ML20058F812

From kanterella
Jump to navigation Jump to search
SAR for Nupac Series a Casks to 10CFR71 Type a Packaging Requirements
ML20058F812
Person / Time
Site: 07109159
Issue date: 06/25/1982
From:
NUCLEAR PACKAGING, INC.
To:
Shared Package
ML20058F810 List:
References
NUDOCS 8208020461
Download: ML20058F812 (85)


Text

-3 s

I SAFETY ANALYSIS REPORT l

FOR THE NUPAC SERIES A CASKS TO 10 CFR 71 TYPE A" PACKAGING REQUIREMENTS l

l PREPARED BY:

Nuclear Packaging, Inc.

815 South 28th Street i

Tacoma, Washi,ngton 98409-l (205)S72-7775 i

8208020461 820625 PDR ADOCK 071*****

C PDR L.

7 r

l e

TABLE OF CONTENTS Page 1.0 GENERAL INFORMATION 1-1 1.1 Introduction 1-1 1.2 Package Description 1-1 1.2.1.1 General Description 1-2 1.2.1.2 Materials of Construction, Dimensions & Fabricating Methods 1-2 1.2.1.3 Containment Vessel 1-4 1.2.1.4 Neutron Absorbers 1-4 1.2.1.5 Package Weight 1-4 1.2.1.6 Receptacles 1-5 1.2.1.7 Drain Port 1-5 1.2.1.8 Tiedowns 1-5 1.2.1.9 Lifting Devices 1-5 1.2.1.10 Pressure Relief System 1-6 1.2.1.11 Heat Dissipation 1-6 1.2.1.12 Coolants 1-6 1.2.1.13 Protrusions 1-6 1.2.1.14 Shielding 1-6 1.2.2 Operational Features 1-7 1.2.3 Contents of Packaging 1-7 2.0 STRUCTURAL EVALUATION 2-1 2.1 Structural Design 2-1 2.1.1 Discussion 2-1 2.1.2 Design Criteria 2-1 i

i r

TABLE OF CONTENTS (Con ' t)

Page 2-2 2.2 Weights and Center of Gravity 2-2 Mechanical Properties of Materials 2.3 2-4 General Standards for all Packages 2.4 2-4 Chemical and Galvanic Reactions 2.4.1 2-4 2.4.2 Positive Closure 2-4 2.4.3 Lifting Devices 2-5 2.4.3.1 Package Lifting Lugs 2-7 2.,4.3.2 Primary Lid Lifting Lugs 2-9 2.4.3.3 Secondary Lid Lifting Lugs 2-10 2.4.4 Tiedowns Standards for Type "B" and Large 2-19 2.5 Quantity Packaging 2-19 2.5.1 Load Resistance 2-20 2.5.2 External Pressure 2-22 Normal Conditions of Transport 2.6 2-22 2.6.1 Heat 2-22 2.6.2 Cold 2-23 2.6.3 Pressure 2-25 2.6.4 Vibration 2-25 2.6.5 Water Spray 2-25 2.6.6 Free Drop 2-26 2.6.6.1 Flat End Drop 2-28 2.6.6.2 Side Drop 1

2-31 2.6.6.3 Corner Drop 2-68 2.6.7 Corner. Drop 2-68 2.6.8 Penetratiop 2-68 Hypothetical Accident Conditions 2.7 il

5 e

~

TABLE OF CONTENTS (Coh't)

Page 2.8 Special Form 2-68 2.9 Fuel Rods 2-68 2.10 Appendix 2-68 2.10.1 General Arrangement Drawing of NuPac Series A Packaging 2-68 2.10.2 Volume and Area Estimates Corner Impact on a Cylinder 2-71 3.0 THERMAL EVALUATION 3-1 3.1 Discussion 3-1 3.2 Summary of Thermal Propoerties of Materials 3-2 3.3 Technical Specification of Components 3-2 3.4 Ther~nal Evaluation for Normal Conditions of Transport 3-2

3. 4. l' Thermal Model 3-3 3.4.2, Maximum Temperatures 3-3 3.4.3 Minimum Temperatures 3-3 3.4.4 Maximum Internal Pressures 3-4 3.4.5 Maximum Thermal Stresses 3-4 s

3.4.6 Evaluation of Package Performance for Normal Conditions of Transport 3-5 3.5 Hypothetical Thermal Accident Evaluation 3-5 3.6 Appendix 4.0 CONTAINMENT 4-1 4.1 Containment Boundary 4-1 4.1.1 Contain' ment Vessel 4-1 s

4.1.2 Containment Preparation 4-1 4.1.3 Seals and Welds 4-1 iii

TABLE OF CONTENTS (Con't)

Page 4.1.4 Closure 4-1 4.2 Requirements for Normal Conditions of Transport 4-2 4.2.1 Release of Radioactive Material 4-2 4.2.2 Pressurization of Containment Vessel 4-2 4.2.3 Coolant Contamination 4-2 4.2.4 CoolanE Loss 4-2 4.3 Containment Requirements for the Hypothetical Accident Conditions 4-3 5.0 SHIELDING EVALUATION 5-1 5.1 Discussion and Results 5-1

6.0 CRITICALITY EVALUATION

6-1 7.0 OPERATING PROCEDURES 7-1 7.1 Procedures for Loading the Package 7-1 7.2 Procddures for Unlcading the Package 7-2 8.0 ACCEPTANCE TESTS AND MAINTENANCE PROGRAM 8-1 8.1 Acceptance Tests 8-1 8.2 Maintenance Program 8-1 9.0 QUALITY ASSURANCE 9-1 iv

i e

4 APPLICATION FOR TYPE A NRC CERTIFICATE OF COMPLIANCE AUTHORIZING SHIPMENT OF NUCLEAR MATERIAL IN THE NUPAC SERIES A CASKS 4

1.0 GENERAL INFORMATION The "NuPac Series A Casks" have been developed around the very successful 7 and 14 drum casks referenced in Certificate of Compliance No. 9080 and 9079 respectively.

These casks are extensively used for radwaste shipment throughout North America.

The purpose of this Safety Analysis Report is to expand the number of available configurations from two to nine.

All nine are identically configured and vary only in cavity size and shielding thickness.

Each is capable of safely transporting Type A quantities of radioactive materials or greater than Type A quantities meeting the definition of Low Specific Activity material.

Eissile material is limited to those exempt quan-tities licensed under 10 CFR 71.7.

Authorization is sought for shipment by cargo vessel, motor vehicle a'nd rail.

1.2 Package Description 1.2.1 Packaging 1-1

r i

1.2.1.1 General Description The NuPac Series A Casks form a family of nine individual reuseable shipping packages designed to protect radioactive material from normal conditions of transport.

The nine packages are of identical construction, but have varying dim-ensions and shielding capabilities as shown in Table 1.2.1-1.

The NuPac Series A Casks are top loading shields designed specifically for the safe transport of Type A levels of radio-active materials.

The shields can accommodate full capacity liners, or miscellaneous form cargo such as wooden crates, etc.

1.2.1.2 Materials of Construction, Dimensions, and Fabri-cating Methods General Arrangement drawings of the NuPac Series A Casks are included in Appendix 2.10.1.

They show the overall dimensions as well as the material of construction.

The cask body consists of external and internal ste61 shells separated by a lead biological shield in the annular space between these two shells.

The top and bottom ends of the cylindrical cask are constructed of a pair of stacked steel plates.

1-2

Table 1.2.1-1 NUPAC SERIES A CASKS BASIC DATA DIMENSIONS (in.)

Characteristics Weights (lbs)

Cavity Dim.

Thicknesses Outer Dim.

Outer Inner Inner Inner Lid Lid Drum P/L Lead Dia.

Hght.

Plate Plate Lead Dia.

Height MODEL Cap.

Vol.

Equiv.

Empty P/L Loaded A

B C

D U

W Z

NuPac 14 217 2.0 28600 25000 53600 77.25 80.25 2.00 1.0 1.25 82.25 86.25 14/210L NuPac 14 217 2.73 38400 25000 63400 77.25 80.25 2.00 2.00 1.89 83.50 88.25 14/210H NuPac 14 190 2.0 26300 20000 46300 75.50 73.38 2.00 1.00 1.25 80.50 79.38 14/190L NuPac 14 190 2.25 33500 20000 53500 75.50 73.38 2.00 2.00 1.75 81.50 81.38 7

14/190M w

NuPac 14 190 3.5 45200 20000 65200 75.50 73.38 2.00 3.00 2.63

'83.25 83.38 14/190H NuPac 10 144 3.6 41500 15000 56500 66.00 73.00 2.00 3.00 2.75 74.77 83.00 10/140 NuPac 7

104 3.5 35900 13000 48900 75.50 40.75 2.00 3.50 3.00 84.00 51.75 7/100 NuPac 6

105 3.25 30900 12000 42900 61.00 62.00 2.00 2.50 2.43 69.11 71.00 6/10 0L 6

105 4.40 41900 12000 53900 61.00 62.00 3.00 3.00 3.56 71.37 74,00 NuPac 6/100H

o o

The top serves as a removable cask lid and is secured to the cylindrical cask body by eight high strength ratchet binders.

An optional 29 inch secondary cask lid is located in the center of the primary lid and is secured to the primary lid by eight 3/4 inch studs.

Lifting lugs and tiedowns are a

a structural part of the package.

1.2.1.3 Containment Vessel The inner shell and inner end plates of each cask serve as the containment vessel and its mechanical configuration is described in the foregoing paragraph.

A neoprene gasket is employed in the primary and secondary lid interfaces.

The secondary lid also used a redundant neoprene seal.

Waste products will be contained in 55 gallon drums, in heavy gauge disposable steel liners, in crates or other suitable palletized forms.

1.2.1.4 Neutron Absorbers There are no materials used as neutron absorbers or moderators in the NuPac packages.

1-4

i 1.2.1.5 Package Weight The gross, net and payload weights of the NuPac Packages are given in Table 1.2.1-1.

1.2.1.6 Receptacles There are no internal or external structures supporting or protecting receptacles.

1.2.1.7 Drain Port The casks are provided with a 3/8 inch NPT pipe plug and drain system.

Its use is for removal of entrapped liquids, such as rain or decontamination fluids.

1.2.1.8 Tiedowns Tiedowns are a structural part of the package.

From the attached general arrangement drawing, it can be seen that four-reinforced tiddown locations are provided.

Refer to Section 2.4.4 for a detailed analysis of their structural integrity.

1.2.1.9 Lifting Devices.

Lifting devices are a st'ructural part of the package.

From the general arrangement drawing, it can be seen that three 1-5

I reinforced lifting locations are provided.

Refer to Section 2.4.3 for a detailed analysis of,their structural integrity.

1.2.1.10 Pressure Relief System There are no pressure relief valves.

1.2.1.11 Heat Dissipation There are no special devides used for the transfer or dissi-pation of heat.

The package maximum design capacity is 400 watts.

However, this value may be exceeded if it can be demonstrated that actual equilibrium temperatures with the higher heat load are still within allowable limits.

1.2.1.12 Coolants There are no coolants involved.

1.2.1.13 Protrusions There are no outer or inner protrusions, except for the lifting and tiedown lugs descrEloed above.

1.2.1.14 Shielding The contents will be limited such that the radiological 1-6

shielding provided will assure compliance with DOT and IAEA regulatory requirements.

Should lead slump occur, as the result of a flat end drop, the deeply stepped lid will provide full shie) ding protection.

1.2.2 Operational Features Refer to the General Arrangement drawing of the packaging, in Appendix 1.10.1.

There are no complex operational require-meats donnected with the NuPac packages and none that have any transport significance.

1.2.3 Contents of Packaging This application is for transporting the following radioactive materials as defined in U.S.A.

and I.A.E.A.

regulations:

a.

Type "A" quantities in normal or special form; b.

Fissile quantities are those limited to the amounts as generally licensed under 10 CFR 71.7; L.S. A. materials greater than Type "A" quantities; c.

I d.

The chemical and physical form of the package contents will be in all forms, other than liquids.

This will include ion exchange resins in a dewatered or solidified f

state, typical PWR or BWR solidified radioactive waste and miscellaneous radioactive solid waste materials such as pipe, wbod, metal scrap, etc.

All solidified resins will be contained within a disposable liner.

1-7

s These liners will isolate the contents from the cask.

Resin liners used for any solidification process that could create a significant chemical, galvanic or other reaction, will be lined with an inert protective coating.

l l

l l

l l

I 1-8

O 2.0 STRUCTURAL EVALUATION This Section identifics and descri*es the principal structural u

engineering design features of the packaging, components, and systems important to safety in compliance with the performance requirements of 10 CFR 71.

2.1 Structural Design 2.1.1 Discussion The principal structural member of the NuPac Series A packages is the containment vessel described in Section 1.2.1.

The above components are identified on the drawing as noted in Appendix 2.10.1.

A detailed discussion of the structural design and performance of these components will be provided below.

2.1.2 Design Criteria The NuPac Series A casks have been designed to be simple, strong packages that will provide maximum flexibility for usage as well as minimum potential exposure to operating personnel.

The sizes and shielding capacities will allow a variety of payloads to be safely transported.

The shield top and bottom are constructed of two steel plates laminated together.

2-1

r-Cylindrical side walls'have an external skin of.875 or 1.13 inches and an internal skin of.375 or.5 inches thick plate.

These two plates encase a variable thickness of lead.

Pertinent dimensions of the nine versions of the NuPac Series A packa'ge are as given in Table 1.2.1-1.

In all cases, the package has been designed to provide well defined load path's which lend themselves to simple, highly reliable structural analysis methods.

No new state-of-the-art approaches have been used for analytic evaluation.

All analytic techniques used throughout the SAR are proven methods that have been used in past submittals.

Details of these methods are given where used.

Regulatory Guide 7.8 " Load Combinations for the Structural Analysis of Shipping Casks" was used in evaluating the NuPac Type A Family of packages.

Material properties used in the analysis can be found in Section 2.3.

2.2 Weights and Center of Gravity The weight of each of the nine cask versions and payloads are summarized in Table 1.2.1-1.

The center of gravity for the assembled package is located at the approximate geometric center of gravity.

2.3 Mechanical Properties of Materials The NuPac Series A packages are fabricated of ASTM A516 Gr.

70 steel except as noted below.

Material properties of the A516 steel are as follows:

2-2 L

^

e 0,000 P

=

tu

,000 psi F

=

ty P

=4,000

.(.6 Ftu}

su F

= 22,800 psi"(.6 Fty) sy The vertical plates of the lifting /tiedown lugs are constructed I

of ASTM A514 or A517 steel.

Material properties used for these steels are as follows:

F

= 110,000 - 135,000 psi tu F

= 100,000 psi ty F

= 66,000 - 81,000 psi (.6 F

)

su P

= 60,000 psi

(.6 F

)

sy Lead shielding will possess those properties referenced in ORNL-NSIC-68, Table 2. 6, page 84.

i.

Lid studs are fabricated of ASTM A320 Grade L-7 or equivalent steel.

Properties used for analysis are as follows:

Bar Properties (Per ASTM A320-78)

F

= 125,000 psi u

,000 psi F

=

ty 2-3

. -, -. ~

..-...,,------n,,----,-..--,-.~,.,,.-.r.,

,n

~ - -

2.4 General Standards for All Packages This section demonstrates that the general standards for all packages are met.

2.4.1 Chemical and Galvanic Reactions The shield is constructed from heavy structural steel plates.

All ed.crior surfaces are primed and painted with high quality epoxy.

There will be no galvanic, chemical or other reaction in air, nitrogen or water atmosphere.

-2.

.2 Positive Closure 4

As described in Section 1.2.1, the positive closure system l

consists of a primary lid secured by eight high strength I

f ratchet binders and an optional secondary lid affixed with eight 3/4 inch diameter studs.

In addition, each package will be sealed with an approved tamper indicating seal and suitable locks to prevent inadvertent and undetected opening.

2.4.3 Lifting Devices l

There are four lifting lugs for the package, three lifting lugs for the lid assembly (primary and secondary lids) and a single l

l 2-4

o lifting lug for the secondary lid.

Each set of lifting lugs is separately evaluated versus the requirements of 10 CFR 71,.

Section 71.31(c).

2.4.3.1 Package Lifting Lugs For conservatism, the package is assumed to be lifted by only two of the four identical lifting lugs.

The maximum package weight is 65,200 lbs. (14/190H).

The lug load is calculated as:

P

= Wa /N; where W = Package Weight g

a

= Load Factor, 3 q's (per Para.

9

71. 31 (c) (1)

N = Number of lugs 10CFR71)

(65200)(3)/2 97,800 lbs.

P

=

=

Pt 4

,{./

2$

From the drawing:

f 4

Y ypp %

r.1 =a

-w, 2'Q

/34 A sia 541

\\g

}I s,-

s7 2-5

Using the conventional 40 shear expression:

P

("d cos 40 )

yld sy

= 2 (60,000) 2 (2. 5 -

cos 40 )

= 370,200 lbs.

l 1

M.S.

=

pL

= 370.200 - 1 = + 2. 79 97,800 The yield capacity of the lug-to-shell weld may be estimated as:

P

=F

^w g

sy Where:

A

= weld area

= L,. ty L

= 2 (6"+6 "+2")

= 28" Considering only the welds ~ attaching the T-1 plate to_the cask.

.5" (1.414) =.707" t

=

y 451,300 lbs.

P

= 22,800 (28) (.707)

=

g

~

ld M,s, =

_y pL

, 451,300 - 1 = + 3.62 97,800 2-6

?

Therefore, it can be safely concluded that the lifting lugs will not yield under a load equal to three times the weight of the package.

Should a lug experience a load in excess of 370,200 lbs., it will begin to shear out locally through the eye, and will have no adverse effects upon the package's ability to meet other requirements.

2.4.3.2 Pritary Lid Lifting Lugs The maximum lid weight is 8,200 lbs (for the NuPac 7/100 cask).

Using three lugs the load per lug is P=

(8200 lbs) (3 g's)/3 lugs P

= 8,200 lbs/ lug

/ o D/q 7

/'

\\

+

)

SV %

i rt( < < <

E 00 i

1 A

l 2-7

T Using the conventional 40 shear out equation, the yield capacity is:

(d -

cos 40 )

P

=P 2t e

s sy Where:

P

= 22,800 psi (yield) sy t = 1.0 in, d = 1.0 in.

E

= 1.3 in.

d (22,8 00) (2 ) (1. 0) (1. 3 - (1.0)cos 40 )

P

=

s 2

P

= 41,810 lbs.

s The yield Margin of Safety is:

M.S. = P /P-1 s

= 41,810/8,200 - 1 i

= + 4.10 i

i The yield capacity of the lug to lid weld may be estimated as:

P

.=F

.A; F

= 22,800 psi A

sy w

sy A,

= L,

  • t,'

L,

= 2 (6+1. 0 ) = 14.0 t,

(.5) (.707) =.354 (Fillet Weld)

=

(22,800)(14.0)(.354) = 112,837 lbs.

P

=

g The lug to lid weld margin of safety is:

M.S. = 112,837/8,200 - 1 = + Large 2-8

Therefore, it can be concluded that the primary lid lifting lugs are more than adequate to resist a load equal to three times the weight of the lid.

As for the package lifting lugs, the lid lifting lugs fail by local shearout through the eye and therefore, have no adverse effect upon the package's ability to meet other requirements, (10 CFR 71 Para. 71.31 (d) (A)).

Since the lid lifting lugs are not capable of reacting the full package load, they will be covered during transit.

2.4.3.3 Secondary Lid Lifting Lug Maximum seconary lid weight is 1500 lbs.

Thus, the lug load is:

3(1500) = 4500 lbs.

m 2.0 t--

.7r /

N f

N EO Considering 40 shear as above:

,gy

//////

= 22,800 (2) (.375) (.75

  • 4375 cos 40 )

Ps 2

= 9,960 lbs.

The yield Margin of Safety:

M.S.

= 9960 - 1 = + 1.21 4500 Weld capacity may be estimatdd as:

P

=F A

A sw w F

= 22,800 lbs sw

.84 in A

= 2 (2 +.375) (.25) (.707)

=

PA = 22,800 (.84) = 19,150 lbs.

2-9 l-

i The yi6ld Margin of Safety:

'f00

- 1 = +3.26 M.S. =

Therefore, the secondary lid lug is more than adequate to resist a load equal to three times the weight of the lid.

The secondary lid lugs will be covered during transit, like the primary lid lugs.

The secondary lid lug will also be covered during transit.

2.4.4 Tiedowns Four tiedown lugs are provided to resist transportation induced loads.

The required load factors are:

10g (longitudinal)

A

=

g 5g (lateral)

A

=

y 2g (vertical)

A

=

g The four tiedown lugs are located at 90 intervals around the package sidewall at elevations ranging from 38.5" to-75.8" above the package base, depending upon the version, as shown in Column h of Table 2.4.4-1.

The tiedown arrangment for the NuPac Series A Casks is shown in Figure 2.4.4-1.

Tiedown cables are assumed to be fastened to the transporter at the same elevation as the base of the cask as shown (i.e.,

top of transporter deck).

From the geometry given in the sketch, the cable tension due to horizontal accelerations can be determined by summing 2-10

l ep t

g

[

g,

X i

\\

l

/

k

.-x, s

t 8 q

d' y

-- f h

ou)

C

/// / /i/ / / /////

// / /// / /

e P

P, 4

w i

cobic c/lrecdm n co ciner Es T3, B are 7

g i

1r 1.5 the cable lenydh :

e,. x/t Pu-e Px r. oc r4 R,_

7 = y/l P, = 6 Pr 8

7 B

= h/$

y 4

1 FIGURE 2.4.4-1 9

2-11

)

moments about the opposite bottom corner of the package.

For the longitudinal acceleration case:

A We = 2 (P d +Ph}

x y

But, A Wc = 2PT(B d

+ B h) x g

x Solving for P,:

g

^

= 5 (B d' + B h)

P Tlong 2

g x

SImilarly, the cable tension due to the lateral acceleration is:

^

P W

y lat " 2 I

+ B h)

B d' z

y The cable tension due to the vertical acceleration is simply:

4P

= A W " 40 E '

y z

z1

{

Solving for P,:

S P,

,AW g

g vert 4B z l

l For conservatism, these three loads may be assumed to coincide for the most severely loaded cable:

A6 Ac A

y g

P,=g7 (B d' Bh+

B d' + B h + 2B g

+

g x

g Z

l t

i Cable forces were calculated for each of the nine casks and are given in Table 2.4.4-1.

j 4

2-12

TABLE 2.4.4-1 CASK TIEDOWN CABLE FORCES NuPac Gross Outside Outside d*

h*

Cable Cable Cask Weight Diameter Height Length Tension Bx' By*

Bz*

Model (Ib.)

(in.)

(in.)

(in.)

(in.)

(in.)

(lb.)

14/210L 53,600 82.25 86.25 72.7 73.3 76.9

.214

.953 232,200 14/210H 63,400 83.5 88.75 73.7 75.8 79.1

.203

.958 278,500 14/190L 46,300 80.5 79.38 71.2 66.4 70.6

.242

.940 190,000 14/190M 53,500 81.5 81.38 72.0 68.4 72.4

.231

.945-223,000 14/190H 65,200 83.25 83.38 73.5 70.4 74.0

.218

.952 273,300 10/140 56,500 74.77 83.5 66.3 50.5 57.3

.333

.882 267,000 7/100 48,900 84.00 51.75 74.2 38.8 44.8

.354

.866 150,000 6/100L 42,900 69.11 71.5 61.5 38.5 48.7

.433

.791 203,400 6/100H 53,900 71.37 74.5 63.4 41.5 50.5

.402

.822 251,600 1

  • Refer to Figure 2.4.4-1

The tiedown lug is made of three plates welded together as shown in the sketch below.

The tiedown cable is attached to the lower hole.

The' cable lies in a near vertical plane which also is the lug plane of symmetry.

Therefore, no twisting moments are induced in the lug.

I f

hat' i

Y i

I J--.t.S,

o

,,g d

-t i

.-L-2.S' O:a i

M' p

2f Dla p*g

~~~~

stro Gr 70

~

M

+

j

u. \\

l I

1 p* ff N

2 r

T-I sfeel gu.

4' j

The tiedown lug capacity is calculated using the 40 shearout expression at the tiedown eyes.

2F t (e g

sy d -

cos 40 )

P

=

1 2-14

From the figure above:

t = 2" e

= 2.5" d

d = 2.5" Then:

P

= 2 (60,000) (2") (2.5 - 2.5 cos 40 )

g 2

370,200

=

Using the maximum cable tension of 278,500 lb. from Table 2.4.4-1, the yi6Id Margin of Safety is:

M.S. = 2 8,'

1 = +.33 00 The cable load consists of both horizontal and vertical components.

The lug to cask weld will be conservatively evaluated by calculating the stress due to the sum of the largest horizontal load and largest vertical load calculated from T'ble 2.4.4-1 cable forces.

The 6/100H cask produces a

the largest horizontal load while the 14/210H cask produces the largest vertical load.

The horizontal component of the tiedown load is:

(B

+B y)

P P

=

T H

x But, B

=B x

y 2-15

i Then:

PH xT max

= 1.414 (.402) 251,600

= 143,100 lb.

(6/100H)

The vertical component of the load is:

Py

=B P

max 3

T

=.958 (278,500)

= 266,800 lbs (14/210H)

P

= 143,100 + 266,800 = 409,900 lbs.

max Weld area:

A

= 1. 414 (. 5" ) 4 ( 6" +6 " +2" )

g 2

= 39.59 in Weld capacity:

P

=P A

W sy w

= 22,800 (39.59) = 902,700 lb.

The weld yield safety margin is:

M.S.

= 902,700 - 1 = +1.20 409,900 The shear stress induced in the outer shell is estimated as the maximum cable force, Pmax, divided by the minimum perimeter enclosure surrounding the tiedown fitting:

2-16

L N

/

s

/

\\

/

l

\\

/

i N

gl-

+

'-l-d-lN

/

\\

/

6,

/

l

\\

-r

/

L

\\

/

n t,' - >]n p=

4(1.414(6) + 2) = 41.9" The shear area of the shell is then:

36.66 in.2 A

=.875 (41.9)

=

g giving a shear capacity-of:

  • A s

s sy 835,900 lb.

36.66 (22,800)

=

=

t The shear margin of safety when compared to the yield limit is:.

835,900

=

- 1 = + 1.04 i

M.S.

409,900 i

l In order to preclude damage to the cask under extreme loads, j

the tiedown lug is designed to fail, prior to the weld or cask shell.

The ultimate shearout capacity of the lug, using roughly the highest strength A517 steel (F.= 135,000 psi) u which occurs:

.6 (135,000) = 81,000 psi P

=

su From page 2.15 above, the yield capacity of the lug is 370,200 pounds.

The ultimate capacity is then:

8 lug =

370,200 P

60 O

499,800 lbs.

=

2-17

4 The minimum ultimate capacity of the weld or shell-(using a minimum value of F for A516 plate):

i su r

I

~~

42 1

Pweld = 835,900 22,'000 = 1,540,000-lb.

800

'/

Thus, failure of the lug will not damage the cask.

i p

i s

4 a

i f..

I

.e P

I i

l We y

?

"r l

l l

l i

(-

2218

i. '

., _ _ ~ - _ __

s S

a' s -

2.5 Standards for Type "B" & Litrge Quantity-Packaging e

,s 7

'This section demonstrates that the standards of Section 71.32, 10CFR71, for Type "B" and large quantity packaging are met.

w x 2.5.1 Load Resistance s

s k

The requirement for load resistance is that, when simply supported at its ends, the cask must be able to withstand a uniformly distributed load equal to five times the cask weight.

Conser-vatively, the ouher=.shell alone is assumed to support this load s

as a beam.

Accordingly, the stress is:

SE" 4

Taking the NuPac 14/210H package as the most critical:

s

\\-

M = SWL,= (5)(178)(63,400)(88.25) = 3.497 x 10 in-lb 6

8 C=D= 83.5 = 41.75 in.

2 2

x

~'

4 4

d

-d 4 - 81.'75 )

4-I=ro i

=

n (83.5 64 64

~-

m 4

~

=

= 193,800 in i

T

=

T b

T 2-19 g

=

O o

and the corresponding stress is:

Sg = MC = (3.497 x 106)(41.75) = 753 psi I

193,800 which results in a Margin of Safety of:

MS=[ty

- 1 = 38,000 - 1 = + Large S

753 f

Therefore, the package can safety react the " Load Resistance" condition.

2.5.2 External Pressure An external pressure of 25 psig is reacted by the external shell in hoop compression.

The stress can be calculated as follows:

F = Pr/t Where:

P = 25 psig r=

(84.0 -.875)/2 = 41.56 t=

.875 in. (outside shell only)

F=

(25) (41.56)/. 875 = 1187 psi Margin of Safety:

ty! ~

M.S. =F

= 38,000/l]87

-1

= + Large 2-20

The analysis is conservative due to the presence of the lead and internal shell.

The lead assures buckling stability of the shell.

Pressure across the end is carried in plate bending by a minimum of two inch thick steel plates top and bottom.

Assuming a cir-cular plate, uniformly loaded ahd with edges simply supported, the stress can be calculated as follows:

f.= 3W(3M+1)/8nMt (Per " Formulas for Stress and Strain" r

by Roark)

Where:

W=

(25) n (83. 75) /4 = 137,121 4

t = 2" M = 1/.33 = 3 (3 ) (137,721X10)

/, 8n (3) (2) 2' f

=

r f

= 13699 psi r

Margin of Safety:

M.S. = 38,000/13,699 - 1 M.S.

= + 1.77 4

It is therefore safe to conclude that the containment vessel can react a 25 psig external pressure without loss of contents.

2-21

1 2.6 Normal Conditions of Transport The NuPac Series A casks have been designed and constructed, and the contents are so limited (as described in Section 0.2.3 above) that the performance requirements specified in 10CFR71. 35 will be met when a package is subjected to the normal con-ditions of transport specified in Appendix A of 10CFR71.

The ability of the NuPac packages to satisfactorily withstand the normal conditions of transport has been assessed as described on the following pages.

2.6.1 Heat A detailed thermal analysis can be found in Section 2.4 wherein

]

the package was exposed to three combinations of solar heating, internal decay heat and 130 F ambient air.

The steady state analysis conservatively assumed a 24-hour day as maximum solar heat load.

The maximum steady state temperature was found to be 192 F.

These temperatures will have no detrimental, effects on the package.

2.6.2 Cold The NuPac Series A casks are constructed of A516 steel.

This material provides resistance to brittle fracture failures in accordance With the recommendations for Catagory III payloads as set forth in NRC Document, NUREG 1815..

2-22

r 2.6.3 Pressure A differential pressure of.5 atmospheres will be reacted by the lid and its associated closures comprised of ratchet binders for the primary lid and studs for the secondary lid.

Loads on the primary lid ratchet binders are calculated as:

P

= Ap/N; where:

A = nD s

4 P = 14.7/2 psi N=8 For the worst case loading:

P

= n(81.82) 14.7 1

= 4,831 lbs.

s 4

2 I

The yield strength of the NuPac NP-500 ratchet binder is 46,000 lbs.

Thus the margin of safety is:

46,000

-1=

+ 8.52 M.S.

=

4,831 For the secondary lid studs, the load is:

n (33. 87 ) 2 (14. 7 )

1

= 828 lbs.

P

=

s 4

2 8

The tensile strength of the 3/4-10 UNC, ASTM A320 Grade _ L-7 studs is:

(105,000)(.309) = 32,450 lbs.

P

=

Thus, the margin of safety is:

32,450/828 - 1 = + Large M.S.

=

e 2-23

Stresses induced in the cylindrical portion of the cask are conservatively estimated by assuming the pressure differential is totally borne by the 3/8 inch thick inner shell.

The hoop and longitudinal stresses are:

fh = PR/t = (

) (

  • 1) = 757 psi

= 379 psi PR/2t = (

) (38. 3) ( )

f

=

y Assuming these biaxial stresses are additive, F

= 1136 psi 3

The margin of safety is:

M.S.

= 38000/1136 - 1 = + Large Pressure across the end is carried in plate bending by the 2 inch (min'imum) thick steel plates top and bottom.

Assuming a circular plate, uniformly loaded and with edges simply supported, the stress can be calculated as follows:

3W(3M+1)/8nMt (Per " Formulas for Stress and Strain" f

=

r by Roark)

Where:

W=

(7.35) (n) (83.57) /4 = 40,320 lbs.

t = 2" M = 1/.33 = 3

( 3) (40320) (10) /8n (3) (4) f

=

r f

= 4010 psi r

i i

l 2-24 1

Nargin of Safety:

M.S. = 38,000/4010 - 1 = + 8.48 It can therefore be concluded that the packaging can safely react an atmospheric pressure of.5 times standard atmospheric pressure.

2.6.4 Vibration Shock and vibration normally incident to transport are considered to have neglible effects on the NuPac packages..

~

2.6.5 Water Spray Since the package exterior is constructed of steel, this test is not required.

2.6.6 Free Drop The free drop height specified by ppendix A.6 of 10CFR71 for all NuPac Series A packages is 12 inches. Since all oackaces are greater than 30,000 lb. gross weight.

i Three drop orientations are possible:

flat end drop, side drop and corner drop.

For the flat end drop, the most critical condition will be settlement of the unbonded lead 2 25 t

shield at the end opposite the point of impact.

For the side drop, local flattening will be evaluated.

For the corner drop, the most critical condition will be the lid closure.

2.6.6.1 Flat End Drop The evaluation of flat end impact upon settlement of lead shielding closely follows Shappert's approach for a cylindrical lead shield, outlined in Section 2.7.3 of his Cask Designer's Guide, ORNL-NSIC-68, February 1970.

The lead settlement distance is given by:

AH =

RWH n(R

- r ) (t U pb'

+

ss Where:

AH = Settlement depth (in. )

H = Drop Height (in.)

R = Outer lead radius (in.)

W = Weight of Lead (1bs.)

r = Inner lead radius (in.)

t

= Thickness of external steel shell (in.)

s o

= Steel dynamic flow stress, 50,000 psi s

= Lead dynamic flow stress, 5,000 psi pb j

For the nine package versions, variables and settlement results are tabulated in Table 2.6.6.1-1.

t 2-26 1

Table 2.6.6.1-1 FLAT END DROP RESULTS Outer Inner Outer Wall Lead Lead Radius, R Radius, r Thickness, Weight, W Settlement, Model (in.)

(in.)

t (in.)

{lbs.)

(in.)

s l

NUPAC 14/210L 40.25 39.00

.875 10,460

.066 NUPAC 14/21011 40.88 39.00

.875 16,290

.068 NUPAC 14/190L 39.38 38.13

.875 9,366

.060 NUPAC y

14/190M 39.88 38.13

.875 13,550

.062 ed Y

NUPAC 14/19011 40.75 38.13

.875 21,090

.064 NUPAC 10/140 36.26' 33.50 1.13 19,330

.059 NUPAC 7/100 41.13 38.13

.875 14,040

.037 NUPAC 6/100L 33.43 31.00 1.13 13,390

.049 NUPAC 6/10011 34.56 31.00 1.13 20,420

.050

These modest settlement " voids" in the lead shield,.05 to

.06 inches, cannot transmit radiation because of the stepped design of the package ends.

The innermost solid steel and plates completely back (shield) lead settlement regions at both ends of the package.

Thus, lead settlement due to flat end drop does not compromise, nor alter, the integrity of radiation shielding in any fashion.

2.6.6.2 Side Drop Side drop is evaluated using the methods outlined in Section 2.7.2 of Shappert's Cask Designer's Guide, ORNL-NSIC-68.

The governing equation (2.13 ) is:

8 E

^

s t Ro 1(0) f-(pb/s)

+2 (R/L)( e/ts)

+ F2 (0) s s

s o

Where:

W = cask weight (1bs.)

H = 12 in.

Fy (0) = 0-1/2 sin 20 r (0) = sin 0(2-cos 0)-- 0 2

= 50,000 psi ORNL-NSIC'-68, Page 60 s

pb =

5,000 psi The flattening of the cask is equal to:

i d = R(1-cos'0) l l

Results are shown in Table 1.6.6.2-1.

2-28 1

Shielding is reduced by side impact as indicated below:

( }

Version

% Shield' Reduction 14/210L

.48 14/210H

.35 14/190L

.45 14/190M

.40 14/190H

.26 10/140

.24 7/100

.23 6/100L

.25 6/100H

.19 100 (20 )

(1)

Note:

% = d_

T 360 s

Where T

= Nominal Shield Thickness s

This insignificant reduction of shielding demonstrates that I

side impact does not compromise the integrity of the package's shielding any measurable fashion.

t 0

l 4

i 2-29

TABLE 2.6.6.2-1 SIDE DROP RESULTS 4

Weight Outside Length Theta Deformation Cask W

Diameter, R L

Thickness Thickness 0

d Model (1bs)

(in.)

(in.)

t (in.)

t (in.)

(deg)

(in.)

g e

NUPAC 14/210L 53,600 82.25 86.25

.88 3.00 6.52

.266 NUPAC 14/210!!

63,400 83.50 88.25

.88 4.00 6.46

.265 NUPAC 14/190L 46,300 80.50 79.38

.88 3.00 6.40

.251 NUPAC w

14/190M 53,500 81.50 81.38

.88 4.00 6.39

.251' NUPAC 14/190H 65,200 83.25 83.38

.88 5.00 6.38

.257 NUPAC 10/140 56,500 74.77 83.00 1.13 5.00 6.49

.239 NUPAC 7/100 48,900 84.00 51.75

.88 5.50 6.09

.237 NUPAC 6/100L 42,900 69.11 71.00 1.13 4.50 6.50

.222 NUPAC 6/10011 53,900 71.37 74.00 1.13 6.00 6.48

.228

2.6.6.3 Corner Drop The impact energy associated with a corner drop will be absorbed by inelastic deformation of the corner.

Using the "aynamic flow pressure" concept, total deformation of the corner is estimated and used to compute package deceleration.

This deceleration is then used to check the integrity of the lid closure.

Both steel and lead components of the cask are distorted upon corner impacts.

The assessment of deformation and resultant decelerations is based upon a careful consideration of detail corner geometry for a range of assumed deformations.

It is assumed that the steel end plates of the cask undergo plastic flexural defdrmation and do not crush.

This flexural defor-mation of the ends enforces a crushing of the contiguous lead side walls and the thin cylindrical external steel shell.

The predictions of peak rigid body impact decelerations are based upon the crush geometry of the lead side walls and the associated external steel shell.

Rqsultant deformation pre-i diction estimates are based upon two energy balance techniques:

e The plastic flow pressure concept e

An integration of force - deflection relations based upon crush stress approaches.

2-31

1 For the plastic flow stress approach properties of steel and lead are based upon recommended deformation basis values used by Shappert, Cask Designer's Guide, ORNL NSIC-68, Section 2.7.1:

= 5000 psi pb

= 50,000 psi s

For the crush stress approach, steel crush properties are assumed to be equal to approximately 1.5 times the yield stress, approximately the midpoiht between yield and ultimate stress.

This conservative approach is intended to account for both strain rate effects and strain hardening.

This provides a crush stress equivalent for steel of 55,000 psi.

For lead, the crush stress equivalent is taken as twice yield, or 1380 x 2

= 2760 psi, reference Table 2.6, Shappert, Cask Designer's Guide, ORNL-NSIC-68.

Analytics used for these estimates are outlined in Appendix 2.10.2.

Prediction results are summarized in Table 2.6.6.3-1; detailed computer analysis results for all nine configurations follow the table.

The deceleration resulting from impact onto the bottom corner of the cask is conservatively used in evaluating the drop onto the top corner of the cask.

The actual deceleration for the top corner drop would be significantly less due to the bending of the lid top plate during impact.

2-32

O o

TABLE 2.6.6.3-1 (1)

Drop Crush Zone Geometry Load Height Weight Radius Volume Area Depth Factor 3

2 Version (in)

(lbs)

(in)

(in )

(in )

(in)

(g's) 14/210L 12 53,600 41.125 14.0 32.5 1.08 33.4 14/210H 63,400 41.785 16.7 36.2 1.15 31.4 14/190L 46,300 40.25 12.1 29.4 1.03 34.9 14/190M 53,500 40.76 14.1 32.3 1.14 33.2 14/190H 65,200 41.66 17.3 36.6 1.18 30.9 10/140 56,500 37.385 14.9 33.3 1.12 32.4 7/100 48,000 41.66 12.8 31.0 1.03 34.8 6/100L 42,900 34.56 11.2 27.3 1.02 35.1 6/100H H

53,900 35.69 14.2 31.8 1.12 32.4 Corner Impact Deformation & Deceleration Estimates (1)

Interpolated for greatest crush depth prediction corresponding to a(strain energy / kinetic energy) ratio of unity.

2-33

.... ~.... - _ _.. -....

(

3ASKCRN(CORNER)

CORHER= IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PACTI 1

NUPAC 14-210L 2.0 EQ SHIELDING a

PACKAGE WEIGHT

53600.00'(LBS)

DROP llEIGHT 12.000 (IN)

PACKAGE RADIUS 41.125 (Ill)

ST EEL DYH ANIC FL OW STF. ESS : 50000.00 (PSI)

STEEL CRUSH STRESS

55000.00 (PSI)

LEAD DfHAtlIC FLOW STRESS : 5000.00 (PSI)

LEAD CRUSil STRESS

2760.00 (PSI)

STEEL SHELL THICKNESS

.875 ( Ill)

STECL 001 TOM TilICKHESS 3.000 ( Iti)

ORIENTATION ANGLE 43.64 (DEG) e Iw b

I

o o

3SKCRH(CORNER)

CORHER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PAGE[

2 HUPAC 14-210L 2.0 EQ SHIELDING

++ CRUSH VOLut1E*+

+ FLOW STRESS BASIS +

+++ CRUSH AREA +++

++ IMPACT ++

++ CRUSH STRESS BASIS *+

3RU3H KIHETIC STRAlH ENERGY STRAIN ENERGY 3EPTH ENERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL LEAD FORCE. ACCEL.

ENERGY RATIO (IH)

(IN-LB)

(IH3)

(IH3)

(IN3)

(IN-LB) (SE/KE)

(IH2)

(IN2)

(IH2).

(LBS)

(G)

(IH-LB) (SE/KE)

.05 645880.

.0

.0 0.0 326.

. 00

.3

.3 0.0 17917.

.3 448.

.00

.10 648560.

0

.0 0.0 1343.

.00

.9

.9 0.0 50664.

.9 2162.

.00

.15 651240.

.1

.1 0.0 5077.

.01 1.7 1.7 0.0 93050.

1.7 5755.

.01

.30 653920.

.2

.2 0.0 10419.

.02 2.6 2.6 0.0 143222.

2.7 11662.

.02

.25 656600.

.4

.4 0.0 18198.

.03 3.6 3.6 0.0 200106.

3.7 20:45.

.03

.30 659280.

.6

.6 0.0 23701.

.04 4.8 4.8 0.0 262977.

4.9 31822.

.05

.35 661960.

.8

.8 0.0 42188.

.06 6.0 6.0 0.0 331301.

6.2 46679.

.07

.40 664640.

1.2 1.2 0.0 SS896.

.09 7.4 7.4 0.0 404664.

7.5 65073.

.10

.45 667320.

1.6 1.6 0.0 79047.

.12 8.8 8.8 0.0 4S2734.

9.0 87263.

.13

.50 670000.

2.1 2.1 0.0 102848.

.15 10.3 10.3 0.0 565235.

10.5 113463.

.17

.55 672680.

2.6 2.6 0.0 130495.

.19 11.9 11.9 0.0 651933.

12.2 143892.

.21

.60 675360.

3.2 3.2 0.0 162175.

.24 13.5 13.5 0.0 742626.

13.9 178756.

.26

.65 678040.

4.0 4.0 0.0 19S065.

.29 15.2 15.2 0.0 837139.

15.6 218250.

.32

.70 680720.

4,8 4.5 0.0 233334.

.35 17.0 17.0 0.0 935317.

17.4 262561.

.39

.75 683400.

5.7 5.7 0.0 233147.

.41 18.9 18.9 0.0

  • 1037022'.

19.3 311870.

.46

.80 686080 6.7 6.7 0.0 332660.

.48 20.8 20.8 0.0 1142129.

21.3 366349.

.53

.85 688760.

7.7 7.7 0.0 337027.

.56 22.7 22.7 0.0 1250526.

23.3 426165.

.62

.90 691440.

8.9 8.9 0.0 446393.

.65 24.8 24.8 0.0 1362110.

25.4 491431.

.71

.95 694120.

10.2 10.2 0.0 510902.

.74 26.9 26.9 0.0 1476787.

27.6 562453.

.81 1.00 696800.

11.6 11.6 0.0 580692.

.83 29.0 29.0 0.0 1594470.

29.7 639235.

.92 1.05 699480.

13.1 13.1 0.0 655SS8.

.94 31.2 31.2 0.0 1715079.

32.0 721973.

1.03 1.10 702160.

14.7 14.7 0.0 736651.

1.05 33.4 33.4 0.0 1838540.

34.3 810814.

1.15 1.15 704840.

16.5 16.5 0.0 823080.

1.17 35.7 35.7 0.0 1964783.

36.7 905897.

1.29 1.20 707520.

18.3 13.3 0.0 915309.

1.29 38.1 33.1 0.0 2093742.

39.1 1007360.

1.42 1.25 710200.

20.3 20.3 0.0 1013461.

1.43 40.5 40.5 0.0 2225353.

41.5 1115333.

1.57 1.30 712880.

22.4 22.4 0.0 1117654.

1.57 42.9 42.9 0.0 2359573.

44.0 1229961.

1.73 1.35 715560.

24.6 24.6 0.0 1223006.

1.72 45.4 45.4 0.0 2496333.

46.6 1351359.

1.89 1.40 718240.

26.9 26.9 0.0 1344631.

1.87 47.9 47.9 0.0 26355S7.

49.2 1479657.

2.06 1.45 720920.

29.4 29.4 0.0 1467642.

2.04 50.5 50.5 0.0 2777286.

51.8 1614978.

2.24 1.50 723600.

31.9 31.9 0.0 1597148.

2.21 53.1 53.1 0.0 2921385.

54.5 1757445.

2.43 1.55 726280.

34.7 34.7 0.0 1733258.

2.39 55.8 55.8 0.0 3067839.

57.2 1907176.

2.63 1.60 728960.

37.5 37.5 0.0 1876077.

2.57 58.5 58.5 0.0 3216603.

60.0 2064287.

2.83 1.65 731640.

40.5 40.5 0.0 2025711.

2.77 61.2 61.2 0.0 3367651.

62.8 2228393.

3.05 1.70 734320.

43.6 43.6 0.0 2132261.

2.97 64.0 64.0 0.0

3520931, 65.7 2601105.

3.27 1.75 737000.

46.9 46.9 0.0 2345829.

3.18 66.8 66.8 0.0 3676411.

63.6

2581041, 3.50 1.80 739680.

50.3 50.3 0.0 2516513.

3.40 69.7 69.7 0.0 3834057.

71.5

2768803, 3.74 1.85 742360.

53.9 53.9 0.0

2694412, 3.63 72.6 72.6 0.0 3993835.

74.5 2964500.

3.99 1.90 745040.

57.6 57.6 0.0 2379621.

3.87 75.6 75.6 0.0 4155714.

77.5 3168239.

4.25 1.95 747720.

61.4 61.4 0.0 3072236.

4.11 78.5 73.5 0.0 4319662.

80.6 3380124.

4.52 2.00 750400.

65.4 65.4 0.0 3272349.

4.36 81.6 81.6 0.0 4485650.

83.7 3600256.

4.80 w

Iw Ut

CASKCZH(CORHER)

CORHER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09, 82/06/21.

P' AGE 3

HUPAC 14-210H 2.75 EQ SHIELDING PACKAGE WEIGHT

63400.00 (LBS)

DROP ltEIGHT 12.000 (IN)

PACKAGE RADIUS 41.7CS (IH)

STEFL DYHAMIC FLOW STRESS : 50000.00 (PSI)

STEEL CRUSH STRESS

55000.00 (PSI)

L EAD DYHM11C FL OW STRESS :

5000.00 (PSI)

LEAD CRUSH STRESS

2760.00 (PSI)

STEEL SHE1L THICKNESS

.875 (IN)

STEEL BOTIOM THICKHESS 4.250 (IH)

ORIENTATION ANGLE 43.28 (DEG) e l

W Ch O

+

?ASKCRH(CORHER)

CORHER Ir1 PACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

FAGI 4

HUPAC 14-210H 2.75 EQ SHIELDING

++ CRUSH VOLutiE++

+ FLOW STRES5 BASIS +

+++ CRUSH AREA +++

++ It1P A C T ++

++ CRUSH STRESS BASIS ++

CRUSH KINETIC STRAIN ENERGY STRAIN ENERGY DEPTH ENERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.

ENERGY RATIO (IN)

(IH-LB)

(IH3)

(IN3)

(IH3)

(IN-LB) (SE/KE) sIH2)

(IN2)

(IH2)

(LBS)

(G)

(IN-LB) (SE/KE)

.05 763970.

.0

.0 0.0 330.

.00

.3

.3 0.0 18132.

.3 453.

.00

.10 767140.

.0

.0 0.0 iso 5.

.00

.9

.9 0.0 51273.

.8 2188.

.00

.15 770310.

.1

.1 0.0 5138.

.01 1.7 1.7 0.0 94170.

1.5 5825.

.01

.20 773480.

.2

.2 0.0 10545.

.01 2.6 2.6 0.0 144946.

2.3 11802.

.02

.25 776650.

.4

.4 0.0 13417.

.02 3.7 3.7 0.0 202515.

3.2 20489.

.03

.30 779820.

.6

.6 0.0 29047.

.04 4.8 4.8 0.0 266143.

4.2 32205.

.04

.35 782990.

.9

.9 0.0 42696.

.05 6.1 6.1 0.0 335290.

5.3 47241.

.06

.40 786160.

1.2 1.2 0.0 59605.

.08 7.4 7.4 0.0

409538, 6.5 65862.

.08

.45 789330.

1.6 1.6 0.0 79999

.30 8.9 8.9 0.0 488549.

7.7 88314.

.11

.50 792500.

2.1 2.1 0.0 104036.

.13 10.4 10.4 0.0 572045.

9.0 114829.

.14

.55 795670.

2.6 2.6 0.0 132067.

.17 12.0 12.0 0.0 659789.

10.4 145625.

.18

.60

.798840.

3.3 3.3 0.0 164129.

.21 13.7 13.7 0.0 751577.

11.9 180909

.23

.65 802010.

4.0 4.0 0.0 200451.

.25 15.4 15.4 0.0 847232.

13.4 220879.

.28

.70 805180.

4.8 4.8 0.0 241206.

.30 17.2 17.2 0.0 946596.

14.9 265725.

.33

.75 808350.

5.7 5.7 0.0 286559.

.35 19.1 19.1 0.0

  • 1049530.

16.6 315628.

.39

.80 811520*

6.7 6.7 0.0 336670.

41 21.0 21.0 0.0 1155907.

18.2 370764

.46

.85 814690.

7.8 7.8 0.0 391692.

48 23.0 23.0 0.0 1265615.

20.0 431302.

.53

.90 817860.

-9.0 9.0 0.0 451775.

.55 25.1 25.1 0.0 1378549.

21.7 497406.

.61

.95 821030.

10.3 10.3 0.0 517062.

.63 27.2 27.2 0.0 1494614.

23.6 569235.

.69 1.00 824200.

11.8 11.8 0.0 5S7695.

.71 29.3 29.3 0.0 1613721.

25.5 646943.

.78 1.05 827370.

13.3 13.3 0.0 663309

.80 31.6 31.6 0.0 1735791.

27.4 730681.

.88 1.10 830540.

14.9 14.9 0.0

'745538.

.90 33.8 33.8 0.0

1860747, 29.3 820595.

.99 1.15 833710.

16.7 16.7 0.0 833010.

1.00 36.2 36.2 0.0 1988520.

31.4 916826.

1.10 1.20 836880.

18.5 13.5 0.0 926354.

1.11 38.5 38.5 0.0

2119043, 33.4 1019515.

1.22 1.25 840050.

20.5 20.5

  • 0. 0
1025691, 1.22 41.0 41.0 0.0 2252255.

35.5 1128793.

1.34 1.30 843220.

22.6 22.6 0.0

1131144, 1.34 43.4 43.4 0.0 2388098.

37.7 1244807.

1.48 1.35 846390.

24.9 24.9 0.0 1242830.

1.47 45.9 45.9 0.0 2526518.

39.9 1367672.

1.62 1.40 849560.

27.2 27.2 0.0 1360066.

1.60 48.5 48.5 0.0 2667462.

42.1 1497522.

1,76 1.45 852730.

29.7 29.7 0.0 1485364.

1.74 51.1 51.1 0.0

2610832, 44.3
1634480, 1.92 1.50 855900.

32.3 32.3 0.0 1616437.

1.89 53.8 53.8 0.0 2956731.

46.6 1778671.

2.08 1.55 859070.

35.1 35.1 0.0 1754194 2.04 56.5 56.5 0.0 3104965.

49.0 1930213.

2.25 1.60 862240.

38.0 38.0 0.0

1898742, 2.20 59.2 59.2 0.0 3255542.

51.3 2089226.

2.42 1.65 865410.

41.0 41.0 0.0

2050137, 2.37 62.0 62.0 0.0 3403423.

53.S 2255825.

2.61 1.70 868580.

44.2 44.2 0.0

2208633, 2.54 64.8 64.8 0.0 3563567.

56.2 2430125.

2.80 1.75 871750.

47.5 47.5 0.0 2374182.

2.72 67.7 67.7 0.0 3720940.

SS.7 2612237.

3.00 1.80 874920.

50.9 50.9 0.0 2546934 2.91 70.6 70.6 0.0

3880505, 61.2 2802273.

3.20 1.85 878090.

54.5 54.5 0.0 2726938.

3.11 73.5 73.5 0.0 4042230.

63.8 3000342.

3.42 1.90 881260.

58.3 58.3 0.0 2914441.

3.31 76.5 76.5 0.0 4206080.

66.3

3206549, 3.64 1.95 884430.

62.2 62.2 0.0 3109390.

3.52 79.5 79.5 0.0 4372027.

69.0 3421002.

3.87 2.00 887600.

66.2 66.2 0.0 3311930.

3.73 82.5 82.5 0.0 4540039.

71.6 3643804.

4.11 DJ lW

-4

ASKCRN(CORNER)

CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PAGf 5

NUPAC 14-190L 2.0 EQ SHIELDING PACKAGE WEIGHT

46300.00 (LBS)

DROP HEIGHT 12.000 (IN)

PACKAGE RADIUS 40.250 (IN)

STEEL DYNAMIC FLOW STRESS : 50000.00 (PSI)

STEEL CRUSH STRESS

55000.00 (PSI)

LEAD.DYNAllIC FLOW STRESS : 5000.00 (PSI)

LEAD CRUSH STRESS

2760.00 (PSI)

STEEL SHELL THICKNESS

.875 (IN)

STEEL BOTTOM THICKNESS 3.000 (IH)

ORIENTATION ANGLE 45.41 (DEG) e I

be ED O

e 9

W

'ASKCRH(CORNER)

CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

P t.G E*

6 HUPAC 14-190L 2.0 EQ SHIELDING

++ CRUSH VOLUllE++

+ FLOW STRESS DASIS+

+++ CRUSH AREA.+++

++ IMPACT ++

++ CRUSH STRESS BASIS ++'

CRUSH KIHETIC STRAIN ENEEGY STRAIN ENERGY DEPTH ENERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.

ENERGY RATIO (IH)

(IH-LB)

(IH3)

(IH3)

(IN3)

(IH-LB) (SE/KE)

(IH2)

(IH2)

(IH2)

(LBS)

(G)

(IN-LB) (SE/KE)

.05 557915.

.0

.0 0.0 317.

.00

.3

.3 0.0 17431.

.4 436.

.00

.10 560230.

.0

.0 0.0 1793.

.00

.9

.9 0.0 49290.

1.1 2104

.00

.15 562545.

.1

.1 0.0 4939.

.01 1.6 1.6 0.0 90528.

2.0 5599.

.01

.20 564860.

.2

.2 0.0 10137.

.02 2.5 2.5 0.0 139341.

3.0 11346.

.02

.25 567175.

.4 4

0.0 17705.

.03 3.5 3.5 0.0 194684.

4.2 19697.

.03

.30 569490.

.6

.6 0.0 27924.

.05 4.7 4.7 0.0 255851.

5.5 30960.

.05

.35 571805.

.8

.8 0.0 41045.

.07 5.9 5.9 0.0 322325.

7.0 45414.

.08

.40 574120.

'1.1 1.1 0.0 57300.

.10 7.2 7.2 0.0 393702.

8.5 63315.

.11

.45 576435.

1.5 1.5 0.0 76905.

.13 8.5 8.5 0.0 469653.

10.1 84899.

.15

.50 578750.

2.0 2.0 0.0 100062.

.17 10.0 10.0 0.0 549926.

11.9 110339.

.19

.55 581065.

2.5 2.5 0.0 126960.

.22 11.5 11.5 0.0 634277.

13.7 139994.

.24

.60

.5833S0.

3.2 3.2 0.0 157782.

.27 13.1 13.1 0.0 722515.

15.6 173914

.30

.65 585695.

3.9 3.9 0.0 192700.

.33 14.8 14.8 0.0 814471.

17.6 212338.

.36

.70 588010.

4.6 4.6 0.0 231879.

.39 16.5 16.5 0.0 909994.

19.7 255450.

.43

.75 590325.

5.5 5.5 0.0 275478.

.47 18.3 18.3 0.0

  • 1008947.

21.8 303423.

.51

.00 592640.-

6.5 6.5 0.0 323652.

.55 20.2 20.2 0.0 1111212.

24.0 356427.

.60

.85 594955.

7.5 7.5 0.0 376546.

.63 22.1 22.1 0.0 1216678.

26.3 414625.

.70

.90 597270.

8.7 8.7 0.0 434306.

.73 24.1 24.1 0.0 1325245.

28.6 478173.

.80

.95 599585.

9.9 9.9 0.0 497069.

.83 26.1 26.1 0.0 1436822.

31.0 547224

.91 1.00 601900.

11.3 11.3 0.0 564970.

.94 28.2 28.2 0.0

1551325, 33.5
621928, 1.03 1.05 604215.

12.8 12.8 0.0 638141.

1.06 30.3 30.3 0.0 1668675.

36.0 702428.

1.16 1.10 606530.

14.3 14.3 0.0 716710.

1.18 32.5 32.5 0.0 1788800.

33.6' 783865.

1.30 1.15 608845.

16.0 16.0 0.0 800S00.

1.32 34.8 34.8 0.0 1911632.

41.3 881376.

1.45 1.20 611160.

17.8 17.8 0.0 890535.

1.46 37.0 37.0 0.0 2037109.

44.0 980094.

1.60 1.25 613475.

19.7 19.7 9.0 9S6031.

1.61 39.4 39.4 0.0 2165171.

46.8 1085151.

1.77 1.30 615790.

21.7 21.7 0.0 1087407.

1,77 41.7 41.7 0.0 2295762.

49.6 1196674.

1.94 1.35 618105.

23.9 23.9 0.0 1194774.

1.93 44.2 44.2 0.0 2428830.

52.5

1314739, 2.13 1.40 620420.

26.2 26.2 0.0 1308246.

2.11 46.6 46.6 0.0 2564325.

55.4 1439618.

2.32 1.45

622735, 28.6 28.6 0.0 1427931.

2.29 49.1 49.1 0.0 2702200.

58.4 1571281.

2.52 1.50 625050.

31.1 31.1 0.0

1553936, 2.49 51.7 51.7 0.0 2S42410.

61.4 1709896.

2.74 1.55 627365.

33.7 33.7 0.0 1686367.

2.69 54.3 54.3 0.0 2984913.

64.5

1855580, 2.96 1.60 629680.

36.5 35.5 0.0 1325326.

2.90 56.9 56.9 0.0 3129669.

67.6

2008444, 3.19 1.65 631995.

39.4 39.4 0.0 1970916.

3.12 59.6 59.6 0.0

3276639, 70.8 2168602.

3.43 1.70 634310.

42.5 42.5 0.0 2123235.

3.35 62.3 62.3 0.0 3425786.

74.0 2336162.

3.68 1.75 636625.

45.6 45.6 0.0 22823S3.

3.59 65.0 65.0 0.0 3577074.

77.3 2511234.

3.94 1.80 638940.

49.0 49.0 0.0 2448456.

3.83 67.8 67.8 0.0 3730471.

80.6 2693923.

4.22 1.85 641255.

52.4 52.4 0.0 2621548.

4.09 70.7 70.7 0.0 3885943.

83.9 2884333.

4.50 1.90 643570.

56.0 56.0 0.0 2301754.

4.35 73.5 73.5 0.0 4043459.

87.3 3082568.

4.79 1.95 645585.

59.8 59.8 0.0 2939166.

4.63 76.4 76.4 0.0 4202990.

90.8 3288729.

5.09 2.00 648200.

63.7 63.7 0.0 3183S74.

4.91 79.4 79.4 0.0 4364507.

94.3 3502917.

5.40 N

I W

W

r ASKCRN(CORNER).

CORHER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PAGE-7 NUPAC 14-190M, 2.25 EQ SHIELDING PACKAGE WEIGHT

53500.00 (LBS)

DROP llEIGitT 12.000 (IH)

PACKAGE RADIUS 40.760 (IH)

STEEL DYHAMIC FLOW STRESS : 50000.00 (PSI)

STEEL CRusil STRESS

55000.00 (PSI)

LEAD DYHAllIC FLOW STRESS : 5000.00 (PSI)

L EAD CRUSil STRESS

2760.00 (PSI)

STEEL SilEL L TilICKHESS

.875 (IH)

STEEL BOTTOM THICKHESS-4.000 (IN)

ORIENTATION ANGLE 45.05 (DEG)

Y.

O l

~

l s

ASKCRN(CORNER)

CORHER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

P A*G E

  • 8 HUPAC 14-190M, 2.25 EQ SHIELDING

++ CRUSH VOLUME ++

+ FLOW STRESS BASIS +

+++ CRUSH AREA +++

++ IMPACT ++ ++ CRUSH STRESS BASIS ++

CRUSH KIHETIC S T R A lti ENERGY STRAIN ENERGY DEPTH EHERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.

EHERGY RATIO (IN)

(IN-LB)

(IH3)

(IH3)

(IH3)

(IN-LL) (SE/KE)

(IH2)

(IN2)

(IH23-(LBS)

(G)

(IN-LB) (SE/KE)

.05 644675.

.0

.0 0.0 320.

.00

.3

.3 0.0 17594.

.3 440.

.00

.10 647350.

.0

.0 0.0 1809.

.00

.9

.9 0.0 49752.

.9 2124.

.00

.15 650025.

.1

.1 0.0 4985.

.01 1.7 1.7 0.0 91376.

1.7 5652.

.01

.20 652700.

.2

.2 0.0 10232.

.02 2.6 2.6 0.0 140645.

2.6 11452.

.02

.25 655375.

.4

.4 0.0 17871.

.03 3.6 3.6 0.0 196507.

3.7 19881.

.03

.30 658050.

.6

.6 0.0 28135.

.04 4.7 4.7 0.0 258247.

4.8 31250.

.05

.35 660725.

.8

.8 0.0 41429.

.06 5.9 5.9 0.0

325344, 6.1 45840.

.07

.40 663400.

1.2 1.2 0.0 57337.

.09 7.2 7.2 0.0 397390.

7.4 63908.

.10

.45 666075.

1.6 1.6 0.0 77625.

.12 8.6 8.6 0.0 474059.

8.9 85694.

.13

.50 668750.

2.0 2.0 0.0 100999.

.15 10.1 10.1 0.0 555079.

10.4 111423.

.17

.55 671425.

2.6 2.6 0.0 128150.

.19 11.6 11.6 0.0 640222.

12.0 141305.

.21

.60 674100.

3.2 3.2 0.0 159260.

.24 13.3 13.3 0.0

729289, 13.6 175543.

.26

.65 676775.

3.9 3.9 0.0 194505.

.29 14.9 14.9 0.0 822108.

15.4 214328.

.32

.70 679450.

4.7 4.7 0.0 234052.

.34 16.7 16.7 0.0 918528.

17.2 257844

.38

  • 1018411.

19.0 306267.

45

.75

682125, 5.6 5.6 0.0 278060.

.41 18.5 18.5 0.0

.80

684800, 6.5 6.5 0.0 3266SS.

.48 20.4 20.4 0.0

1121637, 21.0 359768.

.53

.85 687475.

7.6 7.6 0.0 380076.

.55 22.3 22.3 0.0 1228095.

23.0 418512.

.61

.90 690150.

8.8 S.8' O.0 438378.

.64 24.3 24.3 0.0 1337683.

25.0 482656.

.70

.95 692825.

10.0 10.0 0.0 501730.

.72 26.4 26.4 0.0 1450309.

27.1 552356.

.80 1.00 695500.

11.4 11.4 0.0 570269.

.82 28.5 28.5 0.0 1565889.

29.3 627761.

.90 1.05 698175.

12.9 12.9 0.0 644127.

.92 30.6 30.6 0.0 1684344.

31.5 709017.

1.02 1.10 700850.

14.5 14.5 0.0 723433.

1.03 32.8 32.8 0.0 1805600.

33.7 796265.

1.14 1.15

703525, 16.2 16.2 0.0
808314, 1.15 35.1 35.1 0.0 1929539.

36.1 839645.

1.26 1.20 706200.

18.0 18.0 0.0 898391.

1.27 37.4 37.4 0.0 2056243.

38.4 939291.

1.40 1.25 708875.

19.9 19.9 0.0 9952SS.

1.40 39.7 39.7 0.0 2185517.

40.9 1095335.

1.55 1.30 711550.

22.0 22.0 0.0 10G7613.

1.54 42.1 42.1 0.0 2317339.

43.3

1207907, 1.70 1.35 714225.

24.1 24.1 0.0

1205990, 1.69 44.6 44.6 0.0 2451662.

45.8 1327132.

1.86 1.40 716900.

26.4 26.4 0.0 1320529.

1.84 47.1 47.1 0.0 2588435.

48.4 1453134.

2.03 1.45 719575.

28.8 28.8 0.0 1441339.

2.00 49.6 49.6 0.0 2727611.

51.0 1586035.

2.20 1.50

722250, 31.4 31.4 0.0 1568529.

2.17 52.2 52.2 0.0 2869145.

53.6 1725954.

2.39 1.55 724925.

34.0 34.0 0.0 1702205.

2.35 54.8 54.8 0.0 3012994.

56.3

1873008, 2.58 1.60 727600.

36.8 36.8 0.0 1S42472.

2.53 57.4 57.4 0.0 3159117.

59.0 2027310.

2.79 1.65 730275.

39.8 39.8 0.0 1989'.32.

2.72 60.1 60.1 0.0 3307475.

61.8 2188975.

3.00 1.70 732950.

42.9 42.9 0.0 2143135.

2.92 62.9 62.9 0.0 3458032.

64.6 2358113.

3.22 1.75

735625, 46.1 46.1 0.0 2303S31.

3.13 65.7 65.7 0.0 3610750.

67.5 2534832.

3.45 1.80 738300.

49.4 49.4 0.0 2471467.

3.35 63.5 68.5 0.0 3765598.

70.4

2719241, 3.68 1.85 740975.

52.9 52.9 0.0 2646190.

3.57 71.3 71.3 0.0 3922540.

73.3 2911445.

3.93 1.90 743650.

56.6 56.6 0.0 2328093.

3.80 74.2 74.2 0.0 4081547.

76.3 3111547.

4.18 1.95 746325.

60.3 60.3 0.0 3017270.

4.04 77.1 77.1 0.0 4242589.

79.3 3319650.

4.45 2.00 749000.

64.3 64.3 0.0 3213813.

4.29 30.1 80.1 0.0 4405635.

82.3 3535856.

4.72 N

4 h

t-8

~

-.. ~. -

>SKCRN(CORNER)

CORHER IMPACT OF A CYLINDRICAL SilIELDED CASK 15.32.09.

82/06/21.

PAGE. 9 NUPAC 14-190H', 3.5 EQ SHIELDING PACKAGE WEIGHT-

-: 65200.00 (LBS)

DROP llEIGHT-12.000 (IH)

PACKAGE RADIUS 41.660 (IH)

STEEL DYHAMIC FLOW STRESS : 50000.00 (PSI)

STEEL CRUSit STRESS

55000.00 (PSI) i l

LEAD DYHANIC FLOW STRESS :

S000.00 (PSI)-

LEAD CRUSH STRESS

2760.00 (PSI)

STEEL SilEL L THICKHESS

.875 (IH)

STEEL BOTIOM THICKHESS 5.250 (IN)

ORIENTATION ANGLE 44.9S (DEG)-

q J

I 4

I b

4

ll1l llll l

+

4 0

S

)

1 IYOE 0011346814726274186544568148384197666792 SGIK 0000000011122334556789012456891346802469 ART /

E BEAE 111111112222233333 G

NRS A

SE

(

P S

ENY)

RIGB 5875232119074863272967153503603200256900 TARL 4418117591582436950896454364075747752851 SRE-4175163667958889328025081061619067516064 1

TNN 25101646227609338S5750O8220464145415887 2

HSEI 12346814716062853100b0247049518654457

/

S

(

1112233445678901234678023579135 6

U 1111111122P222333 0

R

/

C 2

+

8

+

3842000246938384185310999002358037049384

+

L

+

E) 1234567891245790246891368J246913680358 CG 1111112222223333$444455556666 9

T C(

0 C A A

2 P

E) 3 M CS 9979109596439941957884613036363365372841 I

RB 9237952174899404427165065454784027102299 5

OL 7342721055676237432207231548684347308766 1

+

F(

702281929177190423744620140892866330S927

+

1594962076433233456802581461504949510295 112344567890123457S902346790134689124 1111111I122222223333333444 D) 0000000000000000000000000000000000000000

+

A2

+

EH 0000000000000000000000000000000000000000

+

LI

(

A K

E S

R L) 3976680372841976667802582616284186432100 A

A E2 C

EH 12346780135680246813570257025303692581 H

TI 1111112222233334444555566667778 D

S S(

E U

D R

L C

E L) 39766803728419766678025826162841S.6432100 I

A2 H

+

TH 12346780135680246813570257025803692581 S

+

OI 1111112222233334444555566667778

+

T(

L A

C I

+

)

R SYOE 0011245703604940630376567803605063086666 D

ICIK 0000000011122234456678901245689124679135 N

SRT/

I AEAC 11111111222222333 L

BNRS Y

E

(

C S

SNY)

A EIGB 40318219841419149256949S3215519771037782 RARL 234571102741770909824859250S104652675018 F

TRE-3803059551617734545968739419291073542375 O

STNH 150881802916610437611796005S62428007121 SEI 1124570269383840753100123582616307655 T

W

(

1111223345567890123457801356802 C

O 1111111122222233 A

L P

F M

+

I G

N R

I D) 0000000000000000000000000000000000000000 E

D A3 N

L

+ EH 0000000000000000000000000000000000000000 R

E

+

LI O

I E

(

C H M S

U L

Q O L) 0012468260629766792506421247274334605210 E V E3 EN 112233456780134680246914703603715 5 H TI 1111112222233344455566 S

S(

3 U

R C

+

L) 0012468260629766792506421247274334605210 H +

A3 0

TH 112233456780134680246914703603715 9

OI 1111112222233344455566 1

T(

4 1

C A

CY)

P IGB 0000000000000000000000000000000000000000

)

U TRL 6284062840628406284062840628406284062840 R N EE-6914792470257035803681369146924792570258 E

HNH 5825815815814814714704703703603693693692 H

IEI 88999000111222333444555666777 8889990001 7777788888888888888888888888888888889999 R

K

(

O C

(

N R

HH) 5050505050505050505050505050505050505050 C

STN 0112233445566778899001122334455667788990 M86(d K

UPI S

RE(

111111111111111111112 A.

CDI lll1fl il

n_

... ~.

iSKCRH(CORNER)

CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PAGE 11 HUPAC 10-140 3.6 EQ SHIELDING PACKAGE WEIGHT

56500.00 (LBS)

DROP HEIGilT 12.000 (IH)

PACKAGE RADIUS 37.385 (IH)

STEEL DYHAfiIC FLOW STRESS : 50000.00 (PSI)

STEEL CRUSH STRESS

55000.00 (PSI)

LEAD DYHAf11C FLOW STRESS :

5000.00 (PSI)

LEAD CRUSH STRESS

2760.00 (PSI)

STEEL SHELL THICKHESS 1.130 (IN)

STEEL BOT 10M THICKHESS 5.250 (IH)

~

ORIENTATION ANGLE 41.84 (DEG) e

.a.

.De 4

25KCRN(CORNER)

CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PAGE* 12 HUPAC 10-140 3.6 EQ SHIELDlHG

++ CRUSH VOLUME ++

+ FLOW STRESS BASIS +

+++ CRUSH AREA +++

++ IMPACT ++ ++ CRUSH STRESS BASIS ++

l RUSH KIHETIC STRAIN ENERGY STRAIN ENERGY tEPIH ENERGY TOTAL STEEL LEAD ENERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.

ENERGY RATIO

  1. CIN)

(IN-LB)

(IH3)

(IN3)

(IH3)

(IN-LB) (SE/KE)

(IH2)

(IH2)

(IN2)-

(LBS)

(G)

(1H-LB) (SE/KE)

.05 680825.

.0

.0 0.0 318.

.00

.3

.3 0.0 17462.

.3 437.

.00

.10 683650.

.0

.0 0.0 1796.

.00

.9

.9 0.0 49374.

.9 2107.

.00

.15 686475.

.1

.1 0.0 4947.

.01 1.6 1.6 0.0 90679.

1.6 5609.

.01

.20 689300.

.2

.2 0.0 10154.

.01 2.5 2.5 0.0 139568.

2.5 11365.

.02

.25 692125.

.4

.4 0.0 17734.

.03 3.5 3.5 0.0 194993.

3.5 19709.

.03

.30 694950.

.6

.6 0.0 27969.

.04 4.7 4.7 0.0 256247.

4.5 31010.

.04

.35 697775.

.8

.8 0.0 41110.

.06 5.9 5.9 0.0 322811.

5.7 45486.

.07

.40 700600.

1.1 1.1 0.0 57369.

.03 7.2 7.2 0.0 394280.

7.0 63414.

.99 l

.45 703425.

1.5 1.5 0.0 77023.

.11 8.6 8.6 0.0 470329.

8.3 85029.

.12 i

.50 706250.

2.0.

2.0 0.0 100212.

.14 10.0 10.0 0.0 55G690.

9.7 110554.

.16 l

.55 709075.

2.5 2.5 0.0 127147.

.18 11.5 11.5 0.0

635133, 11.2 140200.

.20

.60 711900.

3.2 3.2 0.0 15S010.

.22 13.2 13.2 0.0 723462.

12.8 174165.

.24

.65 714725.

3.9 3.9 0.0 192973.

.27 14.8 14.8 0.0 815506.

14.4 212639.

.30

.70 717550.

4.6 4.6 0.0 232201.

.32 16.6 16.6 0.0

911113, 16.1 255805.

.36

  • 1010149.

17.9 303836.

42

.75 720375.

5.5 5.5 0.0 275853.

.38 18.4 18.4 0.0

.80 723200.

6.5 6.5 0.0 324083.

.45 20.2 20.2 0.0 1112491.

19.-7 356902.

49

.85 726025.

7.5 7.5 0.0 377037.

.52 22.1 22.1 0.0

1218030, 21.6 415165.

.57

.90 728850.

8.7 8.7 0.0 434860.

.60 24.1 24.1 0.0 1326665.

23.5 478782.

.66

.95 731675.

10.0 10.0 0.0 497689.

.63 26.2 26.2 0.0

1438304, 25.5 547907.

.75

'1.00 734500.

11.3 11.3 0.0 565659.

.77 28.2 28.2 0.0 1552362.

27.5 622686.

.85

1.05 737325.

12.8 12.8 0.0 633901.

.87 30.4 30.4 0.0 1670261.

29.6 703264.

.95 1.10 740150.

14.4 14.4 0.0 717543.

.97 32.6 32.6 0.0

1790428, 31.7 789781.

1.07 1.15 742975.

16.0 16.0 0.0 801708.

1.08 34.8 34.8 0.0 1913296.

33.9 832374.

1.19 1.20 745800.

17.8 17.8 0.0 891519.

1.20 37.1 37.1 0.0 2038800.

36.1 961177.

1.32 1.25 748625.

19.7 19.7 0.0 937093.

1.32 39.4 39.4 0.0 2166880.

38.4 1056319.

1.45 1.30 751450.

21.8 21.8 0.0 1083546.

1.45 41.8 41.8 0.0 2297482.

40.7 1197928.

1.59 1.35 754275.

23.9 23.9 0.0 1195992.

1.59 44.2 44.2 0.0

2430551, 43.0 1316128.

1.74 1.40 757100.

26.2 26.2 0.0 1309542.

1.73 46.7 46.7 0.0 2566038.

45.4 1441043.

1.90 1.45 759925.

28.6 23.6 0.0 1429304.

1.88 49.2 49.2 0.0 2703896.

47.9 1572792.

2.07 1.50 762750.

31.1 31.1 0.0 15553S6.

2.04 51.7 51.7 0.0 2844079.

50.3 1711491.

2.24 1.55 765575.

33.8 33.8 0.0 1687S91.

2.20 54.3 54.3 0.0

2986545, 52.9 1857257.

2.43 1.60 768400.

36.5 36.5 0.0

1826924, 2.33 56.9 56.9 0.0 3131252.

55.4 2010201.

2.62 1.65 771225.

39.5 39.5 0.0 19725S4.

2.56 59.6 59.6 0.0 3278163.

58.0

2170437, 2.81 1.70 774050.

42.5 42.5 0.0 2124971.

2.75 62.3 62.3 0.0 3427239.

60.7 2338072.

3.02 1.75 776875.

45.7 45.7 0.0 2284184.

2.94 65.1 65.1 0.0 3578446.

63.3 2513214.

3.24 1.80 779700.

49.0 49.0 0.0 2450316.

3.14 67.8 67.8 0.0 3731749.

66.0 2695969.

3.46 l

1.85 782525.

52.5 52.5 0.0 2623465.

3.35 70.7 70.7 0.0 3887115.

68.8 2886441.

3.69 l

1.90 785350.

56.1 56.1 0.0 2803721.

3.57 73.5 73.5 0.0 4044514.

71.6 3084731.

3.95 l

I 1.95 788175.

59.8 59.8 0.0 2991178.

3.80 76.4 76.4 0.0 4203914.

74.4 3290942.

4.18 2.00 791000.

63.7 63.7 0.0 3185925.

4.03 79.4 79.4 0.0 4365287.

77.3 3505172.

4.43 w

I 6

Un s

ASKCRH(CORHER)

CORNER IMPACT OF A CYLINDP.ICAL SilIELDED CASK 15.32.09.

82/06/21.

PAGE' 13 HUPAC 7-100 3.5 EQ SilIELDING PACK AGE WEIGili

48900.00 (LBS)

DROP llEIGHT 12.000 (IH)

PACKAGE RADIUS 41.660 (IN)

STEEL DYHANIC FLOW STRESS : 50000.00 (PSI)

STLEL CRUSH LIRESS

55000.00 (PSI)

LEAD DYliAMIC FL0tJ STRESS :

5000.00 (PSI)

LEAD CRUSH STRESS

2760.00 (PSI)

STEEL SHELL THICKHESS

.875 (IH)

STEEL BOTTOM THICKHESS 5.250 (IH)

ORIENTATI0H ANGLE 58.66 (DEG)

.m

. s 1

r

/

-.(

]

ASKCRH(CORNER)

CORHER IMPACT OF A CYLINDRICAL' SHIELDED CASK 15.32.09.

82/06/21.

PAGE. 14 HUPAC 7-100, 3.5 EQ SHIELDING Jj

++ CRUSH VOLUME ++

+ FLOW STRESS BASIS +

+++ CRUSH AREA +++

++ IMPAC1I +' +

++ CRUSH S'.RESS 8 ASIS ++

CRUSH KIHETIC STRAIN EHERGY STMIN EtK R GY

' DEPTH ENERGY TOTAL STEEL LEAD ENERG( RATIO TOTAL STEEL LEAD FORCE ACCEL.

ENERGY RATIO ;

(IH)

(IN-LB)

(IH3)

(IN3)

(IH3)

(IH-LB) (SE/KE)

(IN2)

(IN2)

(INj)

(LBS)

(G)

(IN-LB) (SC/KE)

.05 589245.

.0

.0 0.0 331.

.00

.3

.3 0.0 18226.

.4 456.

.00

.10 591690.

.0

.0 0.0 1374.

.00

.9

.9 0.0 51539.

1.1, 2200.

.00

.15 594135.

.1

.1 0.0 5164.

.01 1.7 1.7 0.0 94663.

1.9 5855.1

.01

.20 596530.

.2

.2 0.0, 10600.

.02 2.6 2.6 0.0 145712.

3.0 11864.

.02

.25 599025.

.4

.4 0.0'

/,1S514.

.03 3.7

>, 3. 7 0.0 203595.

4.2 20597.

,.03

.30 601470.

.6

.6 0.0

'29201.

.05 4.9 4.9 0.0 267577.

5.5 32376.

.0%

.35 603915.

.9

.9 0.0 42924.

.07 6.1 6.1 0.0 337114.

6.9 47493.

j.08 66216.

.ll 88792'.,'

.40 606360.

1.2 1.2 0.0 59925.

.10 7.5 7.5 0.0 411787.

8.4 7

.15

.45

608805, 1.6 1.6 0.0 80431.

.13 8.9 8.9 0.0 491258.

10.0

.50 611250.

2.1 2.1 0.0 104653.

.17 10.5 10.5 0.0 575246.

11;8, 115455.

.19 146424.

.24 663515.

755560..f13.6

.' 5 5 613695.

2.7 2.7 0.0 132791.

.22 12.1 12.1 0.0 151 5 181908.

.30

.60 616140.

3.3 3.3 0.0 165035.

.27 13.7 13.7 0.0 201565.

.33 15.5 15.5 0.0 852104.'

17.4 222107.

.36

.65 618585.

4.0 4.0 0.0 t

5

.70 621030.

4.9 4.9 0.0 242555.

.39 17.3, 17.3 0.0

952089, 19.5 267212.

43

  • 1055675.

21.6 317406.

.51

.75 623475.

5.8 5.8 C.0 288173.

.46 19.2 2,9. 2 0.0

.80 625920.

6.8 6.8 0.0 333579.

.54 21.9 21.1-0.0 1162736.

23.8 372866.

.60

.85 i 628365.

7.9 7.9 0.0 393927.

.63 73.E 23.1 (

0.0

1273158, 26.0 433764.

.69

.90 630810 9.1 9.1 0.0 454370.

.72 25.2 - ?S.2 0.0 1386837.

20.4 -

500264.

.79

.95 633255.

10.4 10.4 0.0 520051.

.82 27.3

.27.3 0.0 1503678.

<30.8

' 572526.

.90 1.00 635700.,

11.8 11.8 0.0 591114. p "93 29.5 29.5 0.0 1623592.

33.2' 650708.

1.02 1.05 638145.

13.4 13.4 0.0 667696.

1.D%

31.8 31.8 0.0 1746499.

35.7 734960.

1.15 1.10 640590. J 15.0 15.0 0.0 749931.

1.17 34.0 34.0 0.0

1872324, 38.3 825431.

1,29 1.15 643035.

16.8 16.8

) 0.0 537950.

1.30 36.4 36.4 0.0 2000996.

40.9 922264.

1.43 1.20 645480.

18.6 18.6 0.0 93186?;

1.44 38.8 38.8 0.0 2132450.

43.6 1025600.

1.59 1.25 647925.

20.6 20.6 0.0 1031841.

1,59 41.2 41.2 0.0 2266624.

46.4 1135577.

1.75 1.30 650370'.

22.8 22.8 0.0 11S7979.

1.75 43.7 43.7 0.0 2403459.

49.2 1252329.

1.93 1.35 652815. I 25.0 25.0 0.0 12503S6.

1.92 46.2 46.2 0.0 2542903.

52.0 1375988.

2.11 1.40 655260 27.4 27.4 0.0 1369191.

2.09 48.8 48.8 0.0 2684902.

54.9 1506683.

2.30 1.45 657705.

29.9 29.9 0.0 1494506.

2.27 51.4 51.4 0.0 2829408.

57.9 1644',4L.

2.50 1.50 660150.

32.5 32.5 0.0 1626447.

2.46 54.1 54.1 0.0 2976375.

60.9 1789686.

2.71 1.55 662595.

35.3 35.3 0.0

1765123, 2.66 56.8; 56.8 0.0 3125759.

63.9

  • 1942239.

2.93 1.60 665040.

38.2 38.2 0.0 1910643.

2.87 59.6 59.6 0.0 3277518.

67.0 2102321.

3.16 1.65 667485.

41.3 41.3 0.0 2063114.

3.09 62.4 62.4 0.0 3431611.

70.2

2270049, 3.4G 3.65 1.70 669930.

44.5 44.5 0.0 2222642.

3.32>

65.2 65.2 0.0

3588001, 73.4 2445539.

1.75 672375.

47.8 47.8 0.0 2389330.

3.55.

68.1 65.1 0.0 3746651.

74.6-

~ 2 6'2 8 9 0 6.

3.91 1.80 674820.

51.3 51.3 0.0 2563230.

3.80 71.0 71.0 0.0

3907521, 79.9 2820260.

4.18.

1.85 677265.

54.9 54.9 0.0 2744S93.

4.05 74.0 74.0 0.0 4o10592.

83.2 3019713.

4.46 1.90

679710, 58.7 58.7 0.0 2933367.

4.32 77.0 77.0 A.D 4235317. i 86.6 3227373.

4.75 g

1.95 682155.

62.6 62.6 0.0 3129700.

'4.59 80.1 80.1 0.0 4403170.

90.,0 3443348.

5.05 2.00 684600.

66.7 66.7 0.0 3333687.

4.87 83.1 83.1 0.0 4572622.

93.5" 3667743.

5.36 N

I M

4 I

s s,

f i

t s

uuums

.._-..----s

=

-- w-LSKCRH(CORHER)

CORHER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PAGE 15 HUPAC 6-105L 3.25 EQ SHIELDING PACKAGE WEIGHT

42900.00 (LBS)

DROP HEIGHT 12.000 (IH)

PACKAGE RADIUS 54.560 (IH)

STEEL DYHAMIC FLOW STRESS : 50000.00 (PSI)

STEEL CRUSH STRESS

55000.00 (PSI)

/ ' 4 DYH AMIC FL OW STRESS :

5000.00 (PSI)

.L 3 CRUSH STRESS

2760.00 (PSI)

STEEL SHELL THICKHESS 1.130 (IH)

STEEL BOTTOM THICKHESS 4.750 (IH)

ORIENTATION ANGLE 44.03 (DEG)

N I

A CD O

4 d

e QSKCRH(CORHER)

CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PA'GE 16 HUPAC 6-105L 3.25 EQ SHIELDING

++ CRUSH VOLUME ++

+ FL 0tJ S T RESS B ASIS +

+++ CRUSH AREA +++

++ IMPACT ++

++ CRUSH STRESS BASIS ++

3 RUSH KINETIC STRA1H ENERGY STRA1H ENERGY

~3EPTH ENERGY TOTAL STEEL LEAD EHERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.

ENERGY RATIO (IH)

(IN-LB)

(IH3)

(IH3)

(IH3)

(IH-LB) (SE/KE)

(IH2)

(IH2)

( I N2 )'

(LBS)

(G)

(IN-LB) (SE/KE)

.05 516945.

.0

.0 0.0

?97.

.00

.3

.3 0.0 16357.

.4 409.

.00

.10 519090

.0

.0 0.0 1682.

.00

.8

.8 0.0 46250.

1.1 1974.

.00

.15 521235.

.1

.1 0.0 4634.

.01 1.5 1.5 0.0

84939, 2.0 5254.

.01

.20 523380.

.2

.2 0.0 9511.

.02 2.4 2.4 0.0

130732, 3.0 10646.

.02

.25 525525.

.3

.3 0.0 16612.

.03 3.3 3.3 0.0

182646, 4.3 18480.

.04

.30 527670.

.5

.5 0.0 26193.

.05 4.4 4.4 0.0 240019.

5.6 29047.

.06

.35 529815.

.8

.8 0.0 3S507.

.07 5.5 5.5 0.0 302364.

7.0 42606.

.08

.40 531960.

1.1 1.1 0.0 53755.

.10 6.7 6.7 0.0 369302.

8.6 59393.

.11

.45 534105.

1.4 1.4 0.0 72145.

.14 8.0 8.0 0.0 440528.

10.3 79644.

.15

.50 536250.

1.9 1.9 0.0 93864.

.13 9.4 9.4 0.0 515790.

12.0 103552.

.19

.55 538395.

2.4 2.4 0.0 119093.

.22 10.8 10.8 0.0 594875.

13.9 131318.

.24

.60 540540.

3.0 3.0 0.0 147999.

.27 12.3 12.3 0.0 67759S.

15.8 163130.

.30

.65 542685.

3.6 3.6 0.0 IS0745.

.33 13.9 13.9 0.0 763798.

17.8 199165.

.37

.70 544830.

4.3 4.3 0.0 217486.

.40 15.5 15.5 0.0 8533335 19.9 239593.

.44

.75 546975.

5.2 5.2 0.0 258369.

.47 17.2 17.2 0.0 5 946077.

22.1 284578.

.52

.80 549120.

6.1 6.1 0.0 303539.

.55 18.9 18.9 0.0 1041915.

24.3 334278.

.61

.85 551265.

7.1 7.1 0.0 353134.

.64 20.7 20.7 0.0 1140745.

26.6 388845.

.71

.90

553410, 8.1 8.1 0.0 407267.

.74 22.6 22.6 0.0 1242472.

29.0 448425.

.81

.95 555555.

9.3 9.3 0.0 466129.

.84 24.5 24.5 0.0 1347011.

31.4 513162.

.92 1.00 557700.

10.6 10.6 0.0 529734.

.95 26.4 26.4 0.0 1454281.

33.9 583194.

1.05 1.05 559845.

12.0 12.0 0.0 598376.

1.07 28.4 28.4 0.0

1564203, 36.5 658657.

1.18 1.10

561990, 13.4 13.4 0.0 672004.

1.20 30.5 30.5 0.0

1676726, 39.1 739680.

1.32 1.15 564135.

15.0 15.0 0.0 750344.

1.33 32.6 32.6 0.0 1791769.

41.8 826392.

1.46 1.20 566280.

16.7 16.7 0.0 834950.

1.47 34.7 34.7 0.0 1909279.

44.5 913919.

1.62 1.25 568425.

18.5 18.5 0.0 924452.

1.63 36.9 36.9 0.0 2029199.

47.3 1017381.

1.79 1.30 570570.

20.4 20.4 0.0 1019458.

1.79 39.1 39.1 0.0 2151477.

50.2 1121897.

1.97 1.35 572715.

22.4 22.4 0.0 1120075.

1.96 41.4 41.4 0.0 2276062.

53.1 1232586.

2.15 1.40 574860 24.5 24.5 0.0 1206407.

2.13 43.7 43.7 0.0 2402909.

56.0 1349560.

2.35 1.45 577005.

26.8 26.8 0.0 1333555.

2.32 46.0 46.0 0.0 2531972.

59.0 1472932.

2.55 1.50 579150.

29.1 29.1 0.0 1456619 2.52 48.4 48.4 0.0 2663210.

62.1 1602812.

2.77 1.55 581295.

31.6 31.6 0.0 1530698.

2.72 50.8 50.8 0.0 2796582.

6542 1739307.

2.99 1.60 585440.

34.2 34.2 0.0 1710SS6.

2.93 53.3 53.3 0.0 2932051.

68.3 1882522.

3.23 1.65 585585.

36.9 36.9 0.0 1847279.

3.15 55.8 55.8 0.0 3069578.

71.6 2032563.

3.47 1.70 587730.

39.8 39.8 0.0 19S9769.

3.39 58.3 58.3 0.0 3209131.

74.8 2189531.

3.73 1.75 589875.

42.8 42.8 0.0 2139043.

3.63 60.9 60.9 0.0 3350674.

78.1 2353526.

3.99 1.80 592020.

45.9 45.9 0.0 2294606.

3.83 63.5 63.5 0.0 3494177.

81.4 2524647.

4.26 1.85 594165.

49.1 49.1 0.0 2456730.

4.13 66.2 66.2 0.0 3639608.

34.8 2702992.

4.55 1.90 596310.

52.5 52.5 0.0 2625508.

4.40 68.9 68.9 0.0 3786939.

83.3 2883656.

4.84 1.95 598455.

56.0 56.0 0.0 2801025.

4.68 71.6 71.6 0.0

3936140, 91.8 3081733.

5.15 2.00 600600.

59.7 59.7 0.0 2983367.

4.97 74.3 74.3 0.0 4087184.

95.3 3282316.

5.47 N

4 A.

%D

-7, LSKCRN(CORNER)

CORHER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PACE

  • 17 NUPAC 6-105H, 4.40 EQ SHIELDING i

PACKAGE WEIGHT

S3900.00 (LBS)

DROP HEIGHT 12.000 (IH)

PACKAGE RADIUS 3S.690 (IH)

STEEL DYNAMIC FLOW STRESS : 50000.00 (PSI)

STEEL CRUSH STRESS

S5000.00 (PSI)

LEAD DYHAMIC FL0u STRESS : S000.00 (PSI)

LEAD CRUSH STRESS

2760.00 (PSI)

STEEL SHELL THICKHESS 1.130 (IH)

STEEL BOTTOM THICKNESS 6.250 (IH)

ORIENTATION ANGLE 43.77 (DEG) t 9

I I

Ut O

e L

1 i

e I.

r O

e CASKCRH(CORNER)

CORNER IMPACT OF A CYLINDRICAL SHIELDED CASK 15.32.09.

82/06/21.

PAGE IS HUPAC 6-105H, 4.40 EQ SHIELDING

++ CRUSH VOLUME ++

+ FLOW STRESS BASIS +

+++ CRUSH AREA +++

++ IMPACT ++ ++ CRUSH STRESS B ASIS +<

CRUSH KIHETIC STRAIN ENERCY STRAIN ENERGY DEPTH ENERGY TOTAL STEEL LEAD EHERGY RATIO TOTAL STEEL LEAD FORCE ACCEL.

EHERGY RATIO (IN)

(IH-LB)

(IH3)

(IN3)

(IN3)

(IN-LB) (SE/KE)

(IH2)

(IH2)

(IN2)

(LBS)

(G)

(IN-LB) (SE/KE)

.05 649495.

.0

.0 0.0 303.

.00

'. 3

.3 0.0 16667.

.3 417.

.00

.10 652190.

.0

.0 0.0 1714.

.00

.9

.9 0.0 47123.

.9 2012.

.00

.15 654385.

.1

.1 0.0 4722.

.01 1.6 1.6 0.0 86553.

1.6 5354

.01

.20 657580.

.2

.2 0.0 9692.

.01 2.4 2.4 0.0 133216.

2.5 10848.

.02

.25 660275.

.3

.3 0.0 16927.

.03 3.4 3.4 0.0 186119.

3.5 18331.

.03

.30 662970.

.5

.5 0.0 26696.

.04 4.4 4.4 0.0 244535.

9.5 29599.

.04

.35 665665.

.8

.8 0.0 39239.

.06 5.6 5.6 0.0 308118.

5.7 43416.

.07

.40 668360.

1.1 1.1 0.0 54778.

.0S 6.8 6.8 0.0 376333.

7.0 60528.

.09 45 671055.

1.5 1.5 0.0 73517.

.11 8.2 8.2 0.0 448920.

8.3 81159

.12

.50 673750.

1.9 1.9 0.0 95651.

.14 9.6 9.6 0.0 525620.

9.8 105522.

.16

.55 676445.

2.4 2.4 0.0 121360.

.18 11.0 11.0 0.0 606217.

11.2 133818.

.20

.60 679140.

3.0 3.0 0.0 150318.

.22 12.6 12.6 0.0 690513.

12.8 166237.

.24

.65 681835.

3.7 3.7 0.0 184185.

.27 14.2 14.2 0.0 778374.

14.4 202959

.30

.70 684534.

4.4 4.4 0.0 221630.

.32 15.8 15.8 0.0 S69625.

16.1 244159.

.36

.75 687225.

5.3 5.3 0.0 2632S5.

.38 17.5 17.5 0.0 964148.

17.9 290004 42

.80 689920.

6.2 6.2 0.0 309328.

.45 19.3 19.3 0.0 1061827.

19.7 340653.

.49

.85 692615.

7.2 7.2 0.0 359871.

.52 21.1 21.1 0.0

1162555, 21.6 396263.

.57

.90 695310.

8.3 8.3 0.0 415060.

.60 23.0 23.0 0.0 1266238.

23.5 456982.

66

.95 698005.

9.5 9.5 0.0 475027

.68 25.0 25.0 0.0 1372788.

25.5 522958.

.75 1.00 700700.

10.8 10.8 0.0 539901.

.77 26.9 26.9 0.0 1482124.

27.5 594331.

.85 1.05 703395.

12.2 12.2 0.0 609S06.

.87 29.0 29.0 0.0 1594170.

29.6 671238.

.95 1.10 706090.

13.7 13.7 0.0 684365.

97 31.1 31.1 0.0

1708853, 31.7 753814 1.07 1.15 708785.

15.3 15.3 0.0 765196.

1.03 33.2 33.2 0.0 1826122.

33.9 842188.

1.19 1.20 711480.

17.0 17.0 0.0 350914.

1.20 35.4 35.4 0.0 1945901.

36.1 936489.

1.32 1.25 714175.

18.8 18.8 0.0 942133.

1.32 37.6 37.6 0.0 2068139.

38.4 1036840.

1.45 1.30 716870.

20.8 20.8 0.0 1033964.

1.45 39.9 39.9 0.0 2192783.

40.7 1143363.

1.59 1.35 719565.

22.8 22.8 0.0 1141513.

1.59 42.2 42.2 0.0 2319781.

43.0 1256177 1.75 1.40 722260.

25.0 25.0 0.0 1249338.

1.73 44.5 44.5 0.0 24490S5.

45.4 1375399 1.90 1.45 724955.

27.3 27.3 0.0 1364191.

1.83 46.9 46.9 0.0 2580652.

47.9

1501142, 2.07 1.50 727650.

29.7 29.7 0.0 1484526.

2.04 49.4 49.4 0.0 2714437.

50.4 1633519.

2.24 1.55 730345.

32.2 32.2 0.0 1610991.

2.21 51.8 51.8 0.0 2350399.

52.9 1772640.

2.43 i

1.60 733040.

34.9 34.9 0.0 17436S6.

2.38 54.3 54.3 0.0 2988501.

55.4 1918613.

2.62 1.65 735735.

37.7 37.7 0.0 1882705.

2.56 56.9 56.9 0.0 3128704.

58.0 2071543.

2.82 1.70

738430, 40.6 40.6 0.0 202S145.

2.75 59.5 59.5 0.0 3270973.

60.7 2231535.

3.02 1.75 741125.

43.6 43.6 0.0 2180097.

2.94 62.1 62.1 0.0 3415275.

63.4 2393691.

3.24 1.80 743820.

46.8 46.8 0.0 233S654.

3.14 64.8 64.S 0.0 3361576.

66.1 2573112.

3.46 1.85 746515.

50.1 50.1 0.0 2503907.

3.35 67.5 67.5 0.0 3709346.

68.8 2754898.

3.69 l

1.90 749210.

53.5 53.5 00 2675942.

3.57 70.2 70.2 0.0 3360053.

71.6 2944145.

3.93 1.95 751905.

57.1 57.1 0.0 2354849.

3.80 72.9 72.9 0.0 4012171.

74.4 3140951.

4.18 2.00

754600, 60.8 60.8 0.0 3040714.

4.03 75.7 75 7 0.0 4166170.

77.3 3345409.

4.43 I

un

These decelerations impose body force loads upon the cask, payload and lid as indicated in the following free body diagrams:

Where:

\\

d

_1(d/t) a=

tan

/

U = total weight T

t a

= load factor

/

g total impact FT"waT g, force O

F

= F cos a,

longitudinal j

TC T

g impact force

[II a

F

= F sin a,

lateral g

g T

impact force e

0 7TS X

g T

~

a' TC pT The cask body (sides and bottom) internal forces are:

Where:

d g = weight of cask c

P a

cos a cc "

c g

81" "

cs " "c' "g L

F la I

$ CS F,V are unknown y

B g & fib CC g,

lid interface forces and

(

ag moments, respectively.

S

,y E

FD 2-52

s l

Similarly the payload forces are:

7 Fpc " U "g cos =

o at x F

=Wa sin.

P ps pg a

Where:

W

= payload weight 7

Now, based upon the payload and cask body forces, the lid interface forces F '

and M can Ne estimated:

B B

B Longitudinal:

FB+

+F

=0 cc pc g(W p)

F

=-a

+

cosa B

c Lateral:

V

-F 0

F

=

S cs ps

+

sina

,Vg=aq(We p

Moment:

MB+

cs '

c ps p

+P I

sin =

.. MB " ^^g "c c +

pp e

2-53

Comparable relations can be derived from lid equilibrium:

FB 11B VS P

LS P

40 P

0 TS TC Where:

U

= weight of lid n

sin a FLS

  • N aLg LC " w *g F

cosa L

Longitudinal:

F LC +

B"

~

~

TC F

=F

~

B LC TC

-W) cos a g(W F

=a B

3 T

But:

WT"wL*wP+NI ("T ~

L P+

C C

g(WC+

P Thus:

F

= -a cos a B

Lateral:

F

~v

~

LS = 0 TS X

S" TS LS

~

V

= ag(W

~w) sin =

g T

L Or:

V

ag(Wp+W) sin

g C

2-54

/2) 0 Moment:

MB+FTC

=

fib" "g ( T cos a f = tan a But:

d = L tana = 1 L

MB" 2"g(T) 8i" "

This appears to differ from the expression derived on the basis of the cask and payload free body which was:

sina p p) g (W It

= -a

+

B ec However:

/2 x

=0 T " *p x

=

3 And:

o L/p

- +

W

-*T " wC

  • c +

P p

L T

T' T"

IN

+ "p*pI*W

/2 W

cc T

Thus, the two moment expressions are identical.

Ratchet binders, together with the bearing ring, react the inter-face axial force, F and moment, M.

Compressive loads are B,

B carried in bearing, whereas tensile forces are carried by the ratchet binders.

Shear forces, associated with V are transferred g

by the lid step in bearing.

The ratchet binder forces are calculated B, and moment, g, as follows:

from the interface force, F 2-55

O f

rM e

i i

i

=

=

i i

.b.

-o Mk Yd-Mg h

g 4

FS

-Fs e,-Me B

~

-Fg f6 Fg

  1. .N I

( +i i

w MB Where:

b=

(e-r)

FE"~B g = -FB

~#

i i

/"

s, h

,t-I

' M g.,

BINDER FORCE.S FE 2-56

o Binder forces are calculated by referring to the following sketch:

Fy 3

1-cos 6.

4 Fg=FM 2

2

0. = 1 (i-1) 1 4

5e 9 1 Mi=FR (1-cos Og) g 6

8 7

F,4R 8

FR

( -cos O ) 2 y

(

}

ME" 2

g 2

=

.1=1 b

FM " 65 For the nine versions, the interface loads and binder forces, F '

M are listed in the following table.

{

e

.O 2-57

.m

r LID INTERFACE FORCES Lid Interface Forces Dimensions Load Weights Axial Binder NuPac d

E Factor Total Lid Tension Moment Shear Force s)

M n-lb)

V s)

FM(

s)

B(10 '

B(10 6 WT(lbs)

Wg(lbs)

F Model (in)

(in) ag(G's)

S x

x x10 '

14/210L 82.25 86.25

~33.4 53,600 4,800

-1.180

-53.28 1.125 19,340 14/210H 83.50 88.25 31.4 63,400 6,500

-1.301-

-60.53 1.224 24,780 14/190L 80.50 79.38 34.9 46,300 4,' 6 0 0

-1.022

-45.66 1.036 18,790 Y

14/190M 81.50 81.38 33.2 53,500 5,900

-1.117

-51.14 1.118-23,070 14/190H 83.25 83.38 30.9 65,200 7,600

-1.259

-59.34 1.258 27,700 10/140 73.44 83.00 32.4 56,500 6,300

-1.212

-50.98 1.085 25,340 7/100 84.00 51.75 34.8 48,900 8,000

.746

-37.49 1.212 24,340 6/100L 69.11 71.00 35.1 42,900

'4,900

-.959

-37.41

.927 20,610 6/100H 71.37 74.00 32.4 53,900 6,700

-1.104

-45.00 1.058 26,130 t/2 a W sin =

F E

R = d/2 M

=

=

B g7 M

-6R VS=ag(WT-W) sina ME=-FB( B - R)

L B

i Thus, in this instance, the maximum binder force is 27,700 lbs.

The yi61d strength of the NuPac NP 500 binder is rated at 46,000 lbs.

Thus, the Margin of Safety is:

M.S. = 46,000/27,700 - 1 = + 0.66 The capacities stated for the binders are established static allowables.

They are manufactured from standard carbon steels and fail in the same manner as a bolt.

Numerous studies have been conducted on the behavior of bolts under dynamic or impact loading.

ORNL-TM-1312 Volume 12 Structural Analysis of Shipping Casks states that carbon steel bolts " possess better physical properties under conditions of shock than indicated by static tests.

Increase in the value of stress by a factor of 1.3 and a greater amount of strain before necking occurs were reported".

This is substantiated by references 5, 8,

9, 10 and 11 of the same document.

Therefore, it can be concluded that the binders static allowable capabilities will not be lower under shock or dynamic loading.

Thus, it can be concluded that the b nders will react the impact load and retain.the lid.

2-59 I

J

The lugs at each end of the binder will possess the following ultimate capability.

Body Lugs

/

+ 1.5'+

'I x

l.6 c

/

D

/

t g

/

/

g.

/

/

l.I3'

/

j" lE (A SI6)

/

\\.s \\

.s 7 Shear out:

Using the standard 40 shear out (relation):

P

= P 2t(E.M.-d/2 cos 40 )

s s

Where:

F

= 42,000 psi s

t= 1.0 in.

EM = 1.5 in.

d = 1.125 in.

(42,000) (2) (1. 0) (1. 5 1*

cos 40 )

P

=

s

= 89,800 lbs. shear out Weld area:

P

=PA y

sw Where:

F

= 42',000 psi s

2-60

A, = (18 in) (.5/ sin 45 )

= 12.73 in 2

P, = (42,000)' (12. 73 in )

P

= 534,600 lbs. weld shear y

Lid Lugs:

3.6" c

3.(

=

=

t = I,0 :n. (A StG)

I

~1/

^

,.s -

/. / 3" Y

+ i.e.

The lug capability in net area is:

P

=F u

t tu Where:

F

70,000 psi tu A

(3.40 - 1.125)(1:0)

= 2.28 2

(70,000 psi) (2.28 in )

P

=

Pt = 159,600 lbs. (Net Area)

Lug shear out capability is identical to that of the lower 89,800 lbs.).

lug evaluated above (i.e., P

=

s 2-61

Lug to lid attachment:

I

/

.3 i

b i

n/

'l \\

27 4-3.8"*

Weld Shearing:

P

= P A ""Id s

s Where:

F

= 42,000 psi s

A=

(2) (1) (. 5) (. 707) + (2) (3. 8) (. 5) (1. 414)

= 6.08 in.

2 (42,000 psi) (6.'08 in )

P

=

s P

= 255,400 lbs/ lug s

The weakest link in' the binder lugs is the shearout failure.

The corresponding yield shearout load is:

,8 F

= 89,800

= 48,750 lbs.

y 00 At this location, the minimum Margin of Safety is:

M.S. = 48,750 - 1 = + *76 27,700 The ratchet binderi load the lip top plate (Plate F) with a series of edge moments.

The two inch or greater plate of the NuPac A Series casks will be evaluated for these loads.

Both 2-62

'I local and gross effects on this lid top plate are evaluated.

For a maximum ratchet binder load of 27,700 lbs., the associated moment introduced into the top plate of the lid is estimated as:

M=

(27,700) (.25 + 3. 80 - 1. 50) = 70,640 in-lb.

The local moment capability of an octagonal lid cover is estimated as follows:

Mg = OI c

l i

Where:

a = 38,000 psi l

c = 1.0 inch 3

(18.35)(2)3

= 12.23 in.4 I = bh

=

12 12 b=

(2) (3. 8) tan 67.5

= 18.35 Local moment capability is then:

(38,000)(12.23) = 464,E00 in-lb.

M

=

g 1

i Thus, local moment yield margin of safety of the lid is:

M.S.

= 464,800 - 1 = + 5.58 70,640 Gross moment capability is assessed using both the exterior and interior lid plates.

For a uniform edge moment the expression rela' ting stress to moment in a circular plate is

~

given by Roark as:

s 2-63

---,.--r..

r y

\\

O o = 6M ; M = ct

-2 6

t l

For the 2" exterior plate:

M = 38,000(2)2

= 25,330 in-lb/in.

6 For the minimum 1.00" interior plate:

M = 38,000 (1.0)2 = 6,333 in-lb/in.

6 The total edge moment capability is:

31,670 in-lb/in.

For the smallest circular lid of 69.11" diameter, the corres-ponding concentrated moment acting on 1/8th of the edge is:

(31,670) ( 69.11) (n ) = 859,506 in-lb.

M

=

9 8

Th0s, the gross moment yield Margin of Safety of the lid is:

I M.S.

= 859/506 - 1 = + 11.17 70,604 It can be concluded that the binders and their fittings can safely react the maximum loads produced during. impact.

Assuming a " loose" payload with adensity of.072 lb/cu. in.

the maximum payload force carried by the studs attaching the secondary lid can be calculated using the deepest cask (14/210L, H) as a worst case.

Therefore:

W

= 80.25" (29")2 (i) (. 072) = 3,816 lb.

l p

4 1

  • Maximum value of (Payload Weight / Volume) as shown in Table 1.2.1-1.

2-64

Maximum secondary lid weight:

W

= 1,550 lb.

(6/100H) e Maximum acceleration:

A

= 35.1 g's (6/100L) g Impact angle:

a = 45 Thus, the total secondary lid stud load is estimated as:

R = (Wg + W )a cos p

g

= (1,550 + 3,816) (35.1) cos 45

= 133,200 lbs.

Since there are eight secondary lid studs 3/4-10 UNC, ASTM A320 Gr.

L-7, each stud load is 16,648 lbs.

The tensile strength of the stud is:

P=FA= (105,000)(.309) = 32,450 lbs.

t Thus, the Margin of Safety of the secondary lid is:

M.S.

= 32,450/16,648 - 1 = + 0.95 When impacts occur on the lid end, a, normal compressive load of 1,301,000 lbs.

(NuPac 14/210H, p.2-58) is then transferred from the lid to the lid closure ring.

The loaded length is, conservatively estimated by considering only the length of the section whi6h-would be deformed during the impact.

This load is then transferred to the cask via direct compression of the lead shielding and the steel walls.

2-65

l t = 2RO Where:

R = 41.75 in.

0 = cos" (f)

See Appendix 2.10.2 r=R-6 sina 6 = 1.15

= 43.28 a

r = 41.75

~

~1.15

= 40.07 in.

sin 43.28

~1 40.0 0 = cos (4

5) = 0.2844 rad.

1=

(2)(41.75)(.2844) = 23.75 in.

The minimum yield bearing capacity of the.19 x 1.50" bearing ring is:

(23.75)(1.50) (38,000) = 1,354,000 lbs.

F

=

B The associated Margin of Safety is:

= 1,'301.'000 -1=+

0.04 M.S.

The lateral load transferred between the lid and the cask is estimated as 1,258,000 lbs.(NuPac 14/190H).

The load is initially transferred from the exterior lid plate to the interior lid plate via a 1/2" circumferential bevel weld.

The interior lid plate transfers this load to the cask body by direct compression.

This compressive load is transferred 2-66 1

across a deeply stepped recess of the interior lid plate within the cask inner cavity.

The load yield capability of the smallest circumferential lid weld (6/100L, H) is:

F,=PA

=P

. UD t,

ss s

(22,800) (n) (61. 0) (. 5). = 2,185,000 lbs.

=

The associated Margin of Safety is:

M.S.

= 2,185,000 - 1 = +.74 1,258,000 Therefore, it can be safely concluded that the package can survive a normal corner drop.

l l

l l

e 4

2-67 1

0 2.6.7 Corner Drop This requirement is not applicable since the NuPac Series A casks are fabricated of steel.

2.6.8 Penetration

? rom previous container tests, as well as engineering judgment, it can be concluded that the 13 pound rod would have a negligible effect on the heavy gauge steel shell of the cask.

2.7 Hypothetical Accident Conditions Not applicable for Type "A" packages.

2.8 Special Form Since no special form is claimed, this section is not applicable.

2.9 Fuel Rods l

i Not applicable.

i Appendix 2.10___

l 2.10.1 General Arrangement Drawing of NuPac Series A packaging.

1 2-68 l

l 8

l 7

l 6

l 5

D BASIC LATA MCXL p.,

partoo tre awn e.

C aC I T' $$)

$$5' M N

14 217 2.00 28,600 2

3 14 217 2.73 38,400 25 3

2 C

isAC 14 190 2.00 26,300 14/190L, R$AC 14/1909 in 190 2.25 33.500 2

NJ AC pfi9on 14 19q 3.50 45,200 2

  1. fAC 10 144 3.60 41,500 1,

jygg 4 TAC I 7f330 1

104 3.50,

35,900 1

6 105 3.25 30,900 1

6, 105 4.40 41,900 6

  • =lta MA88*a 7"to*Ef ttAL ' AY' CAD "E16"T
  • h 16* DIA. OPilahAL

$U'[sN!a$t's$t$ nan.""

hlR5 TALL 1/2 MPT HOLL0h ttX PLUG (h iH).

7-LOChlRI PRIVAV & $[C0%ARY LIOS AS REQUIRED.

6.

INSTALL hfAC Bl4XR vlTH MACLI callMTATED TO TIGHilh linXR A5 NAMOLI IS PULLID AmAf FR3', SHILLD BOCY.

5.

OPilahAL U2 0F A TEL4 GAUGE 3rA-SS CASK IMTE9108 CAvlTV SURfA2 LINEA is P[ItalTTED. IF USED. THE LlhiR SMALL Bf itSTALLED 14 T4 CAvlTY AC SEAL (LDED ALONG Ad. ED25.

h LEAD FILL $4ALL E 14 ACC0CAh2 WITH kJrAC APPR0dD I

LIAC P00%196 PROCEMS.

3.

PAlti Pit APPR04D RJPAC PROCEDURES.

A 2.

W.LDIG SnA;.L BE 14 ACCOR!,Ah2 elTH AM COOL $[CTION II, CA AWS DI.145 APPLICA8;f.

1. MATERI Att NJT, ASTM-Al% '.A. 4 OA 7 OA EQ"!v,

$TT.1, A$TA A320 68. L-7 04 [Qulf.

PLATI, AST*416 64. 70 (EXCIPT A5 nCTEO)

Pt. ATE A$im-4514 CA A517 p

NOTES: UNLESS OTHERWISE SPECIFIED I

I p

1

)<

J 4

1 3

l 2

1 1

u..

i....i......

D i

TYPE *A* FAr!Lf TA!J Jt'E ti!JG see

'cett' C

D E

F 6

N J

K L

M 8

P

  • t l e' n.

rise )

000 53.600 77.25 80.25 1.0 2.0 1.0 2.0 1.25 33.0.

82.25 89.00

.38

.88 83.75 83.78 3

000 63,400 17.25 80.25, 2.0 2.0 2.0 2.0 1.88 33.0 83.5 91.0

.38 88 86.25 84.93 3

C 000 46,300 75.5 13.38 1.0 2.0 1.0 2.0 1.25 33.0 80.5 82.13

.38 88 76.88 82.16 0

).000 53.500 75.5 73.38 2.0 2.0 2.0 2.0 1.75 33.0 81.5 84.13

.38 88 78.88 83.09 L000 65.200 75.5 73.38 3.0 2.0 3.0 2.0 2.63 33.0 83.25 86.13

.38

.88 80.88 h.70 6003 56.500 66.0 73.0 2.0 3.0 3.0 2.0 2.75 59.13 74.77 85.75

.50 1.13 61.5 76.87

)000 48.900 15.5 43.75 2.0 3.5 3.5 2.0 3.0 33.0 84.0 54.50

.38 88 49.25 85.40 Loco 42,900 61.0 62.0 2.0 2.5 2.5

, 2.0 2.43 47.13 69.11 73.75

.50 1.13 49.5 11.64

{

l B

).000 53.u0 61.0 '

62.0 3.0 3.0 3.0 3.0 3.56 50.13 11.37 76.75

.50 1.13 52.5 73.75

x 8

i

~ M l

e o

s M

.. g

- o 1

i I

l gg 6, i i i.i

...i

.o 6

.C.....

...o.........

t

  • y q[*

v.as.s o.ve..isa a.i:..so NUCLEAR PACKAGING, INC.

o.m..o

.... e ns lj,,g

'j,','

fACON A, WASMNef0m

'"*,*'a.,'C t D. C as.t S t A

rg' 3 Pt Cs Mcias ts t gg

3. Pt.C. a c..""

y,8 NUPAC SERIES A CASKS oo-~~.,-..-

6 82 h'O(N2 iilmlh 7

$,',,,,, o, ;

1

5. C.

S*O-t s,yQaNp p

X-20-2040-g JA g

o.<. ~

!,[.

" " ". ",,,, ",, * *g,.g,

{!

*. e.c f ec e o

( CPTics4 AL) o i

l D

CFhCd l

t m

o a

4 >4 Y

l?

p

,h

/

/

l--.-

/-.

k-7 O

o lr

  1. \\lE

% ##I Ji%

J/3 C

js-<T-

?}k 7.o vvp

/

TvP

-i4.o y

[

"").so S l

-F 2 e.e..

_, Q g

/

Q

,wSol' d.

y a

r,

/~i'

(

~

I 1 ~ f :I % '+ W = % % 3 W I

l V['

r n

3 60

'l

- C:

  • ,* o f

\\

e I

I

,i

.8 LT ;;f 4'%

Il}O = (2

0

. d' s

I s B

H fk (;g

'm

  • 4
f-G O'v!'~'

K 4

9, = -.

-A Apu

=

r L

l A 4

O f

~wd I) rg

.7

/ v f

H Y

y LLu P

l f.it. N: A 4 T. 4. 3. 4.V kDETAIL b g

J

=

A A

l 7

I.

R I

5

_l 4

l 3

l 2

l 1

.o

.m:

es.t.*, o.

. o.. j.

.ows o D

pu wee

~s bou~c x

\\

-**1 S.*-

\\

l

\\

.nw.(

. s woe L_..

'i

{ _ w s., w [ _*Oi D'A t

... g

! 7 k NrorsagNE. tk Mea wstrw.

.\\' ' 'N'g y'; :

E f

N A_

L a.

1.08'LT

/ % t'N l'

U SC Ts JZi.hP W ** **

o 29.o Dia

  • .e s.o + 2 US y N
  • - 4.0 --*

SECT OJ Ak " hk 47TP, F

C V'I *

'I

.i, e. u # ci-

/.#.%

i I.

~

N'6 DAW & MW M

g

. /

's h[i.o e,A3ij.

.y4 wroene a w(wot Mise

/

/,,f

.s; "e g%#

x7 tortT m

.vi t \\j Z]f y

M M'E I

- -_1_ I

2. o lb,'

e-- 10 o-

~

./

p

! 35 l[

s h

e-e.. o -- -

%.s w i.irsc A

'I-'*"+

    • -4.6 -

t.0 PLT

!a.*!-(TYPi VIEW SECTION !$"!h iTvan o

etam 3c cv 8

NTATED 24 CCu 8 q PiPc, e a oc

- I25 -

A ds I

f.44o.A B

M '*

c]

\\

__b. &,f

/

s),6; 1.s s:sts'5}' -$""

o v

.N\\Dk k l

^

- 2. o -.

o

,g

.so 75 V

- o

.SO l

DE TAIL (g Vlf W l * *

  • a b l4 C'"T *#' N ItotAfth 908 (v I

(op7 TONAL 3 wG5) cw te.o cax.

,,,,,, i

....i i

, g;,,

......<,.oo.....

...,o.........

I a((

.v a s.s.o,....is, se.c.wo raccara, waenenaron S

.........es NUCLEAR PACKA GING, INC.

1 11y;gy:

gI,,,c',"'g,,

j,i5l A

i !di.;". ' #...c...s,

r c.

...c. = c....

y a q:

NUPAC SERIES A CASKS c

..pa,;[.

,,ssi, m.o.-~........

'El}3 I

~

e.e2'%t Q i.h9$

!*'.,, ; o. 2 st e-s.,,9/"I ~ e,n i:h c~n m

1:

~ " '$,.,~2 ~ '""/J # Ei"* "

D X-20-2949 -

I a

I 3

l 2

1