ML20058C658
| ML20058C658 | |
| Person / Time | |
|---|---|
| Site: | Oyster Creek |
| Issue date: | 03/11/1987 |
| From: | Hoffman J, Mullins L, Willens K YANKEE ATOMIC ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML20058C647 | List: |
| References | |
| NUDOCS 9011020159 | |
| Download: ML20058C658 (53) | |
Text
- i l
FIELD APPLICATION OF A NON-POST WELD BEAT TREAT WELD OVERLAY TO AN ALLOY STEEL REACTOR PRESSURE VESSEL N0ZZLE i
i By John R. Hoffean, P.E.
Lawrence E. Mullins l-Kenneth R. Willens
(
Yankee Atomic Electric Company Framingham, Massachusetts Kelly Derby 1
Mercury Company Vernon, Vermont Presented at EPRI Seminar on Repair Welding Alternative for Nuclear Power Plant Components Charlotte, North Carolina
-4 March 11, 1987 5245R-9011020159 901025,?
it DR ADOCK 0500
s '. ;; 4
' ar e ~~.
.yr
+-
s m.
m
.q l ~
./ (
- [
_3 y,
- g
- ; }
'y_
~
pK-1
,. fr
.pf. x y _
,,y l -
.]
- .g.
< v: -.
+.
t
=
1
- ~_
l.
>.a
- . g=.
a,,v, '
ne.
n
. a r t.
~-
\\
b.
.:f.yk.,-. yr -
- f. L '
J..,,. ~ pih.gr / ' ~ ".g g, {? .J. l s y. y;D. e, .h. ' " W;y ^ W L)f,0! i yi s .. g. .:,t. t +. .t y,'y r/. M ' A,u.: _'t ,y 5,;. Wy, &, f.., ' ~ :" ', - 4 y y, w.r., v f. , i ~ y %y ms l .: r 1 _ f.'g),;%:l ~ g :l" 4;.c .m yp 7 r {.. ' - ~ 2+_., L., y,4,,.; - h,7 ... 4,p _ J g\\ l ~ - : s.3+,.% c...,. e-4 ,,./. L.i.. - , q, - - 1. J..) 'ty z.'4 ~ n + . s'. g. ~ 3,.h..h g f .;h 5 'z.+. O; j '. s 8 < Q ~ ';:- ru/sv El_9.5.?.. f, t... + % f[4. 4.g.;. .e z w g_ A ? ' } a. . _. 4 3 .p u, ,,' a t. ,. y $. ' i ...,u ~ k j ( y} l - + ~ ~ ) i . w 3. '.'.. -p, ~ g.
- p,' y ' g*
..s. t.! ", "., jy '...,...,,.qg. e. (( k [G ' ' 3.@h%N h h, r r g @t g s 8 =
- 4W ! Q.., ' ;
t 3 MI. yh. M, 4 + [ . ? O.,, '- . J.. .i 4- ..L. d M ',Q.p ' /t y 4c,nUT , (^ih.-.pf.j8'4: 3., u y b-c i,:..- D k.. v.g m :,.v..' $: %a'q. ; q:.V.?. % a Q.. $.QQ e..:, L _ y ,n m,,. , r. ~, 4.. ; a,. - + 'v .3..q x ~ x N' e ,-e X
- N 4
- - %.M. 0 p(d, y
,,kk' s s ~ q c. . " L ;;.... #h1j,; 2' g~ 'e r,.., - .g # Q> f y) e s . ':.. ' * ' f' W p' ' yt y, $. ai - ~ ., p;; :,. w n. .g a - x ... xm a. . s,.,; ' y.. pg *. :. yl,. 4 h __. - :. c... J m, . J.. e f.,., 4 $._g,,.;- j.., -, i, ..y i 3 . m qq <, - w, y ' 3... _ , y' ~ >g ~ b 9' g g g [ ' - .c + -r .m,, - '. e $..- 3 4! e-g. a
- t,
.4 .u .~. - >..r S.,- z; > 4.,p. ~ ,.y g,. 4 ,f ,a. g e ] k p '
- M., '. 7
}'. t I (., a.cf. i W*.; v . h',[; d. 'N, ra p,' - gy ' w,'
- i. y
,.'3 R 'q' ],.,. l, ( jf o y,.t,. , y
- y. ;
%:.c Y,, l. y l ^i 8 + -.. m e
- a..y ;
9.;s.4 a ,c y . M w m>- p ,. ?. y. m 3'f V' ', Q'; _ y', N, ' N ,.. 1, y t...- ~ n n
- 4. w.'
g _. sg 4 -( p ',a F y ? w. ,j. j ,s. t . h v ' ,,h. ~V:- p, .n / ' "( .1 G : 4 4y 'O
- g
- F g_'c..
_ y -c r (
- g... -
- g.2
..., ; ;.s g., n m,; c 4 -_- 4' ,d 4 4. .c M .i.- y v..t,;w sy ' s f.{ ' ' f
- I n y a} 4..
. 40 q.g-4 wg :
- my
+ : : ;s ? 1 na 3 .. 1 4, - 1. t.
- px n
'[..* 7, ..
- h,en n
t.. N I .".'.], . ' '+ 'g-y se ,,o .y p .Dh, i* t W.1G' i ../,,.,h. f ,fM *, a ' h,
- 'p g
,,M y t. Js .t ,y .,e x.d' E g, %' ' i. t. '.(j y 4 v. m dM' F N / A.- -9 4 . 4 t wm 4 a :. t n .. y(h.q ~ 'g-je.,(p&.3 }}:Q... p j Q f . Qli.&. :, -- - yh.. a -b .., q. 7m Jc y , ~- Q w g s A . u s + .j ,. j. c. . y %y I; ;T m - [ 3 ';.. b..[b [.?, f.y. WJ . Q ..w i ; e. 4 3.pquh'< ' f}}g,,
- h.. 44 ~
'f [f _ g; .y; ~ + 9.
- 3... t w.. m,
. < p' ; 9-r i +v -J.. 3 4 .e;,,., y ., /. 7
1. 9 FIELD APPLICAT.' " 0F.A NON-POST WELD REAT TREAT WELD OVERLAY TO AN ALLOY STEEL REACTOR PRESSURE VESSEL N0ZZLE ' By _ c John R. Hoffman, P.E. Lawrence E. Mullins Kenneth R. Willens-Yankee Atomic Electric Company.. i Framingham, Massachusetts-j ' Kelly Darby-l l Mercury Company \\ Vernon, Vermont l Presented at EPRI Seminar on-s Repair Welding Alternative for Nuclear Power Plant Components Charlotte, North Carolina March 11, 1987 5245R i 9011020159 901025 DR ADOCK 0300 9
l l ABSTRACT i Ultrasonic inspection of the core spray nossle to safe-end welds at Vermont Yankee revealed' indications representative of Intergranular Stress Corrosion Cracking (ICSCC). I In order to minimise plant downtime, a' weld overlay was applied to the two affected welds. This report will discuss the qualification and' application of a' weld [ l overlay process that was applied to SA508 CL 2 reactor pressure vessel-nossles without a subsequent post-weld heat treat, resulting in a'significant time saving for the repair. 8 V 4 l s . l 5245R. = =
ACKNOWLEDGEMENTS The authors would like to acknowledge the contributions of the following persons during the execution of the repair program: Dr. Wylie J. Childs - Electric Power Research Institute-Dr. Anthony J. Giannusal - Structural Integrity Associates Mr. Alan J. Small - Yankee Atomic. Electric Company (now w/ Boston Edison) Mr. William D. Fields - Vermont Yankee Nuclear Power Corporation Mr. Richard G. Mossey - Vermont Yankee Nuclear Power Corporation Mr. Paul Norris - Georgia Power Company. Mr. Paul C. McAuliffe - Mercury Company The patience of the Yankee Third Floor Word Processing Center Staff in-preparing this report is gratefully acknowledged l i l I 1 ' l -111-5245R- --d-. -m... ~-
_-. -. - ~... -. r l 1.0 INTRODUCTf0N The two core spray nossles (called the N5 nossles) are located on the ] shell portion of the reactor vessel. 180 degrees apart, as shown on Figure 1. The nossles and safe ends are sized for a ten-inch connection, with a reducer being used to mate with the eight-inch core spray piping (Figure 2).' The nossle is fabricated from SA508 CL'2, low alloy steelt the safe end is fabricated from 58166 Alloy 600 (Inconel 600). Both components are forgings. The nossie is clad with Inconel 182 weld metal to allow the safe end to be welded to the nossle without a subsequent post-weld heat treatment. The safe end is welded to the clad nossle using Inconel 82 weld metal. The details of the weld joint are shown in Figure 2. ~ { In 1985. ICSCC was detected in a similarly designed weld joint in a boiling water reactor. Inspections at other facilities have also reve-led the presence of IGSCC. During the 1985-1986 refueling outage at Vermont Yankee, the two' core spray nostle to safe-end welds were inspected. Probable IGSCC indications were detected. 1 The following sections of this paper will address the inspection methodology and findings, review the repair options considered, and discuss the planning and execution of the weld overlay repair applied: to ~ the welds. ~ i 1 5245R .i
2.0 INSPECTION METHOD 01,0GY AND FINDINGS Both welds were examined ultrasonically using asnual and automated-techniques intended for use with multiple Inconel weld layers. Automated examination showed three closely spaced indications parallel with the weld longitudinal axis on the N5B nossle. The N5A nossle showed no indications. Manual examination for reflectors perpendicular to the weld axis of NSB showed f seven indications, with a concentration of indications at the area showing the' circumferential indications. N5A showed seven randomly spaced axial .r indications. Initially both nossle to safe-end welds were examined using nominal-Section XI manual examination techniques employing refracted longitual..a1 beams. Using this method, no indications were noted. Due to the high " noise" level experienced during the examination overall, confidence in the technique is low. Utilising the autoested system and ths-same transducers used during the manual examination, several areas containing-coherent reflectors were. discriminated in the overall " noise" of the esamination. Evaluation as to the nature of the reflectors was not conclusive. The reflectors were: located very close to the nominal alloy steel /Inconel interface, and the signal to noise ratio was quite low. Additionally, the location of the reflectors raised questions since the reflectors did nnt appear to connect with-the ID. Retracted longitudinal waves do not respond well to corner reflectors and, as - such, some portion of a flaw face can produce the anximum responset however, i other non-ICSCC conditions respond;in a similar manner. ~This contributed to the incomplete evaluation of these first examinations.- In parallel with the core spray nossle examinations, work was:in. progress to optimise esamination of the N2 nossle to safe-end welds. This-effort had shown'that a particular series of focused refracted longitudinal wave probes were effective in examining multiple stainless-steel weld butters and clads. These transducers..had also been utilised for Inconel weld
- l 5245R i.
l 4
l l examinatione at other reactors. Though not directly proven on Vermont Yankee's N-5 configuration, it was decided that these transducers would'be used as an aid in evaluation. The large " footprint" of these transducers (2.2". x 2.2'?)~ prohibited scaaning normal to the weld. By machining the. transducer contact surfaces, it was possible to scan parallel with the weld. Manual examination with these transducers showed the axial indications in areas around the circumference. Several of these axial indications were located at areasLwhich contained circumferential indications from the first automated examination series. t Several additional axial indications were identified. t The applications difficulties associated with IGSCC detection in metallurgical and geometric configurations, such as-the Vermont Yankee N-5.. complicate-the detection and discrimination process; and finite sising of each indication was not considered feasible. -Qualitative evaluation of the l detection data would indicate indications were contained in the inner one-third of the thicknesst however, the lack of. qualified techniques for this, configuration prevents quantitative.aizing results. L l ? 'L I 5245R 4 1
l i 3.0 MANAGEMENT DECISIONS The results of the UT inspections showed the existence of _ rejectable ICSCC. Continued operation was not permissible without repair or replacement of the defective welds. New safe ends had been procured as a contingency measure, so replacement was a possible option. ] Due to the vessel configuration required by the recirculation system. l piping replacement activity, the N5 nossles could not be inspected until lateL i in the refueling outage, precluding repair or replacement in parallel with the recirculation piping. Af ter studying the evolutions necessary to replace the ' safe ends, it was concluded that at least a month of critical path outage time would be required. It was also felt that the weld overlay repair could be performed' with little to no ispect on schedule, once the welding procedures were developed. Approximately a month existed before the plant-would be in a condition to allow the overlay to begin. Although it was an aggressive schedule, all parties felt that the necessary front end work could beLaccomplished-within the sonth. e i 4 52458 m m-_-. _,._.--, m
4.0 WELD PROCEDURE QUALIFICATION l l In addition to the standard weld procedure qualification requirements, it was necessary to demonstrate that the welding procedure provided the necessary toepering of the alloy steel base metal, allowing the post-weld heat treatment step to be eliminated from the repair process. The ASME Code had introduced several years earlier the " half-bead" repair approach for weld repair of pressure vessel defects using the manual stick welding process without post-weld -heat treatment, and in early 1986, the. issuance of code case N-432 allowed the use of automatic TIG weld repair of pressure vessel defects, also without PWIT. Both of these processes were specified for repair of cavities, where a defect was ground out and the vessel thickness restored by depositing weld' estal. Utilising the concepts addressed by ASME in the vessel cavity repair procedures, a program was undertaken to develop an automatic weld oserlay-process for reactor pressure vessel nossles without PWIT. The initial work was performed by Georgia-Power Company and-Structural Integrity Associates under an EPRI project funded by the BWR Owners Group for ICSCC Research. i l This information was available to Vermont' Yankee through the courtesy of Georgia Power and EPRI. Using the Georgia Power welding parameters as a starting point, a program was initiated to develop plant-specificLprocedures for Vermont Yankee l Sarples of carbon steel-pipe were overlay-welded and then - cross-sectioned to check for iron-dilution of the Inconel overlay as well as determine the hardness recovery due to weld heat tempering. A high degree of iron dilution was detected (on'the order of 50 percent) in the first overlay layer.. Bowever, since no evidence of micro-or~ t 4 l 1 5245R i s
macro-fissuring was detected in any samples, it was decided not to pursue refinement of first layer parameters. Bardness surveys af ter one, two, and three layers demonstrated adequate tempering of the base metal hardness. A nossle safe-end mockup was fabricated. -It consisted of a SA508 CL 2 nossle forging, clad with Inconel 182 welded to-an Inconel 600 forging using Inconel 82 weld wire, essentially duplicating the core spray nossle configuration at Vermont Yankee. A weld overlay was applied using the parameters selected for the overlay process. All steps of the repair were followed. t ~ l A grooved sample of SA508 CL 2 material was welded as shown in i Figure 3. Side bonds. tensile specimens, Charpy specimens, and hardness traverses were performed, all with satisfactory results. Once again, no evidence of alcro-fissioning was detected at the overlay / base metal interface. Specimens were sent to two. facilities for testing. All results were l consistent except for one area. One of the labs reported that. the hardnes's at .the toe of the overlay exceeded the: target value of Re:354 however, a review of the microstructure showed satisfactory results. A review of the cross sections showed that the bead overlap between the first and second layer were quite low, leading to the conclusion that the results were an anomoly of the test sample. The other samples and the actual installation, maintained-a 1/16" to 1/8" overlap. spacing. Thus, the weld proc'edure qualification program demonstrated that the selected welding parameters produced a final configuration with'the desired metallurgical conditions. t f .h 5245R 1 . - ~ _ ,_.4,...-
? 5.0 WELD PROCEDURE DEVELOPMENT Arc Automatic Pipe Welding Systems equipment was selected due to the features of double down. technique and dual optics. Utilising the welding parameters provided through the courtesy of Georgia Power and EPRI as a starting point, several passes were welded on carbon steel pipe in the 50 position. De welding parameters were adjusted until an optimum weld bead contour was achieved for each of the three layers, ne weld bead contour samples were cross-sectioned and. etched to determine depth of penetration for each layer. The primary concerns were ' iron dilution - aicro-fissuring, and amount of tempering taking place.. The weld parameters j were finalised to achieve 12 K joules /in.for the fitst-layer, 16 K= joules /in i for the second, 20 K joules /in for;the third, and 21 K joules /in anximum for the remaining layers. All welding operations for the overlay procedure qualification were performed in the 5G position. A weld procedure test coupon-was fabricated to resemble the actual. core, spray nossle configuration and materials. It consisted of a~gA508 CL 2 nossle blank-aschined for buttering, weld-buttered with Inco 182, post-weld heat treated at 1200*F, renachined for V-groove butt-weld, then welded to $3166 Inconel.600 forging with Inco 82. Upon completion of the buttLweld, a-_300*F-preheat was established on the overlay test coupon with resistance heaters. The first layer was welded and a cross-section. sample was removed from the 9 o' clock location. A filler plus was welded into the sample hole ~and layers 2 and 3 were completed. Resistance heaters were placed on the. test coupon with top and bottom control then heated to 500*F and held for' two- ~ l hours and 45 minutes. When the test coupon had cooled, an additional sample was, removed from the coupon at the 3 o' clock location. The sample. bole was plugged and the weld test coupon prepared for water tacking. Water'was pumped through'the coupon at approximately 3 spa to maintain the interpass tamperature less than 110*F for the fourth and remaining layers. - Af ter completion' of welding the I weld test coupon was aschinci to provide the utility with the UT calibration standard. In addition to the standard weld procedure test samples, overlay 7 i 5245R i -I
1 cross section was removed from the 3 o' clock position., Hardness surveys were l performed transverse to the overlay fussion line on the first layer third. f layer temper heat treatment, and final layer cross sections. These hardness i surveys demonstrated adequate tempering of the base e*tal. 'and metalographic surveys showed no evidence of micro-fissuring. Therefore, the weld procedure development program indicated the selected weld parameters would produce the required estallurgical conditions. l l h 1 L i 1 s i l l t i ~ ~ 5245R w f '. ~ ~'
6.0 ENGINEERING DESIGN-l s the weld overlay was designed to be a " full structural" overlay, using the design rules of the ASME Code Section XI. Subsection..IWB-3640. 'The ters " full structural" means that no credit is taken for any remaining uncracked l thickness of the nossle. All iloads are assumed to be resisted only'by the l weld overlay. l The welding process used was the machine gas tungsten are method.-.The welding parameters were developed and controlled to use the heat of welding to provide the tempering of the alloy steel nossie to avoid the need.for a post-weld heat treatment. The basic repair strategy was to lor 2r the water level for a short? period to allow the first few weld layers to be applied to the nossle (the-temper-bead phase of the repair) followed by refilling.of the vessel and' application of the weld overlay phase of the repair. The weld procedure development process established how thick the temper bead portion was required to be, recognising that a 1/8-inch minimum thickness was required by the ASME Code. (The qualification process showed that.the 1/8-inch minimum was aufficient to achieve the required tempering of'the base estal.) l l The completed weld overlay is shown in Figure 4. ( t i a I 5245R o l .L
l E 7.0 JOB EXECUT!0N Radiological surveys at the N5 nossles showed a 50-100 mR/hr field at l the elbow. 300-500 mR/hr in the bioingical shield blockout, and hot spots reading 3-10 R/hr on contact. General area at the platform was 100-250 mR/hr. t 1.ead blanket shielding was placed on the core spray pipe and ' elbow, up to and including portions of the safe end. The radiation dose rate was reduced to 25 mR/hr contact at the elbow and 50-150 mR/hr general area at the platform. Lead plate wrapped in poly was.used to shield the hot spots,'to the. extent possible. 1 The area on top of the biological shield had a dose rate of. 10-15 mR/hr. This low background area was used by personnel in between wire t and tungsten changes. l l The existing N5 nossle to safe-end weld was etched to' identify the. actual location and width. Reference marks were punched at 90' quadrants around and on both sides of the weld to identify the overlay. limits and provide the location of nossle to weld; interface for~ future safe-end replacement. The surface to be overlayed>was prepared, cleaned, and visually examined. The automatic weld travel 4 ring was mounted and the weld lead installed and adjusted for the first' portion of the weld overlay. The weld; surface received the final cleaning to removal all surface contamination, thermocouples were attached and a,300'F minimum l preheat was established. .l The double down welding was performed. entirely with:ramote video. Minor veld bead adjustments, wire, and tungsten chandes were. performed by an. inside drywell operator. s The first three layers of the overlay were initiated at the center of' the existing nossle to safe-end' weld and progressed outward to the overlay limits. Each layer ended on the last bead of the preceding layer with 501-701 overlap. Starts and stops were staggered to the extent possible to produce a.. reasonably smooth surface. 1 f !' [ 52l.5R k- + . ~.. - -
Removal of the automatic weld bead and travel-ring was required for the overley temper heat treatment. Thersocouples were attached and additional, I resistance heaters were wrapped around the overlay with top and bott'on-control, ne overlay was heated between 450 F to 500*F and maintained for a minimum of two (2) hours then allowed to cool until a delta T of 150'T between vessel water and nossle temperature was' achieved. The reactor vessel was then filled until the core spray nossles were flooded. The resistance heaters and thermocouples were removed and the overlay surface was prepared for welding. Subsequent overlay weld layers were welded using the double down technique with 605-701' overlap.: Each layer started'and ended on the extreme passes of the preceding layer. Surface oxide was removed-from every other veld layer af ter the third, by power-brushing followed by solvent wipe. It was evident after the seventh layer that-a final surface-eachining would be required in order to perfore the' final-ultrasonic examinations. Layers eight and nine were added to increase the' overlay thickness. Surface profile measurements were takta to insure.the overlay thickness requirements had been achieved prior to eachining. A stripping technique was used to add weld metal to the low, areas. l A claa shell pipe lathe was adapted to machine the overlay surface. The lathe was mounted on the safe end and aligned to the axis'using_the overlay reference punch marks. A flat surface was aschined across~the overlay to produce a profile of less than 1/64" gap under a 1" straight edge and better than 250 Pets finish without violating the.535" einimum thickness. l l Final liquid penetrant ~ examinations were performed:and accepted and the overlays were released for volumetric UT emanination.- The project was completed from start to finish in fourteen (14) days. l . 5245R l ~_, w.
_..~.. b 8.0 POST-INSTALLATION UT DEVET 0PMENT l i Following. installation, ultrasonic examinations of the overlay were conducted to verify integrity of the overlay with respect to bond-between the nossle and overlay and the overall volumetric integrity of_the overlay. 't Calibration standards were fabricated which duplicated the safe-end nossle and overlay configuration as installed. Qualifications of the technique were performed on isockups representing the safe-end, nossle and overlay geometry and estallurgy. Inspection methodology developed under tho'BWROC-II Program at EPAI was-utilised. The overall surface finish and flatness requirements for finished overlays were enhanced beyond the EPAI Progree recommendations to aid in examination. I i e l i r - s s t i e 5245R ) ~,. ~
} 9.0 CLOSURE The non-PWT weld overlay process provides a viable alternative for. flawed pipe repair at reactor pressure nossles. It is particularly beneficial. ~ when repairing stainless steel welds, since PW T would result in potential sensitization of the stainless steel. Once the welding-parameters are developed,-the' process can be applied easily and quickly. i ~ n t 4 1 I 5245R ~
_. _ --_ _ - ~. - ~ ~.. ~n ,,-n_ ~, __.v - - nn _ v n,n,c, -s,~9 .r -+ ia ) .[ P r i 'I o-t }
- f
'L: 'E a e h k m i ? '5245R s i. f 1 k- .h
- L i 4~
n y,. Q. m nma v
Reactor Vessel Head Vent- .A Head Spesy ] J1 Refueling -i Bellows g. )[ Reactor Shell' 1 Veuel Tiange - Steam D
- Assemu7y, 3
1 y { t i Shroud Head Steam ouuet Guide Rod Nossle h h [ 1 g Steam Separator Shroud Head [ Steam Separator N
- Standriipe :
Shroud Head andA g% P Twdwnr Niet 3 S*parators NoWe = c = p Core Spray D tit mlI I T 5 Notsle k l i jl-l g 9 o i l Feedwater Sparser l i l-l N __sy I k i Core Spray .Tuol Assembly Sparger Top Guide l 7: g M y \\. g a l 5-j Core Sh.oud g l l Jet Pump Drmng i 't 4 g' Noule Assembly l n h,:'*' Core Support Assam Jet Pump Q,, p Suction Inlet a 3 M Recirculating Water Inlet Nossle df q 1 Jet Pump Instrument A Nou!e F Jet Pump Thros ,I i Recireulating 1 l Jet Pump Diffuser Water Outlet - Renetor Yeasel i = Shroud Support - i l, Lu Jet Pump Annembly ipo Control Rod Guide Tube (l) In Core Flus Monitor In Core Guide Tube Bracing Guide Tube 'l In Core Housing Control Rod Drive Housing .i Control Rod Drive. '~ 57 Figure /. P#*^C u' W 9-g'q*y9gg-g. p_ 4
d 0 L y mt 9 y, $ 0, 7 4a u 3 Y "s M t? tc 4 2 ;; 4 e"El g o s~ 'a kl",o{ bh / 'f.3 Am 4 4t t h '3 4, M .mm 3 o e .:. ' y .s i 'c ME- -- i.)* WW i E5 D ////> s. a t-s 1 g 6 s y M. p+ i 4-m 1a t$ e s 7, t x 3hk M .J W '" N wg g q;J Y,/ l i g m O kl $1, ~ 0; Y% t, y 3 y un ( g. l~ - k'- 1g /'$ w/J !!3 g asi a N j ) w(N !. i! ,1 e ,y 43 M k 7, _h! --,-e-
1 l l -) p l ( I r f / l [sidesend - / w w. (~ m i p; Tens 12. i l A '
- s 1-l gem 1,
,/ 3tc my 2 y l F. ~ e N,W.** * **'' 2-I i =w ene u 4 t J: 4 side bonds = No defects 2 red. section T.S. = 87.7 Kai + 88.1 Kai, break in base hardness survey = 500 qm NV 6 35 Rc l i l ' Micro Hardness Area 2nco s2 Wald %) Metal Overlay C 1 l o g - - _ _... ; _ _ _ _ i _=_ _=g _. _ _ g aww::mw: 7 o L i 3/4"- i i g l-t a l A50s c:.2 e 1,,. 2neenes soo i 1-l -/ \\- snee s2 weld netal / L -Ineo 1s2 weld netal L Overlay side bends ' l 8 side bend of overlay /be.se = no defect ? 1/16" 2 reduced se:.icn tensiles W.h overlay removed to base = 88.1'+ E7.7 Kai/ L break in base'of P-3 3 charpies of overlay /P-3 har = 120 ft. Ibs. avg. +.0745 avg. mils. 1.e. hardness survey ef P-3/ overlay ha: body e 30 Rc l Mechanical T*St Program Fa s o u.5 - 1
- =w 4
c-e-,wy
f L t h r j bu. E., D m l A C,. 3 5 6et. l.9 64h4 i l 4
- - ) ;.'.///j, */// ///,
,1, g*///,/.*/. //fi Nf**',{"e,j
- ' '8 SAN ENA F,j,fi l F
=\\ = TW. Wla dAllC:E >%rJ< DM@chJ 4 u i ) C WELD GAUCE DATA I Lestion Initial Post Wale 6 0 B.4e_-_S_ 5.Mr7
- ..o/ L 90 m.3te
- s..u?
.eg-l 180
- 4.. tat A.soA
..na s. l 270 A.."J i3
- 8. R IK
+.aoa-4 DIMENSIONAL DATA LM ation A-B C D E =F 0 Lan .781 :L trs 2.?as 9 ter /.l. 40E 90 a.an , =yA l 3. TAR 1,7W9 1_C/ d.
- f. 3 />-
ISO n.sae.?AI L A/2 1TR9 3 85 * ( 3/8 210 1and a1A t L sea 14W1 3.VA's (n.At2 ? e 4 a S Y$ i \\ 'l,
WELDING PROCEDURE SPECIFICATION CP/Oi, i i MACHINE GAS TUNGSTEN ARC WELDED OVERLAY t OF ASME SECTION IX P-3 Gr3 P 43 & ENiCrFe.) l MATERI AL USING A MODIFIED POST WELD HEAT TREAMENT, TEMPER BEAD AND WATER BACK!NG TECHN!QUE a IMPACT TESTED POR MATERIALS $/8' 6 GREATER THICKNESS RANGE: 1/f' 'lO MPX. 70 SE WELDED Job Number 70430 _ a ) 1 1 P d 1 J FOR INFO ONLY Welding Procedure Specification f&I d. MERCURY 2 sf4fes COMPANY 1 S/30/869d M o,,,o. m g 0 $/20/64M [, I REV DATE CHKD APPVD mtv DATE CHKD APPVD. WPS-CP/OL Sh. 1 of 14 __ j = ,__._.4.. . ~.,, - e
} LXST or REV2510NS Rrv1510N DATf. DESCR1PTION 0 5-28-06 First 1ssue 1 5-30-06 Minnr Change: Pg. 13 of 14 changed voltage secondary and changed oscillation 2 b-4-86 Increase Interpass Terp. 0 In WPS to 200 r. i I Welding Procedure specification 1 2 6/4/ss fdd d MERCURY COMPANY gg 1 5/30/84 of O woogie<; O $/28/81Lkk d, l "***"C"'"' Rtv OATE CHK0 APPv0 mEv DATE CHKO APPv0 WPS-CF/0L Sh. la of 14 eoav m isso l = ___ ___ _ J
WELDlHG PROCEDURE SPECIFICM10ft (WPS) l s l l i l Welding Procedure Specification cr/ot i Welding Process C.T.A.W. Type _ Machine I Supporting Procedure Qualification Record _ c;1s es - Chit es,,,,stfer,3g gt J0tht$ (QW402) SKETCH I Joint Design Overlav g_ Backing Yes Backing aterial P-43 & P-3 Material / \\' t Root Opening N/A Other L & t As Required ror sead Placement see Tech. sheetit BASENETALS,(QW403) Specification Type & Grade _ ss166 to Specification Type & Grade _ sA50s eL2 P Ilo. 43 Gr. No. N/A to P-No. 3 Gr. No. 3 Other Thickness Range: Base iletal.: Groove All Thicknesses Fillet N/A Deposited Weld Metal. 1/8" To Max. To se welded Other Pipe Dia. Range: Groove _ x13 m m.e... Fillet w/A Other Filler Metals (QW404) F-No. r-43 Other A.No. see srA spee Other Spec.No.(SFA) srA 5.14 AWSNo.(Class) ERNiCr-3 l Site of Filler Metals .035" Dia. 1 Electrode - Flux (Cuss) N/A Flux Tradename N/A Consumable Insert - None Other n = = n nam i t uns nan 1/2" (1/16" Nceinal) Welding Procedure Specification 2 s/a/86 fdd e#JE MERCURY ~ 1 ,/30/e6 ftd ,fGr.- COMPANY o 3 28-e<1d pF.- - *'e ~ ac-ao' ** o Rtv 0 ATE CHKo APPv0 Riv DATE CMMO APPv0 WPs Cr/ot sh. 2'of 14 L
WELDING PROCEDURE SPECIFICATION (WPS) Welding Procedure Specification er /0., c - i.w. _ Type ei n. Welding Process Supporting Procedure Qualification Record No. .g15et-exises-er/eneu POS1110NS(QW40$) POSTWELD HEAT TREATMENT (0W407) Position of Groove 111 memitienn Temerature Range aso r-sooo r Welding Progression See Techniquo sheet ime Ran 2 Hrs. Minimum E"*
- ^ ' ' * * ' '
Positions of Ft11et N/A GA$(QW408) PREHEAT (QW406) Shielding Gas - Arcon 3o0 -4o00r Percent Composition loos weld crase Preheat Temp. Min. _ 0 i Interpass Temp. Max. 4000 r war. Preheat Maintainence 1 Hr. Prior To Welding F, low Rate, 20-45 CrH OtherMaintain for 3 layers untti PwHT Gas Backing None is initiated. 70-200 T af te r P.W.H.T. Trailing $hjelding gag None
- ELECTRICAL CHARACTERISTICS (QW409) (see specific Technique sheets Attached)
Current A.C. or 0.C. sir.ee Polarity <*r><-we Amps 21o Pr. 11 OBC-2SoPr.16e B0 Volts 9 9.s Pr.. 8.8 BG Other see t.chnieue sheet Other e.. e.smim.
- u...
Tungsten Electrode Size & Type t /m" mw-2 Mode of Metal Transfer for GMAW N/A Electrode Wire Feed Speed Other Julie APc Mode TECHN!QUE(QW410) String or Weave Bead merino Orifice or Gas Cup Site 2/a" to 3/4-Initial and Interpass Cleaning. mm w<ae or crinaine Other Nono Method of Back Gouging Osillation O'-For First three layers, o-3/8" For Remaining la yers contact Tube to Work Distance N/A Multiple or Single Pass Per Side __ Multiple Multiple or Mngle Electrode single solid continuous Peening me. Other travei secod - actual 6 - a 1/2 IPM, w e.r back.a art r e x.w.t. Welding Procedure Specificati I 2 6/4/e6 Pdd 5JllL MERCURY COMPANY 1 5/30/Bi g 4Y T - ge o m g a n 4/28/90 Rev DATE CMKD APPVD REV DATE CHED APPVD VPs-cr/oL sh. 3 of 14 l
I MERCURY noemRt o'. A'.1ric AT10s strose COMPANY tv c a wto o c (PQR) Page 1,, of 2 Cr/ L Rev. O Date $/28/et Welding Proce!'are SPeci fic at ion _ Velding Process
- r. w Procedure Qualification Record No.
c.3 eor Date J.ac.er JOINTS (QW402) POSTVELD HEAT TREATMENT (QWI.07) Joint Design ove rl a.. Temperature
- Yeo'r Root Opening Nene Tisse 2 hrs. 45 m.in.
Backing P-3 & P-43 material Heat-Up-Rate 1:A Other see attached sketch Sh. 11 Cooldovn Rate NA Other *PWHT upon completion of Layer 3 AS OM No PWHT after Layers 4-11 Material Spec. 53166 to SA5cB CL2 TYPE of Grad,e NA g) P-No. 43 to P-No 3 Shielding Ces Arcon i 20 CrH Thickness 3/4" Dia 13-1/2" o.0. Composition 100s weld Grade Weld Metal Deposit Other Gas Backing None FILLER METALS (QV404) Other Weld Metal A No.
- See srA spec.
Filler Metal T Nc. T-43 STA Specification
- srA 5.14 ELECTRICAL CMARACTERISTICS (QW409)
AWS Classification EP.Ni Cr-3 Current Direct Site of Electrode .035" Polarity straight Other Amps See Tech, shts. yoggs See Tech. Shts Other POSITION (QW405) Position of Croove Sc W' eld Progression Double Down Travel Speed see Tech. shts. ot W String or Weave lead String ~ Oscillation None PP.EMI.AT (QW406) Preheat Temp.300 t e.in, thru Layer 3 Multi or Single Pass k interpass Temp.400 F max, thru Layer 3 (Per side) Multiple 8 Other Pipe still air cooled to below Single or Multiple Electrodes Sin 91* b 100 T, water added to I.D. at approx. 3 cpm Other Solid Continuous interpass maintained below 110 F 4th thru
i $$y PROCEDURE QUAllFICATION RECORD Y ,,,e z,,, ,Rev. Welding Procedure Specification _ cr m ,Date n , n Uelding Process c?Aw Procedure Qualification Record No. cI1586 . Date 5/28/86 TENSILE TEST (QW.150) ULTIMATE ULTIMATE CHARACTER OF SPECIMEN TOTAL LOAD UNIT STRESS FAILURE & NO. WIOTH THICKNESS AREA LB. PSI LOCATION 81 .979 .759 .743 65.200 87.7 Kit Duetite no 02 .980 .754 .739 65,100 88.1 KAI .Dyet t le B" GUIDED BEND TEST (QW.160) FIG. NO. FIG. NO. TYPE RESULTS TYPE RESULT 5 Side 1 Accept able NA NA Side 2 Acceptable NA NA sia. 1 ter.7+mhi. un' es Side 4 Acceptable NA NA TOUGHNESS TEST (0W 170) ' SPECIMEN NOTCH NOTCH TEST IMPACT LATEP.AL EXP DROP WElGHT HO. LOCATION TYPE TEMP. VALUES
- g. SHEAR MILS BREAK NO BREAK err m aawrn wear rure currt 16 OTHER TEST Type of Test _ L.P. examination nood. (2) Macro tests aced "A
Deposit A.nalysis Other ___s__.__ Welders Name c. Roy _._ Clock No. NA Stamp No, M-147 Who by virtue of these test meets welder performance requirements Welding witnessed by M.F. Trombley 11 llercury Quality Control Test Conducted by: Dirats ukratories Lab. Test No. o2129 Je certify that the statements in this record are correct and that the test welds were prepared, welded and tested in accordance with the requirements of Section IX of the ASME Code. Mercury Company of Ilorw od, nc. DATE 5-2e-s6 gy: ,,c, gegygtgg,g y j,y,w.s, 5 // Form 213-2(6/79) WPs-cF/ot sh. 5 of 14
MERCURY rnocmnt emuscAT10x stece COMPANY (PQR) tvwonwooo><, Pagt } of 2 i i CF /Ct. Rev. O Date_5M 6/9(c Welding Procedure Specification __ CTAW - SMAW Vt1 ding Process Procedure Qualification Record No. CH1506 Da te 5/g/et, JOINTS (QW402) POSTVELD HEAT TREATHENT (QW407) None Joint Design Sincie vee Temperature Root Opening 1/8" Time NA NA Backing None Heat-Up-Rate NA -l Other Cooldown Rate Other BASEMETALS (QW403) Material Spec. smisc Type of Grad,e NA CAS (QW408) P-No. p.43 to P-No p.43 e ng as n0 0 GH Thickness e/sa Die pine. Weld Metal Deposit CTAW 3/e" snW 1/aa Composition 100% Weld Grade Other Ces Backing Argon 0 10 CTH FILLER METALS (QW404) Other Veld Metal A No. See SFA Sree. Piller Metal P No. T-43 SFA Specification GTAW STA 5.14, SMAW 5.11 ELECTRICAL CRARACTERISTICS (QW409) AWS Classification
- CTAW ETWicr-3 Current Direct Site of Electrode CTAW-1/8". SMAW 3/32" Polarity CTAW-St rai ght sMAW-Peverse l
Other SMAW - ENiCrFe-3 Amps CTAW 130 yolts 12 Other SMAW 85 amps. 2 3 volts POSITION (QW405) Position of Croove 3G TECHNIQUE (QW410) Weld Progression Upward Travel Speedenw 3.3 n 199. evw a m. ) Other String or Weave lead strine t w. at.. Oscillation cTAW oa-1/4a s aw - 1.is e - l 3 t tree s ee re M -o., [ PREKEAT (QW406) o Multi or Single Pass f g Preheat Temp. en y,i-l o (Per side) m_q. Interpass Temp. ... o un, Other Single or Multiple Electrodes Single Other No Peening s h h h s
. gC PROCEDURE QUAllFICATION RECORD Y p (P00 w -,<: '** L *' L 1 Welding Procedure Specification _ er/ot ,Rev. - o _ Date snem Cec 0 Welding Process-cTAw Procedure Qualification Record No. CH15BC . Date e m ar TEhSILE TEST (0WISO) ULTIMATE ULTIKATE CHARACTER OF SPECIMEN 10TAL LOAD UNIT STRESS FAILURE & NV. WIOTH THICKNESS AREA LB. PSI LOCATION si i_nns _ (95 tst to san 92.1 rit Buet41. av 82 1.000 .501 .501 45.900 91.6 KS2 Ouctile RM GUIDED BEND TEST (04-160) i FIG. NO. FIG. NO, I TYPE RESULTS TYPE RESULTS Eida 1 ieceptahim Mi ui Side 2 Aceert able Side 3 Acceptable Side 4 Acemetable i TOUGHNESS TEST (09170) ' SPECIMEN NOTCH NOTCH TEST IMPACT LATERAL EXP DROP WElGHT i H0. LOCATION TYPE TEMP. VALUES
- f. SHEAR MILS BREAK NO BREAKI NA NA NA NA NA NA NA NA NA i
OTHER TEST Type of Test ma NA Deposit Analysis Other Welders Name
- n. covetehe Clock No.
n Stamp No. u.as4 Who by virtue of these test meets welder performance requirements-l Welding witnessed by M.r. Trombley II liercury Quality Control Test Conducted by: eir e. u w ateri.. Lab. Test No, nma Ue certify that the statements in this record are correct and that the test welds! were prepared, welded and tested in acecrdance with the requirements of Section li of the ASME Code. l MercuryCompany@ofIlorwoo,Inc. Nill O m 5 M By: p.e. McAuliffe m.w.s. ir Form 213-2(6/79) WPs-cr/ot sh. 7 of 14 i
MERCURY '*CEDN OU^'3 F 3 C^710N SECoc COMPANY cv weav o oo pec (PQR) Page I of 2 Welding Procedure Specification Cr/0L Rev. O Date 5/20/E6 CIAW" SPAW Welding Process Procedure Qualification Record No. Cr/CL1586 r n,. mmu. 3 Date 5/28/06 JOINTS (QW402) POSWELD HEAT TREATMENT (QW407) C Joint Design sinele ve. Temperature unn r Root Opening 1/8" Time 17 Hrs. 600*r Backing None Neat-Up-Rate other censumable Insert Cooldovn Rate 400 T Other *After buttering of P-3 material BASEMETALS (QW403) Material Spec. ss 166 to sA 50s Type of Grade NA CL 2 CAS (QW408) P-No. 43 to P-No 3 Shielding Cas Argon # 20 CTH Thickness.7sna Dia 3 3 _ em o nn Composition 100% Weld Grade Weld Metal Deposit . 7 s n.. other Butterina 3/8" Cas Backing Argon # 15 CTH FILLER METALS (QW404) Other Weld Metal A No. see trA s n. e Tiller Me t al T No.cTAW-T43. sv.AW-ras STA Specification GTAW srA 5.14, EMAW srA ELECTRICAL CHARACTERISTICS (QW409) 5.11 AWS Clas sification*CTAW ERNicr-3 Current nir.ee Sise of Electrode GTAW.035" SMAW 1/8" Polarity GTAW-st raieht. sviw-n.v re. Volts Other 'sMAW ENicrre-3 Amps Other SMAW 90 arnes, 2 3 volt s
- GTAW-170 PR - 120 BG AMPS, 9.5 PR-8,5 B0 p
g V*lt' Max. Joule /In. for SMAW 20.700 Position of Croove e sc Weld Progression 360* nrht+mi - mu ~ ' ' " ' ) Other SMAW butterine ic - preer===ien ~ String or Weave Bead strine _. 19.r? LLC _ Oscillation None PREMEAT (QW406) Preheat Temp. Buttering 300 r Multi or Single Pass ,m o Interpass Temp. Buttering less than 400 r (Per side) Multiple Other
- CTAW 50 r min.
Single or Multiple Electrodes single I b
- GTAW interpass less than 350 r Other CTAW - Solid continuous l
e
'l $Ny PROCEDURE QUALIFICATION RECORD Y (POR) en o m e Page j,of { Welding Procedure Specification. cr/ot ,Rev. o , Date 5/22/P6 Ileiding Process,,, etAw Procedure Qualification Record No. cr/etises (croev ) Date B/28/96 TENS!LE TEST (QW-150) ULTIMATE ULTIMATE CHARACTER OF SPECIMEN TOTAL LOAD UNIT STRESS FA] LURE & NO. WIDTH THICKNESS AREA LB. PSI LOCATION 81 .755 .571 .Asi 37.500 87.6 ret Net <1. av
- 2
.756 .573 .433 37.600 86.8 Ksf Buetti. av GUIDED BEND TEST (QW160) Sa166 ( P-43 ) FIG. NO. FIG. NO. SA 508 c12 ( P-3 ) TYPE RESULTS TYPE RESULTS sid. 1 arrame.hi. Side 1 Acceptable Acce' table Side 2 Acceptable Side 2 e Side 3 Acceptable Side 3 Acceptable Side 4 Acceetable Sid1 4 Acceptable TOUGHNESS TEST (OC170) ' SPECIMEN NOTCH NOTCH TEST IIMPACT LATERAL EXP DROP WElGHT NO. LOCATION TYPE TEMP. VALUES % SHEAR . MILS BREAK NO BREAK NA NA NA NA NA _, NA NA NA NA OTHER TEST Type of Test
- t....
r.. 4.eien oona tn vor,,..... g Deposit Analysis MA Other Welders Nam'e c. nov Clock No. n Stamp No, v-i n Who by virtue of these test meets welder perfomance requirements Welding witnessed by M.F. Trembley II flercury Quality Control Test Conducted by: m,.... u h,.... i.. Lab. Test-No, n.31mi
- le certify that the statements in this record are correct and that the test welds l
were prepared, welded and tested in accordance with the requirements of Section IX l of the ASME Code. Mercury Company of flo I DATE 5/28/86 By:p.e. weauitrr. h M ood[,Inc. u.w m- //. Form 213-2(6/79) WPS-CT/OL Sh. 9 of 14 +
i WELDING PROCEDURE SPECIFICATION CF/0L SUPPLEMENT SHEET i 100GHNESS TEST (QW-170) The toughness test was per formed on the SA500CL2 material for Welding Procedure Specification CI Rev. O. Lateral Specimen Notch Notch Test Impact Exp. Dropweight No. Location Type Temp. Values t Shear Mils. Break /No treak 1 mM V 40 F 85 ft lbs 504 66 NA 2 aM V 40 F 103 ft 1bs 65% 67 NA 3 mM V 40 F 40 ft 1bs 50% 59 NA 4 HAz V 40 F 104 ft 1bs 454 76 NA 5 rat V 40 F 106 ft 1bs 704 71 NA 6 mat V 40 F 111 ft 1bs 854 69 NA 1 l l l l l l Welding Procedure Specification 2 6/4/86 $t/ g MERCURY. v (Yj COMPANY 1 5/30/84 h M o,, m g 1 }/28/84 ((M 8_ "
- C "
REv 7 ATE CHKD APPv0 REv DATE CHKD APPVD 'wps.Cr/0L 'Sh. 10 of 14 i 4
WELDItC PROCED'JPI SPECIFICATION CP/CL BEAD F'. ACE'/It.i CF OVEPLAY LAYERS 1-3 f %T- -- f 'y --,, P- @ D PD LAYER #1 Begin at center of existing weld. Weld progressior, may be either direction. /s-[./[*ITf, N,e,5 _7r e_ ,m 3 \\ = ^ r r F-t > r-e LAYER 62 Place edge beads as shown. Progression of subsequent beads may be either direction from conter of weld. = = I f ~l' M Z,s,*_' g_,'_,r e _7_ g (. I,, si y rerrr err r I f-kD f* D ] LATER 93 Weld progression may ggin at either edge. Preheat /interpass Layer 1-3 30g/400F. = P.W.H.T. after Layer 3 450-500 F for 2 hr. min. = Subsequent layers ry using parameters enclosed with water in ID and a preheat / interpass of 70/200 F. s Welding Procedure specification Attachment to PQR l 2 sn/ma 'd)' ( W. MERCURY _ COMPANY 1 5/30/86Ny d y,,, g d68.gf't. "~a-. n - ,,, a,e REV DATE CHKD -APPv0 REV - DATE CHKD APPv0 WPS-CF/DL SL. 11 of 14'- M
TECHNIQUE SHEET OVEPIAY PARAMETERS This Technique Sheet provides direction for the parameters to be followed for the first three layers of weld overlay, with no variation. Layer 1 Current: 210 AMPS Primery Pulse Arc Mode 120 AMPS Secondary Voittge 9.0 volts Primary 9.8 Volts Secondary Ose'111a tion: None P'.11er Metal sites .035' Dia. ERNiCr-3 Torch Angle 90 degree { Shielding Gas 100% Weld Grade Argon a*, 30 CPM Wire Peed: 39 IPM Primary 30 IPM Secondary Travel Speed: 8.5 IPM Actual need Placement: 504 - 70% overlap ) Preheat: 300 degree P. Min. shall continue into P.W.H.T. Interpass: 400 degree P. Max. j Welding Progressions :kwbie Down Technique l Heat Input 12,442 Joules /in Max. Layer 2_ Current: 230 AMPS Primary Pulse Arc Mode 140 AMPS Secondary Voltage 9.8 Volts Primary 9.8 Volts Secondary Oscillation None Piller Metal Site .035' Dia. ERNiCr-3 Torch Angle: 90 degree Shielding Cas: 100% Weld Grade Argon at 30 CPM Wire reed: 63 IPM Primary 51 IPM Secondary Travel Speed: 7 IPM Actual Bead Placement: 50%-70% overlap Max. on edge beads, 1/32*-1/8' from base metal Preheat: 300 degree P. Min. shall continue into P.W.R.T. Interpass: 400 degree P. Max. h Welding Progression: Double Down Technique seat Input 16,749 Joules /in Max. s Welding Procedure Specification 2 6/4/86 Ry g MERCURY COMPANY 1 ;$/30/8dk d o, c,ooo g
- o. v2e/e@f #9-
" ~ c'- mtv Datt CHKD APPv0 mav DATE CHKD APPv0- .WPS-CP/0L Sh. 12 of 14
TE0KN!QUE SHEET (page 2) Layer 3 Current: 240 AMPS Primary Pulse Arc Mode 140 AMPS Secondary voltage: 9.8 volts Primary 9.8 Volts Secondary Oscillation: None tiller Metal Size .035' Dia. ERNict-3 Torch Angles 90 degree Shielding Cas 100% Weld Grade Argon at 30 CFH Wire Feed 69 IPM Primary 56 IPM Secondary Travel Speed: 6 IPM Actual need Placement: 506-70% overlap Max. on edge beads Preheat: 300 degree F Min, shall continue into P.W.H.T. Inter pass a 400 degree F Max. Welding Progression Double Down Technique Heat Inputa 20,188 Joules /in Max. Layers 2 6 3 shall not make contact with the base metal. Note: All starts and stops to be staggered. Upon completion of Layer 3, the overlay shall be Post Weld Reat Treated at a temperature of 450 degree P. - 500 degree P. for a minimum time of 2 hours. Upon completion of P.W.H.T., the pipe will be still air cooled to 100 degree F. prior to the addition of water. After the addition of water preheat is 70 degree F min., 200 degree F. max. The attached parameter sheets provide ranges for layer 4 through the final layer. Minor variations may be made providing the general parameter ranges and maximum heat input (joules /in.) are not exceeded. The weld progression may be 360 degree orbital or continue with the Double Down Technique. The heat input controls as delineated herein enhances the impact properties of the material being welded. The P.Q.R. limits the heat input required to complete the weld as shown by the following formula for the machine G.T.A.W. Process. f s 1 Welding Procedure Specification 2-6/4/06 ff/7 t7J MERCURY 1 5/30/86Mr M COMPANY o, oewoocic 0 5/28/86 PCM LPC REv _DATE CHKD APPVD REV QATE CHKD APPVD WPS-CF/0L Sh. 13 of 14-g
TECHNIQUE SHEET (page 3) 'fPAxPVx }} 60 Heat Input (Joules / Inch) A + SA x SV x B e 1.4 A+ B A+B fJ Travel Speed (I.P.M.) PA= Primary Amps PILLER METAL ERNiCr-3 .035' Dia. PVaPrimary Volts PA 210-240 SA= Secondary Amps (Background) SA 120-160 SV= Secondary Volts (Background) PV 9.7-9.8 A= Time at High Pulse SV B= Time at Low Pulse TAAVEL SPEED 6-8.5 IPM MAXIMUM JOULE INPUT 21.000 l 4 1 S Welding Procedure Specification 2 6/4/u F O' f d MERCURY COMPANY 1 $/30/et or %-owoooig 0 E/28/86h (( a r==* co-uS REV OATE CMKO APPv0 REV DATE CMKO APPVO wpg.cpfoL Sh,.14 of 14' soav m isso J
^ 4 N e ' ~ ' :. Lyea p p 4 + .} s, ' < J ', ' q .., _{. f, ~( l . \\ .) .f ; q, - + j -l ( e.. p.3 3 m 9s c, \\ f 7' ( - ~ c s ?Y ? t+ .' n e l ~. c. 4e .. i* ,g, q j .a ~,.. y p. n. 5 l1 ^ h f,' 4l A <- +.. . 4 i k f 1m.,.. 4,.... ,".,- 3 4 i. .g: p
- a..' 4.
.. a 'O W .b s.g_ 4" \\. " %.a ' M, 2 .s. M. . ;7, ~.~ - ,t "l y- . ~) 'b '" "g w,M
- m 3'
.f . y - j. *: Q. %...d '. - q 7 j_ .,... e ,E.( - m y.h [ 'g', .gf f r, K, g- .f ^ j, .#y..I* /2 . + ' [. - 'I,g'
- j.,
+. y ,,. iS 6 Oyh ^ '., '.. '., s,, .4,, r # 4 +,3 K p i -,'- .. '. '......p$ e ; , e.. -. -t. y j- --.. r ,. 9 Jg ;,q. ,1 r. .g r - s., sv... .. w y f, '&g, qt,.
- 3 y
.y .s t. ,.;. ' a. g.1
- q. - '
A.j. ' ~. ;n y;,, , e., .v e g ~,1 n..: L' i - ' i n ,a 7 v. . %,., g.". , y.,. ~ g p- ~ Ys A. N. w x. - It.. x +4
- y'
'a 4 .r p ', ^ ), 'I. ' .,x 4 " 9 %,,J. y V' C-t'p 3' .p , N 4 I ' = ~ e n.s.. m, y.>. ~ x y M. 'y,. .. n: 1 +R...
- f..sg
- r y,g% 1 73 1 :,, y9 ). _, '.. ( '.. :w. -' ' [ .. Q ; I,., [ ( j ~ - [})k M I.' [f. ~ l-(..jc i^ ^ f>l -, gfh "Af, _,:yg + [.}. ' &l*
- l.
f 4l..g,, l,1 5 + w. v. A^ ~ .z, m. 4 - i ' ) i 4 ...,f $ 1
- x s..
[ , I. r ~ ? a s 4 3. '-,..'%{5 _, 4 n ..;. ; g y;+.!. y -t 7. -.. N* *s- - s xe ~44 c.. .ax - ..,.n/ y ? j.Qya.. a c n-u },g % '.,.f. y ~ w.4 _f[ _- y .. ;.g.. .i .#fp+,, '_. ..b,. e h; 4 * ..f g&;;ria % - l -, i.,,, a,9 'y r . A,,,f. go -. te 1 .gi 3 i s y
- naa,
, ~'4,Ay-.wes" v.c y:- .g. 4 a.vw 7 A,;
- 2. -
4 c ",., &g:.%g ee c.: _ 33g 4w ~ g n.s.. ww, g. m, ..c.,. .w - g 4; .. ; s ~. ,m,, g.. ..- y. ..,, m <*m' 7, m - . n.y... 3,y. g. ...s. .,,y ,,, g,, r r, ".,, g, .~ ,,.g , y, 4.p. ..g 33-,,., r, '. ._-:*+
- ,- '. ~,., ' ;
p(i. y .-weg s s. w l j ^,.. p .. '%91 r.of l.' y,, . _. m. Q 3 l, 4 \\- -.,.,s y.,- a ~. .v, a I-a ..,, < t. y. 'I, a-5 + ~ e,- ?
i i i I i I i I I l 4 I l I i 1 \\ i \\ l l \\ i i ( Reactor Nozzle To Safe End Structural Overlay Test Program a i l i 1 l l l i s i a J
- e 4
9 I ) f I h ____-_..__._._.___._._:_______-.-.__...;._._...._.,_.______-.._...I
i l l l l' i Reactor Nozzle To Safe-End Structural Overlay Test Program i Index Section l. Abstract i 2. Report i 3. Appendix I Test program Instructions II Nozzle Assembly Drawings III Photographs i i IV Work orders Instructions and Data l l V Welding Procedure Qualifications i A t 1 1 ~ l l-i ? 1
ABSTRACT Reactor Nottle to Safe-End Structural Overlay Test Program This report details the SA568 C1. 2 nozzle. mock-up, welding instructions and the results of non-destructive examinations and mechanical testing to qualify an overlay procedure to meet Code case N-432. Additionally, an actual overlay done conventionally without preheat or post heat was performed to compare data to that of the Code Case qualification. The overlay was done in i both a water backed (heat sink) condition and a non-water backed condition. The results of the test program yielded welding procedure qualifications meeting code case N-432 and equivalent results for an in-situ nozzle to safe-end overlay using conventional (non-Code case) techniques in the heat sink and non-water backed conditions. Additionally, a random occurring weldability problem was caserved and traced to filler material surface quality, providing additional information to prevent weld defects. 8 4 i I ..m_--_______L _a-_-.
l i i l l cci File 8500-1 Contract N61122 i February 4, 1988 l i l l l REACTOR NOZZLE TO SAFE-END STRUCTURAL OVERLAY TEST PROGRAM l BACKGROUND INFORMATION:: l In the mid to late 1970's, intergranular stress corrosion i cracking (IGSCC) was found in existing nuclear power plant reactor piping systems. This corrosion process was to be mitigated by several means, one of which was the applying of a overlay over the affected joint area with the piping system full of water. The application of the overlay performed two functions; (1) to effectively double the wall thickness at the joint location and (2) due to weld shrinkage, place the inside surface of the pipe in compression which would close the corrosion crack openings and/or reverse the tensile stresses present to slow down the IGSCC process. l The IGSCC problem was due to the selection of type 304 stainless steel material which was of the high carbon, i.e. 04% carbon or higher variety. This material was easily sensitized when welded upon and IGSCC cracking was found-in the HAZ of this piping materials. Additionally, stainless steel-safe-ends were attached to the reactor nozzles which had similar chemistry. Some of these safe-ends were later replaced with Inconel or'with low i carbon grade stainless steel. However, even some of the replacement safe-ends exhibited IGSCC as well and had to be replaced after being in service. Inconal 182 filler materials i (nozzle weld prep butter) also has exhibited IGSCC, plus furnace sensitized Inconel safe end forgings. l I l As an alternate to replacement, a full structural overlay across the nozzle to safe end joint was deemed possible after research had been performed by the EPRI Foundation. The EPRI funded program was designed to find an alternate GTAW mechanized technique that would give the same equivalent results (metallurgically) as the half bead repair technique would on-the reactor steels (SA533B or SA508-C1. 2).. This alternate technique was needed so that repairs to-reactor shells and/or nozzles could be done remotely under high radiation fields. BWR core spray / inlet nozzles typically have high' radiation' fields due to the crud trap nature of the smail annulus space formed by the thermal sleeve and nozzle. Two plants, Hatch Unit 2-and Vermont Yankee had IGSCC UT. indications in the. core spray safe end to nozzle welds. Rather than change-these safe-ends out,- Y w r w*r- - - - - = - - e e e a: -- ---.---m m* w-e---- w~w----e*-=-.pa-~e+ - =
1 b i ? February 4, 1988 Page 2 i i the Utilities opted to go with a structural overlay utilizing the alternate half bead technique. In order to do so, code Case N432 l was passed by the ASME Code to allow this alternate mechanized l l GTAW technique. I As this was just another method to fix the IGSCC problem, CBI i services deemed it necessary to have this method qualified and i available for future repair alternates to offer utilities with this problem. Presently, only two companies have qualified the l l procedure, one being GE and the other being CBI. l This report deals exclusively with the actual, Code case N-432 qualifications and a proposed alternate method which will give I the Utilities more flexibility in performing this fix. Code case I N-432 requires both preheat and post heat during the welding process for the first six layers deposited. The alternates i investigated in this report are a non water-backed, non 1 preheated, non post heated condition and a water backed non post heated condition to compare with the Code Case qualification. t The water backed qualification allows the Utility the greatest i flexibility in that the reactor annulus and recirculation piping system could remain full and/or flowing which allows in vessel operations to be performed simultaneously with the remote overlay operation. It also eliminates the need for the attachment of thermocouples and preheating devices or-for the preheating and r post heating cycles. Eliminating the need to preheat / post heat would minimize outage time required to perform the structural overlay. THE TEST PROGRAM The test program was desrigned to qualify; welding: procedures in l i the 5G position utilising_ existing SA508 C1. 2 nozzle forging i material which had been procured from a scrapped reactor. As i this material had been procured to nuclear specifications, it was assumed to be. typical of what'would be found in existing i i reactors. To meet the code case requirements of minimum post weld heat treat time applied to the nossle prior to the repair, the reactor nozzle was given an additional 24 hours of PWMT at 1150 F. (This particular nossle was cut out of an existing i reactor. It is assumed that at least 10 hours of PWNT at 1150 F had been applied during the original fabrication cycle.) The i nozzle chosen also had been utilized for an Induction Beating f stress Improvement (IRAI) mockup. This induction heating was
- r t
I i
i l i February 5, 1988 ~ Page 3 i l 1 i i concentrated in the stainless steel safe-end area rather than in the nozzle forging. This induction heat treatment is thought to have no effect on the actual nozzle properties in the regions tested. Please refer to the work orders in Appendix IV which show test specimen location. The purpose of the test was threefold 1 1. Produce a welding procedure qualification meeting the ASME Code case N-432 which would establish base line material properties. l I 2. Produce a non-water backed and a water backed overlay which,, when tested, the material properties could be compared to the base line established in the Code Case qualification. 3. Provide sufficient technical data to-allow in-service repairs on nozzle to_ safe-end welds by overlaying with and without water in the affected-nozzle / safe-end. l t To do the comparison, a Code Case groove weld was made in one region of the nozzle forging and a full thir' mess structural 4 l overlay was built-up across the. nozzle to s, 3-end joint. The l overlay was blended smoothly into the 45 slege region of the l nozzle forging.- Please refer to Appendix II for the nozzle assembly drawings for details. As the Code Case requires the { procedure qualification to be done utilizing the equipment i planned for the repair, the use of fiberoptic video monitoring [ was used to produce both,qthe groove and overlay welds. code Case N-432 Groove Weld t A 1" deep, 60', with a.25" root opening groove was machined'360 t in the nozzle forging after trimming excess material from the -l l nozzle forging and PWHT for 24 hours-at 1150 F plus or minus 25 l F. Once machined, the forging wasLnondestructively tested and positioned for welding. Preheaters were installed-inside the. bore of the nozzle,'and thermocouples attached outside in the i "3T" band of the groove. After preheating of the nozzle'to the required 300 F, it was allowed to'" soak" for.one. hour prior to l start'of welding. Welding was-performed per the instructions in i W.O. H5173 (Appendix IV).. Using ERNicr-3'(Inconel) filler. r r i e v._, -m. m
i .l l i l 1 i February 5, 1988 Page 4 4 i It was interesting to note that during the first six layers deposited, no real problems were encountered. It was feared that the sidewalls of the groove could not be easily welded j (especially using remote video). Because the torch was motorized, it could be easily positioned to have the are impinge 9 on the sidewall, Additionally, positioning of the filler was also easily done witi it being motorized as well These features are necessary for ease of operation in a high radiation field. With these features, the six layers required by code case N-432 were deposited easily ar.d the 60 groove shape was maintained i i allowing conventional split weave beading to complete the joint. (See photos 5 thru 7, Appendix III). During the welding of the. groove, some difficulty was' incurred on passes 53 and 54 at the 90 location.- The passes exhibited poor wetting into the side walls and heavy oxides were produced. The
- l location was ground and liquid penetrant examined.. No indications were found.
As.the spool of wire being used for filler was almost empty, another filler: spool was used for the next passes without incident. Upon UT examination after groove completion, this location exhibited indications of non-fusion. This location was marked for further examination by sectioning and microscopic examination. This exam revealed inclusions between beads and internally within the beads. This defect was caused by an intermittent filler material-quality problem. (See weld overlay for additional details and photos 25.and 26 Appendix III). Upon completion of welding, the nostle was~ post heated at 500 F for 2 hours-minimum prior to cooling to ambient. After cooling to ambient for 48 hours Minimum, the groove weld was liquid penetrant and ultrasonic inspected. With the-exception of the UT indications at 90, no defects were found. . eld overlav W In order to do a wet / dry. overlay, the nozzle was re-configured to have a partial thermosleeve detail. (see Nostle Mock-up Drawing Appendix II). With this-configuration, one half (0 -90.-180 ) would be filled with water (both stagnate and flowing.at +40 F) i and the other half (0 -270 -180 ) dry.- This configuration would allow the welding to be affected by a severe (water backed)- quench rate and a moderate quench rate (steel mass effect - increasing interpass temperature), both conditions without the benefits of. preheat or post heat. 0 s
i i I i l 1 February 5, 1988 Page 5 The nozzle assembly was instrumented with thermocouples at the 90 and 270 center lines at the I.D. surface of the nozzle bore. I Additionally, an o.D. surface thermocouple was placed on the 45 slope of the nozzle and both the flowing water and stagnate water were monitored. (See photos 10 thru 17 for plumbing and thermocouple installation.) To do the overlay welding, passes were alternated from clockwise I to counter-clockwise to eliminate the variable of pass direction so impact specimens could be taken from the highest heat input (vertical up) locations - wet or dry. Welding was performed per the instructions of W.o. H5224. Temperatures were monitored to determine peak temperature per pass and location. It became evident that the stagnate water (which was to represent water in the reactor annulus) could not I be maintained at +40 F due~to its small volume. Therefore, tap j water was allowed to flow at the minimum rate which would allow l the water temperature contacting the I.D. surface of the nozzle reach equilibrium, cold water (+40 F) was circulated in the thermal sleeve to cool the annulus water to the equilibrium point. The actual water temperature contacting the_ steel ranged from +45 F to 65 F, for the majority of the overlay welding. During the first two beads being deposited on the first layer, heavy oxides were formed and wetability was very poor. As the 1 beads were being deposited on the stainless steel safe-end, wetability should have been very good. .A_ review of the weld parameters, equipment set-up, Argon supply, etc. was made-prior to proceeding. At this point, it was noticed that the spool of filler material had seams or laps present on the exposed wraps. The spool of wire was replaced with another which did not exhibit this. condition. Welding resumed using the same parameters, etc. with excellent results. l
l l l i i rebruary 5, 1988 i Page 6 l l Upon completion of the first layer, a liquid penetrant exam was i i performed. The first two beads exhibited several indications. These indications were ground into and additional ones found. } The entire volume rapresented by these two beads were then ground j i out, (See photo 19, Appendix III) and replaced with good i material. l Now that the weldability (poor wetting - heavy oxide) problem had been traced to wire surface quality, a stepped up visual-l inspection of wire surface quality was instituted to prevent additional repairs. This inspection noted several spools of the same heat / lot to have this surface problem where as the majority did not. The surface problem was very intermittent without any pattern. An entire spool might be defective or only a few inches, a few wraps be defective and those inches or wraps would, j be found any where on the spool. Cross sections of good and bad wire (same heat / lot) were cut, mounted and polished for microscopic examination which confirmed the problem. (See. photos 25 and 26, Appendix III). In order to produce a smooth transition-from the nozzle shape to the safe-end, it was necessary to " step" each layer.into the existing radius joining the 45' sloped nozzle reinforcement and l the weld prep extension. This transition is necessary so the overlay will not induce piping reactions into the radiused region of the nozzle causing fatigue. This meant that the last layer would have to have a temper bead technique which could soften the toe tie in area. Temper beads were deposited 1/32 to 1/16" from the toe tie in without the use of filler and decreasing heat input. This technique is the same as " Flame Softening" except thru the-use of the mechanized GTAW process. (See W.O..H5224, Appendix IV for details).- l Upon overlay completion and grinding for ISI UT inspection, the overlay was ultrasonic and liquid penetrant inspected. No i defects were found.- Test Results i Code case Groove Weld: PQR 7673 (Appendix V)' lists all l mechanical results..ncluding hardness, nil ductility temperature, tensile strength levels, etc. The:results meet the requirements l of code case N-432. A 1" deep (or less) weld repair could be made utilizing a welding procedure which incorporates these techniques. f f i
i February 5, 1988 Page 7 l 2 1 Weld overlay PQR 7718 (Appendix V) list all mechanical results for the non-water backed overlay. PQR 7719 lists the results for the water-backed overlay. Both PQR's exhibit good notch l toughness levels in the HAZ. This toughness level is similar to that of the HAZ impact strength of the code case Groove. The non-water backed overlay exhibited lower hardness levels in the toe tie region than either the code case groove or water backed overlay, which exhibited hardness of 380 to 410 Hv-10. a The.non-water backed overlay also exhibited a hard sone in the HAZ at a location slightly removed from the. toe tie. In general this region was 400 to 435 Hv-10. This area became suspect when etched for determining the HAZ region. As the welds.were made 360 orbital and no similar condition was found on the water backed hardness samples, it.is thought that the interpass temperature may have allowed a greater portion of the HAZ to transform into a harder microstructure. As the code case groove had also exhibited hardness in excess of 400 Hv-10, a small sample was " temper beaded" to see the effects of this technique. A supplement to W.O. H5173 was prepared to perform this technique and testing. After temper beading, the toe of the groove hardness dropped approximately 301to 50 Hv-10. A suspect region further away from the: nozzle surf ace. however, increased in hardness by the same amount. (see W.o. 5173 Appendix IV). In reviewing all hardness data, it appears the HAZ will range from 375 to 400 Hv-10 with some locations reaching:435 Hv-10. These hardness ranges ate probably typical of-the SA508-c1. 2-material when welded in this manner. Forgings, especially in this shape, are noted-for non-uniform properties. Specimen-location mar account for some of the scatter seen in the-hardness i results, but the fact remains that the hardest location is not-at the toe of the weld within imm of the surf ace but at a_ depth of .3/16 to 1/4" within 1 to 2mm of-the fusion line. l i
== t 6 'h m.
l t l l l February 5, 1988 Page 8 l
== Conclusions:== 1. Mechanized orbital GTAW welding can be performed on SA508-1 C1. 2 nozzle materials with and without preheat or post heat and achieve / maintain material properties which are notch tough and ductile at NDT plus 60 F. 2. An additional heat sink of water backing during welding appears to have no adverse affects and may be more-beneficial as lower hardness (ave) was achietad versus the with and without preheat conditions. 3. Equivalent results were obtained in comparing.the three conditions which should allow the use of any method i investigated to-overlay the nozzle to safe-end joint. 4. No HAZ cracking was observed in any cross-section, tensile, or bend specimen despite hardnesses exceeding-425 Hv-10, indicating a-lack of sufficient hydrogen being absorbed during the welding. The use of the GTAW process provides the lowest hydrogen levels of the commonly used process t (SMAW, SAW, GMAW), plus the use of Inconel filler allows any remaining hydrogen to be absorbed in the weld deposit rather than into the RAZ. 1 5. Notch toughness at +20 F in the NAZ equaled or exceeded forging base material toughness at that location and depth. i (Base material toughness varies with depth from quenched surface and location within the forging envelope). 1 6. Filler material can vary within a single heat / lot and within l a-single spool due to drawing process control problems. Wire surface quality has to be smooth and without laps, 4 tears,; seams, etc. or weldability problems.of poor wetting,- heavy oxides (slagging) and inclusions will occur. 7.- Full structural overlays covering the nottle to safe-end weld can be tamper-beaded at the toe _ tie in points without the use of filler and obtain similar hardness and impact strength levels to that of code. case N-432. t l 4 .2..
I i February 5, 1988 l Page 9 l i t 8. Hardness levels or 350 Hv 10 mean' average were not achieved using either stringer beads or weave beads with temper techniques. Typical 380-400 Hv-10 mean average was achieved is probably more realistic than the 350 Hv-10 levels desired. 9. Code case N-432 requirements to use stringer beads does not yield superior HAZ impact or hardness levels when compared to a weave technique. f Recommendations 1. These techniques should be used with caution. Welders should be trained on mock-ups to assure the technique used can be done under simulated plant conditions prior to doing the actual work. l 2. Even though in-plant dry well conditions are usually hot [ (+80 F) and dry, reactors filled with water tend to have-. cendensation form on the outside surfaces, surfaces to be welded upon should be wiped with Acetone to remove surface moisture prior to welding, when using the non-preheated condition. ~ j 3. These water backed and non-preheated conditions should be i done using ERNicr-3 (Inconel) filler only. The use of ER309L, etc. is not recomr. ended'due to the coefficient of-I linear expansion of the austenitic stainless _ steel filler materials. Overlay deposits of'these types can cause thermal fatigue. !l ~ f i f l q i
i Jul) 15, 1987 LRS i 8 CBl Services,Inc. N0ZZLE TO SAFE-END STRUCTURAL OVERLAY QUALIFICATION TEST PROGRAM i 1.0 Purpose of Test: The purpose of this test program is to qualify a non-water-backed and' water-backed structural overlay procedure which could be' utilized in the reinforce-i ment of ASME Section III, Class 1, reactor nozzles and safe-ends which have in-service generated flaws in the weld joini'ng the nozzle to the safe-end. 2.0 Objectives of Test: The objectives of this test program is to:
- 1) Produce a procedure qualification meeting ASME Code Case N-432 'to establish base-line material properties.
- 2) Produce a non-water-backed and water-backed overlay, which upon destructive testing, will yield similar material properties.,
- 3) Serve as a model for future qualifications.
I
- 4). Provide sufficient technical data to allow in-service repairs to-nozzle to safe-end welds by structurally reinforcing'the affected area by overlay welding with and without water in the affected nozzle / safe-end.
3.0
References:
I 3.1 ASME Code Case N-432 3.2 ASME Section XI,1986 Edition No Addenda 3.3 ASME Section III,1986 Edition, No Addenda 3.4 ASME, Section V,1986 Edition, No Addenda. 3.5 ASME Section IX - 1986 Edition, No Addenda I 3.6 " Alternatives to 1/2 Bead Repair Technique (GTAW)" by P.J. Alberry and J. G Feldsten - Maintenance Welding in Nuclear Power Plants /III,. conference paper November 1985. 3.7 Test Assembly Drawing 3.8 73-C124 Nozzle FN2-1-5 Certified Test Repc.-t ' q 9 +-n W -e g y p v-yy-ge 1,- g, e-s:. 9 --'-t-g -g 1lr 9-b-suay
? 8 - CBI Services, Inc. Nozzle To Safe-End l Page 2 i 3.0 References : (Continued) l 3.9 Drawing ER420 Rev.1. Contract 34541 - Safe-End Details 3.10 Nozzle to Safe-End Weld Sequence and Parameters. 4.0 Test Materials: The materials to be utilized in this test program' are:
- 1) An SA508 Class II forging which was salvaged from a cancelled 238" boiling water reactor. This forging has the following fabrication.
history: a) Weld prep buttered by the SMAW process using Inconel 182 electrodes. b) Nozzle to shell welded complete into the shell ring. c) The nozzle and butter have been PWHT'd at 1150*F for a total time of 10 - 14 hours. (Fabrication records -destroyed - Typical time for manufacturing cycle), d) Additional SMAW Inconel butter applied and new weld prep made (20'J prep). e) Safe-end to nozzle weld made by orbital GTAW process using Inconel 82 filler. f) Weld joining safe-end to nozzle has been IHSI treated for test / qualification purposes.
- 2) An A312 type 3041. "8'uilt Up," " Tuning Fork" design safe-end.
3) Inconel 82' filler inatorials,:.023"..035" and.045"S. 5.0 Post _ Weld Heat Treatment-As most reactors in operation to which this test program could be applicable have nozzles-with fabrication histories which have 20 to 30 hours total .PWHT time, the test. assembly shall; be PWNT -at 1150*F t 25'F for 24-hours mininum prior to any welding. This. heat' treatment = should also relax any. induced stresses by.the IHSI. testing. {
^ g CBI Na Con, Inc. Nozzle to Safe-End - Page 3 6.0 Consideration of Restraint: Both Code Case N-432 and ASME Section III, N8-4321(c) require consideration of restraint in procedure qualification. The location of-the groove weld meets C.C. N-432 requirements for self rastraint-by'having sufficient material thickness surrounding the cavit to be welded.- Code Case N-432, para. -2.1(e) allows the' assembly to' qualify weld buildup procedures provided the cavity is not~less than the thickness of the weld, buildup or 1 in whichever is greater.. As most safe-ends are 1-to 1-3/16" thick, and standard designed overlays-are slightly less than wellithickness (for thru-wall cracks -360'),'A 1" minimum depth groove'shall be used. As the overlay will be applied to a full scale mock-up containing actualt materials and typical geometry. restraint that will be encountered on nozzles in service should be. similar. To minimize any stiffening effects of the wet / dry interface divider plate, the plate shall be made from thin guage material which allows the. nozzle and safe-end to band in due-to the expected weld shrinkage. -(See Assembly Drawing). 7.0 Test Specimen Locations: All destructive test specimens shall-be as located on the. test assembly drawings. It must be noted that test specimens may or may not comply with ASME Section III, NS-4334.2(e) due to the orientation of the groove weld and overlay reinforcement weld. ' For purposes of this test program, the test samples are taken at similar depths from the 0.D. surface of the forging and transverse to the axis of the welds. 8.0 Reference Nil Ductility Transition Temoerature RT NOT: For the forging involve'd, the actual' nil' ductility transition temperature as established by the nozzle forger using drop weight test is -30*F. Per Code Case N-432..the~ test temperature for Charpy "V" notch impact testing shall be ' (RT NOT- +60'F), +30*F. 9.0 Remote Sensing: As most in-service nozzles and safe-ends are in high radiation fields which require video remote controlled welding.. all welding will be performed:using pulsed GTAW welding equipment with remote viewing'of the are and deposit using closed circuit video systems. A Dimetries Gold Track II welding system utilizing a "G" weld head and color video system shall be used to deposit all welds. i
8 CBI Services, Inc. Nozzle to Safe-End Page 4 1 10.0 Test Program Operation Sequence: 10.1 Test assembly preparation for Welding: 10.1.1 Burn excess shell material from forging. j 10.1.2 Machine excess forging material to required dimensions. 10.1.3 Machine Code Case cavity in forging hub to required dimensions. 10.1.4 PWHT assembly for 24 hours minimum at 1150'F 125'F. 10.1.5 Clean all surfaces of scale, rust, etc. by wire brushing or sandblasting. Care must be taken to protect the Inconel weld; i and stainless. safe-end from iron contaminated brushes or sand-blast effects;. Use only stainless steel brushes on'the safe-end and weld. 10.1.6 Layout reference lines for specimen removal and dimens'ional checks. 10.1.7 Take as-builts of test assembly prior to welding., 10.1.8 Install wet / dry divider plate and thennocouples. 10.2 Code Case N-432 Welding: 10.2.1 The groove shall be welded with stringer bead welding with. heat inputs ranging' from 20' to 40 K _' Joules /in. of. deposit. 1 Additionally, the wire feed speeds-shall be' controlled to allow deposits to be made within the 1.25 to 2.0 megajoule range. 10.2.2 The groove shall be filled with the required layer sequence of 4 C.C. N-432, Fig.1, using parameters meeting the Kilo Joule / Mega Joule heat input limitations. 10.2.3 As more than 6 layers may be required for actual overlay, a minimum of 8-layers shall. be deposited in the groove. i l
I l .1 8 CBI Services,Inc. Nozzle to Safe-End Page 5-i i 10.2 Code Case N-432 Welding: (Continued) 10.2.4 Preheat and post heat requirements shall be met using electrical heaters and: recording instruments to monitor i preheat, interpass and post heat temperatures. _ Thermo-couples shall be attached by the thermal discharge method. - 1 10.3 Non-Water-Backed And Water-Backed Overlay Welding: ] 10.3.1 After completion of the post heat operations, the assembly shall be filled with water internally and cooled to +40*F ! 5'F by circulating the ' water and/or adding ice; 10.3.2 Once the assembly has been cooled to +40*F, water in the annulus space between the. thermal sleeve and nozzle wall shall be allowed to become stagnent, water may be flowed through the thennal sleeve and safe-end as necessary to maintain +40' 15'F for the water backed = portion only during welding. p 10.3.3 Overlay welding'shall bel accomplished using a weave technique and heat inputs ranging from 20 to 40 KJoules/in. - Additionally, wire feed speeds shall,be controlled to make deposits within'a 1.25 to 2.0 Megajoule range. Weld beads shall be alternately deposited. Clockwise, counter clockwise 360','to allow impact specimens to^ be taken from the vertical position. 10.3.4 Care shall be taken to deposit the-overlay in such a manner to produce a' smooth transition in the crotch.section of the forging. 10.3.5 Temperature monitoring of forging shall be done during all welding. 11.0 Required Non-Destructive Ixaminations*
- All nonde'structive examinations shall be.perforne'd to meet ASME.Section-i V, 1986 Edition, No Addenda Techniques, i
11.1 Code Case Groove Weld:: 11.1.1 - Magnetic Particle: MT-inspect the groove surfaces and l' either side of the groove prior to welding. I
8 CBI Services,Inc. Nozzle to Safe-End Page 6 11.1 Code Case Groove Weld,: (Continued) 11.1.1 Magnetic Particle: MT inspect the groove surfaces and 1" either side of the groove prior to welding. 11.1.2 Liquid F.netra_nt: a) PT inspect the groove surfaces plus 1" either side'of the groove prior to. welding, b) PT first layer deposited in groove, c) PT final surfact of completed weld prior to destructive i sample removal. 1 11.1.3 Ultrasonic: a) UT inspect the groove and machined hub area to a. depth of 2" from the machined surface using focused-longitudinal inspection techniques, b) UT inspect the final weld. 11.2 Non-Water-Backed And Water-Backed Overlay Weld: 11.2.1 Magnetic Particle:- MT surface of SA508 C1 II forging which is ta be overlayed plus 1". 11.2.2 Liquid Penetrant: a) PT en' tire surface of forging and safe-end to be ' verlayed o plus 1"' prior-to overlaying. l b) PT first layer depasited plus 1" additional.- c) PT final surface deposited plus 1" additional. 11.2.3 Ultrasonic: a) UT inspect the volume to be overlayed using focused longitudinal inspection' techniques, b) UT inspect the final deposit.' 11.3 1 Surfaces to be inspected may be ground, cleaned, buffed as necessary to obtain meaningful examinations. )
1 8 CBI Services,Inc. Nozzle to Safe-End Page 7 11.4 Acceptance criteria for the examinations 'shall meet ASME Section !!!, Subsection NB-5000 for the method used. 12.0 Destructive Examinations: 12.1 Code Case Groove Weld: 12.1.1 Tensile Tests: 1 a 2 transverse.505"9 tensiles, b 2 all weld metal.505"5 tensiles 12.1.2 Bend Tests: a) 4 transverse side bends. 12.1.3 Drop Weight Tests: a) 6 - P-2 s per CTR) pecimens for base metal (assumed to be -30*F 12.1.4 Charpy "V" Notch Impacts: ' All impact specimens shall be removed from the maximoe. depth practical and. tested at T NOT +60*F.temprature for HAZ and unaffected base material. - A minimum of 3 HAI' and 3 base metal specimens shall-be tested. 12.1.5 Hardness tests (Vickers Hv 10): a) A minimum of 3 cross sections shall be cut and prepared - for hardness surveys. b) Each cross section shall have a minimum of 3 hardness transverses in the HAZ,- 2 at the surface'(lef t and right of groove centerline) and 1 at the deepestc point of.the repair. 12.2 Non-Water-Backed And Water-Backed Overlay Weld: '(Tests required for each condition) 12.2.1 Tensile Tests: a) 2 transverse all weld metal.605"9 tensiles of the overlay deposit. ( I i 1 i
L L b CBI Na Con, Inc. Nozzle to Safe-End Page 8 12.2 Non-Water-Backed and Water-Backed Overlay Weld: (Continued) 12.2.2 Bend Tests:- a) 4 transverse side bends. Centerline of bends to include j the HAZ of the SA508 Cl. !! forging at the toe of:the
- overlay, 12.2.3 Charpy "V" Notch Impacts:-
j a)' All impact specimens shall be removed at the maximum: depth possible and tested at T NDT +60*F temperature. A minimum of 3 HAZ and 3 base metal specimens shall be tested. 12.2.4 Hardness Tests'(Vickers Hv 10):, a) A minimum of 3 cross sections shall be cut and prepared for hardness surveys, 1 b) Each cross section shall have'a minimum of 3 hsrdness transverses in the HAZ. One shall be taken.near the-toe of the overlay, near the surface of the overlay, y One shall be taken near the bottom of the overlay, in the curved crotch section of the forging. One shall ~ be taken at-random at the bottom of the overlay near the HAZ of the nozzle butters i 13.0 Metallurgical Examinations: Random microstructure examinations of th'e SA508 C1 !! forging-shall be performed on the HAZ of both the Code' Case groove and weld overlay welds. The examinations shall be done on each cross section prepared for hardness testing. A minimum of,3 examinations per cross section is-required. The exams shall be located'near the required hardness-transverses. Magnification shall be sufficient to-identify the HAZ micro-structure present. Photographs shall be taken of the typical micro-structures. 14.0 Acceptance criteria of Test Program p 14.1 Code Case N-432 Welding: 14.1.1 Mechanical Testing data shall meet the requiremeni.:: # C.C. N-432 applicable =Section:III and IX welding procedure qualification requirements. 14.1.2 HAZ hardness shall meet 350 Hv10.or lower, as measured and calculated for-mean hardness -level. Peak hardness shall not~ exceed 390.. 1 i (
CBl Services,Inc. Nozzle to Safe-End Page 9 14.2 Non-Water-Backed and Water-Backed Overlay Welding ~ 14.2.1 Mechanical test data shall-meet the requirements of 14.1.1; 14.2.2 HAZ hardness shall meet the requirements of 14.1.'2. 4 4 R 1 O
i i Appendix II-List of Drawings ( l 1. Recirculation Inlet Nozzle Mock-up. ~ Code Case N-432 & Weld Overlay Qualification ~ Assembly.- 2. N2 Nozzle Assembly Contract 73-6124 3. N2 Safe-End' Details DWg. ER420 Contract.34541-I 1 ) 1 i e k 0 4 1 i e ? 1 +
t J )- q. i, j-j u ~ " ~..;,N y r,j! g I. tu p
- h
} b qb pr l /*%g;
- ,l g
b w- ~ - j 8 g j g;i 3 $'i I / i i / ev. \\
$...ph
" - - < +/) \\ / =n ;/ s s,'..,.....' "' ' a J W+ 1 l -7 'W ~- l-if 5 eI g i { k%,.~ a r \\ Q f 'j h ~ 1 ,(L e y W; - .\\: a 5.1 J. y. N br 'a b r' j* s: el' \\ !y r9 i .It :\\ f 1. f IL'. VI ' ! =1' g a %~ m ~ i 3 c f
- O )
e,, .t w \\ N 'n. l+ a.#f,> g ; I W s5 y I. 'y' w a .4 !a* y W 3 R' ,a w. f,] e2 l' OS eg N T I a s ,1 l 1j a { m 6 u l Is, f' l l e
- k 4
E l I .- h.~.1 : i ff /'T g Q .f t I s ? 7, L I t.
- ~; % ns
- mg;as E
W b* g 3 I:- l Is. I, l, C e g[ i a -yy .t l J' c .r t, .f -}>.. ll h u ,j L. a 4
I idfili 44?h'l8% II,f y% ~ M{'N I i! U r i,gjjjIfhb 1 4!j;]lj *I ai Iki i 'If, 'ji ls i V. I -. ! 1
- tY(;pi; 4(!]h4 2
9 t! .' Jp.h g '- g, p 1-2 Jp-y[l at.,g) c u s_ 3 13 .m;Itm i1F k 44 ,jp
- jidii, i t I<! I
.r,. j - ,1 m.M..s-q , r. g p sL,,. u. ie
- w i
n a h',.I i = 1 i ,o Eilh)p! g$ lj li !j y$
- u..
9
- w. -
3 3 i i y l i gli S 2 l$iiii a E E
- n_td,
',,13L 1 ni,Ia' !! h le s.f55 < K = -=.W........imi F IJd:{. 3 n d >p4 j> af g ij $ lid M o. m e ri Is o edglo o e owe . Ji i 4 -4 I !..,w.s w w i. a d tt
- lp.
- : its a
s o,is a wlb!L a$ u >1f=..; +! e / j O Bltal W .... A ) } 1, I 'i I S4?{ t 's p 4y 1 s o m j M'_ l a ~ ib j tg ([ [ j / o }i 4 ij Y <.. i-i y 3l sg T 4 (_T e c h N --l [- _.l - i 7" J;ll" .wp ga g -Jal. } 3 c.,,y,, 3al g-v -(p jK i:P-E a - x. g] _ ;j, n $ ); 17 t. ,I v.: I ! - a.. ai .n -,,,- , i } y o E k.w. h... T <= _QV) x\\ / W y 1 3 ) Iy 8 ? o t
- g;,
l q:o Jj l' ~ E hret sm;gsr. i 1 ) e
1 4 - : r G t-i i l f s. sf f f e 1-11 f3 . y J. s fs 1 / 1/ s i,. ,n t ;, e s, / I / :. / . i g- \\\\ l 1 j ';[! !! it: M f e n } lll;i l. v. s. -'l m
- l t i E M
. g = i. l [,g i T ,l Qi ~ ., y n-1 1 g.a., 1 S-ts. A ,M G i- ~,, m' we, s,,. e S d{ jw v .p N) N _l 3 1 1 s.. wo n gu I v a \\ e \\: , yl G N ,e, g .j y gg , g sie e. i fi j t 5 I it i .e=
Appendix III List Of Photos Photos 1. As Machined Forging Prior to NDE 2. MT of Code Case Groove 3. Remote Video Set-up For Code Case-Groove Welding 4. Preheat / Post Heat Equipment I.D. of Nozzle 5. Code Case Groove As First Layer is Being Deposited 6. . Code Case Groove'After First Layer Completed 7. Code Case Groove After 6 Layers Completed: 8. Code case Groove Partially Filled (2/3 complete)~ 9. Code case Groove After completion. 10.- Nozzle Bore Showing 3 Thermocouple Layout 11. Detail of Thermocouple Attachment 12. Thermal Sleeve / Water Box Detail Showing Annulus-13. Detail of Thermal Sleeve / Water Box'& Thermocouple Routing 14. Detail of Thermal Sleeve / Water Box &: Thermocouple Routing 15. Final Assembly and Hook:Up of Water Box 16. Multi-Channel-Thermocouple Measuring. Instrument 17. Insulated Barrel-and Water Pump-Assembly. 18. Overlay Layout Scribe Lines and. Punch Marks
- 19..First Layer, First 2 Beads PT Indication removal 20.
Set-up to do Nozzle'to Safe-End Joint Overlay = 21. Completed Nozzle to Safe-End Overlay 22. Cross-Section of. Forging and Safe-End Assembly 3 23. Typical Code Case-Groove Cross Section 24. Typical Cross Section.of Nozzle-to Safe-End Overlay 25. Cross-section of: Filler Wire With Surface Defects 26. Cross-section of Filler Wire..Without Surface Defects 27. HAZ Micro Structure Code Case Groove 1Right' Side 28. MAZ Micro Structure Code Case Groove ~Left. Side. 29. HAZ Micro Structure Code Case Groove Left Side Before: Temper Bead 30. HAZ Micro Structure Code Case Groove Left Side After Temper Bead = 31. HAZ Micro Structure at Toe of Overlay 32. HAZ Micro Structure at. Toe of Overlay at' Peak: Hardness Location I
b W -e p
- p p
i - yng..r k / h. /- f' a 's t? ' y l (,hgt. , } _f j g% . u s,L ig- ./. y .L b, + - .i Photo 1 ]3( .e ? j* g. 3 -.. - h gg r., v.> [x.~ # T-
- Q' y'
,= ? ,A 3 ,y x, y ' yp. - + y,. . i,.. .I m. = 's ~ y y , g. 1. N y s g -.; g f photo 2 . s., Q' 'h 8 i, + &. p 1 j' + x ,i' u ..m }f ~ ~ f l k,. int s 'a .-- s c. ~ ,f,.q k-r 4 g. ms 4 3-Ll. 1
- g
.a, - 4 ) =' 4 m .t m ?fy - b wing Photo 3 -l h .c a p% e .3 . py. i 4 ,.e e!A -. u es sg l ^ ~ j ,~ 4 g r - 1 l' s &1
e 4 2, ~ 4 j [ g y ~ f.~ .,'. k .}. ~ A s / / Photo 4 => ~ p 4.;,- .r. f 4 4y. 'y_ g ~ g% g'E I d 4 'v l u ~., m \\ Qy ;,
- w9F,
,f f m; f f W l i x.,.. ~ - c:. y,,_ h h :l ~t bb A. ,, + 4 / - *ia ,g { '. ' 4 M' - A. j ... - j. 3. '. / + d'" ,% d h -m W' b g,. N* l% k 1 ~ ? Photo f I' 4,. ~ l ' -y ] ,,,j:. J # g 9 -y Y a s : 4 i p 5 '. y ' ' h! g,,,.. e a. .. e'_ z j f, s-e J '.. 1....... t
l l ~- / sr. 7 i g -~ '
- 4 d; ;
~ s c i. g n.. gl! f g if.;.' ., f.4r l* 'R
- tfy y.}
[ .A fA '.y '~ (*$ ' b g 3.t.t y g~. ,g
- t
- * *g
.? g l
- si
. g. ;. = ~- .t,- c 4 .... r a.. .',y ti..- y p,* 51
- a. '
l -J' ew $ l; t. ' I ' \\ Photo 7 ...;, o 4g. .n..' u g 4 } f f { 1
- $7 ;
f d$ WAN 7 ;y ~ 4 ~..-., i ,9 4 r + y,s tg $ g y g ) y ) (..m,Hy e g. -@ i -[ v. I m - 3 p- .,g_, _y )s - \\ ' ::, s ~ ;- ) \\ n ., a ,a l .f . :n .L ,v
- E '
g' - 4 r. . - 4.. a i. .2.. .. i. 4 Photo 8 .%5. Photo 9
1 g if g' ' " k' d\\. ^ (.#
- ?
- l y,.-.,
,. f$ . $fi '*? ~. l f As l
- 4'
- )
y g'*
- Photo 10 y g
1 1 t> c s ' J, ' v .) I l p g1 .g. i 1 ~. \\ \\ J \\ f -- '~: } l?. = E r ,L ~ b, g.s s f, Photo 11 I s,.
- e-
'g s l, p. s l \\ - e - p ;-g,W,::V W
- ;,;...:.-,) )
w,,. Y, - y. i:4 r Jl ? 4 '* ~ l,' ' ~ ~ Photo 12 { 1, ~g .i q/.y, '..
- t ik
- y. g e.gjv, 4 -..
W :; I *? 1 g t / . +%s1. a w. -p. j*.,a. s . ~ ._ 71 -__ __ o /;r .y.. .1f. g. Y- .gg ,[Le/ Photo 13 5
- t y,
f , ( .f _. n: .r. N.. Q, -jj g'f:.. ,, y Q ;G -I C t?. j{ r4 '4 j k,, .. f '.,. 'L 5r w .a . :+ s 4 ... -. y j / \\ .f [, w j. ~ A. n.- P:- s. .? i }, a .) ? .,y.,. _, n:-
- U
[ - ?g '. y.** f t Y.. Y f ,3 s y y {jQ pf. a s y. ;,,i. '.., y
- *$.. ' b. d. :
7 g 5 l Photo 14 - ?
- " ; /=# @t -
"s ^ /:- ( ~3- . -s W. . 3 -['}k ,s, ' :, ~* t c q ;i, @w -[k.is I. 3 IAS. .. s t ~ ~..w ;& - n.
- s s
.L
- = : _
, ~ ; ' 's '- >;y y;. . ~ : y.. 7_ _.. ;q3, ~ ~ ,4 l f 'J l w x,. g .a. ^ ' f., ; L '. '
- 1. Y'
/N ' 'l / 3, _ // ~. .?. ' Photo 15 w.:- ]+( q. n, .2 s..a~ 7 s. . l:, i. y, y .L
- ~
' *g. j 1-l: .( f;' I /~ 7 7 (
- '"('_,
s 4 } }, ) .y .g' j }.. [, .' k I-l.- w I y .. v s \\ ~ I \\ (e - ( }.) ' ..e L
'}- \\ h F-s. Q .a. 1< g l3
- WW else 4
, b... l ..P-:" q-a r '. e .e- ~ = 3. 1 ./.- m. c' ~:.a w.%. 1 7 Photo 16.. 6 4A .1. : 3f 4 - l g i v'~'- 7 g'# g-. _., 9 I, e 8 y 7 j .t. - .c j. [ W -QG l g c,. p;,. s,. s y 1, /* ..2 I ^ 9 4 i.. s f l
- g.,
..], ~' V.
==. Photo 17 ~ ~ t '.,7i .."4 ' + - r s 9 ,h s, #,,j ~ n a. ,(
- . (
9:.
- n m-4 4
s ~. > l ;, r, "l g. -- 4 [. 's N O s a %____ &pw a. e !,w. 6 % a.l-..g t i .. + . _i4 -g. y"*,, +.- a ~ sh _-__._--m_ m.__.
~..-...--- - > g_ .o g - g g. p ,e
- )
-N ~ V -s - 4 -'..a, p. ., ~, 9 9 y y } 'N_ A. m r ~ f.. 'h y. l .s.,.....- l l Photo 19 l l l l 1 \\ l I 4
l x i ~ .i. ~,
- a s
. y e N ,,,..,.w ...,,,s. 7 4 + Photo 20 to ^ .r' , Ak - l ' c: '.. ',-
- gf l
~ we l y, -Q: .'g' A +- [ d., Photo 21
l l l l l l i 1 0' x F s ~. 4
- q
~. 4" .g. , i + M9-S P 9 g ~.' ! a e 4 i
- i g
l. s i ~
- r. 3 3
+ { k s. [ Y. l 7 l 1 - 3 1 b & : { 4..
- fth.
g F* l ' t. [ E - + - j 6' -,N, .b-g N g n. q p ,N 9-- v U y y . w g .s k p g j s m .g. a. W ~ n C ( 3g - / 1h .) s.t y 4 1 6 e 'p: g < g d ~ .A - j- '< f * ' t -. /v.,, 8 'M i W6 9 p J - i f Y $.- '( i 4 .J 4 3 w, .f. j -g e ' M s . 9 l .a s m ( l l l
.' f t y ,q 4 Y ~* =- J; s E. ; _ g. b. rWy' ~ c' T g d4 .e [ ,r 9 * , )* g D 4 >N A v. ~ b ., p > -. ' + 4*. N ,ff; ,0 1, ~ ,I, p, ..s < ~* b. $* t.,., - o* .' n!,. .;r. a o . p "W j ; y
- l,,.
.' j$.* ,r / nr - . ~e n.
- f o, a
_Ag- ,+ + ;. :~;: f ,A*, .o + '*,p, ,1 9 , Q) s.,. L -./ l / l u. +- 7 p.,.w. y* / /
- 7
/ q.,;w'N3 ['a #,, g4,s. s f v. y, i .+ ' .s a .h 1 s n..n.,* N, s j f ]', v ;.. rs,e,.. ~. ,t,] =. 4,^ f .i
- ,i g
m, g 5,;, o u., : 'T Y n g 4e g E
- .+... -
p' g. 3 4 .a. e i
- ,o g
4 ~ r. d / e j '-2 ~ 4 i .g + ? ? y,* 8
- y a
) g' e 4-g / ~ ' ~ y , ;i - T g w, / a' 4 + e. i s d 14 7 1 = a i ~ g.,
- $p
~ ~ p ."r . s ~ h i. g .e $ f g, o iv .~ 6 w + f h l~. i ~s % v s N
7__.______,__ = ' :t(, tp,y. g p .>? w+ w. > .2 in i = TI 3 J, k4.- e. ~ . 7,;,9 q.w.y, p o.j f... P_ g e x N ~5- ~., W.'f '"' .s u.o...:[rw". n; r m y. .r ~< ze.g; a i wr c e
- m.,
es ,r '.h ^' ( ^ q.. .s e 4 . + e - e.
- (,,s.t
'^ i ' f l N f ' ' ' _1 r v ,,e s. .( - -. ' a 1 s. ';.k;, p i. g'
- m'..
'O sx 1 ~ g,'- , 'h '.) .,, 1 I ^ c J e ";E %.m C O t n p +. O% S .p gg
- ,,. ??.
- f.,,.
a .1 - g
- '",. v
,U, x-. (. r go m 4.s ,l l f, }l' mn
- w
@ Q .? 8 1 l . ~., ^ OH 4 .3. yy g U +.. ^'
w l;
s., ~ ,,U C l
- e.,m g
b.- - e,. y b - ?tf.,. 0 2 ' N.- ff. f O .&9,{,,5,.u} p y / l ~ ...n, + _y ,fW.f 'c '. ;p.W f[ ~ _'.] ?. 7,. j c 6 l y: y '.,. --4? 4,.' s' w ..,.. q,..
- z..
., y... g 2 l,g 'ey h g gi%. N ,-( o. . m p. c A ' '.7, 4 . y#. .ny s b" = 'f 3-m-
- 1.-
.{ ' ~ p 9 ' p g ' ', ' ~ .T - 'g . '9 ~: ,,h$'fp . /gg da '.-l' , *.,.. +. j r? .o yy;. : : v u.- ~.: ', + + -. m
l l i 200X ~ No etch l \\ l ~ c. ~ [' Photo 25: Cross section of GTAW filler metal which w-ed i unacceptable weld beads (heavy oxide, humped bead shape & inclusions). We believe the rough surface ~ prevented sufficient cleaning of the wire during i manufacture. The wire is ARCOS Type 382, Heat Y4875N382,.045"9 on 2 lb. spools. 200X No etch a l r y Photo 26: Same heat of filler metal as above but from i a different spool which had acceptable welds. Notice. smooth surface. l P 1 f i ., ~. -....,,
Nital Etch 400X W/0 H5173 Specimen A s Photo 27: Typical HAZ microstructure near the surface of the cede case repair groove weld (Identified as "right side" in hardness report). Weld /Fusionline is in upper right corner. The vickers hardness number I of the impression in the photo is 408 HV 10kg. l ,,i';Y' e N T;f?
- pQ; ^;q.*sv.fpsy PQ y&,N x-
.,,. 1. T e4 ~ Nita1 Etch byt%
- cy
, 4 :nk,; 4 g (Ap_Mjafp'i jg% 400X p 3eh ' A, (M? 3 { a '.. gf g;g% ,, i v.g. .y. ai-n E y :: 'f.;y ;&y$(Y.,, v,l;gR g, y&a,p&. c
- .. a f
"10 H517 v <.s,.(.f..v.m X.p y { h w[..3 /. 4y.., . ; t; _ c%: ',p-w pee VW Specimen A ag.hgg $f *)% -y[i % f }f*e.A -):&,%,~.I ' b f g. h y D 0-Y; ;(.;f (;}%; . e :,,.x : 7. % is % ~;,: * . r; e. r,. f . ' y g,.f; y ' ';; h;,..): y,3 ,; j.? 1 y*;! f -Q, )- 5 l;:.C ll l9llj :;. %l}%QQ sN.gk; 7f... g $. A 4w
- c,;
. p._ v&m 1,e %.s ; p,, y. s xp l;f+h..ly;.;s . ni
- si
'. : B ~3l:f ' ' s R lf..f, f..s..y g y Photo 28: Same as above but on the other side of the groove (ID as " left side" in hardness report). The vickers hardness number of the impression in i the photo is 386 HV 10kg.
l l l ~ i j 1 I 1 i ? Nital Etch 400X 1 i W/0 H5173-Supp. Specimen A - 1 (Before Temper Bead) Photo 29: Typical HAZ microstructure near the surface of the code case repair groove weld (10 is "leftside" in hardness report) before welding the temper beads. The weld /fusionline is in upper left corner, The vickers hardness number of the impression in the photo is 401 HV 10kg. .f ,p y g y,T.;:a.* 9 K&&w; %"'~ 9n- , e < g' %4 \\ k;.,. f j s ,y + $ * ;> ' y. . Q Q f. y sA +.
- w a j @,g: 6 m-
,3. % g)g - .. ~ a, ,y. ' J. F %j.r,i.7 :/.g.; .,gg;- g "., ..9.1. 2 ,i. 7' 5 A s h 400X l Nital Etch -p M %s g 'yj &,. ms.h{lM ? %,( s. $ y;,,I.; jet. fjz.f.' l L+ ..f{.x u r .y a e 0k$y.f{^y{,, l j -h f * ' h (% 7 x f k'l % &q'_ T ~ kyf :, 3.?, f, +: y e .,A9 S* A,e 'sf Q w: h... h, % _,5. " g Q W 7 lf, ~,,;, _,Q, g.:;j;-Q
- .g "g y
r0.. 9 < W.%s. A, W/0 H5173-Supp. W 76: .3: 9;-
- ., e. m%.
+, 3,p.,. %ef.g:gif3, f f,7 g,W';N -. [f $.5 Specimen A-1 i . ~ - - 46 + Q );& g L:%;p t? V bt~%;*'h a)cA;.h k IV / 4/ i 9' C..q (After Temper
- m g
- n_y ; ?
glJ,'J*f..ji% f. Af) l *; :%^.; 1l J. Bead) ^ . Edf.A, : > - - & [. b,[., t, n '~. -. '] .g j::,., h 1".. Jg %- h*..[i. r ~ Y,N D ONhf$f$$5h(h Photo 30: Same location as above but after welding the temper beads. The virkers hardness number of the impression in the photo is 345 HV 10kg. \\
h#%$7? ? 'hlh h, d;,%.4 R f4'f ;p ya g ' ' g gGgy*,)7.#. ' 'W < lsy'.gf.:M s%?h f f *) x< . p ' A;, 7 ,d.- Nital Etch ' \\ ',Y.p.~:g,,A ? i;.e%{J. if f, Q'y 400x .g O, '-lkb 'h.. {;, h,ln, N-f lh l f k f g a {e sAY* ?:kj,i,fj&, i p,%,,. " - W/0 H5224 c . l f* }N ? k?
- f 5 -l J' :. ?
L.k; ),;j# ,y
- r4pga,
'7 ' ; Speeimen 02
- Q Fy*
- %f..,f ffM/%fd'f.
~9 ,ha j-o,. y..... ,' yo 4.: h3 - %s (,. o u. j., ~ l 'y% e ls: 'g ', .3 ~ t.. ..m [.' w.~. -.... Photo 31: Typical HA2 microstructure near the surface 1 of the SA508-CL2 at the toe of the overlay weld (Identified as" toe"in the hardness report). Weld /Fusionline is in upper lef t corner. Hardness number of the impression in the photo is 350 HV 10kg. I . f ,f,,f hfy .m 1 .9 f h, 'Mk kqcQw)lo+yw. g r MgY 4%# 4 hQf i Nital Etch , m ' :y*g; ' s W% W M,87 ';* ch*gy 3 #, (~ : n V 9*g.,. s;w%. 'R +ali 400X h V :yp ,m ,L sy;y. p1. < .{. . % r.. k 8 iin$b7#g4%'(.h;Qq,S[(Q. th ""'~" ' g}a v c g>y.e.g;.pY g
- .~-
s < f [ a; j [ l7 g,g [y{ sp. c ,;_ p. g. ge l} p -*l s-g._ g l4QQ d [ L } V 4 pm g.E r r ;? F, f Vn; b[QV% Q.g., v ; [ pg v v V, _,. ; fg #. E. 3 g%.fa Q Photo 32: Same as above but at location "A-1" which has a harder HAZ, The vicker hardness number of the impression in the photo is 434 HV 10kg. l l 4 e
i l i-1 I t 1 l l i Appendix IV List of Data 1. Material Test Report For Nozzle FN2-1-5 l Contract C73-Cl24.(2 pages) 1 i 2. Material Test Report For ERNicr-3 l Electrode (Arcos) (1 Page) P 3. Work order H5173 code case Groove 4. Work order H5224 Norsle to Safe-End Overlay l (Water Backed and Non-Water Backed) i 5. Non-Destructive Examination Reports i 5.1 PT of overlay area prior to overlay. 5.2 MT of code case groove prior to welding, i 5.3 UT of code' Case groove prior to welding. UT of overlay. area prior to overlay. 5.4 PT of finished grcove and overlay after welding and blend grinding. 5 5.5 UT of code case groove after welding and grinding.. UT of. overlay after welding and grinding. 4 4 i i I e k I
- S. O. No
'8b-b MATERIAL TE EPORT OATE _Aurust 8. 19_7)t_ pe,,e.,er ,, B I fluclear Co. Purchaser's Order No. MlO 312-3 73-Cl2b ~ Distritmstor's Order No. L/F approved precedure Iff-12, Rev 'li,1Z.*d5 'Eo" E E o.
- Eo'."
ear v. car , is Fed. 3 ov v. Paoouer see c. 2 2 N2 Nozzle Mark: FN2-1-h & FN2-1-5 SA508-2 & Q2QIJN 573c 165o*r +25'F forff brAir Cool I CBIN Specs. 1a2 1560*F 725,F for75 hrAir Cool F for7h h Water Quenct 1290'T T 5 MS-52.1 - f: _2 new. 7 & QAM Test were stress relkred as fol: ows: -51, Rev.h Supplier 1150 F +25*F for 50 hrs. j 0 lit. No. L/F approved procedure SPMir-101; Rev., I: l y 212800 cHEt08 CAL ANALYSIS ANO 88EcHAfetcAt. PeoPERTIES orail woT meronts ^ " " * " ' Sito Y se _ eso. c new P s se en we uo
- u. r.
as P.
- o. r.
mu uanses Dreproi.;ht Testsng 573c 02cIJdt .20 .69 .007 .012 .28 37 .82 .63 .02 tadie r x -1 .1 33 720 .006 .015 .276 37 .0$$ 57 .017 Check 7 Ft>ur W specinens - -2 .183 720. 008 .ot h .276 37 .86 57 .01 8 check' 7 - 0 Two (2) each a180' -3 .192 730.008 .01h .276 37 .855-58 .018 check 7_g apart. No-break e-10 t -k .180 720 .010 .01 5 .276 38 .86 57 . 01 8 Check 7-8 to q'nalify -20 F rer. ' t Testing in accord:nce 573C-1 Mini== j W e - Jo0F 573C-2 Mini==, Npr 9 - 30 F with appro red test pts 19hIs-0? Rev. 1 Impact Testing Y-Notch 8 +ho F tn Qualify -20"F "INUT N'"* "w*o.' vNE. rE"*sU es U M O " "s"~ e.w.w. ewenov w.. e.: i.aya aat. e me. o,. s sue.. 573c-1 ozotJew-n.T. o 86,190 6h,389 26.0 70.7 8k-91-73 .066.068.060 80-70-70 i-180 65 0 26.0 67.6 83-82-73 .06h.063.059 70-70-60 Ac[625 82 TT$00 o 30 F 62-65-92 .050.05J.06h $5-60-75(V e +30*F) ual N1 0 ^ 180 Actual Nifrf e - 30"F 69-73 87 .0$$.057.062 60-55-75(V e +30PF) -2 0 91,767 70,980 2h.o 70.0 72-68-82 .062.057.066 70-50-90 180 88 500 68 0 25 5 67.9 67-79-83 .055.060.06h 70-83-90 Ac b 1 NFff d 0030'F 66-80-82 .oSh.o$8.050 60-70-70(V e +3[F) o 180 Actaal MTT e - ho'F '10-7h-7T .oSh.057.058 60-61-65(V e +20*F) I.cnape Forge certifies that all applicable requirements of SA5C8-? & CEIN J ".we. MS-52.1' . Rev.7 & QAS-51, Rev.h'. have been cor. plied with. Pace 1 of 2 pfg.;*; ..... -. ~ s
i W'ORK OR DER h suser A,( 7 w/, o, _R 517 i ) l i l i 60' I j ^ tNh*5NbN* W9N [ X ?? h' T'Y 6 %. i \\ 1'V' w >i s ,, s.. - 63 ..N u, 65 / e 57T5 i s a 1" 54 'I l 6 Xn/ 5-3/l i" l [ \\ 49 6 \\ *E/ I 3 N n/ \\ t a /* / (Safe End Side) ' 4Nss /fs, ( l l 1/4" 4 .) l I ( l SG POSITION l e a l-t ,j
3, o, u, 'sh-b MATERIAL TE EPORT DATE Avirust 8. 1911a_ p.,ch.ser . B I Duclear Co. Nchaser's 0.Jer No. M10512-3 73-C12h Distritmenor Distributor s order No. L/F approved precedure irr-12, Rev
- *',fe ^.E5
'[.b" "E OS. ' " o'." la Fed. 3 or v. enoouer senc. ear rnentwe r 2 2 N2 Nozzle Mark: FN2-1-h & FN2-1-5 SA508-2 & Q2QIl# $73C 1650 r +25 F for7's brAir Cool I l 0F 7 5 F for7h h Water QuencI CBIN Specs
- 1&2 1560,F 125 r for7h hrAir Cool 2
t MS-52.1.. 6 1290 Rev. 7 & QAU Test were stress reliered as fol: ows: -51, Rev.h supplier n50*F +25'F for 60 hrs. l Ht. No. L/F approved procedure SPMrt-101; Rev.,h i V 212800 CHEttecAt. ANALYS8S ANO asEcHAseecAt enOeERYtES Grain or necoars Sito Y
- eso, see, c
asw e 3 si ca = ano
- u. r.
a.s. e.
- o. e.
peu.mus Drcprole,ht Testing $73C WQUM .20 .69 .007 .012 .28 37 .82 .6, .02 tadle x x -1 .1 33 720 .008 .01 5 .276 37 .855 57 .017 check 7 Fotir (h) specinens - -2 .183 720 .006 .0t h .276 37 .86 57 .01 8 Check 7-8 .Two (2) each a160* l -3 .192 730 .006 .01h .276 37 .855-58 .018 Check 7-E apart. No-break e-10 e ! -b .180 720 .010 .01 5 .276 38 - .86 57 .01 8 Check 7-8 to q'nalify -20 F @{ ! Testing in accor&nce l 0 i 573c-1 Minisaan j M S - 30 F $73c-2 mh Nor e - 30 F with approvsd test plc ! 19hIs-n? Nev. 1 Impact Testing Y-Notch 4 +h0 F to Qualify -20"F "INDT l Q "** ' NEII.. eE"*,'No es N E 'O" s.u.w. emeney w..n tarenai.eme.e ssue.= 2 573c-i wouw-n.T. 0 86,190 6h,389 26.0 70.7 81_91-73 .066.068.060 80-70-70 4 180 65 0 26.0 67.6 83-82-73 .06h.063.059 70-70-60 Ac[625 82 ffTh00 o 30 F 62-65-92 .050.053.06h 55-60-75(V e +30 F) ual NI 0 i P 180 Actual NIFFF 8 - 30'F 69-73-87 .0$$.057.062 60-55-75(V e +30 F) [ -2 0 91,767 70,980 2h.0 70.0 72-68-82 .062.057.066 70-a0-90 180 88 500 PTT $ 00 68 0 25.5 67 9 67-79 83 .055.060.06h 70-83-90 l 0 Ackual N 30'F 66-80-82 .0518.058.060 60-70-70(V e +p F) 180 Actual MffT 8 - h0$* 10-7b-76 .05h.057.058 60-ST-65(V e +go*F) Lenape Force certifies that all applicable requirements of SA508-2 & CHIN i Spec. MS-52.1/ . Rev.7 & QAS-51, Rev.li. have been complied with. Face 1 of 2
- 7. M *.'."'J7.*. O. T.c'*E *'****
~. - - ~ C. ' g " DIV. OF F10 SKINS MFG. CO. ( P.O. DR AWIR 300 MT. CARMit. PA 17881
- poi, Oeteber 23. 1984 CERTIFICATION OF TESTS g3 3377,.
f Customer's order No. 43701D Arcos $. O. No. 18313 tnicago Bridge & 2ron Shipping Dete Cetebe r 23, 1984 j c/o Copper Nuclear Station 2 Miles South of Brownville
- ASME CERTIr3CATE QSC-448 /
/ Brownville, Nebraska $6321 Expiration datet October 23/87 ITEM No. 1 / size.nn v na me Crode ARCOS 382 # Y4815N382 / tof No./ Alloy No. i 4308 lbs./No. Pieces ASttE STA S.14 Class ERNACr-3 ( Asett section 22, Part C / Tilt $$ULTS $ (CWCATION ASME S & PVC Section III, / 1983 Edition, subsection .02 / trban .NB2400 and 10CTR21 neolies. 2,9 / mongsnese / WMS-4N (43700) Rev. 0 .1$ v. $11ican elphur / OAs-311 Rev.1$ .009 /. .00 / ..issphorus 18.1 {, Chramium 14.3 / .chcl .054 / clybdenum .38 / Tlignium 23 (
- lumbium *Ta s
er Alv .n .07 / "SPP2r 1.7 / an i .00 lentslvm .01 Ceboll o n .094 / e ensdlum Iint resnivm Total Others d.50 / ,rrit3 X Ray As welded keeste.ei.d iorpyst An wended heee feeee d,, tnlil $: Wid 1omeAo Blesig. m id tonelle
- gleng, sed,ofA,,,
5 WGlded. Hssi Treot: + l + stdnsist ends: 'e hareby certily that the obove meteriel hos been tested in occordonce with the listed specification end is in conformance ' with equirements. p, J() _..m QvolityMirol Section
WbRK ORDEra 8 Sucerd,(7 we, e, _9 5i7 P I 60' umma,~ . v wm >,,.,,. ,, s.. ) S . X 6. 66 [ s7% 5: ,[', d I" I p (( 5-3/1 i" l \\ d/ 3 \\ st / ) h t s f' ) l [ (Safe End Side)
- gyg, j
,t' 1f \\, 1/4" l k r l SG POSITION l-4 -( j t ,.. ~. - -
I . shui se -- WORK ORDER AND REPORT FORM IMPACT .w/o N.8 S/7 3
- t. i. //eurre N c,,,,,,,, 4r s// t. 'n,,, u,,
.,,,,, ',.v ei - c. M qa 7673 u, . 'hi Arce .c,.'.. ce. 2.../ r, a t, A.. .u',g
- 4. KA M M Isp4. M
.C'i,' u1A .u,il(2)- .T$. - E* .e.cus 6 M 't $.C.,e.ni/P.i.,ity b0tM J.iat Ty .w.w Tuh: Sid.iwHe H & I W.'sh D.,. ~
- t i.N,... AWS N^# T I.N 3 A
A a > ^ d' Cary-att n 8.i.h N. 9 4.T7 C U 3 P2. ., #., c., ho,'o e.) -Me, W,' ci,, m.i.. a n s A. s .,!.. A o a T dr.t E & rwsrv.as_ _ G !E T .ra 2,.o,...!...Ecs . a.. E," On" 70,7b M
- =
ow.
- a'**
v*a' a '-* ' o,.i. e.,, W.i.... ' * '" a " $ ire roussa we. Putu Du. Pa ttes reta, uno. cWPs SIIE Me tit E To *I 41's.* END
- av Luc.TO R AL E s.. c..i as A.'* * # E' ovirftLW cu ALi rleationi Ta t r-w.6. 6.ich.e 6..ai sei.is; N0 6C'NaDeA ta.
3 hes.v :
- '0 3
e Oe t ttt Astu. PUET art 11 so'F /14 WE1 \\ PLlo ft.fi,' ta)Et D 14d U net t> t ue, ORA po l>m hG Cm L b TR ad.J, g e drTAlW PULSED ARd. G tysdPlatsf*K. Vf h8^. En a.mm a. d% 8 aa v.E Le L En/ 8 IL E d' I'l LL II IL.Am q u b e.L F ust a. O md saanest A .env#r eg, S1 aiu m = n-se m..ia r. A o ac3 /eu. f k1.31a5 Clab @en M! L'2C *r 1,0 Mast &Thtfut$. Ob E', Oet 8 - TtE s't Diim mL* %. N 614T 4
- d I 2.k I~ M2.
- I * $
7 y,,,, p.,,,, gg,, _ pg, y _ g, i.,',, tes, p, - gJ/;n. ewa arv v.wovew iue Act test / s d i..G 7.s. s.t. s. a.s. a.s w-+ esavn 4.gog-u.i.h g,,, ;- ~ a w sea 'T aar
==. a. t.ui. 'o,i ni N.. u.,6 r .e . p i. um. L.ii. e...n sne .Si . o,,,, .y .na nei .,s s H A 2. I M L. (s. Iti +2.0 7e 6,2 fe 77 H 6: 4r 4 se A ' ' * ' " WA 2 I
- t L
- f., +2b
- f 91 91 ff ifid, 1e as 'M
]Il ~. I U ~ t HA'L I 'As L. 3 'N + to h 79 18 C1 Gs 44 6e toe se w .L Q.t. _1 N .!. tE O' "'a. ' s l ' ' "' ", ' am .i. 4. c., @ +to us 's.ie. 74, a o a 4 a. 4% i t. +5s. 4 20 94 e6 43 61 's v3 m is Se "' l.E ~JrU ~d ap. w. w ,g ,2 2 el. is fa.2.ar.L 'D "
- SM i
ST L. 3 't f 6 +to os de en k da de de g, to MM i %T l. 3 'iY"
- 2.e e3 58 +f JJ da J7 So is Q y,".~"'~ '
w % Ma.w faMtit e t hadPfu er C mea /1'a. r. d nr d% ) pannitt wo. MAADNt554 V a) f216 -fI ~ -. ce ; Waimum voiv. CMEMI5TRYi. 1H Sie. 2nd Sid. aus) KC ' - d ./.
- m*..
. pi,,, .nc mt.i LV Te.rr TEw9 mu Ats r oar + uM., es. - /.- u c ,,e., .iten: Ce oa' O. Asa M ML FT A PsR. ma - Ma' eJast.a T. SArs. sus stauc.waAs. evastay*%fppg,- 8.- W" s ,,,,,qy ,fe) j ...e n .: qu At.tvscanoa Test Pa 4,n.% Tus r tasut n mm.aT u M-+32.. a ru um.~'hE't,. ep. \\.' LA.T/PT(#51 ro l hassaauan ms vi t ec m )-OK, "' ~ ~ ~/ Artts. c.sacarsb wei B At A*4tt0M8864 ~ ~ * ~ ~ w,,, 5M cv m, _, _ T,'T-wu 9 del-- j .p. sow C.mpi.t.s. f%ssas toa.tt 8stw to K:r/#w. un .seisaii W.ch 0,e.r 8,i 0.i : y / Pt.o. g y g e 4A.v.*.a.,/*% '.* '?'o'. *rt* V. *, GL; paa,, //. j.. J' ; agy,/ g, 'T - hag ' ~~ j S m.ad e 9014 3 f.c in.it.etions f.'..mpi.tiste this f.esa. Al -,' W88 .t. U;.,,,,,,,, ....+,,,
- p
..~,....e,. ..m--, -t .. m ,.? 2 j kini.e in USA WL. ll6 (P RONT) ReV SE8 8I I t
l i N b817 W/. Al,, f/73 1 ] Low Pulse Frequency = 1.5 i Low Pulse Width = 60% Synchronization Pulse Arc Voltage control Continuous lVpslope time ] 3 Sec. Downslope time 10 Sec. ^ ,lWire Start Delay 5 Sec. Travel Start Delay 4 Sec. f .i Number 1-4 5-6 7-9 10-11 12 13-16 17-18 19-20 21-23 2I" t
- Primary Weld Current (amps.)
200 200 200 200 200 200 200 200 200 2b7 lBack round Current (amps.) 100 100 100 100 100 100 100 100 100 100 9 L0ut Dwell (primary)(sec. x 1) Excursion time (sec. x 1) --] In Owell (primary) (see x 1) Oscillation (in.) l Primary Wire Feed (IPM) 31 31 31 31' 31 31 31 31 31 _ 31 Backcround Wire Feed (IPM) 21 ** 21 21 21 21 (1 21 21 21 21 Travel (IPM) (Torch Sneed) 4.23 4.14- .4.05 3.97 4.23-4.14 4.05 3.97 4.14 3.97 'rimary Arc Vol ts 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0' 9.0 9.0 l tackoround Arc Volts 8.5 8.5 8.5 8.5 8.5 8.5 - 8. 5 8.5 8.5 8.5 l teat input (Kilojoules/in.) 20.16 20.58 21.02 21.48 20.16 20.58 21.02 21.48 20.58 21.4f 3 nergy Density (MJ/in ) 1.93, 1.93 1.93 1.93 1.93 1.93 1.93 1.93.. 1.93 1.9: C2. fJ Zr-3 .04T"6 ' P't LLE4. wCT'S (, 4 J i cWTk '2 Va'.et c s.,s e., a.o os. A t e, ( tt.- c.or. 4 0 C.F H-A m.c,.v Fww 2 ave. ~ i l l L----. --- ,.w-. e-.-
Skec Th e W/o 4 RI7 3 WORK ORDE.R Pass Number 25-27 28 29 30 31-34 35 36 37-38 39 40-41 Primary Weld Current (amps.) 200 210 215 210 200 200 200 200 200 200 Background Current (amps.) 100 110 l 115 110 100' 100' -100 100 100 109_ l0ut Dwell (primary)(sec x.1) ~ ~ ~ ~ ~ ~ ~ ~ Excursion time (sec. x.1) In Dwell (primary)(sec. x.1) Oscillation (in.) Primary Wire feed (IPM) 31 31 31 31 31 31 31 31 31 31 { Background Wire Feed (IPH) 21 21 21 21 21 21 21 21 21 21 Travel (IPM) (Torch Soeed) 4.05 4.25 4.92 4.92 4.92 4.74 4.92 3.09 4.92 SJ11._ l' ' ary Arc Volts 9.0 9.0 9.0 4 9.0-9.0 9.0 9.0 9.0 9.0 9.0 g around Arc Volts 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8' 5.' 8.5 8.5 Hea t input (Kilo. joules /in. ) 21.02 21.31 18.94 18.41 17.33 17.96 17.33 16.74 17.33 16.14 Energy Density (MJ/in ) 1.93{2.05 2.12 2.05-1.93 1.93 1.93 1.93 1.93 1.93 3 ! Pass Number r 42 43-48 49-56 -57 58 59 60 61-62 63 64 ' Primary Weld Current (amps.) 210 200 210 200 210 200-220 220 220 220 _ Background Current (amps.) 110 100 110 100 110 100-110 110 110 .11.0. .'Out Dwell (primary)(sec. x 1) I Excursion time (sec. x 1) [In Dwell (primary) (sec x 1) I Oscillation (in.) !_ Primary Wire Feed (IPM)- 31 31 31 31 2s -so 'ss 3s is 3 8__ 3ackground Wire Feed (IPM) 21 21 21 21 1s to 2s is-ss sa ! Travel (IPN) (Torch Soeed) 4.74 4_.92 4.92 4.48 4.48 4.92 4.64-4.91 4.64 4.64 3rimary Arc Volts 9.0 9.0' 9.0 9.0 J.0 - 9.0 9.5 9.0 9.0 9.o' deckcround Arc Volts 8.5 8.5 8.5 8.5 8.5' s.s a.s a.s a.s I a.sl 9e, 30ut (Kilojoules/in.)- 19.0P 17.33 18'41 19.00 20.18 17.33 20.18 19.08 20.18 20.18 3 nergy Density (K)/in ) 2.05 1.93 2.05 1.93 1.79 2.00 1.84 1.84 1.84 1.68 J
Uf,$ h h ER 8 Pass Number 65-68 69-76 77-82 83-90 Primary Weld Current (amps.) 220 225 225 220 Background Current (amps.) 110 115 115 110 [0ut Dwell (primary)(see x.1) Excursion time (sec. x.1) L in Dwell (primary)(sec..x.1) Oscillation (in.) Primary Wire Feed (IPM) 40 45 45 40 Background Wire Feed (IPM) 30 35 35 30 t Travel (IPM) (Torch Speed) 4.56 4.47 4.38 4.64 { try Arc Volts 9.0 9.0 9.0 9.0 A...oround Arc Vol ts 8.5 8.5 8.5 8.5 Heat Input (Kilojoules/in.) 20.57 21.58 22.02 20.18 3 Energy Density (MJ/in ) 1.59 1.44 1.44 1.59
- Passes 78 & 79 - 2/3 of circum. downhill side.
Dass Number 3rimary Weld Current (amps.) 3ackground Current (amps.) )ut Dwell (primary)(sec. x 1)
- xcursion time (sec. x 1) n Dwell (primary) (see x 1) scillation (in.)
rimary Wire feed (IPM) ackground Wire Feed (IPM) ravel (IPM) (Torch Soeed) -imary Arc Volts tekaround Arc Volts l .1put (Kilojoules/in. ) 3 iergy Density (NJ/in ) I
TEST SPECIMEN CUTTING SKETCH )!/0 H5173 4 H5224 of [... n..,...,.,. I t,'::':.m$ i'a -i' ti;'!:,,. s / n..,...,. n. s ...:....in i... / m,n.. SECTION A.A e f " *.u.in (W/0H5173) o e s i w c a t. l.. t. ) E """ \\ I / o.m.m.in s \\ / N / si.. / s % s'a 8.a* s-i... n..= n ~~ i... n..i,.....n. = i. [ n t'::.' 1 "a
- w
/"'m,.. m.i.N. e i. SECTION B.B !*,- s e. (W/0 H5224) ../ l =,;. ~,,vi .._-g,
- .t;rd
"") U$ si. N t', 4 gg i = min ~\\ .N o, w r < ~m. ~> I- ~ .r,,,.. '41 7 x / ~ '% l ~ c- . sn 4 ..wi 4-- N0ZZLE ASSEMBLY-LONGITUDINAL SECTION' -v
f I I \\ r_ I / ANY $ > - A -+ I .w M M J< 2 b o 3 2
- o W
2 e
- m 4
= a e s' e d e ~- i E R h n e N n e H 8 E 8 k 4 s e e e N o g k. $ k
- e
= n a u ye
- I i
m n c e 9a l i 1 i. w ~ 9 o o -W E E 1 a g m 'I )[ li
A+.e-.psw-- 4 JL -->.44a=.. m au.._ d..-~-4 4 44 g-Jaud -*Ade'd. m.,--- - - .4-- s,aa, A c-m P 4 l D mp I \\ n 2 ON I I a 4-$ o s 2 e a R. ~8 4 + s 4 4 o W 4 4 w i k k N E l N 4 u 4 4 x U h N N 4 a ~ 9 8 4 N 4 d 4 4 4 2 9 8 5 M C c. Bi . o. m 3 o a o 4 I h e a e -o p. = .o. 9 c. =. J J 4 4 b b w w w 0 g R 4 6 y o. y a 4 4 o N 4 0 4 0 a 0 .s !;E o 4 4 a v M W 9 t e o. o. o O d O d 1 g' 19 y m e e 5 1 gg a on a Y W b v e s g i 1 1 m. .m ..~. .c -4
W/0 H5l7'S CONTOUR GAGE TRACING LOCATION ___k kT F E. h_ L Agst.1 [ 7eios y, g/nbs%. r ( er 4- - (- 2 70' "- -t-l i A m nr j l ter 4 l 3 l f / A j 0' t 45' / /3 i / i f i l.ook /.083 %/ i ] j 135' ,,im g. .M uwican Ga vs. 180' - ---w l l 225' q i ,./ \\ - 270' 4 /~'- .31 5' e t G
l METALLURGICAL LABORATORY HARDHE55 TEST REPORT 3 LEFT rig 47 AFe gNb $sDh. H5/73 Work Order No.:- ~f 9 6 5 6--1 y y 8 --
- f 6 7
Material: S A (O P-2. q-Thickness: 5 L g. UN "~3 Electrode: N PWHT: Petition: 5b g Test By: A El
- 2. - / 7 - I 7 o,,,:
t.ocation: W TO 1 4i I g.oo r $ ""Cd g'- I P 9 vuru in av AREA LcFT-TfDG b d7 Sipe S ci 7-I 2 9 (o 407 3ff 2. 3 c,-2. 4 17 3N r ( 3
- 2. E'4" BfL
- 12. ?
4-
- 2. 2. 4 2.6 l
, c) g-l T / ii 3 /TT Ito e I14 1% )?t l 9 t *19 ifG tt& 7 177 /13 tLL 4 Taav r e sta TpActus I *t's E 3r YL A w l C' v. 1. I mu l l 4 *T. ~7 L r.10 me 4 m It e
i METALLURGICAL LABORATORY HARDHE55 TES T REPORT i L. C F T l
- AFE tuD si>E)
ElCsHT work Order No.:--- H 517 3 Material: S A D8 *2-e e e T h T.l.amJ Thick ness:- 3Md Electrode: EAdMF-9 1 pwgy: N'F / 2 W. Position: f4 1 s Test By: KEN Date: 7
- I ' - O '7 j
Location: NCE To d ) $pe.clM r.M C Rooy e n. Ver ens (6 k&. l 4REA Lg,T A,,,,,in d hu[ b _i. ,,8 m u, l 2 M96 191 1,e 3 191 134 ist + 9 4- ) Zoe 2.o a i l T 14 4 17 7 l?e ._ 4 t74 179
- 7A i
7 17 9 174-177 Uwd,, _ 17 4 172 1, 3.. l TR Av rAtt s ame ier. 1 v. t* r I/t. m C' r. h e i mm (. v. *7 L f.10 1 1 j __ __ amp e 2e Me b.ggggg - h a b -.,,I -~ _ ~ -m
.s ..iie METALLURGICAL LABORATORY HARDHESS TES T REPORT L t. F 1 R ic,4 7 hME Cub 58 2 6/ 3 Work Order No.: 7 6 5 *~ ' 1 7 J. u,t.,;.n Sagor.t =** gg Thickness: byAL Electrode: IE Ib"*3 500'F /2 Ate.f PWHT: Petition:-. Sb g Test By: AC o,i,. E ? 7 Locetlor.: W TO 4I specmeo D S* Eoo wc h en_n to kew-AREA L c rr T" Tf D G ,% 7:Gk Y T#N 8c,o r-1 314 390 30f 2 4 ea 294 336 3 217 mod sG4 130 zit
- L I I 6
- 2. s i Zoo
/T3 b /?S /P3 IF7 7 st7 /?o /?9 i 7 l74 175 207 % v ar n 4 e EP Ac t Vs, I f. E s W. n T Te de I m% 7 n "7 L e. to 1 1 1
i 4 r
- sa i e-i WORK ORDER AND REPORT FORM NONIMPACT 'w/ow..Hil73 _
l supp euear ous To O c.,,,,.. N..s il 2 't. *,,*n,,,,,, .....a- .J/,.i A 5o5 .c,/ 2. wir. n.. A.. l r A= -
- 5. N 9.;
.d,,j L w s.,e ro a.c. ct. c',f,, .u'fiini . t s'. - G l .,,,,.., corA.,e.c.,,. ave.i...., t e e. i.. ty <t w.i. v h: sis i...we w a i w.'.* o.<. --- .ti.g,... Ans t W 3 4_ s e t. Am, c,, un
- e..* ~..ymm m_
.,iJ '.,c.. _ 3 u e u . Je*, ci v u..i...Aa - s as _ s i 4,6.in 2.a T JtJ 9_o.T rwwr T.',_ E 't.'-.._-._w, e.l. a _N_ l $" s'$n"- c,..a o.n weise,: 8 '** 0 '* - V'"' .M- \\4 6* AuctLe-vcu.TI c.at Ded. i GwPS l ... c.. w., mm: ma4.~ a,,re e,s.., p.,,, 1, ( is... ...n.i 9....o t X.Cacr. [ (.l4 !!. A FLAT T44CE BEFo ng i T/m M dc L LEl:TmM d. FEc% kJ. "A ' ru a 1.f man ue l qs g s % ns in ns w pa,n.isst si >c. / p*Q, 's + % g... h.n.43,s7 usstus e,- .i r e a nin m l \\ \\ i nne 'g V i S6 Th me. r u e. xweri w-r:. J.r-. .a l s i \\[g 64a ra nuest A w.rer sq .orLh.Ja 'f tr a E,sj.,,, l s s s hem a. s'g \\ T.D A E, T E 1 tD t LL ty ga dl / l I\\ N \\ T.ui e w. s.se L snee M.ei laevi L.m *.es KJha. n } \\ t ~t,i TENSION TESTS: s Is., ), [ s 'o,6.as
- vTg i
'vs.i ass nas s N g ( L.T.87. A g, 1.T 47.R .m. .uq. /.vi A @ f u-vr+ s.- ,aituas J'. g i, e./q3 b *u S*) _c.- -- : ~ $ 7. R P , L DeqNc NOTl' s H ',,,, . WM
- 78RRITE NO.
Wa ADN8554. Mf, ,,,, C8 f M.sim.m V.4w. j CMEMIETRYa 1s.$se. nad 5.d. . Phi. 'W. 'RC -
- e., _ _
- i.*
r ..1 : cau.v.E me.( hw.,a dul e._ _ _ = _. _ _ a-. us= t.crr ovu. rs.s.r we.w. sy m. ,,u ,,.,.4mmO. - ..4.....; ,,u "5di u-t'.' .wp TE.UlWCs AT flif.f'AC.S. AFTT.A. ( [~,~] ],* ~ ~ 477ACRh rs.eca. saaos. = e. I~'Z~ 3*' b 'D ~- - " ~ ~ ' - c.m.i.* were o,va ev .i. : Piew a: O S_ o.*' J l E*F7 a8v o
- c..
'Z ~ ~ MA: v s . so.: e., i,.. .a.. 4. e.,- As.... _ = Ti - .... i. m.,, N eu. p,taiee in US A wt ist (PRONy htV $EP ll .j
~. h WORK ORbER su e, r 1..r _ w/o u. Wr/73 TOPPLEMd* \\ f31. Tsmpes. blabs (1). ~~ MSArc sub) i \\ f s t Synchroniza tion "Putss. Asc., Voltage control SAM PLE D .Upslope time 3 s ec.. Downslope time 10 sec. re Start Delay Travel Start Delay 4 sec, l Pass Number i 7 Primary Weld Current (amps.) /to 12 0 [ Background Current (amps.) 90 40 Out Owell (primary)(sec. x 1) i Excursion time (sec. x 1) In Owell (primary) (see x 1) ~ 0.s:11et e. (:...) LPW 1,0 t,o i "- N r, "'r: F::: ':^t !Pf I.T l.5 Background Wire Feed-{IPH) - i Travel (IPM) (Torch Speed) 7.4 2.4 Primary Arc Volts 44 9.0 Backcround Arc Volt's T.T
- f. 5 -
3 Heat input (Kilojoules/in.) 11.4 20.93 Energy Density (N/in ) 3 i 5 r v
g t.< _ METALLURGICAL LABORATORY HARDHE55 TEST REPORT 3pg 3EpoRE NEL.olMG fitept,R l L.try Ric.HT \\ uc.eubslet Work Order No.: NEI73 !SUPP 1 l g f 4 +-- l 1 7 1 --* 4 T 6 j, l Meterial: SA 8IOA *2-g . gh Thickness: 33A 4
- 4 Electrode:
EAMM"*9 WN WAT TL.. PWHT: W'd Poiltion: f4 N~k Test 8y: ICW / AEN oeie: 3 A 8 /87
- Location:
Nads To L1 Spc.cimiu A-l. R= r Vn r_ < c a s IO Ka. [, AREA Lg,T (Sara rub O2 h ur A I 4el 36o 3 71 2 Moo st4 R l 2.4A 2.49 4' 19C 1 2. 4 5 11 6 1% Z (= IBA 149 7M i il evi e m ee games 4 eem M 4 TE.AVCE?C Spar. i t.h iT+ T Pt m % 4 Te C ' I m m TL4 5 6 f. le m % ? aumenes ,( i
S nac T d _.i _ i METALLURGICAL LABORATORY HARDNESS TEST REPORT AFTER WELDlaJG 76MPEC Duf,5 I LCFT ElCs HT \\ arL Ewb SibE lEMPEL WDI N SI ~I3 (/500fI Work Order No.: b T~I Material: S A Ub *1 ee* e y h f,1 emJ Thicktsess: 5ME e Electrode: ES dO
- S WM
- 7 7L*
i PWHT: D'UC l Position! Test By: Ad Date: 3-Ib'I 7 Location: NmsYou Spa.c im e.9 A l. hov vic k. cu to (. f., AREA LtpT[hrraubCas) *Rimur A / he E tt. 4 12, _2 s L7 796 l 3 13) 147 4 114 2os r ITC 19c i to 1F2. 194 __ _7 173 17c' m WWuum
- e egen -
4 l Ti' AVER 5 C SIMC.IVGe YL m% 1 To E Cn b mm & TO 1 b % b wm me r ,-v
I . sheet - et.. i M WORK ORDER AND REPORT FORM IMPACT .n/o N3. H 52.24. N 60 3 T(> kJ c.nt,ect No.NNIII Med Ten N., t. t,..
- P0a N..
- 7 *7 l *I "I*I/A 1508
. c, e.. "E
- HIT. M
'aeA Aed,.. 'Tife 1.2es % .,4n . u', i Lt.a A eE k m ar.c',,', d5A .u!fitri.O 4
- 38h '70 8 ~2 cm %
.,,1. g A_ J a.c.,,..v,.i.,ii,aa M s..aiTg. a'
- w w Tau mm w H a i
- .! hoi,.-
.,,,',,,e,,, n m e r 1. g n2 ame.1 ci,, - 0.5 A sei.e. N.y4t7ru.s a r J l .,,. P., c,, Aeaou .,Jr, u.i io,e Aa s as _v. i
- cir, r,.. g 4 e T' d7_- _'c ensTret,._._._._'l T A,e_
._w,..!.o..K Cu ...,,s., 2" N," c,ei,, oi,i new.,,.n x 5e. Anl S.a Pe= ca. A,, es va'is ira a.=e,6
- l
$fta feuou u c. ?Ar.t.s F3 rt 9amw e.rs = LAs.s.b cors twAW Sur % u tr re Sarr.swh situ erus.s A DVrathu te,. c. iia, OuA_t y te,n.nw/ Pa.orm Ea.De ran s ~ <~~ ~~ygg;f, sea.w M.,, tat. Assu Regr A r il 70*r/24.Mit w/o H5114 Ps io n r. Oet.bwa_ [gYh Nk L.b ifJ an PE.D. FC tt naeb/OtbL5 *& he.tr., I l 't w- _ GTw Putsa n Aar X uCTraid Mrwetr,Vgm WMAWt B EA R=7 mh 46K'T fi u. I' ta t e.cL Fir _ft h /D l. PJII ' 2.0 M Ed. A'3OO LES. Atra a.mmtb>JEOew r,D#n read aacis DA'5L [ -- S- -i I/? Ole "J"o t uT M.() LJa nc rm' as'mh nme ~ J s a onu,ciak acwa, n,4: UkC 9tA. ffr A'T 9&D LLA M NEAT Mo. 612.4 F Wt.-L*f T ies posses Si.e 1 Swe M.e ineet L.et Pese ,(Jria. CH A APY V. NOTCH IMP ACT TEST / p.s Sisei 8 7.8 8.7. S. 3.3 3.8 mm TENSION TEETS: 4"*.19* V S p, ' e n g h g ;,,A.I, M 5 pes 'TeseqJ 8tesHis 'N.teh .g,,,,, .yyg .yg L.est 6.n ~ O,6ent N.. hee,k Tome C 'Pt. Lias. 'L.it, E mp. ' E Shee, bei k ei . g,% ,N f f' H A'Z. l *f L 3 '2/ 4 to 95 h, 15 4,e fr a,s fo 4alis go BM l AT L J 't8 4to +3 +t 'e 36 9 9e 4e 5e 50 f .7,L ,1 j y c, ZE.id D -p{ = = 1. _- S.2 4 - 6 2 we ie i. 3 %D + 2.. 's, 19 9. 11 4.s 75 r. 4. v. '}d '*$
- 7,""
WM ' %T L 3 'Ls + 1.6 +3 51 45 3s +d 37 4e J5 J5 d l i d h PLu. wat bam er omm %?v d.,tvj S'93_4s_e__ W~ ZZ ~ ~ ~ ' 'a" = g l80,"- '- g',-pe "" Aba UV7kr Trno semen <r aAr e er ~ 9 q FE AMTE NO. tLA A DN E5 n ue. - es-- ..-.m vei.. CHEMl5TaY: 1st SW. 3as Sese .ac .pisie .w.w i et. Pm. c--- "~. Pv,p.ne et Tem: Na z.T L T. 'S SAF E.- e.wD STttk,TutAL
- a - - -
eyes. lay WAuFicATiou Tis T m e.A W 5 A ts 3,,,,,._ q F ..i.eo...e nes. i 2 wi _ -
- -e m suisme.n.y.
e, - - - - a-. e M-v' H A ti
- 3. %.
,o poemt asirac.rwe we.t.ai,,e cuc. T. u n win.4 w6=.* **s asme.e fa w o,u e,,,,,, - - - .w,, s' c. ..w.ho,,eriom: y 3yi.TohlM ). N'hl&W 5 ; A E1) Dee.1 11*2 76AEV & Ce,Z MAI Q, W See seen.e,e 8014 2 f., i,ist,.cte.as f., e.mpieting this f.,m. Al,,, .y< .t. .e.. h..
- u. von-i y u _w - l s
t si u i J print.d in USA < Wh ile (P AONT) AEV SIP $1 + .----ec, w -e--.--,-.m-- -,m -w,, -_.--.w - +. -, -. - ,.%..,,,---~------[---~ .,-m-- - ~ -. -+.-u+--ww.
f L w/6 g, N52.2.4 CSI. v)opK DR.bE.12 sneer *z ,( ~ ^ t l i 1% f 147 [Tr.ePER. $W5 -NE ~ FAsstf 142. 7We1414r FAom To g, oF P Att it Fo rt, r/ At.t a> G # N No FitstK M ETAT. AbbCb. l.a w/ spof-T. w xNx x xjy(m l CG a c c e=KK Q",Q QQ Q M M' r c c < < r c C c ( q w c c,< m' m=== = a w .N, y wn. l es s \\ / ,~ \\ t \\ \\ l \\ s \\ s j y Allt. Yp so4L S A 508.c.t.2. M g g,,,,, g g,3j l N eu. ut. s s ',di 4 i i 9 gdI(, F4% b r.m.dic,. -3 Synchronization qu o "Pau: c Voltage control /huy e vo oi,)s Upslope time <;- Tec.s. Downslope time 10 secs. '"fre Start Delay 7 ggg. Travel Start Delay (, sec.g. ,.ss Number l Z-4 5 6 il /4 16 3>f4 5 5-72 73'11 40' 9/*/04 ! Primary Weld Current (amps. ) 22.0 2.2D 220 220 22 o 220 220 27.o 230 220 Background Current (amps.) /# //O //d im No No //o //o 's //0 // Out Dwell (primary)(sec. x 1) 4 4 +- 4 ,4 9 4 d. 4 .7 Excursion time (sec. x 1) 3 2' 2 .2 .2~ .2. ~2 i.b .Z. .Z In Dwell (primary) (see x 1) A 4 9- .3 .3 3 .3- .3 4 i Oscillation (in.) .Zo .24 . 2+- .24 - .2+ .24 .29- .29-24- .20 primary Wire Feed (IPM) 4e 4* 3i 35 73 .35 35 35 Js 35 Background Wire Feed (IPM) 30 30 2.5, 2.s 2.5 ' 2.5 - 2.7 25 2.5 2.5 Travel (IPM) (Torch Speed) 2.s*J 2.if 2.ff 2.ff 2.77 2.47.
- 2. 6 +
2.64 2.G F 2.6 f i Primary Arc Volts. %O 9.0 4.0 9.0 9.o 1.0 - 9.0 9.e 9.0 $.o Backaround Arc Volts 9.f
- f. i
' t. f P. i P.f // tf f, 5* F.5 F.f Heat Input (Xilojoules/in.) 34.84 3F.?f JFJi J Nd. #0.33 n.* _rd.3t
- 74.
- P 15'% EN 3
Energy Density (PU/in ) /.f7 /. 6 + 1.T T lef 7 7.# /.f7 4 ' t7 '.f7 /.f7 /. t ? - /. E.R.Ri c t- ~3 . o 45 # Fiis.es. ut a.c E WTh V3 " sti-E't e c 4 rt.m g c d.LL c.v P '+O CFM A ngov Fus e R4ry, j l r .I
c.u wonk. onben. w/o a, p.1224 saer _a_ t i Tynenroniza tion sgf.qcs, voita,e controi couriuvoos
- i. :) ope time
{3gc,s. Downslope time 1 0 '58cs.
- ire start oei-
._ _. 3. sus moi stut ai r q s g s.,.,. Las Number
- s'n #9d( l J
li'tmary Weld Current (amps.) 7.,18 tie /F0 /2d Background Current (amps.) No //0,90 60 Out Dwell (primary)(sec. x 1) 3_ 3 ,g ..) fxi:ursion time (sec. x 1) 2 .1 2 2., _ le Dwell (primary) (see x 1) .4 .$, 4 A _l ,1 05.eii1a tion (in. ) jr.maryWireFeg,d(IPM) . Edj.,y,,36 .14,., q K 3s g, !:l,@roundWireFeed(IPit) %s 25' t
- b. yel (IPM) Qo.,rch Speed) 3.7/
2.7J_ !,132 2 7 2. j,'. mary Arc Volts 9.0 _ 9.0 9.0 Q,0 Br.ekcround Arc Volts I.E If,78 P.I H_edt input (Kilojoules/in.) 35'.97 35 14 e En.trgy Density (>U/in ) /.I7 /,I7_ 2?.79 19./T I 3 i e
I 1 l TEST SPECIMEN CUTTING SKETCH }.'/0173 & H5224 i of g. f.a.de.frea see. 84 .LN,ih, 7 ; I " a ** N ,,,,,-$~~~ Yi"h..n 8 'a *** m / s / e,.....,.
- c...s.us. a N
~i.rt in
- t. o..
/ / -- SECTION A-A i cv.=r.n.in (W/0H5173) I e a l t re*,,,,,,_ w-s.tes t. y.< '"a c,..... in / w s / s N m,, 1 i...n.. ,n --./ -~ i... n..,..m. = tw L'M" A,, -{ .e n..am.
- 6. ens i= =
m . /~.. pled leuf SECTION B-B US %tta k (W/0 H5224) {0ti' ,-. -- g, p.,s.=*' j - k.g,g,g, ..n ( t'A".e -i gi;w 7
== ~\\ g+t-lean ne.ast=4 leettle.am S r'. I et.ang.' ur 3 f-x 'Nl ~ r 4 .n n.us ,e N0ZILE ASSEMBLY-LONGITUDINAL $ECTION
I W/0 H5224 l of l THERMOCOUPLE ( T/C ) LOCATIONS l w \\ t ~ 4 weier \\\\/ t 4, s,,,.,, l 5 5 5 5 6 6 "::=. o.
- a. o o o o-e-
< T/C T/C,_,.. i i i i 3 l SECTION A 1 l 4 i L l 'I i .) ..1
W/0 H5224 of j I THERMOCOUPLE ( T/C ) LOCATIONS I l ,,e N '4 l k l UU""' r \\\\/ y-, k r,.i [ tit g,;_ciewier u.... 5 5 5 @ @ 6 h ::. Q 0, & & Q Q. 00' orr l e. 1 { ori w ter "0' t,fc ,,, p - H' I in. SECTION A _ PEAK TEMPERATURE DURING WELOING T/C # 'F LAYER 9 3 Pass 8 '2 Pass 7 1 Pass 1 -2 231 352 19 246 356 27 i 3 221 331 53 230-356 45 '125' 220 37 4 222 322 56-215 ~ 335 65 123-281' 72 5 213 293-87-181 295 80 -106 238 73 6 204 292 93 187 285 100 99 242 106 7 199 ~280 118-181 343' 112 94 - 198 107 ( 120-8 186 267 126. 174 '274 136 88 208' 140 s l
' y//o _ Hf22 4 RECORD OF T/c. Tts p. 3v2.lM G KfEl.I)lhIC, o f-ou c~ ne suxo r /c. I.D.. (* pr ) - FAss llp dommeur l 2. 3 4 5-(. 7 8 9 to il
- 12. $8,$[
l -l j.Y s o). 53 53 (2 63 53 54 39 43 49 47 49 48 35
- 2 vno % mas a 16 71
(* L 61 69 GS +7 nr0 G '. Cz $2 K2 Jt, 3 8 'Ba a 12 5 91 15 ct 6 S7 t,i 42 4,o St Go ST 48 3 8 1 ta, Armd. 244. Mi 11 63 42. 59 ?! 72' (,6 (,2 61 41 4/ 47 '7((b.as 44 44 44 44-44-4f J4 37 39 +/ 41-4I y4 45 4 1 7 4 i yrit Arrua
- 4i est 16 49 si 41 to 77 f6-47 44 4.g gg, 4,9 E
I 9:51 Arvaa 20 3 Elf 93 C7 (G c1 s1 t,2 57 52 51 Sc 36 56 6 i q 3, i46 ets it3 67 q,6 get pq qt g, ; gr g4 gg y g, gy 9 I 10 : 0 5 i92 .51' il5 LA tot bl G7 b0 5% St 57 31 99 Y I to:34 fit 114 117 73 76 63
- 7) =
19
- 73 s9 58 Ks 27 66, a
9 I 10:57 111 162 147
- S 17 43 64 7I 67 65 64 Lt-39 C.7 10 1
II:3e iqi 19 3 13e 15 15 il 71 11 3 sq 6t, 45 4y 3g g,4 i73
- 16t, l'73 T9 86 73 64 74 72.
70 68 6F 4.1 68 ii t ti:F+ 11 1 12:47 Besosa i.7 45 14 79 79 76 to 6: tJ c.4 64 64 4z 73-It i Arwa 13 5 147 it6 17 75 vs 43 its tog 15 66 63 4o is 13 i .3o sm., ii4 i.7 41 n tz ir g7 63 69 6-) 'cr 64 39 63 (3 L i:51 AmA los 257 19 7 1E- -#3 vr-6s ns 7: po 6g. g,y 4e
- 4 14 i
tits a 137 15 8 (13 41 44 76 61 i. 4-99 71 7o 45 41 71 15 i N[ M AIk 74 IC t" Alta lif 149 479 i.s 14-78-f5 6% og si 67 64. 37 7 % '% NN NN 43 14 H N % W (* te les 4s 18 \\6 t n. i m, i,m is, i.i i3+ i.3 u $3 ,i 6, 4. 6, Wes 'b h 9I' k b k 17 i 7L 66 46 76 o i m m.. n ist i,9 i., i.s si 6e 2+ 74-67 4 vi f f8 i 7t . 9tmaa 48 +7 47 4"; '47 - 49 3'l 44 43 45 44 45 34 47 ,a i e. A a si e, 6, .4 et 43 2,. 4., si. 53 en stllll* 4 g.6 4 <.
- 4i.
u n +, 43 4.s 3s 4i i e (O m ser n6 si-i.9 6e ss s4 os cc-rr r4 .t r. 54 i
w /o HC22 4 _ q RE C O RD OF T/c. ' TEM P. ;)URIM S VlEU)l>JG,^ of Ony ho a ssa.nz 'I
- T* /C.
ID. it dommtwr i 2, 3 4 5 (. 7 3 (1 to il l?. $8 $[ FAss l 19
- 2. /n 4%
M
- 7 92.
63 So 5s M ice 15 4 6t-6o 55 J6 54 "'% ' lit
- 29 M 91 79 49 53 73 %
to 2 1:., 7c co s?' 3g-so d'% loq lit M la' gr 74 sr 64 % 69 65-t,, 3g 59 l 2: 2 qrs I 11 7 1486 M to t ii 79' f4 90 M 74- ,o 63 17 61 22 2 4:<b MM l'o 97 %8 'o b M 73 70 66 38 44 23 2 mrv liz w 24 .1. w.s s a i4i les i41 to6 fo3 94-bt 107 tot 75 72. 67 Je 65 t 2.7 2 hwe 1o7 qi 90 ff t+ fi-51 er '61 af 69 6+ Jr 62 z7 t #Itq "M M I4i 90 ff- ,1 f8 M 65 67 bi-b+ Ji a-146 3w t l:?t. Lia t*71 rio 77 96 70 57 bl tot 64 6L 6*L 37 60 36
- 2. $ #1
- jg[c #56 lo4 et F
?z N 68-of 6+- 49-63 49-
- 4. 4 B?
3 he.ae 4S 48 47 47 47 47 36 39 41 47 41 Si 34-48 J 37 3
- M 'Me (32
?& si so 49 M st 49 47 +b 45 26' + 45 3 h as, i7s iso Ito 91 36 73 71 93 76 6T ~ 6*J 6+ 4t b5 4C 3
- M b
l(.2 (*2 3 97 ff ?F-b9 M ~15 74 f.9 64, ff-46 +9 3 t u.aa. i45 14% 's ti-98 96 31 63 TJ 11 73 71-66 37 b") 4 'l 3 M
- 17. 4 Alf M M
74 g7 39 61 l 10 1. 99' tt bl 71-ro 3 rE ist ie E is io. S, 19 i.7 % 7, ,3 ,., u 6t s1 3
- M tto los M iov tos 36 6t 7+ M 77-79-kan 39 67 1
61 3 "I is i 85 5 '#I fir. to9 ff 59 92' M fe' 76 67 36
- c. (.
i 53 .3' AMM lir 173 M lit oi 79 51 ' t i. M 77 M ~gg 37 46 54 3 "M 115 146 'M 'lif 'li3 ' 91 ft 93 M te. 79 t,q - 3r (,5 55 4 "Y 10 7 155 M t 67 ' li4 - ag e - Sq ci % 7p 3y San 3q gy O f. 4 lit 154*' M 11: li8 93 Sf' 93 $ 96 71 69 39 66 3 tog qt 5. 7t % 57 4 u-34 iyo 7, 7g g,4 4., sa 4 igo sga M n o. ist ~qi 63 i ' M 9e 75 63 Jg. 64 a
- i.,
is E X ,7 e <. 3 s9 + ii. = 9. 6, n <,o + o a. in % ni s. 6, n3 % ,3 ut a u6 4.F 4 in-u.
- i.,
i.3 n. x 2. t 3, <. 4 b5 4 am l4$ 166 le t - '91 99 64a 73 ,3 71 bT 39 66-F7 ,2 4 .ao.. ist
- a.,
,3 + c.a 19 et *3, c 2. 7t 4
- Er m
nr 26 7, a '%,., 6, 39 u l~
W/o_hlf224 ^ RECORD'OF T/C. TEM P. )URib4 G ' KlELDIMC,- of-D r.v i .ho - sun.cn T/C. ID. f'A55 (*fdomMewr l 2. 3 4 5 G, 7 8 9 to il 12. $o uT i /3 g ^%TN 2:8 10 7 76 ~75
- f. ? % 7f 61 GF 6f 64 38 GF po f
g uoec i7t 14 t 13t loo 47 12 kF 7t 75 is 70 v7 39 41 to F ^ M#. tia M 47 9 161 %9 93 64 N 73 74 71 4"7 39 C8 l M 97 45 ft. 'b0 61 M 73 5 a fit t&o 71 43 67 41-T2. s4 v Ist IS2 $ 10 3 108 13 60 99 M 16 12 66 39 tl 9g g u ito 17 1 ',I ios lot %4 to 70 M i 7+ 71-68 Ji to M 91 90-if 59 61 M 16 5 toy to+ 7e 69 6F 4P 76 77 F s' 99 ff7 foi 'l 7 T1 Is0 72 7f-71 bT-40 65 ft 5 a tot 11 3 M 97 46 15-59 ti M ft 77 V7 +l 4 M lio 10 6 ' ?+ b+ 73 M 79-76' ' gg g 18 97 14 o 10 47 kr., A)( tos 130 M lil ' lof 99 60 13 M ff iL 70 40 61 90 r, 1 tot ig!- M iig lit: F9 61 71' M ll 77 ?! 40' 69 qi b 91 to 6 10 9 Ill tar 10 4 - no? 40 ff 17 M F3 7f-6F 3g 65- ~ 93 G 103 16 4-M !!1 109 79 60 it' 7:s4 77 7f' 70 40 4 f. 94 t. itt-14 5 M lit ilo (I t.1 qo-M gt 71 &q 4e 47 u s u ,,s ,sr % nn ,os 61 ,6 M ,o 4, c, too (, ' Btros.t; tog t i, e igg 74-73 sq ff 4.1 61 40 59 5+ 36 59 ico L ^*M (3 7 - % tis to 7r 63 63 'M' 77 62 6o F5' 37 41 tos Osroac. 177 avr asi 15 T+ is (3 ri 61 (. 4-62. Gl 37 SP log L" "Yk its Itk PL P4 7F M lin' 7+ ' 63 63. 64 37 64 to? 7 Bue s.it 85 % 11 3 - -i+ 3t tiL 75-5+ 59-61 64 GL 43 37 43 to? 7 ^% % 3.t o ' tio iq iq 75-- % 76-m 64 cr 64-37-65 ll1 7 Basese. 19 7 2*7 - 14% 9F 43 7 81 '61 72 Fo' 7o-68 66-37 45 I li t. 7 31 2.10 M Ifi toi' 4f to 74 'Mst 99l 71 64 39 66 o <., i. i.4 in E i.3 4.o ev i.2 97 'E 7, 73
- i.,
3, <.7 ist 17f M 10 7 to+ ni, &c D M 1r-72. si 4o 4(o l -si? 7
- n. 2 io7
,.r vs 43 7i W. 7, is 6s 4, 67 ,3, i n$, its iso % n-io. 5.: cs 6r 'X 7e 7+ 7, - 4, 6r. E u u .> u i.s : M 37 5, 40- <. c - uo, i.e ,o+ ,61 ns % aos
- u. s f, se % 7+
se sr n c ,z, ,0<.,n3 % uor <.3 sn,+ % so , <. sr at ,zt, >>.jg n. it3, ,o2 in ,e
- r. <r M 7,
7, 7. 3r cc 3 ~
w/o - W224 RECORD OF T[C. TEM P.- SURIM G VJELDIMG of_j r / c. 10. FAss (lC domMENT l 2. 3' 4 6 (. 7 S 9 to il 12- $$,$$ t* 6 it) % 12.4 8 M r+ ,1-vs 4o 6, 88 o los et-5T vs , 2.,, i. .. t ,4, % iis n6 u. 5, w 'M.- ,, - u as t s3 ,s ,o ss s,
- u. +
<+ ss , u. n, ,u ,o2 ar yg,n ,,o rr <. s <M ve vr 2r 4.7 12 8 T SEF080 4f +5 46 44 4r 44e 34 37 31
- I-40 4l 34 fl 41 77 ~ M r7 FJ-46 36 49
[ (19 S s,t ' 40 fl 44
- 4. t 7,
n, W M its 5 rr u s. e so - i.o r7-r, 37 r3 ,3o 92 nr 3M n <.2 +, 4, ix 4.+ <. i r+ 3, r<,, m s anu << m us w F,
- c.,
s, n ,o us ss er 3r ~ isu su.u 14o 166 no 9+ 92. So r7 63 -: 65 t.tr (,(, ut + 4 (, r. is.1 Vm y'M i+o 9F 13 to 4.r %
- . i.;' o,
&c. se sr
- 31.
f too 1 ' S c r. 4 s e,o 141 lit 91-FT ,1 ft 6f 4,6 '69 67' 44 JT 6+ soo 1 4" M'% 17, s'as TL-io to % gg to (. A 6, GF 39' 6f. 2" i Ta usBraA IgME (L7 IIT lj4 too 47' 7b f4 GT 61 ~- 7g-61 6f. p/ ' 63 hYn\\
- b. MM lif IEb M tot if 19 f6 6 f' - h
"?t -ra f/ G7 sa. i s m .L- ) 1 l S g 4 I e-
.E.M sio M A L C_14 ECKS-o- bl. FORE NELDIMG OvatAV W/O 424 i A V b 315' vessee. _._, '"I 6.pb 8* V 90* t m m Js. m,g,(.g.,3 W9 270* v l J: T= ~ c o e [ _A 225 - 135* / Z /\\ oc ob 180* ~ SECT 10N' d-A Y I 0* 45' 90* 135* 180* 225* 270* 315* C0HPONENT DIMENSION c' Isst. 6 AG L 80.006 b **4 L **5 4* ** 7 h 003 S 998 (A*9 4 #05 ( ) Diss. G Ass.' 7,74g 7,9fq 7,745 9,xg 7,493 7,744 7.745 7.73o 1 b. II.49I Il SOI Il407 Il486
- s. -r una Ib.
II.+l 3 II.932' 11.&24 11.416 3 T,wanoussa. w ~ l.D. 11.S94 IL590 l1.598 I!.594 -3* TeeeAas 5/E. T 0.o. 13.1f! / J.19+ 13.827 17.89& ( ) 4._,, wate op. 13.90 S 13.937 B.195 13. W 3 e e >mi. m: wimsin e n.,
L '% tr0SION A t check.5 w/0 m o. _ at TER MELbild6 Ove.atAy ~ 45* A 315* VQ E-V ours..c +~ { " 'O "' rs as - IV6 5M 90* .270* Y 8 23 e rd 4N 4 225 - 135' ,6%A T. XI _3" 51 n ~. 4-g. an. 180* A- . SECTION A'- A ] W TION .0* 45' 90* 135* 180* 225* 270* 315* C0FFONENT DIMENSION if Igs. m 5.91} f.930 ~ 5.911 5.993 6.917 5A7(, 5.cl73 5.974 (
- c-GA6L 7.uf 7.659
- 7. 6 % 7 2632 7.621
- 7. M 2.
7.64A ?.48 '" ?""b. sq. stb II.4-19 II.413 II410 I h II.371-II.383 11.3 79 11.340 Y yy,6 den;g.,, ggg ,y,57z_ ; pg,g7o j,,gyS l. " [0 l'3 ITI 13#3Y '3' II '[,5 (4.91/- 14.903 14 169 ft.196 3" GJaap H5ssEL can 4, t+.944 li.ill it.T96 I4 9fl O e e i t -.. +n -g ,---m .n .w, e- - -. + , = <,,,.. - - en-, w--- r-s ~- n -. - -,.m.-.
') w/o-H612A. ~ CONTOUR GAGE TRACING LOCATION 1D-S cpo r C. WElb IO Cs wggMV-0*
- s' w
tuu l 1 m 4 + l /: / r. O' ID (tyt) l 45' { 90' .= 135' i 180' 4 225' 4 270' .315' 11 1
W, ' - #5221,_ CONTOUR r. AGE.TRA.JriG
- LOCATION, I D ~ k P T E R. M E d i 4 cr oVEE.My e
...) { m 7v 3,3 ) j U tL1 w
- n. -.
+ -- ) i Y/e w y n,- ..y iw i O' - b 1b (,5,,) i 45' - i t '90* 13 5' ^ 180* -
- 4 a
~- ' i ggse -i l 270' 315'
W/0 H 62 2. 4 ~ L CONTOUR GAGE TRA Ir1G : g-UlrAT10n O.6.- S u e. x e t k)ct.d Baront w/sc.bius ovmetxy,
- a..
..y i 2,s \\- ._ J v i n Lw 4-neo< l e go.Ny O' e 45' s b
- ?
90' 1 135' - s 180* l 225' 270' 315' 4 + _y ,.n., .....,..y. i.,..
METALLURGICAL LABORATORY - HARDHE55 TEST REPORT I SP Ec. Ie C. U k Work Order No.: NS E10 i ..,;.i. S A 508 c.t. 2. 7n;can..:
- t. 2."t.
l.7C " e + ; ; " '.'s o,ci, e.. EC.ViCr-3 , f, pwy7; do M { ToL
- 8 Position:
6S HA2 Test sy: At4 i- ,/ ,[- 3-10 87 o.te:
- t
.1 .ocationi N o U s fn d - 8
- 4
[mim.e. P L. '
- d.s.n.w
[ Ek.s.t.s 10 Kc. ~ AREA Tc> e, Minte briem 1 247 19C Mor i E 254 3ff 7%) 3 ith 24o 29% ~ 4 2.4o I 9 "I ~4. 50 5 2.3'1 1T I 117 191 i9i i 1 'A 7 I"77 11l iR% -9 14 4. IM 172. 9 167 177 (71 I -lO d ib4 1"7R tos 'n TR.avEn.5 E "JDAc t o c. 8/ t - 1 I rm C w E 't's b a l EM $ ' *f"a 9 7 d T'a 8 % A s E.U M AT TO E, 8 T l m e,s ) 8 m
METALLURGICAL LABORATORY HARDNESS TEST REPORT - l TPE.C.lME.M 3 Work Order No.: N S E 2.4 Materlat: SA508 0.t 2 Thic'..sess:- I C' T o 1,75 " S I e I Electrode: Elt d i d e-3 '7 WM T00 e7 PWHT: W o ME. Position: 5Cw NN Test By: AE.9 .g. o ie: 3 7 7 1.ocation': N A O S T'o d [m,eou. EL-6 t.s.tr Vic WE R.S 10 M AREA q g, gL,. p I 400 310 305 7 E41 321 2%4 3 2., o 4 2.49 m 4 L9 i ! 9 2. 21.6 ~ 171 t 74 192. L71 17 4 Ipq 7(44 t63 ing p, t 0 4 I Te 4
- t/t %
4 Tar *E T l ~ _ m-6% t-A s es u D G" PTW AT Tb EE, T Y2. f, } m % G L u'
i I i METALLURGl CAL LABORATORY HARDHE55 TEST REPORT i I SPEf.1 AE.d b 1 Work Order No.:- NSEld Materlat: Sk608 El 1.- Thickness:- I'I To D 6 T Electrode: ER di6-3
- v WM l
i Tot 87 PWHT: WOME Position: 5G Nk2 Test By: Rcu) 5 Date: 3 -I3
- M t.oca tion':
N^t M T"o d
- 6
[u,cou. PL. 4,
- t. s.nm Y,.j e. 4 E R. S 3 0 K,G AREA gg ma
'g a,u, t 387 .3/ (. 300 2 154 573 ' . r/4 3 2p6 227 274 ./90 263 2.94 ^ /82 /8+ /96 /'72. I24 /77 7 (e-) /64 /95 203 M. Mr eumpaa. FR. AV E.a.s e SPAc t or., i T'a 4 s V2. = %. d.1". C' I em 5 T, 6 e 4.v. A % u. D E.9T R AT To E 5 h., T I w% l
r_ METALLURGICAL LABORATORY HARDNESS TES T REPORT I SPECIME Q h work Order No.: M 5 2.2.4 Material: bk SDb' Cl.1 Thickneu: l-76 i.7 5 ( 7 5 '6 g Electrode: EE N 8 C " *3 (A e1 PWHT: D'OT Position: 40* Nk2 Test B y: 4 E. N 'f 3 1)- R7 ,L oste Locatior.: M ndTTo O '7 (Minete PL, .7 t 5.,rvo w Vic.k.EEs 10 KG AREA To C Mibb w ' Do't Tom k I %I
- 2. 9 %
2.72 4 t t. 2.
- 2. 7 f 33i 2.47 3
191 2.fo i 2.4 % 4 175' Is7
- 2. 2.5 6
t il 177 tos ~^ c i ;q. 'l I%1 Ible t78 I(ve) i (a v I 7(, 2o2 i 4 kN /DTE... I c. &~ s. .n. % I T'e b e I mM L. r a ~7 - 4 v. 8 /9 TEE YMrd.ll I1's $ e VL ~ ~ 4 rac n~~ G' fa *") 'r 4 T. A Be aTw a,r TJr r M.r.l
METALLURGICAL LABORATORY HARDHE55 TES T REPORT l J Work Order No.:- N5214 i SPEC IM E. y D 2. Material: SA508 c.t Z. l.. Thickness: 12." n 1,75 " I*++ 4 j6 5' 7^ Electrode: E Et di 6-3
- v wM Tot.
- 7 PWHT:
4 o ME. Position: bb NA2 Test By: W ME N
- 5 f
osie: 3 'I 3 -M 5 ~ LocatiorE: Y^tY TO Y a 6 [meoa P t.. 3 t.s.vem Vic HE R.S 10 KG .g 1.._A R E A tp E_ Pl:D u b y.. A-E t 3_60 30 8 284 434 .1 2 52-30 7' 7 *? 4.- 4n l \\ 3 L9_b P4'= ~7
- 24 R 3tt.
!!4 /79 2 24-233 2.7o w l .12 R 183 I 9(a 2 5to I.7.f_ /a/ /72. / 7 2. s i 7 (*) /43 /90 /97 4 IT. 4 vt %w l 4 Tel ~ $ 2 I _1-.
- Ta b 4nAmw
= G f .._.,c,........_...,.;.....,
METALLURGICAL LABORATORY HARDNESS TEST REPORT I Work Order No.: N5EE4 Material: S A 508 et 2. Thickness: 1 f ro 1.75 " '[l# 6 i 4 Electrode: ER diGP" 3
- v WM
- hog, a7 PWHT:
WOME e,' Position: 5G NA2 Test By: M
- 5 e
5 Date: 3"II'I 7 Location'. N^' M T'O d
- 4
[u,. PL, .o o oi.e.
- t. s.u.
Vic KE R.S 30 KG AREA %E NsDb d 'Ee v ro m M t 307 a lo - 329 426 1 348 3/4 '272 _.3 239 26.5 2.19 + 20/ -2 /4 234 l /19 /Ro /8% /77 /M /77
- l. le_$
l90 2OA 7(en) ~- l TRAV5tst $PActNG l -r A c VL mm 4 in C" l m sw% \\ C To L ' A re A m ~ ~ DE PT14 A T 'IEE
- ft ToImw l
l \\~ i l' ..v.. rg,,_n--, ,9 v.-,, y
p -l LIQUl0 PENETRANT EXAMINATION REPORT I W ff.Q w A h Fiesd NOUSYOM YOkS b$ sop NbllS kT LOCATION CONTRACT REPORT OR SEOVENCE NO. Customet 'i Description and stage of items essmaned Outside b,, QV[ff,syy C/PCsW 84E8 MM @ WWW Inside s,,,, Edge ] Procedure and Rev No. ((P/.$"/#M 3 Manufacturer's Type end Batch Number 6 tend Name Penetrent Cleanet/ Remover Developer S//J4W/ov W'VC M& O D*/0O wcorpoxx719 26-ria 57f-D+ SEB -G6 g Location of Defects or Unseceptab;e Cavities Not Repaired During Enemmetion. 10 Locaten From Reference Point Date W Remarks of Sketch Check Applicable Bonfes): Weld repairs were made during enemination and have been re examined and found acceptable (includes repair cavity). h No wedded repears made during eneminatM. C Final surfaces requiring blend gnndine dunne esemination have been composted per OR Rev. - eenemmed and found acceptable. Examenstions were perfbrmed and eR Indicatione evaluated in accordance wah the referenced procedure. Detects not repaired during the enemmetion are listed by location above. All other enemined stees incivded in tNo report were found acceptable. 1 M ll lO $ OPERATOR / EVALUATOR LEVEL- 'OATE Report results reviewed and accepted by: ll O b LEVEL DATE Reviewed and accepted by - CUSTOMER'S INSPECTOR OATE ANIOR Al -DATE hwee er. USA wt 244 Rev AuO e1
'I MAGNETIC PARTICLE EXAMINATION REPORT M[/eM M8 Field NOUS 7UV, T5/A] hshop YhSSS 'b - LOC ATION CONTRACT REPORT OR SEQUENCE NO. CustomerYY Description and stage of items enemmed Outside gg (,. goy yf fMgP ffg ~7 0 WfM/A/$. of 'a*
- items
- 8*
~ f Procedure and Rev No. p,,q, Unit Mfg and Model Y*'* Y*YBW$#W N Tl[ ffy4C/W Y p Prod Unit ID Prod nit Rating Prod C AC Yoke [ AC Mfg & Color ' A M Amps Modj HWDC Mede N#MX u W.4 OC TM Jw Locaten of Defects or Unecceptable Cavites Not Repaired Durine Examination. lD LocatNm From Reference Point Date > Remarks or Sketch l l Check Applicable Boxles): Weld repeits were made during enemination and have ~osen re enemmed and found ecceptable lincludes repair cavity). h ' No weWd repaire made during en I Final surfaces requirin0 biond gnnding'during examination have been completed per GR
- Rev, re enamned and found acceptatie.
Examinetions were performati and as indications evolueted in actordance with the referenced procedure.' Defects not repaired during the esamination are usted by location above. All other esamined areas included in this report were found acceptatie. Ab / _Y W ll lCh$ - QPIRAfdR/EV/.LUATOR LEVEL DATE- //!/#M Report results reviewed eno accepted h: ~""w LEVEL DATE Reviewed and accepted by - l CUSTOMER'S INSPECTOR DATE ANI OR Al DATE pnneed h USA wk 244 REV AUG eI l
E />966 /os 2 ULTRASONIC EXAMINATION REPORT WS//2E (,,,) T CONTRACT Field C Report or Sequence No. MO # ',$fj U S^00k Primary Ref. Level-db Ob ^CC""*'"*"**** Customer Q/ too Description and stage of items examined )) OVfRtARY SPCf/*F" AWK4 )WAMt 1*'t M40M 88 g) #fCV GM99W Mfp M/9M TO Wft,4WW 10 so Procedure and Rev No, Couplant TraNcht l/bT)fMd$d. 5 Mfg 58*Aff0 Site 3/# ' # Instrument Mfg n m YMMI#M MU'# Angle $*7 Frequency fM h I' Model # Cff4-J/ Serial # 2/3D [ l 's' y o'77/*) e Location of Unacceptable Indications or other Indications Required by the Procedure to be Recorded, j Depth from I 10 Location From Reference Point Defect Site Outside O fate Length : Depth inside O l l i 1 I l e i Remarks or Sketch 4 Examinations were performed and evaluated per the referenced procedure. Unacceptable Indications found Yes O No E Unacceptable and other indications required to be recorded are listed with their location above. All other examined areas included in this report were found acceptable. N W ll/WN ' 4 CPE R ATO R L'tV EL DATE EVALUATOR LEVEL DATE Reviewed and accepted by-cVSTOMER'S aNSPECTOR CATE-ANI OR Al OATE Printee in ugA w(3eg AgV NOV 74
~.. _ - t Nd8" ' [ op 2 l; ULTRASONIC EXAMINATION REPORT i 5 A/GH22-UT 't CONTRACT Field C Report or Eeowence No. W ({ W E00 k Primary Ref. Level I E ' Db ' j ome con. m.. ee 4.ae Customer Q/ see Description and stage of items examined /) O W /ft M r PfMH7 MWM M/r4 TV wJsasv6** %)Af00 GM00 Z MD ,Ma' M ' 70 wf6.tV4 oe Procedure and P + No. l Couplant TrinYker t M fg.hs.Mac
- l Sise.f'X /
- l*U * **' M '9 kggy7xg4&pwscw Angle 37
[9 - 4 Model # 6Afl.-JS Serial # R/FS [ g .{3 ) j- .l l,e I 3 8. Location of Unacceptable indications or other indications Required by the Procedure to be Recorded. Depth from 10 Location From Reference Point Defect Sire : Outside O date Length ; Depth inside. 0; i f i l Remarks or Sketch l l 3 l Examinations were performed and evaluated per the referenced procedure. ~ Unacceptable Indications found Yes O No X Unacceptable and other indications required to be recorded are listed with their location above. All other examined areas included in this report were found acceptable. W Af/WN //h?6 oM R ATYR LivtL 'OATE tvALuATom Lavat oArt Reviewed and accepted by-ev8TOMER'S INSPECTOR DATE ANI om As 'cas. Minnes sa usa - WL 244 nty Nov 14 ~ ~.,. - - -.. - - - - -
.i ~ LIQUID PENETRANT EXAMINATION REPORT W$& bl$$ fi*IA Hous70V Tnns @ Shop WOR & 97 8 LOCATION CONTRACT REPORT OR SEQUENCE NO. J Customer CB/ Description and stage of items esarmned Outside F/W/$N50 WSMS AMS$ SSlNl l 4 gn,;g, Ed.e o Procedure end.'ev No. f ffV)//$W $ Manufacture.'s - Type end Batch Number j Brand Name Penetrant Cleaner / Remover Developer .$NfgW/W M-w DR -EO D-/ 00 Neonfonoffv /E833 S~/6 -D Y Se9-GC l l Location of Defects or Unacceptable Cavities Not Repaired During Esamination. a iD tocation e,om R.r.r.nc. Poini. 1 0.i. F t N0 VYk$0WWSW lNS/d$ NAW$ AVNO I Remarks or Sketch Check Applicable Boxlesh C Weld repairs were made durin esameneten and have been re examined and found acceptable (includes repair cavity). No welded repaire made during saamene'$on. 2 O ria.i.orfeso. re<uiria. mioad enad a. duria. e amia.t on h.ve moon.ompieied per ca Rev. -n d and found ac.e.t ie. Examinations were perfom ed and se indicatione evolueted in occordance with the referenced precedure. Defects not repaired during the enemination are listed by locaten above. All other examened areas bcluded in thee report were found acceptable. i-K A '. M % = ~ 777 /t/3o/n ~ OPERATOR /EVALUATK LEVEL DATE Report results reviewed and accepted by: LEVEL DATE Reviewed and accepted by - CUSTOMER'S INSPECTOR DATE ANI OR Al DATE PMnted in USA WL 244 REV AUG 8I ,,.___._4
UL.TRASONIC EXAMINATION REPORT I WG//82 OT 2 CONTRACT Field O Report or Esquence No. j
- ~' fk 09 E
. Primary Ref, Level I 2 Db uo Customer Q/ 1ee O 'C '" W ' * +8 ' se Descriptipo and stage of items esamined )) OVMtdY ff!CLT/T /*/AM1440 Wi&D 3
- E) C/1'00Vf Wf tp DS902/7' //N/JW/O e6460 fA0 TN M7M 4MWJW6 )
~- \\ y' Procedure and Rev No. Couplant g, y gy Mfg 4 e S,ae. n. c f,~ '"'"*"**' " NMyrkwp/pgmou Anee 37 s Model #Mp3p Serial # g/ 3034f' f l jie j i le 4 3 i Location of Unacceptable Indications or other Indications Reevired by the Procedure to be Recorded. Depth from 10 Location From Reference Point Defect Site Outside O Date. ' Length : Depth : Inside O i i Remarks or Sketch NDMTW MgppS Arggggp ny gg,,,,, WS4D t 4 Examinations were performed and evaluated pet the referenced procedure. Unacceptable Indications' find Yes E No O Una'.ceptable and other indications required to be recorded are listed with their location above. All othes examined areas included in this report were found acceptable. W ' 'N Y lY SG ' h WM w OdfiltATOR LivgL. ' OATE EVAL KTOR LEVEL DATE 'levwwed and accepted by-CuaTonet R'S INSPECTOR DATE AMI OR A4 OATE I Printed in USA WL 24:' RSV NOV 70 _ _ _ _ _ __ _ _ ____ i _L
. Par 2 an a. ULTRASONIC EXAMINATION REPORT WKl/22-UT;*2 CONTRACT Field O Report or Sequence Peo. M8'M6f' ~7~# Sh0D E Primary Ref. Leve' ~$b Ob one c,,. maa,. e 4 4 a o Customer C8/ l se Description and stage of items ema-ined j /Vff91/*7 f/MJHfD W/M H 'N a) OHr/My em ww n er m.rm w!w ( &>fM J/ ffA' /MjA45Wh H \\ Procedure and Rev No. Couplant Transducer i VT.s" M1V. 0 l VT6 AfM O ~ h g,yy a Instrument Mte Angle D
- 4 gy g
gy, y. a Frenuency S.fnun.e Model #Vf4=3! Serial # *iU20VJ' porwf e
- f*I'\\'l Location of Unacceptable Indications or other indications Required by the Procedure to be Recorded.
. Depth from j 10 Location From Reference Point Defect Size ' Outside O .oate. ' g Length Depth inside - O e I 5 riemarks or Sketch i $N NNSN/D 0 A./ . Gg QO),rg WSW 4 l Examinations were perbemed and evaluated per the referenced procedure. Unacceptable Indications found Yes E No O Unacceptable and other indications required to be recorded are listed with their location above. All other examined areas included in this report were found acceptable. kW W 'lY3Off$ h)V f lYfx
==w M RATom LtyEL DATE EVAb d OR LEVEL-OATE-9eviewed and accepted by-l CUSTOMER'S INS 8 ECTO R DATE AMI OR As DATE PrtXsee la USA ' f WL a44 REV MOV f a ' l.
. ~ _ -i i - r ~ i Appendix.:V: Procedure Qualifications l. Code Case.N-432' Groove - PQR 7673 ~ 2. Water Backed Nozzle.to Safe-End. Overlay.PQR-7717 3. Non-Water. Backed Nozzle to Safe-End overlay-PQR 7718 [ e 'I i 0 d -i l 1 I l l 1 1 --
f Page-Coni,ect PROCEDURE QUALIFICATION RECORD TO A.S.M.E. SECTION IX
- PART ll ESSENTIAL VARIABLES 7673 PoR No.
cate 2/l8/87 r,ocess GTAW (Pulsed) (360' Orbita 1) l luech.n. C Aviom.iic somteviom tic L_J u.ny,i SA508 Class 2 FLUX OR ATMOSPHERE Material specificai;en l Asut p. no.3, Go. 3 7, 43ug,, no, rio, i,.de n.me - None Required-l Thicknese ce pipe, di. nd..i: in;cki 5 3/16" 100% Argon g,,,,,,,,,,,,;,;,n 43 l ripe, meiei e,ove no. F. ri..,.i. 40 CFH l Weld metal analysis no. A. ERNiCr-3 i,6.ekin, i,4 u.dr. No ASME specification no. SFA 5.14 p,,ne,i,m,e,,,,,,,,ne, 300'F -450'F (IPT) f AWs specification no. A 5.14 None m -
- p.,,..,6 3,,,,,,,,
n, g WELDING PROCEDURE - sineie musiipie,,,, Hul tiple Sin 91e SG single e, musiipse e,c p.,i,3,,, Filler Metal ERNiCr-3** reccirode EWTH-2, p 1/8" .045" r;ne, oi,e di.meio, Direct Current, Electrode Neg.atis f Type of n.ching None ,, w,i,;n,,,,,,, censwei rant m wetomo van:Astes te,i.ini dimenaien..nd..iden, cu,,.ni unines. (S trai gh t - Pol a ri ty)(Pul sed) TEST RESULTS - l (Round. Specimen) noduced section Tenetie mesuits - Gemsw M Fe b Specimen No. A,ea T L ,ess width : Thicknen w2 and Location A (Transverse) 0.504 0.200 .17.6 - 88.0 606.7 Ouctile in BM 8 (Transverse) 0.506 0.201 17.5 87.1 600.5 Ouctile in BM C (All Weld Metol)--- 0.250 0.049-5.1 104.1 717.7 0 (All Weld Metal) --- 0.253 0.050 '5.2 104.0 717.0 Bends Troe mesult Type nesuit i 4 Transverse-Side - OK-Jerry t. venay
- o*-70-3335, JE0 weide, s n me
.inhn n. Matthews socios security no. 301-50-1193 J0M w,ide,. svmeet wm by vi,ive et ine ieau meen wowe, perto,hence,coui,emenu.
- ws,= orde, go,io. w,si uo.
H5173 0-11/2/86' We certify that the statements in this,ece,d e,e ce,reet and that the test weld was p,epe,ed, welded and tested in acco, dance with the,e. quirements et section IX of the ASME code, siened est ey_ Alan E. Hudson k[/ M.c. og,, ~2/18/87
- ) Qualified in accordance with Code' Case N-432 using a SA508-2 nozzle' forging n:me,ks:
inachined to a 22"8- 0D. A 11 5/8" IDJ 'with a 1" doen renair ornove machined - 360* around the OD. GTAW machine welded usino a-remote video monitor. The forcina was- 'lHT for 24 Hrs, at 1150'F~ orior to 'weldina. The reoair ' area was'satisfactorilv .Xamined by PT & UT af ter the comoleted weld-had been at' ambient temnerature for AA irs.
- ) Arcos type 382, 'Ht. Y4875N382.
- ) Post Heat: 2 Hrs, at-500*F immediately af ter weldino, messee en WeA
- ) Arcos type 382, 'Ht. Y4875N382.
~ . - ~ m 3eoagvasovet
~ q') I Page i Contract PROCEDURE QUAllFICATION RECORD-To A.S.M.E. Section IX l PART lil WELDING VARIABLES 60* N l i ( T N Nv5N b N W - N N,,xnf [ Y " h' T & " f '3 6: L I lh } ] o s
- 1-m mM 7
e w.s - ou er .X 6. 65 5iN 5: 5 e7 j f. \\g. 6 ' \\n/ 5-3/11" g \\ \\- 49 \\ +U \\ w/ \\tsf5 / j [ (Safe End Side) 4Nse fs [ i .s s or 1/4" = l \\ SG' POSITION Qualification No. I673 [ oate: 2/18/87 Alan E. Hudson- .ay M i64 My Nov 45 t 0 q 9
~__ l,! .i Page-Contract . PROCEDURE QUALIFICATION RECORD To A.S.M.E. Section IX PART lli WELDING VARIABLES l' i l l. a. Low Pulse Frequency = 1.5 i Low Pulse Width = 60% Synchronization Pulse Arc. Voltage control' Continuous. L IUpsiope time 3 Sec. Downslope time-10 Sec.. } luire Start Delay-5 Sec. Travel' Start. Delay - 4 Sec.- ,s Number' l-4 5-6 7-9 10-11 12; 13-16 17-18 19-20 21-23 24
- Primary Weld-Current (amps. )
200 200 ,200-200-200 -200 '200 200-200' 200 l Background Current (amps.)- 100' -100 100- '100 100 100
- 100 100 100 100
.l0ut Owell (primary)(sec. x 1) l Excursion time (sec. x 1) ) 'In Dws:1 (primary) (sec x 1) [ j .0scillation (in.) ' Primary Wire Feed (IPM)- 31 31 31: 31 31 31-31-31 31 31-iBackgroundWireFeed(IPM) 21 21 21 21 21; 21: 21-21 21= 21 ! Travel-(IPM) (Torch Speed) 4.23 4.14' 4.05 3.97-4;23 4.'14 ' 4.05-3.97 4.14 3.97 i. (Primary Arc Volts 9.0 9.0 9.0
- 9. 0 '
9.0. 9.0 9.0> 9.0-9.0 - 9.0 1 ~Backcro'und Arc Volts 8.5 8.5 8.5 8.5i 8.5 8.5 '8.5= 8.5 8.5-8.5 Heht Input' (Xilojoules/in.) 20.16 20.58 21.02 21.48 20.16 20.58 21.02 21.48 20.58 21.48 3 Energy Density (K)/in ) 1.93 l'93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1.93 1' Qualification No. -7673 /)L. f~iAL ~ - - -m-Date: 2/18/87 sy Alan E. Hudson-Y i a
r l Page Contract j PROCEDURE QUALIFICATION RECORD - To A.S.M.E. Section IX PART lli WELDING VARIABLES - Pass Number 25-27 28 29 30L 31-34 35 36 37-38 39 40-41 _ Primary' Weld Current (amps. ) -200 210 215 210 -200 200 200 -200 200 200 Background Current'(amps.)' 100' 110l115 -110' 100' 100' 100 100 100- ~100 !OutDwell(primary)(secx.1) ~ .t ~ ~ ~ lExcursiontime(sec.x.1) In Dwell (primary)(sec. x.1) Oscillation (in.) Primary' Wire feed (IPM) '31 31 31 '31 31 31 31' 31-31-31 Background Wire Feed (IPM) '21 21 21 21 21 21 21 21 21' 21 j i Travel (IPM) (Torch Soeed) 4.05 4.25 4.92 4.92 4292 4.74' 4'.92 5.09 '4. Ridg,_ f 1ary Arc Volts 9.0 9.0 9.0 9.0 '9.0 9.0-9.0 9.0 9.0 90 2ackground Arc Volts
- 8. 5 -
8.5 8.5, L8 5-85'- 8.5 L8.5 8.5 8.5= 8.5 Heat' Input (Kilojoules/in.) 21.02 21.31 18;94 18.41 17.33 17.96 17.33 16.74 17.33 16.74 3 Energy Density.(MJ/in ) 1.93l2.05 2.12 2.05 "1.93 'i.93 1.93 <1.93 1.93 1.93 Pass Number 42 43-48 49-56 57' I58 59 60 61-62 63 64 y Primary Weld Current (amps.) 210 200 '210 '200-210 200 = 220-220 220 220 3ackground Current (amps.) 110 100-110
- 100-
'110 100- - 110 110-110 ,ng_ t )ut Owell- (primary)(sec. x 1) !xcursion time (sec. x 1) 'n Owell-(primary) (sec x 1) is cill a tion- (in. ) rim'ary Wire Feed (IPM) 31 01 31 31" '35 30 19- '35 W 38__
- ackground Wire Feed (IPM) 21' 71' 21 21 25'
'20 - 29' 29' 2% '9A L ravel (IPM),(Drch Soeed) 4.74 4d2 4.92 4.48 4.48 4.92-4.64L 4.91 4.64 4.64 rimary Arc Volts 9.0 9.0 9.0-9.0 9.0-9.0 9.'5 - 9.0' 9.0 9.0' "'*qround Arc Volts 8.5 8, 5 8.' 5 8.5 8.5-s.5 a.s t.5 a.s ' a.s Input (Kilojoules/in.) 19.08 17.33 18l41 19.00 20.'18 17.'33 20.18 19.0820.18-20.18 tefgy Density (MJ/in ) 2.05' 1.93 2.05 i.93 1.79 2!00 1.84 1.~84 1.84 1.68 3 QUALIFICATION-No. 7673 U -- _, f 4f-m, W.,v... DATE _2_-18-87 BY j/ b .,,...,.__u-.
+ Page Contract PROCEDURE QUALIFICATION RECORD l To A.S.M.E. Section IX - e PART lil WELDING VARIABLES ~ 1 l Pass Number 65-68 69-76 77-82 83-90 ~ , Primary Weld Current (amps.) 220 225' 225 220 t Background Current (amps,.1 110 115 '115 110 l
- Out Owell (primary)(see x.1) i Excursion time (sec. x.1)
In Dwell (primary)(sec..x.1) l 1 Oscillation (in.) gi'.iary Wire Feed (IPM) 40 ~ 45 - 45 40 . Background Wire Feed (IPM) '30 35 35 30' Travel- (IPM) (Torch Speed) 4.56 4.47-4 38-4 '. 64' j 'ary Arc Volts ~ 9.0 9;0
- 9. 0 -
9.0 p_.ckground Arc Volts 3.5 8.5 8.5 8.5 Heat Input (Kilojoules/in.) 20.57 21.58 22.02 20.18 3 Energy Oensity'(N/in ) 1.59 1.44 1.44 1.59
- Passes 78 & 79 - 2/3 of circus. downhill side.
! ass Number P !_ Primary Weld-Current (amps. ): l Background Current (amps.) ' .'0ut Dwell (primary)(sec. x 1) J l Excursion time- (sec. ~ x 1) 'In Owell (primary) (see x 1)- 10scillation (in.) - !Primary Wire Feed (IPM) r l Background Wire Feed -(IPM) '! Travel (IPM) (Torch Soeed) iPrimary Arc Volts J 1 Ban cround Arc Volts p1 lnput (Kilojoules/in.-)- 3 IEnefgy Density -(N/in )' QUALIFICATION NO. -7673 - A -- f*N ! A i DATE 2-18 BY-f i -a l
d PQR 7673 IMPACT TEST t.. *\\ W.0. #H5173 U i ryes or Notch 2/18/87 i l
- E' o'n$IIT "s$$!'
to0ATow "No7 sNw 4",07 a l rt.ts J uits A -1** LONG. FULL HAZ +20 '/0 95 37 45 A-2 ** LONG. FULL HAZ +20 62 84 44 40 A-3 ** L_0NG. FULL HAZ +20 84 114 63 50 l A 4 ** LONG. FULL HAZ +20 98 133 59 70 A-5** LONG. FULL HAZ +20 91 123 55 65 l A-6** LONG. FULL HAZ +20 93 126 56 ~ 70 5224 B-1 LONG. FULL PLT +20 43 58 '36 40 1 5224 B-2 LONG. FULL PLT +20 48 65 45 50 f 5224 6-3 LONG. FULL PLT +20 60 81 40 50 5224 C-1 LONG. FULL' PLT +20 43 58 33 40 5224 C-2 LONG. FULL PLT +20 51 69 42
- 35 i
g, 5224 C-3 LONG. FULL PLT +20 i 45 61 37 35 i y AA-l* LONG. FULL HAZi +20 73-99 53 60 AA-2* LONG. FULL HAZ +20 79 107 56 60 l [ AA-3* LONG FULL HAZ +20 72 97 46 60 t i i HAZ Specimen taken 1/16" from surface.
- H Z specimen taken at maximum practical depth of groove weld (approximately l
MEMARKS: 3/4" from surface to centerline of specimen) at Azimuth 270* (Uphill side). PLT l specimen taken at 1/4T from OD surface in the necked down portion of the nozzle I assembly adjacent to the safe-end at Azimuth 90* for "B" specimen and 270* for "C" specimen. C A-svi Alan E. Hudson Jerry DeHay m m arv =ov ei ~.
i l l Co rect Rw W.O. fH5173 i PROCEDURE QUALIFICATION RECORD t i DROPWEIGHT TEST DATA i SPECIMEN TYPE P 2 I t SPECIMEN LOCATION TEST TEMP *F RESULTS PLATE H5173-1 Longitudinal -30 No Break H5173-2 Longitudinal -30 No Break t H5173-3 Longitudinal -40 Break j f PLATE TNOT = -40'F HEAT AFFECTED ZONE E 3 s i HEAT ATFECTED ZONE TNOT WELD METAL l i r I WELD METAL TNOT + l i L i v CHICAGO SRIDGE & IRON COMPANY i Ouellfication No. 7373 M T. M /-. = oete 2/18/87 Alan E. Hudson-gy l' .u.. = v v. - l
POR NO. 7673 W.O. NO._H5173 Traverse PROCEDURE QUALIFICATION MECORD Spacing l-5 = 1/2m VICKERS HARONESS TEST 6- =6 o 10m 10 KG LOAD i { (Safe-end side) ten amt f-1/2 to Imm r s : i e i s s l j T-m mz n-I s. i. SPECIMEN A anoi r. i (Safe-End Side) [ LOCATION LEFT SIDE RIGHT SIDE ROOT i i I 386 408 315 2 362 417 300 i 3 255 312 227 4 224 261 198. 5 183 188 180 t 6 184 184 181 7 179 185 184 8 177 183 ' 22f I + t /f_A_. f.~,/-l J _- .\\ Alan E. Hudson 2/II/07 f DATE t f I emuu
POR NO. 7673 W.O. NO. HS173 PROCI DURE QUALIFICATION RECORO Traverse Spacing VICKERS HARDNESS TEST j'j,= j/2m 10 KG LOAD 6-7 = 6 to 10m (Safe-End Side) un nient 7 5 5 1 e 1 i s e r--1/2 to 1m m ut n B I SPECIMEN C noot (Safe-End., Side) LOCATION LEFT SIDE RIGHT $1DE ROOT t 1 379 306 297 2 396 292 288 3 281 239 248 4 241 208 208 5 194 177 179 6 179 177 178 7 178 174 177-8 174 172 213' l 0 i W E! A LY. ' Alan E. Hudson 2/18/87 DATE swee b U$a
POR NO. M73 W.O. NO, H5173 PROCEDURE QUALIFICATION RECORo Traverse Spacing VICKERS HARDNESS TEST 1-5 = 1/Z m 5-6 = 1m 10 KG LOAD 6-7 = 6-10m (Safe-End Side) un umr 7 s s t s 1 s s 1/2 to lm 4 m mz et e. i. SPECIMEN D s* 7. (Safe-EndSide) LOCATION LEFT SIDE RIGHT SIDE ROOT 1 384 390 308 2 400 395 336 3 327 300 264-4 230 243 211 5 211 200 183 6 185 183 187 l 7 187 180 189 l[ 8 175 175 ' 2b8' l hk (h !: Alan E. Hudson DATE 2/18/87 ) .nsuu t._. * -
Po,e Cent,ect i PROCEDURE QUAllFICATION RECORD TO A.S.M.E. SECTION IX i PART 11 ESSENTIAL VARIABLES 5-15-87 POR two. oste i p,ue, GTAW (Pulsed - 360' Orbital) y,,,,,O u,,,,, x,,,,,,,,, L_j g,,;,,,,,,,,, L_j SA508 C1. 2 & A312 Tp 304L* FLUX OR ATMOSPHERE Meie,ial specit.ceiion ASMt p. no. 3' OD' 3 To ASME p. no. Flus t, ode name M ne D i d l TNcknee s # p.pe, sie one wesi thick,13.9"O x 1.20" ,,,,,,,,,,,,,;,6,n 1005 Argon Filie, metal g,oup no F. Flow,ete weid metoi ensiv.i. no. A. Is backing st,ip vees, No AsMt specieiceiion no. SFA 5.14 P,esesi w m pe,siv,e,en,e See pace 2 AWS specification no. Postweed heet t,estment None ** WELDING PROCEDURE Multiple Si l F D e e, multiple pois Sin,le o,,puttiple e,c Po iteen ier Metal ERNiCr-3*** siecirose EWTh-2. 1/8"B Fiii., wi,e semeio, .045" None type et kuking w,,,,,,,,,,,,, D i rec t Cu rren t. E l ec t rodeNega t i vt consult Pant m WILDWG VARIABLES for joint dimensions and welding cu, nt uttenes.(5traight Polarity - pulsed) l TEST ReiSULTS I (Turned Specimen)n.evcen sationTenene neevne - Transverse All Weld Metal l Dimenaiene in unimew unimew unii Specimen No. A,.e 2 7.telLead 8"*e. e u,,,,,,,,,,,,,, i ,,g % g stems has asps q H5224-A 0.253 0.0502 4.77 95.0 655.0 H5224-B 0.250 0.0490 4.86 99.2 684.C ouis s sene Tui-l Type anun tva navii l 4 Transverse Side OK derry t.. venay Mian r.. nuunun 964-76 333i. 433-66-6331 JEO. AE weiser's name .laha n Ma H h*wt s.ones seev,ity as. 301-50-1193 weig,, symb.I JDM who by ve,,v.# mee. weu me.= ise pw., nu evi,emenis. s Wo,k o,de, lone. WPs) N.. H5224 .O 12-9-86 n,,, o,,, we..my enu in me,
- ...,,wi.ne i me wei.w...,.p.,
.ne wein a we., ..im me,e. wiremenu. sneen p. me Asus e.e. i siened ess I MM [~ / Alan E. Hudson- ,,y ~5-15-87 nome,ke-Water backed - see page 2 for details. GTAW machine welded usino a remote vidoo sonitor.
- )
SA508-CL 2 nozzle neck welded to A312 "p 304L safe end with a ENICrFe-3 butter and GTAW ERNiCr-3 butt weld.(SA508 C1. 2 Heat No. C124 FN2-1-5)
- )
The nozzle safe end assembly was PwMI at 11rr for ze nrs. prior to weicing.
- )
Arcos Type 382 Ht. Y4875N382.
- w.a :
m m.sev =ov es
Pope Comrect PROCEDURE QUALIFICATION RECORD i TO A.$.M.E. SECTION IX Water Ba'cked: Water contained in annulus space of,the thermel sleeve and nozzle wall. Water was considered to be stagnant with 20 feet of head pressure yet allowed to circulate (2 GPM maximum) as the welding heat input was absorbed by the water. Circulation did not start until the water temperature had risen to approximately +60'F. The water temperature ranged from +41'F to 82*F peak with the majority of the welding i being performed with the water temperature in the range of +45'F to 65'F. J J D A T 222LE ML - _...m....... \\ STAGNANT tRN1CP 3 OVt L AY WATER W l $///M//////77,,,,,,, m x m xx l l l 1 i //EV///////)" mm um l i wt l l WATER'8ACKED N022LE TEST ASSEMBLY CROSS SECTION .b b 'I Qualification No. 7717-gy A1.an E. Hudson l Date 5-15-8'/1 l
n 6 PROCEDURE QUALIFICATION RECORD TO A.S.M.E. SECTION IX PART 111 WELDING VARIABLES 146 & 147 (Temper Beads) 1/32" to 1/16" Passes 142 thre 14! From toe of pass 124 for filling in No filler metal added. low spots, g-- ERNi Cr-3 fe* e _YM' 35 l ~ n > n =P2-D 'D h D .i ,o ~A > = n~ : 2 f f, J 2,3 2-> > r _, x ; - n ~,~~3 , m = =,j 5/8v is / \\ \\ l ) \\ s t \\ s / SA508-CL2 M \\ M-Safe End t ', g,s A312 Tp 304L 1.20, .,, _ _ _ j e% ( o ENiCrfe-3J - ERNitr-3 Synchronization Syn Pulse Voltage control Continuous' Upslope time 5 Secs. Downslope time 10 Secs. LWire Start Delay 7 Secs. Travel Start Delay 6 Sees. i as Number 1 2-4 5 6-18 19-36 37-54 55-72 73-89 90 91-1C i Primary Weld Current (amos.) 220 220 220 220 220 220 220 220 220 220 Background Current (amps.) 110 110 110 110 110 110 110 110 110 -110 Out Dwell (primary)(sec. x 1) .4 .4 .4 .4 .4 .4 .4 .4 .4 .3 Excursion time (sec. x 1) .3 .2 .2 .2 .2 .2 .2 ,.2 .2 .2 I in Dwell (primary) (see x 1) .4 .4 .4 .3 .3 .3 .3 .3 .3 .4 Oscillation (in.) .20 .24 .24 .24 .24 ,24 .24 .24 .24 .24 Primary Wire Feed (IPM) 40 40 35 35 33 35 35 35 35 35 Backcround Wire Feed (IPM) $0 30 25, 25 25 25 25 25 25 25 Travel (IPN) (Torch Speed) 2.55 2.55 2.55 2.55 2.38 2.62 2.64 2.66 2.68 2.68 Primary Arc Volts. 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 Backoround Arc Volts 8.5 8.5 '8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 Heat Input (Kilojoules/in.) 36.04 38.39 38.39 37.64 40.33 36.72 36.38 36.08 35.76 35.76 3 Energy Density (K)/in ) 1,57 1.64 1.89 1.87 -2.00 1.87 1.87 1.87 1.87 1.87 0"*' IFICATION NO. 7717 Lg ,j DATE 5-15-87 O .i
_ _ _. _. _ ~ W PROCEDURE QUALIFICATION RECORD To ASME Section IX PART III Welding Variables 4 r ? ) 1 Synchronization Syn Pulse Voltage control Continuous Upslope time 5 Sees. Downslope time 10 Secs. "4re Start Delay 7 Sees. Travel Start Delay 6 Secs. .sss Number '"$33 'Ni 146 147 Primary Weld Current (amps.) 220 220 180 120 Background Current (amps.) 110 110 90 60 Out Owell (primary)(sec. x 1) .3 .3 .3 .3 Excursion time (sec. x 1) .2 2_ I. 2 .2 In Owell (primary) (sec x 1) .4 .4 .4 .4 Oscillation (in.) .24 .24 .24 .24 Primary Wire Feed (IPM) 35 35 Background Wire Feed-(IPM) 25 '25 Travel (f?M) (Torch Somed) 2.71 2.72 2.72 2.72 Primary Arc Volts 9.0 9.0 9.0 9.0 l Backoround Arc Volts 8.5 8.5 '8.5 8.5 Heat Input (Kilojoules/in.) 35.47 35.19 28.79 19.19 3 Energy Density- (K)/in ) 1.87 1.87 , Qualification D. 7717 jf
- f. /
Date May 15, 1987-By Alan E. Hudson e y .,e'
t PQR 7717 IMPACT TES" DATA W.O. #H5224 VEL 5/15/87 TYPE OF NOTCH N diT S!! ' gff,0 LOCATION G t NS N FT.LB J WLS A-1 LONG. FULL HAZ +20 95 129 60 50 A-2 LONG. FULL (Z +20 76 103 57 40 A-3 LONG. FULL HAZ +20 95 129 65 55 B-1 LONG. FULL PLT +20 43 58 36 40 B-2 LONG. FULL PLT +20 48 65 45 50 1 B-3 LONG FULL PLT +20 60 81 40 50 ~_ S neuanas. HA2 specimen taken at maximum practical depth of overlay weld on the end of the overlay opposite the safe end at AZ 90'. PLT specimen taken at 1/4T depth from 0.0. of SA508-2 adjacent to the HAZ specimen. OM [ b= ~ sy: Alan E. Hudson Jerry DeHay - i m m =vi.ov es
p Ce rect new W.0. fH5224 PROCEDURE QUALIFICATION RECORD l DROPWElGHT TE5T DATA SPECIMEN TYPE P $PECIMEN ~ LOCATION TEST TEMP 'F RESULTS I PLATE H5224-1 Longitudinal -30 No Break H5224-2 Longitudinal -30 No Break I H5224-3 Longitudinal -40 Break i PLATE TNOT = -40'F i HEAT AFFECTED ZONE f HEAT AFFECTED ZONE Twey I WELD METAL WELD METAL TNOT I [ t a [ I i CHICAGO SRIDGE & IRON PANY Qualification No. 77I7 -I* Date 5/15/87 Alan E. Hudson-gy_ r -[ wue e nev nov n t =.
i POR NO. 77I7 i W.O. NO. H5224 PROCEDURE QUAllFICATION RECORD j VICKERS HARDNESS TEST Transverse Spacing 10 KG LOAD '+ .1 to 5 = 1/2m i t Specimen A 5 to 8 = 1m 8 to g = 4'to 8m , Depth at toe = 1/2 to in q., i i
- s we I'
m ( i i L ) 1 h ni LOCATION TOE MIDDLE BOTTOM' 8 Y l 257 295 302 9 2 254 315' 331 3 2 36 240' '298 4 240 197 250 i 5 233 181 222 6 191-181 183 7 177 181. 183- .i 8 164 177 172 9. 167 177 171 10 163 178 203 d&~ c. /lA~ } Alan E. Hudson l5/15/87 BY DATE 1 .......-l _m - s..
FOR NO. Ili? W.O. NO. H5224 l PROCEDURE QUAUFICATION RECORD VICKERS HARDNESS TEST Transverse 10 XG LOAD N'"I"' I to 4 = 1/2m 4 to 5'= 1m i Specimen B 5 to 6 =' 4 to 8m l Depth at toe = 1/2 to la i: **", i , 'ma .( ,i ' \\. y. f .e Rt ) LOCATION TOE HIDDLE BOTTOM ) 1 400 310 305-2 291 322 286 3 204 249 267 4 191 192 226 5 1 81 179 162 l 6 171 174 179 j. 7 163 195 200 I 8 l l hl4n_ [.kbr= Alan E. Hudson-DA E May 15, 1987 lbh-e J
t 1 7717 von NO. r W.O. NO. H5224 ^ PROCEDURE QUAllFICATION RECORD [ VICKERS HARDNESS TEST Transverse SP8CI"C l 10 KG LOAD 1 to 4 = 1/2m 4 to. 5 = 1m Specimen B2 5 to 6 = 4 to 8m Depth at Toe = 1/2 to le Iv l ,.'a'*' j' \\. i \\. .s \\. l "I l LOCATION TOE . MIDDLE BOTf0M I 387 316 300 2 256 273 314 3 206 227 '274 l 4 190 203 234 5 1 82 184 180 + ~ 6 172 174 177 7 164 195 203 ~ ~. hA _ [ Yd.- sy= Alan E. Hudson DATg. 5/15/87-O t t ---.----..-e ,..n.--n.,
4 i Pope Centreet l-PROCEDURE QUALIFICATION RECORD TO A.S.M.E. SECTION IX i i PART ll ESSENTIAL VARIABLES POR No. 771b 5-15-87 Deie i p,ocess - GTAW (Pulsed - 360' Orbital) uenood luechine Q Aviomeiic L_l som.ooiemeiic O 1 Meie,iei spee,tication SA508 C1. 2 & A312 Tp 304L* FLUX OR ATMOSPHERE i AsME p. no.
- 3. GD. 3 To AsME p. no. 8. GD. 1 Plus trede nome N0ne Required Thicknees (if pipe, die and. ell thickl 13.9"8 x 1. 20" ine,t ges com,esii,e, 1005 Argon rio.,eie 40 CFH
{ Filler enetal group no. F. 43 Wold metal enetyeis no. A. ERNiCr-3 le backing sirip veed?. No Asut specit.ceiion ne. SFA 5.14 p,enesi tem,e,,,,,e,,,,e 44*F - 350'F (IPT) AWs specitication no. A 5.14 pee,.eid nee, i,esimeo, None ** r WELDING PROCEDURE sinese or most.eie pas. Multiple SI"9 ' SG I s;ne e or monisie arc pahion s Filler Metal ERN1Cr-3*** I Electrode nth-2. 1/8 "O pine,.4,e diame, .045" Type of backing OO Welding eurtent Direct Current Electrode Negative a Consult pART lil WELDING VARIASLAs for joint dimene% and welding outrent settings. ~ TEST RESULTS (Turned Specimen) p-doced s.ciion Tenene Ruoeu - Transverse All Weld Metal { oimeasieas in uni new unin.= una sessim.n me. ,,,,, ' Aru, a Togoed ene,.,.,e,Peii.,e seras g,,,,,,, H5224-C 0.252 0.0498 4.85 97.4 672.0 l H5224-D 0.247 0.0481 4.70 97.7 674.0 Guided tend Test Type Resuk Twee-Reevet f 4 Transverse side OK derry E. DeMaye Alan E. Hudson 464-76-333V 455-66-63Y1 JED hEH i Weider's name minhn D. Matthahre gesieg 3,,v,tgy,,, in1.An.11di weigo,.s symbol lbM i Who by virtue of these teste meets weider perfeenance :-J ::,c.te. Work order long. Wesi No. N O 12-9-M l Rev. oe, We certify that the statemente in this record are correct and that the test weld was propered, welded and tested in accordance wit guirements of section IX of the AsME code. l sgrdcm ey [ Alan E. Hudson 5-15-87 o,,, name,,,d') Non water backed structural overlay test assembly consisting of SA508 CL. 2 [ _ nozzle welded to A312 To 304L safe and with a ENitrFa-3 butter and GTAW l ERNice-3 butt wld 1 a thermal sleeve intide the nas,le. (SALnA' Cl. 2 Heat Nn. c17d FN2.1.G). .I
- ) Nozzle / safe end assembly was PWHT 0- 1150'F for 24 hrs. orfor to weldino, i
- ) Arces-Tvon RA9 Mt. Y4875N1A9 GTAW machine widad usina a video monitor.
- ) Nozzle / safe end assembly was PWHT 0- 1150'F for 24 hrs. orfor to weldino, i
I w6:eo nev uoves - i ..- ~ ,,,.. _.. - _. -..,,. _,,.,. -. - -, ~,. - -. - - - _ _
PROCEDURE QUALIFICATION RECORD TO A.S.M.E. SECTION IX PART III WELDING VARIABLES 146 & 147 (Temper Beads) 1/32" to 1/16" Passes 142 thru 14 From toe of pass 124 for filling in No filler metal added. low spots. &=m=== === x x l he =,McKTc c =,,==c:w,, -,_ RQs M gg er 5/8,, ,ss, ~ g d 4 j ,/ u \\ / \\ s / 3 ) SA508~CL2 H \\ Safe End _ _,3 i, A312 Tp 304L +1 1.20' p, ENiCrFe-3 # LERNiCr-3 Synchronization Syn Pulse Vol tage control-Continuous Upslope time 5 Secs. Downslope time 10 Secs. , Wire Start Delay-7 Secs. Travel Start Delay 6 Secs. .s Number 1 '2-4 5 6-18 19-36 37-54 55-72 73-89 90 91-1 Primary Weld Current (amps.). 220 220 220 220 220 220 220 220 220 22C Background Current (amps.) 110 110 110 110 110 110 110 110 110 11C Out Owell (primary)(sec. x 1) .4 .4 .4 .4 .4 .4 .4 .4 4 i .2 Excursion time (sec. x 1) .3 .2 .2 .2 .2 .2 .2 ,.2 .2 .2 In Owell (primary) (sec x 1) .4 .4 .4 .3 .3 .3 .3 .3 .3 .c ( Oscillation (in.) .20 .24 .24 .24 .24 .24 -.24 . 24 . 2,4 24 l Primary Wire Feed (IPM)' 40 40 35 35 33 35 35 35 35 35 l Backoround Wire Feed (IPM) 3'O 30 25 25 25 25 25 25 25 2! Travel (IPM) (Torch Speed) 2 55 2.55 2.55 2.55 2.38 2.62 2.64 2.66 2.68 2.6! Primary Arc Volts. 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.( Backcround Arc volts 8.5 8.5 '8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.t Heat Input (Xilojoules/in.) 36.04 38.39 38.39 37.64 40.33 36.72 36.38 36.08 35.76 35.7i 3 Energy Density (N/in ) 1.57 1.64 1.89 1.87 2.00 1.87 1.87 1.87 1.87 1.8 Ql'M IFICATION N0. '7718 /)/ Az BY' Alen E.' Hudson ' ' DATE 5-15-87 m ,--..,y-
PROCEDURE QUALIFICATION RECORO To ASME Section IX j PART I!! Welding Variables i- \\ 1 I l ) i i l 1 i Synchroniza tion Syn Pulse Voltage control Continuous Upslope time 5 Sees. Downslope time 10 Secs.- ' e Start Delay 7 Secs. Travel Start Delay 6 Secs. j .oss Number 9 33 'Ni 146 147 Primary Weld Current (amps.) 220' 220 180 120 f Background Current (amps.) 110' 110 90 60 out Owell (primary)(sec. x 1) .3 .3 .3 .3 j Excursion time (sec. x 1) .2 .2 .2 .2 5 In Owell (primary) (see x 1) .4 .4 .4 .4 l Oscillation (in.) .24 .24 .24 .24 .{ Primary Wire Feed (IPM) 35 35 Background Wire Feed (IPM) 25 25 P Travel (IPM) (Torch Somed) 2".71 2.72 2.72 2.72 [ Primary Arc Volts 9.0 9.0 9.0 9.0 i t Backqround Arc Volts 8.5 8.5 8.5-8.5 i Heat Input (Xilo.foules/in.) 35.47 35.19 28.79 19.19 3 Enercy Density (K)/in )- 1.87 1.87 /J /
- g. g/ / d _ _
, Qualification No. 7718 Date May 15, 1987 By Alan E. Hudson i ? .. ~. -, -, ~ -.
POR 7718 l lMPACT TEST DATA W.0. #5224 Y" TYPE OF NOTCH 5/15/87 I ENERGY LAftRAL $ PE C. SPEC. S PE C. NOTCH TEST TEMP N O. OAltNT SIZE LOCATION OfG F. EXP SiON PER CEN,T gggg i D-1 Long Full HAZ +20 111 151 75 50 l l D-2 Long Full HAZ +20 89 121 63 40 0-3 Long Full HAZ +20 99 134 72 70 l l l C-1 Long Full PLT +20 43 58 33 40 C-2 Long Full PLT +20 51 69 42 35 8 t C-3 Long Fuil PLT +20 45 61 37. 35 l I i l e l i l l I i } nauAnus: HAZ specimen taken at maximum practical depth of overlay weld on the 3 end of the overlay opposite the safe end at AZ 90'. PLT. specimen taken at 1/4T. ~ depth from 0.0. of SA508-2 adjacent to the HAZ specimen. i I ' BYt - fa [ ' Alan E. Hudson Jerry DeHay _, ym I w avaa m aa mve n
i o rect PROCEDURE QUALIFICATION RECORD \\ DROPWElGHT TEST DATA SPECIMEN TYPE P SPECIMEN LOCATION TEST TEMP *F RESULTS PLATE H5224-1 Longitudinal -30 No Break r H5224-2 Longitudinal -30 No Break H5224-3 Longitudinal -40 Break PLATE TNOT = -40'F HEAT AFFECTED ZONE E HEAT AFFECTED 2ONE TNOT WELD METAL WELD METAL TNOT A l CHICAGO eRIDGE & IRON COMPANY Qualification No. 7718- [ c. [/v!dr Date 5-15-87 eY'- Alan E. Hudson wL u e nav m v n
FOR NO.
- so W.C.NO.HI224-i PROCEDURE QUALIFICATION RECORD VICKERS HARDNESS TEST 10 KG LOAD
_ TRAVERSE SPACING 1 to 4 = 1/2 m 4 to 5 = 1 m 5 to 6 = 4 to 8 m i SPECIMEN C Depth at Toe = 1/2 to l' m n R ,, N = i' \\ f 8 \\- E: / \\ f' l l ~' e LOCATION TOE A MIDDLE BOTTOM l 307 426 310 329 2 348 314 272 3 239 265 279-4 201 214 234 5 179 180 186-r 6 177 176 177 7 168 190 203 t e jf_ f,L l / L y _ _, - .DATE 5-15-87 l n Alan E. Hudson ~~ b ... _.. _ _~, ___ _
IIII POR ND. W.O. NO. l45224- . PROCEDURE QUALIFICATION RECORD l VICKERS HARONESS TEST TRAVERSE l $ PACING l 10 KG LOAD 9 Bottom 1 to 5 = 1/2 m S to 6 = 1 m / 4 f SPECIMEN D 6 to 7 = 4 to 8 m j 9 Toe & Middle I to 4 = 1/2 m i i s' ' "i [ 4 to S = I m i.. 5 to 7 = 4 to 8 m d Depth at toe = 1/2 t / 'A"* ( 1m. p 'l + l i ) \\ j Rf LOCATION TOE A MIDDLE 80Tf0M 1 341 416 282
- 272 2
235 331 267 3 196 261 ,249 4 185 187 225 l 5 171 177 201 179 l 6 7 181 166 178 8 168 176 202 1 A_ L _ f,1, A.- - \\ f. Alan E. Hudson 5-15-87 DATE W h WA 1 Y
I 7718 l POR No. W.O. NO. PROCEDURE QUAUFICATION RECORD VICV.ERS HARDNESS TEST 10 XG LOAD TRAVERSE SPACING 1 to 4 = 1/2 m 4 to 5 = 1 m SPECIMEN D2 5 to 6 = 4 to 8 m Depth at Toe = 1/2 to 1 m V ', ' Q...;7, ' ' /. / 1 ,i'} / y-n, ( 6 l i (~ LOCATION TOE A MIDDLE BOTTOM 1 350 434 308 284 2 252 417 307 274 3 196 316-267 PS 4 189 270 224 233 5 188 256 183 176 6 174 .182 181 172 7 163 190 197 l- $ (, 3y Alan E. Hudson 5-15-87 DATE 1 h k.? k"i
- }}