-(

t s r(~CP8 Ps PPif CrCCCCCPrCCCt- crc' CCcCCCccCcCc s - l f I 0 3 ( t a L f C 'l - i r [ -

                                                                                                                     ' -                                                                       crc 8 crc ( rCr v                                                        f                    k x

CC . Ct - CC"-C-.CC C s. .r C r S aAaa'avaa CCCCCCCCCCCcCCCCCtcCCCCcCrCC g_ . ~i8 s -

AA eAA s ff CCCC C
  • A r .
f r

g ??rI g 0no0oOs rr) ooOopiO0V.1 i t 1f l s

                                                                                                            ^ oA A
r. Mf u.rt?8 it s e a4 ee^^aa8 aA f

( f r r - f t 8 t rt - t - t s t r e t A A. f' tC f -r t u f s. ~t 8 H m tt 0on0nDtat t t oOf

  • ot O 5? #

o o o 3 Jn0 ao e o' ^ o a. ren$ 1 f l t

                                                                                                                                                                                              ??:34    t 4    #     ^

or taoe a s C t n {J. 0

                                                                                                                   *r o 0 c <s                                  s                                                 r             Uol          t    o H '9 oeoru t' l t il t s t s s e t 3 ls t                                  t       s I;

moOe r Ct( CeOOOoOOoo^vOOO0n*ooap prp2 6 rn'5n toWunson0n I 8 s i C C C' s i.Hot , i se # t t a f os a pCCCCCrCCCrCCA trn f utS6or s ss

  • B g.

e t t r te* wup f f' t e  ! e s r sSA s i f A repr is or auuM es riar itr iuut cu3 st *ow i un0cou0oo i t s

                                                                                                                                                                                                                                                          $    ra A             w w::
  • 8'i v v v v v a r r' t

s t t t t l t 8 e ( e url utu s s s v a t f t g S e t -

                                                                                                                                                        " vvsi evvevvoovvrvvvtvve                    s         r                                                                             +

rrts st-ss - a frFrrrrt a t e e -t t a r e z e s n t H

                  -3                                                                              f 8 f t T t r r t I      i a l t i I i i s i I i t t e I i ! s e i t i t I

t a I C 2CCCCr is SSSSSSSSe.SSSSSSSSSSSSSSS

                                                                                                                                                                                                                                             ;                 f.

r S g al A

   ;                                                                                                                                                                                                                                                      A   g       !
                                                                                                                                                                                                                                            &            t i

f f u l C C r.t i B

             ~                                                                                                                                                                                                                                                       l g

a 9 p 9 t s

                                                                                                                                                                                                                                            -            0    3
                                                                                                                                                                                                                                                                     ?       l 1    i      t       3               a
              ~

t a T " ,

                       ._ 1 rH          -

4 FIRE SCENARIO FREQUENCY l l l

  • FIRE EVENT DATABASE  !

I

  • FREQUENCY OF FIRES BY BUILDING TYPE
  • FRACTION OF BUILDING FLOOR AREA OCCUPIED BY FIRE ZONE
  • MODIFICATION FACTORS ACCOUNT FOR FIRE ZONE OCCUPANCY AND TRAFFIC
  • BUILDING FIRE FREQUENCY ALLOCATED TO ZONES BASED ON COMBINATION OF AREA FRACTION AND MODIFICATION FACTORS PLG, Inc. -

FREQUENCY OF FIRES IN ZONE ZOO 4  : BUILDING: MECHANICAL AND ELECTRICAL AUXILIARY BUILDING (MEAB) l l a BUILDING FIRE FREQUENCY: 0.048 FIRES PER YEAR i FRACTION OF BUILDING AREA OCCUPIED BY l ZOO 4: FA (Z004) = 0.01408 i l

  • ZONE 2004 MODIFICATION FACTORS .l OCCUPANCY: SWITCHGEAR, LOAD CENTERS, RELAY CABINETS,

! POWER CABLES, CONTROL CABLES l OCCUPANCY FACTOR: 1.875 TRAFFIC: 25% (AVERAGE) TRAFFIC FACTOR: 1.0 } i i j PLG, Inc.

i
                          , , ~ . . .   . . . .-.. .. .- . - - _ _ _ . - _ _ - _ _ _ - - _ _ _ _ -_ _ _ _ _     _ - _ - _ - _ _ - . _

FREQUENCY OF FIRES IN ZONE ZOO 4 ,

  • NORMAllZED AREA - MODIFICATION FACTOR PRODUCT FA (ZOO 4) FM (Z004) .

FA,M (Z004) = , [ FA (n) FM(D) n NORMALIZATION FACTOR (DENOMINATOR) FOR MEAB = 0.9507 NORMAllZED PRODUCT FOR Z004 (0.01408)(1.875)(1.0) . FA'M . (Z004) = O.9507 j

                                       = 0.02777 FIRE FREQUENCY FOR ZONE ZOO 4 l                                AZ004 =   [FA,M (ZOO 4)] AMEAB 1
                                       =  (0.02777)(0.048) l-
                                       =  1.33 x 10-3 FIRES PER YEAR
                                                                          ---                                                                                             r"                                  _,,
FIRE SCENARIO lMPACTS .

i a i l i i e ASSUME ANY FIRE IN ZONE DAMAGES ALL EQUIPMENT AND CABLES l

  • INITIATING EVENT EQUIPMENT FAILURES OPEN CIRCUlT EFFECTS l

SHORT CIRCUlT EFFECTS i 6 PLG, Inc. y-:r-v- q- y w,, w J'y y- V dyW g y *- -+wWw -g-- + +q e* - ' + - g---N+' ,we < q -ww e ,ww ='y-_wa ' m w c. - - _e s e 4e _ e -gvn - e-m__ w_ -e p 9 w

v

                  ~

Table 4-2. Open Circuit Effects _for Fire Scenario 2004-FS-01 Initiating Event Loss of Main Feedwater to all Steam Generators with Coincident Closure of all MSIVs Support Systems AC Train A Failed DC Train A Failod ECW Train A Faileo CCW Train A railed ECH Train A Failed (see-Nmte 1 in Table 4-4) EAB HVAC Train A Failed (see 14ote 1 in Table 4-4) DC Train D Battery Chargers Failed i Secondary Heat MSIVs Closed Removal Steam Generator A PORV Fails to open ATW Train A Failed RCS Heat Removal HHSI Train A Failed Bleed and Feed Cooling Failure Caused by Pressurizer PORV 655A Fails to Open RCS Inventory Control HHSI Train A Failed LHSI Train A Failed' Charging Pump B Failed (see' Note 2 in Tabic 4-4) Positive Displacement Charging Pump Failed (see Note 2 it Table'4-4) , Pressurizer PORV 655A Block Valve MOV0001A Fails to Cloie

           ' Recirculation _ Cooling        HHSI Train A Failed LHSI Train A Failed RCFC Train A railed                        3 i

Recirculation Suction Valve MOV0016A { Fails to Open Containment Heat LHSI Train A Failed Removal RCFC Train A Failed Fission Product CS Train A Failed ' Scrubbing 1 RCFC Train A Failed Containment Isolation Supplemental Purge Supply Isolation Valve MOV0001 Fails to Close Supplemental Purge Return Isolation Valve MOV0006 Fails to Close i m G

      ,         :0   ,

[ .- Table 4-3, Short Circuit- Ef fects for Fire scenario 2004-FS-01 i Initiating Event Low Pressurizer. Pressure Safety

  • Injection from Open Pressuriter e PORV 655A Support Systems ECW Trin A Failed CCW Train A Failure Caused by Trip of Pump A. Opening of MOV0642, and closure of MOV0643 ECH Train A Failed (see Note 1 in Table 4-4)

EAD HVAC Train A railed (see Note 1 in Table 4-4) Secondary Heat ATW Train A Tallure caused by closure Removal of MOV7525 RCS Heat Removal HHSI Train A F.21ure Caused by Closure of MOV0004A and MOV0006A Bleed and Feed Coling Tailure Caused by Closure of Pressurizer PORV 655A Block Valve MOV0001A Pressuriter PORV 655A Opens RCS Inventory Control HHSI Train A Failure Caused by Closure of MOV0004A and MOV0006A LHSI Train A Failure caused by Closure of AOV0864, MOV0013A, and MOV0031A' Pressu .er PORV 655A Opens (see Note 3 in Table 4-4) Loss of ECCS Train A Suction from RWST Caused by Closure of MOV0001A Charging, Pump B Failure Caused by Closure of MOVB377B (see' Note 2 in Table 4-4) Letdoun Orifice Block Valve MOV0012 Opens (see Note 4 in Table 4-4) Loss of Nornal Charging Flow Caused by Closure of AOV0205, MOV0025, and MOV0003 (see Note 5 in Table 4-4) Reactor Vessel Head Vent Valves SOV3657A and SOV3658A Open (see Note 6 in Table 4-4) Recirculation Coolin9 HMSI Train A Failure Caused by Clcsure of :!OV004A and MOV0006A LHSI Train A Failure Casued by Opening o f AC'.'0551 and Closure of AOV0864, MOV001BA, and MOV0031A RCTO Train A Failed v 4

t"' . , , ,

                                  .                                                                                                                                          j P*
                             ,                Table'4-3.
                                                            -(Part 2'of 2).Short Circuit Effects'for Fire Scenario.

2004-FS . s Recirculation Cooling Loss of CCh' Flow to RHR Train A Caused:

  • j (continued) by . Closure of AOV4 531, ' MOV0012,. - and MOV0050 Loss of Cooling Flow to RQTC Train A I Caused by Closure of MOV0060, MOV0063,  !
       ~                     '                                               MOV0064,_and MOV0067                                                                       -l Loss of Cooling Flow to RCTC Train C                                                     :i Caused by Closure of MOV0208 p                                           ' Containment Heat              Same Impacts as Recircult. tion Cooling                                         -

g- _, . Removal. , _ Pission Product RCFC Train A Failed Scrubbing- l CS Train A Failure caused by Closure

                                                                                                                                                                           +

of MOV0001A b, , k@ containment Isolation , Supplemental Purge Supply Isolation-i Valve MOV0001 Opens .. Supplemental Purge Return Isolation _ ' Valve MOV0006 Opens.  ; h , l U j o

                                                                                                                                                                 ' :r' I.                                                                                                                    ,

1

                                                                                                                      .                                                     +

i j j

          ,                                                                                                                                                               l e.

g.

          +

O y 1 E. [ 1.- ,

pr s , o F Table.4-4.- Assumptiens and Thoughts Underlying the Tallures Noted for Fire Scenario 2004-FS-01 Y.

1. Operators must start ECW Train C, ECH Train C, and EAB HVAC
  • Train C to maintain at least two trains of EAB HVAC running with 600 tons chiller capacity available.
2. Charging Pump B disabled by open' circuits in pump power and control cables and by open circuits in room cooler power and control cables. PDP disabled by open circuit in pump control cable. Open circuits cause letdown stop valve LCV0465 to remain open. A letdown line LOCA (outside containment) will occur if Charging Pump A f ails and LCV0468, MOV0013, MOV0023, and MOV0024 fail to close; a letdown line LOCA (inside containment) will occur if Charging Pump A. fails, MOV0023 or MOV0024 closes, and LCV0468 and MOV0013 fail to close. An RCP r.eal return line 14CA will occur if Charging Pump A f ails and MOV0077 and MOV0079 fail to close. The conditional likelihood of a LOCA is (CHA) ( (LCV04 68 ) (MOV0013 ) +

(MOV0077 ) (MOV0079) ) where CHA =. Unavailability of Charging Pump A LCV0468 = Letdown Line Stop Valve LCV0468 Fails to Close MOV0013 = Letdown Orifice Block Valve MOV0013 Fails to Close MOV0077 = Seal Return Line Isolation Valve MOV0077 '

                                      ' Fails to Close MOV0079 = Seal Return Line Isolation Valve MOV0079 Tails to Close
  • t
3. Opening of Pressurizer PORV 655A caused by short circuit in valve control cable. If AC Train A load centers ElAl and E1A2 are doenergized at the time of the initiating event, the .

operators cannot isolate the open PORV by closing block valve MOV0001A. PORV 655A is powered from DC bus ElAll. It fails to the closed position on loss of power. Therefore, this fire scenario cannot cause a sustained short circuit that keeps PORV 655A open for an extended period of time (i.e., a small LOCA) with simultaneous loss of all power from DC bus ElA11. If the short circuit occurs first, the conditional likelihood of a LOCA after loss of AC and DC power is (PO655A) where PO655A = PORY 655A rails to Reclose After Loss of CC Power t 4 4

fs I.

F .f' W
                 .            ' Table 4-4.         (Partl2 of 2) Assumptions and Thoughts Underlying'the        .

g, Failures Noted For Fire Scenario 2004-FS-01 ,

l. Refer to Note 2 above. .Since letdown orifice block valve MOV0012
           '                            is in parallel with block valve MoV0013, the status of MoV0013 S9 L                                        does   not affect the likelihood of a letdown line LOCA if MOV0012 is open. TheLconditional likelihood of a LOCA is                            :

i L, (CHA) ( (LCV04 68) + (MOV007 7) (MOV0079) )  ; ' I

5. Normal RCP seal injection flow remains available if charging s
                                       . flow control ~ valve AoV0205 closes, charging-line containment             j isolation valve MOV0025 closes, or normal charging valve MOV0003             -

closes. If A0V0205 is closed, the operators can restore charging flow by locally opening manual bypass valve CV0255; If MoV0003 > is closed, the. operators can restore-charging flow by opening alternate-charging valve MoV0006. Normal charging flow cannot be restored of MOV0025 is ~ closed. Refer to Notes 2 and 4 above. -If

                                     'MOV0025 is closed', or if the operators fall to restore. flow                 j
              '                         through the bypass lines, a letdown line LOCA vill occur if                 i LCV0468 fails to close. Chargjng-Pump A remains available for-normal RCP seal injection flow. The-conditional ~ likelihood of a            i' LOCA is x

(LCV0468) + ( CH A) (MOV007 7 ) (MOV0079)

6. . Reactor head vent valves SOV3657A and SOV3658A open from short' circuits in their control. cables. A LOCA will not occur unless 1
                                      'one of the two normally-closed vent valves SOV0601 or SOV0602. is-          4 alco' opened.

I i 9

                                                                                                                  'I s,
                                                                                                                -k I
         ,e l

l. r

        ;.             +

h.i PRELIMINARY SCREENING EVALUATION . I t

                                                                                                                                                            ~

CLASS 0 SCENARIO 4

  • l DOES NOT CAUSE AN INITIATING EVENT

. i 4

  • DOES NOT AFFECT ANY SYSTEM IN PRA MODELS l  :

i i

  • NO FURTHER ANALYSIS NECESSARY
  • I 4

i i t l 4 t l 1 PLG, Inc. j i

   .   - - , , . .  .      , . - . . . , . . - , ,   ~ - - . . . ~ . . - . . . . . . . . . . . . ~ . . . . . . - . - . - - - . . . . .             . . , ..

v . .

PRELIMINARY SCREENING EVALUATION .

o , CLASS 1 SCENARIO -

3 i
  • CAUSES AN INITIATING EVENT  :

i i

l.
  • MAY AFFECT ONE OR MORE SYSTEMS IN PRA MODELS 4

l

  • NO FURTHER ANALYSIS NECESSARY IF SCENARIO ,

j DOES NOT AFFECT ANY PRA SYSTEMS

  • RETAINED FOR QUANTITATIVE SCREENING IF SCENARIO AFFECTS ONE OR MORE PRA SYSTEMS  ;

l t 4 y -

n . o

                                                                                   ~

! PRELIMINARY SCREENING EVALUATION - i  : l- .i CLASS 2 SCENARIO -

                                                                                  .)

3 MAY CAUSE AN INITIATING EVENT  ! 4 i

  • AFFECTS ONE OR MORE TRAINS OF A SINGLE SYSTEM IN PRA MODELS ,

!

  • INCLUDED IN SYSTEM MODELS IF SCENARIO DOES NOT CAUSE AN INITIATING EVENT l

RETAINED FOR QUANTITATIVE SCREENING IF 1 i SCENARIO CAUSES AN INITIATING EVENT i f PLG, kw.. i

i - PRELIMINARY SCREENING EVALUATION l ' i i CLASS 3 SCENARIO - f l MAY CAUSE AN INITIATING EVENT  ! l

  • AFFECTS ONE OR MORE TRAINS OF MORE THAN ONE i SYSTEM IN PRA MODELS i 1 l.

i

  • RETAINED FOR QUANTITATIVE SCREENING l '
-l 4

t

                                                                                                    ~

4 l j PLG, inc. ~ i-i

_. , 4

                                                                             ~

PRELIMINARY SCREENING EVALUATION -.J i t i 1 . QUANTITATIVE SCREENING i ! RESULTS FROM INTERNAL EVENTS ANALYSIS i

  • ESTIMATE FREQUENCY OF INTERNAL EVENTS '

! SCENARIO WITH SAME IMPACT AS FIRE SCENARIO \

  • NO REDUCTION FACTORS APPLIED TO FIRE SCENARIO FREQUENCY i

RETAIN FIRE SCENARIO FOR FURTHER ANALYSIS IF ITS FREQUENCY IS MORE THAN 1% OF EQUIVALENT

  • INTERNAL EVENTS SCENARIO
               - 40 OF THE ORIGINAL 190 FIRE ZONES RETAINED AFTER THIS ANALYSIS STEP                                                                                i t

J PLG,km.  ; i

et s Table 4-5. Frequencies of Internal Events with the Same Combined n Inpact as rire Scenario 2004-rS-01 -

                -Open Circuit Effects General Transient Initiating Event Frequency:                  4.3/yr Unavailability of AC Train A:                             2.85E-04 Unavailability of Bleed and Teed Cooling:-                4.80E-02 Unavailability of PDP (Excluding TSC Diesel):             9.30E-02
                " Independent" Scenario 1 Frequency:                      5.47E-06/yr r

L Loss of DC Bus E1A11 Initiating Event Prequency: 3.32E-03/yr-Unavailability of PDP (Excluding TSC Diesel): 9.30E-02

                " Independent" Scenario'2 Frequency:                      3.09E-04/yr
              . Loss of Of fsitts. Power Initiating Event Frequency:      1.29E-01/yr, Unavailability.of AC Train A (After Recovery):
  • 3.0 E-02 Unavailability of Bleed and Teud Cooling: 4.80E-02 Unavailability of PDP (Including-TSC Diesel): 1.95E-01 o
                " Independent" Scenario 3 Trequency:                     3.62E-05/yr-Short Circuit Effects.

Loss of DC-Bus E1A11 Initiating Event frequency: 3.32E-03/yr Unavailability'of'PDP (Excluding TSC Diesel):- 9.30E-02 , Unavailability of RCFC Train C: 8.84E-02 e

                " Independent" Scenario 1 Frequency:                     2.73E-05/yr-Nonisolable small LOCA Initiating Event frequency:       5.83E-03/yr

, Unavailability of AC Train A: h Unavailability of RCFC Train C: 2.85E-04 8.84E-02

                " Independent" Scenario 2 Frequency:                     1.47E-07/yr-4
    ? '9 :

I p i'g -  ! F y

FIRE SCENARIO EVENT TREE .. . i MORE DETAILED ANALYSIS OF FIRE SCENARIO IMPACTS BASELINE EQUIPMENT FAILURES EVENT TREE FOR ADDITIONAL EQUIPMENT FAILURES i FIRE SCENARIO IMPACT END STATES  ! 4 i f i

t l

i l PLG, kic.  : , ') !~  !

                                                                    ~
                                                                                      "?

[ FIRE SCENARIO EVENT. TREE .' r l BASELINE EQUIPMENT FAILURES t

  • ASSUME ANY FIRE IN ZONE DAMAGES ALL EQUIPMENT i AND CABLES IN BASELINE SET
  • DEVELOPED FROM REVIEW OF OPEN CIRCUlT AND SHORT CIRCUlT IMPACTS  !
  • INCLUDED IN ALL SEQUENCES FROM FIRE SCENARIO EVENT TREE

. i l Pt.G, Inc. . ! 'i i- . . .- . .-. -. . - - _ . . _

6 .. a, a . gm ' r , Y._, Table 4-6. Baseline Failures for' Tire Scenario'2004-FS :i a I , Baseline' Initiating - Loss of Essential DC Bus E1A11

                                                                                                                                         --i j

Event- , i AC Power Thain'n 1 Baseline System- .; Tailures- DC. Power Train,A- l

                                                                    . ECW Train A.

o CCW Train A .l ECH Train A  ;

 . . .                                                                EAB HVAC Train A                                                       l Steam Generator A PORV, Fails to Open R[ f' ',                                                            -AFW Train A                                                         '!

9 HHSI Train: A j LHSI' Train A i gf * ,

                                                                    = RCTC Train A                                             ,

l bg , CS Train A l L' ' Charging Pump'B . 3 I'

 ~

Recirculation Suction Valve MOV0016A Fails

               ,V:                                                    to;Open
                            ' '                                                                                                              l K,                                                          1      i Pressuri::er PORV 655A Bloc); Valve MOV0001A                        ;l Tails to Close Letdown Orifice Bloc); Valve MOV0012 Opens-t             'y        t, Reac:cr Vessel Head Vent Valves SOV3657A             ,
                                                                                                                                          ~'

n' and SOV3658A Open . . Supplemental Purge Supply Isolation Valve - MOV0001' Opens-Supplemental Purge Return Isolation Valve , j p - MOV0006. Opens ' pt L ,

 ~g                                                                                                                                          .

c, [" 'l a I

                                       >                                                                                                 -L i
                                                                                                                                         ~;
              . t=
                  .l 4 [.

k y.Q.

               -                                                                                                                         -.i tp' m

( s c

               .h.*

w rel , }

                                   ?,.i             ,                                                                                      j
 -tl%]M  '

I FIRE SCENARIO EVENT TREE - EVENT TREE MODEL EQUIPMENT AND CABLES OUTSIDE BASELINE SET

                                                                                                                                                                                                     .i FOCUS ON DIFFERENT PLANT-LEVEL lMPACTS L                                                                    BASED ON FIRE DAMAGE OR LACK OF DAMAGE                                                                                            !

BASED ON SHORT CIRCUlT EFFECTS AND OPEN l CIRCUlT EFFECTS

  • LIMITED OPERATOR RECOVERY MODELS USE OF ALTERNATE EQUIPMENT

! LOCAL OPERATION OF EQUIPMENT NO RECOVERY OF BASELINE FAILURES i

-- NO FIRE SUPPRESSION ACTIONS
NO REPAIR OF FIRE DAMAGE

! t

                                                                                                                                                                               , PLG,Inc.

1 i

i. . . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ ____-___ ____ _ ____ _ _____ __ _.____ __ _ ___ __._._ _ _ _..__ _. _ .______ _

yy Figiare 4-1 (Part I o f 4 ) . -Event. Tree for Fire Scenario 2004-FS-Ol' F C tlU IE PL IJ F C3 R3 C1 R1 C2 R2 T'D FC SEOSTATE (RCO.

        --- ---...............................-----.--.-..-..-.............................................                                                     1        1      0.00005-01       .

I I t........ 2 2 0.0000t-01 I l i I !__......_.._. 1 1 0.00Mt.01

                       ,        ,           ,                    I                                                                                                              0.0000t-01 I                                                !....__         &        &

g g g

                                                                                                 " - - - " - - - - - " " " * " " " " " - ~ ~                             l      0. MOM -O f 8        3            3
                                                                                                                                                      ----.                     0.M M -O f f

g g g I I I........."........ T I 4 3 0.9000t-9I

0. 33M E -9 8 I--------

t I I I  !............._..._ _.... 9 -'5 0.0000t-9I I I I I I........ 10 6 0.0300t-01

                                           '                    I                                                           I.................                11        F       0.0000t-01' g         ,           g                    I                                                                                             12        8      0.0000t-01 I........
                    '         I            I                    I.....................................................                                        13        1      0.0000t-et I           I                                  I               I                             I                  I........ 14         2      0. 0300 t -01 I            I                                  I               I                             !....._.._......                 13         3      0.0000t-0t
                              '           I                                   I               I                                                I........ 16         &      O.0J00E-01
                     ,                                                                                                                                       I          1      0.M ME-08
                                                                                                 ~~~""--~-*--"--------"I........

I I I I I I 18 2 .0.0000E-Of I I  !..........._.._ ff 3 0.0000E-Of

                    ,'        I I                                                                  I 20        &       O.0000E-08 I                                   I                              I                                 3 .......

g I I I I.......................... 21 3 9.0000t-91

                     '        I           I                                   I                                            I                   I........ 22        6       0.0000t-Of g
                                                                                                                              ~ ~---..........                 3       T       0.MME -Of -

I I I I  !........ 24 8 0.0000E-Of

                    ,                                                                                                                                       25         5       0.Ge m -Of I         I           I                                     ~~-"*"*""*"-"-"""I"""-I........                                             26         6       Os000@t-01 g          I.          I                                                                                3.................               2F         7       0.0000E-Of
o 'O
   'i                      ..........e...8..                                                                                                                                                                                                                                                 .

w e, o. o.eo..o.eoeoooo . oo

  • e e
                 .=.       o w w      o wo.wte,.**                  e a e e i w *w **         e D e               e. ew o. w e e e we wo.woe.ewo.w o. e e wo.

e a w cw 0w o. e w =m. e wo wewe.wo. e t e e e eo e f* C

  • e o D. o t' O. ee.e e. e e o. e o ee oe e e o.e e. e .e. e
               ' 6.J e.,

e o tas e *) n o o o n *t e o o ey e S 3 o o o o c p o o e e e e r e n o e ew w e. w w w == w= = e.es wo w ewewen =o e w ow. w e. w. wwwwwwww g g3 o o O P o C o o o O o o o o C O o o o o e o D o o o C e O o O o O O *. e.* ononOo m. nnnnnnoomMOOoooonoco oO woO o eOooheooowoc o n , = o o e o e% e - 6

n. c. o. n. n. e. e. n n. o. o. o. o. e. es. o. . o. o.
o. o. e. o.

e.o.o..c.n en e. eo. e.nn no.nc.&c o. 6c.0o.0 .n. o

c. m o. m en e o. o.nO.e .ho.n o.ne n.c=.oo.

mo.mO. e nn.oee w n n e w e b O. O. c. e. n. e* O O O C O C O O O O O O O O o O o o o O O O O O e") O O o O o O o O O O *

  • O O w % O O w % o O e % 0 0.w O o ow oo
                 'aJ CH,
                 <           g p. .g                     t (                   N M d 8 . e4h .                                   m.=te                m.9w.*.hae.k.e.8...

k.J W th . *. N .=* .= o =.. N. . = m . s. e =

  • O.=e..
                                                                                                                                                                                                                                                                                                .= N. , O. . sw n .w. ..    .e..=es.

w O . .~~m. . o ., ~ .m,. w nom. e . w . . o.e.. = m. e. c..e...s. . c.necerecc .o . ~ m e e . w e s o. . %. a. w. e...e..~w. e. ..~o. 40

                                                                                                                                                                                                                                                                                       ~ m .e e . % . .......       o. . . . . .

i e ee aee e i e e e o e e i e e e e e a e i e e e e a e s e i e e e e e e a e i e e e e e e e e e e e e e i e ee e e i 6 e e e e 0 e e e e I e tI 6I Ieee9eeseI 6t Iee8 e0 tt 46 4e 44 4e 4$ e e ee ee e4 eeeee6eee0e ee e6 eI ee -e 444646itttieIeeeeeaeeeeeeeee 0 8 0 0 $ $ e i e e e 0 0 e e e e e e I t e 0 0 0 0 $ e6 g, e e e e I e 0 e e e e e e e e e 0 e e I e e e 6 e e 4 0 g e e e g e e e e a e 6 e

                                  ,e 4 4 i 3 ee I                        e e 4 e e e e e e o e 4 e e t I e 0 0 0 e e e e e ee 4 4 I t t t 4 4 4 5 t e 5 6 4 e e e e e e e e e e e e e ee e e       6       e        8       4       eeee e    e   e   e   ie      ee      e e     0o 0e  e e e e e e e a e e e a e e e 6 e e e e e e e e e i e e o e e e e e e e e e e a e e e e-
                                  . .e e.e i e e m.

6 y e.e ..- e-

                                             .             e 4-i e .i i. e .e e
                                                                                            .              e e            e
                                                                                                                              .. i e i e-    .0 $ I 6 e s 8 6 e e i ei.0i e 1 0 9 e 0 I 4 e e e e e e e e t e e e e e 4 e e
e. i i ..e e- e. .t i e.

e i i i i e

e. .- e- 9. .e .i .e .i .e e. i ee .e ie e e e .

e

                                                                                                                                                                                                                                                                                                                            ,t t   4 e ,.

e I b e i S 4 0 e e e e e 4 e 4 e s 4 4 4 e e . 1 . . . . e e e i e e . e

                                                                                                                                                                                                                                                                                                                            .        e y                                     e             e                e                e             e      a            e              a     e       e     e       e      e 6            6            6                         e            6            0       e      t     8     9      e     e      e        e 8

i e e e i e e e O 4 8 9 0 9 e e e 4 e e e e e e e e e e e e e t e e e e e e a e e e e e e e e e e O e e e e e e e 0 e 0 e e e e e e e e e e t e i t t 4 e 6 e e e e e e e e a t 6 g i e e i e a e e e e o e e e e e e e e e e e e s e e e ea e i e e i ee e

                                                                                                                                                    .e e

e.- e e 6 a e e ei t e e i e t i e e i e e. e e e ee i e e e e

       .o,. c,                               .

i.w

e. i e 4-w
                                                                                                                                                                                 .e
                                                                                                                                                                                                                         . - -                     .i i
                                                                                                                                                                                                                                                                             .e.i           .

e e. e e e t e e i .i e. . e. . . N 0 e 0 0 i I 8 6 e e e e e e e i e o e e e C e a e e a e 0 i 0 i 0 4 8 e e e e n - e e e e e e o e e 4 a e e e

e. O I e e s e e "0 ev e i e 6 4 6 6 6 0 t I t 9 e
u. e tw i. e.

i e e 4 e 4

t. m i e e

e-e e g i e e a i e t i e e. i. 4 0 4 e e e 8 4 6 4 6 -0 e e i e e e e 6 i e 6 e e 8 i 0 e e 9 e e i e i 4 e i i a i e e 4 e e e e e e

  • r9 e 0 0 i e
        .-                                                                                                                     t                     t                                                                                                                                                                                .
        "" P4                                 et                                                                                                                                  e             0                         e                         i                                       e            e i

8 e. e es e e 6 e I t e*.***.t 0 e 9 t e' e e e g be t 1 4 I i ~$ o e i e e. e i e e i e e N t e i e e i e e e e 4 e t e e e e i e Py ' l t 4 e 4 4 g

       , to)

L s t a 6 6. *..***e 4 t e e e. 0 0 e t e e

         *U                                    g 4

4 0 i 0 e e t t t M t i t e t e i e e 4 e e e

e a U" e 4w i

e p, e w w% t e I e ..-w-MV  ! e l l 4 e e t i t .e

         . ' *.                                 4 4

0 t

         ."y M M

b eeww0 e e l e 0 t e e 0 ' 0 s i e

       .N                                       e 6

6 0 e l

       'Y m                    ww                                                                                                                                                                                           9 b                                                                                                                                                                                                                ewwwwwwmmwwmowwwwwwwwwwwpus C U 8

e 8

e. e m.' g 4

4

          .== .. ;,                                                                                                                                                                                                          0 i                                                           -w                                          ..                      w e

v *" . . . m n U u

        'O
            -e

[ W M W wM wm-wwwwwwwem

           .u.                                                                                                                                      mwm wwwa m m. mmmmmmmmmmmw wmm mm wwwM wM MM M MM MM MM.
                                                                                                                                                                                                                                                                                                                                            'l l
    =.

_ _ _ _ ___m. m_- -A -- " ~""" - ^ ' ~ ' - - - . _ _ - - - - . - . - - - - - =:------------"-^"---^-'--~~^~' ~ ~~ ~ ~ ^ ^~

I O o St t 1 8 e a,5 ,8 , L, l,- , - , 0gG'4 g sa ,,c.. g, Lt c., 8 0j 4o. 4 8 6a8 t 42,S

                               ~

t.- o.h,0,

                                            -               4                             8
                                                                                                        - . - 06000v4
                                                                                                                   - - - - - - 3, C            - g O     A A;,           1 6,ALy1,3,                                    ; 8 l     sC e tCC             , o 6

8 C ,,45g6g g3 &3 0( 0 G 4 33 i4 3A 33g i, 0,&00 tao 0&t3Ogt,uy&,4 sPC06c3Ggs, gl, (,

                                                                                                                                                                                           , 1 b           f H

J J C( SCC

                                                ,S*

1 t 4 g(, 6g0gL CCit

                                                                               ,C,G                    0g&

O0D6LOCEo CC(fcCge,,ogO,Og5 cg Cccg6 2 O 0' ,td,Ct *

  • 0* ,. t * ,
  • 0 ,. l *b* 0' 2*E* 0* O * *
  • f 8 ,. C s

0* 9,. -t ,. c0g4 g .C,* o. t . Oy*0 g 3 - * .

  • I l
                      .t O1 t     V 3I          9eO 8        s 2,0 8                     2 g S ,,9                     og?o01i                   (159g1ge,,g9,S,G S                               8 g         4         S      4            ng !

8 8l 1 4 44 , 8g s,,g 4,ag l D 850 3 S 886 2 4 S S 39,S,C4 e,og0g0000005 2g1 5 9 144 082 g1 g e ,.g 8 8 , 8g s, 0 ,,22gig s n sg8 1 4 44 48 88 , 1g t, g2,8gt g 3

                                      ~ .     ~       ~.~.
                                      ~  .    ~       ~ . ~ . ~              ~ . ... .. ~  ~~.. -~     ~~-- -~  ~' ~
                                                                                                                   ~~ ~~~ ~~' ' ~
                                                                                                                                ~~ ~
                                                                                                                                   ~~ ~
                                                                                                                                      ~~ **~~~ -- ~   ~ -- ~   ~ .. -- -- ~     ~ -- ~  ~ -- ~  ~

1

                                      ~
                                      ~
                                         .    ~.~~ ... ~~~
                                              ~ .                     . ~
                                                                             ~ . .
                                                                                              ~.~-~~~~~~~~~-~-~
                                                                                                                                               -    ~   -   ~            - - ~ - ~ - ~

0

                                      ~
                                      ~
                                      ~
                                         .    ~~~ . ~~ .. ~~~ ... ... - ~~. ~. ~~~~~~~~~~~~~~~~~ ~~ ~~ -- ~~ -- ~~
                                              ~
                                              ~ .
                                                                                                                                                                                 ~
                                                                                                                                                                                 ~
                                                                                                                                                                                    - ~
                                                                                                                                                                                    - ~
                                                                                                                                                                                                 ~
                                                                                                                                                                                                 ~

S

                                      ~       ~ . ~~                                  .
                                                                                              ~
                                                                                                          ~.~~~~~~~~~                                 ~ - ~
                                                                                                                                                                                 ~
                                                                                                                                                                                 ~
                                                                                                                                                                                    . ~
                                                                                                                                                                                    . ~
                                                                                                                                                                                                 ~
                                                                                                                                                                                                 ~
                          ~3       I     .2     .3           1
                                                                 ~          ~                 ~
                                                                                                          ~ -l~ ~~I~ ~~I~ ~~I~ ~~3~                   ~ - ~              -   -   ~  . ~     -    ~

3 3 . .I .! .t . 8

                                                                                                                                                .I s        ,        -I     .I        I
                                                                                                                     ~       ~     ~     ~               -                    -      .       -

t . . . . . -

                                                                                                                     ~
                                                                                                                             '     ~     ~      -        -       .            -      -       -
                                                                                                                             ~     ~     ~      -        -        .           -      -       -

0 . . - . . ~

                                                                                                                     ~
                                                                                                                     ~-~
                                                                                                                             ~     ~     ~      -        -                    -      -       -

0 . . - . . ~ ~

                                                                                                                                   ~     ~      -        -                    .      -       -
                                          .           - .. .                                                                 ~     ~     ~      -        -       .

2 . . . .

                                                                                                              -      ~       ~     ~     ~      -        -       .                           -

G - ' ' o d.

                                          .I
                                                        .I
                                                                               .I,                  .1 g
                                                                                                                     ~11
                                                                                                                     ~
                                                                                                                             ~     ~
                                                                                                                                   ~I  t Ig
                                                                                                                                                                 .,g-
                                                                                                                                                                                     .I g
                                                                                                    .                ~
                                                                                                                                   ~            -                .                   -
                                                                                                                                   ~            -                .                   .

r .

                                                                                                                     ~             ~            .                                    .

e . . . .

                                                                                                                     ~
                                                                                                                     ~
                                                                                                                                   ~            -                _.                  .
                                         .                                     .                                                   ~

u Z

                                                                                                                     ~             ~

a . .

                                                                                                                     ~             ~            .                _                   .

U ~ ~ . s 1 yI

                                                                                                                     ~I   1I I                  -

s . ~

                                                                                                                     ~
                                                        .                                                            ~                          .

a .. . ~ . . 2 ~ - - T . ~ - . Z . ~ - 3 . ~ . 3 .I 3 1y 11 a - o . . _ a t o. r u 1y13 I1 I I t 13 ,. . J. . . . a- _ . . u _ . . a 1 n .I I I 1 3, 1 _ . a 3 . ( E . . . y . . . U .I I I 1 1, 1 I gI3 g 1 3 I 3$,3 g : ,. . J - o . . E . C . tr 3 I 3 . e . d .

               )                                                                                                                                                                    .

I 3 1 .

                  -         1                                                                                                                                                       .

p .

                         ~
                .o r                                                                                                                                                                  .

n 1 6 d 2 13 g 3 3 , 3  : g 3 3 T 3 3 3g 3 3 , 3 g a,,,3 , 3 3 1 3 } 18j4 j { )illI .fl,) 1

Q-b- P Figure 4-1. (Part 4 of 4). Event Tree for Fire Scenario 2004-FS-01

                              . Ton Event                                 Descrintien of Ten Event railure PL                  PORV LOCA (S)

BT PORV Not Available for Bleed and Feed (0) C3 Charging AOV0205 Closed (S) R3 Operators Tail to'L : ally open CV0255 (M) C1 Charging MOV0025 Closed (S) R1 Operators Tail to Locally Open MOV0025 (M) C2 Charging MOV0003-Closed (S) R2 Operators rail to Open Alternato Charging MOV0006 (M) PD PDP railed (0) . FC RCTC C C'. Valve MOV020E Closed (S)

             -MOTES: 1.-(S) indicates impact frc a chcrt circuit
                                                     .2. (0) indicates impact frc an cpen circuit
3. (M) indicates an operater acti:n e

1 1 4

                                                                        . e FIRE SCENARIO EVENTTREE                                4 FIRE SCENARIO IMPACT END STATES
  • COLLECTION OF EVENT TREE SEQUENCES WITH SAME IMPACT COMBINATION OF BASELINE AND ADDITIONAL EQUIPMENT FAILURES
  • ALLOW MORE DETAILED COMPARISON OF FIRE SCENARIO WITH SPECIFIC INTERNAL EVENTS SCENARIOS
  • NO END STATES FROM ZONE Z004 LEAD DIRECTLY TO CORE DAMAGE-PLG,Inc.

{in ; -[ . ,, ( , s c_, gg ' ;, Q ' _x y;\ , UK TTable-4-7. Even: Tree End State.!mpacts for. Fire Scenario-w: '

                                                                    .c004-FS-01'-(Refer.::'Tiguref4-1-and Table 4-6)
      "c                                                -

End

       +

State. ' Failed Equipment Impact 1: Baseline-

                                             -2                      Baseline, RCFC C
                                             - 3'                   . Baseline, PDP

[ 4' Baseline,1RCFC'C, PDP py ,

                                            . 5;                     Baseline, Loss of; Charging L3                                              6'                    Baseline, floss of. Charging, RCFCLC 71 Baseline, Loss-of Charging, PDP us3                                           - 8,                    Baseline, Loss of Charging, RCFC C,'PDP j~                                ,

95 Baseline, Loss of Bleed and Feed i i ,10

                                                                    ? Baseline, Loss:'of Bleed'and' Feed, RCFC C' 11?                       ~ Baseline, Loss of Bleed and Feed, PDP' ati                                      12                         Baseline, Loss of Bleed-and' Feed, RCFC:C,.PDP .

BT ' , 13 . Baseline, Loss- of- Bleed' and Feed, Loss' of Charging 114- LBaseline, Loss,cf-Bleed and Feed, Loss of Charging, T RCFC'C I" 21 5 Baseline, Loss of Bleed and Feed, Loss ~of Charging,- PDP ' p- - 1 61 Baseline, Locsiof-Eleed and Feed,. Loss of Charging,s P RCFCJC,=PDP

17 Baseline,oPORY LOCA s T -18: Baseline, PORV LOCA, RCFC C '
                                      '19 ;

o < Baseline, PORV LOCA,-PDP , I 120T Ba s e l'i ne , PORY LOCA, RCFC C,. PDP-i r -A f . l (- i N 4 [ v s { I L LE , i_ t - t

                                                                                ~
                                                                       .          o s

FIRE SCENARIO EVENT TREE- , EVENT TREE QUANTIFICATION l FIRE SCENARIO FREQUENCY USED AS INITIATING EVENT  ! FREQUENCY FIRE ASSUMED TO CAUSE OPEN CIRCUlTS IN ALL CABLES UNLESS A SHORT CIRCUlT OCCURS

- CONDITIONAL FREQUENCY OF MOMENTARY

! HOT SHORT:- 0.30 L - CONDITIONAL FREQUENCY OF SUSTAINED ' l HOT SHORT: 0.10 I SPECIFIC CONTROL CIRCUIT ANALYSIS FOR SELECTED COMPONENTS i NO FREQUENCY REDUCTION FROM TIMING OF FIRE-INDUCED FAILURES i - IMPACTS BASED ON WORST POSSIBLE TIMING

            - NO MITIGATION OF IMPACTS FROM OTHER FIRE-INDUCED FAILURES                                                    !

! ORIGINAL ANALYSIS APPLIED FIRE SEVERITY AND j GEOMETRY REDUCTION FACTORS AT THIS STEP l 1 SENSITIVITY STUDIES DO NOT APPLY REDUCTION FACTORS i i t

                                                                    , PLG, Inc.
                                                                                                                                                                                                                                                                                                               -m-o'                                                              .

Table 4-9. Annual End State Ir. pact Frequencies for Fire scenario 2004-FS-01 (Total Fire Scenario Frequency: 1.33E-03/yr) , Annual ~ Annual Considered for Considered for Frequency, Frequency, Further Analysis, Further Analysis, End Fire- Internal First Level of Second Level of State Caused Event Screening Screening 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

                                                                                           .10                                                                                               0 11                                                               9.16E-04 12                                                              3.93E-04 13                                                                                            0 14'                                                                                          O.

15 3.12E-06 16 1.34E-06 17 0 18 0 19 1.16E-05 20 4.99E-06 4 e

p' - * - pfl 8

FIRST LEVEL OF SCREENING Ji j
  • SIMILAR TO PRELIMINARY SCREENING, BUT PERFORMED l FOR INDIVIDUAL END STATES i

j - RESULTS FROM INTERNAL EVENTS ANALYSIS

ESTIMATE FREQUENCY OF INTERNAL EVENTS SCENARIO l i WITH SAME IMPACT AS END STATE l

ORIGINAL ANALYSIS: RETAIN END STATE FOR FURTHER ANALYSIS IF ITS FREQUENCY IS MORE THAN 10% OF EQUlVALENT INTERNAL EVENTS IMPACT q SENSITIVITY STUDIES: RETAIN END STATE FOR FURTHER I ANALYSIS IF ITS FREQUENCY IS MORE THAN 1% OF EQUIVALENT INTERNAL EVENTS IMPACT PLG, Inc.

 .~..    , - , -             , - .     ..<,m-
                                              . . ~ o~ m . - , - . . - - - .. ~ . - _ . -- - . -   _ - - - - _ - - - - - - - - - - -- - -         - - - - - - -  -

m , i

 %                  e;'                                                                 '

s 1 Table.4-8.- Level'1 Screening: . Equivalent ' Internal- Event -Impacts - for End States from Fire Scenario 2004-FS-01

      ' ma
                           'End                                                                       .

Internal Event Frequency g; l State 1 Internal Event Failures-

       ,                     11                                                              L1DCA, PDH                                                      3.0BE-O'4/yr 12                                                              L1DCA, PDH, CTE                                                 2.72E-05/yr
                            .15                                                              L1DCA, CHC* PDC                                                 1.82E-05/yr
                            .16                                                              L1DCA~, CHC* PDC, CFE                                           1.60E-06/yr, 19                                                              SLOCA, EAA+DAA, PDH                                             4.18E-07/yr 20                                                             -SLOCA, EAA+DAA, PDH, CTE                                        3.70E-08/yr Split Fraction
  • Description Value L1DCA Loss of DC' Bus E1A11 Initiating Event 3.320E-03/yr.

SLOCA 'Nonisolable Small LOCA Initiating Event 5.830E-03/yr

CTE RCFC Train C Failure 8.835E-02
                               =CHC                                                       Loss of Charging '(AC Power Train A'                                -3.291E-02 Failed)

DAA DC Power Train A Failure (AC Power 4.869E-04 Train A Failed) EAA~ AC-Power Train A Failure (Offsite 2.850E-04 Power Available)' ' M . PDC PDP Failure'(Excluding TSC Diesel, 1.664E-01 Lossoof Normal Charging)

                                 'PDH                                                  'PDP. Failure (Excluding TSC Diesel)                                    9.297E-02
  • NOTE: Initiating event frequencies areidocumented in STP PSA Table 7.6-1. System failure split. fractions are documented-
                                                               'in STP PSA Appendix F.

4

    ' 5 i

e

         \a a;          w                                                                                                                                                                                                     >
                                                                                                                                                                                                                               )

mL - - _ _ - - - _ _ - _ - - - - - - - - _ - - _ - - - - - - .

p - - e' n z. J' 4,

  • i, j.

e~~ Table-4-9., Annual.End State Inpact Frequencies for Fire Scenario-2004-FS-01 (Total Fire Scenario Frequency: 1~ 33E-03/yr)

3. '  :

, Annual Annual Considered for Considered for. o ll , Frequency, Frequency, Further-Analysis, Further Analysis,. il [ ' End - Fire .' Internal First. Level of Second Level of

                                                                                                       ~

l State Caused' Event Screening Screening 1 0-r 2; O 3 0-TL 4 ' 0 ' 5 O .; , 6- 0 ' 7 0 8 0 9- 0 3 [ 10 0 > .

'l                                11     9.16E    3.08E-04          Yes 12 3.93E-04     2.72E-05          Yes a,-.          .

13 0 > s 14 0 ' i

                               =15      :3.12E-06     1.82E-05          Yes-16      1.34E-06    '1.60E-06:         Yes 17-          0-f l;

18 0- ' 19 1.16E-05 4.18E 07 Yes 20, .4.99E-06 3.70E-OS Yes i il

                                                                                                              -]:

e  :)

,                                                                                                               a yl 1

J

                                                                                                                  ]l 3
  • 1 4,.

v .

       ;po             ,
                                                                          ~

_q .+- -

                                                         -          +

SECOND2LEVELLOFl SCREENING - e

          -   RESULTS FROM INTERNAL EVENTSL ANALYSIS                                          _
                                                   ~
          -   IDENTIFY. COMBINATIONS OF ADDITIONAL EQUIPMENT                        -

FAILURES AND OPERATOR ERRORS THAT ARE NECESSARY-TO CAUSE CORE. DAMAGE FROM FIRE SCENARIO END STATE ,

          -   ESTIMATE CONDITIONAL' CORE DAMAGE FREQUENCY FROM
              - EACH COMBINATION OF ADDITIONAL FAILURES
          -   ESTIMATE TOTAL CORE DAMAGE FREQUENCY FROM END STATE
          -   RETAIN END STATE FOR FURTHER ANALYSIS IF ITS CORE
            . DAMAGE FREQUENCY IS MORE THAN ONE-TENTH OF ONE PERCENT OF CORE DAMAGE FREQUENCY FROM INTERNAL EVENTS-
          -   ORIGINAL ANALYSIS
              - APPLIED REVISED FIRE SEVERITY AND GEOMETRY REDUCTION FACTORS ATTHIS STEP
              - INTERNAL EVENTS CORE DAMAGE FREQUENCY: 2.0 x 10-4 EVENT PER YEAR
          -   SENSITIVITY STUDIES
               - NO FIRE FREQUENCY REDUCTION FACTORS
             - - INTERNAL EVENTS CORE DAMAGE FREQUENCY:.1.7 x 1'0-4 EVENTPER YEAR PLG, Inc. .

-,,e-, -

y ;7 .m

o 1 o . ,
   ,.                                 Table 4-10.           Level      2. Screening: Evaluation-of Dominant Additional?

Failures to Cause Core Damage'from Fire Scenario 1

2004-FS-01 End State 11 Y ,
                                     ;End Stato-Frequency:.                 9.16E-04/yr u

Additional : Failures. to Cause Core: Damage: E.' ' 1~. I A FW D- B , AFW C, APW D

2. ECW B, ECH C, Smoke Purge, (AFW D or PDP)'
  • '3..ECW B, Tan C,' Smoke Purge, (AFW D or PDP)
4. ECW C, ECH B,-Smoke. Purge, (ATW D or PDP)
/ 4 *
5. ECW C,. Tan B, Smoke Purge, (ATW D or PDP) b '
6. ECW B,.ECW C, Smoke Purge, (AFW D-or PDP) 7.'ECH B,. Fan C, Smoke Purge, (ATW D or PDP)
8. ECH C, Fan 1 8, Smoke Purge,- (AFW-D or PDP) 9..ECH B, ECH-C, Smoke Purge, (ATW D or PDP)
                               *'     10..ECW B, CCW~C, PDP
11. ECW C,-CCW B, PDP-
12. ECW B, ECW-C, PDP
13. CCW B, CCW C, PDP n 4 Approximate Conditional' Core Damage Frequency: '
1. CDC y, : 2.

3.784E-04= WBE*CLG*0S03*(AFR'+PDJ1) 1.045E-04' I 3.:WBE*FCN*0S03*(AFR'+PDJ1) 9.969E-05 1 4.yWCM*CLE*0503*(AFRPDJ1) 2.482E-06 L5. WCM*FBH*0S03*(AFR'-PDJ1) 1.113E-07 6 '. . W23*0S03*(AFR'-PDJ1) 4

7. CLE* FCN*0S 0 3 * ( AFR '-PDJ 1) 2.744E-05~

1.199E 8'.. ' CLG

  • FBH
  • 0S 0 3 * ( AFR ' + PDJ 1 ) 5.639E-07
 ;                                     9.. .CLD*0S03*(AFR'+PDJ1)                                                          o 1.197E-05 10'.' \ WBE* K14
  • PDH1 L

11..WCM*K13*PDH1 1.279E-04 j h

12. 'W2 3
  • PDH1 1.865E-04 '

2.873E-04L l 113.:K23*PDH1 1.206E-04 -j o , Approximate End State Core Damace Frequency: 1.25E-06/yr l o s E .' i i

            --D F                                                                                                                          L 1

i b e,: e r

4 ,.

  'cj.                          ;o
                     .              -Table 4-10.-                                 L(Part'2'of,2)-Level 2 Screening: Evaluation of
          ,                                                                        Dominant Additional . Failures to.cause Core Damage from
                 ,       4 Fire Scenario 2004-FS-01 End State-11                     .
s. . Split e Fraction
  • Descriptaen Value AFR' AF9 Train D Failure (After Turbine 7.836E-02 Recovery)

CDC AFW Trains B, C, and D Failure- 3.784E-04' ' ECH-Trains B and C Failure. CLD 6.824E CLE ~ECH TrainLD Failure 1.522E . CLG .ECH~ Train C Failure 4.710E-02 FBH EAB HVAC)F,an Train-B Failure 6.825E-04 FCN EAB HVAC Fan Train C Failure 4.491E-02 K13 CCW Train B Failure 1.092E-01

  +                                                          K14                  CCU Train C Failure                            5.503E-03
                                                        !K23                      CCW>TrainsLB and C Failure                     6.563E-04 0S03                        operator Fa'ilure to Start Smoke Purge         4.960E-02 PDH1                       'PDP' Failure (Excluding TSC Diesel,            1.837E-01 Including _Contrcl Cable Hot Short)

PDJ1 PDP Failure (Including TSC Diesel, . 2.754E-01 Including Control Cable Hot Short)

    ^.-
                                                         -WBE                     ECW Train B Failure                            1.265E-01-.

WCM ECW Train'C Failure 9.296E-03' W23 ECW Trains B and C Failure 1.564E-03

  • NOTE: System failure split fracticns are documented in STP PSA

Appendix F. Operator action split _ fractions are documented in.STP PSA Table 15.4-53. Mcd;fications to PDP split fractions to account for fire-induced control cable hot-

                                                                           . shorts are documented in Attacnment 4.1 to this Response.

i

        ; \ '-

b i! 9 i s

4 i- , 1 L

 ?M R ,                                         ; Table l4-11'.                   'Levelc2. Screening:;-. Evaluation of. Dominant Additional"--
                                       -                                           Failures 2to: Cause' Core Damage-from-Fire 1 Scenario'

[ a,

                                                                                  - 2004-FS-01.: End State 19                                   .
                                                'End State Frequency:                          l'.16E-05/yr e                                              l Additional-Failures.to Cause Core. Damage:

6 i 1 -1. ECW B,;CCW C

2. ECW C,zCCW:B. --

i ' s :3. ECW B,'ECW C

                                                      ;4 . .- C C W B , CCW C'
5. ECW B, .

ECH C, Smoke Purge

   ,                                                 L6. ECW B,           Fan         C,   Smoke eurge-Smoke Purge
7. ECW C,- ECH B,
                                                     -8'. ECW C,  ,

Fan B, Smoke _ Purge-

                                                      .9. ECH.B, Fan:C,-Smoke Purge                                         ,~

41 0. ECH C, Fan B, Smoke Purge t_ 11. ECH.B, ECH C Smoke Purge

12. HPI B,.HPI C
13. REC B, REC.C
                                                   ' 14 .- RCFC B,-RCFC C,                   OL 15..RCFC~B,-RCFC-C, ._ REC B,-(LPI C or HX C) 16'..RCFC'B,-RCFC C, REC <C, (LPI B or HX B)

J 17.cRCFC B, .RCFC C, LPI B, LPI'C A .18. .RCFC B, RCFC C, LPI.B, HX C

                                                    '19.'RCFC B, RCFC C, LPIJC, HX B P                                       . 2 0. RCFC B,,RCFC C, HX B, HX-C
21. ECW B', RCFC-C, OL g 22. ECW-B, RCFC C,'(REC C:or LPI C cr HX C)
                 ,      ,                           -23.iCCW B, RCFC C, OL.
24. CCW B,'RCFC C,-(REC C or LPI.C cr HX.C) o 25.-ECW C,.RCFC B,:OL
26. ECW C,1RCFC.B, (REC B or LPI B or HX B) e 27.;CCW;C,-RCFC-B, OL 2 8 . ' C C W . C ,.- R C F C . B , (REC B cr LPI B or HX B)-

1 1 - 4 b s tw h.

          \                     'b t_, ? '
                 )
                   .g        i

[

q . --

9. - .

fd s ,; Table 4-11. ' f (Part 2.- of :' 3). ' Level 2 Screenir.;' Evaluation 'of h.; + !V ' Dominant Additional Failures to Cause evie Damage from Fire: Scenario ZOO 4-FS-01 End State 19-av p , Approximate Conditional Core-Damage. frequency: C 1.--WBE*K14- 6.961E-04  : 2.:WCM*K13-- 1.015E-03. '

                                           '3.      W23 u ,1 ,                                                                                                          liS64E-03
                                           .4. . K2 3-                                                         6.563E-04
5. WBE*CLG*0S03 2.955E .!'e b 6.1WBE*FCN*0S03 t lif m '7. WCM*CLE*0S03 2.818E-04 7.017E-06 s, '8. WCM*FBH*0SO3 3.147E-07 4
19. CLE*FCN*0503 3.390E ,

b (10. CLG*FBH*0503- 1.594E i.V 11.-CLD*0S03 +

                                                                                                             3.385E-05'
12. HIB+2*PA* HIC-PAB 7.750E-04 13.:RAB 4.54SE-04 s
                                     +
14. CFC*0LO2 2.002E-05
                                   . - 15 . CFC*RA*(LA-RXC)                                       .

2.420E-07 i

16. CFC* RA * ( LA-RXC) 2.420E 17. CFC
  • LAB 8.012E-07
18. CFC
  • LA
  • RXC 7.650E-08
                                        ' 19.' ' CFC
  • LA
  • RXC 7.650E 2 0., ' CFC
  • RXB -
                                                                                                              -l'.893E-07 c                                          21.'. , WBE
  • CFE
  • 0LO 2 -
                       '                                                                                       7'.656E-05          ,

12 2'. WBE

  • CFE * ( RA-LA-RXC)

N 2.161E-04 '

                                       ' 2 3 '. . K13
  • CFE
  • 0LO2 6.609E-05 12 4. K1'3
  • CTE * ( RA+ LA-RXC)- 1.865E-04 ,

c 25 1WCM*CFD*0LO21 ' 2. 7 88E ' 9" 26. WCM

  • CFD* ( RA-LA+RXC) 7.868E-06" t" - 27. K14*CFD*0LO2 1.650E-06 J28. K14
  • CFD* ( RA-LA+RXC) 4.658E-06 jp x- Approximate End ~ State Core: Damage 'requency:

7.42E-08/yr 3 d' '[

 ,                 4, A

i 4

$4 4                                                                                                                               .

I s y' f et

                                               .i                                                                                 !
        'jd.*_.i --

g- r 'l f.

a _h . E Table 4-11. (Part :3 of 3) Level--2' Screening: Evaluation of Dominant Additional Failures to Cause Core Damage'from -l

                                     ' Fire Scenario ZOO 4-FS-01 End.StateE19
  • Split Traction
  • Description Value' CFC RCFC Trains.B'and C Failure 2.922E-03 CFD- RCFC. Train B Failure 4.378E-02:

CFE RCFC Train C Failure 8.835E-02 CLD' ECH Trains B and C Failure 6.824E-04

                      'CLE           ECH Train B Failure                              1.522E-02                '

CLG 'ECH: Train C Failure 4.710E-02 FBH. EAB HVAC Fan Train B Failure 6.825E 'FCN EAB HVAC Fan Train C Failure 4.491E-02 HIB- HHSI. Trains-B and C Failure 2.063E-04 4 HIC HHSI Train B (C) Failure 6.864E-03 , K13 CCW Train B Failure 1.092E-01 K14 CCW Train C Failure 5,503E-03 K23 CCW Trains B and C Failure 6.563E-04 LA LHS! Train B (C) Failure 1.041E-02 LAB LHSI-Trains B and C-Failure ~ 2.742E-04 ' OLO2 Operator-Failure to Depressurice 6.850E-03 for LHSI-(Small LOCA event) . OS03- Operator Failure to Start Snohe Purge 4.960E PA ECCS Common: Train B- (C) Failure 3.799E  : PAB ECCS Common Trains B and C Fai' lure 14 .'714 E-0 5 RA Recirc. Suction-Train B (C) Failure 6.408E-03: RAB Recirc, Suct' ion Trains B and C Failure 4.548E-04 RXB RHR Heat Exchanger Trains B and C Failure 6.477E-05 , RXC RHR Heat-Exchanger Train B (C) Failure ~2.515E-03 WBE ECW Train B Failure 1.265E WCM ECW Train C Failure- 9.296E-03 W23 ECW-Trains B and C. Failure 1.564E-03 in

  • NOTE:-System' failure split fractions are;docunented in STPlPSA Appendix.F. Operatcr action split fractions are' documented in STP PSA~ Table 15.4-53.

1 s i e

                 , a.

L ?/ . g Table 4-9. -Annual' End State Impact Frequencies for Fire Scenario-

                                       ' ZOO 4-FS-01 (Total' Fire Scenario Frequency: 1.33E-03/yr) ,
. Annual
Annual Considered for Considered'for-E E
                                -Frequency, Frequency, Further Analysis, Further Analysis, End         Fire-      Internal    First Level of     Second' Level of State       Caused.       Event         Screening'        . Screening 1            0 2            O'

(; 3 -o 4 0 h- 5 0 6 0 -] 7 0

                          '8:            0

?, -9 0 10 0 11 9.16E-04 3.08E-04 Yes Yes 12 3.93E-04 2.72E-05 Yes Yes 1. 13 0 1

                         .14             0 3.12E-06                                                               q
                        ~ 15 --                  1.82E-05          Yes-                 tio                  ;

16

                                 - 1.'3 4 E-0 6  1.60E-06          Yes                  tio
                        .17            'O 18-             0 19       1~.16E-05      4.18E         Yes                  11 o 20       4.99E-06'      3.70E-08          Yes                  tio
                                                                                                          ~

a 4 s i 2 i 4

                                                                                                        +

I e 1

        ?h c

g _.

      .o   : -                   .

ys: THIRD LEVEL OF SCREENING - ,

                    * - IDENTIFY CRITICA!. FIRE - CAUSED EQUIPMENT FAILURES DEVELOP FIRE SEVERITY AND GEOMETRY FACTORS FOR FRACTION.

OF FIRES THAT.WILL CAUSE CRITICAL DAMAGE 4 APPLY REDUCTION FACTORS TO SELECTED SETS OF CRITICAL !. EQUIPMENT AND CABLES  :

NO GLOBAL REDUCTION FACTORS FOR FIRE ZONE INITIATING EVENT FREQUENCY l

lNDIVIDUAL COMPONENTS AND' COMBINATIONS OF COMPONENTS-ACCOUNT FOR EQUIPMENT HARDWARE FAILURES IF FIREL ' DOES NOT CAUSE DAMAGE REQUANTIFY CONDITIONAL AND TOTAL CORE DAMAGE FREQUENCY. FROM:END STATE AS IN: LEVEL.2 SCREENING RETAIN END-STATE FOR FURTHER' ANALYSIS IF ITS CORE DAMAGE L FREQUENCY IS MORE THAN ONE-TENTH OF ONE PERCENT . OF CORE DAMAGE FREQUENCY FROM INTERNAL EVENTS PLG, Inc. j .w_, 4- ,% e -,,..g,Aa,-., gh ee-**w-. ,J W - *

  • g M W-- "

N

f. ) '+f-Me -3 9 M T _-'Pp""1r

_ -'__- m' -----1---------A---AM-IaC

#1,                     ,          .

Y

                              ~=                                                                                         . ,

c .6 t F ' Table 4-12.- Identification of Fire Frequency Reduction Factors for-Fire Scenario 2004-FS-01 End States-'11 and 12 4 3 ' FIRE ANALYSIS-REDUCTION FACTOR NOTES

  • ZONE: 2004 LOCATION: ESF-A Switchgear Room END STATE: 11,12 (Sheet 1) ,

i CRITICAL CABLES: A. Pressuriter PORV 655A: control cable ', (RCVS00655ACC) , Pressuriter PORV 655A Block Valve MOV0001A power cable and control cable (Either

                                 ,                                    RCVM0001APC gr RCVM0001ACC).

B. AFW Pump.A circuit breaker AFW Pump A power cable (AFPMS0001-PC) AFW Pump A Ventilation Fan motor. contactor AFW Pump A Ventilation Fan power cable and control cable:(Either: AFFN20001-PC'2r AFFN20001-CC) C. PDP control cable (CVPM00102ACC)' .

                                                                                                                       ?

NOTES::1. We need to estimate the f raction of these fires that will cause each of the following combinations of faults (letter designations. refer to sets of. cables noted l

                                                       -above):

A:.An open circuit in the PORV cable, or a 1 . , , sustained hot short in either block valve cable

  • B: An open circuit in any AFW pump'or1 fan cable
                                                             ~

C: A. sustained hot short , A and B: Any combination of the faults'noted above for

o. A and B
2. The , frequency of this end state already accounts for a  ;

nominal reduction factor of 0.10 for the conditional

                                                       . f requency: of .a sustained hot short circuit in<the:PDP:       -i control' cable, if it is affected by the fire.

1 1' k u s 3 i

f. - .

4

                     '                                                                                                     I Il.3
                     , o

L J ep g : ,  ! 'g 1 J Table? 4-12 '. (Part 2 of'2) Identification of FirefTrequency Reduction-Factors for! Tire Scenario ZOO 4-FS-01' m

          ,M                                         End' States 11 and 12:

S . FIRE ANALYSIS REDUCTION FACTOR NOTES i"

ZONE: Z004 LOCATION: ESF-A-Switchgear Room' q END STATE: 11,12 (Sheet-2)

CRITICAL CABLES: A. ECW Pump A circuit breaker. ECW Pump A1 power cable and control cable (Either:-EWPM00101APC 2r EWPM00101ACC) ECW Pump A Ventilation Fans control-cables (Both: EWFN20001-CC and,EWFN20002-CC). m B. CCW Pump A circuit breaker CCW Pump A power cable and control cable (Either: CCPM00101APC or CCPM00101ACC)

                                                                     'CCW Pump A Ventilation Fan motor contactor CCW Pump.A: Ventilation Fan power cable and
      ,                                                                    control cable .(Either: CCAHU0001-PC or CCAHU0001-CC)

C. PDP control cable (CVPM00102ACC)

                                     . NOTES: !1. We needito estimate the f raction of these fires that will
            ,                                     cause eachsof the following combinations of faults-                                                                                              +

_(letter designations refer.to: sets-of. cables.noted L above) : . r A: An open circuit in the. pump cable, or open circuits in both fan' cables B: An open' circuit in.any?CCW pump or: fan' cable C: ~A sustained hot short ALand C: Any combinatien of the-faults-noted-above for A and C B and C:.Any combination of the faults noted above.for B and-C

2. The frequency of this end state already accounts for a nominal reduction facter of 0.10 for the conditional
                             ,                     frequency cf a sustained hct short circuit in the PDP control cable, if it is affected by the fire.
                -t l

l 1 . s

                  ; t .- y; '

_- - _ _ . - - - - -- - . - - . . - - - - . - _ _ . . . ~ _ - . - - - . . - . . - . - - . _ _ _ - . _ _ _ - _ _ - . - _ - - . ~ -

   ;st ha s

t . ; . Fire Frequency Reduction Factors.for Fire' Scenario

                       . . Table.4-13.

,5, ZOO 4-FS-01 End States:.11 and 12 _ n ,

                            - Components              .                Designator          Value
                            = AFW Train ~A-                            FRED (AFW A)-       0.15-ECW Train A-
                                                                                ~

FRED (ECW A) O.12. CCW-Train A FRED (CCW A) 0.16 Pressurizer PORV 655A FRED (PORV): 0.023 PDP FRED (PDP) -.0.012 cr AFW-Train A and Pressurizer ~PORV FRED (AFW A,PORV) 0.023 ECW Train A and PDP FRED (ECW A,PDP) 0.012-CCW Train A'and'PDP FRED (CCW A,PDP) 0.012 i t t

      .-i' s

2 i A

             . e-
           ,              t
   .y c,

3 1 W s . 6 g Table 14-14.s' Level 3-Screening:' Evaluation of Dominant Additional. Failures ~to Cause Core Damage-from Fire Scenario- , ZOO 4-FS-01 End1 State 11 8

                   ,   ? Additional Failuresito Cause. Core Damage:                                         ,
                           .1 ^. FRED'(PORV)','ATW A, ATW:B, AFW C, AFW D                                   ,

2 ~. FRED (AFW A), AFWtB, AFW C, AFW D, Bleed + Feed 3.. FRED (AFW'AiPDRV), AFW'B, AFW C, AFW D .

                           '4 . FRED (ECW<A), ECW B, ECH C, Smoke Purge, ( ATW D or - PDP)
5. [1-FRED (ECW A)),=ECW A, ECW B, ECH C, Smoke Purge, "X"
  • i ' 6. FRED (ECW A,PDP), EC' B, ECH C, Smoke Purge, ( ATW D or 'PDPl~) .
7. FRED (ECW-A), ECW B. Fan C, Smoke Purge, (ATW D or PDP) 8..[1-FRED (ECW A)), ECW A, ECW B, Fan C, Smoke Purge, "X"
9. FRED (ECW A, PDP) , ECW B, Fan C, Smoke Purge,. (AFW D or PDP1)
10. ECW C, ECH B, Smoke Purge, "X" 11.-ECW C, Fan B, Smoke Purgo, "X" '
                        -12.       FRED (ECW A),-ECW B, ECW C,' Smoke Purge, ( AFW D or PDP)               !
13. [1-FRED (ECW A')), ECW A, ECW B, ECW C, Smoke Purge, "X"
14. FRED (ECW A PDP), ECW .B. ECW C, Smoke Purge, (AFW D or PDP1)
                        '15. ECH'B, Fan C, Smoke Purge, "X"
16. ECH C,: Fan B, Smoke' Purge, "X"
17. ECH B, ECH C, Smoke Purge, "X"
                        ' 18 .. FRED (ECW.A), ECW B, CCW C, PDP
                        ~19. FRED (CCW'A), ECW B, JCW C, PDP
20. (1-FRED (ECW A)-FRED (CCW A)), ECW A, ECW B, CCW C, "Y"-

21.-(1-FRED (ECW l.)-FRED (CCW A)), CCW A, ECW B, CCW C, "Y" 2 2. - FRED (ECW A, PDP) i ECW B, CCW C, PDP1 2 3. f RED (CCW A, PDP) , ECW B, CCW C,.PDP1

      *                 '24.       FRED (ECW A), ECW C, CCW B,      PDP 25 FRED (CCW A), ECW C,'CCW B,
                                               .                    PDP
                        -26.     .(1-FRED (ECW A)-FRED (CCW A);, ECW A. ?CW C, CCW B, "Y"
                        '27.       [1-FRED (ECW A)-FRED (CCW A)),. CCW A, ECW C, CCW B, "Y"                ;

s 2 8. f RED (ECW A, PDP) ,, ECW: C, CCW B,-PDP1 l

29. FRED (CCW A,PDP), ECW C, CCW B, PDP1 '

30.. FRED (ECW A),' ECW B, ECW C, PDP

         ,                31. FRED (CCW A)~, ECW B, ECW C, PDP
32. [1-FRED (ECW A)-FRED (CCW A)), ECW A, ECW B, ECW C, "Y"
33. (1-FRED (ECW A)-FRED (CCW A)), CCW A, ECW B, ECW C, "Y" l
34. FRED (ECW A',PDP), ECW B, ECW C, PDP1
35. FRED (CCW A,PDP), ECW B, ECW C, PDP1
36. FRED (ECW A), CCW B, CCW C, PDP
37. FRED (CCW A), CCW B, CCW C, PDP
38. [1-FRED (ECW A)-FRED (CCW A)], ECW A, CCW B, CCW C, "Y" '

3 9 '. -(1-FRED (ECW A)-FRED (CCW A)), CCW A. CCW B, CCW C, "Y" , 4 0. ~f RED (ECW A, PDP) , . CCW B,. CCW C, PDP1 "

                        -41. FRED (CCW A,PDP), CCW 3, CCW C,             PDP1                              !
                        ' NOTE:       "X" = AFW D - fREDfPDF)'PDP1 -
                                                                            ' l-f RED ( PDP) )
  • PDP 1 "Y" = FRED (PDP)*PDP1 - ' l- f RED ( PDP) )
  • PDP
                                                                                                         'l b b Y

1? " .e g e

p --

                                                                                                                           .q w

n

             , y
                 ' Table 4-14.            (Part' 2 of 3) Level 3' Screening: Evaluation of Dominant Additional Failures' to Cause Core Damage' from                               i Fire-Scenario 2004-FS-01 End State.11                                          .

ApproximateiConditional Core Damage' Frequency; 1.-(0.023)*CDA 7.835E-07'

2. (0.15)*CDC*0BA" 2.725E-06,  ;
3. .(0.023)*CDC' B.701E-06
             .        4.    ( 0.12 ) *WBE
  • CLG
  • 0S 03 * ( AFR ' + PDJ ) 9.690E-06
5. - ( 0. 8 8 ) *W21
  • CLG
  • 0S 0 3 * ( AFR ' + ( 0. 012 )
  • PDJ 1+ ( 0. 9 8 8 )
  • PDJ ) 6.849E-08
                    ;6. (O'.012)*WBE*CLG*0S03*(AFRL+PDJ1)                                                   1.255E          .!
7. ( 0.12 ) *WBE* FCN*OS 0 3 * ( AFR ' + PDJ ) . 9.240E-06 '
8. (0.88)*W21*FCN*0S03*(AFR'+(0.012)*PDJ1+(0.988)*PDJ) 6.531E ,
9. ( 0. 012 ) *WBE* FCN
  • 0S03 * ( AFR ' + PDJ 1) 1.196E-06
10. WCM* CLE* 0S 0 3 * ( AFR ' + ( 0. 012 )
  • PDJ1+ ( 0. 9 8 8 )
  • PDJ ) 1.924E-06
       "'          11. WCM
  • FBH *0S 03 * ( AFR ' + ( 0. 012 )
  • PDJ 1 + ( 0. 9 8 8 )
  • PDJ ) 8.630E-08
12. (0.12)*W23*0S03*(AFR'-PDJ) _

2.543E-06 l

13. ( 0. 8 8 ) *W31 *0S O 3 * ( AFR ' + ( 0. 012 )
  • PDJ 1 t ( 0. 9 8 8 )
  • PDJ ) 2.361E-08
14. ( 0. 012 )
  • W2 3 *0SO 3 * ( AFR ' + PDJ 1) 3.293E-07~
15. CLE* FCN *0S 03 * [ AFR '- ( 0. 012 )
  • PDJ 1+ ( 0. 9 8 8 )
  • PDJ ) 9.297E-06 16 :CLG* FBH*0S03 * ( AFR ' + ( 0. 012 )
  • PDJ 1+ ( 0. 9 8 8 )
  • PDJ ) 4.372E-07 y 17. CLD*0S03*(AFR'+(0.012)*PDJ1+(0.988)*PDJ) 9.282E-06 i
18. (0,12)*WBE*K14*PDH 7.766E-06
19. (0.16)*WBE*K14*PDH 1.036E-05 20' .

(0. 739) *W21* K14 * ( (0. 012 )

  • PDH1+ ( 0 988 )
  • PDH ) 4.648E-08
21. (0.739)*WBE*K24*((0.012)*PDHit(0.988)*PDH) 8.237E-08
22. (0,012)*WBE*K14*PDH1 l'.535E 4
                 -23.1 (0.012)*WBE*K14*PDH1                                                                 1.535E-06
                 ?24. (0.12)*WCM*K13*PDH 1.133E-05 25.n(0.16)*WCM*K13*PDH                      .

1.510E-05

26. ( 0. 7 3 9 ) *W2 4
  • K13 * ( ( 0. 012 )
  • PDH1- ( 0. 9 8 8 )
  • PDH ) 8.896E-08' }
27. ( 0.~ 7 3 9 ).*WCM* K21 * ( (0. 012 )
  • PDHi t ( 0. 98 8 )
  • PDH ) 8.258E-08  !
                 .28. '(0. 012 ) *WCM* K13
  • PDHl . 2.238E-06' -!
29. (0.012)*WCM*K13*PDH1 2.238E-06
                 .- 3 0 . (0.12)*W23*PDH                                                                    1.745E-05
                 '31. (0.16)*W23*PDH                     .

2.326E-05

32. (0.739)*W31*[(0.012)*PDH1-(0.9BS)*PDH), 1.372E-07 L33. ( 0. 7 3 9 )
  • W2 3
  • K11 * ( ( 0. 012 )
  • PDH1- ( 0. 9 8 8 )
  • PDH )
                                                                                         ~

1.235E-07 3 4 '. (0.012)*W23*PDH1 3.448E ' c -3 5. .(0.012)*W23*PDH1 3.448E-06

36. (0.12)*K23*PDH 7.322E-06
  • 37. (0.16)*K23*PDH 9.762E-06 3 8. = ( 0. 7 3 9 )
  • WAA
  • K2 3 * ( ( 0. 012 ) = PDH 1- ( 0. 9 8 8 )
  • PDH ) 4.286E-08 39.= (0.739)*K31*((0.012)*PDH1-(0.988)*PDH) 2.047E-07 '

40.'.(0.012)*K23*PDH1 1.447E-06 4 1' . : (0.012)*K23*PDH1 1.447E-06 t n , Approximate End State Core Damago'Frecuency: 1.63E-07/yr  ! f n' e:

                    .                                                                                                         i

gg  ; .

                              ' Nd O f'

p TableL4-14.- (Part 3 of-3); Level 3 Screening: Evaluation of 6 Dominant Additional Failures.to Cause Core Damage from [ Fire' Scenario ZOO 4-FS-01 End? State;11-LSplit- ' Fraction *. Description Value AFR! 'AFW Train D-Failure (After Turbine 7.836E-02 Recovery)

     .y      '
                                               'CDA                ATW Trains A, B, C, _and D Failure            3.406E-05 CDC          'ATW Trains B, C, and D Failure 3.784E-04 CLD             ECH Trains B and C Failure                   6.824E-04 CLE             ECH Train'B Failure                          1.522E-02 CLG             ECH Train C Failure                          4.710E-02 FBH             EAB HVAC Fan Train B Failure                 6.825E-04 FCN           -EAB HVAC Fan Train C Failure-                 4.491E-02 K11'            CCW Train.A Failure                           1.136E-03
                                                'K13-               CCW Train B Failure                           1.092E-01
      ,                                             K14             CCW Train C Failure                           5.503E-03 K21          'CCW Trains A and B Failure                      1.278E-04 K23             CCW: Trains B and C Failure                   6.563E-04 K24-            CCW Trains A and C Failure                    9.36BE-06 K31-            CCW' Trains A,   B, and C Failure             2.945E-06' OBA             Bleedcand Feed Failure (Transient Event)     -4.802E-02.

OS03 operator Failure to Start Smoke-Purge 4.960E PDH PDP Failure (Excluding TSC Diesel) 9.297E PDH1 PDP Failure (Excluding TSC Diesel, 1.837E-01 Including Control-Cable Hot Short)- PDJ .PDP' Failure (Including TSC Diesel) 1.949E-01

                                              'PDJ1                 PDP Failure (Including TSC Diesel,            2.754E-01
                                                      . .           Including? Control' Cable Hot Short) s WAA          !

ECW Train A Failure 9.394E-04 WBE ECW. Train B Failure -1.265E-01 ECWnTrain CLFailure WCM 9.296E-03

                                                 -W21               ECW Trains A and.B Failure                    1.215E-04 W23            .ECW Trains B and C Failure                    1.564E-03 "W24                ECW-Trains ALand C Failure                    1.172E-05 W31             ECW Trains A, B, and C Failure                1.973E-06:

y

                                          -
  • NOTE: System failure split fracticas are docunented in STP PSA Appendix,F. Operator action split fractions are documented' in STP PSA Table 15.4-53. ':cdifications to PDP split
                                                      '     fractlons to account for fire-induced control cable hot
                                                          . shorts are docunented in Attach ent 4.1 to this Response.

Speciall:ed fire impact reduction f actors are documented' in Attachment 4.2 to this Response.

                        . .X            1
                          .;                                                                                                   )

I h

                                                           .o               -}}