ML20038B253
| ML20038B253 | |
| Person / Time | |
|---|---|
| Site: | National Bureau of Standards Reactor |
| Issue date: | 08/26/1981 |
| From: | NATIONAL INSTITUTE OF STANDARDS & TECHNOLOGY (FORMERL |
| To: | |
| Shared Package | |
| ML20038B249 | List: |
| References | |
| FOIA-81-317 NUDOCS 8112070060 | |
| Download: ML20038B253 (24) | |
Text
i T
NBSR NATIONAL BUREAU OF STANDARDS REACTOR (NBSR)
N ATIONAL BUREAU OF STANDARDS l.
G ENER AL 1.1 Reactor Name (Acronym)
NBS Reactor (NBSR) 1.2 License Number TR-5 1.3 NRC Docket Number 50-184 1.4 Reactor Address Building 235_
National Bureau cf Stancards
~
Washington. D.C. 20234 U.S.A.
1.5 Reactor Teldphone (301) 921-2523 1.6 Reactor Telex None
,, )
1.7 Reactor Owner National Bureau of Standards 1.3 Reactor Operator National Bureau of Standards 1.9 Reactor Administrators Dr. R. S. Carter. Reactor Radiation Division Chief T. M. Rabv. Chief Nuclear Engineer
- 3. F. Torrence. Decurv 1.10 Reactor Facility Staff a.
Scientific / Technical 3
b.
Operations 14 c.
Support 8 (including Health Physics) d.
Normal Number of Personnel in Reactor Containment /
Confinement 20 during the day. 5 at night
)
($ e11207006o 810e26 73, PDR FOIA LEVI 81-317 PDR
"t S
e
(
t N
g
)
ly/'
'k y,N
/.
x 3
j\\-
l l
l 3
x 5:-
4 i.
/
i
-- m
,,[
s Q
.' Ns'N
/
\\,,, /
o
/
N s
,s
'g h~ h
/
790
..e a
- NBSR
'))
t b
[
g 3
9).
~
- g
~
I/.
I
~M 8
t, y
g y
=
g
_=_
'tg-
+,
)
[
f a
s knm[
o'/
/
- s
,t E $2tfRI 2
\\
/
3 O(t
/.
s w.
e
/
i N
Hi
.. ;4r Q
O 5
- .@f^
j @[g
\\
.'s'
'T' 3, s un O
f y 9
Q Q
$h. \\.
\\
' Nik a tt O
)
O 0
0 t#'#' "!
nung cab,iis-a gj O
0
~
! Ml O
O O
"$9 I
j??n i R a
o
,c
- ="""9'*'.
- T.
nmet
,,?
)
R3; c;g i
s -
m T me s.mJ
~CV(
A~-3,
.g' N
i!IT:Ca12T:::2 e
'=
s g.'
e
.s,.
+9 s
FM!tM17:3031 "8+
h*
I titien sufitt /
N3
\\
g,u+
'g 1
f
\\.
s, l
O. It:
21ntin:
f if 1 t!.: q O ittr:n tmwtirn er.:
C F:r'.tityttr 79I
4 NSBR f
1.11 Operations Staff Annual Salary Range a.
Chief Reactor Operator
$23.000 (Operations Supervisor) b.
Shif t Supervisor
$23.000 c.
Senior Reactor Operator
$19.000 d.
Reactor Operator
$16,000 1.12 Reactor Architect / Engineer Burns and Roe New York, New York National Bureau of Standards Washington. D.C.
1.13 Reactor Constructor Blount Brothers T
Montgomerv Alabama
)
1.14 Organization / Country Supplying Nuclear Technology U.S.A.
l.15 Reactor Setting National Bureau of Standards camous.
Suburban. Medium occulation densitv.
1.16 Reactor Operating Status a.
Initial Criticality Date December 7.1967 b.
Full Power Date February 9.1969 c.
Operating Cycle 7 week cycle: 6 weeks at full cower. I week maintenance and refueling shutdown.
d.
Full Power Hours / Year 6.800 Pulses / Year, Average Energy Not acclicable e.
792
)
NBSR 1.17 Reactor Facility Cost
$12.000.000
!.18 Annual Operating Budget
$1.500.000 1.19 Facility Insurance a.
Coverage Not orovided b.
Annual Premium Not provided
'.2.
REACTOR 2.1 Reactor Type Tank tvoe, heavy water moderated and reflected. -
MTR clate fuel. Research and test reactor.
2.2 Reactor Vessel a.
Configuration Tank b.
Overall Dimensions 7.0 f t (2.1 m) diameter X 16.0 f t (h.9 m) high.
c.
Material 5052 Aluminum d.
Normal Operating Pressure 3.0 in (7.6 cm) H;O helium blanker e.
Normal Operatin Temperature
_100 F (37.8 C) inlet, !!2 F (44.4 C) outlet 2.3 Core a.
Volume 25.2 ft (7141) including gao between uceer and lower fuel section. 19.1 f t (541 !) excluding tap.
b.
Overall Dimensions 3.67 f t (1.12 m) diameter X 2.42 ft (0.74 m) high.
c.
Lattice Configuration 3 concentric hexagonal rines d.
Number of Elements 1.
Standard 30 2.
Control None i
)
793
~
T 6
NBSR e.
Maximum Number of Grid Locations that can be used for Fuel 37 f.
Subdivided Core 1.
Number of Subdivisions 2
2.
Subdivision Differen-tiating Characteristics Uocer and lower fuel sections, each 11.0 in (27.9 cm)
(
~
high seoarated by a eao 7.0 in (17.8 cm) high to minimize fast neutron background in beamtubes.
3.
Number of Elements per Subdivision Uocer and lower cores are similar.
2.'4 Containment
~
a.
Type Confinement-filtered exhaust.
b.
Volume 6.0 X 10 ft3 (1.7 X 10" m )
)
5 3
c.
Material Concrete 2.5 Moderator Heavy water (D,0) 2.6 Blanket Gas Helium r
2.7 Reflectors Heavy water (D 0) 2.3 Thermal Shield 2.0 in (5.03 cm) lead. 3.0 in (20.3 cm) steel.
2.9 Biological Shield 6.0 ft (1.83 m) heavy concrete.
a.
External Radiation Levels Less than 2.5 mrem /hr 2.10 Power Level a.
Normal Steady State 1051W b.
Pulsing Not acolicable 2.11 Normal A'verage Thermal Power Density a.
Volumetric 523.6 KW/f t (13.30 KW/1)
(2.10.a/2.3.a) 794
___.a_A----
__m
_m 14m m
NBSR e
b.
Linear 10.7 KW/ft (35.3 KW/m)
(2.10.a/(Number of Plates /
Pins X Plate / Fin Length))
2.12 Normal Specific Power 795.6 KW/lb (1.754 KW/kg) U-235
~
(2.10.a/5.1.b) 2.13 Reac. tor Control l
a.
Safety Rods
~
1.
Number 4 shim arms 2.
Shape and Dimensions Semachore. 1.0 in (2.54 cm) thick X 5.0 in (12.7 cm) wide X 52.0 in (132.1 cm) long.
t 3.
Material and Loading Cadmium clad with Aluminum.
4.
Normal Withdrawal /
Insertion Speed 2.5 / min (42 tota!)
)
5.
Scram Insertion Speed 100 degrees /sec 6.
Total Reactivity 0.25 Delta K/K i
7.
Nermal Average Reac-tivity Addition, Rate 0.015 Delta K/K/ min. 0.024 Delta K/K/ min maximum 8.
Scram Mechanism Gravity with sering assist.
l b.
Pulse Rods 1.
Number None 2.
Shape and Dimensions Not applicable 3.
Material and Loading Not aoolicable 4.
Normal Withdrawal /
Insertion Speed Not acclicable 5.
Scram Insertion Speed Not aoplicable 6.
Total Reactivity Not acclicable
)
7.
Normal Average Reac-tivity Addition Rate Not aoolicable 795
3 4
NB5R I
8.
Scram Mechanism Not acclicable
~
i c.
Regulating Rods 1.
Number 1
2.
Shape and Dimensions Cylindrical solid. 2.25 in (5.72 cm) diameter X j
29.0 in (73.7 cm) long.
i 3.
Material and Loading Solid Aluminum 4.
Normal Withdrawal /
Insertion Speed 90.0 in/ min (228.6 cm/ min) j 5.
Total Reactivity 0.006 Delta K/K 6.
Normal Average Reac-tivity Addition Rate 0.018 Delta'K/K/ min 4
7.
Scram Mechanism None i
d.
Chemical Shim Control j
1.
Chemical None 2.
Leading Not acclicable 3.
Control Mechanism Not acclicable 4.
Total Reactivity Not acolicable e.
Burnable Poison 1.
Isotopes Utilized None i
2.
Location Not acclicable 3.
Loading Not acclicable 4
Total Reactivity Not acclicable t
t 4
796
- - ~ -
g y---
7--
-,-wv-.
-7y3 3
,y,__c-
- r t-w-^
v-
- ~- -- -
"T
- I r
s NBSR 3.
FUEL 3.1 Standard Fuel Element a.
Configuration 17 curved MTR type fuel olates each in cooer and i
lower sections containine a total of 0.55 lb (0.25 kg) i U-235.
b.
Element Dimensions 3.0 in (7.6 cm) X 3.37 in (3.55 cm) X 68.3 in (174.3 cm) long.
q.
Overall Plate / Pin Dimensions 2.73 in (7.06 cm) X 0.05 in (0.13 cm) X 13.0 in (33.02 cm) long.
d.
Number of Plates / Pins per Element 34 fueled clates. 2 outer dummv clates.
e.
Distance Between Plate / Pin s
i Centerlines 0.17 in (0.43 cm) f.
Active Portion of Fuel Plate /
Pin 1.
Dimensions 2.46 in (6.25 cm) X 0.02 in (0.051 cm) X 11.0 in (27.94 cm) lone.
2.
Composition Uranium-Aluminum allov.
3.
U-235 Enrichment 93 %
4.
Fissile Material Density 0.03 lb/in3 (0.84 gm/cc) U-235 g.
Reflector Portion of Fuel Plate / Pin 1.
Composition Aluminum 2.
Dimensions 0.065 in (0.17 cm) X 2.79 in (7.09 cm) X 55.33 in (141.3 cm).
1 J
797
O s
NBSR h.
Clad 1.
Composition 6061 Aluminum 2.
Thickness 0.015 in (0.038 cm) i.
Side Plate 1.
Composition 6061 T6 Aluminum 2.
Thickness 0.184 in (0.467 cm) j.
Structural Material 356 T6 Aluminum 3.2 Control Rod Fuel Element a.
Specify Differences from Standard Fuel Elements Not acolicable 3.3 Fuel Cycle a.
Criteria for Refueling Zero excess reactivity at ecuilibrium Xenon and I
coerating temocrature.
b.
Frequency of Refueling Bverv 6 weeks.
c.
Normal Element Lifetime 15 months: accroximatelv 3.000 MW-days for core.
d.
Burnup 1.
Average U-235 Burnup 55c6 2.
Peak U-235 Burnup 70 %
3.
Maximum Allowed U-235 Burnup No restrictions e.
Number of Elements Replaced During Typical Refueling 4
f.
Spent Fuel 1.
Minimum Cooling Time 90 days 2.
Maximum Amount in Storage 48 whole elements. 36 dismantled elements.
798
O
)
NBSR g.
Disposition of Spent Fuel Shicoed f.or reorocessine to De5artment of Energy Savannah River. South Carolina h.
Spent Fuel Shipping Cask None i.
Spent Fuel Handling Manual transfer from reactor to storare cool.
Element cut and loaded in cask in storare cool.
j.
Fuel Failere Detection Fission o educts monitor in helium sween systena._ -
Ventilation effluent monitors.
Analysis of crimary system heavy water.
3.4 Fuel Inventory a.
Current Fissile Material Inventory Status 1.
New Fuel In-Process Not orovided
's 2.
New Fuel On Hand Not orovided 3.
Fuel In-Core Not orovided 4.
Spent Fuel in Storage Not provided 5.
Spent Fuel Being Reprocessed Not orovided 6.
Non-fuel Special Nuclear Material Not orovided b.
Fissile Material Inventory 1
Needed to Assure Continuity of Operations 1.
New Fuel In-Frecess Not orovided 2.
New Fuel On Hand Not provided 3.
Fuel In-Core Not orovided
)
799
I NBSR
,\\
3.5 Fuel Source a.
Fuel Fabricator Formeriv: U.S. Nuclear Oak Ridge, Tennessee Future: Texas Instruments Attleboro. Massachussets b.
Fuel Supplier Formerly: U.S. Nuclear Oak Ridge. Tennessee Future: Texas Instruments Attleborro. Massachusetts c.
Fissile Material Origin U.S.A.
d.
Enrichment Supplier U.S.A.
e.
Method of Fabrication Current: Uranium-Aluminum (U-A1) al!cv
)
Future: Alcola 101 (U,0 - AI) discersion fuel clates, 3
Aluminum clad. swazed into Aluminum side olates.
f.
Fuel Element Cost Current: $3.000: Future: Acoroximatelv $10.000 4.
HEAT TRANSFER DATA 4.1 Fuel Element Heat Transfer Area 12.8 f t2 (1.2 m )
2 (Number of Plates / Pins X Active Plate / Pin Surface in Contact with Coolant) 4.2 Fuel Element Flow Area 5.13 in2 (33.1 cm )
4 2
4.3 Fuel Element Wetted Perimeter 7.72 ft (2.35 m) 4.4 Fuel Meat Thermal Resistivity Accroximately 50 BTU /hr-f t-F (87 W/m-C) 4.5 Clad-Coolant Heat Transfer 2
Coefficient (at Hot Spot) 3.000 BTU /hr-f t - F (17.0LO W/m - C) 800
4
)
hBSR 4.6 Heat Flux at Plate Surface 0
0 2
a.
Normal Average Heat Flux 1.02 X 10 BTU /hr-ft (3.23 X 10 W/m )
b.
Peak Heat Flux 1.
Without Hot Channel 0
2 i
Factors 1.74 X 10 BTU /hr-ft (5.48 X 10' W/m )
2.
With Hot Channel 5
2 Factors 2.68 X 10 BTU /hr-ft2 (8.44 X 10' W/m )
c.
Axial Peaking Factor in Hot Channel (from Axial Fission Rate Distribution) 1.
Without Hot Channel Factors 1.6 2.
With Hot Channel Factors 2.5 d.
Hot Spot Locaticn Edge of fuel at gao towards cuter edge of core.
4.7 Peak Operating Fuel Plate / Fin Temperature a.
At Plate / Pin Surface 1
1.
Without Hot Channel Factors 170 F (77 C) l 2.
With Hot Channel Factors 240 F (115 C) b.
Inside Fuel Meat 1.
Without Hot Channel Factors 18d F (32 C) 2.
With Hot Channel Factors 260 F (127 C) 4.8 Primary Coolant Heavy water 4.9 Coolant Flow a.
Flow Direction Vertically uoward through fuel elements 1
801
NB5R 9
b.
Flow induced By 2 centrifugal cumos.100 HP each c.
Normal Flow Rate 5.100 com (19.3071/ min) d.
Maximum Flow Rate 6.000 gom (22.7141/ min) e.
Mean Core Flow Velocity 10.0 f t/sec (3.05 m/sec) f.
Normal Core Inlet Temperature 100 F (37.3 C) g.
Normal Core Temperature Rise 12 F (6.7 C) h.
Peak Coolant Temperature Rise at Hot Spot 1.
Without Hot Channel Factors 12 F (6.7 C) 2.
With Hot Channel Factors 16 F (8.9 C) i.
Coolant Pressure at Core Outlet 3.3 osie (0.23 bar) j.
Cociant Pressure at Hot Spot 1.
Without Hot Channel Factors 12.3 psie (0.35 bar) 2.
With Hot Channel Factors 12.3 osie (0.35 bar) 4.10 Hot Channel Factors (including Only Effects Other than Nuclear Peaking; Specify Breakdowns) a.
For Coolant Temperature Rise 1.6 b.
For Film Temperature Rise 2.0 c.
Others Not orovided 4.11 Core Heat Dissipation System Primarv-secondary heat exchaneer.
Cooling tower for secondar? coolant.
802
s J
I
)
NB5R 4.12 Shutdown Heat Removal System Auto shutdown oumos. orimarv.and secondarv.
a.
Worst Case Elapsed Time from Shutdown to Coolant Indepen-dence Without Fuel Distortion 30 min 4.13 Emergency Core Cooling System Internal gravity drain to flow distribution can with nozzle for each element. External gravity feed j
ank which reouires ooerator action to direct flow -
~
co or down through elements. Backco heavy and light water sucoly systems.
i 5.
NUCLEAR DATA 5.1 Fuel Loading a.
Minimum Critical Mass 7.23 lb (3.3 kr) U-235 b.
Normal Core Leading 12.57 lb (5.7 kg) U-235 (Beginning of Cycle at Rated Power) c.
Maximum K Components excess 1.
Temperature 0.005 Delta K/K 2.
Equilibrium Xenon 0.032 Delta K/K 3.
Equilibrium Samarium 0.008 Delta K/K l
4.
Xenon Override 0.06 Delta K/K l
5.
Burnup (Including 0.025 Delta K/K l
Burnable Poison) 6.
Experimental Sample 0.005 Delta K/K usual. 0.026 Delta K/K allowed 7.
Others None i
8.
Total 0.075 Delta K/K I
1 i
803
, _ _ ~, - - -
.y
-m--_y
--y y,
-- -- - _ + _.--_,..--,,
g NBSR t
d.
Shutdown Margin 0.175 Delta K/K. 0.1 Delta K/K with most reactive shim fully withdrawn.
5.2 Reactivity Ceefficients i
a.
Temperature l.
Moderator
-1.610~" Delta K/K/ F
(-2.9 X 10"" Delta K/K/ C) at coeratine 0
~
temocrature.
2.
Doppler Not aoolicable 3.
Fuel Expansion Not acclicable 4
Burnable Poisen None b.
Void
-1.31 X 10-5 Delta K/K/in3
(-8.0 X 10-7 Delta K/K/cc)
)
5.3 Neutron Flux Densities I
2 Steady State Average Thermal 1.0 X 10 " n/cm /sec a.
I 2
1.7 X 10 " n/cm /sec b.
Steady State Peak Thermal I
2 1.0 X 10 " n/cm /sec Steady St' ate Average Fast c.
I 2
1.5 X 10 " n/cm /sec d.
Steady State Peak Fast e.
Peak Pulsing Power Not acolicable f.
Pulse Integrated Power Not acolicable 5.4 Pulsing Characteristics a.
Pulse Period Not aoolicable b.
Full Width at Half Maximum Not acclicable c.
Maximum Frequency of Pulses Not aoolicable 804
~
s s
)
NBSR 5.5 Fission Density 22 a.
Normal Average 1.64 X 10 fissions /in3 (1.0 X 1021 fissions /ce) 22 b.
Peak 2.29 X 10 fissions /in3 (1.4' X 1021
~
fissions /cc) c.
Axial Peak / Average Ratio for Typical Element 1.2 7
5.6 Maximum Fission Product Inventory 4.0 X 10 C1
'6.'
OPERATING EXPERIENCE
~
6.1 Forced Outages in the Past Fiye Years a.
Equipment Malfunction I
b.
Personnel Error O
Full power Operating Hours 31.000 c.
7.
SAFEGUARDS
~
7.1 Agency Responsible for Regulatory Jurisdiction U.S. Nuclear Regulatory Commission 8[
PAST MODIFICATIONS AND FUTURE PLANS 8.1 Past Major Modifications a.
Power Increase /Date None i
~
b.
Fuel Conversion /Date None c.
Other/Date Rectaced Aluminum heat exchanger with stainless j
stee!/1974 8.2 Future Major Modifications a.
Power increase /Date 10 MW to 20 MW/1930 N
s 305
s 1
=
, y i, A),'
~
=
iw :
?.1 i
s Ti'
+.
t
,c 7
/r-NBSR
>I,,
F el Conversion /Date 0.55 lb (250.0 gm) U-235/eleme'nt to 0.66 lb (300.0 gm) U-235/ element /1980
/
/ _~
U-Al a!!ov to Alcola :01 (U,0.-Al)/1980 c.
Decommissioning /Date Not olanned d.
Other/Date None planned 8.3 Future Reactors a.
Type /Date None clanned 9.
REACTOR. LABORATORY AND EXPERIMENTAL FACILITIES 9.1
' Accelerators Description, Available elsewhere a.
9.2 Beamports a.
Description 3 filtered beams (2 kev. 25 kev.144 kev) 3 standard fields (fission soectrum, intermediate energy soectrum, thermal scectrum)
I1 radial 2 tangential.
b.
Dimensions Radial: 5.5-6.5 in (13.97-16.51 cm)
Tangential: 4.5 in (11.43 cm) diameter I
2 Radial; 1.0 X 10 " n/cm /sec at source c.
Thermal Neutron Flux I3 2
Tangential: 5.0 X 10 n/cm /sec at source d.
Fast Neutron Flux -
Not orovided e.
Gamma Dose Rate Not orovided 9.3 Converter Blocks a.
Description Not orovided b.
Dimensions Not orovided 806
~~
~
~ - -
- 3 I /
- L
.T..
.,,N NB5R
,, ms i n 9.3 Neutron Activation Analysis D'ehription Laboratories and extensive automated couloment q
a.
1 available. Promot ramma-rav soectrometer system.
9.9 Neutron Generator 4
a.
Description Available elsewhere b.
Thermal Neutron Flux Not acolicable c.
Fast Neutron Flux Not acolicable 9.10 Neutron Radiography 7
a.
Description Thermal facility: Thermal flux = 1.0 X 10 2
n/cm /sec.17.7 in (45.0 cm) diameter. L/D 30 to I
'g 500.
Resonance neutron tomegraohy: self indicatien for fissionable isotooes.
s 9.11 Neutron Sources 3
d.
a.-
Description Available elsewhere b.
Dimensions Not acolicable
.}
c.
Thermal Neutron Flux Not acclicable
')
d.
Fast Neutron Flux Not aoolicable i
i 9.12
-Neutron Spectrometer
(,
a.
Des:ription I pc!arized neutron triple axis soectrometer i r t l uncle neutron scattering facility i
aL jis soectrometers (continuousiv variable E )
1 muivi nele hybrid time-of-flieht soectrometer 3
g b
808
o
)
INB5R c.
Thermal Neutron Flux Not orovided d.
Fast Neutron Flux Not provided e.
Gamma Dose Rate Not orovided 9.4 Critical A,ssemblies a.
Description None l
b.
Dimensions Not acolicable c.
Thermal Neutron Flux Not aoolicable d.
Fast Neutron Flux Not acolicable e.-
Gamma Dose Rate Not acolicable 9.5
' Gamma Sources a.
Description Available elsewhere b.
Dimensions Not acclicable c.
Gamma Dose Rate Not acclicable 9.6 Hot Cells J;
a.
Description None b.
Dimensions Not acclicable 9.7 Irradiation Racks a.
Description None b.
Dimensions Not acclicable c.
Thermal Neutron Flux Not acolicable j.
d.
Fast Neutron Flux Not acclicable e.
Gamma Dose Rate Not acolicable
[
t 807 i
a.q e
'} ;
NBSR
/
9.17
~ Thermal Column a.
Description Heavy water and graohite. Cadmium ratio for a 1/v detector uo to 20.000:1.
b.
Dimensions 4.0 ft (1.22 m) X 4.0 f t (1.22 m) X 5.0 f t (1.52 m).
12 2
c.
Thermal Neutron Flux 3.0 X 10 n/cm /sec 8
2 d.
Fast Neutron Flux 1.0 X 10 n/cm 73,c
~
3 e.
Gamma Dese Rate 4.5 X 10 rad /hr
~
10.
R'ESEARCH AND TECHNICAL PROGRAM AND REACTOR UTILIZATION
SUMMARY
10.1 Research, Technical, and Tr'aining Program The National Bureau of Standards' research reactor (NBSR)is utilized by 175 scientists from 16 NBS divisions and offices. 25 federal agencies and industrial labs. and 15 universities.
During 1973 the reactor coerated at full oower for 6550 hours0.0758 days <br />1.819 hours <br />0.0108 weeks <br />0.00249 months <br /> (76% on-line time). About 15.000 samolas were irradiated for activation analysis and isotooe oroduction. The thermal column and the many beam facilities were used continuousiv.
The maior programs using the reactor are:
Materials characterization by neutron scattering:
Pro'erties of hydrocen in metals Phase transformations Tonic crystal structure Metalasses and amorchous magnetic materials Biomolecular colymers.
310 l
c
's NBSR I high resolution oowder diffrabtemeter 2 other diffractometers Control and data acouisition system for 10 instruments 9.13 Pneumatic Tubes a.
Description 5
b.
Dimensions 1.0 in (2.54 cm) diameter c.
Thermal Neutron Flux 6.0 X IdI3 2
n/cm /sec (oeak)
I3 2
d.
Fast Neutron Flux 5.0 X 10 n/cm /sec (oeak) 8 e.
Gamma Dose Rate 9.0 X 10 rad /hr (peak) 9.14
_ Radioisotope Laboratories a.
Description ~
Available elsewhere i
9.15 Reactor Core a.
Description 6 large (2 coerational). 4 small. vertical thimbles b.
Dimensions Large: 3.0 in (7.62 cm) diameter
~
Srnall: 2.0 in (5.08 cm) diameter I
2 1.5 X 10 " n/cm j,,c Thermal ' Neutron Flux c.
d.
Fast Neutron Flux Large: Not provided I
2 1.5 X 10 " n/cm 73,c Small:
e.
Gamma Dose Rate Not provided I
9.16 Reactor Pool a.
Description 7 vertical thimbles in reflectors b.
Dimensions 4.0 in (10.16 cm) diameter I3 2
c.
The'rmal Neutron Flux 3.0 X 10 n/cm /sec 10 2
d.
Fast Neutron Flux-2.0 X 10 ti/cm /sec 7
e.
Gamma Dose Rate 3.0 X 10 rad /hr I
/
309
~
NBSR t
Nuclear Physics:
Cross section measurements, ohvsics of fission.
10.2 Principal Isotopes Produced Fluorine (F)-18 Zirconium (Zr)-95 l
Iodine (1)-128 Iodine (I)-131 Iridium (Ir)-192 Gold ( Au)-198 11.
COMPUTER CODES UTILIZED IN DESIGN 11.1 Neutronics Eculooise 3'A 11 2 Structural Design a.
Reactor Vessel None b.
Fuel None c.
Containment None 11.3 Heat Transfer None 12.
FACILITY DESIGN AND OPERATION REFERENCE DOCUMENTS Preliminarv Hazards Summary Reoort. NBSR 7.
7A. 7B. and 7C.
Final Safety Analvsis Reoort. NBSR-9. 9 A. and 9 B.
I Technical Soecifications (Amended). NBSR 11 A l
l NBS Reactor. Descriotion and Guide to Its Use.
NBSR 10.
S12 l
l
[
L
~
~)
NBSR 1
Trace analysis by neutron activation analysis:
Characterization of standard reference materials Imourities in silicon solar cell material 4
Atmosoheric collutants Trace metals in foods Analysis of geological samples i
Analysis of criminal artifacts.
i Neutron standards and dosimetry:
Standard neutron fields and detector calibration Personnel dosimeter calibration and develooment in the kev range s
Reactor materials dosimetry.
Non-destructive evaluation:
Neutron radiograchv. neutron tomograohv.
materials defect characterization bv small angle neutron scatterine, texture' determination residual stress measurements by neutron diffraction.
Radiation metrology:
Double crvstal interferometer measurements of X-rav energies neutron interferometry.
Isotooe creduction and radiation effects:
Radiation damage of semi-conductor materials.
NTD silicon.
.)
811 i
_