ML20059E906

From kanterella
Jump to navigation Jump to search
Forwards Response to 900808 Request for Addl Info Re NRC Bulletin 90-002, Loss of Thermal Margin Caused by Fuel Channel Box Bow
ML20059E906
Person / Time
Site: Oyster Creek
Issue date: 08/30/1990
From: Fitzpatrick E
GENERAL PUBLIC UTILITIES CORP.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
IEB-90-002, IEB-90-2, NUDOCS 9009100391
Download: ML20059E906 (39)


Text

-. .-. .- . .- -

s .. , n 4

- , OPU Neelear Corpotetten g Post Office Box 388 Route 9 South l

Forked River. New Jersey 087310388 609 971 4000 Wnter's threct D4al Numter: l l

Augurt 30, 1990 )

U.S. Nuclear Regulatory Commission -

Attne Document Control Desk Wathington, D.C. 2055$

References NRC Bulletin 90 GPU Nuclear Response, dated May 21, 1990 i NRC Request for Information, dated June 6, 1990 GPU Nuclear Response, dated July.20, 1990 Dear Sira Subjects oyster Creek Nuclear Generating Station Docket No. 50-219 NRC Request for Information, dated August 8, 1990 This letter is being written in response to the NRC request for additional information dated August 8, 1990, pertaining to NRC Bulletin 90-02,

  • Loss of +

l Thermal Margin Caused by Fuel Channel Box Bow." The enclosure to this letter I provides the requisite responses. +

t If any questions or comments should arise, please contact Mr. John Roger.  !

oyster Creek Licensing Engineer at 609-971-4893.

i  !

l

' ry truly yours, /

y h ht '

lNtzpatrick N' u

Vice President and Director Oyster Creek EEF/JJR/je f

Enclosure f,

9009100391 900030 PDR P

ADOCK 05000219 PNV

  • I GPU Nuclear Corporation is a subsidiary of General Public Utilitres Corporation f l\\ -

l

4 e ..

- ces Mr. Thomas Martin, Administrator Region 1 .

U.S.~ Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406 NRC Resident Inspector Oyster Creek Nuclear Generating Station Mr. Alexander Dromerick U.S. Nuclear Regulatory Commission Mail Station P1-137 Wm.'hington, DC 20555 i

s

'l

?

1 i

f w ,ro- p ,- ,, , -c,, ----, - , - , , , - # ,-w--,. p g- ,.

O i I

1 I

ENCLOSURE l l

REOUEST 1:

Respond to the expressed staff position (on the oyster Creek Fuel Channel Reuse Program) and its impact on your next operating cycle.

l I

GPUN RESPONSE GPUN acknowledges the staf f position that additional bow data in the advanced exposure range is desirable. GPUN will measure a select number of channels discharged after completing two bundle lifetimes. It is our intention to continue with a limited channel reuse program provided that the new data support this position. As stated in the staff request for additional information, the sharp increase in the rate of channel bow which occurs in the 38 to 40 GWD/MTU exposure range for other plants has not been seen in the oyster Creek data. We cannot comment on the other plants as we do not know the particulars about the channels which were measured. However, several conditions could lead to excessive channel bowing including 100% channel reuse, -

or using channels that do not have matched halves or annealing.

The GPUN decision to continue with a limited channel reuse program is predicated on the acceptability of the measured channel bow data which will be collected. Oyster creek has not experienced the sharp increase in bowing rate described by the NRC. GPUN will work with the staff to address their concerns with the proposed channel reuse program and Rafactor correction for channel bow '

methodology.

With regard to the staff position and its impact on next cycle, GPUN will limit channel reuse on new bundles in cycle 13. New bundles with reused channels will be loaded into core locations that, based on cycle projectior.s, will not be operated near thermal limits. Furthermore, the limiting core locations will only be loaded with channels projected to have less than 150 mil-bow at the end of cycle based on projections using the current data base. The modification to R factors for the next cycle will ut,111ae the revision of the data base using the measurements taken at the end of cycle 12.

l l

REQUEST 2 ,

A detailed explanation is needed regarding how the coefficients and parameters (BFC, BFp) in your channel bow correlation were derived and exactly how this correlation is applied to channels at different core locations having different ,

exposure histories.

GPUN RESPONSE:

Attachment I contains the explanation as to how the coefficients and parameters BFC and BFC in the channel bow correlation, LB, are derived and applied to fuel channels for different core locations having different exposure histories.

This explanation is a copy from the manual MPR-677 ' Fuel Channel Analysis Methods Manual for Oyster Creek".

The coefficients for BFC and BFP were derived by correlating the best fit line to the measured data. Only bows originating from the central reglen of the core were used for BFC. Bows from the outer two rows of the core were used for ,

BFP. Figure 2 defines the central, adjacent and peripheral locations in the core.

The CPUN bow correlation has been updated since the July 20, 1990 submittal.

Attachment I has been revised to reflect the updated correlation and the ihtormation provided in this submittal is based on the updated correlation.

1

l l .

. \

l l ATTACHMENT 1  !

EXPLANATION OF BOW PREDICTION CORRELATION l

l 1 )

i i

i f

a j

i

2. Calculations Method and Ecruations The following stops may be used to determine the i

magnitude of the longitudinal bow for a fuel channel

a. Identify the core coordinates of the channel by specifying a row number (I) and a column number (J), referenced to the top-left row and column ,

location in the core. (This convention is 11- >

lustrated in Figure 6, in connection with the example below.)

b. Determine the flur, gradient factor, F for the channel's location during the cycle fbg,.on Table 1.

Note that only the outer two tiers of fuel chan-nels have non-zero gradient factors.

c.

j Calculate the channel exposure factor for the cycle by the following formula i

III.10

EFP jk

  • J BUID -

/ BUP j ,k-1+ BUCj,k-1 (Eq. 9a) 2.4 EFC = -

(BUCj k-1 + BUPj k-1)2,4 (Eq. 9b) jk (BUCjk) {

i l

wheret )'

EFP = channel exposure factor for Ik the j-th channel located in '

the peripheral and adjacent core regions during the , t k-th cycle  !

EFC = channel exposure factor

$k j-th for channel located in j the central core region during the k-th cycle jk BUP j'k-1 = cumulative fuel bundlesburn-up of all BUP which have operated within the j-th channel in the peripheral

, and adjacent core regions, at the end and beginning of 4 the k-th cycle GWD/NTU). +

Reist Use the bundle-averaged burn-up, as listed in the actual (or predicted) core fuel '

exposure listing, for each cycle. ,

BUCjk'BUCj'k-1=fuel cumulative bundles which burn-up of all have operated within the j-th channel in the central core region, at the and and beginning of the k-th cycle (GWD/NTU).

Egist Use the bundle-

. averaged burn-up, as listed r

'at the actual (or predicted) core fuel exposure listing, for each cycle i

d. Identify the channel's x and y axes as  !

illustrated in Figure 4.

III.11

e. Calculate the geometry factor for each axis of the channel during each cycle by the following formulas:

G xjk

  • I#jk- ("jk + 1) r/2) (Eq. 10)

{

G yjk "C

  • I jk- (N jk+ 2) r/2) (Eq. 11) where l G Xjk'Oyjk= and ge metry y axes,respectively, for factors of the x l l l t

the j-th channel during the , '

I k-th cycle.

f = angle between the origin of jk the j-th channel x-y system and the x-axis of the core, i (radians), as shown in Figure 5.

N jk

= -th channel orientation factor for the location during the k-th cycle, as i shown in Figure 4. .

Notes: (1) Analytic evaluation of fjk and N jk may be made by referring to Tables 2 and 3.

(2) G Xjk' yjk = 1.0 for central core region.

f. Calculate the bow factor for a channel side by one of the following formulas as appropriate .

i For channels in peripheral locations -

3 l

BFP ig =K 1 ik x EFP jk X Fjk (Eq. 12a)

For Channels in central locations -

3 BFC I G ijk x EFCjk x (1.0 - Fjk) (Eq. 12b) i$ =K=1 III.12

where i

= x or y ,

i  !

BFPg) = W factor for the i-th side of the j-th channel '

in the peripheral and adjacent core regione.

I BFCgI = bow factor for the i-th  !

side of the j-th channel i in the central. core regione.  :

K = last operating cycle for [

$ the j-th channel. L i

g. calculate the longitudinal how for the 1-th side by the following formular i

La g) = 0.0154+0.0000082xBFcg3 +0.0416xBFPgj (Eq.13) where:

LB longitudinal bow for 1-th side i yI = of the jathe channel.

e i

III.12a

. l

. 1 t

TABLE 1 1

VALUES OF FLUX GRADIENT FACTORS CORE LOCATION I FLUX GRADIENT FACTOR, Fp t

P 1,0 A 1,0 C 0.0 t

6 III.15

- _ . .. . - . .= . - - - . - . . . - - . .-

l E

AXES TYPICAL FOR EACH CHANNEL

- SEE NOTE &ELOW X Y

<> t, 1 I p Y- 4 ;X >

CONTE 0L BLADE % ,

(Na2) (N=1)

A h 1

< y (N n (N.o x: , :y i

s )( j ll $I r Y X '

NOTE: X AND Y BOW ARE DEFINED AS POSITIVE AWAY FROM TME CONTROL BLADE FOR EACH CHAhWEL l

l l

l FUEL CHANNEL AXIS IDENTIFit4 TION FIGURE 11 -

!!!.35

  • . l l

I CORE Y-AXIS lb

$ *th CHANNEI, Y 1

I < 13.5, J > 13.5 l I < 13.5, J < 13.5 '

\

1 g :X d k -

LOCATION (I,J)

< i . O CORE X-AXIS l

C CORE CENTER I's 13.5, J = 13.5 ,

I > 13. 5, J < 13. 5 I > 13.5, J > 13.5 DEFINITION OF CHANNEL. LOCATION ANGLE ,

' FIGURE 5 l

i III.36 i

t

, - _ - ,- . , , - , - . . . . . _ _ _ . . - - . , , . , _ _ . _ , . . . , . . . . - , , . . , . , .-m ,,_ ., .

s.

1 1, J.12, Njk"1 1 1, 2 11, u,,.r x' n .-----.. -

! 0828 BiBBBBBBBE; L '

! EBEEB BM82E25BB BE:2 iaEBEBE BB' BE2 BE XBa sBEBBBB BE BE BEE EM BE .

BEs !N; 8B'BBEBB2 EE8BBBB 00t200 200]O nam ioolooloocroto ,

Ojk"1.768 radians 1/2 0F CORE MAP l

ILLUSTRATION OF Ogg AND Njg FOR THE EXAMPLE PROBLEM FIGURE 6

!!I.37

^

TABLE 2 EVALUATION OF CHANNEL LOCATION ANGLE ,

h I < 13. 5 and J > 13. 5 O jk = Tan ( (13. 5-I ) / (J-13. 5 ) ]

I < 13. 5 and J < 13. 5 O jk = n - Tan -1 ( (13. 5-1) / (13. 5-J ) ]

I > 13. 5 and J < 13. 5 O jk = 5 + Tan ~1 [ (I-13. 5 ) / (13. 5-J ) )

I > l3. 5 and J > l3. 5 O jk = 2w - Tan ~1 [ (I-13. 5) / (J-13. 5) )

5 III.16 l

1

TABLE 3 EVALUATION OF CHANNEL - ORIENTATION FACTOR  :

Iodd' Jeven Njk

  • 1 Iodd' Jodd Njk = 2 Ieven' Jodd Njk
  • 3 Ieven' Jeven Njk
  • 4 ,

4 Y

l III.17

e .

l

[

CORE LOCATION CODE I 2 3 4 5 6 7 8 9 10 11 12 IS 14 15 16 17 18 19 20 21 22 23 24 25 26

! P P P P P P D P P P ,

2 P A A A A A A A A A A P 3 PPPAACCCCCCCCAAPPP 4 PAAAACCCCCCCCCCAAAAP 5 PAACCCCCCCCCCCCCCCCAAP 6 PACCCCCCCCCCCCCCCCCCAP 7 PACCCCCCCCCCCCCCCCCCAP S P A A C C C C C C C C C C C C C C C C 'C C A A P 9 P A A C C C C C C C C.C C C C C C C C C C C C A A P 10 P A C C C C C C C C C C C C C C C C C C C C C C A P 11 P A C C C C C C C C C C C C C C C C C C C C C C A P 12 P A C C C C C C C C C C C C C C C C C C C C C C A P 13 P A C C C C C C C C C C C C C C C C C C C C C C A P 14 P A C C C C C C C C C C C C C C C C C C C C C C A P 15 P A C C C C C C C C C C C C C C C C C C C C C C A P 16 P A C C C C C C C C C C C C C C C C C C C C C C A P 17 P A C C C C C C C C C C C C C C C C C C C C C C A P 18 P A A C C C C C C C C C C C C C C C C C C C C A A P 19 PAACCCCCCCCCCCCCCCCCCAAP 20 P A C C C C C C C C C C C C C C C'C C C A P 21 P A C C C C C C C C C C C C C C C C C 0 A P 22 P A A C C C C C C C C C C C C C C C C A A P 23 P A A A A C C C C C C C C C C A A A A D 24 P P P A A C C C C C C C C A A P P P 25 P A A A A A A A A A A P 26 P P P P P P P P P P NOTE:

C = central A = Adjacent .

P = Pe ri phe ral FIGURE 1

REOUEST 3:

A detailed discussion is needed regarding exactly how the bow data presented in Figure 2 of your May 21, 1990 submittal have been utilized in developing your bow correlation. This discussion should specify whether upper bound value, mean value, mean plus ons, etc., is used in the correlation.

GPUN RESPONSE:

The channel bow measurement data presented in Figure 2 of CPUN's May 21, 1990 submittal represent channel bow as a function of exposure for three classes of oyster Creek channels:

1. Channels not made to GPUN channel fabrication specifications (original channels and those made in the early '70's);  ;

1

2. Channe)s made to GPUN channel f abrication specifications from all vendors for all core locatione; and l
3. Channels made to GPUN's specifications which resided only in the l central region of the core (i.e. not loaded in the two outer rows).

The GPUN bow correlation consists of two parts: BFC, bow resulting from the central region and BFP, bow resulting from the two outer rows of the core. The data from Figure 2 of the May 21, 1990 submittal for bows measured in the central region of the core from channels made to GPUN specifications was used to calculate the BFC correlation. The BFP correlation was derived from measurements obtained from channels which resided in the two outer rows of the core. This particular data was not segregated in Figure 2.

Figure 2 of thig submittal shows the measured bow for channels residing in the central region of the core. The curves shown are the mean of the measured data, which is used in the bow correlation, and the 1 sigma band.

s

1

r I ,

(

  • l ,

l OYETER CREEK CENTRAL REGION BOW DATA BOW VetuPOnisurtAL TO OURNUP TD 2.4 POWER i 180  !

l 160 - 0 U

l U 140 -

i 120 - i i

^ OC 9 0 0 ,

g IN - 0 3 80 - c5 g.

O U B O O 0

! g W- O O d D  ;

2 40 - D D a [

e n '

- D 0

6 i E t 4

d 20 -y

.n.-

C3 o

i

" o l Svg 1

! o i

! o j t

E

-W i i e i a

60 O 20 40 4

i

' FUEL BUMUP (GWD/WU)

I .

FIGURE 2 i

REOUEST 4:

In your July 20, 1990 submittal you state that GPUN limits the reuse of channels "to those that have been located only in the cer. tral region of the core." Does this mean that the reused channels all remained in the central core region during the entire first bundle lifetime? To clarify this,-a description of your fuel shuffling scheme for reloading is needed.

CPUN RESPONSE:

Y3s, channels intended for reuse will have all remained in the central region ,

of the core during the first bundle lifetime. The CPUN channel history code identifies the core residence history for all channels. From this information, channels for reuse are selected. No effort is made to alter core design or fuel shuffle plans to accommodate the fuel channel reuse program.

During the first three cycles of channel reuse (Cycle 10, 11, and 12), channels which resided only in the central region of the core were primary candidates for channel reuse. However, during this period, channels which were previously measured, despite their core location histories, were also candidutos for reuse in order that channel bow at high channel exposures could be measured. This was an integral part of the channel measurement program. Other channels were also selected for channel reuse on a case by case basis.

The GPUN channel history computer code is used to identify candidate channels for reuse. An output of the channel history code is provided in Attachment

  1. 2. Note that for every channel in the core, the core location history, total channel cxposure, bow factors, an E-bow and Y-bow are provided. Candidates for channel reuse would be those channels having a "CCC" history and an exposure of less than 30 GWD/MT.

[

l

l

[ _ f'

(/ \j b 11111 CHANNEL' 'll CYCLE ASSY TOTAL BOW FACTORS BOW FACTORS CALCULATED BOWS l'

r .

NO AB2345678901234 NO NO EXPOSUGE BFCX BFCY BFPX BFPY X Y

~

110C AA 12 D632 19.5840 9.0 0.0 1.132 0.767 0.0625 0.0473

  • 116C PPAP'AAC 12 J117 38.9332 3133.1 3133.1 -2.206 0.337 -0.0507 0.0551 119C CC CCC 12 J122 37.7811 6101.8 6101.8 0.0 0.0 0.0654 0.0654 121C ACCC CC 12 D613 47.2578 10432.7 10432.7 1.216 0.960 0.1515 0.1409 122CM CCCCCCC 12 G731 62.4516 20384.7 20384.7 0.0 0.0 0.1826 0.1826 123CM CCCC CCC 12 G727 53.9213 14329.3 14329.3 0.0 0.0 0.1329 0.1329 1 124C- CC CCC 12 J188 38.4950 6382.2 6382.2 0.0 0.0 0.0677 0.0677 l 125C CCC CCP 12 J169 39 5498 5535.9 5535.9 -0.206 -0.167 0.0522 0.0538 127C CCC CCC 12 J141 45.3192 9442.3 9442.3 0.0 0.0 0.0928 0.0928 130C CCCC AC 12 D611 48.9679 6669.4 8669.4 0.460 0.795 0.1056 0.1196 1303D CAP 12 8128 21.3083 171.9 171.3 -1.057 0.773 -0.0272 0.0489 132C CCC AA 12 D605 35.4735 813.9 813.9 -0.149 0.030 0.0159 0.0233 135C ACC CCP 12 J177 40.4c48 5192.7 $192.7 -0.640 -0.835 0.0314 0.0232 1353E C 12 L582 14.9438 658.7 658.7 0.0 0.0 0.0203 0.0208 1377E C 12 L638 14.0644 569.5 569.5 0.0 0.0 0.0201 0.0201 1380 ACCC AC 12 C594 46.0315 7302.5 7302.5 0.577 2.382 0.0933 0.1744 1384E C 12 L596 14.1784 580.6 580.6 0.0 0.0 0.0202 0.0202 139CM PACC CA 12 0642 42.7282 3S87.4 3887.4 -0.145 -2.754 0.0412 -0.0673 140C- CC CCP 12 J194 33.6212 2773.4 2773.4 -0.582 -0<023 020139 0.0372

, 1400C CC A 12 0789 32.1523 1382.2 1382.2 1.003 0.581 0.u?95 0.0509 l

1401E C 12 L655 14.9173 e55.9 655.9 0.0 0.0 0.020G 0.0208 1410E C 12 L673 14.3101 593.7 593.7 0.0 0.0 0.0203 0.0203 1426E C 12 L677 13.5694 522.6 522.6 0.0 0.0 0.0197 0.0197 143C CCC CCC 12 J145 45.1632 9364.5 9364.5 0.0 0.0 0.0972 0.0922 1439E C 12 L643 14.7427 637.6 637.6 0.0 0.0 0.0206 0.0205 144Cu CAPP CCP 12 J173 38.7213 4031.5 4031.5 -0.397 1.323 0.0319 0.1037 1440E C ' 12: L680 12.7868 453.1 453.1 0.0 0.0 0.3191 0.0191 145C PCC CCC 12 J144 43 9156 8754.5 8754.5 -0.638 -0.788 0.0607 0.0544 1462E C 12 L584 14.2836 591.0 591.0. 0.0 0.J 0.0202 0.0202 1463E C 12 L604 15.3226 699.5 699.5 0.0 0.0 0.0211 0.0211 1468E C 12 L634 14.2042 583.2 583.2 0.0 0.0 0.0202 0.0202 1470E C 12 L597 14.2389 586.6 586.6 0.0 0.0 0.0202 0.0202 147/E .C 12 L683 14.1294 575.8 575.8 0.0 0.0 0.0201 0.0201 1478E C 12 L695 14.9103 655.2 655.2 0.0 0.0 0.0208 0.0208 148C CCP CCP 12 J157 35.7732 3881.7- 3881.7 -0.088 0.118 0.0436 0.0521 1482E C 12 L651 14.7362 637.0 637.0 0.0 0.0 0.0206 0.0206 1483E C 12 L615 14.1359 576.5 576.5 0.0 0.0- 0.0201 0.0201 1484E C .12 L608 12.8380 -457.5 457.5 0.0 0.0 0.0192' O.0192 14850 CAC 12 Y776 31.1445 2979.0' 2979.0 -0.515 -1.202 0.0184 -0.0102 1488E C 12 L629 14.7512 638.5 638.5 0.0~ 0.0 0.0206 0.0206 1489E C 12 L635 12.8248 456.4 456.4 0.0 0.0 0.0191 0.0191 1491E- C 12 L601 14.1756 580.4 580.4 0.0 0.0 0.0202 0.0202 1496E C 12- ~L679 14.7460 638.0 638.0 0.0 0.0 0.0206 0.0206 1497D CCC -12 G741 28.3995- 3075.7- 3075.7 0.0 0.0 0.0406 0.0406 151C CCC CCC 12 .?146 45.0346 9300.6 9300.6 0.0 0.0 0.0917 0.0917 15150 ACC 12 -Y751 29.9314 3404.9- 3404.9 1.560 1.976 0.1082 0.1255 15170 CCC 12 Y719 28.9450 3219.4 3219.4 0.0 0.0 0.0418 0.0418 1524E C 12 L681 14.1088 573.8 573.8 0.0 0.0 0.0201 0.0201-1525D AAA ^12 V743- 22.9291 0.0 0.0 3.056 1.421 0.1425 0.0745 1533E C 12 L543 14.9774 662.3 662.3. 0.0 0.0 0.0208 0.0208 1534D CCC 12 J147 28.9299 3215.4 3215.4 0.0 0.0 0.0418 0.0418 Attachment 2 - EOC 12 CHANNEL HISTORY CODE OUTPUT

v s v ~

CHANNEL 11 11111 CYCLE ASSY TOTAL BOW FACTORS BOW FACTORS CALCULATED BOWS NO A82345678901234 NO NO EXPOSURE BFCX SFCY 8FPX BFPY X Y-1554C CCPP 12 7091 28.7131 1113.8 1113.8 0.344 -0.?53 0.0388 -0.0151 1558C CCPP 12 7097 28.6736 1114.5 1114.5 -0.289 -0.317 0.0125 0.0113

  • 159Cu AC 12 D610 24.6055 1934.0 1934.0 1.578 2.725 0.0969 0.1446 163C CCC AA 12 D602 37.5457 1052.5 1052.5 1.190 0.682 0.0735 0.0524 1637C CCC A 12 D777 37.0982 2334.5 2334.5 0.917 0.531 0.0727 0.0566 1638C CCP C 12 L700 35.4312 4517.6 4517.6 -0.378 -0.234 0.0367 0.0427 164C ACCC CC 12 064S 47.6297 10627.9 10627.9 1.641 0.214 0.1708 0.1115 165C CCC CCC 12 G724 45.5667 9566.5 9566.5 0.0 0.0 0.0938 0.0938 166C ACCC CC 12 D613 47.2470 10426.9 10426.9 0.961 1.217 0.1409 0.15*5 .

167C ACCC AA 12 D606 42.8125 1970.5 1970.5 0.208 1.530 0.0402 0.0952 1670C CC A 12 D784 30.3961 1114.5 l'14.5 0.601 1.039 0.0496 0.0677 1672C CCPP 12 7058 25.9389 1113.5 1113.5 -0.579 0.038 0.0005 0.0261 1674C CCC C 12 0791 40.1378 7055.5 7055.5 0.0 0.0 0.0733 0.07J3 1711C CCC A 12 LS80 38.8174 2679.4 2679.4 1 043 0.I36 0.0808 0.0430 172C ACCC AA 12 D630 42.9563 1913.5 1913.5 0.694 1.321 0.0600 0.0861 1727C CCC C 12 LSS5 41.4072 7602.9 7602.9 0.0 0.0 0.0777 0.0777 173CM CCC CCP 12 J162 41.9628 5260.2 5260.2 -0.513 -0.021 0.0370 a.0577 175C CAC CCP 12 J161 40.8002 4723.4 4723.4 -0.572 1.207 0.0303 0.1043 176C CCC AAC 12 J118 40.4164 4135.0 4135.0 -0.593 1.171 0 9246 0.0960 186C CCC CA 12 0658 35.6766 3241.4 3241.4 0.436 -0.390 0.J601 0.0257 192C CCCC CC 12 D645 47.5580 10816'0 . 10816.0 0.0 0.0 0.1041 0.1041 196Cu CCC AA 12 0601 36.2085 880.1 880.1 0.692 1.223- 0.0514 0.0735 205CM CCCC CCC 12 G739 53.G480 14155.6 14155.6 0.0 0.0 0.1315 0.1315 20SC CCCC AA 12 D626 43.7551- 2130.6 2130.6 0.619 1.057 0.0586 0.0773 211C CCC AA 32 D603 37.5935 1053.1 1053.1 1.192 0.684 0.0736 0.0525 215C CCCC CC 12 D614 47.9230 10797.1 1079/.1 0.0 0.0 0.1039 0.1439 216C AC ACC 12 J134 35.9434 4906.9 4906.9 1.762 0.530 0.1290 0.0777 2172C CCC 12 J139 29.1074 3262.9 3262.9 0.0 0.0 0.0422 0.0422 220C CCC AA 12 0607 37.3408 1053.7 1053.7 0.016 -0.136 0.0247 0.0184 221C AC CCP 12 J170 32.5700 3304.6 3304.6 -0.556 1.316 0.0194 0.0972 223C CCCC AC 12 D623 49.0222 8678.8. 8573.8 0.799 0.463 0.1198 0.1058 224C CCCC AC 12 D622 49.0188 8675.5 8675.5 0.800 0.463 0.1198- 0.1058 226C CCC CCC 12 J165 45.3987 9482.1 9482.1 0.0 'O.0 0.0932 0.0932 2317C CC C 12 0778 32.7061 4316.3 4316.3 0.0 0.0 0.0508 0.0508 234C CCCC AA 12 D600 51.5712 4070.2 4070.2 -0.262 0.078 0.0379 0.0520 248CM ACCCCCC 12 G732 62.8188 20536.0 20536.0 '2.414 1.398 0.2842 0.2419 252C CAC CCC 12 G748 43.6630 8471.8 8471.8 1.228 -0.053 0.1359 0.0826 254C CCC CCP 12 J158 39.9054 5403.0 5403.0 -0.305 -0.110 0.0470 0.0551 255CM CAC ACC 12 J133 42.1759 6897.4 6897.4 0.157 1.920 0.0785 0.1518 257CM CCC CCC 12 GT35 45.4158 9490.7 9490.7 0.0 0.0 0.0932 0.0932 258CM PPAA CCC 12 G744 44.5081 8279.0 8279.0 -3.131 -0.557 -0.0470 0.0601 265CM CCC CAC 12 J153 43.9595 6563.7 6563.7 0.697 0.212 0.0982 0.0780 266CM CCCC CC 12 'D661 50.6248 12316.1 -12316.1 0.0 0.0 0.1164 0.1164 268CM CCC CCC 12 J142 45.0774 9321.3 9321.8 0.0 0.0 0.0918 0.0918 2705E C 12 L640 15.3304 700.4 700.4 0.0 - 0. 0 0.0211 0.0211 2706E C 12 L644 14.3401 596.7 596.7 0.0 0.0 0.0203 0.0203 2708E C 12 L579 14.7478 638.2 638.2 0.0 0.0 0.0206 0.0206 2709E C 12 L641 14.0674 569.8 569.8 0.0 0.0 0.0201 0.0201 271CM CC CCP 12 J174 32.9921 2936.8 2936.8 0.201 0.420 0.0478 0.0570 2711E C 12 L554 14.1835 581.1 581.1 0.0 0.0 0.0202 0.0202 2712E C 12- L686 15.2652 693.2 693.2 0.0 0.0 0.0211 0.0211

g , g-

'I 4

L.! .). %d .

CHANNEL 11 '11111 CYCLE ASSY TOTAL BOT FACTORS' BOW FACTORS. CALCULATED BOWS NO AB2345678901234 NO NO EXPOSURE BFCX BFCY BFPX -SFPY X Y 2716E C 12 L648 14.1716 580.0 580.0 0.0 0.0 0.0202 0.0202-

  • 2717E C 12 L668 15.3108 698.2 698.2 0.0 0.0 0.0211 0.0211-2718E- C 12 L663 14.2106 583.8 583.8 0.0 0.0 0.0202 0.0202

'.272CM CCC CAC 12 J126 42.7740 6089.0 6089.0 0.736 0.224 'O.7960 3.0747 271oE C 12 L650 14.9159 655.8 655.8 0.0 0.0 0.0208 0.0208-2721E C 12 L598 14.1667 579.5 579.5 0.0 0.0 0.0202 'O.0202' 2722E C 12 L647 14.9586 660.3 660 3 0.0 0.0 0.0208 0.0208 2723E C 12 L585 14.7300 636.3 636.3 0.0 0.0' O.0206 0.0206-2724E A 12 L636 10.8765 0.0 0.0 2.722 -1.362 Cil266 -0.0621 2725E C 12 L577 15.2665 633.4 693.4 0.0 0.0 0.0211 0.0211' 2728E C 12 L659 14.1396' 576.8 576.8 0.0 0.0 0.0201 0.0201 2729E C 12 L639 12.0926 396.3 396.3 0.0 0.0^ 0.0186 0.0186 '

2732E C 12 L667 14.3120 593.9 593.9 0.0 0.0 0.0203 0.0203 2736E C 12 L586 14.7531 63S.7 638.7 0.0 0.0 0.0206 0.0206' 2737E C 12 L588 15.2695 693,7 693.7 0.0 0.0 0.0211 0.0211~

2738E C 12 LG64 14.7508 638.5 630.5 0.0 0.0 0.0206 'O.0206 2739E C 12 L616 13.5368 519.6 519.6 0.0 0.0 0.0197 'O.0197-2743E C 12 L666 14.3750 600.1 600.1 0.0 0.0 0.0203 0.0203 2744E C 12 L605 14.2775 590.4 590.4 0.0 0.0 0.0202 0.0202 2746E C 12 'L645 14.9417 658.5 658.5 0.0 0.0 0.0208 0.0208 2747E A 12 L583 12.0009 0.0 0.0 -0.443 3.435 0.0340 0.1583 2749E C 12 L693 14.7523 638.6 638.6 0.0 0.0 L.0206 0.0206 2750E C 12 L600 14.2042 '583.2 533.2 0.0 0.0 0.0202 0.0202 2751E A 12 L603 10.8183 0.0 . 0.0 2.715' -1.857 10.1283 -0.0619 2753E C 12 L665 12.0412 392.3 392.3 0.0 O.0 0.0186- 0.0186 2754E C 12 L642 14.19."5 582.7 ~582.7 0.0 0.0 0.0202 0.0202 2755E C 12 L607 .14.7355 636.9 636.9 1 0.0 0.0 0.0206 0.0206 2756E C- 12 L662 12.024c 391.0 391.0. 0.0 0.0 0.0186 - 0.0186 2757E C 12 L602 14.1466 577.5 577.5 0.0 .0.0 0.0201 0.0201 2758E C 12 'L599 :14.7366 637.0 637.0 0.0 0.0 0.0206 0.0206 2763E C 12 L519 14.0567 ~68.7 568.7 0.0 0.0 0.0201 ~ 0.0201.

2764E C 12 L537 '14.1936 5o2.1 582.1 0.0 0.0 0.0202 0.0202 2767E .A 12 L566 10.8668 0.0 0.0 2.721 -1.861 0.1286 '-0.0620 2768E C 12 L539. 14.0626 569.3- 569.3 0.0- 0.0 0.0201 0.0201.

2769E C 12. L536 14.7486 638.3 638.3 0.0 0.0 0.0206' O.0206-2770E C 12 L560 14.2421 586.9 586.9 0.0 0.0 0.0202 'O.0202 2771E C' 12 L551- 14.9594 660.4 660.4 0.0 0.0 0.0208' O.0208 2772E C 12 L562 14.1915 581.9 581.9 0.0 0.0 0.0202 0.0202 2773E 'C 12' L564 14.2860 591.3 591.3 0.0 0.0 0.0202 0.0202 2774E C 12 L549 14.0769' 570.7 570.7 0.0 0.0 0.0201 0.0201 2780E C 12 L550 13.5361 519.5 519.5, 0.0 0.0 0.0197 0.0197..

2781E C 12 L525 14.3260 .595.2- 595.2 0.0 0.0 0.0203 0.0203 2784E C 12 'L559 14.1337 576.2 576.2 0.0 0.0 0.0201 0.0201 2785E 'C 12. L555- '12.0413 392.3 392.3 0.0 0.0 0.0186' O.0186 2793E C 12 'L533 13.5286 518.8- $18.8 0.0 0.0 0.0197. 0.0197 2798E C 12. L653 14.2877 591.4 591.4 0.0 0.0 0.0202 0.0202 280C ' CCC AA 12. lD597 35.9029 808.1 808.1 -0.270 0.139 0.0108 0.0278 2808E C 12 L521 14.2368 586.4 586.4 .0.0 0.0 0.0202 .0.0202 2810E .C 12 L540' .15.2604 692.7 692.7' O.0 0.0 0.0211 0.0211 2811E C 12 L563- 14.1355 576.4 576.4 0.0 -0.0 0.0201 0.0201 2812E 'C 12 L526 14.7531 .638.7 638.7 0.0 0.0 0.0206 0.0206.

. - . . . . - - -c. .; ,. ; . , , - - . , . ~ ~ ., - -- - .- -  :-,.-,-- . - . . . . _ . . ~ . - _ ~

( , .

(

l J Y7 CHANNEL 11 11111 CYCLE ASSY TOTAL BOW FACTORS BOW FACTORS CALCULATED BOWS NO AB2345678901234. NO NO EXPOSURE BFCX BFCY BFPX BFPY X Y 2814E C 12 L545 12.7795 452.5 452.5 0.0 0.0 0.0191 0.0191 2815E C 12 L530 12.0812 395.4 395.4 0.0 0.0 0.0186 0.0186 2816E C 12 L520 14.0578 568.9 568.9 0.0 0.0 0.0201 0.0201 2817E C 12 L544 14.1877 581.5 581.5 0.0 0.0 0.0202 0.0202 2818E C 12 L709 12.7777 452.4 452.4 0.0 0.0 0.0191 0.0191 2819E C 12 L553 14.3150 594.2 594.2 0.0 0.0 0.0203 0.0203 2820E C 12 L535 14.2891 591.6 591.6 0.C . 0.0 0.0203 0.0203 2821E A 12 L552 12.0585 0.0 0.0 0.449 3.443 0.0341 0.1586 2823E C 12 L542 14.9331 657.6 657.6 0.0 0.0 0.0208 0.0208 2824E A 12 L531 11.9046 0.0 0.0 0.446 3.421 0.0340 0.1577 2826E C 12 L538 14.7468 638.1 638.1 0.0 0.0 0.0206 0.0206 2827E C 12 L518 14.7383 637.2 637.2 0.0 -0.0 0.0206 0.0206 2828E C 12 L516 14.9408 658.4 658.4 0.0 0.0 0.0208 0.0208 2829E C 12 L541 14.1375 576.6 576.6 0.0 0.0 0.0201 0.0201 2831E C 12 L548 14.2072 583.5 583.5 0.0 0.0 0.0202 0.0202 2832E C 12 L557 14.2569 588.4 508.4 0.0 0.0 0.0202 0.0202 2835E C 12 L571 15.2690 693.7 693.7 0.0 0.0 0.0211 0.0211 2836E C 12 L517 14.1973 582.5 582.5 0.0 0.0 0.0202 0.0202 2837E C 12 L522 14.0612 569.2 569.2 0.0 0.0 0.0201 0.0201 2838E C 12 L523 15.3331 100.7 700.7 0.0 0.0 0.0211 0.0211 2839E A 12 L547 10.8211 0.0 0.0 -1.858 2.715 --0.0619 0.1283 2871C CC C 12 D787 32.8251 4354.1 4354.1 0.0 .0.0 0.0511 0.0511 289CM CAPP CCC 12 J190 43.7312. 8096.7 809G.7 -0.582' O.944 0.0576- 0.1211 2905C CC C 12 L592 33.7991' 4670.6 4670.6 0.0 0.0 0.0537 0.0537 292CM CCC ACC 12 J131 43.3371 7505.7 7505.7 0.208 ~ 0.684 0.0856 u.1054 295Cu CCC CCC '12 G747 44.5428 9058.7 .9058.7 0.0 0.0 0.0897 0.0897 2956C CAC 12 J124 26.4900 1949.3 1949.3 0.348 1.144 0.0459 0.0790 2957C CC A 12 LD779- 32.1586 1382.9 1382.9 0.581 1.003 0.0509 0.0685 2965C CCC 12 G737 29.1548 3275.7 3275.7 0.0- 0.0- 0.0423 0.0423 297C ACC' C 12 L701 30.9136 3764.5 3764.5- -1.013 -1.013- 0.0041 0.0041 3031C .CCC 12 J138 29.1095' 3263.5 3263.5 0.0 0. 'O 0.0422 0.0422-3032C CC C' 12 L561 33.5626 4592.5 4592.5 0.0 40 . 0 0.0531 0.0531 3033C CCC C 12- L593 40.0906 7035.6 7035.6 0.0 0.0 0.0731 0.0731' 3035C CAC 12 J127 26.4652 1946.8 1946.8 0.348 1.142 0.0458 0.0789 3047G ACC 12 J128 26.9170 .2621.3' .2621.3 0.731 .2.402 0.0673 0.1368 3051C CAC C 12 L581 33.8003 4140.1. 4140.1 -0.396 1.013 0.0329 0.0915 3056C ACC 12 J132 26.8117 2599.0 2599.0 '2.384- 0.726 0.1359 0.0669 3057C CCC' 12 G729 28.5782 3122.4 3122.4 0.0 0.0~. 0.0410 0.0410 3076C - CC A 12 g D781 31.2187 1245.8 1245.8 0.588 1.015 0.0501 0.0678~

3090C CC C 12 D780 32.3544 .4205.7 4205.7 0.0 0.0 0.0499 0.0499-3270C CC C 12 L578 32.3233 4196.0 4196.0 0.0 0.0 0.0498 'O.0498 3275C 'CCP 12 - 8107- 24.4195 1195.0 1195.0 -0.544 0.152 0.0026 0.0315 3278C CC C 12. L594 34.1952' 4803.0 4803.0 0.0 0.0 0.0548 0.0548 32800 .CCP 12 8098 24.7074 1110.7 1110.7 '.0.079 -0.656- 0.0278- -0.0028 3282C CCP 12 8103- 24.7072 1110.1- 1110.1 -0.656 0.079 -0.0028 0.0278 3292C CC C 12 D796 :32,9370 4389.8 4389.8 0.0 0.0 0.0514- 0.0514 3294C .CC'A '12 D792 30.7462 1172.7 1172.7 1.026 0.594 0.0677 0.0497-331C 'CCC CC 12 D646' 45.6820 9624.7 9624.7 0.0 0.0 . 0.0943 0.0943 3321C CAP- 12 8110 22.7656. 206.9 206.9 -1.410 -0.884 -0.0415' -0.0197 3326C CC C . 12. D793 33.3143 4511.4 4511.4 0.0 0.0 0.0524 0.0524 3328C- CCP 12 .8106 24.4249 1196.5 _1196.5 0.152 -0.544 0.0315 0.0026

_. . , _ - - , , . - ,,~. x - a _ _ - a

7

%/ ,/ )'

  • CHANNEL 'll 11111 7vCLE ASSY TOTAL BOW FACTORS BOW FACTORS CALCb ATED BOWS -

NO AB2345678901234 NO NO EXPOSURE BFCX BFCY BFPX BFPY X Y _

3337C CCP 12 8076 24.4776 1214.3 ' 1214.3 0.150 -0.536 0.0316 0.0031 3338C CP 12 8074 12.9299 185.6 185.6 0.443 0.443 0.0354 0.0354 '

  • 33#5C CP 12 8087 12.9254 185.4 185.4 0.443 0.443 0.0354 .0.0354 33o8C CC C 12 D785 32.8368 4357.8 4357.8 0.0 0.0 0.0511 6.0511 3372C CAP 12 8137 22.7658 206.6 206.6 -1.411 -0.884 -0.0416 -0.7197 3373C CC C 12 L574 35.6122 5294.6 5294.5 0.0' O.0 0.0588.- 0.0988 3374C CC C 12 L532 33.4569 4557.9 4557.9 0. 0 ' O.0 0.0528 0.0538 3375C CAP 12 8136 22.6900 206.8 206.8 -0.852 -1.402 -0.0196 -0.0412 3410C CC A 12 0786 31.2378 1247.4 1247.4 0.088 1.015 0.0501 0.0679 34200- CC C 12 L515 34.8648 5031.9 ~5031.9 0.0 0.0 0.0567 0.0567.

3430C CC C 12 L576 33.0084 4412.6 4*12.6 0.0 0.0 0.0516 0.0516 3442C CAP 12 8112 21.2895 171.9 1*1.9 0.772 -1.056 0.0499- '-0.0271 4068C CP 12 8075 12.8939 185.1 185.1 0.441 0.441 u.0353 0.0353 108CM CCC AC 12 0593 47.2139 7784.1 7784.1 0.833 0.10? 0.1139 0.0838 40800 CCP 12 8073 24.6952 1115.0 1115.0 0.078 -0.GSI 0.0278 -0.0025 4099C CC C 12 L587 34.4026 4873.2 4373.2 0.0 0.0 0.0504 0.0554 4104C CAP 12 8150 21.3051 171.7 . 171.7 0.772 -1.058 0.0489 -0.0272 41100 CCP 12 8092 24.4147 1196.0 1196.0 -0.543 0.152 0.0026 0.0315 4147C CCP 12 8077 24.4416 1210.5 1210.5 -0.535 0.150 0.0031 0.0316 4155C CCP 12 8069 24.6782 1112.9 1112.9 -0.651 0.078 -0.0026 0.0278 4159C CCP 12 8093 24.4443 1214.3 1214.3 -0.533 0.149 0.0032 0.0316 4165C CCP 12' 8149 25.1423 1193.4 1193.4 0.172 -0.615- 0.0324 -0.0004 4173C CCP 12 8078 24.4799 1215.2 1215.2 0.150 -0.535 0.031C 0.0031.

4174C CAP 12 8111 22.7567 205.9 205.9 -0.885 -1.411 -0.0197 -0.0416 4200C CC C 12 L534 33.2711 4497.4 4497.4 0.0 0.0 0.0523 -0.0523 4261C CC C 12 D795 32.7847 4341.2 4341.2 0.0 0.0 0.0510 0.0510 4409D C 12 L706 15.3171 698.9 698.9 0. 0 - 0.0 0.0211 0.0211 4886C CCC- 12 J186 29.3325 3323.8 3323.8 0.0 0.0 0.0427 'O.0427 50001 CCC .AA 12 DS98 35.9253- 809.2 809.2 0.138 -0.271 0.0278 0.0108 50005M CCCC AA 12 D599 45.3998 -2431.7 2431 7' O.093 -0.270 0.0392 0.0241' 50006u CCCC CC 12 D649 49.6884 11776.4 11776.4 0.0 _O.0. 0.1120' 'O.1120' 50007 CCAPP A 12 L676 33.4391 153.5 153.5 .0;616 0.576 .0.0423 0.0106 50009u CCCC AC '12 D612 49.5808 8932.9 8932.9' O.787 0.456 0.1214 0.1076 50011 ACC CCC 12 G743 44.2345 8903.3 8903.3 -1.014 -1.014 0.0462 0.0462 50012M CCCC CA 12 D643 46.8504 5379.4 5379.4 0.83s -0.182 0.0943- 0.0519 50013 CCC CCP 12 J178 .39.9819 5040.6 5040.6 0.180 0.376 0.06 2 0.0724 50014u -CCCC AA 12 D628 44.6251 2321.5 2321.5 1.052 0.611 0.07b2 0.0598 50015 CCA CAC '12 J125 .40.6191 4804.1 4804.1 1.554 0.202- 0.1194 0.0632 50018M CCCC CA 12 D660 42.7946 5486.9 5486.9 -0.353 0.395 0.0457 0.0768 50021M CCCC AA 12 D633 44.9389 2442.4 2442.4 -0.006 -0.108 0.0352 0.0309 50023' CCC CCP 12. J149 39.7821 5375.1 5375.1 -0.302 -0.109 0.0469 0.0550 50024M CCCC- CC 12 0647 48.9586 11365.5 11365.5 0.0 0.0 0.1086 0.1086 50026 AC CCC 12 G733 38.6759- 6450.7 6450.7. 0.979 -0.876 0.1090 0.0319 50028M CCCC CC 12 D652 40.7777 11827.3 11827.3 0.0 0.0 0.1124 0.1124 50030M CCCC CC 12 D620 44.5238 11683.0 11683.0 0.0 0.0 0.1112 0.1112 50031 PPAP C 12 L697 28.8354 2566.4 2566.4 1.251 -0.904 0.0885 -0.0012 CAC CCC 12 G728 43.8049 .8548.1 8548.1 -0.056 1.243 0.0832 0.1389 50032 0.0 0.1109 0.1109 50033M CCCC CC- 12 D650 49.4578 11645.6 11645.6 .0.0 50039M CCCCCCCP 12 J182 57.3904 14462.3 14462.3- -0.137 -0.170 0.1283 0.1269

.50042M CCCC AA 12 D627 44.2025 2225.9 2225.9 0.617 1.059 0.0593 0.0777 CCCC AA 12 D631 44.8268 2317.7 2312.7 -0.266 0.098 0.0233 0.0384 50044M

__. - , _. _ . _ . ._ _ . . _ - ,~ -_ .-.

TOTAL BOW FACTORS BOW FACTORS CALCULATED Bows CHANNEL 11 11111 CYCLE ASSY BFPY X Y NO EXPOSURE BFCX BFCY BFPX HO AB2345678901234 NO .

2258.6 2258.6 0.099 -0.264 0.0381 0.0229 50048M CCCC AA 12 D629 44.5794 0.1121 0.1121

  • D651 49.7239 11796.6 11796.6 0.0 0.0 50050M CCCC CC 12 0.542 0.1007 0.0843 AC 12 D609 40.8822 5649.8 5649.8 0.937 50053 CCC 3387.7 -0.862 -0.131 0.0073 0.0377 50054 CCP CCP 12 J193 36.4553 3387.7 0.0737 35.7000 810.1 810.1 0.701 1.242 0.0512 50056 CCC AA 12 0604 0.110 0.1129 0.0825 12 D596 46.8169 7620.4 7620.4 0.341 50059M CCCC AC 0.0 0.0 0.1090 0.1090 50062M CCCC CC 12 D619 49.0460 11414.3 11414.3 0.0478 0.0558 12 J150 40.0688 5480.1 5480.1 -0.301 -0.108 50065 CCC CCP 9304.9 9304.9 0.452 0.781 0.1105 0.1242 50066u CCCC AC 12 D621 50.4527 0.G732 0.0600 12 D625 44.6447 2323.7 2323.7 1.051 0.613 50069u CCCC AA 5939.6 5939.6 0.0 0.0 0.0G41 0.0641 50072 CC CCC 12 J137 37.3594 0.0839 0.0839 43.0631 8353.2 8353.2 0.0 0.0 50074M C CCC C 12 L699 0.942 0.0298 0.0775 CA 12 0644 38.3006 2798.4 2798.4 -0.205 50075 CCC 8403.1 8403,1 1.285 -0.056 0.1378 0.0820 50078 CAC CCC 12 G749 43.4999 0.0134 0.0221 12 D608 33.4180 586.9 586.9 -0.165 0.045 50080M CC AA 6296.6 0.707 0.215 0.09G5 0.0760 CCC CAC 12 J154 43.2434 6296.6 50082 42.6249 543C.8 5430.8 -0.353 0.395 0.0452 U.0763 50083M CCCC CA 12 D657 0.0 0.1084 0.1084 50084u CCCC CC 12 D653 48.9146 11341.0 11341.0 0.0 48.7391 11243.6 11243.6 0.0 0.0 0.1076 0.1076 50086M CCCC CC 12 D617 -0.353 0.0772 0.0461 12 D659 42.9249 5533.0 5533.0 0.394 500d7u CCCC CA 11687.1 0.0 0.0 0.1112 0.1112 50G90u CCCC CC 12 D615 49. M2 11687.1 45.L2.4 9400.4 9400.4 0.0 0.0 0.0925 0.0925 50093 CCC CCC 12 J166 0.0 0.0G57 0.0G57 12 J185 37.81.4 6139.1 6139.1 0.0 50094 CC CCC 719.9 0.084 -0.702 0.0248 -0.0079 50095 CCC P 12 8044 21.5783 719.9 0.266 0.0919 0.0665 12 J130 35.8585 4884.0 4884.0 0.875 50096 CC ACC 0.1422 0.1543 CCCCC AC 12 D624 58.5406 13417.0 13417.0 0.402 0.695 50099u 47.0336 7710.7 7710.7 0.109 0.838 0.0832 0.1135 50100M CCCC AC 12 DS95 0.828 0.0533 0.0953 12 D641 47.2260 5540.7 5540.7 -0.180 50104M CCCC CA 14970.6 14970.6 0.0 0.0 0.1382 0.1382 521Cu CCCCCC 12 G736 54.9141 0.0744 7196.6 7196.6 0.0 0.0 0.0744 523Cu CCC C 12 L698 40.4702 0.0 0.0323 0.0323 CC 12 D666 24.0314 2rd0.0 2060.0 0.0 5316D 0.0 0.0 0.0789 0.0789 542CM CCC C 12 L708 41.7126 >738.2 7738.2 0.0 0.0508 0.0508 12 D790 32.6944 4312.6 4312.6 0.0 5597C CC C 0.0 0.0 0.0500 0.0500 CC C 12 D794 32.4016 4220.4 4220.4 5602C 1172.2 1172.2 1.026 0.594 0.0677 0.c497 5667C CC A 12 D783 30.7447 0.0293 0669 22.1674 1697.1 1697.1 0.0 0.0 0.0293 56150 CC 12 0-0 0.0537 0.0537 CC C 12 L590 33.8135 4675.4 4675.4 0.0 5616C 4715.3 4715.3 0.0 0.0 0.0541 0.0541 5648C CC C 12 -L575 33.9336 0.0 0.0 0.0530 0.0530 CC C 12 D782 33.5393 4584.9 4584.9 5649C 185.6 185.6 0.443 0.443 0.0353 0.0353 5675C CP 12 8072 12.9277 0.1187 0.2150 12 0616 48.2160 10841.8 10841.8 0.347 2.662 575CM ACC CC 0.0 0.0 0.0523 0.0523 CC C 12 0788 33.2867 4502.5 4502.5 5803C 3407.3 3407.3 1.977 1.561 0.1256 0.1083 584D ACC 12 Y752 29.9404 0.1083 0.1256 12 Y750 29.9399 3407.2 3407.2 1.560 1.977 5850 ACC 1.440 0.1428 0.0753 AAA 12 Y741 23.0698 0.0 0.0 3.063 603D 0.0 0.0 0.0323 0.0323 60400 CC 12 D699 24.0157 2056.8 2056.8 0.0 0.0323 0.0323 CC 12 0693- 24.0408 2061.9 2061.9 0.0 60600 23.3262 1917.9 1917.9 0.0 0.0 0.0311 0.0311 6062D CC 12 0737 3.025 0.0430 0.1524 AC 12 D637 21.4910 1364.2 1364.2 0.395 60639 1705.3 1705.3 0.0 0.0 0.0294 0.0294 6064D CC 12 0671 22.2120 0.0 0.0327 0.0327 12 D716 24.2451 '2104.3 2104.3 0.0 6065D CC L

.( , ,.

k v CHANNEL. 11 11111 CYCLE ASSY TOTAL BOW FAOTORS BOW FACTORS CALCULATED SDWS -

BFCX BFCY BFPX BFPY- X -Y NO AB2345678901234 ND HO EXPOSURE =

6066D CC 12 D729 24.4258 2142.1 2142.1 0.0 0.0 0.0330 -0.0330.

6068D CC 12 D745 24.1115 2076.5 2076.5 0.0 0.0 0.0324 0.0324 .

60690 CC 12 0701 23.6747 1987.4 1987.4 -0.0 0.0 0.0317 0.0317.

6071D CC 12 0711 24.0932 2072.8 2072.8 0.0 0.0 0.0324 0.0324 12 D672 22.2165 1706.2 1706.2 0.0 0.0 0.0294 0.0294-6073D CC 0.0 0.0337 0.0337 60760 CC 12 D663 24.8367 2229.6 2229.6 0.0 60790 CC 12 D654 23.7815 2009.0 2009.0 H0. 0 0.0 0.0319 0.0319 6080D AA 12 D635 19.1424 0.0 0.0 -1.089 1.313 -0.0299 0.0700 CC 12 D746 '24.1096 2076.1 2076.1 0.0 0.0 0.0324 0.0324 6082D. 0.0 0.0324 0.0324 6083D CC 12 D709 24.0936 2072.8 2072.8 0.0 CC 12 D674 23.3493 1922.4 1922.4 0.0 0.0 0.0312 0.0312 6086D- 0.0430 0.1526 6101D AC 12 D640 21.5164- 1367.7 1367.7 0.395 3.028 CC 12 0740 23.3475 1922.1 1922.1 0.0 0.0 0.0312 0.0312 61020 0.0 0.0321' O.0321 6104D CC 12 D772 23.9418 2041.6 2041.6 0.0 12 0656 23.7826 2009.2 2009.2 0.0 0.0 0.0319 0.0319 6105D CC 0.0 0.0 0.0327 0.0327 6106D CC 12 D715 ~24.2858 2112.7 2112.7 6113D CA 12 D692 21.8731 282.7 282.7 -0.062 1.434 0.0151 0.0774 61160 CC 12 D698 24.0109 2055.8 2055.8 0.0 0.0 0.0323 0.0323 6126D CC 12 071'. 24.2735 2110.2 2110.2 0.0 0.0 0.0327 0.0327 6128D CC 11 ud78 23.6771 1987.9 1987.9 0.0 ' O. O 0.0317 0.0317 61290 CC 12 0743 24.4734 2152.1 2152.1 0.0 0.0 0.0330 0 0330 613D CCP 12 J159 23.6187 1266.8 1266.8 -0.146 -0.405- 0.0197 0.0090 12 D721 24.8254 2227.2 2227.2 0.0 0.0 0.0337 0.0337 6130D CC 0.661 -0.0067 0.0454 6132D CA 12 0751 17.5086 -307.1 307.1 -0.591 61330 CC 12 0734 24.0204 '2057.7 2057.7 0.0 0.0 0.0323 0.0323 12 D732 24.4531 2147 8 2147.8 0.0 'O.0~ 0.0330 0.0330 6134D CC 0.0 0.0 0.0312 0.0312 6135D CC 12 D675 23.3587 1924.3 1924.3 CC' 12 D662. 24.8337 2228.9 2228.9 0.0 0.0 0.0337 0.0337 61360 0.0 0.0322 0.0322 61370 'CC 12 D72# 23.9609 2045.5 2045.5: 0.0-6138D CC 12 D686 23.7969- 2012.1 2012.1 0.0 0.0 0.0319 0.0319 51390 CC' 12 D775 23.9571 2044.8 2044.8 0.0 0.0 0.0322 0.0322 CC 12 D710- 24.0975 2073.6 2073.6 0.0 0.0 0.0324 0.0324 61400- 0.0 0.0323 0.0323 6141D CC 12 D735 24.0228 2058.2 2058.2 0.0 6142D AC 12 D639 21.5032 1366.3 1366.3 3.025 0.395 0.1524 0.0430 CA 12 D691 21.8757 282.7 282.7 1.435. -0.062 0.0774 0.0151 6143D 1.325 -0.288 0.0732 0.0061 61440 CA 12. D708. 21.9507 321.6 321.6 CC 12 D665 24.0266 2059.0 2059.0 0.0. 0.0 0.0323 0.0323 6145D -0.591 0.0454 -0.0067 6146D CA 12 D752 17.5108 307.5 307.5 0.660'

-CC 12 D684- 22.2121 1705.4 1705.4 0.0 0.0 -0.0294 0.0294 6147D 0.0 - 0. 0 0.0322 0.0322 6148D CC 12 D727 23.9721. 2047.8 2047.8 CC 12 D696- 24.0425 2062.3 2062.3 0.0 0.0 0.0323 0.0323 61490 0.0 0.0 0.0337- 0.0337 61500- CC 12 D723 24.8376 2229.8 2229.8 CC- 12 D713 24.2820 2112.0~ 2112.0 0.0 0.0 10.0327 0.0327 6151D 0.0 0.0 0.033C 0.0330 6152D CC 12 D741 24.4637 2150.1 2150.1 6153D CA~ 12 D749' '17.4520 306.9 306.9 0.656 -0.587 0.0452 -0.0065 61540 CC 12 D728 _23.9608 2045.5 ..2045.5 0.0 0.0 0.0322 0.0322

,CC '12 .D687 ~23.8015 2013.0 2013.0 0.0 0.0 0.0319 0.0319 6155D 0.0 0.0 0.0317 0.0317.

6156D CC- ~12 D704 23.6722 1986.9- '1986.9 CC 12- D739 23.3446 .1921.5 1921.5 0.0 0.0 0.0312 0.0312-61570 0.0 0.0 0.0337 0.0337 61580 CC 12 D664 24.8378 2229.8- 2229.8 CA 12 D750 17.5100 307.4 307.4 -0.591~ 0.661 -0.0067 0.0454 6159D

. .- .-. - . . _ - . - - - . . _ ~ w . .- - - _- - - - - -

t y t

- D; (/

-(/

g.

CHANNEL 11 11111 CYCLE ASSY TOTAL 90W FACTDRS BOW FACTORS CALCULATED SDws ND AB2345678901234' NO NO EXPOSURE BFCX BFCY BFPX .BFPY X Y ,

61600 CC 12 0682 22.2168 1706.2 1706.2 0.0 0.0 0.0294 0.0294~

6161D CC 12 D676 23.3573 1924.0 1924.0 0.0 0.0 0.0312 0.0312 6162D CC 12 D679 23.6849 1989.4- 1989.4 0.0 0.0 0.0317 0.0317 6163D CC 12 D753 23.6464 1981.7 1981.7 0.0 0.0 0.0316 0.0316 6164D CC 12 D702 23.6771 1987.9 1987.9 '0.0 0.0 0.0317- 0.0317 6165D CC 12 D681 22.2119 1705.3 1705.3 0.0 0.0 0.0294 0.0294 6166D CC 12 D733 24.0146 2056.6 2056.6 0.0 0.0 0.C323 0.0323 6168D CC 12 D731 24.4534 2147.9 2147.9 0.0 0.0 0.0330 0.0330 6169D CA 12 D720 21.7991 283.1 '283.1 1.426 -0.062, 0.0770 0.0151 6170D CA 12 D689 21.8048 282.0 282.0 -0.062 1.429 0.0151 0.0771 6171D AC 12 D638 21.5137 1367.5 1367.5 3.027 0.395 0.1525 0.0430 61730 CC 12 D668- 24.0290 2059.5 2059.5 0. 0 ' O.0 0.0323 0.0323 6174D CC 12 0712 24.0942 2072.9 2072.9 0.0 0.0 0.0324 0.0324 - '

6175D CC 12 D685 23.7997 2012.7 2012.7 0.J 0.0 0.0319 0.0319 61760 CC 12 D697 24.0055 2054.7 2054.7- 0.0 0.0 0.0322 0.0322 G177D CA 12 D719 21.8506 283.0 283.0 '.431 -0.C62 0.0773- 0.0151 61780 CC 12 D694 24.0437 2062.5 2062.5 0.0 0.0 0.0323 0.0323-6179D CC 12 D700 24.0079 2055.2 2055.2. 0.0- 0.0 0.0323 0.0323 6180D CC 12 D673 23.3369 1920.0 1920.0 0.0 0.0 0.0311 0.0311 61810 AA 12 D636 19.1427 0.0 0.0 1.316 -1.091 0.0101 -0.0300 61820 CC 12 0730- 24.3980 2136,2 2136.2 0.0 0.0 0.0329 0.0329 6183D CC. 12- D748 24.1126 2076.7 2076.7 0.0 0.0 0.0324 0.0324 6184D CC 12 D680 23.6904 1990.5 1990.5 0.0 0.0- 0.0317 0.0317 6185D CC 12 0722 24.8374 2229.7 2229.7 0.0 0.0- 0.0337 9.0337 61860 CC 12 D677 23.6613 1984.7 1984.7 0.0 0.0 0.0317 0.0317 6187D CA 12 D705 21.9873 320.6 320.0 1.331 ' -0.289 0.0734 'O.0060 6188D CA 12 D690 21.8354 282.4 282.0 1.431 -0.062. 0.0772 0.0151 61890 CA 12 D762 18.7369 269.1 269.I 0.694 0.880 0.0465 0.0542 619D CCC J123 -29.1906 3265.3 3285.3 0.0 0.0 0.0423 ,0.0423 61900 CA 12 12- - 0718 21.8211 282.9 282.9 -0.062 1.428 0.0151 0.0771 61950 CC 12 D655 23.7780 2008.3 2008.3 0.0 0.0 0.0319 0.0319 61980 CA- 12 D717 21.8433 282.4 282.4 -0.062 1.432 0.0151 0.0773 61990 CC 12 D667 24.0256 2058.8 2058.8 0.0 0.0 0.0323 0.0323 6200D CC 12 D725 23.9671 .2046.8 2046.8 0.0 0.0 0.0322 0.0322 6204D CC 12 D744 24.4579 2148.8 2148.8 0.0 0.0 0.0330 0.0330 62050 CC 12 D742 24.4696 2151.3 2151.3 0.0 0.0 0.0330 0.0330 62070 CC 12~ D738 23.3445 1921.5 1921.5 0.0 0.0 0.0312 0.0312 6208D CC 12 D703 23.6845 1989.4 1989.4 0.0 0.0 0.0317 0.0317 6211D CC 12 D683 22.2181 1706.5 1706.5 0.0 ' 0. 0 0.0294 0.0294 62160 CC 12 D771 23.9437 2042.0 2042.0  : 0. 0 .0.0 0.0321 0.0321 6220D CA 12. D706 21.9922 -321.2 321.2 -0.289 1.330 0.0060 0.0734 6228D CC ^12- D724' 24.8391 2230.1 2230.1 'O.0 0.0 0.0337 0.0337 62300 CC 12 D747 24.1161 2077.5 2077.5 0. 0 . 0.0 0.0324 0.0324 6231D CC 12 0695 24.0448 2062.8 2062.8 0.0 0.0 - 0.0323 0.0323 6233D CC ' 12 - D688 23.8004 2012.8 2012.8 -O.0

0. 0 - 0.0319 'O.0319 630D CCP 12 Y731 24.5764 1260.2 1260.2 -0.433 'O.309- 0.0077 0.0386 6307D CC 12 'D757 23.5934 '1971.0 .1971.0 0.0 0.0 0.0316 0.0316 6309D AA 12 D634~ 19.1494 0.0 0.0 -1.091 l'. 315 -0.0300 0.0701-iS312D CA 12 -D763 18.7573 269.8' 269.8 0.695' O.880 0.0465 0.0542 6316D CC 12 D756 23.6544 1983.3 -19F3.3' O.0 0.0 0.0317- 0.0317 63240 CC 12 0770 23.9222 2037.6 2037.6_ 0.0 'O.0 0.0321 0.0321

,fq g. g ,,

./

CHANNEL 11 11111 CYCLE'ASSY TOTAL' BOW FACTORS BOW FACTORS CALCULATED BOWS

  • ND AB2345678901234 NO NO EXPOSURE 8FCX BFCY BFPX BFPY X .Y ,

63270 CA 12 D768 18.7955 275.5 275.5 0.689 0.872 0.0463 0.0540 6357D CC 12 D769 23.9255 2038.3 2038.3 0.0 0.0 0.0321 0.0321 63580 CA 12 0761 18.7231 268.9 268.9 0.879 ^ 0.694 0.0542 0.0465 63640 CA 12 0765 18.7443 274.3 274.3 0.687 0.870 0.0462 0.0538 63650 CA 12 D707 21.9941 320.8 320.8 -0.289 1.331 0.0060 0.0734 6366D CC 12 D755 23.6486 1982.1 1982.1 0.0 0.0 0.0317 0.0317 6370D CC 12 D670 22.1973 1702.6 1702.6 0.0 0.0 0.0294 0.0294 6377D CC 12 D760 23.6049 1973.4 1973.4 0.0 0.0 0.0316 0.0316 6332D CC 12 V716 20.8534 1465.6 1465.6 0.0 0.0 0.0274 0.0274 ,

6384D CC 12 D758 23.6006 1972.5 1972.5 0.0 0.0 0.0316 0.0316  !

6386D AC 12 4775 22.4810 1540.3 1540.3 -2.814 -1.206 -0.0890 -0.0221-6389D AP 12 Y768 16.1164 0.0 0. 0 ' 2.544 -0.950 0.1212 -0.0241 6390D CC 12 D774 23.9676 2046.9 2046.9 0.0 0.0 0.0322 0.0322 6391D CA 12 D766 18.7849 274.8 274.8 0.873 0.689 0.0540 0.0463 6392D CC 12 0754 23.6467 1981.7 1981.7 0.0 0.0 0.0317 0.0317 63940 CA 12 D764 -18.7557 270.0 270.0 0.880 0.694 0.0542 0.0465 63960 CC 12 D759 23.6017 1972.7 1972.7 0.0 0.0 0.0316 'O 0316 6398D CC 12 D773 23.9590 2045.2 2045.2 0.0 0.0 0.0322 0.0322 6399D CC 12 D776 23.9654 2046.5 2046.5 0. 0 - 0.0- 0.0322 0.0322 64000 AA 12 Y748 14.9286 - 0. 0 0.0 3.116 -2.192 0.1450 -0.0758 64020 CC 12 D736 24.0178 2057.2 2057.2 0.0 0.0 0.0323 0.0323 6403D CA 12 D767 18.7808 274.4 274.4 0.873 -0.689. 0.0540 0.0463-646D ACC 12 Y753 29.8624 3387.4 3387.4 1.553 1.968 0.1078 0.1250 647D CAP 12 Y767 24.5216 '165.9 165 9 -0.688 0.917 -0.0119 0.0549 652D CCC 12 G722 29.2840 3310.7 3310.7 0.0 0.0. 0.0425 0.0425 653D AAA 12 Y740 23.0650 0.0 0.0 3.063- 1.441 0.1428 0.0753 656D CAC 12 J155 -27.1339 2060.7 2060.7- 0.325 1.069 0.0458 0.0768 6570 CCC 12 J189 29.5424- 3381.2 3381.2 0.0 0.0 0.0431 0.0431 6600 AAA 12 .Y744 23.0737 0.0 0.0- 1.441 3.063 0.0753 0.1428 663D -CCC 12 G740 28.4087 '3078.1 3078.1 0.0 .

0.0 0.0406 0.0406 664D AAA 12 Y746 22.9422 0.0 '0.0 1.424 3.056 0.0747- 0.1425-6650 CCC 12 J121 29.1782 3282.0 3282.0 .0.0 0.0 0.0423 0.0423 6680 OCC 12 J120 '29.1858 3284.1 3284.1 0.0 0.0 0.0423, 0.0423 6710 CCP- 12 J176 24.8247: 11282.2 1282.2 10.488 0.234 0.0462 0.0356 672D CCP 12 .Y732 24.6480 1264.2 1264.2. 0.312 -0.437 0.0387 0.0076' 675D ACC. 12 Y755 29.8778. -3391.0 3391.0 1.971 1.556- .0.1252 0.1079 681D CCC 12" G726 28.5723 3120.8 3120.8 0. 0 . 0.0: 0.0410 0.0410 6830 CCC 12 'J187 29.3311 3323.4 3323.4 .0.0 0.0 0.0427. 0.0427 686D CCC 12 G725 29.2883 3311.8 3311.8 0.0 0.0 0.0426 0.0426 6880 CCP~ 12 J180 .23.5042 1364.7 1364.7 -0.271 -0.220 0.0153 0.0175 689D CCC 12 J136 29.0887 3257.9 -3257.9 0.0 0.0 0.0421 '0.0421 6900 .CAC 12 Y774- 31.1259 2977.0 2977.0 el 199 -0.514 -0.0101 0.0184-692D CCP 12 J171 23.4595 1354.2 1354.2 -0.221 -0.273 0.0173 0.0151 6930 CCP 12 J156 23.6112 1266.8 1266.8 -0.145 -0.404 0.0197~ 0.0090 694D CC 12 Y742 25.4537 2364.8 2364.8 0.0 0.0 0.0348 0.0348 6960 CCC 12 Y713 29.0094 3236.6 3236.6 0.0 0.0 0.0419 0.0419 697D CCC ~12 J140 29.0445 3246.0 3246.0 0.0 0.0 0.0420 -0.0420 6980 ACC- 12 Y749 29.8835 3393.8 3393.8 1.965 1.551 'O.1250 0.1078 6990 AAC .. 12 J114 24;1827. 1437.2 1437.2 3.179 -0.749 0.1594 -0.0040 700D CCC 12 G745 28.6188. 3133.0 3133.0 0.0 0.0 0.0411 -0.C411 701D ACP' 12 Y727 24.2637- 833.2 833.2- -2.872- -1.702 -0.0972 -0.0486

. - - = - .- .a . - - - . . . . - . -.-

r - .

.p m gy i . j

~

. CHANNEL 11 11111 CYCLE ASSY TOTAL BOW FACTORS BOW FhnTORS CALCULATED BOWS

  • NO AB2345678901234 NO NO EXPOSURE BFCX BFCY BFPX RFPY 1X Y 703D AAC .12 J115 24.1720 1436.3 1436.3 -0.743 3.178 -0.0039 0.1594 704D CCP 12 J160 25.4877 1184.0 1184.0 -0.027 -0.680 0.0240 -0.0032
  • 706D CCC 12 G746 28.2791 3044.5 3044.5 0.0 0.0 0.0404 0.0404 708D CAC 12 J152 27.1236 2058.9 2058.9 0.325- 1.068 0.0458 'O.0767 709D AAA 12 Y759 20.9463 0.0 0.0 -2.831 -1.301 -0.1024 -0.0387_

711D AAC 12 J116 24.0843 1422.2 1422.2 3.160 -0.773 0.1585 -0.0051 7120 CCC 12 G734 29.1559 3276.0 3276.0 0.0 0.0 0.0423 0.0423 7130 ACP 12 Y730 24.2862 836.5 836.5 -1.702 -2.872 -0.0485. -0.0972 7140 CCP 12 Y733 24.6405 1262.7 1262.7 0.312 -0.437 0.0387 0.0076 7150 CCP 12 0179 24.8224 1282.4 1282.4 0.233 0.488 0.0356 0.0462 717D CCP 12 8151 24.6711 1107.7 1107.7 -0.654 0.079 -0.0027 0.0278 7180 CCC 12 J191 29.5685 3388.4 3388.4 0.0 0.0 0.0432 0.0432

/190 CCP 12 J168 23.4512 1353.5 1353.5 -0.221 -0.273 0.0173. 0.0151 721D CCP- 12 J183 23.5008 1363.9 1363.9 -0.271 -0.220 0.0153 0.0174 722D AAA 12 Y758 20.9508 0.0 0.0 .-2.832 -1.301 -0.1024 -0.0387 724D CAC 12 Y773 31.1138 2974.8 2374.8 -0.514 -1.200 0.01C4 -0.0101' 126D CCP 12 V734 24.6568 1265.6. 1265.6 -0.437 0.312 0.0076 0.0388 7270 CCC 12 J184 29.3209 3320.7 '3320.7 0.0 0.0 0.0426 0.0426 728D CAP 12 Y766 24.5368 166.2 166.2 -0.688 0.918 -0.0118 0.0550 130D CCC 12 G723 29.2623 3304.8 3304.8 0.0 0.0 0.0425 0.0425 731D CAC 12 Y764 25.5812 1572.6- 1572.6 -0.057 1.300 0.0259' O.0824 7320 CCP 12 J175 24.5701 1237.9 1237.9 0.494 0.236 0.0461 0.0354 733D ACC 12 Y721 25.3093 2211.5 2211.5 -2.498 -1.070 -0.0704 -0.0110 7340 ACC 12 Y754 29.8839 3392.5 3392.5 1.972 1.557 0.1253 0.1050 736D ACP 12 Y728 24.2648 834.3 834.3 -2.872 -1.702 -0.0972 -0.0485 737D CCC 12 G742 28.6207 3133.5 3133.5 0.0 0.0 0.0411 0.0411 7380 CCP 12 J151 23.7440 1294.6 1294.6' -0.143 -0.398 0.0201 0.0095 740D CCP 12 J192 25.4515. 1183.8 1183.8 -0.027 -0.676 0.0240 -0.0030 741D CC 12 Y724 25.4532 2364.7 2364.7 0. 0 - 0.0 0.0348 0.0348 742D CCP 12 J163 25.5293 1184.7 1184.7- -0.027 '-0.684 0.0240 -0.0033 743D ACC ~12 Y723 25.3557 2221.1 2221.1 -1.072: -2.500 -0.0110 -0.0704 744D ACC 12 Y726 25.3608 2222.1 2222.1- -2.501 '-1.072- -0.0704 -0.0110 745D CCP 12 J172 ~24.5611 1238.6 1238.6 0.493 0.236 0.0461- 0.0354 7460 CAC 12 Y770 31.4794 3058.3 3058.3 -0.493 -1.150 0.0200 -0.0074 747D AAA 12 Y739 23.0251 0.0 0.0 l'435~

. 3.061 0.0751 0.1427 749D CCC 12- J164- 29.1204 3266.4 3266.4 0.0 0.0 0.0422 0.0422 750D AAA 12 Y760 '20.9915 0.0 0.0 -1.295. -2.833 -0.0385 -0.1025 7510 ACC 12 J135 26.8252 2602.4 2602.4 2.383 0.725 0.1359 0.0669 753D CCC 12 G730 30.6620 3696.9 3696.9 0.0 0.0 0.0457 0.0457 754D CCC -12 Y720 28.9503 3220.8 3220.8 0.0 0.0 0.0418 0.0418 755D AAA 12 Y757 20.8815 0.0 0.0 -1.290 a?.825 -0.0383 -0.1021 756D CCP -12 J148 23.7492 1297.6 1297.6 -0.143 ",396 0.0201 0.0096 757D CCC .12 Y714 29.0277 3241.5 3241.5 0.0 0.0 0.0420 0.0420 7580 CAC 12 Y763 25.5783 1572.5 1572.5 1.300 -0.057 0.0824 0.0259 7590 CAC 12 Y772 31.4908 3060.5 3060.5 -1.151 -0.493 -0.0074 0.0200 7600 CCP 12 J195 25.5288- 1183.2 1183.2 -0.027 -0.685 0.0240 -0.0034 761D CCC 12 G738. 28.4024 3076.4: 3076.4 0.0 0.0 0.0406 0.0406 764D CCC 12 Y715 29.0293- 3241.9 3241.9 0.0 0.0 0.0420 0.0420 768D CAP 12 Y765 24.4641 '165.1 165.1 0.919 --0.686 0.0550 -0.0118 7690 CCC 12 J167 29.1154 :3266.2 3266.2 0.0 0.0' O.0422 0.0422 770D ACC 12 Y756 29.8827 ~3392.1 3392.1 1.557 '1.972 .0.1080 0.1253

, - - . . - a . , .

' y. '

(qI V - 'C}_-

  • BOW FACTORS CALCULATED BOWSE ~-

CHANNEL 11 11111' CYCLE ASSY TOTAL BOW FACTORS NO AB2345678901234 NO NO EXPOSURE BFCX BFCY BFPX BFPY X 'Y 771D CCC 12 J143 29.0397 3244.8 3244.8 0.0 0.0 0.0420 0.0420 2218.2 2218.2 -1.072 -2.501- -0.0110 -0.0704, *~

772D ACC 12 V722 -25.3429 773D CCP 12 Y737 24.5037' 1233.9 1233.9 _-0.443 0.316 0.0071 0.0387 776D CAC 12 Y761 25.5085 1561.7 '1561.7 -0.057 1.300 0.0259 0.0823 777D CC 12 Y747 25.4518 2364.4 2364.4 0.0 0.0 0.0348- 0.0348 7779D C 12 L649 14.0760 570.6 570.6 0.0 0.0 0.0201 0.0201 778D CCO 12 Y717 28.9173 3212.0 3212.0 0.0 0.0 0.0417 'O.0417 779D AAC 12 J112 24.1670 1434.8 1434.8  ;-0.749 3.178 -0.0040 0.1594 780D AAA 12 Y745 22.9363 0.0 0.0 1.423 3.056 0.0746 0.1425 7800D C 12 L705 13.5341 519.3 519.3 0.0 0.0 0.0197 0.0197 7811D C 12 L685 12.0885 396.0 396.0 0.0 0.0 0.0186 0.0186 782D CCP 12 Y738 24.5C67 1235.2 1235.2 0.316 -0.442 0.0387 0.0071 1830 CAP 12 8156 21.1984 111.4 171.4 -1.048 0.773 -0.0268 0.0490 784D CAC 12 Y771 31.4865 3060.3 .3060.3 -0.493 -1.151 .0.0200' -0.0074 7840D A 12 L696 11.9470 0.0 0.0 3.427 0.447 0.1580 0.0340 785D CAC 12 Y762 25.5599 1570.3 1570.3 1.298 -0.056 0.0823 0.0259 78520 A 12 L682 11.9849 0.0 0.0 3.433 0.448 0.1582 0.0340 78530 C- 12 L606 14.3748 600.1 600.1- 0.0 0.0 0.0203 0.0203-78580 C 12 L672 15.2704 693.8 693.8 0.0 0.0 0.0211 ~0.0211' 7860 CCC 12 r718 28.9341 3216.5 3216.5 0.0 0.0 0.0418 0.0418 787D CCP 12 Y735 24.4690 1230.9 1230.9 0.316 - -0.442' O.0386' O.0071 788D ACP 12 Y725 24.2426 832.7 832.7 -1.700 -2.870 -0.0485 -0.0972 7890 CCP 12 Y736- 24.4874 1232.8 1232.8 -0.442 0.316 0.0071 0.0387 790D ACC 12 J129 26.9019 2618.0 2618.0- 2.400 0.731 0.1367 0.0673 791D CAC 12 Y769 31.4477 3051.1 3051.1 -1.150 -0.493 -0.0074 0.0199 75200 C 12 L688 14.3014 592.8 592.J 0. 0 - '0.0 0,0203' O.0203 7921D C 12- L657 14.1475 577.6 577.6 0.0 0.0 0.02011 0.0201 7926D C 12 L658 12.8509 458.6 458.6 0.0 0.0 0.0192 0.0192 7930 CC 12 Y729 25.4452 2363.0 ^2363:0 0.0 0.0 0.0348 0.0348 8012D C 12 L678 14.0669 569.7 569.7' O.O O.0. 0.0201- 0.0201 8047D C 12 L704 15.3195 699.2 699.2 0.0 0.0 0.0211- 0.0211 8113D C 12 L652 14.9096- 655.1 655.1 0.0 0.0 __.0.0208 0.0208 8520C .AAC 12 J119 24.0737 1421.5 1421.5 -3.159 -0.772 0.1585- -0.0051 3585C AAC- 12 J113 24.1527 1432.7 ~1432.7 3.177 -0.748 0.1593 -0.0040 8812D C 12 L689 1423386 .596.5~ 596.5 0.0 0.0 .0.0203- 0.0203.

91250 C 12 L690 14.7479 638.2 638.2- 0.0 0.0' 0.0206, 0.0206-9263D C 12 L675 15.3313 700.5' 700.5 0.0. 0.0 0.02111 -0.0211 92700 C 12 .L691 13.5628 522.0 522.0 0.0 0.0 0.0197 0.0197 92850 A 12 L669 10.8562 .'0.0 0.0 - 1, " 61 .2.719 -0.0620 0.1285 94010 C 12 L674 14.1275 575.6 575.6~ 0.' O.0 0.0201 0.0201 9472D A 12 LC37 12.0561 0.0 0.0 3.c43: 0.449 0.1586 -0.0341 9765D C- '12 L654 12.7900 453.4 453.4 0.f 0.0 0.0191. 'O.0191 9786D A 12 L684 10.8748 0.0 0.0  :-l.062 2.722- -0.0621_ 0.1286 9.c 4 'O C 12 'L556- 14.3400 596.6 '596.6 0.t 0.0 0.0203 ~0.0203 980 C '12 L692 .14.2773 590.4 .590.4 0.1 0.0 0.0202 0.0202 98] a A 12 L646 10.8198 0.0 0.0 - 1.4 57 2.715 -0.0619. 0.1283 981/D C 12 L670 14.0747 570.5 570.5' .0.C "0.0 0.0201- 0.0201 99240 A 12 'L687 10.7971 0. 0 ~ 0.0 2.712 -1.855 0.1282 -0.0618 98560 C 12 L591 14.9594 660.4- 660.4 0.0 0.0 0.0208 ~0.0208 9874D C 12 L589- 14.1313 '576.0 ~ 576.0 0.0 0.0 0.0201 0.0201 CORE' AVERAGE BOW = 0.048cIN THE X DIRECTION AND .0.048 IN THE Y DIRECTION TOTAL NUMBER OF-CHANNELS = 560.0

^

. - . . . - - , . . -- _-. a. , _ , ,, _ _ , . __ , _ __ _

. . ~ .

p d () V . .

MAX CHANNEL BOW IN MILS BY CORE LOCATIDN -

1 2 3 4 5 6 7 8 9 10 11 12 13 - 14 15 16 17 18' 19 20 21 22 23 24 25 26 1 0 0 0 .- 0 0' O O O 52 32 48 38 104 23 27 48 31 19 0- 0 0 0 0 0 -0 0- * '

2 0 0 0 0 0 0 0 46 142 73 95 157 77 77 42 67 73 142 103 0 0 0 0' O O_ 0 3 0 0 0 0 '53 38 97 23 27 29 20 32 20 20 32 20 29 27 95 97 38- 17 0 0 0 0 4 0 0 0 35 76- 54 128 72 19 50 111 20 104 94 20 110 50 19 67 128 54- 60 35 0' O O 5 0- 0 26 45 102 70 42 113 159 41 20 31 42- 42 31 52- 41 159 174 18 70 102 45 17 0 -0 G 0 0 38 53 82 132 31 19 131 151 151 20 6;4 42 20 103 135 40 19 31 40 82 -53 38 0 0 7 0 0 54 128 la 31 73 116 53 32 78 19 20 20 19' 21 '32 20 33 51 31 18 128 54 0 0 8 0 46 35 67.152 19 33 34 32 20 100 21 108 31 21 144- 20 32 34 33 19-152. 7 0 .- 46 0 ,

9 20 142 38 19 55 137 20 32 98 42 20- 31 41 46' 31 20 65 .76'-32 20-135 158- 19 .86 142 55 10' 31 78 29 50 41 136 32 20 42 119 32 20 42 93 20 32 95 65 20 32 136 41 49 29 77 31 11 41 73 20 33 20 107 21 124 20- 32 77 124 20 20 125 20 32 20 119 21 151 20 33 20 73 41 12 27 158 32 20 31 ~20 18 21' 31'20-125 20 32- 32' 20 125 20 31 21 18' 20' 31 20 32 158 -24 13 23 77 20 32 93 92 20 31 41 43- 20 32 182 45 32 '20 67 60 '31' 20 91 42 32 20 77- 37 14 37 77 '20 32' 42 42 20 ~31~ 92 43 20 32 284 109_ 32 '53 121 91 31 20 42' 92 -32 20 .77 .23 15 27 60 32 20- 31 20 89- 4 31 20 125 20 32 32 73 125 20 31 21 18 20- '31 20 32 157' 12 16 41 73 20 33 20 108 21 119 20 32 -20 125 53 125 56- 32 .20 154_.21 111 88':33 52 -73: 41 17 31 77 29 50- 41 105 32 20 42 78 32 20 138 42 54 32 78 - 42 20 32 91 .27 52- 29' 78 31 18 54 142 38 19 158 89 '20 32 -76 42 20 31 60 41 31 .20 '42 -

96- 32 20 40 95' 19 -62 145- 20 19 0 31 70 67 152 19 -- 33 34 32 20 119' 21- 31 31 58 121 20 32 34 33- 19 152. 67- 70 72 0 .-

20 0 0 54 128 91. 31 52 33-.20 '32 21 19 '20' 20 19 21 32 54- '33 -52. 31':18 128 121 0 0, r

21 0 0 381 53 32 41' 31. 83 140'135.111D 20 42 42 74-215 128 .40 51- 31 138 '82 53 38 0 O 22 0 0 -17 45.1021 70. 18 113'159 ~^41~:20 : 31 42 93: 31 20 41 159 112 '18. 70 102 45 128 0 0

. 23 '0- 0 0 ~35 77 54 128- 68 -19.-51 112 20 108 170 :55'112 51. . 4 9 c 68'128' 54- 76 35 0- 0- 0 24 0 0 0- 0 17- 38 97 24' .39'.29 .20- 33 '20 20 .33 20 29 52= 22. 97. 38 ' 9 7- 0.~ 0 0- O '-

25 0 0 0 0 0 0 0 56 142 ~73 94.158 7'7 77-158 77 73 142- 46 .0 0' -0 0 0, O. 0 26- O' O O -0 0 O O O' 19 31 48 '27 23 157 27 4831 55 'O~ -0 -0' -O O '- 0 0- O'

.q.- ._,/. -- .; .A. eq,. =

ym,--- ,e 4 y y- .w . . w e' y

  • v a% s .-v .- u, .+- ems'y-a e . e . u . +v e ,,y, .#  % .s e y -v ,$ .m m4 .w- ~r.r.--~-a--. w , #,m., w E .... c,e c w -
  • i

?

REOUEST 5:

Your May 21, 1990 submittal indicates that 150 second lifetime channels reside in the current (Cycle 12) core. We cannot determine from the information provided in your submittals, the total number,of bundles (containing these channels) which were analyzed by your methodology. With reference to Figure 1.

of your May 21 submittal, indicate specifically which bundles were analyzed, which bundles exhibit the maximum bow, which bundles are limiting bundles, and which of the remaining bundleo residing in cells containing the second lifetime.

channels are fresh fuel bundles. In addition, correlate the channels listed in Table 1 of the May 21 submittal with Figure 1.

GPUN RESPONSE:

The following figures and tables contain the requested information:

FIGURE 3 - A core map from the channel history code for Eoc 12 showing maximum bow by core locatloc.

Cycle 12 reload fuels are underlined, reused channels are circled, and measured reused channels have an inverted triangle around it.

TABLE 1 - The maximum bow measured for the reused channels in cycle 12 and their core location residence history is listed in this table.

FIGURE 4 - The limiting bundles. listed'in Table 1 of the GPUN.May 21, 1990 submittal are identified. Note that a quarter core calculation was used to identify the. limiting bundles. Also note that the quadrant chosen from the calculation contains the greatest number of reused channels, (i.e., 46).

4 TASLE 2 r This table is similar to Table 1 of our May 21, 1990 submittal, except it contains the core locations of the limiting bundles, i

4

E0C 12 MAX CHANNEL COW IN CILS CY CORE LOCATION .

1 0 0 0* 0 0 0 0 0 2 8 8 3 48 1 9 0 0 0 0 0 0 0 0 2 0 0 'O O O O O 46 142 157 77 77 73 142 0 0 0 0 0 0 0 0 3 0 0 0 0 53 38 97 23 27 29 32 0 32 29 27 5 97 38 17 0 0 0 0 4 0 0 0 35 76 54 128 72 19 50 111 R 104 94 2 110 19 67 128 54 35 0 0 0 5 0 0 26 45 102 70 4 113 159 41 20 31 42 42 31 52 41 159 R 70 102 45 0 0 6 0 0 38 53 82 3 1 19 3 151 151 3 42 _20 1 3 135 40 19 31 40 82 53 38 0 0 7 0 0 54R 18 31 1 3 32 78 19 20 1 19 1 32 20 33 5 31 18 128 54 0 0 v

8 0 46 35 12, 152 12. 34 32 100 M 108 1 A 144 32 34 33 19 152 57 70 4G 0 9 20 142 38 19 20 32 42 _20 31 41 46 31. 20 65 76 32 _20 158 1 142 55 /

10 31 29 41 136 32 20 42 32 20 42 g 32 95 65 32 1 6 41 29 51 11 41 73 20 33 20 21 124 20 32 \77/124 20 2 125 20 32 20 119 21 151 20 33 20 73 41 12 27 158 32 20 31 -20 18 21 31 20 1 20 32 32 20 125 20 31 21 18 0 31 132 M 24 l 13 23 77 20 32 _20 31 41 43 20 32 8 45 32 _ 20 67 CO. 31 20 42 32 20 77 14 77 20 32 42 42 _20 31 43 _20 32 109 32 91 31 20 42 32 20 77 23 15 27 32 20 31 20 89 31 _20 125 20 2 32 125 20 31 ' 13 20 31 _20 32_157 12 v

16 41 20 33 g 108 21 119 20 32 y 125 g 125 56 32 g 154 y til 88 33 52 73 41 17 31 29 41 105 32 20 42 78 32 g3 42 32 78 42 3 32 91 27 29 78 31 18 142 19 158 89 3 32 76 42 20 31 0 41 31 20 42 32 20 40 19 62 145 20 19 0 70 152 19 33 34 32 20 21 31 31 20 32 34 33 19 152 70 0 0 31 33 20 32 21 19 20 70 ;* 21 32 13 19 ??8 t?! O e 20 0 54 128 al 21 0 0 38 53 82 41 31 135 .20 42 5 .53 38 0 0

~

22 0 0 17 45 102 70 18 159 41 20 31 42 93 31 20 41 159 112 18 70 102 45 27 9 0 1 0 0 0 35 54 1 19 _20 108 170 51 49 68 1 54 76 35 'O O O 23 29 52 22 97 38 97 0 0 0 0 i 24 0 0 0 0 17 38 97 29 . R 33 _2_0 X 33 _2,Q 0 0 0 0 0 0 142 158 77 77 158 1 46 0 0 0 0 0 0 0  ;

25 0 0 0 0 0 0 0 0 19 31 48 27 23 27 '48 31 0 0 0 0 0 0 0 0 26 0 Reuse Measured Cycle 12 O ~ Channel - Reused " Reload Channel Fuel ,

FIGURE 3

. ~ -

e ,  ;

TABLE 1.

OXIMUM MEASURED ',

REUSED CHANNEL BOW AT EOC 11 i EOC 11 EOC 11 CORE ***

Channel cycle 12 Maximum Bot Channel Exp. Location /

S/N XX-YY ,

(Mils) GWD/MTU Last Cvele-24BC 25-26 140 52 ACCCCC/11 50039 47-10 153 54 CCCCCCC/11 122C 25-28 160 52 CCCCCC/11 50099 37-22 118 43 CCCCCCC/11 521C 26-20 110 46 CCCCC/11 123C 11-32 -50 46 CCCC--CC/11 205C 17-42 110 44 CCCC-CC/11 234C 36-06 165 40- CCCC-A/11 50065 51-36 115 36 CCC--CC/11 30011 27-36 78 35 ACC--CC/11 1674C 13-40 40 26 CCC/10 1711C 03-24 76 26 CCC/10 1727C 21-32 33 26 CCC/10 1638C 13-44 -30 23 CCP/10 50007 29-50 -48 21 CCAPP/9 3294C 45-38 -30 19 CC/10 ,

50031 43-22 -41 15 PRAA/8 l 5602C 33-46 61 19. CC/10 4200C 31-44 28 19 CC/10 l 144C 37-50 82* 14** CAPP/9

  • EOC 9 Measurement
      • C = Central A = Adjacent P = Peripheral

- = Not in Core i

Cycle -12 Limiting. Fuel Assemblies 27 29 31 33 35 37 39 41 43 45 47 49 51

= + lt il

! 24 i[6] 5 18 2 19 22 i[71 /s! 13 10 l] !!l kk bl i

E i 20 lwl INI 18 17 12 lI hl )

16 20  !!1] 11 4 c 1/ 9 11ll 12 l[d 10 8 16L  !!

l ll(l

i;i.i g

4 m 1

2 i

O Fuet BUNDLE WITH REUSED FUEL CHANNEL

[ FUEL BUNDLE WITH NEW FUEL CHANNEL'

] THE ORDER AND LOCATION S OF THE MOST LIMITING FUEL BUNDLES Figure - 4 l

  • a O

TABLE 2

SUMMARY

OF THE CPR ADJUSTMENT FOR CHANNEL BOW FOR THE FEBRUARY 1990 STATEPOINT .

BOW- FUEL ***

FOR CELL CPR CPR LIMIT. AVG. BEFORE AFTER  % l FUEL Type of BUNDLE BOW ADJUST- % OF ADJUST- % OF LIMIT TYPE CHANNEL (MILS) (MILS) MENT LIMIT MENT LIMIT CHANGE 1 **GE3.21 REUSED *58 55 1.69 89.3% 1.628 92.7%. 3.4 2 GE3.21' NEW 21 *54 1.69' 89.3% 1.634. 92.6% 3.3 3 GE3.21 REUSED 56 *95 1.74 86.8% 1.624 93.0% 6.2 4 GE3.21 . REUSED *54 34 1.74 86.8% 1.678- 89.9% 3.2' ,

5 GE3.21 NEW 20 *26- 1.74 86.8% 1.714 88.1% 1.3 6 GE3.21 REUSED 73 *95 1.75' 86.3% 1.640 '92.1% 5.8 7 GE3.21 REUSED *53 34 1.76 85.8% 1.703 88.7% 2.9 8 GE3.21 REUSED *53 34 1.77 85.3% 1.703 88.7% 3.4'

~

9 GE3.21 NEW 21 *55 1.79 84.4% ~1.730 87.3% 2.9 10 GE3.21 NEW 21 - *54 1.80 83.9% 1.739 '86.8% 2.9 11 GE2.99 REUSED *52 38 1.82 83.0%- 1.792 84.3% .1.3 12 GE3.21 NEW 20 *34 1.83 82.5%' 1.786 -84.5% 2.1 .

13 GE3.21 NEW 20 *26' 1.84 82.1% 1.804 83.7% 1.6 14 GE2.99 REUSED *121 55 1.85' 81.6%' -1.740 86.8% 5.2 15 GE2.99 REUSED *154 54 1.85 81.6% '1.768 85.4% 3.8 16 GE3.21 REUSED *55 55 1.87 80.7% 1.804 83.7% 3.0 -;

17 GE2.99 NEW 31 *34 1.88' 80.3% 1.856 81.4% 1.1 18 GE2.99 NEW *31 26 1.88 80.3% 1.861 81.1% 0.8-l 19 GE3.21 NEW 20 *34 1.88 80.3% 1.841 82.0% 1.7 .

20 GE2.99 NEW *31 26 1.90 79.5% 1.884 80.2% 0,7 l l

l 1

l

  • - The most limiting value were used for CPR calculations l
    • - The most limiting case. l
      • - CPR Limit is'1.51.

1

e f e e

REOUEST 6:

provide limiting plots of predicted bow versus channel exposure, from the beginning of cycle 10 (when second lifetime channels were first installed) to the end of the current cycle, to bound all second lifetime channels currently in the core.

GPUN RESPOHEE:

Figure 5 is a plot of predicted bow versus channel exposure for a sampling of channels which have been in service for a second bundle lifetime during Cycles 10, 11, and 12. The upper (S/N 2480) and lower (S/N 116C) limit channels are extrernes because their initial cycle was located on or one row in from the edge of the core. This induces a large bow in the. channel due to a-large flux-gradient across the channel. However, note that the two channels plotted as typical channels (S/Ns 521C and 50015) show much more favorable bow.

Channel 248C which is projected to have a bow of 224 mil at EOC 11 and 284 mil at EOC 12. Channel 248C was measured at EOC 11 and found to have a bow of 140 mil (See Table 1).

Figure 6 is similar to Figure 5 except these channels were installed in Cycle 11 and have been in their second bundle lifetime for Cycles 11 and 12. The bounding channels, (S/Ns 575C and 139C) have similar histories to Figure 5's bounding channels. The typical channels (S/Ns 163C and 266C) also show favorable bow similar to Figure 5.

Figure 7 has been includod for your information. It illustrates the ability of the predictive model to trend within a reasonable limit the measured data.-

3 Figure 7 plots all the predicted bows for the reused channels installed in Cycle 10 for the end of each cycle of operation (i.e., EOC 10, EOC 11 and EOC 12). Superimposed on this plot are the measurements taken in 1988 for the channels that had been in the core for Cycle 10 and 11 and were loaded in l Cycle 12.

l 1

I t

CY:_= L0 RE SE C-As N E_ - S~~0RY -

JRE] C~ ~J 30W VS C- A\ N E_ EXJOS R_:

300 MAX. CHANNEL 1+) BOW MAX. CHANNEL 248C 200 -

CHANNEL 50015

_ CHANNEL 521C 0

MAX.CHANNELD BOW CHANNELi

. -- W O 0 10 20 30 40 50 60 70 CHANNEL EXPOSURE , GWD/MTU ,

FIGURE - 5 NOTE- (-) BOW TOMRDS CONTROL ROD- .

. . _ ~ ..

. . <,,,,....y-

CYC_E :.: RE SE C2A\ \ E_ -LS~~0RY 3REJ C~E] 30W VS C-AN \ E_ EXJOSAE

^ '

250 MAX.[+] CHANNEL BOW CHANNEL 575C 200 _

150 -

100 -

CHANNEL 163C CHANNEL 266C 50 -

0 CHANNEL 139C

-50 -

~., ..

MAX.H CHANNEL 80W

' ' ' ' i

-100 0 10 20 30 40 50 60 CHANNEL EXPOSURE ' GWD/MTU FIGURE -.6 NOTE H BOW TOVARDS CONTROL ROD

_ = _ _ _ _ _ . -

ta O. C. CYC_E LO RE SE C- AN \ E_ - S~~0lY l 3REJ C~EJ 30W VS C-A\ \ E_ EXPOSURE WL~~- V EASL REJ JK~A 300 ,

200 -

cf . o,____......."-

100 -

, ,.  :: ?.....:. .

, . ~~"~g~~ '

_ a 1. . .

~..e-}'.:-

9 y ..

. .. o

~ '

-100 -

-200 0 10 20 30 40 50. 60 70

CHANNEL EXPOSURE GWD/MTU PREDICTED BOW - o - MEASURED DATA FIGURE - 7 '

NOTE H BOW TOMADS CONTROL ROD

-- . _ - - _ - - . _