ML20039F969

From kanterella
Jump to navigation Jump to search
Project 4 - Waste Box Storage,Final Rept
ML20039F969
Person / Time
Site: 07001113
Issue date: 12/18/1980
From: Albert T
SCIENCE APPLICATIONS INTERNATIONAL CORP. (FORMERLY
To:
Shared Package
ML20039F967 List:
References
SAI01380-613LJ, SAI1380-613LJ, NUDOCS 8201150038
Download: ML20039F969 (70)


Text

-..

= _ -

n ;- :=y

c. c.

a, 5-f Q Q &g.}*;g$;y$.es %,g..s.f 5.y y5[ f %

hD. @. W.? - ~. _ ::

gh., L. k Q

~ M M $ N f U.dD M. M~ M M S$. s fm

'M O MODULE j

$% My k %/ M A M D.n.m.

a7 a NeM.3-p y@,

~

i hhh bN dhbf.h hhthNk h

ahn.G;,.WMWWja(kNkNJn g m u. M 9 M @ W Uf/SAI fkIh W6Mk@N VnET t

l.

) j ; Q.lp p@M !N D $:n.m@# & w >m.b y,

.n w d W w h g w.*

m#p;W.s i'

gur.'ei.e 4

W ;m.

g W@M% p warng M Wy4.4rg %w q@

m h

.y:p g, r

$MM,.wQ ss 9,yg 3 m%yM y uy

!,~.

,.g.l@M.m.u :M.

IMFWWMk.,m.~xN8S yu v

gm.m.4:~.c~w

-@oa a '.

mu

$w$ykk$,

0 - l ? W N S h @< v. m

' m" y'

~

+

.k hkhhi VW W:

Y V" -

% 1%

dis MFON@WhWML L,.,

a'-# 49

%& Wit MM%k %

l j 4, h fd h. d @d d y S:t

~ %

T?

f.d.ak.

PROJECT NO. 4 - WASTE B0X STORAGE Mi

$ $ N..%5 $.

!, k,V4n,,ut.:w,,

..J. :

M M bw

s. m., h:

3M~.

n..'.

FINAL REPORT y b.'d.M,

. =. s n a.e /

r

.m c.,

T,.py,.?w;n. a.

.v....:o pS

..wp....

.m.

+

F Ww w.5ymgm

.1-g 1

1 e g, s., y Q

, f ~.. o.. m A,p;w

.o e,w i, h,,m.s. '. 4,;%.7 2 I d(p a

  • s J
s.

m 5

4 J,;,,

w y; 4,,f A -

ef/

  • p.

q m. u ;j v

~,Tp.- c. A,.e.

...*3*Q.n

.,-W.

W v:

.e. :sf...

e QG, pt 4f *N G.Ql } *S?

l

) &,..

w.

p... t. c..sg;:/q w,)y

^

qaw pw. ". y

. ;.s W.

p.

meb

.m.

e

&:3. o...yf

.,- r."..-W h y& W f:+

"oq -

- m myr f<.

y c

~. M

?um 1:.V* '%

QWOOM

~

i &, y).4 epe, a a~.) LW,l A.

~.+.&&WAn. q.o a

s 1

yn 9..

v a.

q m,ww~, y

~ & % : d $ w'$ l @qm. w>

St & U%!:W.,..

...e +W:

4 W:

=6' n"

.%:WO:W

%f.M,Ni,4.W~..N, ms..w.W....,J J #

1 w

M

-R m-

.he hc.%

t e @o&WW@W;'n..

W w

c,, N.,',,iJ 4. '. - 1 '. -

4.

8

  • ;& *.W u..

2-

. ' r.e -

,** ~ - -

.q. ~.

... : y.q w.

J ~ eV s.,s.7 ;

m a.,A.>.p & c

+..

nu mw m

M) ; m &": ~r:a, m m.

Q. v w @, sh f":

% k.gm.:. ~;.,.z, f.d pf 1' 'f4@t.w % vs.m #..w

  • 9 s

u.a r u

. m.; a 4.,g*4*g'*p -

Prepared by

~'

' 9

j 1

.b W S

-u.

r s

u. V, nn,d. V *h QW i,%n'e q p%. m,... Aur.c t.,,,w'c t,

g,

,W, v M., n v4 i

Y T. E. Albert

.., (m..N,, w Y. ;".

. -@i i. "!

a e

W< p

/

1 M Q[p

,., J,

,.**'i.

r

=*<

3 v i

,g % %*r '

  • h F. y.,

It 4 %t.

4 % Ed -

6

)

(

-7

  • ? Wl*, h -

'S."'/ 6 $q@A;"/jMM$.M !

iD r

a-

&, g,w e_a.i n w' ;

,MAQ ie

+

l y m.

4..

.tq.2, rs.

.Mw w % h D.4 M,

b,

- c F

t oa.

4,

. kM,,m...am.,.g h p,m% w mp..,

.. j yt w _ u,r> +; v

.u,.y %. 4.p. n,

a.

...r

~

v a

N,

~

. w. r n

. m =~,

...q:-, upm. s,e.g p m y g,.

o

..n. k,n &

4,,.:. m

-o!.

m A>

W, w D,c Y m.,n. m..m n 4:pw

~m.

,t oJmme n v,v m:,. 4

!.g,sp h.e n' [ n.w, v : R. h

, h ',

v.

z.

's:

6,yv

$hh

,. n: >:

a 9%h+yd%;u 3.s

[n wry

,.s mn hk Performed for

)

$d

,m w v.

n a

- +

@ M M g,>..n;v. M,,.

. iw,... p mu e.e $w@s" A 1_,-g @w s-f i e,.

ya j

General Electric Company ipa

,q g m

. Wilmington Manufacturing Dept.

,2 c. s >

j wt a

h.

md.,o..g,M *, i fd.s,1

. (: W./~M n

w -

t r.+..

e% f i

.'n,wg n.~.

p.;;,

). 'd

, f.-

i.

d n ' $.- m w q:

7.;p.M'g x ?.,,_' ^;,

. m,. :.

f

~.
.c ;;, ~ p -

Under W

"';L ~,

9

.'.Sy~ 9.g. ~@

i 6

g

\\

Wv,.,v..e. R.

Purchase Order 334-R042X A.

.nA

-wgr.wpc w v

-~.

4 m

.. e y w g@.;.,, 4

. j,.

+e 4

+

g

.Q 1 }*,'*v f

th

. g

~.

's

.. i^.

  • m::, : ( '

s O *,.., j -.*h f,.

c. -;

"It

  • " ~

T***

. Mg ' I i

'C 7

,\\

.w

.3-.

December 18, 1980

. ~.

b. q.

a,, -

!r i

e c

.? '.

.':. @ n& y w w.c~ W%.C-

..a

,.y f'

~

-2 i

,, y;

,Um

~

k.]1?"

wf.a

  1. ..,M.e ~. b[.,c h.,.,

JWi 45. #

.u

....p, w

3.,Wfpr~a',

,A t

y: :; -

9 @. M - -"W/ mI'.7 u.

c. 'a a

SCIENCE APPLICATIONS. LA JOLLA. CALIFORNIA

.. ', ~.,.

~

ALBUQUEROUE. ANN ARBOR. ARLINGTON. ATLANTA. BOSTON. CHICAGO. HUNTSVILLE.i Irld. -

. 1 E

u

,3,

  • 4

. LOS ANGELES. McLEAN. PALO ALTO. SANTA BARBAR A. SUNNYVALE TUCSON u.r.v4g.g,:e;dp m

i J*:,..%,. :%',.d g,.,.

,A' Prospect Street. La Jolla. California 92037 <' '*w - 9.-+-e +$ z? ;$m.p.e4*?.* v

., v m - _ a. :

a,.%.ptp;rw, nww.u

.m

  • -t kept w

..,.n.

.g.#.e~,W.;-* W-- ~.

~s N

.*m.-

m,&;

Q p. w Ms-W 27., q jfdtt-tp r y,-<

.~., P.O. Box 2351.1200 v

n p. n.e. s. a& a e. ~ e

-.x - +

n.

r.

vs i

i

.,:- ( ; M -

1.s a n..~ v. wen.r:wn Ib,,s 4%em&%.. M. m..u.+ wam, ~~..a < s - t.,

t o

,v.

f - e. 2 - N
  • a v e m :~..+.6 e.4.m.y "-.
w. um.w mc.

c gr

  1. -+ c c::

vt.m&mem p :.4.m. n c,g:e@ h:,g.g;y,.m.g.m3 g,.w.9 c

' 3. g w. e -< ; m w...

-r sw y m ee,

fr.se-

~

8201150039 811204 1

c

-J'

' ~

PDR ADOCK 07001113 j

0 B

PDR M

,,m. auwe.a w u

O 7

CONTENTS Page O

PROJECT DESCRIPTION AND

SUMMARY

1 DETAILED RESULTS..........................

2 APPENDIX A............................

13

D

".)

D

's i

  • l-4

)

11

'O

~.

}

PROJECTDESCRIPTIONANb

SUMMARY

i I

O The purpose of Project No. 4 was to perform a criticality sa fety analysis of the storage of four foot by four foot waste boxes in a single planar array. The project consisted of three phases.

The objective of Phase 1 was to determine the U0 mass which would give a reactivity of 0.95 within 99 percent 2

D con fidence. Phase 2 was to evaluate the effect of different distributions of the mass of UO in the waste box. The third phase was to evaluate the reactivity 2

worth of the wooden sides of the waste boxes.

For the design basis geometry, which consisted of a sphere of U0 IU 2

3 the corner of four adjacent waste boxes with the box sides forming a cruciform in the sphere, the mass of UO2 which gave a reactivhy for the planar array of 0.95 with 99 percent confidence was 13.75 kg of 4 percent enriched UO2 perJox. Jhis 3

condition was obtained with an interstitial water density of 1.0 gm/cm,

N With a fixed mass of 13.75 by U02 per box, several configurations with the U02 contained in centrally located spheres with several radii were evaluated.

j None of the configurations were found to result in an array reactivity of greater than 0.95 with 99 percent confidence.

U The reac tivity worth of the wooden sides of the boxes was found to be

+4 percent, that is, replacing the wooden sides with a void woul d reduce the reactivity of the array by 4 percent.

9 i

e

l l

h

. DETAILED RESULTS l

l 3

Phase 1 The U(4)0 mixture specified for the Phase 1 analysis was for a mixture 2

with a U02 weight fraction of 0.526. Material densities and atomic densities of l

the mixture were as follows -

D Weight fraction U0

= 0.526 2

Weight fraction H 0

= 0.474 2

O Density o f mixture

= 1.91574 gm/cc Partial density of UO

= 1.00768 gm/cc 2

Partial density of H 0

= 0.90859 gm/cc 2

)

U-235 number density

= 9.10422x10-5 atoms /b.cm U-238 number densi ty

= 2.15741x10-3 a toms /b.cm 0 (in U0 ) number density = 4.49691x10-3 atoms /b.cm 2

3 The resonance absorption factor, o, for the resonance nuclide was determined as

p l

p (U-235) = 15613.4 o

p (U-238) = 658.88 o

Hansen-Roach cross sections were used for all calculations performed in this project. Criticality calculations were performed using the KEN 0 criticality code with combinatorial geometry.

\\)

(1) A simpl er program was written to calculate U0, mixture composition, and resonance parameters. A listing of the program, writteh in BASIC, is given in Appendix A.

9 2

3

6 Using the mixture compositions given above, the reactivity of a 56 kg water reflected sphere was calculated to be 1.0003 + 0.003.

The geometry of the design basis planar array is illustrated in 4

Figure 1.

The array was reflected top and bottom with 30 cm of water.

~

Four adjacent boxes form a sphere of U02 containing a wooden cruciform.

Calculating the mass of UO fra sphere of radius R eluded a closed form 2

solution but readily yielded to a numerical solution (2),

'O The following table gives the calculated radius as a function UO2 mass:

O UO Mass Radius 2

(kg)

(cm) i i

5 11.5623 O

10 14.3068 20 17.7671 40 22.1290 55 24.4974 l#

60 25.1896 80 27.6263 4

Calculations with several U0 masses were performed, both with an 2

interstitial void and an interstitial water density of 1.0 gm/cc.

Resul ts of these calculations are presented in Table 1 and plotted in Figure 2.

Listings of the input data for each of these cases are presented in Appendix B.

l2 I

i j

(2) The program, CALCR, written to calculate the radius, R for a given UO mass 2

is listed in Appendix A.

e 1

3

' 9

Os 9

Top View a

3/8 inch wood G

46 inches O

R A

AUO -

l

'x2

^)

-~

3 Side View

///12 inches water

////// / / / ////

/// // / / / / / / /

)

R

[

P--

(

N CUO !

L.

q-2:

\\

\\

N s

/// / //// // // / /

12 inches water

/// / //////// / /

Figure 1.

Waste Box Geometry.

4 3

w u

w e

w 0

0 0

0 W

Table 1.

Phase 1 Results Rad Interstitial Water k

a k + 3a Case No.

UO Mass UO (kg) 2(cm)ius Density (gm/cc) 2 P1A20 20 17.7671 0.

0.623 0.011 0.656 PlA40 40 22.1290 0.

0.801 0.014 0.844 P1A60 60 25,1896 6.

0.890 0.014 0.932 m

PIB10 10 14.3068 1.0 0.633 0.02 0.693 PlB20 20 17.7671 1.0 0.782 0.025 0.857

  • PIB40 40 22.1290 1.0 0.910 0.014 0.953 PIBS5 55 24.4974 1.0 0.937 0.007 0.958 PIB60 60 25.1896 1.0 0.962 1.041 PIB80 80 27.6263 1.0 0.969 0.023 1.041 l

l l

= -,-

0 i

8 0

7 0

O 6

g 1

0 s

5 t

l u

s e

R g

k I

l l j

e 2

s 0

T O

a 4

U h

P ssa M

2 e

r r

e u

t g

0 r

i aw e' 3 F

t l

a a w i

t l

i a t i s t r i e t t

s '

0

_[

n r 2

i e t

o n N

I B

A I

1 P

e e 0

s s I

a a 1

h h P P OO 0

0 8

6 4

2 0

l 0

0 0

0 a h ?. U 2 :a m

3 Phash 2 Given a four box unit mass of 55 kg, the mass constraint per box is 13.75 kg U(4)0 of the mixture co'mposition previously described. Next a series 2

I) of calculations with 13.75 kg U('4)0 were performed but with the mass distributed 2

in a sphere centered w'ithin'the box and by varying the mixture composition.

The mixture compositions considered are given in Table 2 along with the radius of a 13.75 kg U(4)02 + water sphere.

The results of the Phase 2 calculations are given in Table 3 and plotted in Figure 3.

The maximum reactivity would appear to be approximately 0.68 which would occur for a mixture weight fraction of UO equal to 0.48.

2 O

Phase 3 Most of the calculations performed in Phase 1 were repeated but with the wooden sides of the waste box replaced with a void (internal void).

The iO results are presented in Table 4 and Figure 4.

From the results, it is observed that repl acing the wooden sides with a void reduces the array reactivity nearly uni formly ( for all cases) by 0.04.

1

!)

I i

l 3

t 9

9 9

j.-... -. - _. - -

]

L Tabl e 2.

Phase 2 Mixture Compositions and 13.75 kg Sphere Radius d

o -235 R

Mixture #

WF 00 WF H O Fl ux N

N No p 235 p

2 2

23s (gm/cc) atom /b.cm atomfb.cm atom /b.cm (cm) 8 i

1

.526

.474 1.91574-9.10(-5) 2.16(-3) 4.50(-3) 15613 658 14.8239 a

~

1 2

.5

.5 1.83278 8.28(-5) 1.96(-3) 4.09(-3) 17294 729

'15.3006 i

ao

- 3

.4

.6 1.5711 5.68(-5) 1.34(-3) 2.80(-3) 25793 1088 17.3507 I

4

.3

.7 1.37481 3.73(-5) 8.83(-4) 1.84(-3) 39960 1686 19.9656 l

I e

i

u; 4:

w O

Q-k y'

w u

1

,t

';i

.i a

~

Ta bl e 3.

Phas,e 2 Results r

s s

s I

Case No.

WFUO2 Sphere stadius k

d

~

(cm)

P21

.526 14.8239

.624

.013 P22 15.3006

.673

.013 tu P23 4

17.3507

.652

.012 P24

.3 19.9656

.614

.008 l

t i

8 I

O' D

1.0 Mass of U(4)02 D

Fixed at 13.75 kg Sphere is centered in box 0.8 D

l 0.6 b

.e

'S

.3 U

2

" 0.4

_~

3 0.2 3

0 0

0.1 0.2 0.3 0.4 0.5 0.6 Weight Fraction U(4)02 j

Figure 3.

Phase II Results.

l l

l9 10

ie 4

'd 9

W V

V Table 4.

Phase 3 Results Radius Interstitial Water k

a k + 3a UO Mass UO2 Case No.

2(kg)

(cm)

Density (gm/CC)

P3A10 10 14.3068 0.

0.408 0.012 0.446 P3A20 20 17.7671 0.

0.606 0.017 0.657 P3A40 40 22.1290 0.

0.766 0.014 0.808 C

P3A60 60 25.1896 0.

0.839 0.012 0.877 s

P3B10 10 14.3068 1.0 0.604 0.02 0.665' P3B20 20 17.7671 1.0 0.726 0.018 0.783 P3840 40 22.1290 1.0 0.840 0.018 0.896 P3B60 60 25.1896 1.0 0.947 0.019 1.006 l

[

  • e L

'o 6'

t-G O

w c'

1.0 h

0.8

~

0.6 C

0.4 Y

0.2 O Phase 1A No interstitial water O Phase IB Interstitial water A Phase 3B Interstitial water V Phase 3A No interstitial water

}

0 I

I I

I' I

I i

1 0

10 20 30 4 0'.

50 60 70 80 Mass U0, kg Figure 4.

Phase III Results.

b 3

3 0

3 APPENDIX A

~ ~.

a e

13 o

t

':s Jr 00010 INPUT" ENTER WFUO2",W1 00020 IF Wi<=0 THEN STOP 00030 W2=1-W1 3

00040 R0=1/(W1/10.96+W2) 00050 R1=10.96*(R0-1)/9.96 00060 R2=R0-R1 00070 X1=9.9022029E-4*R1/10.96 00080 X2=2.3465099E-2*R1/10.96 00090 X3=4.891064E-2*R1/10.96 00100 X4=R2/.9982 00110 S=X1*10+X2*12 00120 S=S+21*.066742 *X4+3.7*.035552*X4 00130 Sl=S/X1 00140 S2=S/X2 00150 PRINT "WFUO2 = ";W1 00160 PRINT "WFH2O = ";W2 00170 PRINT "RHOMIX = ";R0 00180 PRINT "RHOUO2 = ";R1 00190 PRINT "RH0H2O = ";R2 00200 PRINT "N235

= ";X1 00210 PRINT "H233

= ";X2 00220 PRINT "N0

= ";X3 00230 PRINT "NH2O

= ";X4 00240 PRINT "SIGP235 = ";S1 00250 PRINT "SIGP238 = ";S2 00260 PRINT 00270 GOTO 10 00280 END 3

3 14

.9

\\

<b PROGRAM CALCR DATA RH0/1.00768/,PI/3.14159/,EPS/1E-6/

C READ MASS 1

TYPE 1000 1000 FORMAT (' ENTER MASS')

j9 ACCEPT *,XM VOLUME =XM*1000/RH0 R0=(3* VOLUME /4/PI)**0.33333 TYPE 1001,R0 10 CALL VFRAC(P,0,VF)

R=(3* VOLUME /4/PI/VF)**0.33333

(.

IF( ABS ((R-RO)/R0).LE.EPS) GOTO 100 R0=R TYPE 1001,R0 1001 FORMAT (F10.4)

GOTO 10 100 GOTO 1 9

STOP END SUBROUTINE VFRAC(R,Y)

S=.9525/R i

TYPE 101,S

"'~

PI=3.14159

.3 V=0 Z=0 N=100 DZ=SQRT( 1-2 *S*S )

DZ=0Z/N 00 50 I=1,N 21=(I-1)*DZ 4

Al = AREA ( Z1,S )

Z2=I*0Z A2 = AREA ( Z2,S )

V=V+0Z*(A1+A2+SQRT(Al*A2))/3 50 CONTINUE 3

Y=V*2 *3/4/P I i

101 FOR;1AT(2X',2F10.8) i RETURU END FUNCTION AREA (Z,S)

PI=3.14159 4

R=SQRT(1-Z*Z)

X=SQRT(R*R-S*S)

A REA =P I *R* R-4 * ( S

  • S +2 *S * ( X-S ) )

l AREA = AREA-4 *( P I *R*R/2 -X *SQR T(R*R-X *X )- R*R* ASIN( X /R ) )

RETURN END J

4

[

15

'9 l

ww i

.-- -.n.

ATTACHMENT TO MODULE 1 0*

~'

NSE-22-81 VERIFICATION OF WASTE 80X STORAGE FINAL REPORT In the third quarter of 1980, WMD contracted with Science Applications, Inc., to perform a criticality safety analysis for the storage of 4 foot by 4 foot by 4 foot waste boxes in an infinite planar array.

The results of this project were submitted to WMD as Report No. SAIOl380-613LJ entitled l

" Project No. 4 - Waste Box Storage Final Report".

4 The data in this report show that with suitable mass limits on j

the individual waste boxes, the infini te planar array of waste f

boxes will satisfy WMD's criticality safety requirement that j-Keff 5 0.90 for normal cases and Keff + 3o 1 0.97 for credible I

accident cases.

Specifically, the SAI report shows that if individual waste boxes are limited to no more than 13.75 Kg U0 2 (so that four such waste boxes contain no more than 55 Kg U0 )'

2 Keff + 3 o 0.96 4

1 and if the normal case waste box is limited to no more than half j

of the 13.75 Kg (to allow for " double batching" as a credible l

accident) j i

Keff < 0.90 n

4 l

As verification of the SAI results, calculations have been made with WMD's GEMER and GEKEN0 codes of similar cases and of extensions

]

to the SAI analysis.

In these calcula tions, geometry models identi-i cal to the SAI models were used.

Appendix A lists the cross-sections and material densities used and Appendix B gives the listing of typ-ical input data sets.

I I

1

TABLES 1-3 give the results of the.se verification calculations and are self-explanatory.

In summary, the GEMER/GEKEN0 results are in good agree' ment with the SAI results and further establish the safety of the infinite planar array of waste boxes.

The essential criticality safety requirements for the storage of waste boxes in compliance with this critica.lity safety analysis are that:

1)

The enrichment must be no greater than 4.00%.

2)

Each waste box must be limited to no more than 250 gm U-235 (6.06 Kg U) 3)

Waste boxes in the array must be stored in a single layer (that is, may not be stacked on top of each other).

4)

Arrays of waste boxes must be isolated by at least 30 feet from arrays of other fissile materials.

5)

Waste boxes may not be opened while in the storage array.

REVIEW PERFORMED BY M C-DATE 1/2 f [8"l REVIEW VERIFIED BY ML -

DATE //t1/Pl!

F

/

l l

I l

l 1

\\

l l

1 t

~~

I TABLE 1 - RESULTS FOR 13.75 KG UO.. SMEARED IN WASTE B0X 2

RADIUS /DIMEtiSION Keff + o GEMER GEKEN0 SAI KEN 0 14.8 cm 0.63854 + 0.00524 0.63673 1 0.00410 0.624 1 0.013 29.2 cm 0.21797 + 0.00222 0.22557 + 0.00233 Entire Box 0.22192 + 0.00173 0.22924 + 0.00219 I

TABLE 2 - RESULTS FOR 60 KG U0 IN 4 BOX SPHERE g

Keff + o CONTAINER MATERIAL GEMER GEKENO SAIKEN0 Wood 0.89258 + 0.00467 0.88522 + 0.00454 0.890 + 0.014 Air 0.85133 + 0.00399 0.84203 + 0.00522 0.839 + 0.012

  • Int H O = 0.00 2

TABLE 3 - RESULTS FOR 60.KG UO IN 4 B0X SPHERE WITH 2

INTERSPERSED WATER

  • 9 Keff i o I flT. H,30 (gm/cc")

.GEKEt10 SAI Kell 0 0.00 0.88522 1 0.00454 0.890 1 0.014 0.05 0.89688 1 0.00583 0.10 0.90119 + 0.00462 0.25 0.92037 1 0.00476 1.00 0.95066 1 0.00446 0.962 1 0.023 l

  • Container Material:

Wood 4

0

APPENDIX A - MATERI AL DENSITIES AND 11IXTURES A)

GEMER MATERIAL DENSITIES AND MIX URES 1)

Fuel (UO2 + 0.474 H O - Unsmeared) 2 Material Number Density

.( Atoms / ba rn-cm )

U-235 9.10422E-05 U-238 2.15741E-03 0

3.48557E-02 H

6.07176E-02 Smeared Fuel Densities are the above divided by f where f = Vol smeared 13.645 liters 2)

Wood * (From RA Container Analysis) (Table A-1, Page AI-3)

Material Number Density)

(Atoms / barn-cm H

2.1334E-02 C

1.1858E-02

~

0 8.5933E-03 h

3)

Water i

Material Number Density (Atoms / barn-cm)

H 6.6866E-02 0

3.3433E-02 t

-10 No wood cases use dens i ty x 10

i l

l e

APPEllDIX

- CONTI!IUED B)

GEKENO MATERIAL DENSITIES *AtID MIXTURES 1)

Fuel (U02 + 0.474 H 0 - Unsmeared) 2 Material Material Number Atom Density

( Atoms / barn-cm or gm/cc) l U-235

- 92512 9.10422E-05 U-238 92838 2.15741E-03 0

8100 4.49691E-03 HO 502 0.90859 2

Smeared fuel densities are the above divided by f where f = Vol smeared 13.645 liters t

2)

Wood (from RA Container Analysis - Table A-1, page AI-3)

Material Material Number Atom Density (Atoms / barn-cm)

H 1102 2.1334E-02 C

6100 1.1858E-02 0

8100 8.5933E-03 3)

Water l

Material

' Material Number Number Density i

(gm/cc)

HO 502 0.00 - 1.00 2

-10 tio wood cases use a tom denxi ty x 10 l

I l

O 3

APPEllDIX B - TY'PICAL GEMER AND GEKEll0 IflPUT DATA e

t 4

-z

,c.

w

. _.__, %s, a

I. GEMER INPUT FOR TABLE 1 3. _. _ _..

j 63 Entries i n lil li i l'K, SL151 DOX1/.8111 i

WASTE BOX ARPAY: l ':. 'S !'r ' ' O.

'n!! M I.".

I4.9? M Cli lti CENTER OF DOX

!,050050000

' 0 293 4 4 4 293 0 0 (102 + 0.4741120 2351 9.10422E-05 2381 2.15741f.-03 j

16 3.48557E-0?

I f,.0/176E-02 1

2 293 0 0 Illi II?Il 16

1. Dil000F-I n 1

1.00000E-If, l

3 293 0 0 WOOD 1

2.13140E-0, 12 I.10500E-0?

4 16 0.59330E-0; 2 293 0 0 1401FR RI.FiIC10R 16 3.34330E-0; 4

1 6.68660E-0?

! KEt10 GEOM 51 1 1 1 1 00 1

~

- 1. 0 - 1. 0 - 1. 11 - 1. f. ii. r. ii. c GPHERE I

14. 02' L I I.. ' n. 5 I

i CUBE

?

S3.4?

' !!. 4?

1 r.

  • 0. <:.

! CUBE T 59. 3 /2.

c.'_i 3 7 25 I r, ' n. t, j CORE BDY 0 59.172'; -59.17?5 So. '17 't

: o '7'S 50.';725 -59.3725 16*0.5 CUBOID 4 59.372r. 39.3725 59.7/?b -59.3725 90.0 -90.0 1G40.5 i Et1D GEON

! 14ASTE DOX: X - / I' LOT

!-0.0 0.0 90.0 r,0.0 it.0 0.0 n.0 *i.fi

)

'.0 0.0 0. ii 90 r,0 0. 0 0. 0 i 11EF AUL T S

  • YES l OK, i

]

UIIDERLINED ITElls ARE OriLY CHAllGES i

, Li l

e -

. :o, If.' GtKErl0 I?lPUT FOR TABLE 1 63 Entries in Ilfli tlK, SL IS I KI:0X 1/l.0 Irl K E M O 11 0.c.T E B O Y ORPov-1 7. ;' '. Mr Un.'. "00 D ic.

1/. R ? 7'1 Cli Irl CENTER OF BOX 2000.0 50 500 5 10 0 6 /s 9

r. I ! I I GI O 2010 0000000000 1 00

-1.0 -1.0 -1.0 -1.81 0. 0 0. 11 1

-92512 9.10/7 r.pr.

1 1

92838 2.157/ilE-03 1

C100

/s. / qG'11 E --0 2 i

1 502 0.90059 2

502 1.0000fE-Ir.

3 1102 2.173/nF-n2 i

3 G100 1.1050'E-fi" 3

0100 R. 593 31'I. til

/i Sr:2

1. 0 0 r;n i:0X TYPE I

' PilERE 1

I/i.823't. ".'.

i

. UBE 2

'.8. / 2 Sl:. I.':

I n ' O. '.

1 I

CUBE T

t.9. 3 7 ?'-

c.o. : /.":.

1r o.r CORE fjDY 0 59. 3 7..

- 59. ':/..r, c,9, 735

.r,0. 3 /?'_. 5 9. 3 / 25 - 59. 3 725 16*0.5 CUBOID li 59.3720

'.'). 3 / 2 5 ':.9. 3 7.";

59. : ? ?':. 9 0 r. - o r.. o 1 c = n. 5 r.

140STE DOX: X - 7 Pl o i 0.0 0.0 90.0 00.0 0.0 0.0 0.0 0.0

-1.0 1.0 0.0 0.0 90 f.0 0.0 0.0 END CASE i lK, (((f UtlDERLIflED ITEMS ARE OtiLY CHAllGES P

. - -. -..... - =

rII. GEfjER' INPUT FOR TABLE 2 "All5l'5 11225/01 1400: 60.0 KG U0?. RADilic.

?5.199C N r! !!

'l ROX. : INT 1l20 = 0.00.1400D

'0 500 5 0 0 0 0 0 293 6 /i 4 293 0 0 U02 + 0.47/l ll20

~

2351 9.10422E-05 2381.

2.15741E-03 16 3.48557E-0,7 1

6.07176E-0?

2 293 0 0 INI H2O

/

16 1.00000E-In 1

1.00000E 1f, 3 293 0 0 1400D 1

2.13340E.:02.

I2 I.I8500E02 16 8.59330E-0...

2 293 0 0 HATER REFl.ECTOR 16 3.34330E-0?

I G.G86GOE-02 KENO GEOM 61 1 1 1 1 0n1

-1.0 -1.0 -1.0

-1.0 0.0 0.f.-

DOX TYPE 1

GENERAL 1n0 n.0 0.0 n 0 0.0 0.0 IG'0.3 GENERAL 2 0.0 0.0 0.0 0.0 0.0 0.0 1650.5 CUBOID

? 117. 7925 0.9525 117. 712; 0.953F SR. 42 -58. / 2 1F.r0.5 1

CORE I:DY 2 117. 7'125 n.9525 117. 7925 0.9525 58. 42 -58. 42 1650.5 CUBOID 3 110.745 0.00 118.74; C.no 59.37?S -59.3725 1G*0.5 CUDOID 4 110.745 0.00 118.74S 0.00 90.0 -90.0 1G*0.5 2

MALE XZONE 0.9575. 117.7925 l

YZONE 0.95?G 117.79?;

l ZZONE

-58.4?

58.42 i

ZONE 1

1 1

XDI.0CK 0.9525. I17.7925 I

YULOCl:

0. 'h ? '.

117.791G l

ZDL OCI'.

-58./i?

50.49 BLOCI'.

I 1

1 liEDI A 1.

2 SURFACES 1

SECTOR -1 SECT 0rs 1

I Spiff.RF Rnlilll::. - P' 109G 1.00 XSO 1.00 YSO

1. tin 7r.0

-674.51595 CHI) GLUM WASTE DOX: X - 7 :'l O i 0.0

1. 0 '10. 0 f.o. o 1. 0 0. 11 0.0 0.0

-!.0 f.0 0.0 0.0 90 60 0.0 0.0 D EFnuLTS = YE S

. UNDERLINED ITEf15 ARE ONLY CitANGES 1-

ly, GEK'EH0 IllPUT FOR TABLE 2 f

UAllS i ' ' I I2?S7ff i 1

KNBA: C0.0 KG UD2. RADIllS

'25.1995 CM CEM tr DOX. : INT H2O = 0.00, WOOD 2000.0 50 500 S 16 G G 4 9 G 1'i 1 161 0 2010 0 0 0 0 0 0 0 0 0 0 100 i

1.0 -1.6 -1.0 -1.0 0.0 0.0 1

-92512 9.1042;r C5 I

92838 2.15741E-03 i

1 8100 4.49691E-03

/

l 1-500 0.90859 2

502 1.00000E-10 i

3 1102 2.133401202_.

3 G100 1.18581TLd12, 3

3100 8.59330L-03 4

50?

1.00116 DOX fYPE I

i GENERAL 1 0.0 0.0 0.0 n,0 0.0 0.0 1G'0.5 1

GEHERAL 2 0.0 n.0 0.0 0.0 0.0 0.0 1640.5 CUD 01D 2 117.7925 0.9525 117.79?c. 0.9t25 53.42 -58.42 1G*0.5 CORE DDY 2 11/.7925 0.9525 117.7925 0.9525 58.42 -58.42 16*0.5 i

CUBOID 3 110.745 0.00 118.745 0.00 5'1.37?S -59.3725 16*0.5 j

. CUB 01D 4 110./45 0.00 118.745 0.00 90.0 -90.0 16=0.5 2

MALE XZO!!E

.0.952%

II7.7925 4

l YZONE 0.'15?G 117.7925

/ ZONE

-58./s2 58.42 1

ZONE 1

1 1

XBLOCK 0.9525. 1I7.7925 YBLOCK 0. 95.? t.

117.7925 2 BLOCK

-58.42 58.42 BLOCK 1

1 1

l HEDIA 1

2 SURFACFS 1

SECTOR -1 SECTOR 1

I SPHERE RADIH'; = 25.1896 1.00 XSO 1.00 YSO t.0n 750

-G34.51595 3

6 l

WASTE DOX: X - 7 I'L u i i

0.0 1.0 90.0 60.0 1.0 0.0 0.0 0.0

-!.0 1.0 0.0 0.0 90 60 0.0 0.0 l

END ME!!O i

l 39 L IllES OK.

UttDERLIrlED ITEMS ARE Ot!LY CHAtlGES e

... - -. - -, _ _ -.. ~ _ _ -,, _, -, -., _,, _ _. - -,., _ _..,,

,-r___

.r e,-

.., ua _

...:-.a...- e ~...

-~

. - - ~

~: '

^ ^ - ~ -

V. GEKEll0 IllPUT FOR TABLE 3

'1 bil. l I.1 8 8 LIMS/H1 l

Kl480: L.tl. U KG UU,'. HOUlub

  • 2b.1896 CM CLN 4 BOX. :lNI H2O - 0.05, WOOD 2000.0 50 500 5 lb b 6 li961 1 1 1 6 1 0 2010 0 0 0 0 0 0 W O 0 l

1.00 l

-1.0-1.0-1.0-1.00.00.0 l

1

-92512 9.10/22E-05 1

I 928J8 2.157 /i l E - 03 1

- 8100 4. /191M 11. - O '1 1

502 0.90059 2

502

'2~3 5.

)

0.1 3

1102 l3340E-02 3

G100 1.18530E-02

'3 8100 8.59330E-03 4

502

1. 0 011 f.

DOX T Yf'E I

GENERAL I 0.0 0.0 0.0 0.0 0.0 0.0

!G50.5 l

GENERol.

2 0.0 0.0 0.0 0.0 0.0 0.0 1640.5 l

CUBOID 2 11/.7925 0.0525 117.792c. 0.9525 58.42 -5R.42 1G*0.5 l

CORE DilY 2 117.7925 0.9525 117.7925 0.9525 50.42 -58.42 16*0.5 l

CUBOID 3 113.745 0.00 113.745 0.00 59.3725 -59.3725 16*0.5 l

CUBOID 4 110.7/5 0.00 118.745'0.00 90.0 -90.0 1650.5 1

2 MOLE XZONE 0.9525. 117.7925

'YZONE 0.'1925. 117.79?;

ZZONE

- L'8. /12 58.42 Z0tlE 1

1 1

XULOCK

0. %'S. I17.7925 YBLOCE 0. '15 :".. 11/.?'125 ZDLOCK

-58.42 50.42 BLOCI' 1

1 1

MEDIA 1,

2 SURFACES 1

SEr' TOR - I SEiiOR 1

1 ST'HERE RADIUS = 25.139G 1.00 XSO 1.On YSO 1.00 750

-R34.51595 6

WOSTE I:0X: X - 7 l' Lor 0.0 1.0 30.0 G0.11 1.0 0.0 0.0 0.0 -!.0 1.0 0.0 0.0 90 GO 0.0 0.0 EtID KEllo

+3**

39 LINES OK, UNDERLIflED ITEMS ARE OllLY CHANGES e**

~

e

?

l

CRITICALITY SAFETY ANALYSIS - POWDER STORAGE AREAS ATTACHMENT TO MODULE 5

1.0 INTRODUCTION

AND

SUMMARY

.)

  • This report describes a criticality safety analysis made with the KENO Monte Carlo code which has been performed to supplement the previous analysis of the WMD storage areas for 5 gallon containers 'of UO powder.

These areas include the following

~

2 facilities:

- FMO Stacker Building

- FMO Mezzanine Warehouse (" Dry Powder Warehouse")

- Blender Warehouse

- FMOX Stacker Warehouse

- PTL Blender Area (DM-70 Vibromill)

In the previous criticality analyses of these areas (See Attachment I) safety has been demonstrated for 4.00% enrichments based upon the maximum credible moisture and hydrogen content for each individual container.

This limit is nominally 50,000 ppm

,h H O or its equivalent.

For the present analysis the safety limits of the powder storage areas are extended by demonstrating that a criticality accident is not credible regardless of the hydrogen content provided that the net weight of each container does not exceed 35 Kg.

2 Based upon these results and upon positive controls which assume compliance with, the 35 Kg net mass limit, the WMD UO2 p wder storage areas are critically safe as determined by the following contingency analysis:

Contingency I: A process upset or accident results in undetected moisture content in the powder exceeding 100 K ppm. (If not, the storage areas are safe based on the analyses in Attachment I).

e. -

a C

e

n-Contingency II:

The net weight of the containers holding the powder which 'has' undergone the contingency I accident is greater than 35 Kg and

~

is undetected prior to tran'sfer to the powder storage area.

(If not, the storage areas are safe by the results of the present analysis).

As in the previous analyses it is assumed that introduction of sufficient amounts of water to violate both the water equivalent limit and the net weight limit is incredible once the container enters the powder storage area. Experience has shown that this assumption is valid since the containers are stored at least 12 inches off of the floor and since the metal walls of the container provide a suitable barrier'against credible sources of water such as sprinklers, fire hoses, etc.

Since more than two accidents are required to result in a potentially unsafe condition, f[

the WMD UO powder storage areas are critically safe as per the Triple Contingency criteria in P/P 40-4.

l It should be noted that a primary reason for the present analysis was to improve the capability for demonstrating criticality safety of the powder storage areas.

In the previous analyses the demonstration of criticality safety depend' d upon measurements e

of the equivalent moisture content in the UO powder at various stages in the powder 2

j production operation. These measurements have been found to be difficult to perform consistently - to assure that all incoming containers meet the moderation criteria -

and on a timely basis - so that measurement results are received before the containers l

enter the powder storage areas.

By the present analysis, however, the moisture measurement controls can be replaced by container weighing < ontrols.

For example,

(

j container weighing stations can be placed at each entrance to the powder storage

.)

areas to assume both the consistent and the timely controls that are required for the area. A positive administrative control (such as measurement) is then not required for demonstrating dryness of the powder since this is sufficiently assured by the

-a-2.0 DISCUSSION OF PREVIOUS ANALYSES ggg

. Attachment I contains the previous " Moderation Control" analyses for the UO powder i

2 l

storage areas. For the purpose of the.present analysis, the following important points are abstracted from these analyses (and in some cases from other analyses in the NSE files):

2.1 UO Powder Characteristics and Five Gallon 'ontainers C

2 The past and present analyses of the powder storage areas depend heavily on the interplay between UO powder characteristics and the geometry provided by the 2

standard 5 gallon containers. With respect to the latter of these, Figure 1 shows the standard Model which has been assumed in analyses since 1975 and whic'h has been found by comparison with the real process containers to be conservative.

With the Figure 1 geometry model the standard method of analysis is to determine

( 3)

.a specific UO mixture and then compute the height of the mixture in the 2

container by the following relationships Volume = MASS U0 2 EUO2 Height = Volume (R.= inner radius of container)

UR' If there is no UO mass limit for the container it is assumed that Height = -35.0 c 2

3 l

l i

( -

, s,)

FIGURE.1:

STANDARD 5 CALLON CONTAINER GEOMETRY MODEL j

l

'd

?

l v

a 6 h

\\

i t

4 I

i r

f j

h

,i y

i 4

6 t

+

Dimensions j

Inner Diameter d 28.575 cm 1

Inner Height h 35.000 cm a

l Wall Thickness t

0.0528 cm t

Wall Material Carbon Steel i

Volume of can 22.446 liters s

t I

E I

i

,ry I

I

-S-UO and water mixturas are normally dstarmined by tha ralation: hips 2

1 T

pmix =

(p

= 10.96 gm/cc)

+

~

HO UO HO 2

2 2

l.00 gm/cc T

UO 2

pH O W

2 HO*#*

=

2

(-

H O)

  • P 2

UO2 When WH O (E Weight Fraction of H O) is given, 2

2 or pUO3 + oH,0 1

=

T 1.00 pUO2 When pUO r pH O is given.

2 2

Alternatively, and especially for dry UO2 systems, the UO -H O densities 2 2 are sometimes determined by 4.5 gm/cc p

=

UO 2 and oH O HO p

2 2

UO2

~ HO 2

The 4.5 gm/cc density.value is used because it is an established upper limit (see Attachment II) for the density of unpressed UO2 Powder.

l t' "

Table I gives a listing of typical UO -H O mixture specifications which 3 2 have been derived by these relationships and which have been determined j

to correspond to the maximum (water reflected) Keff for the container.

l

. l The " conditions" listed in this table correspond respectively to 1.

Maximum possible Keff of container with UO 2 l

2.

Maximum Keff for currently approved 35 Kg UO2 mass limit 3.

Maximum Keff for safe batch (at 4.0% enrichment) 4.

Maximum Keff for proposed 35 Kg container total mass limit l

^

5.

Maximum Keff for " moderation control" moisture limit of 50,000 ppm H O 2

One item which should be discussed is the " moderation control" limit of

'50,000 ppm H O which is the normal case mixture specification. This 2

limit is based on a maximum 10,000 ppm H O content (normally 4 5,000) 2 of dry UO2 powder and a 40,000 ppm H O equivalent of binder and pore-2 former (maximum of 4.0% by weight). The typical binder and poreformers used in WMD UO2 powder are Ammonium Oxalate (AO) and Ammonium Bicarbonate (ABC). As shown in Table II, those contain a slightly reduced density of hydrogen than does water and it is, therefore, conservative to assure the entire 10,000 ppm H O + 4.0% (A0 + ABC) to be 50,000 ppm H 0.

The 2

2 low carbon densities and the 4.0% maximum weight limit of A0 and ABC assure that carbon and nitrogen in the binder and poreformer vill actually reduce neuton multiplication factors relative to water.

2.2 Array Geometries l

Table III lists the geometry descriptions used in the previous analyses of the powder storage areas. These same geometry models have been used in the present analysis and only the UO -H O fuel mixtures and 2 2 container fuel heights have been changed.

TABLE I 4.0% ENRICllED UO POWDER CilARACTERISTICS IN 5 GALLON CONTAINER 2

MASS IN CONTAINER (KG)

P P

0 11 0 TOTAL WEIGilT' FRACTION CONDITION UO N 0_

U_07 2

2 2

gm/cc gm/cc 0F WATER 1.

OPTIMUM HODERATION 2.93 0.7342 65.77 16.48 82.25 0.200 UNLIMITED UO MASS 2

2.

35 KG UO MASS LIMIT +

1,56 0.8592 35.00 19.30 54.29 0.355 MAXIMUMftEFLECTEDKEFF

+

3.

25.7 KG UO2 MASS LIMIT 1.14 0.8971 25.70 20.10 45.80 0.439 (SAFE BATCH)

MAXIMUM REFLECTED KEFF t

I 4.

35 KG TOTAL MASS LIMIT 1.1887 0.8915 20.00 15.00 35.00 0.429 MAXIMUM REFLECTED KEFF (NOT FULL CAN) 5.

4.5 GM UO /Cc 4.50 0.2368 101.00 5.32 106.30 0.050 2

50 KPPM H O 2

+ VALUES ARE APPROXIMATE (+ 20%)

Y

TABLE II COMPARISON OF llYDROGEN AND CARBON CONTENTS IN AO, ABC, AND H O 2

MATERIAL CilD!ICAL FORMULA' DENSITY MOLECULAR WEIGilT FRACTION llYDROGEN WEIGilT FRACTION CARBON (GM/CC)

WEIGilT llYDROCEN DENSITY CARBON DENSITY (cM/CC)

(GM/CC)

A1210NIUM (NH )2 C 0 'II 0 1.50 142.1121 0.07093 0.1064 0.1690 0.2536 4

24 2 OXALATE (AO)

A1010NIUM Nil HCO 1.58 79.05575 0.06375 0.1007 0.1519 0.2401 4

3 BICARBONATE '

(ABC)

Ii' WATER.

11 0 1.00 18.01534 0.1119 0.1119 2

t k

l s

(

1 9

/

T d

r

_g_

(

/

--e.,

j TABLE III GEOMETRY DESCRIPTIO*1S FOR POWDER STORAGE AREAS J

5 w

l p,

4-ATTACHMENT AREA LOCATION OF GEOMETRY DESCRIPTION

/

IA FM0'STACKERWAREkOUSE FIGURES 1, 2 2

IB FMG MEZZANINE WAREHOUSE FIGURES 1, 2 4

IC BLENDER WAREHOUSE FIGURES 1, 2 AND NOTES i

ID

.FMOX STACKER AND BLENDER FIGURES 1, 2A, 2B, 3 WAREHOUSE h

Cy '

IE PTL BLENDER AREA FIGURES 1, 2, 4, 6, 7 i

k

+

4 1

s I

k s

s l

<\\

f.,f d

l l m.,.

s I

j e

+

. - -.. - ~.

As shown in Table IV, the maximum array Keffs for all these analyses

.fs-occur at different int'erspersed water densities (between containers and equipment). The only types of arrays in which an interspersed l

water density of 0.00 (gm/cc) can be expected to result in a maximum Keff are those in which the UO -H O mixture'is optimally moderated 2 2 (i.e. w 0.20).

g e

O 4

l 4

i I

i i

i 4

i J

,Ms Ia 4

i TABLE IV MAXIMUM KEFFS FOR " MODERATION CONTROL" POWDER STORACE ARRAYS -

STORACE AREA INTERSPERSED KEFF +3a H90 (GM/CC)

FM0 STACKER WAREHOUSE 0.025 0.940 FMO MEZZANINE WARE!!OUSE 0.650 0.935 FMOX STACKER AND BLENDER WARD 10USE 0.025 0.893 PTL BLENDER AREA 0.100 0.964 e

4 6.>

e 1

  • 12-g 3.0 DISCUSSION OF PRESENT ANALYSIS

,f*.

In the present analysis, KENO Monte _Qarlo, calculations were made for the same arraygeometriesreferencedinTableIIIandtheindividual5gakloncontainer i

except that the total UO2 F water mass in the, individual containers was limited to 35 Kg.

This was achieved by adjusting the height of the mixture in the

]

container as follows:

First, a given UO2 mass, k O, was chosen. The total H O mass was then 2

2 "H O 35 Kg - M

=

UO 2

2 The ratio of M

!"H O is the same as the ratio of the densities pUO I UO 2

2 2

pH 0 in the mixture, and since d

10 b + 1.f 1.00 (Assuming no voids)

=

(

"H O)

=

p0 2

+

2 1.00 10 96 k

"UO2 I J

i pil 0 1.00 pU0

=

2 2

10.96 Once the densities are computed, the total volume in the can is determined by 2

Volume

=

pUO2

~

j')

0 t All these systems were fully reflected by water and/or concrete as appropriate.

This part will not be further discussed in this report.

p()

and the height of the mixture in the container is given by

~

Volume Height =

nrZ Table V shows the typical fuel-water mixtures and heights calculated by these formulas. Appendix A gives the corresponding KENO Hansen

~

Roach cross section sets.

It is noted that this approach in which minimum fuel mixture heights are computed is conservative insofar as system reactivities are concerned.

This is true because if the fuel-water mixture occupies a greater height in the container, the mixture densities will be reduced and correspondingly the B M22 factor will increase.

(K=

,gg remains essentially unchanged when the mixture densities are uniformly I

decrease'd.)

One additional change that has been made in the present analysis is that,in several of the calculations,the KEN 04 Generalized Geometry option was used to provide a more accurate model of arrays of 5 gallon containers on carbon steel (roller) conveyors.

The modelling for this is discussed in Appendix B.

~

-S f %m/

i../

TABLE V FUEL-WATER MIXTURES FOR 35 KG TOTAL CONTAINER WEIGHT ANALYSIS D

'P

) HEIGHT OF MI M RE IN UO2 2

2-2 CONTAINER (CM) 0 UO H0 35 0

10.96 0.0000 4.98 30 5

3.877 0.6462 12.06 27 8

2.580 0.7646 16.32 25 10 2.036 0.3143 19.15 23 12

,1.631 0.8512 21.98 20 15 1.189 0.8915 26.24

]

17 18 0.8695 0.9207 30.49 I

i e

6 4

! T)

I

_.7

- + - - -

=

wr

)

a i

4.0 RESULTS OF PRESENT ANALYSIS

/

4.1 Most Reactive Fuel-Water Mixture for. Individual 5-Gallon Container Using K=, M and A data for 4.0% enrichments from ARH-600, calculations have been made to determine the most reac,tive fuel-water mixture for an individual 5-gallon container. These results are shown in Table VI.

As can be seen, the most reactive UO -H O mixture occurs for total UO2 2 2 l

masses in the range of 20-25 kg UO and 15-10 kg H 0.

2 2

4 4.2 Dry Powder Warehouse Analysis i

Table VII gives the KENO results for the Dry Powder Warehouse.

Using the regular geometry model described in Attachment IB (Figures 1 and 2),-

it can be seen that the system reactivity peaks at about the 20 Kg UO 15 Kg H O UO water mixture but that the system Kefg + 30 of 1.005 (at 2

2 an interspersed water density of 0.025 gm/cc) is greater than the allowed us JEF O.97 value for safety demonstration.

To correct this, the calculation in Part II of Table VII was performed using the generalized geometry model discussed in Appendix B.

The geometrical array in this model is essentially the same as the one in the Regular Geometry Model except that Generali=ed Geometry model includes cylindrical carbon, steel rollers at the bottom simulating the rollers in the Dry Powder Warehouse conveyors. These rollers were modelled conservatively in that 1.

The model contained fewer rollers than were actually present 2.

The model contained less metal than was actually present.

i

( ~,.

e r - - -

y

. ~,.

,-m e

TABLE VI:

K CALCULATIONS FOR A SINGLE FIVE GALLON CONTAINER FUEL +

~

~~

M M

MIXTURE WATER 2

UO HO HEIGIIT M

REFLECTED (Kgf (Kh)

(CM)

K=+

(CM )

)g3g g

2 EFF l

35 0

4.98

<1 30 5

12.06 1.36 28.5 6.90 0.760 4

27 8

16.32 1.39 28.5 6.45 0.812 25 10 19.15 1.39 28.5 6.25 0.832 23 12 21.98 1.368 28.5 6.10 0.836 20 15 26.24 1.32 28.5 6.00 0.829 17 18 30.49 1.24 29.0 5.90 C.789 4k)

( -/

J

+ See Table V for heights and densities 4

i I.

o i (.)

i t

9

, ~ -, ---

_m._.__=.___m_

.g4-4-

]*it)ttf C

2. SldD 8TFl'20Xi N tb 'li O f.t*016VOYOY

.,:n j

J l

1:; 4

/,' 4l//.

.I r

W

) h.~ ll g'

, //

i, j:e,

e i !,i

! /-

i 3

i l' 18 8 ge / i i4-I 1

g.f/8 I

e

)

t,e 1,

e l*

g*l:*

s l:

e o,

s.

,r e 1*

s' e

4

.I s ',i #

e 4

I e

s

...I..

}

1 C.o T2

[ //2V7f

+,

'l

,a J e.*.3 8

1 l.

e 3 i.o

?

i e

i i

s

.l 9 e t CL h'

L r

i I cra e

. Q@'

H[ ^

I i

o.o u

=/ !(8 J e4* I a

k 4

0. 6.4 1

{....

e, r

.aj,- pyy.mnsy k

i t

i i

5 j

I' i

f */ 3 ~~~}e l

1

(-

i 1

~~

m As can be seen by the result of Part II in 'lable VII, the carbon steel conveyors and the spacing between adjacent rows of cans are " worth" a decrease in K

' of at, least 4.63%.

Furthermore, since the Part II gg calculation resulted in a K,gg + 30 of 0.958 - which is less than 0.97 - and since it was made for the most reactive fuel-water-interspersed water con-figuration, the Dry Powder Warehouse is (demonstrated) critically safe.

As noted in Part III, the calculations in Parts I and II did not include water reflection on the top of the array. When this is done as shown in Part III, no appreciable increase-in array reactivity results (K gg = 0.959) e I

and the reactivity worth of the carbon steel rollers is slightly greater.

4.3 FMOX STACKER - BLENDER WAREHOUSE In the previous calculations it has been demonstrated that the most reactive fuel mixture with the 35 Kg total mass constraint corresponds to the 20 Kg UO, 15 Kg H O system. This fact was used in the analysis for the FMOX Stacker-2 2

Blender Warehouse and resulted in the calculated results in Table VIII.

{

As shown, the FMOX Stacker array meets the K,gg + 30 < 0.97 criteria and is critically safe.

The Blender Warehouse presents a problem however in that the maximum K,gg + 3a is calculated to be 1.007.

Part of the explanatio'n for this is that the Blender Warehouse Model was for convenience taken to be extremely conservative. As shown in Figure 3, this model is more reactive than the Dry Powder Warehouse because of the horizontal row'of containers occurring af ter the vertical row of 4 containers.

4 Since the can array in the Blender Warehouse is on the same type of conveyors

(,

as in the Dry Powder Warehouse, the Blender Warehouse analysis can be adjusted

{'

to correct for the adjacent can spacing and carbon steel conveyor worth.

TABLE VII:

K CALCULATIONS FOR DRY POWDER WAREHOUSE EFF I.

  • REGULAR GEOMETRY MODEL (CARBON STEEL CONVEYORS MODELLED AS SLABS) 23 KG UO 12 Kg H O 20 KG UO, 15 KG H O 17KG UO, 18 Kg H.

3 2

3 2

2 INTERSPERSED FUEL MIXTURE FUEL MIXTURE FUEL MIXTURE i

WATER DENSITY (HEIGliT - 21.98 cm)

(HEIGHT = 26.24 cm)

(HEIGHT = 30.50 cc GM/CC K

a EFF g+3a K

0 EFF kFF bFF '

D 0.0 0.893 0.005 0.907 0.911 O.005 0.927 0.025 0.981 0.004 0.994 0.992 0.004 1.005 0.968 0.003.~0.975 0.05 0.986 0.004 0.999 0.988 0.005 1.003 0.963 0.003 0.972.

0.10 0.967 0.004 0.981 0.979 0.004 0.990 0.956 0.005 0.97C:

0.25 0.972 0.004 0.985 0.972 0.005 0.987 0.961 0.003 0.972 0.50 0.966 0.004 0.978 0.964 0.004 0.977 0.955 0.004 0.967.

II. GENERALIZED GEOMETRY MODEL+ (WITH CARBON STEEL COINEYORS)

[

20 Kg UO, 15 Kg H O Fuel Mixture 2

2 (Height = 26.24 cm)

Interspersed Water Density 0.025 gm/cc 2.

f,f@

Kegg i o 0.947 + 0.004 j

Keff + 3a 0.958 i

Carbon Steel Conveyor Worth 1.005 - 0.958 X 100%

= 4.63 %

1.005 4

III: REGULAR AND GENERALIZED GEOMETRY MODELS WITH 1 IICH WATER REFLECTOR ON ROOF 20 KG UO ' l$ KG H O (HEIGHT = 26.24 cm) 2 2

ItfrERSPERSED WATER DENSITY REGULAR GEOMETRY MODEL GENERALIZED GEOMETRY MO, DEL GM/CC K

c K

+ 3a K

c KEFF + 3" EFF 0.00 0.970 O.004 0.982 i

0.025 1.001 0.004 1.014 0.948 0.004 0.959 0.050 0.987 0.004 0.999 Carbon Steel Convey Worth 1.014 - 0.959 X 100s = 5.42%

1.014

  • No water on roof

+ Note the comments in Appendix B k

i f 5)

I

~ '

This is shown in Parts III and IV of Table VIII in which first the ' reactivity worth of the Blender is determined and then the conveyor reactivity, worth is taken into account. As shown in Part III the blender adds 1.41% to the computed K an'd from Table VII the conveyors reduce the can array reactivity gg by 4.63%.

Factoring these effects results in a system reactivity (K

+30) of 0.960 which is critically safe by the 0.97 criteria.

All' additional feature of the analysis for the FMOX Stacker Warehouse is the result shown in Part V of Table VIII.

This calculation is the same as the first entry in Part I except that the total 35 Kg mass was " smeared" throughout the entire 5 gallon container.

The fuel to water ratio remained 20/15. With this smeared fuel water mixture the Table VIII results indicate the expected fact that the K decreases. The amount of decrease in this eff case is 0.954 - 0.934 X 100% = 2.1%

0.954 4.4 PTL BLENDER AREA Table IX shows the results of 35 Kg total container weight control for the PTL Blender area. The maximum Keff + 3a is 0.907 < 0.97 and occurs for the case of full water flooding in the area (i.e. an interspersed water density of 1.00 gm/cc).

v.a h

b s

_gi.

  • TABLE VIII:

KEFF CALCULATIONS FOR FMOX STACKER - BLENDER WAREHOUSE I.

FMOX STACKER WAREllOUSE (M

/M

= 20/15). (Fuel Height = 26.24 cm) i UO HO j

2 1

INTERSPERSED q

WATER DEllSITY GM/CC K

o Kgp + 30 g7 0.000 0.954 0.004 0.965 0.025 0.912 0.004 0.926 0.050 Q.884 0.005 0.897 II. BLENDER WAREHOUSE (M

/M

= 20/15)

(Fuel Height = 26.24 cm)

UO HO 2

INTERSPERSED WATER DENSITY GM/CC K

0 KEFF + 3a EFF 4

0.000 0.975 0.004 0.988 h

0.025 0.993 0.005 1.007 O

O.100 0.954 0.005 0.970 III. BLENDER WAREllOUSE CO!NEYOR ARPAY (WIT!!OUT BLENDER)

M

!MII 0 = 20/15 UO2 2

Interspersed H O 2

0.025 gm/cc

=

Fuel lieight = 26.24 cm K gg + o = 0.978 +;0.005 K,gg f,3a = 0.993 IV. BLENDER WORT!!

(Fron II and III above) 0.993 - 1.007 X 100% = - 1.41%

0.993 Conveyor Worth +

4.63%

K,gg + 30 for blender warehouse 0.993 X (1-0.0463) = 0.947 l

conveyor array corrected for conveyors

'l Koff + 30 for blender warehouse 0.947 X (1+0.0141) = 0.960 i

corrected for conveyors and with blender

(.>

l

+ From Table VII I

TABLE VIII: K CAICULATIONS FOR FMOX STACKER - BLENDER WAREHOUSE (CONTINUED)

EFF V.

FMOX STACKER WAREHOUSE '(MUO HO = 20/15) 2 Fuel Height = 35 cm (Full can)

Interspersed H O = 0.00 gm/cc Keff 0 = 0.921 + 0.005, Keff + 3a = 0.934

+

1 f

r 1

r l

I I

i i

CQ e

I

.I '

I i

1 j

i i

a R

1 i

n, s

l a

h

  • _-,,, +

e 9

g 9

~s

.o 4

9

)

o 1l

'l' }' j' g s

~

' 'q

(;-l>-y. ~

(

g~

~

7 p(

I

[f.,l. >,

.J,.( A 4 e). -

r.

u e

'..<',. ' -) - )

4/

>l +

t,~).

m 3

9

. I

.,/

U i.<

  • ~

fj

.f.

I u

g <,.>' ? &y ; (,>.,.

.O7',M,(

h I

y.s

/

w w

u.

1

?

() -

} -).

..R

'~, ' 'j t

_}

(

l f

~ 6 <

_.'..,s l

i

[w}

~

l

(.

(Y ~

e

.n

(.

0 u

.c s

. =~.~~1,:n.. /,. P ' ',

' ~ ~,*=~.e T

,1

( );-

1

[/4si'V(

- QC[f.M c

[

i c ;

.t

,s,.,,e ~, d h5

~_

r 3,/~5, rs i

)

_..J l

.M,.

'sl_s-

, x.

'( 3

~ ;.

.a

. ) 7y u

=

.s l

1

(-

l l(.

I )k =?>Yh?f' ' 'f) ~'

t,~

C' f._ ) y. -

,,,_ l( ~

i

?

g

~q n9,,1p d

u/- =

.. L.

_ r.

e y

C3Eh]?'Oj.m 3_..-

C ti D

CI

i i

' TABLE IX:

K - CAICULATIONS FOR PTL BLENDER AREA EFF M

/MH

= 20/15 in 5 gallon containers UO H.O 2

4 200 K ppm H O in slab' blenders (3/8" carbon steel walls) 500 K ppm H O in vibromill 2

INTERSPERSED WATER DENSITY GM/CC K

a K

+ 3a EFF EFF 0.20 0.881 0.004 0.894 0.75 0.894 0.004 0.907 1.00 0.995 0.004 0.907 Ea e.

l (f.i

~2b-d 5.'O' CONCLUSION f

In conclusion, the following facts have been demonstrated by this analysis 5.1 All of the powder storage areas are critic 631y safe provided that the total weight of UO and water in each 5 gallon container does not exceed 35 Kg.

2 1

5.2 The most reactive configuration for these types of systems corresponds to a 20 Kg UO2,15 Kg H O mixture in each 5 gallon container with the powder 2

and water at the maximum credible densities.

5.3 Where present, the carbon steel conveyor systems and the spacings between I

adjacent rows of containers result in a decrease of system K s by more than eff 4.631.

In order to implement the 35 Kg Mass Control which this analysis has shown to result in criticality safe systems, it is necessary that 1.

All 5 gallon containers be metal (carbon steel); plastic containers are not allowed, and

)

2.

Calibrated scales must be installed at each entrance to the powder storage areas and each point within the area where containers are loaded with UO 2

powder.

Every container must be weighted prior to entering the storage arrays and cans excedding the 35 Kg UO -H O limit must not be allowed in the area.

2 2 i

ANALYSIS PERFORMED BY H. C.

Hsu 8/11/78 ANALYSIS REVIEWED BY M@

Tl3ff 7F e

=

4 8

4 1.~

APPEtIDIX A*.

llAtlSEtt ROACII CROSS SECTIOtl SETS e

,..s 0

1 r;

o

_,a

-+a aeu d-->-

2

.1_

4 4a

_.4 m__a-_

L.m.4

_4_

_,.u___,,#----

.,.--*+,..-.+_4

~-

d,,

/

f

.a i

TABLE A LISTS THE IRNSEN ROACH CROSS SECTION SETS WHICH HAVE BEEN USED IN THIS ANALYSIS.

THESE CROSS SECTION' SETS HAVE BEEN INDEPENDENTLY VERIFIED TO BE THE CORRECT ONES FOR THIS ANALYSIS.

t I

1

)

h i

I I

l 4

(U@

I i

2 i

1

( ~3 i fJ 4

e 4

t

---..--w.,.

r

.,,--y.--.,,----.-,-,

y,,-.-

y

---y y

-,-.-y--------,,

=. -... -.

- ~. - - -

- TABLE A1: HANSEN ROACH CROSS SECTION SETS FOR 35 KG MET CO!TIAINER WEIGHT ANALYSIS WATEI OXYGEN (MATEI MIXTURE SPECIFICATION U-235 U-238 (MATERIAL 8100) 502) l MASS UO MASS H O MATERIAL DE!!SITY MATERIAL DENSITY DENSITY

    • ATOP '

2 (KG)

(KG)

NO.

(A'IDMS/ BARN-CM)

NO.

(A'IOft/ BARN-CM)

(A'ICMS/ BARN-CM)

DENS) 27 8

-92510 2.3314E-04 92827 5.5276E-03 1.1516E-02 0.764 25 10

-92511 1.8396E-04 92830 4.3614E-03 9.0863E-03 0.814 23 12

-92511 1.4740E-04 92833 3.4947E-03 7.2806E-03 0.8 51 8

20 15

-92512 1.0740E-04 92836 2.5464E-03 5.3049E-03 0.891 '

4 17 18

-92512 7.8561E-04 92840 1.8626E-03 3.8804E-03 0.92C N

9 i

1 l

i i

9 4

k 7

g

)

i

@d m

w w

APPENDIX B: GENERALIZED GECMETRY 140 DEL FOR DRY POWDER WARElIOUSE COINEYOR ARRAYS Gk m..

C

(@.

FIGURE B SHOWS A SCIIEMATIC 'OF THE GENERALIZED GECMETRY MODEL WHICH HAS BEEN USED FOR THE DRY POWDER STORAGE WARE!!OUSE ANALYSIS. THE GEOMETRY INPUT FOR THIS MODEL IS LISTED IN TABLE B.

ATTENTION IS CALLED TO THE ERROR IN THE GECMETRY INPUT ON THE LAST PAGE OF THE INPUT LISTING. THIS ERROR !!AS BEEN DETEPMINED TO BE CONSERVATIVE (I.E. RESULTED IN AN INCREASE IN THE SYSTEM K

) SINCE IT RESULTED IN REMOVING ONE OF THE CARBCN STEEL ROLLERS FROM EFF THE SYSTEM.

(9 O

L L, -

l l

I r

t'iyuro.B 5-yallon can array-- Dry to. uter Marchoust' i

.f=0 f

/

(As g

f

\\

J=0 J=0 s

1 1

(%

i-

~

M

>d Y]

Q i

J=0 4

i Figure 2. Dr/ Powder Warehouse can Array--Generalized Geometry.

o J=0 l

O A

O N

O J=0 i

J=0 O

i J=0 1

P i

O00O000000Ooooo l

D 9

l t

I 5 A

CA R 0 i M A GE L I 5T IN G 0F TH E INPU C0LUMN NUM 0ER 11111111112223222222333333333364444444445555555555666666666e 1234567890123456789012345678901234567890123456789012345678901234567 35 KG (AN ARRAY (UO2/H20:20/15)WTH CONVEYOR, H2O CN ROOF, INT H20=0.0

.)

60.0 50 500 3 16 6 6 6 9 10 1; 1 -1 6 1 0 006 8*0

-1.0 -1.0 -1.0 -1.0 0.0 0.0 1

-92512 1.07401E-04 1

92836 2.5464E-03 1

8100 5.30493E-03 1

502 0.89154 2

100 1.0000 3

100 1.0000 4

502 0.025 5

300 1.0000 6

502 1.0000 BOX TYPE 1

GErlERAL 1

6*0.0 16*0.5 GErlERAL 2

6-0.0 16*0.5

' GENERAL 3

6*0.0 16*0.5 GE'lER AL 4

6*0 0 16*0.5 CUBO!C 4

38.945

-18.415 147.475 C.0 37.50 -2.40 16*0.5 CORE BCY 0

38.945 -18.415 147.475 0.0 37.50 -2.40 16ao.5 CUBOID 4

38.945 -18.415 147.475 0.0 495.0 -35.4 16*0.5 CUBOID 2

38.945 -18.4l5 147.475 0.0 495.058 -35.4 16*0.5 CUBOIC 6

38.945 -18.415 147.475 0.0 526.0 -35.4 16*0.5 CUBOID 5

33.945 -18.415 147.475 0.0 526.0 -76.0 16*0.5 2

XZONESCY

-18.415

.38 945

/[)

YZONEBCY 0.0

.114.72

,147.475 f'/T ZZONESCY

-2.38

,2.38

,2.43

,28.68

.37.43 37.48 20flE 1

1 1

XBLOCKODY

-18.415

,18.415

,38.945 YBLOCKODY 0.0

,28 68

.57.36

,86.04

,114.72 20 LOCK 80Y

-2,38

,2,38 BLOCK 1

1 1

MEDIA 4,

3, 4,

3, 4,

3, 4,

3, 4

SUPFACES 1,

2, 3,

4, 5,

6, 7,

8 SECTCR

-1 0

0 0

0 0

0 0

SECTOR 1

-1 0

0 0

0 0

0 SECTCR 0

0 -1 0

0 0

0 0

SECTCR 0

0 1 -1 0

0 0

0 SECTCR 0

0 0

0 -1 0

0 0

SECTCR 0

0 0

0

+1

-1 0

0 SECTCR 0

0 0

0 0

0 -1 0

SECTCR 0

0 0

0 0

0

+1

-1 SECTOR 0

1 0

1 0 +1 0

+1 BLOCK 2

1 1

MEDIA 4

SLOCK 1

2 1

MEDIA 4,

3 4,

3, 4

3, 4,

3, 4

SURFACES 9.

10, 11 12, 13.

14 15, 16 SECTOP -1 0

0 0

0 0

0 o

(

SECTOR 1

-1 0

0 0

0 0

7

o -- - -

. o a,, n u u e r n e en e u r o

C 0 L U 14 N N UM 8ER 111111111122222222223333333333c444446444555555555566666666667777775

,1,2345,67890123456789012345678901234567890123456789012345678901234567890123456

(

SECTOR 0

0 -1 0

0 0

0 0

SECTOR 0

0 +1 -1 0

0 0

0 SECTOR 0

0 0

0 -1 0

0 0

SECTOR 0

0 0

0 +1 -1 0

~0 SECTCR 0

0 0

0 0

0 -1 0

SECTOR 0

0 0

0 0

0 +1 -1 SECTOR 0 +1 0 +1 0 +1 0 +1 BLOCK 2

2 1

MEDIA 4

BLOCK 1

3 1

ME0!A 4,

3, 4,

3, 4,

3, 4,

3, 3,

'4 SURFACES 15, 16, 17, 18, 19, 20, 21, 22, 24 SECTOR -1 0

0 0

0 0

0 0

0 SECTOR +1 -1 0

0 0

0 0

0 0

SECTOR 0

0 -1 0

0 0

0 0

0 SECTOR 0

0 +1 -1 0

0 0

0 0

SECTOR 0

0 0

0 -1 0

0 0

0 SECTCR 0

0 0

0 +1 -1 0

0 0

SECTCR 0

0 0

0 0

0 -1 0

0 SECTCR 0

0'O O

O O +1 -1 0

SECTCR 0

0 0

0 0

0 0

0 -1 SECTOR 0 +1 0 +1 0 +1 0 +1

+1 BLOCK 2

3 1

MEDIA 4

BLOCK 1

4 1

MEDIA 4,

3, 4,

3, 4,

3, 4,

3, 4

e SURFACES 23, 24, 25, 26, 27, 28, 29, 30 s SECTOR -1 0

0 0

0 0

0 0

SECTOR +1 -1 0

0 0

0 0

0 SECTCR 0

0 -1 0

0 0

0 0

SECTOR 0

0 +1 -1 0

0 0

0 SECTOR 0

0 0

0 -1 0

0 0

SECTCR 0

0 0

0 +1 -1 0

0 SECTCR 0

0 0

0 0

0 -1 0

SECTOR 0

0 0

0 0

0 +1 -1 SECTOR 0 +1 0 +1 O +1 0 +1 BLOCK 2

4 1

MEDIA 4

ZONE 1

1 2

XOLCCKROY

-18.415 18.415

,38.945 YBLOCKODY 0.0

,114.72 ZBLOCKBDY 2.38

,2.43 BLOCX 1

1 1

MEDIA 2,

2, 2,

2, 4

SURFACES 31, 32, 33, 34 SECTCR -1 0

0 0

SECTCR 0 -1 0

0 l

SECTCR 0

0 -1 0

SECTOR 0

0 0 -1 SECTCR +1

+1

+1

+1

., BLOCK 2

1 1

h b

~ _.,, _ _

A CARD IMAGE L1ST ING 0F THE

!NPUT DAT C.0 L U M N NUM 8ER 111111111122222222223333333333444444444455555555556666666666777777777' f9[)345678901234567890123456789012345678901234567890123456789 0123456789012345678' MEDIA 4

ZONE 1

1 3

XBLOCKBDY

-18.415

,18.415 38.945 YBLOCK80Y 0.0

,114.72 ZBLOCKBDY 2.43

,28.68 BLOCK 1

1 1

MEDIA 1,

2, 1,

2, 1,

2, 1,

2, 4

SURFACES 31, 35, 32, 36, 33, 37, 34, 38 SECTOR 0 -1 0

0 0

0 0

0 SECTOR -1

+1 0

0 0

0 0

0 SECTOR 0

0 0 -1 0

0 0

0 SECTCR 0

0 -1

+1 0

0 0

0 SECTOR 0

0 0

0 0 -1 0

0 SECTCR 0

0 0

0 -1

+1~

0 0

SECTOR 0

0 0

0 0

0 0 -1 SECTOR 0

0 0

0 C

0 -1

+1 SECTOR +1 0 +1 0 +1 0 +1 0

BLOCK 2

1 1

MEDIA 4

ZONE 1

1 4

XSLOCKBDY

-18.415

.18.415

.38.945 YDLOCK80Y 0.0

,114.72 ZBLOCKBDY 28.68 37.43

% 0CK 1

1 1

f'TEDIA

1000, 2,
1000, 2,
1000, 2,
1000, 2,

4

' SURFACES 31, 35, 32, 36, 33, 37, 34, 38 SECTOR 0 -1 0

0 0

0 0

0 SECTOR -1

+1 0

0 0

0 0

0 SECTOR 0

0 0 -1 0

0 0

0 SECTOR 0

0 -1

+1 0

0 0

0 SECTOR 0

0 0

0 0 -1 0

0 SECTOR 0

0 0

0 -1

+1 0

6 SECTOR 0

0 0

0 0

0 0 -1 SECTOR 0

0 0

0 0

0 -1

+1 SECTOR

+1 0 +1 0 +1 0

+1 0

BLOCK 2

1 1

MEDIA 4

ZONE 1

1 5

X8 LOCK 0DY

-18.415

,18.415

.38.945 YBLOCKODY 0.0

,114.72 ZBLOCKBDY 37.43

,37.48 BLOCK 1

1 1

MEDIA 2,

2, 2,

2, 4

SURFACES 31, 32, 33, 34 SECTCR -1 0

0 0

SECTOR 0 -1 0

0 SECTOR 0

0 -1 0

SECTOR 0

0 0 -1

( TECTOR 1

+1

+1

+1

-OLOCK 2

1 1

{JMEDIA 4

A CA RD

!MAGL L [ST I NG 0F THt iN F U i u

C0LUMN NUM BER 111111111122222222223333333333444444444455555555556666666666777777 123456789012345678901234567890123456789012345678901234567890123456789012345

.f ZONE 1

7.

1 XBLOCKODY

-18.415

.38.945 YBLOCKBDY 114.72

.147.475 ZBLOCKBOY

-2.38

.2.38 BLOCK 1

1 1

MEDIA 4,

3, 4,

3, 4

3, 4,

3, 4,

3, 4,

3, 4,

3,-

4 SURFACES 39, 40, 41, 42, 43, 44, 45, 46, 47,

'48, 49, 50, 51, 52 SECTCR -1 0

0 0

0 0

0 0

0 0

0 0

0 0

SECTOR +1 -1 0

0 0

0 0

0 0

0 0

0 0

0 SECTOR 0

0 -1 0

0 0

0 0

0 0

0 0

0 0

SECTOR 0

0 + f -1 0

0 0

0 0

0 0

0 0

0 SECTOR 0

0 0

0 -1 0

0 0

0 0

0 0

0 0

SECTOR 0

0 0

0 +1 -1 0

0 0

0 0

0 0

0 SECTCR 0

0 0

0 0

0 -1 0

0 0

0 0

0 0

SECTCR 0

0 0

0 0

0 +1 -1 0

0 0

0 0

0 SECTOR 0

0 0

0 0

0 0

0 -1 0

0 0

0 0

SECTOR 0

0 0

0 0

0 0

0 +1 -1 0

0 0

0 SECTOR 0

0 0

0 0

0 0

0 0

0 -1 0

0 0

SECTOR 0

0 0

0 0

0 0

0 0

0 +1 -1 0

0 SECTOR 0

0 0

0 0

0 0

0 0

0 0

0 -1 0

SECTOR 0

0 0

0 0

0 0

0 0

0 0

0 +1 -1 SECTCR 0 +1 0 +1 0 +1 0 +1 0 +1 0

+1 0 +1 l}

ZONE 1

2 2

XBLOCKBDY

-18,415

.38.945 YBLOCKBDY 114.72

,147.475 ZBLOCKBOY 2.38

.2.43 BLOCK 1

1 1

MEDIA 2,

2, 4

SURFACES 53, 54 SECTOR -1 0

SECTOR 0 -1 SECTOR +1

+1 ZONE 1

2 3

XBLOCKBDY

-18.415

.38.945 YBLOCKBDY 114.72

,147.475 ZBLOCK8DY 2.43

,28.68 BLOCK 1

1 1

MEDIA 1,

2, 1,

2, 4

SURFACES 53, 55, 54, S '6 SECTOR 0 -1 0

0 i

SECTOR -1

+1 0

0 l

SECTOR 0

0 0 -1 l

SECTOR 0

0 -1

+1 SECTOR

+1 0 +1 0

ZONE 1

2 4

XBLOCKBOY

-18.415

,38.945 YBLOCK8DY 114.72

,147.475 (i

ZSLOCKBDY 28.68

.37.43 BLOCK 1

1 1

f* -

I5 A-CAR 0 IMA GE L i ST !NG 0F THE INPU T

.C0 LUM N NUM 8ER 111111111122222222223333333333 44444444455555555556666666666'

( )

12345678901234567.840123456789012345678901234567890123456789 0123456789' ME01A 1000.

.2.

1000."

'2.

4 SURFACES 53.

55.

54, 56 SECTCR 0 -1 0

0 SECTOR -1

+1 0

0 SECTOR 0

0 0 -1 SECTOR 0

0 -1

+1 SECTOR 1

0 +1 0

ZONE 1

2 5

XBLOCKBDY

-18.415

.38 945 YBLOCK80Y '114.72

.147.475 Z8LOCKBDY 37.43

.37.48 BLOCK 1

1 1

MEDIA 2.

2, 4

SURFACES 53.

54 SECTOR -1 0

SECTCR 0 -1 SECTCR 1 +1 56 ENTER QUADRIC SURFACES 1.0 YSO 1.0 Z50

-4.256 5

1.0YSG 1.0250

-5.6739 5

r 1.0YSO 1.0250

-16.048Y 60.1286 5

j 1.0YSQ 1.0250

-16.048Y 58.7106 5

l 1.0YSQ 1.0250

-32.096Y 253.2823 5

/r 1.0YSQ 1.0Z50

-32.096Y 251.8644 5

1.0YSQ 1.0Z50

-48 144Y 575.2052 5

1.0YSQ 1.0250

-48.144Y 573.7873 5

1.0YSQ 1.0Z50

-64.192Y 1025.8972 5

1.0YSO 1.0250

-64.192Y 1024.4793 5

1.0YSQ 1.0Z50

-80.240Y 1605.3584 5

1.0YSO 1.0Z50

-80.240Y 1603.9405 5

1.0YSO 1.0Z50

-96.288Y 2313.5888, 5

1.0YSQ 1.0Z50

-96.288Y 2312.1708 5

1.0YSO 1.0250

-112.336Y 3150.5883 5

1.0YSQ 1.0250

-112.336Y 3149.1703 5

1.0YS0 1.0Z50

-128.384Y 4116.3569 5*

1.0YSO 1.0Z50

-128.384Y 4114.9389 5

1.0YSO 1.0250

-144.432Y 5210.8947 5

1.0YSQ 1.0Z50

-144.432Y 5209.4767 5

1.0YSO 1.0250

-160.480Y 6434.2016 5

1.0YSO 1.0Z50

-160.480Y 6432.7837 5

1.0YSO 1.0250

-176.528Y 7786 2777 5

1.0YSO 1.0250

-176.528Y 7784.8598 5

l 1.0YSQ 1.0Z50

-192.576Y 9267 1230 5

1.0YSO 1.0250

-192.576Y 9265.7050 5

1.0YSC 1.0Z50

~208.624Y 10876.7374 5

1.0YSO 1.0250

-208.624Y 10875.3194 5

1.0YSC 1.0250

-224.672Y 12615.1209 5

1.0YSO 1.0250

-224.672Y 12613.7030 5

(

1.0XSQ 1.0YSQ

-28.680Y 0.0 5

(w*/

1.0XSO 1.0YSQ

-86.040Y 1645.0848 5

1.0x50 1.0YSQ

-143.40Y 4935.2544 5

'3 1 5 A

CA R D 1MA GE L I 5 T ING 0F THE IN PU C0LUMN NUP OER 1111111111222222222233333333334444444444555555555566666066 1234567890123496789012345678901234567890123456789012345678901234567 f

1.0XSO 1.0YS1

-200.76Y 9870.5088 5

1.0XSO 1.0YSQ

-28.680Y 1.5029 5

1.0XSQ 1.0YSQ

-86.040Y 1646 5877 5

1.0XSO 1.0YSQ

-143.40Y 4936.7573 5

1.0X50 1.0YSO

-200.76Y 9872.0117 5

1.0XSO 1.0250 36.90X 336.1465 5

1.0XSQ 1.0Z50 36.90X 334.7381 5

1.0XSQ 1.0Z50 17.71X 74 1551 5

1.0XSO 1 0250 17.71X 72 7466 5

1 0XSO 1.0250

-1.41X

-3.7589 5

1.0XSO 1 0Z50

-1.41X

-5.1674 5

1.0X50 1 0250

-20.53X 101.1143 5

1.0XSO 1.0250

-20.53X 99 7058 5

1.0XSO 1.0Z50

-39.65X 388.7747 5

1.0XSO 1.0Z50

-19 65X

'387.3662 5

1.,0XSO 1.0250 e((EUbaii7x 859.2223 5

1.0XSO-

1. 0 X 5 0 *#

-58.77X 857.8138 5

1.0XSO 1.0250

-77.89X 1512.4571 5

1.0XSQ 1.0250 77.89X 1511.0486 5

1.0XSO 1.0YSQ 8.15X

-258.12Y 16467.4536 j

1.0X50

'5 1.0YSQ 49.21X

-258.12Y 17056.2540 5

1.0XSC 1.0YSQ 8.15X

-258.12Y ge 16468.9566 5

(mf) 1.0XSO 1.0YSO 49.21X

-258.12Y

/

17057.7570 5

80 1 1 1 0.0 14.34 15.50 160 1 1 1 0.0 43.02 15.50 240 1 1 1 0.0 71.70 15.50 320 1 1 1 0.0 100.38 15.50 410 1 1 1 -4.08 129.06 15.50 500 1 1 1 24.60 129.06 15.50 END KENO

  • ooooo************ END 0F

!NPUT L IST I N G ********************

(

C

.