ML20043A549
| ML20043A549 | |
| Person / Time | |
|---|---|
| Site: | Yankee Rowe |
| Issue date: | 05/15/1990 |
| From: | Sears P Office of Nuclear Reactor Regulation |
| To: | Papanic G YANKEE ATOMIC ELECTRIC CO. |
| References | |
| TAC-71570, NUDOCS 9005220229 | |
| Download: ML20043A549 (71) | |
Text
{{#Wiki_filter:'o UNITED STATES ' g y [ g NUCLEAR REGULATORY COMMISSION
- e WASHING TON, D. C. 20665 -
\\,....s/ sw s um Docket Nos. 50-029 l i. George Papanic, Jr. Senior' Project Engineer - Licensing . Yankee-Atomic Electr.ic Company '580 Main Street .Bolton, Massachusetts 01740-1398
Dear Mr. Papanic:
SUBJECT:
SUMMARY
OF MEETING WITH YANKEE R0WE CONCERNING REACTOR: h 4 VESSEL EVALUATION (TAC.71570) On May 9, 1990 representatives of Yankee Atomic Electric Co. (YAEC): met with the staff to-discuss their evaluation'of the Yankee-Rowe reactor. pressure vessel (RPV) and respond to staff: concerns regarding the condition of thisc primary system component. YAEC also discussed,-in part.: concerns raised by-the staff in their letters to YAEC dated May.1, 19901and May 7,'1990.
- Barry Elliot of the Materials and Chemical. Engineering. Branch presented'the results of a preliminary _NRC embrittlement analysis. of. the Yankee Rowe' RPV,
.(Attachment 11. The licensee presented the results'of an' evaluation of the Yankee Rowe RPV and provided a partial response ~to staff-questions (A_ttachment 2). After e discussion,'the licensee was requested to provide the~ following within -
- 60 days:
- 1. Formal responses to the 10 questions _ included in WRC's. letter to-the licensee dated May 7,~1990.
- 2. Additional support for the conclusions presented in Attachment 2.
L
- 3. A Pressurized Thermal Shock (PTS) analysis including operational methods of reducing the frequency and severity of a PTS L event.. In addition, YAEC is requested to provide ai sensitivity study of the-effort of RT (staff recommended RT evaluated)ogD{hefailureprobabilityNvaluesashighas400'F-be N
the reactor vessel resulting from PTS events.
- 4. Plans and programs for'UT inspection of'the RVP beltline area.
- 5. Plans and programs for annealing-the RPV.
- 6. Plans for 1993 inservice inspection'[ISI] including any expected' relief requests.
b g f 22g g $ @ p g s e- -m ,ae,-- -e,, e ~
-2 'May 15,1990 t Where information could not be provided within 60 days of the date of May 9 1990 meeting, the staff requested that the licensee provide their schedule for submitting the information. The licensee agreed that they would provide their schedule for submitting the reouested information if the 60 day limit could not be met. Attendees are listed on Attachment 3. Original signed by Patrick M. Sears, Project Manager Project Directorate T-3 Division of Reactor Projects 1/11 cc: See next page 1 + -] 0FC 2:LA:PDI-3
- PM:PDI-3
- DET:EMCB(,
P D I.-l. .........:.....__.......:..........,...:...KW.s\\/
- NAME
- Rs k
- PSears
- JRichardsph
- RWessman
- DATE -:05/id/90
- 05/l$/90
- 05//.f/90
- 05/ic/90
\\' 0FFICIAL RECORD COPY Docutient Name: YAtlKEE R0WE MEETING
o i ;-. i Mr. George Papanic, Jr. I ~ cc w/ enclosures: Or. Andrew C. Kadak,. President L and Chief Operating Officer Yankee Atomic Electric Company i EE0 Main Street Bolton, Massachusetts 01740-1398 Thomas Dignan, Esquire Ropes and Gray 225 Franklin Street Boston, Massachusetts '0?l10 Mr. T. K. Henderson I Acting Plant Superintendent- ' Yankee Atomic Electric Company Star Route Rowe, Massachusetts 01367 Pesident Inspector Yankee fluclear Power Station U.S. Nuclear Regulatory Comission Post Office Box 28 Monroe Bridge, Massachusetts 01350 i \\ l Regional Administrator, Region 1 U.S. Nuclear Regulatory Comissiori l 475 Allendale Road l King of Prussia, Pennsylvania 19406 Robert M. Fallisey, Director Radiation Control Program Massachusetts Department of Public Health 150 Tremont Street,.7th Floor Boston, Massachusetts 02111 Mr. George Sterzinaer Comissioner Vermont Department of Public Service 120 State Street, 3rd Floor Montpelier, Vermont 05602 r _y
- .r t
I DISTRIBUTION:: "c Docket File- ,NRC & Local PDR
- F. Miraglia
- J. Partlow l
A. Thadani l E J. Richardson PDI-3 Reading R. Wessaan P. Sears 1 OGC E. Jordan-. ACRS(10) J.' Dyer, Mail Stop 17G21-R.-Borchart, Mail 17G21 J. Clifford, Mail 17G21 J. Rogge, Mail 17G21 (. Pryor Randall 1 A. Taboada-l ~A. Hiser-l J. Caldwell T. Koshy, Region. I ( Jon Johnson, Region I J. Tsao L C.Y. Cheng K. Wichman S..Varga F. Akstulewicz e P.T Kuo B. Elliott i b P \\ n
+ 4 aft Ac-MMeOr W 1 t b AFE ORGAnhtAma Paoa< PATTt c.i< 9EAW NRR/pps.3 495i4 % Fric (,8 m iziert 74sc. ,Ro<ns (gi)777-47)/ fasser4~ rgc VH4e. SMr 7?S - G 7// 1 ~~TD n b hk<.Ah $Asc Sd >M - d )// l 7%3 %ce._ ftAc c - SDF - 7 7 9-6 7 // %,,Det4<rda pw Jot 1n-ni< l do& T< ![<,s?ca Y/leCo A(3 T2/1526,(- Lyo. Cewo<L s A \\ C_ To1--%97 '1957 nye< N 7%odf pre /snrWw - . set - 4r2 - sgre. AL TL\\boAn Hec /mes/au ( Sol) %2 - st by IQ \\\\en StGu NPC/%8]R.Es 301 -- 4 7z -3 9?e { Niin (.h)d~L!/ 6 EDo Scv +92-t7.0s VDfY) [030Y SA.2 YR 4-1 3 - 9 2 4 S e-4 7 - a Jon R. Obanson n e e-je xl is 3 aos s>7 s*I 2.ct. 3,ok n C. Ts a o 10R C /IJR R.I DE r/ama a o1 -4 92- 0959 Xaccr Qo w ur MUtn 9'2C. goI-Tc72-tzys 1 C.v Nb[DET[EMcB 5% - D1Io 2 d. denCha - m r. m ee. 04p_qm D, MG4 il)R /P dos) u reynshkw & & wpem sai-m om ?, T' Gu.o A/ a.a/ c.A F_b b l -*D -o f?T Pa r ed,cf WRF/0E/6Mc B D 2 deu.
- / m - 5 l
N r. %s ts 10 6 tr. % oc @ 4 N W _ C" % 2 @ g g .1 l ...... )_..h f gy.... !. fg..#. q.. I { .]. t ( .) { -._.,...a.., . ] -. i } l l a ... ~ 4 i ..l je i 1 9 i, .a ..t l 4 (4 ..}....._.. ,{ ..] o a. i ' . Q' I.,,I....,! _ i 4 I l .h .,...i
- j l
j { i .).. 1
- i I
i p. = =..... 1
- j:
f 9;. -d
- i. 3 '. ) "--
) i: i [t A
== e /. r' d,. ) Ih b i. J-i -- [ :.j. [ j. g g :=
- p p
i T)
- 9. T x.
i En . -- KN Q N *.
- e. ='
9 " ~ ~ ' - .i .s th ~ i gE ' ~ _. 4 11., i g t d s g.. -g ~ r. ..) .l _. ~..._ _.: g [. @.. e h.g% ., -~.1.. _. _... q -. a w _ _.. e .e..g r,_ _..._. p,, g 3 . g a.. w,_ % i m,. y p.. 4.. .....3... .4, sg g s 6 .Ah . ;- ;c.: f ~ g ;::_. g.: q......... "T".g'- g 3. ' "' *~ its g .....u.:..;o;..._! s
- \\e.
g :_ a:: - __.;-. "q
- f. y.p.
~ ~ ' ~ ~ l ..1 k y. :-. il. .;j. W t j.i.. q_3-g. u.1 4 g,. i s g [ } t NO
- % 1_.i \\
_---\\f - im S,, .. W.".j 55ii=.iiEN. - Si" N N =id'1 2 5 -,. ". ! N s.. ... - -. - r n.:: s:_: ..i... 'i T a n. ... _. :.f. t. .y g %x s..
- i.,wi
.s. .g .1 2 n.g. a a A.- i i y 1( . e \\ ; +- ~; \\ ./ y s,- - 1. m fi% 1..= \\. i _,+.. q. e 3 3 Q-4 -... _ L._4.Ci.,.e.. t_. 3 i u J> y\\. s. \\ 'c W J.. a9 . 4 }.. 1 5_.... \\ o N.-) \\._ i Q ., 1.,.,.S. g g ..._.{.......u. ..L.g....g;._.{., q . p.. g g ...___.._.4._ g ;.. M 2. w T ~~ 1 _ i .. %. 4....... n.4.. q....;.. p q..m \\ _4 ._.._.l .\\ Mbg D .,g. g.., a<. ),g n t .. q... .),..._.. %.a _... ... _.....! g,..3. m,. .. _ -....t _! is.. t.. :. y gg. I ._4_...4-... .aq.... .._....g 9 .g m..___.,. p _3. p'...... f r.. - -) g.6.... i. H-g,t,"'. 3 = W '...~.1 O p-g.. .-4 e 1: e ~'- i ( - L ..__..__.r=-...q,.q. q=:,. m:xq q ._g.__ _ _ Q - =. y,.:. npq ,w - .a .._.'_.'..a.._u.: 3 i E.. d... :d.i"5. '. i"-'. * *i q i A"i..-I J h
b :].
h N.. 2 im%* s ; ... o, s ..fmA ..j.....-].____- .j D. %' W
- a a.. _;: :
kf a 7
- -g,
7 ,d f*f f .k S 5 *. ~U.dd.h
- f!
- ..f..!b;
- hU if!*
"3"1 '] '5 .5. !;! 5- - f /
- ....+;=y=u =is.n..=H==a=g-a;.s.
I'd. _. M.._. d., Y $ E. _. -... \\ l e { { s. + . :_. : -. r. =..., , =. m t a i-r i 4 C3"* - p g fV N W v e oc e W 4" 8 g w N - ~,
~ Table 6.
SUMMARY
OF IRRADIATION PROGRAM RESULTS FOR THREE LINDE 44 W (tank fits to ey absorbed-energy testing data developed by J R E WELDMENTS* . MAWTHORNE. MEA) 9, d,Cu :W130 F#k j V2 Irradiation History *) g 0 31 % *"'# W3 Cu 0 26 % Mi : 0 56 % Cu 0 32 % y Ni 2 0 56 % Ni 0.67 % % (*F) usE (ft.ib) R % (*F) UsE.(ft.lb) R? pag (*F) Uss (ft.16) I DATA 550' F 245 1 15 42 5 115 207 1 15 46.0 + 1 5 259 1 15 35 0 115 3 4.10 9 es-2 FA 1 e I DATA 300* F M f 310 + 20 38.0 12 262 1 15 38 5 12 385 1 35 31.0 12 3 3.10 9 co-2vh 1 IA DATA 500* F 2C2 110 + 20 550+2 3.},10'9 -E ~ co ggy 1 week anneal 650' F IAR DATA 500* F 255 1 30 45 0'1 2 207(b) g9,3(b) 262(b) 36 5(b) 3 3.10 9 en-2 1 1 week anneal 650* F re-irradiation 500* F, 7,.1018 es-2 f~b All fluences are for neu ren&$-n-Y%: g,y er *1 rP ..:^ft W 10 s a 9 dovu >seyff gf, e with energy > 1 ffeV. Poor moraalised x implicates poor definition of confidence intervals b t 2 comparable to the ones quoted for W1. 1 e-uncertalatleefehould be u Heat treatment identical to BR3 (31 hr. strees-relief at 1150' F) 00 3N i k E,6 Sfl'Y 4< > aw-so/Af4 22>,y,(mdk 9/n utffAnautsf , e.trerry' / = . ~ ~
- n.-,.-
..L, .a- -, _. _ ~, - - - - - - -. .--.>m
1 i e J. ] s 1 e. -.[ l- .i-I g il n (: L i -.i . ll., .i -e g l. 2 1 -t g g-
- l l
-s -e ..} g f 1 ll. 1 3,1 ,'e s .-p ] -.] lll ). s. n } i -e -c -.l -p g '. 2 -e -p e -~ } ..s, .-.l 5. t .i e ps, f n 3 $( 1:; , on -.g g:, ~ < g. -e f -{ ,r i ,f -n 1.'I e. .c ;. 1 i, t. ; -p, [ -a l 4 e,- i 4 ~i. Io -n s.I .,1e I [., } -.f i -.l ["J -\\ 3. )5 -e e } -e I! t-i,1 8 ji 4-E I' -e (. 3 'l* ~ ;i } +r 1 t .3 d 3 /) -et f, /,- h. 2 t t -5 ) -p 4 e> -t J e,. -a, i -te i -at -.l -n 5 -s s j gg-( es 9 i O-( s. e ?- -es -a i -s -.e3 -.g g. ( e ? ( Q n 6 i l -s -s I -e ..i lit e i , i i i,,,, -.i IIIIIIIIIIEIII I !.I
- Ic.t. t I ! g g
-e .( -e -I e -a, .i Iit f i,,i! 11115i gtsI1aan Ii!IiIii.ii!Ii3 I I F8 R !,,! f f ! ! 3 I ! ! I I .t..1,,,1 1 ! I h~ 1L' g 1 -i-Z r
ATTAce ME MT 2 ]. l 4 i t I i .t i '.I 1 Evaluation of the Yankee. Reactor Pressure Vessel 1 1 a i 1.1 ~ NRCLStaff Meeting May 9,1990 t .i l i
a L. y j Contents of Presentation l l b e RPV Specifications ]
- Upper Shelf Energy-4
. Surveillance Program
- z RTNDT Shifts i
L(.
- RTNDT Determination i;
- PTS Evaluation i
n l RPV Inspection .. Conclusions l 1 l. 8 I (. ; i 8
- t
]- 1
- .i
- -
K l,? - H. () ^ L, I?. 0) g- .O_ n. +-e ((l .O O / q) a e Q- !J G .o cc ~M s _g {% O o u 5 O C. Z +- O D C 'C O .CL g. .c_ i c_ g V G o e 'O '5 m e 5 y, - o o
- o O
1 e o e e 1 -i .i
7 g, _ g, 4 I Desian Information ^ t Designed and constructed by B&W in 1958 i l at Barberton facility. 1956 Edition of ASME Section Vill with addenda. l + through 1958.
- l Designed for.2500 psia and 650F.
j 1 Operates at 2000 psig and 511F inlet. Hydrotested to 3750 psia following fabrication. ii i q t 5' .4.-
ww-es-mus-ame.ms 3 i Description of RPV
- The RPV is 33' long and-124" OD. The diameter is approximately 60% of present day large vessels.
= The closure dome has a minimum thickness of 7".
- The nozzle course has a minimum thickness of 9-5/8" and is made of three~ formed segments joined :together by three longitudinal welds. Four inlet land four outlet nozzles are welded to the nozzle course.
l
- The cylindrical section is comprised of:two shell r
courses having.a minimum thickness. of. 7-7/8" and 109" ID. Each shell course inclisdes one longitudinal weld seam. The two courses are1 joined together by a circumferential~ weld seam. '* The hemispherical bottom head has a minimum-j thickness of 3-7/8". - mm t i.. k 2 .c
l [ .y + 5,- RPV WELD & PLATE LOCATIONS-i l m. 7 7 m q 0 p 6% ^ l 7. \\ 'G l / l 2' 6' (/ /- q e s/s' j ( (- s' s' e so' - i [ N0ZZLE-SHELL COURSE b (? .i s l s s [., 7-7/8' \\ .... _ _. l, e__ / 33'
- \\
/ l 1 3 l \\ / r 7' 10' '\\ /
- h
/1 s . UPPER SHELL \\/ t counsE '/cona 7' 8'-- i /\\ ,/ \\ l. i i,. I f i ~ / \\ '\\ 1/ .(' i._ __ _ _ _ _.;; A' 7-7/8' 1.' 7' io' l ' LOWER SHELL counsE ) . l., i 3-7/8' .) \\ l ~t a l' t f 10' 5' ,,r-& ~w--, n v e + e.e-e,- ,e--e-- ,e--e ,a,*- n-r
g. .-g n v,_, ,,_ w -e~.-~~~~. Plate and Nozzles. A-302 Gr. B - Closure Dome - Bottom Head. - Upper Shell Course - Nozzle Course A-302 Gr. B Modified l(with Ni) - Lower Shell Course A-105 ' Gr. ll - Head and Nozzle? Flange. "i i~ k h.
e, l. i Claddina ~ i. The shell courses, closure dome,Jand bottom head are clad with SA-240, Type 304-stainless: steel. J The cladding was applied-in 0.109" thick sheets using-a B&W resistance' welding process. After-the: cladding was app e, t e p a es -were heated 1 li d h lt 4 and rolled (with several stress reliefs). to form the shell courses. The clad. presents a quilt-like-j appearance.. All other areas are cladEwith a t/4" weld deposited Type 308L: stainless steel. ..<,..m .~v...- < '-..-.......r .<.w,- ..m ..ye v. .w. 2
- i..
u s. .-1
L _,1 ~:1. E' \\ )$. .) 4 1^/f g.:, ( ^ ';t $34.n% c. 3 y, Q? ? . t O -;7.,.,. 1 :.'.. q-T .. u u -. s w
- )
1 c m' .. p. ~; y -t.C.2.qs,y 3 - --g y? g .., ).' h . [T .$l,,.; e -~M' p.pAhv.. s g r '.. m u $*g y (h: c%.,... o gh 'sy _. V.
- 2.... w..
t e
- .J. -.;- -
t .:, 9.; + %- -. m}gg;m.: u e' . ; j. j.,, up
- .,,.ame-p;:, -.
- t
- <> :,;n _.;,. -y s. .sy g.1 - - 7j
- ggy
.j y,y.;y f %.; pM': : n W), l s.. %. k ]: i p,
- 1..
,x w .s. ~_,.y. '~ .,, ;gv p;, 4,. a;.... 8 g . + (X, W. 5*U~. ~^ ,'y ' u. ',,.... a y.r %%,.,f.?. ;g,- ;u.; ; - s L.. l i =- i . [; I ..+ =; M.' *" ?. W ' ', ,a-M3'+f9,c y *** o.:? '+ ' s; . > ~ p,' y, '.% '..n -h.,,. - =a ,, s ; fh t-W W W,b".%_. w.. oc r;T ": 45 ?. ..g un .., ;f... 7;.. us;y .u.. .y
- g..,,
} h? .,, w 4.c. -..; d.f....-it. - w1 " '3 ... 39 - -, m-- '.1 -t ? ~ ems _'c- _ -.r,k -f., a g, g . g.w. l r P I i I. 1 The photograph is an sxamplesofithe-R f quilt-like appearance' of the cladding.. it shows the'" horse shoe" shaped 1 bonding-areas. 1..g The photograph also shows afweld seam 1 between the bonded plates. n .--..m-. -...
,, wg J j i 4 Weld Locations j The upper plate longitudinal weld was made at-the 315 degree location. This ~ location isLthe lowest j fluence point and demonstrates that. fluence was i l probably being taken into account. The lower plate longitudinal-weld wascmade at the. 1 l l 145 degree location. This location.is near-the lowest fluence: point. The peak fluence is opposite the four flat spots of the core. I 1 +1
u, '[y 1 LONGITUDINAL WELD LOC ATIONS L ~ f a
- ppg, w
I Eo GITUD fNLET N0ZZLE L 0 WE i Z 3 mmw Y 1; CC C C R I \\,n C n '[- C m 1 Cn CR -ER- -ER- -ER-CORE BAFFLE C'i CR 7 j ll CC -ER- -ER- -ER-Turnuit smrtn 3 [ 1. n, nn ~ "/ ? nricton vmert C C Cn i Cn LOWER PLATE r LONGITUDINAL WELD 3 N y X %g INLET N0ZZLE .E!TE: Axes WY'and XZ N are regions of low fluence a 3 I I
7 l Upper Shelf Energy Evaluation L A preliminary evaluation has~ been performed to determine. allowable pressure versus upper shelf i ~ l energy for weld. This evaluation used Linde 80 lower bound J-R curves, proposed Section XI, l l Appendix X criteria, and both.the Yankee vessel and present day large vessels. The conclusion is.that substantial margins exist l for the Yankee vessel at all upper shelf. energy I values due to its smaller diameter. i i The margins for crack. initiation for a large vessel at 50 ft-lbs is 570 psi.andLthe corresponding margin l i for the Yankee vessel at 40.ft-Ibs is 1550 psi. .l i I i i. . ~. ~
y L. j 7 t - ALLOWABLE PRESSURE VS. USE e. YANKEE REACTOR VESSEL ( .t 7000 Jd 2 sigma LJWE 80 WELD CR = 50 F/hr t = 7.875 inches I 6000 - Rm = 58.5 inches I... s A + c /n' ~ 'u 1 /n' / 5000 - 'l ) [ 8-Margin for Instability ' s da=0.10 inch ' at 40 ft lbs = 1875 pal + instability h Margin for initiation 4000 i-} l at 40 ft lbs = 1550 pel - p s -l u 3000 - i* l l Yankee Openning - .'f'. 2000 .0 40 50 80 70 UPPERSHELFENERGY PTLBS Ref: A. Hiser, Cv USE Conolation t, u-. -
.4 r .a 2 ._a ..,-.,w. p R m,.. ' j-; o. (.F. J I ~., l-q- l ( ALLOWABLE PRESSURE VS. USE - / ') .[ LARGE REACTOR VESSEL n.; t T Jd-2 sigma LNSE 80 WELD ] r i CR = 50 F/hr j f* t = 8.7 inches - 6000 - Rm = 87 inches l:. ] ~ t ,j 5000 - k Margin for instability e ' da=0.10 inch l at 50 ft lbs = 660 pal -
- Instability
+ Instability } 4000 - L W / '/ \\f f Q argin forinitiation,_ _ _, 9 M I 3000 - at 50 ft bs = 570 psi !( f. Yankee Operating 2000 d* .0 40 5O 60 70 l UPPER SHELF ENERGY - FT4.SS > Ref: A. Hiser, Cv USE Conelation 'l l f -. m-a n e u a g e,,w,1,g-- e. mr e merw ge---vgw t- ++ -f '9-y**e.ww.r"-e +
(m ..e ww ~.. ..n .h I Upper Shelf Eneray Evaluation 1' Continued) ti 1 i ~}
- The NRC, in NUREG-0569,. evaluated Yankee-plate for low upper shelf energy conditions. It'used an Appendix G, ASME Section lli analysis to
. show that there are-margins to crack initiation l for upper shelf. energies.
- The evaluation used the Rolfe-Novak equation to determine Kic, the vessel design: pressure and a heatup/cooldown rate of 100F/hr.
i ~ i ? i i i .... ~
, m , m q A udder Shelf Eneray Evaluation (Continued) Cv Kic i 50 143 45-135 40 126 L 35 117 o
- The Appendix G calculation showed a value.of 113;keiJis. required which would c'orrespond to an upper shelf energy of less than 35 ft.-lbs.
~ for Yankee. i The applied Ki equals 143 ksiS for normal operating pressure of 2000 psigLand a' typical ~ l heatup/cooldown: rate of 25F/hr. i 4 m - 1. .m .--a .e- . w m-. ..e--w.- ..w w # +..m .a-+.-- m a. k. m ---w.. .-- s www m m--; sua m .-.m.. m- -ms m-
l 4 i l l Upper Shelf Eneray Evaluation (Continued) j i
- A preliminary evaluation has been performed
~ l l .to determine.the allowable pressure for an ~; unirradiated A 302-B. plate with an upper shelf energy of 52 ft-Ibs. (T-L). This evaluation.used the 6T-CT data from NUREG/CR-5265 with a 20" standard deviation. i Y_ankee CRm=58.59 Vessel-(Rm=87"1 Pressure to initiate 5144. psi 3540 psi l a 1/4t -flaw, 0.1 inch
- The results. show substantial margin for the Yankee vessel
Melum 4*
- N O a#q MD e eMM l
i a { 2 Upper Shelf Eneray Evaluation { Continued) l '
- An analysis has been performed using J-R curves obtained from tests of A 302-B plate in.the
~ i transverse orientation. This material was irradiated to a fluence -of.2.56E+19 n/cm2. The measured upper shelf energy is 35 ft.-lbs. L The J-R curve is based on a Jd methodology.
- The results show a large margin required to initiate a 1/4t flaw 0.1 inches for a 50F/hr cooldown.
j ? l 2, ~, ~
t.
- F.
~:. J-R Curve Analysis of Yankee Vessel ~ . 'n A 30s.3 Piete T4.0fMNTATl0N 700 p. Code N.5 L.) f. 2.56e+19 n/cm2 1TCT i Cv USE. 35 ti its l goo - SOFAR -C 717 h ,c.
- n. 1725
- l' 500'-
i L 4 I i Japplied @ 3437 pel 400-gg f 1 i Japplied @ 3182 pel i i 300 ' 1 I 1 i i i Japphed @ 3437 pal .200. YAP 4GiEVE8SEL F I ' Japphed @ 3162 pel i 100 o.oo 0.10 0.20 0.30 0.4o 0.50 0.80 j. Ref: EPRIProject1757 24 As. Inches 6EiA-2004, Dooomber 1989 h k i t j
- +
r a ~... ~. -. ., -...,.,,, ~.. -, -..
l2 n i l 1 G ,3 l l l J-R Curve Analysis Of Yankee Vessel r A302 8 Mete T4,OfWENTATION i1 i i-700 Code N-5 ll.' 3 1TCT i "
- f. 2.50e+19 rvom2 j
Ov uSE = 36 ft its l e00 50F/hr l l C =717 i li f i
- n. 1725 i
l 500 - f ) l { o J.ppr.ed @ m 7 5 4#- _ m m . -.- - ESTINATED 8 t f J-RC9mvs. .l / JappW & sist pel o z lg I' ll '(i 300 - e I i 5 I I o Japplied @ 3437 pal 200 - YANKEEVESSEL i Jappred @ staa pel { { 100 0.00 0.10 0.20 0.30 0.40 0.50 0.80 ~ { I Ref:EPRIProjem1757 24 1 WEA 3024, December 1989 j ) i I 1
_, w r i i Upper Shelf Energy Evaluation (Continued) t
- J-R data for A-302B is limited at the present.
l L We are working with industry sources to obtain additional representative data. i 1 l
- We have established contacts within the Berkeley l
Nuclear Laboratory in England to precrack and test i reconstituted Charpys to obtain Jac and crack L extension data. c f 1 .) i i I i l k .J
-7 4 i t Conclusions l
- 10CFR50, Appendix G required maintenance of upper l
shelf energy throughout the life of the vessel of no less than 50 ft-lbs unless it is demonstrated i in a-manner approved by the Director, Office of ~! Nuclear Reactor Regulation, that lower values of upper shelf energy will provide margins of safety. l against fracture equivalent to those required by Appendix G of the ASME Code.
- NUREG-0569 evaluated Yankee plate and weld for l
upper shelf energies as low as 35 ft-lbs using -l l .an Appendix G ASME analysis and showed safety l margins. 4
- b......
,-___....__.-__,....____.._.__..__..__-.._....__.._.._.___.._-....__.__..____.._..____._.._____,____..-____,_.____j
g g =v . m r. .z. l l i i Conclusions (Continued) 1 L
- We have performed additional analyses using the i
l ASME Section XI, Appendix X methodology and are showing greater margins for Yankee irradiated i l plate and weld at 35 and 40 ft-Ibs than large L vessels at 50 ft-Ibs. 1
- We are confident that the upper shelf energy of the Yankee weld metal will be no lower than 40 ft-Ibs i
and plate will be no lower than 35 ft-lbs in the l transverse direction by the year 2020. i
- Therefore, we conclude.that Yankee with a 40 ft-Ib weld metal and 35 ft-Ib plate upper shelf energies does have margins of safety against fracture equivalent to present day vessels with a 50 ft-Ib upper shelf energy.
i [ ~ .= =.=..-....-...-.~.
1 Surveillance Program r i The original surveillance program consisted of L l tensile and Cv specimens from the upper shell L course. These are 1/4t specimens oriented in the, l longitudinal direction. No weld or HAZ. specimens were included. The program was discontinued after ~ L Core IV due to failure of the specimen holders. The evaluation of the irradiated specimens was i performed by NRL and data from the program was very limited. The shift in RTNDT was determined ~ l from only two data points. { l ? l b
i i Surveillance Program (Continued) l 4 2
- In 1989, we determined that Yankee plate materiai l
was irradiated in the BR3 reactor vessel for a period of 25 years.
- Irradiation data for the Yankee surveillance specimens has been obtained and is being evaluated. The fluence values seen by the specimens bound the end of the license renewal for Yankee.
- Yankee plate material consisting of 16 Charpy and l
4 tensile specimens were recovered at BR3's facility. I i l i ~ l =
_. :-- =-- ; =--- BR3 Description BR3 is Belgian one loop, two main coolant pumps ) Westinghouse PWR. It,was originally used for training operators and later used for fuel testing. The electrical output-was 10 MWe. BR3 vessel was built within months of the Yankee vessel at the Barberton facility. l It was fabricated.using the same techniques i-and has the same cladding design. 4 4 h t
r., m, m 1 e I i BR3 Reactor Vessel l BR3 fluence at 25 years is equivalent to Yankee's ~ fluence at 60 years (4.5 x E19.n/cm2).
- The BR3 axial weld is located in the high fluence region of the vessel and as a result this weld is limiting.
i -l 4 1 e 4 6 .i f 2 I l I...... ..~ ~
Surveillance Program (Continued) The NRL data shows higher shifts in RTNDT compared to the BR3 results at similar fluences. Independent evaluations of fluence l(A. Fabry and L. Steele) have corroborated the need to adjust fluence by a factor of 2 to compensate for early methods for establishing fluence (1964). When. adjusted, the NRL and BR3 data show good agreement. ~ Recent testing of the Yankee specimens recovered at BR3 have confirmed the shifts and fluence corrections. e ___.-u____ --v --m-
a i i i i l i l l Conclusions i A surveillance program for Yankee plate was 1 performed at Yankee and BR3 and bounded the fluence past the license renewal period. L The NRL fluence calculation for Yankee surveiilance l data agree well with BR3 data when the NRL fluence l is adjusted for conservatisms in early methodology. j t .j BR3 operatea with a fluence equivalent to the end i i of Yankee license renewal period. The B&W owners group weld surveillance program l is expected to bound the Yankee weld chemistry l and fluence. r. The BR3 and B&W owners group surveillance programs. i bound Yankee's license renewal period. ,ogi._ .e_d-asq'.,-dp_ y se y 4 qq= -ywD.g .ap a ggng-v'r e"W( .a 9 "'P--*9' Wd'+P'4'"-' e F 98-
- W9+1 W i 0-9-wvs & 'W'W'T 4 W ' 1r
- M
' w 9' e n- &^'s -W*
- 4 T-
- w-@
e + w W br-' + - JW h - &d@-
7 o 1 i RTNDT Shifts 1 i
- Plate i
Weld Metal Testing Program i s t f k i l f I i i I 'I i. I l .-vc- ,,,+,a, ..... ~
s1, 7. L. 7' ~ YANKEE SURVEILLANCE DATA NRL VS. BR3 TESTS 1000 s, / I b h + \\ NEW DATA g l ./ 1-I' + BR3 i I l l R I a f l / t'. d l-l f. 10 ' jft1 l Id7 kd8 '1d 8 1 y!0 i. l FLUENCE n/cm2 4 Y
.=---_. _.- - _ _ _ _. r 7, ~ YANKEE SURVEILLANCE DATA NRL VS. BR8 TESTS i 1000 i y / \\ l 5 t I e A J e 954, 100 l
- BR3
/ P t e R.G,1.99 y f R / I E ~ .[ t { I.. ,t l I h l e I li. 1d7 y y ide v wd' y w w ww w y v v w wy ww 180 181 i l { PLUENCE Womt 1 4 - - * + - -,.--.a -vw, v.m., v-y ~ ,-g.ar,e,.g y- ,we we-9 y-w-vp** yw4
..s .s u n.a -.a ~~ a i Surveillance Versus RG 1.99 RTNDT Shift
- The Surveillance RTNDT shift is higher than l
~ RG 1.99 predictions. l
- The difference in shift is due to the difference in microstructure.of the Yankee plates from the database materials used in the RG. The database materials are fine grain and the-Yankee plate is coarse grain.
. The Yankee plate was austenitized at 1775F to 1850F f which produced large austenite grains. The large i austenite grains retarded transformation to finer L structures upon quenching. l' l m
a Surveillance Versus RG 1.99 (Continued? i I The database materials were generally austenitized at -1650F, t e ASTM 302B reference steel is an example of database materials. i. 4 f i t i 4 i . ~-.
Fs O 7, .b' T tu aucavaiamuum wam.camonua j P Q34 e g6 E (a g ) jl4$Ed I S U 5YZ(*Y N $ & :N Ya!Y "-i -W gui wi-m ou==. F; q i
- j
- ~ - - _7 Microstructure Effect ~ l ~ The microstructure effect is clear when surveillance l data is compared for Yankee plate and reference steel. Both were irradiated at the same time in l identical locations and have the same chemistries. However, they were fabricated with different heat i treatment and show a different m'mrostructure. The ASTM reference plate, when corrected for ~ I temperature, will fall within the RG database. The Yankee plate does not need to be corrected L for temperature as will be explained. 1 e i
- s
-vye w. m 4 c er - - w+--- +r- , ~ ~. -..,.+._ _- ---.. _ _ - -- -- -a--- -a.
t ~ l YANKEE SURVEILLANCE DATA i / l -1000 / f / i j-1 l Y t I100 I a 4 ). ' E -i . mu e R.G,1.00 I u PEF N R / I [ E .i t t j i I, j l! I i l l u l l l-r 10id7 Id8 188 igo 3gt l (* PLUENCE. M i T l l ! i t ? .t ., ~. A
t !l 1 Temperature Factors s known that different irradiation temperatures l iti l produce different shifts for.the same fluence and same materials. The difference is caused by diffusion based phenomenon / defect mobility. The role of microstructure is important as it l l affacts diffusion parameters. A coarse microstructure hinders diffusion of irradiation l generated defects out of the lattice. The coarse structure also enhances the formation of more I stable defects. The surveillance data irradiated at 480F,525F, and l 600F all show minimal temperature effect. i [ l
3 1 x YANKEE SURVEILLANCE DATA-2 e l I 1000 l l t I c l 1 fm k I 4 I de0F, 1,' ' s r 7 l ~ 4 h " Im 3 i \\ ' M!W DATA U <s25F) d It i s i e,- tet. i is i1 . ans , l t I % \\\\ l F R I M\\ 3 I 3 525F f + l 3 Y + i i l l 1 \\- i l r 10 - - -ids, --ige - - - - - -ipo - --igt id7 i> a. ? i FLUENCE Munt l-
g, t b ..e t 1 k ) Upper Plate Versus Lower Plate The microstructure effect is great enough to } i override any specific effects which may be l attributed to nickel content. Current mechanistic i and energy fraction studies using instrumented l Charpy tests have shown this to be the case for i the Yankee plate. l I f i i { I 4
- W igeW-*
'w7 --@ev tew en e grme W' +-g ^W*
- * " * -P'M I'889
- 'MD"T'T't'**61y--% en+w en eve e y W e w -% 4ip N-$ w 6 e sert
-Ie" w--vgwy 3 M e as u-f W+ W W e't M w hei
- 9 d-m9m
- ++ thaw-sa^'me-D9-4--r-e'-e
+'E"-sue e-Lcus. -me-.- m..- ewa*ew-'m-9--- --L-e
- a w
,2 c., i Conclusions \\ \\ The Yankee plate shows higher shifts in RTNDT l l for the same fluence than RG 1.99 predictions. 1 The higher shifts are due to the coarse grain 1 microstructure. 1 The coarse microstructure minimizes the l temperature effects on the shifts in RTNDT. j 1 The coarse microstructure overrides the effect - of nickel on the shift in RTNDT and allows the upper and lower plate to be treated the same with respect to shift. k i 5 4 t___,m = _ _ _ _ _
,,.m ; 'l ) i l Plate RTNDT Branch Technical Position MTEB 5-2 requires the addition of 20F to the longitudinal RTNDT to ^ obtain the transverse RTNDT. Surveillance data shows an RTNDT shift at a i 5.9E19 fluence (year 2030) of 237.5F at an j [ irradiation temperature of 525F. j j Final RTNDT for the year. 2030 is 237.5F plus I SOF (10F initial RTNDT plus 20F) or 267.5F. i l-i I i 4 l I r i A
m e v a n .,o Weld Metal Data Cu - 0.18, Ni = 0.70 based on a BR3 sampling l i l program. Yankee and BR3 vessel were fabricated using the i identical welding process. 1. Submerged-arc j i
- 2. Weld wire size is 3/16" diameter.
- 3. High Mn-Mo wire and Linde 80 flux with i
Ni added. B&W is currently performing a records search i to determine weld chemistry from fabrication l records. In. general, early production welds-showed low copper content. i l 3 .. ~ -..._..._....-_...____-.,__._-___.._.:_-..,.._-__~_..__~_...________________.__.__________
7.,, U [ l i Weld Metal RTNDT l 1 l l The plate coarse microstructure is not l applicable to weld metal. 1 Therefore, RG 1.99, Rev. 2 is applicable for l calculating the RTNDT for the weld metal RTNDT at the year 2020 equals 320F with a j l temperature correction added. The temperature correction for weld metal was determined.to be 1.08 x shift for the. Yankee i vessel when adjusting from.511F to 525F. The [ correction was based on the BR3 program and is within the bounds of Odette's study. j L
,.. m. ,e-i i k Current Test Programs f ( Complete testing of L-T specimens for fluence exposure, chemistry, RTNDT, microstructure, I~ l and drop in upper shelf energy. l Reconstitute broken Charpys into L-T and T-L i specimens and perform Charpy testing for transverse data. e i I 4 i 4 1 . m..~..
m
- ,, m m.,
-m, m e .e, c. i { i i i Conclusions
- The PTS evaluation will use conservative RTNDT
^ l values of plate taken from the surveillance program. 1 i
- The PTS evaluation will use RTNDT values of weld i
i determined from RG 1.99 corrected for temperature. 2 l i f i 1 I l l I t l i L i l_-~_..._...._....--.__._.-..~.---..,_._-._......_.__.._.-._.-,--._._.. ~. ~... =
- - _ - -,-- a. n. - - - - - - - - - - - - - -m,,-,,- --,--- . e,, s PTS Evaluation it I i ~ + - The inputs to the evaluation are: ~ - Transients 4 - Fracture Mechanics - PRA a I k i i 1 4 ,---~,Ln., ,n-n- A.c y - --c.--.-,. l-n ,,c_ ,w,
4
==.-e .s i i Transients i t Select bounding transients (rapid cooldown and 'l repressurization) for fracture mechanics analyses. 'I YNPS, H.B. Robinson, and other analyses.will be~ reviewed.to determine the. bounding transients, l e.g. MSLB, SBLOCA. l Based on fracture mechanics results, transients l l will be selected to encompass--other. event: 1 L categories, e.g. Excess-Feed, Excess Steam Demand. I i l ? i_..
g- + n a em j. .i Fracture Mechanics i Probabilities of vessel failure will be determined based on the set of transients developed, the fluence from the.P3 methodology, and the RTNDT at end of license. renewal. This analysi.sLincludes.a j determination of the: probability of crack initiation, critical. crack size, and prediction of arrest. B Sensitivity analyses will be performed to evaluate [ . uncertainties in ma'terial properties, flaw? distribution, - RTNDT values, etc. This will include the difference in properties between the surface and the 1/4t location. 'N 4 -.. '............. ~,... ~. _.. _.. -.,.......~ ...w+ c -.... -
PRA 4 The probability of vessel. failure from the fractureJmechanics will be combined with the transient accident sequences to determine the total failure probability. l e o .e-w gg e g+.y+. i.. w - y er y.. g>- y 53a+,,.e g v 4 2 -cy-i
Conclusions 1 1
- The PTS evaluation will initially consider the bounding cooldown and repressurization
) i transients and then depending upon the results, L will consider other events.
- Sensitivity evaluations will be made for RTNDT, flaw distribution, material properties, and l
surface to 1/4t properties.
- A total failure probability will: be; determined by combining the fracture mechanics and. transient sequences. The results will then be compared with-the acceptance criteria.
j I L.
<,,m ~. a a t i RPV inspections I ~ Fabrication : Inspections ~ Yankee inspections u Investigation of Inspection Techniques a ,k e l.
m .. mmm ~ l 4 Fabrication inspections i A comparison of inspection and' acceptance standards for Yankee's vessel was'. performed in NUREG-0569. The inspection of Yankee's vessel, built.to Section Vill: standards, is similar to the - Section ill standards.. Plate and forging material received a 100% UT examination. A radiographic exam wasLperformed - L .for clarification or interpretation of the UT results.- R A review of inspection records :shows no flaws in -the beltline; exceeding the-3%; acceptance criteria. 1 All' welds received:a 100% mag particle exam; and a 100% radiographic exam. l a -e. n m.--- .-a- -u -.a .A w T 4 er D m v'41-' A b W-m.L M a-Y d=#-w -*Me-Dv d yiG+'- H -f f 'i W9 4-WMDd W ab P Wb4W War 8 4 -4 bsL. -er.ani. 2w
o ~4e -t or' gg i y4 i s: L_- 5 q.gg.- qq [ ~ J E_ a y .4 -2 g -t ....i i !. J+ .i e.. a.- ~ I. I I W-WW WW II 1-g $ 3e a n- ,n E 5 II IIIII II ~. I I I gg T 1 bk-g 5 Ja Jadaa Ja R
- 3. is indai
-si %9 1 ~ "o 2-f I it g -.g r II -WWIIW WW u w bb E. kt" T . 12 .2. - B>m em g T, _$ I'I. 15555 5.5 ' ~ E. o 3.sY 5 d.'. d. d d. 5 W 33 [. 5 JJ JJJa: JJ ESg a di indas di. 32.2 g,,u q .. g. ) {- B.- S E E.. l OTh#I u tg 5 $1.221 or t - t gs,:e s. a i
- :=
_E: _,,E8s,
- .a4 E-
.7 m .E E. t.a g g 3 A A - =4 s [2 s 1 .g. i ) t 3_. x 5......
==-~ b u->>-CM I "j "5 5 * $" S Y d dia' d i '} w ab A E CO O l i - - -,... ~.,.,...., .. - - ~ ~
,m '\\ Yankee Inspections l
- Yankee vessel inspections started.with commencement of commercial operation. In the 1960 to 1969. time frame inspections were conducted under Technical Specifications and the Massachusetts Boiler laws.
- Inservice Inspections began.in.1970.
The ISI was governed by Technical Specifications using ASME XI 1970 Edition.! Vessel inspections l included head to flange, flange to vessel, l ligaments,: cladding, and visual inspections. j The program was accelerated for the:first..few q years based on " Criteria for ECCS for LW Power Reactors" dated;29 June 1971. 1 i y o i
., g g
- 1r 1 Yankee inspections (Continued)
- The second interval inspections began in 1974.
The vessel program continued as before.
- The NRC reviewed the-Yankee vessel inspection in NUREG-0081 and concluded that even though there was a limited inspection, there. were adequate margins due to the low vessel stresses.
. Yankee submitted its firstLISI program under revised 10CFR50.55a and received relief from inspection of vessel welds.
- The :10 year inspection of the vessel includes previous areas and inlet / outlet nozzles previously under relief requests.
- 1 5
O =-
~ v=. .--._..n.. 9 Current inspections
- The location of current inspections.are:
. Closure head to flange weld Flange.Eto vessel weld.from the: flange [ Flange ligament area a l Nozzle to sheII welds Nozzle to safe end welds (partial) 1 I CRDM housing welds Visual inspection of all areas where possible l
- The last inspection was performed in 1984.
- The next schedule.d.10 year inspection;will be-
] performed during the 1993 outage. I ![ ~~ - l -.,. -..... -.... -... 2
E a '~ 1's-y i 1 CURRENT INSPECTIONS '{'(([{'{ _CRDM HOUSINGLWELDS_- [ CLOSURE HEAD TO ~ FLANGE-WELD .~L% ' FLANGE I ' LIGAMENT l ..; AREA j j ' s, A j FLANGE TO VESSEL (* WELD FROM' FLANGE i T / FqCE' NOZZLE To I f[ SHELL WELD N NOZZLE TO t SAFE END l WELDS t IPARTIAll s,, ,3 %s l l 9 l I {. s 11 L.:- I. F e ] - - ~,
, 4 ug + anwm J { l investiaation of Inspection Techniaues i V
- Yankee has initiated an R&D effort to investigate an t
alternative inspection technique. It consists of UT & ET. Its objective islto distinguish between surface and underclad flaws.
- We are continuing to: develop the technology.but it will require extensive R&D to provide a code qualified techniqueifor flaw.. characterization.
- The: probe. must be capable of navigating the small gap between the thermal shield;and vessel:lD.
- We have had discussions with :several vendors.
i - .Kraftwerk Union and SWRI have: built limited access equipment.
- ]
- a .c t.a r 3 Investigation of Inspection Techniaues (Cont'd? 1
- We are also contacting other vendors to see if 4
they have or could develop methods for inspect (ng [ l in the gap between the vessel wall and thermal shield. Interest has been expressed.by a number of vendors. 1 1 l l l i -i y 5 i i - v- ,,.c ..a..
_~ _7 _ u 1 I I Conclusions 4 1 The vessel was inspected during fabrication-to the equivalent of ASME Section ill requirements. Yankee has been inspecting the vessel since L 1960. ASME Section XI examinations have been performed i since 1970. The:high stress areas 1of the head, flange, and nozzle welds have?been. inspected and have-shown acceptable results. i 1
c m m, _,o i Overall Conclusions ~ i .l The Yankee vessel has;shown equivalent margms i of safety against fracture for; upper shelf energies l below;50 ft-lbs and:therefore, meets / Appendix G. The surveillance programs? at BR3 and the B&W owners group bound the operation;of Yankee.through -license renewal. The coarse microstructure ofethe. Yankee plate results in higher shiftsiin RTNDT but minimizes 1 temperature and nickel effects. y ) .ij
, u.. ~., Overall Conclusions (Continued) =
- PTS evaluation will be performed using conservative values of RTNDT.
- The vessel was thoroughly. inspected during fabrication and has;been subject to inspections in accordance with applicable requirements for 30. years.
G 1 m ,'m ~~ g}}