ML20053B595
ML20053B595 | |
Person / Time | |
---|---|
Site: | Cooper |
Issue date: | 04/30/1982 |
From: | NEBRASKA PUBLIC POWER DISTRICT |
To: | |
Shared Package | |
ML20053B592 | List: |
References | |
NUDOCS 8206010026 | |
Download: ML20053B595 (59) | |
Text
-.._.m,_
Nebraska Public Power District l
l l
1 l
Cooper Nuclear Station Pi_ ANT UNIQUE ANALYSIS REPORT l-Mark I Containment Program i
l I
Revision 0 A p ril,19 8 2
$50'Eb8EE'o?888 hse PDR
- ~ - - - -
~
\\
j INTRODUCTION 1
~
l s
CNS MARK I CONTAINMENT REEVALUATION COMPLETE e
REEVALUATION BASED ON LOADS NOT CONSIDERED IN ORIGINAL DESIGN e
PUAR DESCRIBES EVALUATIONS PERFORMED LOAD DEFINITIONS MODIFICATIONS INSTALLED.
ACCEPTANCE CRITERIA EVALUATION RESULTS e
PRESESENTATION ATTENDEES MR. L. KNNCL, (NPPD) DIVISION MANAGER, NUCLEAR ENGINEERING MR. J. PILANT, (NPPD) DIVISION MANAGER, LICENSING AND QA MR. R. D. BOYLE, (NPPD) MANAGER NUCLEAR ENGINEERING i
MR. D. W. OGDEN, (KE) PROJECT MANAGER, CNS MARK I PROGRAM MR. R. J. STUART, (EDS) VICE PRESIDENT l
MR. M. N. SHULMAN, (EDS) DIVISION MANAGER, ADVANCED ANALYSIS i
1 MR. R. BROMAN, (EDS) DIVISION MANAGER,
[
l ENGINEERING SERVICES MR. A. P. CIMENTO, (EDS) SUPERVISING ENGINEER, ADVANCED ANALYSIS l
1 PRESEN'TATidN CONTENTS
~
ll t
SUMMARY
1:
OF CONTAINMENT ii MODIFICATIONS
SUMMARY
OF LOAD DEFINITION AND TREATMENT i
SUMMARY
- j l
OF STRUCTURAL i
EVALUATIONS i
i I
i i
1
l OVERVIEW 0F PROGRAM HISTORY e
ORIGINAL DESIGN CONSIDERED ONLY DESIGN TEMPERATURE AND PRESSURE FOR LOCA e
IDENTIFICATION OF ADDITIONAL LOADS MARK III CONTAINMENT LARGE SCALE TESTING MARK I OPERATING EXPERIENCE e
NRC REQUEST IN 1975 FEBRUARY, S/RV DISCHARGE APRIL, NEW LOCA LOADS e
FORMATION OF OWNER'S GROUP SHORT TERM PROGRAM LONG TERM PROGRAM l
SHORT TERM PROGRAM e
OBJECTIVE VERIFY INTEGRITY AND FUNCTIONAL CAPABILITY JUSTIFY CONTINUED OPERATION e
RESULTS REPORT OUTLINING TASKS IN 1975 EVALUATIONS COM'LETED IN 1976 REQUIRED ACTIONS TAKEN REQUIREMENT FOR PUA ESTABLISHED FUNCTIONAL PERFORMANCE OF CONTAINMENT DEMONSTRATED FACTOR OF SAFETY OF 2 AGAINST
~
FAILURE
^"*--*eN~
y._
4 LONG TERM PROGRAM e
INITIATED IN JUNE 1976 e
OBJECTIVES DESIGN BASIS LOADS RESTORE ORIGINAL SAFETY' MARGINS e
REQUIREMENTS EXTENSIVE TESTING AND ANALYSIS PROGRAM ESTABLISH CRITERI A EVALUATE LOAD MITIGATION DEVICES AND SYSTEM MODIFICATI0t:S PLANT UNIQUE ANALYSIS AND MODIFICATIONS e
STATUS PUAR COMPLETED MODIFICATION TO BE COMPLETED BY SEPTEMBER 1982 i
- _ --. - _7._;, - _ _ _ _..
e DESIGN CRITERIA i
1 l1
,i Original New Requirements Requirements Exceptions u
li Mark 1 Structural Dynamic Response ASME B&PV Code
- L Structural Acceptante Criteria Combination S tion III PUAAG - I.s modified June 1967
- i by NRC Acceptance j
Criteria jl 4
Mark I Structural Dynamic Response Piping USAS B31.1 PUAAG - As modified
+
1967 by NRC Acceptance Criteria
.}
Mark I Structural i
Acceptance Criteria Systems
^
None PUAAG
'As modified by NRC Acceptance Criteria 1
Design Pressure G.E. Load Definition DBA CO Random Phasing Loads and Report (Nov. 1981)
MVA S/RV Pressure Temperature as modified by NRC Combination Acceptance Criteria 30% R.H. in S/RVDL II I,
n i 5
PRESENTATION CONTENTS -
SUMMARY
OF MODIFICATIONS Load Mitigation
-Systems
-Hardware Structural Considerations j
-Torus
-Vent System o
-S/RVDL Systems l
-TAP Systems ll
SUMMARY
ll OF LOAD DEFINITION it ja AND TREATMENT b ',
SUMMARY
l OF STRUCTURAL
]
EV ALUATIONS -
I i
SUMMARY
OF CONTAINMENT MODIFICATIONS e
LOAD MITIGATION PUMP AROUND SYSTEM - MAINTAIN AP S/RV LOW-LOW SET LOGIC MSIV WATER LEVEL TRIP TORUS TEMPERATURE MONITORING SYSTEM TRUNCATION OF DOWNCOMER VENT HE ADER DEFLECTOR T-QUENCHER INSTALLATION e
STRUCTURAL REINFORCEMENT TORUS SUPPORTS STRENGTHENED ADDITION OF SADDLES TORUS RING GIRDER STIFFENERS l
DOWNCOMERS REINFORCED l
VENT SYSTEM SUPPORT ALTERED VACUUM BREAKERS REINFORCED l
PLATFORM AND MONORAIL SUPPORTS CT!HTORCED S/RVDL PIPING REROUTED S/RVDL PIPE SUPPORTS MODITT2b,.:a0ED TAP SUPPORTS MODIFIED, ADDED INTERNAL AND SMALL BORE PIPE REROUTED PUMP AND VALVE CONFIGURATIONS STRENGTHENED
OBJECTIVE: INCREASED COLUM CAPACITY RlhG f GIRDER TORUS m
SHELL I
I I
il llll WEB L
R EIN F.
PLATES I
IllL.. JII i
ll
'l ll ll
- SUPPORT ~
l 1l.
l
-h COLUMN _
8 l
w14" x iss" l
p
]
l)
COL REINF PL p p 4
Ip,q ti 2-1S" x %" INSIDE COL.
1 i t' ll lI 2-16" x 1" OUTSIDF COL.
- 4, l b
l t=
e-il il m e =- -
%j.i t l';
}
i ANCHOR i
pj BOLTS j
j1 A
L g
J
,i i a
4-2r +
L. 1, a
m k
J s
l 0
sox _
,,g s.
m% _ -wpq ll1 gia ip gjf BEAM g 4 g 4,$
g p
i ti Ji!_
lh i;
I,- lJ u
I l
l 1
[
fi f
q.
j.
_ g._
__ f, ___
,1 o
r 1
i i
[
PLAN TYPICAL COL ANCHOR ASSEMBLY TORUS SUPPORT COLUM
.,,. _ ~, _,.. _ _
l OBJECTIVE: INHIBIT SHELL OVALIZATION I
E, COLUMN E TORUS 5
13*-6 3/16" RING 4
GIRDER
- j f
'I TORUS
(
4
\\
GIRDER SHELL
\\
FuNGE OVERLAY 8~
- I,,
I\\
/
F E
WEB REINF.
'- k i
\\
f
.T 1%" STIF F.
f b fl TYPICAL SUPPORT a
f.
ay f/
l',
c '"*"
P-9 j\\\\
/
,/
'%=
_=._
N
,I J..
I_I _ _ _. _ _ u. -
vlh a A1 f
u'.:
E 3
lit DI'd l
M if i_.- -
o n:-
j__
7_n
%"SELF LUBR. PL 4-7/8" p ANCHOR BOLTS
,i l!
BASE PL ll FLANGE PL SOLE PL
%" WEB PL 1%" x 20" 3%" x 22" x 3'-6" 1%" x 29" x 3*-0" j
i I
I TORUS SADDLE I
OBJECTIVE: MITIGATE POOL SWELL LOADS ON VENT HEADER
( VENT HEADER I
h h
I v
t 0
EL 880'-11" 2*-6" ll EL 879*-7%"
2%") PIN 7
i 2-%"PL O
AO 4D
/.
i
%" x 21" x 1*-0" END PL l
2-4 x 4 x 5/8 Im ANGLES
-d EL 876*-2%"
)
l 16"$ SCH. 80 f{4 jg-DEFLECTOR j
WITH 2-8 x 8 x %
b ANGLES
,\\
/
l p_
HWL EL 875*-2"
=-
VENT HEADER DEFLECTOR I
OBJECTIVE: REDUCE DRAG LOADS ON VENT HEADER SUPPORTS
( TORUS N
f RING GIRDER
_q s-
+>.
__e.
.11,
%" PLATE c==a I
VH SUPPORT g
6** $ SCH XXS 8
N j
4 8" ( SLEEVE
., g t.,
-G-h 2%"9 PIN 4
1" PLATE 2*-6"
)
Et. aso -n-( VENT HEADER I
.5p'_
57
/
N i
C UJ M
i VENT HEADER SUPPORT COLUMNS o
I t*
EE Z
'I~~~
^ '. ~
' ' ~ ~ ' " ~ ~ ~ " " ~ ~ ' ' ~
~' ~ ~ -
~~
~ ~ " ~ ' ~ ~ ~ " - ~ ~ ' ~
,o owa w
-w a
m-aoeo m-_.-m e
OBJECTIVE: REDUCE STRESSES AT INTERSECTION E, VENT HEADER,
,4..
4' E L. 880*-11" DOWNCOMER
/
REINF. 5/8" PL 4I
\\
5 fst I
J
/
3/8" 4d I
1
?o
- q' DOWNCOMER LEG (TYPICAL) 7 s
\\
/
s
>l+
.:4~
l'-11%"
I
?
i n
m a
e a
f 3"9 SCH. 80 TIE e
i
<"4 SCH.120 SLEEVE 3/8" RING l
L
<'-o"
< *-o" I
DOWNCOMER REINFORCEMENT
. r
OBJECTIVE: REDUCE STRESSES AT PENETRATION DUE TO POOL SWELL IMPACT AND FROTH IMPINGEMENT
(, VENT HEADER DRYWELL/WETWELL VACUUM BREAKER
'g
.[
v i
)
\\n
~
t
/
EL 880'-11"
[
l(
5/8" PAD AND STIFFENER PL DRYWELL/WETWELL VACUUM BREAKER REINFORCEMENT
OBJECTIVLS:
-INSTALLATION OF T-QUENCHERS: BETTER DISCHARGE DEVICE DISTRIBUTION
-REROUTE PIPE: MINIMIZE LOADS
-RESUPPORT PIPING WETWELL AN" DRYWELL: QUALIFY F0P. LINE CLEARING LOADS
( REACTOR
'l LLS* lNDICATES
- A* lNDICATES LOW.LOWSET FUNCTION l
ADS FUNCTION
\\
v
/
7 r.;
( TORUS
- -9
.w e
.D/-
/
\\
l - -.
.- _. \\ /
/
N
/
./
s
/
\\
/
/
A j.
/
t.
1 y 7%..
L j/
l I
27 6' 90 0
~
l j
bg
'N 7
./
't l
\\
,/
l
/
/
f
\\
.! N i
l
/
g
/
/
sg*
QL..
N a
s
~'
b f ',
LINE DESIGNATION f
y
'L SET POINT PRESSURE O
..J-(PSIG), _,,
T GUENCHER S/RVDL (A TO H) 10 & SCH 43 - D RYWELL
,10 $,S,CH 80 - WETWELL WETWELL ROUTING 0F S/RVDLS
i OBJECTIVE :
TO REDUCE DRAG LOADS PLATFORM-E ' RING GIRDt,q
( TORUS A. /
\\1
& SPARGER E TORUS BAY l
i
- 1
/
g E TORUS I
, HPCI DISCHARGE l
24" ( SCll 40 P-gi:-
I gf l
(/
a.
e s
24" $ $PARGER e I
5 b.
- r-
.-r-qt g-d p'.l..
,/
?
l lN u
i
/
- -7
.(
N
/
SUPPORT -
- I ASSEMBLY'
~
\\
(
1% 22, '
STIFFENERS f
J,%
s i
t TORUS PEN.
i X214 i
lf SECTION i
'l PLAN
~
.i
!!D;I TURBIliE EXHAUST - REROUTE /RESUPPORT
OBJECTIVES:
-IMPROVE POOL CIRCULATION (THERMAL MIXING)
-BRACE: 10R HIGH DRAG LOADS E PENETRATION
['p'
._x21,93&B (4
..?
..i
/
r,,
I a
i 8
TORUS SHELL i
18" 6 RHR RETURN 5
\\
e I
1%" CO LLAR 18" x 14" RED 0CER
>{
f l
[
14" LR ELBOW CUT TO 66*. 30'._._
'I......
SUPPORT 8
3" ) SCH XXS
- t.
RHR PUMP TEST RETURN LINE [10DIFICATION
- I
....-m-
TORUS ATTACHED PIPING MODIFICATIONS e
PIPE SUPPORTS ON LARGE BORE TAP 14 ADDED 137 0F 239 MODIFIED e
SMALL BORE TAP 60 NEW OR MODIFIED SUPPORTS t
4 LINES REROUTED e
BRANCH PIPING 25 NEW OR MODIFIED SUPPORTS e
VALVES 13 VALVES REINFORCED l
l e
TORUS SHELL PENETRATIONS 1
3 PENETRATIONS REINFORCED e
ECCS PUMPS 4 PUMP ANCHORAGES REINFORCED i
SYSTEM MODIFICATIONS e
DRYWELL-TO-WETWELL AP MAINTAIN PRESSURE DIFFERENTIAL BETWEEN DRYWELL AND TORUS MITIGATE POOL SWELL LOADS ON TORUS AND VENT SYSTEM e
LOW-LOW SET RELIEF LOGIC INCREASE REACTOR DEPRESSURIZATION FOLLOWING S/RV ACTUATION INCREASE TIMING BETWEEN ACTUATIONS REDUCE LOADS DUE TO CONSECUTIVE ACTUATIONS AND NUMBER OF S/RV ACTUATIONS e
MSIV WATER LEVEL TRIP DELAY MSIV ISOLATION TO RELEASE MORE REACTOR ENERGY ELIMINATE 2ND ACTUATIONS OF S/RV DURING IBA./ BA S
l e
POOL TEMPERATURE MONITORING SYSTEM MEASURE LOCAL FOOL TEMPERATURES NEAR T-QUENCHERS ENSURE POOL TEMPERATURES STAY WITHIN ALLOWABLE LIMITS
8 4
~
PRESENTATION CONTENTS - LOAD DEFINITION AND TREATMENT i
8
SUMMARY
OF CONTAINMENT MODIFICATIONS LOCA Related Loads i;
-Pool Swell i
1
-Condensation i
Oscillation
-Chugging S/RV Related Loads l
Load Combinations
,1 :
l
SUMMARY
i n
OF STRUCTURAL.
li 9
EVALUATIONS e
SUMMARY
OF LOAD DEFINITION AND APPLICATION e
LOAD DEFINITION IS BASED ON:
GE LOAD DEFINITION REPORT MARK I PUAAG NRC ACCEPTANCE CRITERIA NRC SAFETY EVALUATION REPORT e
PLANT UNIQUE LOAD DEFINITIONS e
LOAD APPLICATION l-l l
.; _ ~ 7.-_
_ ;- 7 -..
(
LOADS AND LOAD COMBINATIONS e
THERMAL-HYDRAULIC PARAMETERS BASED ON CNS FSAR ALTERED BY SYSTEM MODIFICATION USED BOTH ZERO AP AND CURRENT AP e
ORIGINAL DESIGN LOADS DEAD LOADS SEISMIC LOADS PRESSURE AND TEMPERATURE VENT THRUST LOAD JET FORCES ON DOWNCOMER PIPES e
LOCA RELATED LOADS e
S/RV DISCHARGE RELATED LOADS e
DETERMINATION OF LOAD COMBINATIONS 1
o f
e
- ~~ ~
- - ~,..
~~
~
. _. ~
LOCA RELATED LOADS t
e CATEGORIES OF A LOCA DESIGN BASIS ACCIDENT (DBA)
INTERMEDIATE BREAK ACCIDENT (IBA)
SMALL BREAK ACCIDENT (SBA) e SPECIFIC LOADS AND TRANSIENTS
-. PRESSURE AND TEMPERATURE VENT SYSTEM THRUST POOL SWELL CONDENSAT'ON OSCILLATION CHUGGING I
l i
l l
l
_... ~.. _
5 m
g W
e 0 {
0 6
w
>e 2
7l ;]
s
- h LOAD /STRUCTURI MATRIX d
U U
1 1
$ $h $h " L, a
e' 2
a a i c
o
- $$ Uf I
"E
.e l
u u
InADS e
3 2
3 6
s 4
3 5 30 AE w
c LOCA RE!ATED LOADS Containment Pressure and Temperature X
X X
X X
X X
X X
X X
I I
Vent System Thrust Loads steeds Associated with Pool Swell Terun Met Tertiaal Tends Y
Y Torus Shell Pressure Histories Impact and Drag Loads Vent System IsTaet and Drag X
X X
X X
X Other Structures X
X Troth Impingement X
X Pool Taliback X
X t_N* A Jet 1
1 I
LOCA Bubble Drag Condensation Oscillation Torus Shell Loads X
I X
X X
Vent System Leads Other Submerged Structures y
y Chugging Torus Shell LoaJs X
I X
X X
Vent Svetem Londo Other Submerged Structures y
y y
S/RV DISCHARCE RELATED 14 ADS I
X Terus Shell leads I
X X T/0 k'ater Jet Leeds T/Q Air Bubble Induced Loads y
y y
y X
S/pvrt clearine toads 1
T 4uencher Thrust Leeds
{-TORUS
\\\\
DR YWELL 6
\\ /* /
s"r
[
4-
~
, TORUS f
L TORUS EL. 3 76*=T *2**
a l
I e
T i
N l
l
/
t YACUUM BREAKER 4
6 1840 i
4124 lb/ft AP a 0.0 gga
- -... ~
942 lb/ft i
i I
__ t(see) l O.504.623 0.7223 (w.r.t. DBA Start) g,g p g g,4 gg g,gyg Time (see)
Impact and Drag Lead on vacuuan Eresker Velve Impact and Drag ".and on nlain Vent.F (L 1
l l
FIGURE 2.17 POOL SWELL !MPACT/ DRAG IDAD TRANSIENTS ON MAIN VENT, AP = 1.0 psid
. _.... - _. _ _ _. +. - - - _ - - _ _.. _ _ -
1 t
t a
a s.
=
?. !?..!TN l
E e
o g ".
LOAD /STRUCR M ETRIX 3
I E
I I
i-
$g Na EU a
e e
e e
a i d
=
3: 3I t ~s
=
o g
~
-j e
e o
M25 4
E E< E EI LOCA REIATED LOADS Containment Pressure and Temperature X
X X
X X
X X
X X
X Vant Systes Thrust Loads I
X X
toads Associated with Paol Svell Terim Met Ver*4aal tends Y
Y Torus Shell Pressure Histories Impact and Drag loads Vent System Impact and Drag X
X X
X Other Structures X
X Froth Impingement I
X Pool Ta11back X
X X
- Condensation oscillation Torus Shell toads X
I Vent System Leads I
X X
Other Submerged Structures y
y Chugging Torus Shell Loads X
X Vent Svetem Leeds X
X X
Other Submerged Structures y
y y
S/RV DISCHARGE RELATED LOADS Terus Shelf toads X
X T/0 Water Jet toads X
X X
T/Q Air Bubble Induced Londe y
y y
y S/RVDL Clearine Leeds I
T-Ouencher Thrust Loads X
1
+ -
-w-w,-
e
- - ~ -
LOCAL Patlluat OSCILLateg amaw wifuqLL waseuues eatStuot CSCiLLat'Og aawkstv06 ase seaCl Aas laf TOmul SOT 10u bta0 Cluttne l
1.o
%s 9 _satssuasact suwasssion rook
~
O d.
\\
l'.
~)
h a
es 3
o All 50 frequencies soeumed in phase e Frequency set to any torus estural frequency within the band (ring strder eeJd;2 torue frequencies in-dicated on f requency amis) 1 e Envelope 3 alternative emp116 des in 4-16 Na range
=
2-e 1
I 1-E
~~T
~
w II
! r H!h, a
m o oa a.....=
0 5
10 15 30 25 30 35 M
AS M
l Frequency Ols) l l
FIGURE 2.21
\\\\
l TORUS PRESSURE AMPLITUDE DISTRIBUTION FOR CONDENSATION OSCILLAT o
Ll l-(
- - ~ ~ -, - - - -
DBA C0 RAND 0f1 PHASING e
DESCRIPTION
' DESIGN RULE FOR COMBINING STRUCTURAL RESPONSES TO C0 LOAD HNRMONICS 4 ASUM + 46 SRSS 1.3 X TIME HISTORY WITH RANDOM PHASE ANGLES e
REASONS
~
FSTF TEST DATA SHOWS RANDOMNESS ASUM RULE SIGNIFICANTLY OVERPREDICTS FSTF DATA OTHER AREAS OF CONSERVATISM IN CO LOAD DEFINITION e
JUSTIFICATION EMPIRICAL DATA 0 EXAMINE FSTF DATA FOR RANDOMNESS 0 DESIGN RULE PREDICTIONS BOUND FSTF MEASURED RESPONSE ANALYTICAL STUDIES 0 STATISTICAL STUDIES WITH RANDOM PHASING 0 DESIGN RULE EXCEEDS 84% NEP LEVEL GENERIC MARK I REPORT
- "Wm MPem.e-w%
,44.,
1
_7 l
g 5
E E 2 S=
O w
w
,: [ : :I 2
,3 se w
g g ;,
LOAD / STRUCTURE MATRIX d
g.
e, 4
4 m
8, A
I Y
=a =5 i(
=
8
=
gg 2
-e 3
W 5
2i j
E 3
7 EE E EI LOADS E
LOCA REIATED LOADS Containment Pressure and Temperature X
X X
X X
X X
X X
X vent System Thrust Loads I
X X
Leeds Associated with Pool Swell Te-tm wet ver m at toads Y
Y Torus Shell Pressure Histories Impact and Drag Loads Vent Svstem tr act and Drag X
X X
X Other Structures I
X Troth Impingement X
1 X
X Pool Ta11back X
X LOCA Jet I
X X
LOCA Bubble Drag Condensation Oscillation Torus Shell Loads X
I Vent System Leads X
X X
Other Submerged Structures y
y
- Chu gging l
Torus Shell Leeds X
X vent Svetem Loads I
X X
Other Submerged Structures y
y y
S/RV DISCMARGE RELATED 14 ADS Terus Shell toads X
X i
X X
X
?/O Vater Jet 1.eads T/Q Air Bubble Induced loads y
y y
y X
s/RWI, Clearine Leeds l
X T-Ouencher Thrust Loads e
,f i
l
..7
_7
.6
[
b O
e U
O E 3 a
s=
w w
- 1. l. 1. 545 E
LOAD /STRUCTL1tX MATRIX d
E.
e e
a E
E T.
$=$
?
$s
'I' E
4 1
sc "
=
d 1
E
=
I II I$ Ti j
e a
~
~*
w c
c o
~3 14 ADS E< ~E E 55 E LOCA REIATED LOADS Containment Pressure and Temperature X
X X
X X
X X
X X
X Vent System Thrust i.oads I
X X
Loads Assnefated with Pool Swell
?nrun Met vertfeat innen Y
I Torus Shell Pressure Histories y
y Tepact and Drag Loads vent Svstem Trpact and Drag 1
X X
X Other Structures X
X Froth Impinnement 1
X X
X Pool Ta11back X
X 1.OCA Jar X
X X
LOCA Bubble Drag Condensation oscillation Torus Shell Loads X
X vent Svstem Leadr X
X X
Other Submerged Structures y
y Chugging Torus shall Loads X
I Vent Svetes Loads X
X X
Other Submerged Structures y
y y
- S/RV DISCHARGE RELATED TAADS Torus Shell Loads X
X X
I X
T/0 Vater Jet Leeds T/Q Air Bubble Induced Loads y
y y
y X
S/nTL Clearine Loads X
T-Ouencher Thrust Loads 6
S/RV DISCHARGE TORUS SHELL PRESSURES MULTIPLE VALVE ACTUATIONS e
DESCRIPTION COMBINATION METHOD FOR SPATIAL DISTRIBUTION OF TORUS PRESSURES DUE TO MVA 1.2 X SRSS OF PRESSURE FROM EACH DISCHARGE DEVICE o
REASONS ABSOLUTE SUM OF PRESSURES ASSUMES IN-PHASE BEHAVIOR OF BUBBLES i-;" PHYSICAL BASIS FOR IN-PHASE BEHAVIOR MVA PRESSURES LIMIT DESIGN e
JUSTIFICATION PLANT UNIQUE STATISTICAL STUDY MODEL ACTUAL PHASING OF BUBBLES WITH RANDOM VARIATION OF PLANT PARAMETERS 1.2 SRSS PRESSURE BOUNDS RESULTS OVER 90% OF THE TIME 1
.i i
l
- l
' L_
S/RV TORUS SHELL PRESSURES 30% RELATIVE HUMIDITY e
DESCRIPTION INITI AL S/RVDL RELATIVE HUMIDITY OF 30%
IBA/SBA CONDITIONS ONLY ADS ACTUATION ONLY e
REASONS PURE AIR MASS ASSUMPTION UNREALISTIC STEAM IN DRYWELL DURING IBA/SBA AT ADS, DRYWELL AIR PURGED TO WETWELL e
JUSTIFICATION EXAMINED DRYWELL STEAM CONTENT TRANSIENTS CNS S/RVDL VACUUM BREAKER SET POINTS SHOW 90-100% RH IN DRYWELL SHOW 30% RH IN S/RVDL IS STILL CONSERVATIVE
'h
- 9
=#
g.+e--..-wan...ee
.s,,,,,
LOAD COMBINATIONS e
TORUS SHELL e
VENT SYSTEM e
INTERNAL STRUCTURES AB0VE P0OL e
SUBMERGED STRUCTURES e
S/RVD PIPING e
TORUS ATTACHED PIPING e
FATIGUE BASIS FOR 40 YEAR LIFE c.
i e
e LOCA-DbA PRESSURE AND TDG'ERATURE TRANSIENT SINGLE S/RV ACTUATION
_T_ORU_S SHELL LOADS on-E TORUS SHELL PRESS.
O DUE TO POOL SWELL d
?
8 C/O TORUS SHELL t.oADS
,e
.3 CHUGGING TORUS SHELL LOADS 1
e-I 0.0 5
35 65
~
l' Time After thCA (sec) i FIGURE 2.25 s
t TORUS SIIELL IDAD COMBINATIONS FOR IDCA-DBA I
-a
)
4
?.
.mh i
LOCA-DBA PRESSURE AND TDEERATURE TRANSIENT y
'l i
VENT SYSTEM PRESSURE TRANSIENT AND THRUST 14 ADS d
l
'b t
i
~'
POOL SWELL IMPACT & DRAG FROTH IMPINGEMENT
- I I
j E
O Uy C/0 DOWNCOMER LATERAL c
LOADS
]
O a
j C/0 VENT SYSTEM IDADS f
k
' l, 8
CHUGGING DOWNCOMER I
LATERAL IAADS 1
- 1.
'1 CHUGGING VENT SYSTEM LOADS s
0 5
35 65 Time Af ter LOCA (sec)
- For main vent only.
l
- For submerged portion of downcomers see also Figure 2.32 3
FIGURE 2.28
(,
l VENT SYSTEM IDAD COMBINATIONS EUR IOCA-DBA**
)
l l
.t
- I
- i
~
1 I!
!i 4
1 d
jL
.i
'l 4
't t'
'i E
T/Q WATER JE7. IDADS S
l
- i o
4 E
O
- 1' o
T/Q AIR BUBBLE INDUCED LOADS i
8 a
l 1
y a
t to g
2 t
Time After S/RV Actuation (sec) i ti t
l 0"
- i!i t - S/RVDL water clearing time 1
i i
t = time at which S/RV bubbles reach pool surface t :
2 ll l :
4 FIGURE 2.35 i
i S/RV DISCilARGE ICADS ON SUBMERGED STRUCTURES
.l
i L
PRESENTATION CONTENTS -STRUCTURAL EVALUATION
.[
i
SUMMARY
OF CONTAINMENT MUDIFICATIONS 1
l
)
SUMMARY
i 3
1
OF LOAD DEFINIT.lON.
AND TREATMENT 4
i Torus Shell & Support l
Vent System & Supports j
l S/RV Discharge Piping l'
L Torus Attached Piping L
4 ll i
1 l
l
TORUS SHELL e
LOADS 27 LOAD COMBINATIONS DEFINED POTENTIALLY BOUh31NG ONES CONSIDERED 4
e DESIGN ALLOWABLES CLASS MC VESSEL - SUBSECTION NE BUCKLING ALLOWABLES e
ANALYSIS METHODS SHELL MODELS 1/32 SEGMENT COUPLED SHELL-FLUID MODEL 1/f4 SEGMENT PLATE ELEMENT MODEL-SEISMIC STATIC ANALYSIS
- PRESSURE AND TEMPERATURE
~
- GRAVITY
- SEISMIC DYNAMIC ANALYSIS
- POOL SWELL
- DBA CO
- CHUGGING
- S/RV DISCHARGE e
CODE EVALUATION MAXIMUM SHELL STRESS FATIGUE USAGE
- i
TORUS SHELL BUCKLING ALLOWABLES e
DESCRIPTION INVESTIGATION OF DYNAMIC TORUS BUCKLING BUCKLING NOT A CONCERN FOR MARK I LOADS e
REASONS CODE COMPRESSIVE STRESS ALLOWABLES BASED 1N STATIC, UNIFORM LOADS MARK I LOADS ARE DYNAMIC, NON-UNIFORM COMPRESSIVE STRESSES OF SHORT DURATION e
JUSTIFICATION LOCA TRANSIENTS NOT CONTROLLING HIGH WETWELL PRESSURE S/RV DISCHARGE EVENTS CONTROL EMPIRICAL EVIDENCE IN-PLANT TESTS CONFIRMATORY NONLINEAR ANALYSIS GENERIC STUDY FACTOR OF SAFETY = 7 SATISFY ASME CODE REQUIREMENTS APPLICATION TO CNS GEOMETRY LOADS
q-----._,-_.__..__,
Torus Shell
/
/
Midside Node Locatfores (Typ)
Ring Girder
/
\\..X'
/
/
[
N.,
/
Typical Element
~
NodalizationT((
.g: '
f'T e
M.~ _
,,f: * ^ ;..,,,- **
)Outside Support
.t Yj f'
Ring Girder Saddle
- ~
- T..
.i f
'tj' :qf
.N,
{
Inside Support Column
--N i.
l Structure Fluid
~
Reactor Building Plan View FIGURE 3.1 1/32 SECTION TORUS MODEL
..., _ _ _. ~.. _ _....
k I
t 6
\\ \\
l
\\
\\\\
l
\\\\l
\\\\
\\\\
\\ t, 6 m
i
/
l FIGURE 3.2 90' SECTION TORUS MODEL t
- 1
--~-. -. _.. - _ - _. _ _,. _.. _ _ _ _ _ _,
.Tpi-M*%.
TORUS SUPPORT SYSTEM e
DESIGN LOAD COMBINATIONS COLUMN AND ANCHORAGE TORUS SHELL LOADS SEISMIC TIES NET LATERAL LOAD SEISMIC S/RV DISCHARGE PRE-CHUG RING GIRDER SADDLE YORUS SHELL LOADS PRESSURE AND TEMPER ATURE e
DESIGN ALLOWABLES LINEAR COMPONENTS - APPENDIX XVII PLATE AND SHELL SUPPORTS - SUBSECTION NF e
ANALYSIS METHODS SUPPORT COLUMNS SUBSECTION NF ANCHORAGE ASSEMBLY APPEND XVII SEISMIC TIES RING GIRDER SADDLE USED 1/32 SEGMENT SHELL MODEL NONLINEAR ANALYSIS USED FOR INTERMEDIATE SUPPORTS e
CODE EVALUATION MAXIMUM COLUMN / ANCHORAGE LOAD MAXIMUM FATIGUE USAGE l
t i
f i
I
\\
i g m shall peldelde secoe
/
tocatlans W I 4.RPV f
+
Ring Cirder
/
)
j p
i j
1
/
n,.ctor mutidia9 Plan Wi**
f t
y f
.Itsstion rt Col"""
A j?x:
\\ w
~
Q t
/g l
s V
- I
^1 ming Ciraer saddle
- st '
. ff
}.}7, /,'
j
/Q'<lt 4h rtc>j' 3 ia.
I I
. l, FIGURE 3.3 l
t i
1/32 SECTION TORUS MODEL WITil DKTAILED RING GIRDER SADDLE 4
I i
L RING GIRDER e
LOADS SHELL LOAD COMBINATIONS SUBMERGED STRUCTURE CONCENTRATED REACTIONS e
DESIGN ALLOWABLES MC SUPPORT - SUBSECTION NF EXCEPT PORTION WITHIN LIMITS OF SHELL REINFORCEMENT WHERE SUBSECTION NE IS USED e
ANALYSIS METHODS RING GIRDER ALL STRESSES FROM 1/32 SEGMENT MODEL EXCEPT FOR STRESSES DUE TO DRAG LOADS, WHICH ARE DETERMINED SEPARATELY RING GIRDER ATTACHMENTS i
REACTIONS FROM VENT SYSTEM APPLIED AS EQUIVALENT STATIC LOAD o
CODE EVALUATION MAXIMUM STRESS IN RING GIRDER MAXIMUM STRESSES IN WELD TO SHELL
.l ll MAXIMUM FATIGUE USAGE
+---,-...
1 TORUS SHELL PENETRATION AND ATTACHMENTS e
PENETRATIONS AND ATTACHMENTS INCLUDE:
TAP PENETRATIONS SEISMIC TIES MONORAIL SUPPORTS ECCS PIPING SUPPORTS e
ANALYSIS METHOD REACTIONS FROM APPROPRIATE ANALYSIS
- WRC BULLETIN 107 USED TO OBTAIN LOCAL STRESSES e
LOAD COMBINATIONS RESPONSE TO TWO DYNAMIC EVENTS COMBINED BY SRSS
- l
DYNAMIC RESPONSE COMBINATION e
DESCRIPTION COMBINATION METHOD FOR PEAK RESPONSES TO TWO (S/RV + LOCA)
DYNAMIC LOADS 1.1 X SRSS OF PEAK DYNAMIC RESPONSES ASUM OF REMAINING DYNAMIC LOADS e
REASONS ASUM RECOGNIZED AS CONSERVATIVE (E.G. NUREG-0484)
~
PUAAG ALLOWS CDF METHOD WITH 84% NEP e
JUSTIFICATION f
EXAMINE CDF'S USING MARK I
~
DATA (GENERIC STUDY)
SHOW l.1 SRSS BOUNDS 84% NEP CONFIDENCE LEVEL >90%
CONFIRM FINDINGS WITH CNS DATA l
l l-ll h
li
'i l
'f VENT SYSTEM AND SUPPORTS e
VENT HEADER AND MAIN VENT VENT SYSTEM ANALYSES VENT HEADER AND MAIN VENT PENETRATIONS e
D0WNCOMER AND TIEBARS DOWNCOMER/ VENT HEADER INTERSECTION DOWNCOMER ITSELF e
SIMPLIFIED ANALYSIS PERFORMED ON:
VENT DRAIN LINE VENT HEADER DEFLECTOR VENT HEADER SUPPORT SYSTEM l
}
t
c VENT SYSTEM ANALYSES e
FINITE ELEMENT MODELS 1/16 SEGMENT SHELL MODEL BE M MODEL - NON-SYMMETRIC LOADS DOWNCOMER/ VENT HEADER INTERSECTION MODEL e
STATIC ANALYSES PRESSURE AND TEMPERATURE GRAVITY AND SEISMIC VENT SYSTEM THRUST e
DYNAMIC ANALYSES POOL SWELL, TIME HISTORY CO, FREQUENCY DOMAIN CHUGGING, EQUIVALENT STATIC S/RV DISCHARGE, EQUIVALENT STATIC e
CODE EVALUATION MAXIMUM STRESSES MAIN VENT HEADER I
' i
'I
Main Vent N
Support Columns i
Y.S tif f ener Vent Header 3 kx 4
^
.?c.,vx-f ;
I MilliIililth.
M.
ill h til(F,SG
//
q,,E A4.$i a yJ g.x E'
i
%%N V e rit H e a d'e r Deflector h
1 Tie-b a r Downcomers FIGUPI 4.1 1/16TH FINITE ELEMENT SHELL PODEL OF VENT SYSTEM
'l l
- I
g
- * - = ~ ~
n
-43 37 h9 @
33 Q36 40 34 g
O e 3.
32 20 h O
h 30 O
0,,
O :.
OO
- . 7, o
O 4.
e
=x 0
2 45 @v h
46 g
b 20 18 i9 00 9 is g
i3 h iO
, t'
@Ja yz hY 45 46 l
l O
i
- o. O s.
,,191. Gl,'a ~
Ol'
' @ ;;O
' x
(
ri i I
FIGURE 4.2 180* VENT SYSTEM BEAM MODEL
'l
---..__..e
^
DOWNCOMER/ VENT HEADER INTERSECTION ANALYSIS e
DESIGN ALLOWABLES MC COMPONENT
]>SUBSECTIONNE AND Pg+Pg PL ALLOWABLE INCREASED BY 30% BASED ON LIMIT ANALYSIS e
FINITE ELEMENT MODEL DETAILED LOCAL MODEL UNIT LOAD CASES e
EQUIVALENT STATIC ANALYSIS POOL SWELL I
CO LATER AL LOAD CHUGGING LATERAL LOAD S/RV DISCHARGE DRAG LOADS e
DOWNCOMER ANALYZED USING DETAILED MODEL
'i k
.I
- 7., -
1
,t j
a U
Nl LE y
)
d.
D l
O M
1'
. r,
?
n, '
NO IS TR CE 42 EN SE RF EF TI NT IS 3
RE 1
H R
T U
TE G
NS I
ES F
VU
/G R
l N
EG MN k' f, OI CD
' =,
-w WL NU e
OC 4z,1
/
\\/
DN 7s,s I
v 2s-e
.p5<.
D d9
~
E
$s L
y I
{a A
mk.
,r)c\\s
/N
/
D T
W'/.-
~
8 E
,j g RA' VQ
!i
\\\\
\\ 3
';\\'
1 \\ \\\\
tii.};!l, il'
.t i(li,i i
(
,t J
S/RV DISCHARGE LINES e
DRYWELL PIPING DETERMINED BOUNDING LOADS FROM MAIN VENT PENETRATION COMBINATIONS SEPARATE MODEL FOR EACH LINE A
$\\
p 3 '
- =
gg
+
R A
/
I a. see.e n
a f}.--
a
- n:: n!!:Ed31::=:"--
STATIC ANALYSIS DYNAMIC ANALYSIS TIME HISTORY FOR THRUST LOADS RESPONSE SPECTRA FOR VENT SYSTEM MOTION
" * * " ' '*~
l S/RV DISCHARGE LINES e
WETWELL S/RVD PIPING LOADS S/RVD THRUST AND WATER CLEARING POOL SWELL C0 AND CHUGGING DRAG T-QUENCHER AIR BUBBLE DP.AG e
T-00ENCHER EVALUATION e
VACUUM BREAKERS LOADS PRESSURE AND TEMPERATURE TRANSIENTS GRAVITY AND SEISMIC COMPONENT EVALUATED ALL PRESSURE RETAINING PARTS HINGE ARM SHAFT FLANGE AND FLANGE BOLTS 9
~~
-mw-+*w--
~
~
=
.-o*
o.e
~~e-~===
s e
e
- - = - -
msse mm-
- =
oe=~--+-~
e=wm
- "--e* * *==
=
~-*w-e
g_.._
TORUS ATTACHED PIPING e
EXTERNAL PIPING ANALYSIS LARGE BORE - A TORUS COUPLING INCLUDED -
MULTI-LEVEL RESPONSE SPECTRA SMALL BORE - UNCOUPLED RESPONSE SPECTRA BRANCH LINES PUMPS AND VALVES e
INTERNAL PIPING DYNAMIC LOADS POOL SWELL C0 AND CHUGGING DRAG S/RV DISCHARGE DRAG TORUS SHELL MOTION e
LOADS ON PIPE SUPPORTS INCLUDE SUBMERGED STRUCTURE LOADS 4
_- ~ _ _ _, _.... - _
...~ __
-m+.
+
.+m.
m.
.n
...-n-
- - ~. -.
I P0OL TEMPERATURE EVALUATION e
DESIGN CRITERI A 200*F LOCAL TEMPERATURE LIMIT TRANSIENT CONDITIONS e
TRANSIENT ANALYSIS SUPPRESSION POOL MODEL LOCAL POOL TEMPERATURE MODEL SEVEN TRANSIENT EVENTS
~
EVALUATION RESULTS e
MAXIMUM BULK POOL TEMPERATURE = 179'F MAXIMUM LOCAL POOL TEMPERATURE = 198'F e
POOL TEMPERATURE MONITORING SYSTEM REDUNDANT MONITORS CONTROL ROOM RECORDER SEISMIC CATEGORY I SENSORS ENVIRONMENTAL REQUIREMENTS 1
)
I
MEETING
SUMMARY
DISTRIBUTION
\\
eket File NRC PDR Local PDR (w/ enclosures)
NSIC 1
ORB #2 Reading ACRS-10
~
J. Heltemes (w/ enclosure 1 only)
L r Chief Project Manager OELD I
IE NRCParticipantsN l
cc: Licensee with short cc list (with Enclosure 1 only) 1 Mr. J. M. Pilant, Director Licensing & Quality Assurance Nebraska Public Power District P.O. Box 499 Columbus, Nebraska 68601 l
l t
wr I
l l
Mr. J..M. Pilant Nebraska Public Power District cc:
'Mr. G. D. Watson, General Counsel Nebraska Public Power District P. O. Box 499 l
Columbus, Nebraska. 68501 Mr. Arthur C. Gehr. Attorney Snell & Wilmer 3100 Valley Center Phoenix, Arizona 85073 i
. Cooper Nuclear Station ATTN: Mr. L. Lessor Station Superintendent P. O. Box 98 Brownville, Nebraska 68321 Auburn Public Library 118 - 15th Street Auburn, Nebraska 68305 i
Mr. Dennis Dubois i
)
Resident Inspector l
P.O. Box 218 l
Brownville, NE 68321 l
Jahr. T. Collins Regional Administrator, Region IV U.S. Nuclear Regulatory Commission 611 Ryan Plaza Drive, Suite 1000 Arlington, Texas 76011 l
l l
l 1
l l
l l
l 1
_