ML20054F241
| ML20054F241 | |
| Person / Time | |
|---|---|
| Site: | Rancho Seco |
| Issue date: | 06/08/1982 |
| From: | Walbridge W SACRAMENTO MUNICIPAL UTILITY DISTRICT |
| To: | Stolz J Office of Nuclear Reactor Regulation |
| References | |
| REF-SSINS-6820, REF-SSINS-SSINS-6 IEB-80-11, TAC-42918, NUDOCS 8206150351 | |
| Download: ML20054F241 (28) | |
Text
{{#Wiki_filter:; .a I g ys i .jSMUD l sl SACRAMENTO MUNICIPAL UTILITY DISTRICT O 6201 S Street, Box l'51L'0, Sacramento, California 95813; (916) 452-3211 r i June 8, 1982 J N } = ^: DIRECTOR OF NUCLEAR REACTOR REGULATION / ATTENTION JOIIN P STOLZ, CilIEF ,~ f OPERATING REACTORS BRANCil 4 / U S NUCLc;AR REGULATORY COMMISSION t WASilINGTON D C 20555 y <r DOCKET 50-312 s RANCllO SECO NUCLEAR GENERATING STATION / UNIT 1 w MASONRY WALL DESIGN - IE BULLETIN 80-11 ~ Your letter of March 15, 1982, requested additional information con. cning r the integrity of concrete masonry walls at Rancho Seco Unit 1. Tha' : a f ormati on requested is attached to this letter and should allow you to comple,to your- { review of this concern. --J t /h l f 19' ? u Wm. C. walbridge General Manager [ 1 Enclosure -s // ,a ,/
- -W q
n e-Ma i r e d / 82061503S1 820608 - D( PDR ADOCK 05000312 .QO O PDR p. AN ELECTRIC SYSTEM SERVING MORE THAN 600.000 IN THE HEART OF 0 A,1 I F O R N i A
4 ~ ; i I RESPONSE TO NRC'S REQUEST FOR ADDITIONAL INFORMATION .s QUESTION la. With reference to Section 5.0 of Reference _3 and the analysis of the nuclear service station transformer enclosure walls as one-way slabs, indicate the following: The boundary conditions used, and' provide proper justification for neglecting the flexibility of the bond beam. RESP 0 HSE, In the original design of the block walls, a simplified method was used in determining the frequencies of the block walls. Accelerations then were obtained from the response spectra for the design of the block yalls. Subse-quently, a recheck of the wall frequency assuming the top of wall to be free and other edges to be fixed yielded essentially the same frequencies for the block walls. Consequently the accelerations used in the original design are still valid. For the static analysis, the wall is analy$ed as a 1 ft. wide vertical strip simply supported by the existing concrete slab at the base and the reinforced concrete bond beam at the top. The vertical span length is 12 ft. The simply supported assumption yields the largest moment magnitude. Since the simply supported assumption is used, any deflection of the wall that may result from the Lend Beam Flexibility does not affect the maximum mcment. Qt'ESTION lb. With reference to Section 5.0 of Reference 3 and the analysis of the nuclear se rvi ce station transformer enclosure walls as one-way slabs, indicate the following: Using sample calculations, indicate how the eff-ct of higher modes of vibration is included in the scalysis.
RESPONSE
,s? In this wall design, the Fundamental Mode Analysis with uniform inertia loading was used. We are providing descriptions and results of the analyses of two sample walls to show that our use of the fundamental node analysis is adequate and is comparable to a multimode analysis. The first sample wall considered was a multiwythe cantilever wall l'-6" thick and 8'-0" high. A typical mathematical model of this wall is shown in FiFure 1. A non-composite section was considered in the analysis since the shear strength of mortar and grout at the collar joint was conservatively assumed to be zero. The two exterior vythes of the wall were modeled as two separate flexural members tied together by tie bars. These tie bars were modeled as springs connected to the lumped masses of each flexural member. i + 1
n. i t. A modal analysis was performed to determine mode shapes, participation factors and natural frequencies for the wall. A spectral response analysis considering multimode responses was then performed to determine the resulting moments and shears in the wall. The modal responses were combined using the SRSS procedure (the square root of the sum of the squares). The resulting moments and shears were used for the evaluation of the adequacy of the wall. 1 The second sample wall considered was a rectangular wall l'-6" thick supported at four sides with dimensions of 15'-0" by 22'-0". The mathematical model is shown in Figure 2. This wall was modeled as a plate with four simply-supported edges. A dynamic analysis using Computer Program STARDYNE was performed. A modal analysis was first performed to determine mode shapes, participation factors, and natural frequencies of the wall, which were then used for a spectral response analysis to determine the resulting moments and shears in the wall. Resulting moments and shears based on modal responses of the above two walls for the fundamental mode aa well as the multimode combination using SRSS procedures are listed on the first two lines in the following table. Another set of moments and shears for these two walls based on the uniform inertia load associated with only the fundamental mode is also listed on Line 4 in the same table for comparison. T 2
F. ~ .., - C.-...i -
- ..sv.......... a...,.... n. e -- a-w.
.a. Cantilever Wall Four Side Simply-Supported Wall Moment Shear Moment Shear (at base) (at base) (at center) (at base) in-lb/ft lb/ft in-lb/ft lb/ft Fundamental (1) Mode 24,128 344 38,188 1061 (use modal responses) SRSS (2) Combination 24,165 351 38,246 1066 (use modal resonses) (3) Difference 0.15% 1.97% 0.15% 0.47% Fundaeental (4) Mcde 27,042 563 39,477 1165 (use unifons inertia load) As shown in the table, the resulting moments and shears (Line 1) from the fundamental mode are only 0.15% and 1.97%, respectively, less than those (Line 2) from the SRSS combination. It can also be seen that the values on Line 2 are even smaller than those (Line 4) from the fundamental mode using the uniform inertia load. The comparison demonstrates that the analysis using the uniform inertia load associated with only the fundamental mode is adequate and conservative. 3 l
I ) !l l i d E ,A b i r o i l D i l s b u W l Ties-Represented by Tension-Compression ( ) =p-( ) e [ i I Springs (Typical) I s 4
- r. ?
e go NF 0 ^ a f e 85 ~e$ N: del Mass c' c* Individ.:a1 W. the s M. 2 m m (Typ2 cal) ' r i r 5. 3, > a n j iF ///// ///// l i j 1 l 1 i i l i I r i TYF : C Al.'d TrI."_C C.C. MCDEL l EYNAM] C /AC.YS I S (.C17 2 -riTr1 CAN7 III'GR b/11 ) i i I::T i f i i
8 j L !fi i I j'j i a 4 k E k h h 6/m e v 2 m e s s s e ' ~ /m s =- ss S ) E E D T O L A. EI NS DP E o( LI H Ll . l t if 2 AA IAi t D ~ RN IC Y. m OU TAl i i t FO AN i NA r I I E L I I C AD TI CN AH I 0 HAN P0 Y 1 Y1 D TA S ./s, E D O sN ./s,C E k 1 k , N U I sI a I v I gss_ c ll 1l
QUESTION Ic. With reference to Section 5.0 of Reference 3 and the analysis of the nuclear service station transf ormer enclosure walls as one-way slabs, indicate the following: Indicate how earthquake forces in three directions were considered in the analysis.
RESPONSE
The design calculation for the walls includes seismic forces in three directions according to the " Component Factor Method" Equation: R + j TOTAL i k The values of R, R, R are taken from the appropriate response spectrum k cu rve s. QUESTION 2. With reference to Section 3.0, Attachment A [3], justify the deviations from the relevant FSAR load combinations with regard to factors multiplying the loads.
RESPONSE
The 1 cad comtinations in the FSAR are specifically for concrete structures only. However, the load combinations used in the design of masonry walls are com-parable to those for concrete in the FSAR. The corresponding load combinations are as follcws: FSAR MASONRY WALL (5.3.2.2.1.A) A = (1 + 0.05) D + 1.0L D+L (5.3.2.2.1.B) A = (1 + 0.05) D + 1.0L or W D + L + Eo (5.3.2.2.2) CP > (1 + 0.05) D + 1.0E D+L+W D+L+E s A = capacity of structure based upon allowable code streshes with no stress increase. C = required capacity of the structure to resist factored loads D = structure dead loads L = Live Load Eo = E = Operating Base Earthquake (OEE) 6
_ ~.. E = Es = Design Basis Earthquake (SSE) W = wind load 9 = capacity reduction factor 4 The design loadings given in FSAR section 5.3.2.2 were provided for reinforced concrete. The 10.05 factor in the loading is to allow for uncertainty in estimating floor dead loads. Since the dead weight of a masonry wall can be accurately estimated, the 10.05 factor can be safely neglected. The 9 reduction factor in paragraph 5.3.2.2.2 is normally associated with ultimate strength design. Since working stress design is used for masonry, the 9 value is not applicable. QUESTION 3. With respect to Section 5.1.2, Attachment A [3], provide references justifying the formulae for grout core tension.
RESPONSE
The tensile strength of concrete in flexure is termed the modulus of rupture (f ). Per equation 9-9 of ACI 318-77, f = 7.5 3'f ' c. In ACI-531 (see Ref. 3, Chapter 10.1 of Commentary), allowable sEresses are generally associated with I a factor ef safety of 3. Dividing equation 9-9 of ACI 318-77 by the safety facter of 3 yields the formulas given in Section 5.1.2, Attachment A. QUESTION 4. With reference to Section 5.2.1, Attachment A [3], justify the increase factor of 1.67 used for shear and bond, tension parallel to the bed joint, and tension normal to the bed joint. The NRC criteria [4] allow increase factors of only 1.5 for tension parallel to the bed joint and shear in the reinforcement and 1.3 for tension normal to the bed joint and masonry shear.
RESPONSE
The factor of 1.67 for shear bond stresses was included in the criteria for the re-evaluation of concrete masonry walls (Reference 1) submitted January 19, 1981, prior to the publishing of the Standard Review Plan (Reference 2) being published in July, 1981. Code allowable stresses for masonry shear, bond, and tension normal or parallel to the bed joint were increased by a factor of 1.67 for load combinations involving abnorm.1 and/or extreme environmental conditions which are credible but highly improbable. Since ACI-531 Code Allowable Stresses (Reference 3, Chapter 10.1 of Commentary) are generally associated with a factor of safety of 3, the 1.67 increase still provides a factor of safety against failure of 1.8 (3 + 1.67). QUESTION 5. With reference to Section b.2, Attachment B [3], provide references justifying the formulae for moments. 7
RESPONSE
The f ormulas given in Section 6.2, Attachment B [3] are derived from Reference 5 textbook. However, there were no point loads applied perpen-dicularly to the face of any walls. Therefore, these formulas werr not used in the re-evaluation calculation for the masonry wall. QUESTION 6. With reference to Section 2.3 of Reference 3. explain how the mortar type was determined to be S or M, and indicate whether the properties used in the analysis correspond to type S or M.
RESPONSE
The Mortar Mix specified in the specification for the construction of the masonry wall is very similar to those specified for type S or M mortar in UBC ) 2415 (Reference 3). Distinction between type S or M mortar has no effect on the masonry wall strength. Table No. 24-H of UBC. (Reference 3), gives the maximum working stresses for hollow unit masonry without regard to type M or S. In addition, the compressive strength of the concrete masonry (f'm) used in the reevalua-tion is 1350 psi. The compressive strengths of both type S and M mortar are abcve 1350 psi, meaning that the concrete masonry governs, not the mortar. QUESTICN 7. With reference to Table 1 in Reference 3, present the results of the analysis in terms of actual stresses and allowable stresses in psi units. SEE ATTACHED CHART l QUES TION 8. Provide legible copies of all the concrete masonry wall sketches included in Appendix D of Reference 3. (SEE ENCLOSED SKETCHES) 1 L 8 L
-- --- -+m,.1_.me:--wvAw e.4 em NW- - -
- g w f A, _- t e _, 2 REFERENCES 1.
J. J. Mattimoe Letter with attachments to R. H. Engleken, NRC.
Subject:
Rancho Seco Nuclear Generating Station, Unit No. 1 - Tinal Response to IE Bulletin 80-11 Sacramento Municipal Utility District,19-Jan-81 2. Interim Criteria for Safety-Related Masonry Wall Evaluation NRC, 00-JUl-81 SRP 3.8.4, Appendix A 3. Building Code Requirements for Concrete Masonry Structures Detroit: American Concrete Institute, 1979 ACI 531-79 and ACI 531-R-79 4. Uniform Building Code International Conference of Building Officials, 1979 5. Theory of Plates and Shells Timoshenko and Woinowsky - Krieger McGraw-Hill Book Company, 1959 10
l
- . w.::c ~ ~~y
~; .7.; .x,y UNITS-KIPS /FT. AND FT. KIPS /FT. WALL TYPE OF j NO. STRESS D L Eo D+L+Eo Es 528.lN SEE WALL 528.35 528.2W AXIA.L 3.0 1.6 0.8 5.4 1. .m-528.2W FLEXURE 0.2 1.4 1.6 2. SHEAR 528.2W (OUT OF 0.4 0.4 0.E PLAhT) SHEAR 528.2W (IN PLANE) 2.1 2.1 4.3 ~ .... %:a.. ~,;7 ~:f- ' " 528.2W FLEXURE 11.2 11.7 4.3 27.2 8.7 LINTEL 528.2W . LINTEL SHEAR 3.5 2.5 1.4 7.4 2.8 iS28.35, AXIAL i 2.1 0.3 0.8 3.2 1.E i i l 528.3S FLEXURE 0.2 1.4 1.6 2.7 i SHEAR 528.35 (OUT OF 0.4 0.4 0.8 PLANE) 181.1 TO AXIAL 0.75 0.11 0.86 0.2 181.8 181.1 TO FLEXURE 0.69 0.69 1.4 181.8 181.1 SHEAR TO (OUT OF 0.18 0.18 0.3 181.8 PLANE) c _.a ... a _- -:- u ___ PILAS-AXIAL 4.47 0.7 5.2
- 1. 3<
TERS l PILAS-FLEXLTtE 4.02 5.6 9.62 10.9 TERS 9
. ~ - l f 1 UhITS: PSI { ALLOW. ALLOW. TYPE Of FOR FOR dol +' ' STRESS D L Eo D+L+Eo OBE Es D+L+Es SSE SEE WALL 528.35 I j ,r 21 12 6 38 295 12 44 493 I ~ 1s...__...1899... . _ _1_3 2 91. - - _1519 0..._ 2_4_000___.. 25633 _2_7532 _ 40080__ 0.8 v 4 4 40 8 8 67 4.1 v 15 15 40 29 29 67 31.6 . _ _ _f s_ _ _..... _ _81 7 2.... 8_ _5_3_6_ _ _ . _ _.31_3_7_ _. . _1_9_8 4_5_ _ _ .. _2 4 0 0_0... __ _ _ _6_3_4_8__ _2_3_05_5_ __4_00_80 fm 179 187 69 434 450 139 504 751 E.6 v 15 11 6 31 40 12 j 37 67 l i l l 13 f 4.2 fa 15 3 6 1 23 295 30 493 l t i 2.9 l... f s....!_ _..1_8 9 9.. i.... _ _ _ _...13 2 91... 1519 0_ _ _ _ _2 4 0 0 0_ _ _.._25_633_ 2.7532.. 40080_.' i l t I, i 0.8 v 4 4 40 8 8 67 l I 0.97 fa j 8 1 9 295 2 10 493 I i i i 1.4 ...fs____I ..1296.1..._ _12 9_6_1_ _ _.. 240_00_____ _2_62_9_8_ 2 62_9_ _8_ _.4. _00_8 0_ _ 'm l 364 __364 l._ __450 _738 __738 l 751 3 0.34 v 4 4 40 7 7 67 5.8 fa 18 3 21 295 6 24 493 l 4 15.5 ..._fs..-_-__.7228...IL _ _. _ _ _ _ _! _ _10 0 6_9_ _ _ __ _1_7 2 9_7_.. l. 2 4 0 0_0 2 7 8 6 9.. 4 00_ _8 0_ J j .154 l 214 l 416 --__592 751_ l fm 366 450 l 7 s
( i 2 i I A PPEND / X D s, 1 l CCtJcRETE MASONAY WA l /- I 6 l< ETC HES ( 1 l l l l i
f w 6 '""~~'yhe 't)
- ^'99's y*g p q ym
,,,e o g '..%u ka 4h 'a g [ )j 'h j N.. ..e 4 { g 3 t s sz e e hN 'e{ i k ( ;." i [os6 E f ,E d, kl i e a Ey % h.. 4Q h 4 t{j 5 3 E ab I a x y n! s a 4 i s x i E 'hh ,, o, ) __ ':4
- 0-8 L
WT A D N y w o o I k d N q S D ( h 0 g i e t t a N s, h e 70~ E (3 S g 3 o 2 0 e e c a s t 'Ikh{& h v iu 7 ~ V, t N U ~ 33 o Uw x k fb eq m t Ic" h%% k eli O {Q's' (. tRS i '. 4 $t ~ i b:y c e4 o: yyo), u x
~,-.. g,. =.. = 2: u u 'khbgr g ,i u ~ 'o c.!kh l tk x{4W3 h $. 0 h 'I 44 th' 2, ( e % @o +t x t o; o 9 3 )- lj t v n .y a { fg" gi g h s ( k g,.5{ q h Ot' i 3 4 '3u 1Q% 4' D gt R-{a{%u gVI hE ~ h{'h sg a% ll 1.th si ( 4 t x 3 d w ) 4 ' )e k. - i Eug w x t-x y D E&3...ii y j g%. 1 $31 2tR9a *s g 3 x s o ,t,3 y e C augw q vt e y' n - ho { q{R t RQ ! ~ '. i! 3 i i l. i s 'Q a l.j 41 1 ,... o. o, N s a, k Rd ( 5 a A <(n. $ ytny e gdv a W -Q g 'g u 9 1 ( l G O e;- yn l M, k Q 3 ( i,; 7 le e J,Q x m v f f 2 D k 'o N g s 'o N o Qh s te
- i
~ 's k.% Qff ~ n y c3 x3 _3 .' i ; p wa \\ 04 \\ --m s g f e !- Q R ,o,r -o x x = ag p g, av % L p 3R W o w 2 k $'6N (
- 4 u%
4 [2 4 h th. 44 Ax V 8 34 % ~ 8, c h p% .t0 9 y uh.D i S
c - . _ = - _.e- .._..m. ..... m. .n.h. -..,.n.,. n. 0, fk jvhN 5u ~ k d' '~ O I k X 3 x9
- i!c m
(j't.gNl Dx Egb h A s 3 T a'$ss {t ts Q t i 4 9 x 4 8m N 49 4 4 u o j .i-Q N o) I D o Ag e
- o na.w s a4 ue s
e e a 400{ 3' .3 s G h 4 Wh[ce$ x 3R E g I 4 "R qN Nn S ji"3lt! { h EEk ~g 4 v u i R a >n ,s 2e i: ii e .l %wbs x 2 i , %[g'-E . 4,-# ~ k 29 I O k Ax L i / [vf ~ ~ l jQ ~ a 3 .t 7 d I Q 'h W 4 tg e (}e ( i ? W .i W 4 3 .m h .t 4 j s o: s S' ) g a j i L R x s d o g (
- 0. 0
\\ %g k u e I M 4 k g y 9t IL
- !i
~ o 'D , 2 - t. in m g s b g D '# 'd D N'b c ( I3kdj}"s e 'i r k ? G ok
- i. 20 h
ik D,
-.;.-=----------------;=.=--..-.:.--- _ -_ w - n. S.AO Mla $73 ( CALCULATION SiHEET ~ cat.c. no L'-fl6 SIGNATUR E O' DATE O CHECKED DATE / v ( PROJECT/94###O JL*~ C O ~Nb JOB NO. W YY SHEETS SUBJECT eM S*M 4 V 4> 4 / 6 f SHEET OF . urred s2P. f - x.oesr/oM.of JX4NSF04ME. 2 f3A /-. i b' ONLY. CA7fCMY Z EQWPmfM7~ ' //V P&Om/7)( cf I'9 _ _ _. _ WA 4t:.S sun 2 A) AND 4"2 7,3 5~ < s ac <2am m .w__ 6 J( 'q L a I bl * / s 4.f f 9 'O to a g q r. U l L.d,- 12 w 33 '/ r C ( '6 unu :22.2 om ? s 1 11 '] '- O p y g g g-4 '- F b 200NDr4AY Of TAAWSFeAMER -g *f X Y.38/. (ureco<v i } 20 c g 21 22 ag 23 1 A h 2e .I 25 4 .g' ~ n d 2' s ze wAl t. m27.35l ? 29 -f' 30 /~A C d' Of Co AJd a 3' U A 4 L. jett O N d l'e4 o 'o { 4./NE J. ,.c sa 34 D
~
- 2.2 HS HJ.L VN 4 u%
i b'3NoOD kNE\\ ( 0 g Q 3 1 ..e o t y y 4 O T g))< 0 0 4 2 Q 4 i W3NoOD ~ 5 u i d{ 0 4'a tu 2 N f g 3 ( g \\ I I 'd D (( d 3{ ~ ~ Y k I l od 0 0) s s 09+29 /Y 0 id
- 't 3
g I )s !3_IV9fSV_7* N N A l(. % I!) !i ih s p. 4 s R u t' ee x 4 3, o 1
- tai, 1
us s m u e s s" sk & E.I f _ _ dA l _ 9 a !!ieng:esn g4t .Os .,Og 'a 3 ; ag t l s x !I e)1 xl 312 t-e ( Iti(! f k k if k I!!}!! k t5 tl i n , n q,!f sh"h s n x r. o g Iy ll ! 8 !E.i' WU d ( ? .. e s t u we { l d I S E b
- k & "n e e
e a 43 pf h 4 6*6"4 xxw%xwxwwx._ ~ .. 00 IF $ N--lNOO I
a,.ggym e ee--
- 4m-e w al'm'emee
'E9 a w'r'e h ** @ N 83tvooo 4 & N *N 4 C n k k { y g V XR-0 4 lit m .o Ld i g l 4 % Q ~ 4 i t $k i If K 2 8 l9i %(( ~ U t t R k
- (
v a 4 1;s e -e 3 s i !e9 H{ -) J tE dh i !l n4 1 y as a t s a kfE k q b] t '!di ( i i. t! h t x u'3 33 h a 3s1 h a t o 1 (I, R T d E w bk k3 kN ! l (~ k <i g E, q fh l: c ot3 \\ T 2HS HD.LV'N %l q,- y kkhh4
t 4 f lk ~ }k ( e U s s N 'N' l 1 E k l t2HS' HD L VH 82n'ow s{g gg g k k!g} L 5 Y q s @y O h x tu; O-
- R 4 RAk 4
a R
- i t h&
( t 2 D $st 1 I l' $k sk s E kg x x i it ! k, t e' t! t 4 5 il b R st g # t Rt t # ( %~\\ k N N W2!YoOD 0 5 tho % $;h bf 21 1E $hNt k. ARs N { d D3fB h k O O yyN(i !kN h " h ( 2 2 H S H J.L V N n 3 o e q
- A "' %
W31YWO3 ~
= ' 2 2HS H2.L YkV ik!} c. e @ [d ij s 14 5 h b. 4'n@$ o d ( a 3 X w h nt s $I 1% 't t {g;a i to kUk {:ki l d }k Chl c k I lj 4 eC k ~ kt$ }kI 's ? E I i m' t{4 !R gb ! I h< *A E E! { g V N 3 i i A 3-ak 4 0 I I')5 5f!gh <w o o k4 3 1 g .b t I E _2NS NO / VN ..lRy(3 I 0 go J b'3 / M O D ~ <q<4
- 9.2HS H3.L Vh'
~ 03NoODJY c k 4 Ub, 4 % l 1 ( Q ( 9 g o k O O h "" 5 WM i ,f li$ wanwoo m D 1 k 4 ' r O D x ~ o o q V) N l v1 E g s ( l k 4 i
- 'g
( l ) 2 n ( k ) k D G xu q -u x g h i D O N T N) l 4x@I)? s x l Q' H *e li {s (*kxeq $ w! Q g4D t b e g s y ~'2 [ d ,r I {I N I C S kb l / 4 t I y 2g g g2 f'h. tk hw Ni g OZ + /E 3 ?& D b 'k 4 e hh M D WoON .o,s = u t * ' t t t ;6* l{x i!ne i ic ) '; M z ( a J 'i['lx s03 g}% {t 'w* Gi
- 2 us u m n 1 l ! "s P$EN j)
I~ 4 xN ~ t c 'w' ^ L 1HS HD 1VW f W3/YooD G k YN k k ekk 2 1 X y no 0 0 Q ~ og g \\ 03/YoO3 ,A{ g 2 4 k sx W %)s o < ) W) h w' i I,2 i o i N i t 0 D gSA i {s k 4 k ( I 4 t i b lli
- [AEgt Q li C)
=j i !I !*4qt s n aa l '2 B H p w = sj {t ' t V iD v$hf f gk h i h i k F il3 a i 142 a w ~s j! $5 )) k b I d 4 h = ll 3e {s Q A d e IE{i i!?$ H 4 %t d Dk 5 50 I x bl i l 5 2 ' l;i = t l E 9%a 0 E 4" 13 Iw 2 4 g(e ( s v g u( s 3 o m e 4 klA*f;ly}}ha$ 5 o3/YoOD .a %h ' 51HS HJL YN ~i% 4" $ dk 1
_ _.. =. N I k , s'%' N I 9 2HS HD.LVW q ts N 4 A Q ,n-- 9 g k k ~~~ k k D'~ 'k pw 4 L .s.,e V 0 $a$!$u <) y 1 ML .O r, O Q $s $ qq y g k i g ,k ) 0 d 3( i ~ u, t B El I 5
- U,.
s 3 y 4. s a$ (&k j 7 1 i + ) i pw w his e sssx' RAk i i d hg ($4 e l( kg2kk 3 I \\ ell $i t O E $'[h E 't I') l 1 t%x [ R {l h R' lgh4g fi t ! I t i ~'~[- k i i i 49 ?3 3 vy 4 t s a & g *' 2 4 >4 l 5 Il 4 2 3 I haet ? bl ( [ hk I li $N D tef5" l us et w wEa'34 x% 9, t s 3 2 3 k s 3 5 o iw
- ! ?+!
w&, g pm(4 4t[)x ~v u i
- 2
) 'i ( o f 's o '*4 ~ N ~h,sI*hg4i j 9 2NS HD_/ VN 5 fk n b'3Nb'O D 4 e <q gq(
,_m.seus"" g s \\ q k $ i xa e i N ~ ~. ad yv ~ 19070]NIWI h n k Nkk a f* gf t 5k m u mm x D C g ,! s { } fAkicx t'! i gi (g a e a s t [n1-te s 2$5 Al p b! g m 4 LI {l { } d R$kl$!!I**! l gI s h g y ,e m mt a t ait
- h d
.L V 9.z S f N " ~ ' j $$ )! a 'p te)yg lW. $$ 4 5 t te x ( A gl iR 8 3 s i, 'x 4 - g ~ wgs w u l R ? l l '., ng"d b IQ E 5 4
- " G: E,j i
w g Di'bsI s lo t s 5.li d t i ? ( _ +' e% e i
- wi'ha
!<{gs'kl.$2I['G d. /_,.2'NS HD.I VW N 3 1> Al-4, k e, '. {sk(h w y c ~ I
. = _ _ 4.Ac es13 C 73 CALCULATION CHEET " " DATE dN CHECKED 9 b SIGNATURE 4' DATE '" # O bo ( PROJECT ~ JOB NO. SUBJECT
- '##### V MdMS SHEET U
OF SHEETS 3 ZXF7CM A/O, /P/. 9 - LO CA rtoAf 0F SAFE TY RELATED / TEMS. __, 3 /N PR OX/m / 7Y 7b 4 Mil /P/o /,UfAlo N 8 9 l g g 1 t 6 g l y - 31 7 i %f ,x l f, (.".. g$ 4 g 'n. %a 3 ~ x 9 l 05 -l = 6i f i = 2i i q 24 k N 25 4k 2s 27 4 gg M y } Q ~ 31 F &EW Gwr. Bun.. PzdN 1//Ek/ 34 35 L
- nm t. ~ ~ CALCULATION CHEET g,g ~ *
- DATE CHECKED,O
// SIGNATURE DATE f (PROJECT e# N JOB NO. ~ SUBJECT
- A r, e> e V Udc4S SHEET OF N
SHEETS SKf7"CM No. /f/, /0 - 40c47/04! 0F.ZAff7Y MfM7"f& / TfM73...L._ :. _ _. 2 . /N ?E 04'1m / TY. 7"o AJAL/ A/0. __/ 7/. /.f Wf/l/r.. i i 1 3 a_-- 4 5 :oxDusr No. M eto52 - 4"$$ ,,9 6 s .~. 7 i 3......... \\ 1_.. com,m.noron .r\\6 w xs- = ...J ~ F L a. a s . 4 - s- ,a ,s j g'... 1 N 12 o z,. 'g k _.... 14 N' ( 15 {i 16 Q 17 e, e + 19 ,? PL pfAf f//E tu 9 20 21 l w 23 $EC770s/ A-A 3* D I6 27 IS = 30 31 m 34 35 36
wmuen .l CALCULATION CHEET CALC. NO E-8/l SIGNATURE DATE // " W [O U CHECKED DATE PROJECT "" W NTo ~ JOB NO. N SUBJECT Mgsov#y A>#4 4 f SHEET OF SHEETS 3A'd'"7C.H NO. /f/, // ~~. L e CAT /DAl O F. 64/~fW Afd47/~D /74~#13 1 E /// /*A C X/My / 7"f 70 4.)AL&. A/O e / El* S $
- i, 6 f.rzsr 8 ' Cowe. M7Asomey l~kg L A
k M4a NO. /f/.TS = h 5 c m n. C 1 'n _ G,. I y &r f,gy 74w fw. 9 z'A 8 f. ENE W IO K 4 '# L~t s1 il 4 o ch .,pV '3 14 15 Y-G, 16 'o, x 17 $9 .I 18 -1 19 ' DL/9Y V/Ek) j l 1. 20 21 ta l u{ .\\ I 22 23 /Zo" l I 24 L \\ I r, '$ \\ M ( 1 M 27 b g 64. 47 50 M f. 6-gg ( /N S [CA/ [i. ltioS-C N 29 -, FAX rr n n ~ m M 31 QC7/cgr A-K Y 32 ) {32 34 36 .}}