ML20033C391

From kanterella
Jump to navigation Jump to search
Hydrogen Control Measures for Sequoyah Nuclear Plant. Related Info Encl
ML20033C391
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 08/14/1980
From:
NRC
To:
Shared Package
ML20030A300 List:
References
FOIA-81-320 NUDOCS 8112030086
Download: ML20033C391 (33)


Text

-n,

-.-4 2

A F

s P

I

% g 4

E.

9 h

a m

e p

l 5

g e

B O

8112030006 810914 PDR FOIA WEISS81-320 PDR

m_

e m-

-g,mme 4

-He

    • ^***""M

O e

E 5

ta 8

5 w

E 5

=

e 5

w 23-gI e

b-

'6 E

5 E

$g $$aeW M a

=8

=b 8

x x l

l l

o f

%H9 ACCORDING AT ffET It! C0kfAlttEtlT E SME i

g

-3 END PfalEM i

TO 50#1 5% COE PW

( &II R M l

l i

k CalTAltfDIT I

EWIMTION y

  1. WJ0WlE y

LPTO2/3PWR, FAILUE 3

4

( g g ggs TO1NI-2 OER 1-2 HRS

' CALCtXEIED 1001 200 es! III COPPLEIE 4 COE Mi CalTAITEt!T, IF 4 CalTAINENT 4 END 00E RLT E ETla!

BIRED AIhEIEELY falls l

ADIABATICCONTAIMENT FINAL STATE 6

HYm0GENCOMBUSTION VOL = 1.193 X 10 BTU CALCULATION Tf=2000F P.7=NRT/V=68.6 PSIA MOLES 0 = 450 2

tblES N = 2324 2

-31. ItLES H 0 = 331 2

A REACTIONPROWCTS HEATED BY COMBUSTION Hc=3v,I(T-T) 7 o

I INITIAL STATE 6

VOL = 1.193 X 10 p13 To = 77 F Po=16.3 PSIA MOLES 02 = 615 tblES N = 2324 2

tblES H2 = 331 = 300KG s ALLHYm0 GEN PIACTS wlm N

1.04 X 10 BTil/ MOLE) 5 H2 = 331 41 = 34.4 X BTU

O 6

4 0

6 e

UNTAI!!Off STRL'CTIJRAL NKYSES TVA Acs RDA O

9 e

5 e

s e

w W ma

.ermy.m-m asswe-w w w.

4,.,%

OffTAlttBIT STRUCRlRAL #RY4R M

- EGLECTED STIFFBERS

- USED ACRIAL STRE?EH INSTEAD OF filNItUi (DDE YIELD STRENGTH OF SlEL

- 33 PSIG YIEl3 PRESSUE

- 143.5 PSIG ULTIMATE STRENGTH BfSLABORATORY

- OUASI-STATIC # R YSIS

- INCLUDED "SEAED" STIFFEERS

- 36 PSIG YIELD PRESSUE

_RPB ASSOCIATES

- ASSLPED STIFFBE% ELATIVELY IEFFECTIVE

- USED MINIfIN CTE YIELD STRBEH OF STEEL

- 27 PSIG YIELD PESSUE lES

- 3t1 PSIG YIELD PRESSUE

e 8

9 6

O e

UENSEE trHr.ls e

0 1

t SHORT TERi PEPTED DISTRIBU1ED IRIITIDI SYS191 PHASE I (INTERIM)

SYSTEM INSTALLATION AND TESTING CCPfl.ETE BY SEPTEMBER 15,190 PRIOR C0fEISSION APPROVAL BEFORE SYSTEM IS MADE OPERABLE (TVA SUBMITTAL BYAusUST15,190)

SYSTEM D IGN 30GLOWPLUGS 18 IN LOWER COPARTENT 5 -IN LOWER PLENIE OF ICE CONIENSER 4 IN LPPER PLENtM OF ICE CONDENSER 3INLPPERC0ffARTENT TAC 7-G DIESEL ENGINE GLOW PLUG PRESENTLY BEING ESTED UTILIZING BACKl.P LIGHTING CIRCUITS SEISMIC DESIGN POWERED FROM EERGENCY BUSES (EERGENCY DIESEL GEERATORS)

REMOTE. MANUAL CONTROL FROM AUXILIARY BUILDING I

l b

-.---~~.y.

- - - ~ ~ ~ - - -

,n...-

.....--n--

SEquOYAH C ON7"AINMEN7~

yc:[:. C" * ?*!*I*.~

m.

. ~.

w.

~

i..~

/

..i t

,/

et 8/8 J.

3

-.., s

.0

...-........, ~.

r E4 798 fcI c cI': sit J"-""" 4.....

4 a

_j.

.w.

~!),'

\\

-n y

-c

-~;._.

F "T-

, U R

9 e

i..

I.

e s o 4:essm d s

.. ~. ~

i

, v.;

1 u.a 4.e

  • 1e

\\

I EL 73/p

.I

.-3 7 nn,.

I Y

--. 6'

? e-:

w

, e

~

7 e,r ~. * - '~

~.

..-,g-n oo-1 3 -

c.-

t e

h 9

.g

- I,#'***

q;.

e

.~

s, a m.-

> ;~ -

a..

.e

.t e 4

. -GL 700,

, L

~.;

. 'M D'

A'

.r g

gif

-. t..r e.

g-

y..

.m..

t..

/

GL C,89 r

d-

~""

.f g

s

+

I I *.

f f.,

, n,

.J G.

~

t

_ gz $ $ 9

..s. y 1,,,..

r---

.g

.k,,,s..

O/.S 7"R/8c/7~/ ON of='

L%.IT. OmRTV.I!;;

GL0 W PL Uq S /N C ONTA /N/V1ENY f/G C/RS

k_m m.=

Gum PLUG IESTING (STATUS)

- DETERMINING GLOW PLUG TEWERATURE AS A Fl.NCTION OF APPLIED VOLTAGE (lli VOLTS - AB0ur 1700 F; 12 VOLTS - AB0uT 1500 F) 1

- MINING DURABILITY OF GLOW PUJG (SPECIMEN HAS CONTINUED TO OPERATE SUCGSSFULLY AFTER 6 DAYS AT M i

DETERMINING RELIABILITY OF GLOW PLUG AS AN IGNITION SOURCE (ACHIEVED IGNITION IN DRf AIR MIXTURES CONTAINING 12 VOLif1E PERCENT AND 7 V0ulME PRECENT HYDROGEN)

- DETERMINING THE PERCENT COWLETION OF HYDROGEN BURNS (ESSENTIALLY lE CCNBUSTION '0F DRY AIR MIXTURE CONTAINING 12 VOLUE PERCENT HYDROGEN)

FURTER TESTING WILL VARY HYDROGEN CONCENTRATION AND INTRODUCE STEAM ENVIR0ffENT

PHASE II QMPROVEMENTS) 1 IWROVEENTS TO BE ITElfEfiED IN PARALIIL WITH TVA'S LO4G-TERM DEGRADED CORE TASK FORCE PROGRAM IWROVEFENTS:

EACH IGNITOR WILL HAVE INDIVIDUAL CONTROL FROi THE MAIN CONTROL R004 IbRE HYDROGEN MD OXYGEN MONITORS WILL BE INSTAL!ID TO GUIDE OPERATORS A Pl. ANT COPUTER TO WARN OF HYDROGEN CONCENTRATIONS REAOi!NG THE ETONATION LIMIT WILL BE PROVIIED.

BACKUP DIESEL POWER SUPPLY TO THE SYSTEM WILL CONTINUE TO BE PROVIDED..

ENVIRQeE8TAL QUALIFICATION OF DISTRIBUTED IGNITION SYS/EM COPONENTS WIU. BE DETERMINED.

EFFECTS OF THE HYDROGEN BLRN ENVIRONENT ON COWONENTS WILL E ANALY2ED.

ALTERNATE AND/OR ADDITIONAL IGilTOR LOCATIOiS WILL BE SELECTED BASED ON A BETTER LNDERSTANDING OF THE OlARACTERISTICS OF HYDROGEN COiBUSTION INSTALLATION OF HYDRIDE CONVERTERS NEAR THE REACTOR VESSEL VENT, POR/ DISOiARGE, AND AIR RETURN FANS WILL BE CONSIDERED.

ADDITIONAL CONTAlttENT PENETRATIONS WILL BE CONSIDERED TO FACILITATE AN EXPANDED HYDROGEN MONITORING CAPABILITY.

i l

PHASE III (FINAD FINAL MEIFICATI0f6 TO BE IfMBEITED AT C0Hffl0N 1

~0F IVA'S LONG-B1 DEGRADED CORE TASK FORE PROGRAM.

e M

d i

s a

f i

4 k

f t

i

t EGPADED CORE TASK FORE PROGRAM

- IMrTEW, (2 YEAR) EFRET

- MM0R TASKS l

1.

CarrROLLED 1611 TION 4

i 2.

MR1 SUPPRESSNITS i

j 3.

RISKASSESSET 4.

CORE B&MVIOR, HYDROGB1 EBERATION #0 TRNISPORT 5.

HYDROEN BURLING #1D CONTAltPENT RESP 0fES 1

  • -*****em

-e---

e w..

. +, _,,,..,,,..,

e h

0 l

IVA #MLYSES G

'O a6 N

4 e

e..

e%-

W,

--e*-

m-

=

e*

  • We g-*

-p N-=g.>e_--

. _,_ este e e

-ege a e-en so w.%

we gny e

.i.

ANAlmCAL EFFORT

- WESTINGHOUSE /0FFSHORE PoeR SYSTEMS l'

- AB0lWYEAR STUDY OF CRITICAL PARAMETERS FOR VARIOUS ACCIDENT SCENARIOS TO DETEININE CDNTAlifENT RESPONSE 4

- USING Cl.ASIX CooE (UNDER DEVELOPN) 2 n

s y

v 4

V esy g.

s a

==

e ese - 4

, we '

wm.

e a eb

+a


+O e-

  • =eewe we e, =ewee hos
r. \\

,4 CLASIX CAPABILITIES

~i 1

VENT FR0ft UPPER COMPARTMENT

{ g,.

i' 2'

ICE CONDENSER

~

3.

RECIRCULATIOS FAN 11.

DOORS - LOWER INLET AilD INTERMEDIATE 5.

INDIVlDUAL REPRESENTATION OF 0 ' N ' U A!!D H 0 2

2 2

3 3..

t 6.

SATURATED AND SUPER-HEATED STEAM 7.

SPRAYS

,s f

/.

H, H AND HEAT ADDITIOis 8.

2 2

9.

BREAK FLOW 9

'l1b., BURN CONTROL i

m g

1 f

/

e

~

<r

'I 1

-=w y

.,o4.+,.a.

w m

-e

1 1

=

, s s

w e

/

a.

PRELIMINARY ANALYTICAL RESULTS SELECTED SMALL BREAK 1.0CA RESULTING IN DEGRADED CORE Oy COOLING (hD SEQUENCE OF WASH-1G n

PATE OF HYDROGEN RELEASE BASED ON M CCDE CALCtLATION (CNSET OF HYDROGEN RELEASE E SEC AFTER ACCIDENT INITIATION AND i

ASStNED TO CONTINUE LNIffEDED FOR 3000 SEC, RESULTING IN REACTION OF ABOUT KOF TOTAL ZIRCONIlN IN CORE) r HYDROGEN COMBUSTION ASSINED WHEN 10 VOLINE PERCENT HYDROGEN m

VARIED ASSINPTIONS REGARDING AIR RETURN FN1 AND UPPER CCEPARTENT SPRAY PERFORMANCE, AND ICE AVAILABILITY.

l i

^

.,s

..p.

4p-+ e = = h +*. M Me*# *N"

~

BASECASEPAR#UERS 1.

If11TIAL C00lTIONS:

V0LifES IB1PERATUES PESSUES LOTIC IE MASS COE

. IE EAT TRN!SFER AREA

2. BURI PAP #EERS:

4 FOR IGlITIU1 10 V/0 h FOR PROPAGATION 10V/0 g FOR IGilTIGl 5V/0

3. AIR REIUR1 FANS:

IMEER OF F#1S 2

CAPACIT( OF EACH F#1 40000CFM

4. SPRAY SYSTBi:

FLOWRhTE 600) GPM TEMPERATUE 125 F

2 EAT TR#4SFER COEFFICIBfT 20 BTU /HR FT p 5.

IE C00ENSER DPAIN TEMPERATUE 32 F

6. BRAK EEASE INA M%CH COE l

i s - e v-evenwwe mme=

e-se e m we==

m

  • e enwo o 3

0 0

m 9

e e

e i

8

{

~

.m k

k A

5 f- ",

i i1

_a I

I i !

9 gy 5 g

l i

g:

1 I

3 g

I

\\

l i

i i

i 8

8 i

x w man f

9 4

4 I

i 4

s e

8 e

T 4

e l

8 I

5 2

k 6

I g

b W

i r

_a

  • E*

5.-

h.g e

'I E

I E

5

.i i

is m

fu i

.4 h

i I

9 9*

i m

a maun t

O 8

e

,,m--..m w-e

+w-

  • * * * * * * ' " * * * " ^ ~ ~

~~

e t

E e i i

6 si 4-e b

o t

r 6

3 ii i.8i*

63 9

e i

?

t ii

_1 ta f~

l I

e fi ti Il l

I LA'* "'T

_M' t

ill I

i:

8 13 i

i

/

_i.

h I

L/

i6 e

M

't

}

t 6_'

-T7 aglill i

ir e

t:.r,

,2 i-.i

.tii./t e

t i

(

' lit j

t 64

$*,'gi ej e6'}i1M6 i

i e g g

i i

lii t

'+

. r-m ini

.il6 si i

14

+

b i

?!i i

t start'titit6 i, w T fi ti i

t

)

ie_.

I iiees set

pq !!1 4

9 t'.

,4 i

i i,!

!6461 t

.ti

,,, ;,, [;1 t;;

y, 9

ef i

e 6,Ii 3

1 It i

l'

' tit j!i

!t l

t et j

i e

~

I e

i' it*f

'i !!'lelfit iset _M ii 4

li t

t-e g

i 8 !!

I*I!

'i l

I i

k M,

.iiisi y9_

ti t

g i

3 fe.

t i61 i

f i

g, l*d i

i e

t' i i ir 11

.x I

i I

t g

fli 1

'ff I4 1#-

I ' I I

I e

6

{

4 i

i g

6 e

t y

4 11l,*

i}te' 995 reali 7 [ I

'+s:

liee-se e

i

.ie, 4

6 4

.E g ai s ieteit...

I i

i ti e=

ii i

l I

Ill?ll'I' i

N iil!II i

t t

i 1994 it It '. a i ! ! i l t i M6

.!_i t

,i

' tivii il i

essill_ifli

'16i j e r%

.si ii

.,.i.,..

~~~T iii it i.

't t i!!6.

t it 66 t Ni !

6.i.

i eirt -

e I

l' t

'I i!l6i f

Ii if tt

)

!!! K e

e1

(

t l

I 6

t!

!~

'i e

i 6t 6

s6 i

aie t

6 64 3

' s

~

}

11

} ~e e

I I

e.

._fi i

itsee.

ej.3 N

al lies e

f!

I i

l 11 tr t

i 6 I) it.

I lie el ! i46j i

ii j gil'

.se.i ie el I'!!!'

  • !!'l

'I 1

5 t

.i loi

(

      • i e

e!ti!

6e ist t

t it m6 n

i i...

n m 6n ili ti t

i.?

i il i

!i riti t!

I 6,,

.n, 6,

el i

,i 4

N tt!

it l i.

.ty;,

- e.

i II' i

3 i'!*

ll i

fte i

}i tes e

Netteg.

il 4{

i i

E i3

~

i 6

i i '!

Ii N I' it If t

I i

i i

il t

i 1

l il I

il i

I 1 't i

ii silirMJi e

'd en e

9 9

9 g

R 5

d N

N S

S d

k 31 tulsda 3r$5hid %101 O

I l

L 9

5 m

1 o

1 I

+-n.

e O

9

=

/

e

.j

/~

Y Y

K

/

s' 8

k h

/'

/

/

-d' D

t /

a j

A s_p k

E8 I

\\

\\

\\

\\

\\

t i

5 E

i t

N

\\

=

{

\\

e u

o e

A N

h l

an misa aoss w w2ci l

I l

i W

l t

9 e

l

. m. 9 e,- a e e -y e.e e-m e. e ++

e-

4 e

s 6'

!h i

e

/

1 l

r b

l a

5

/

j

/

o F

3 l

e I

e Y

uk 8

W-r "W

J

/

WpI d

e

/

/

/

/

9

/

/

~

/

/

g

/

w

/

ru

(

~.

/

1-'

/

I e6 a

Q W

O.

a s

M M SStM 333 O

0Ir h

,1

TABLE 1. PELIMIflARY CONTAllFBfT #iALYSIS SBlSITIVITY SRI)lES TOTALh PEAK TEff. ( F)

PEAK PESS (PSIA)

WRED (LB)

LGER IE UPRR LGER LFPER C0tFARTTEff ED OTP.

CDP.

C0tP.

1. PASE CASE 900 2200 1200 150 26.5 28.5

[

2. H IGIITION 1050 1200 700 260 28.5 30.5 2

AND PROPYA-TIONa8%

3. 1 AIR F#1 900 2200 1350 160 26.5 29.5
4. NO IE*

850 24)0 2000 270 41 41

5. NO AIR F#ls 1200 2370 2580 1090 46.4 92.4
  • IE EXISTS ONLY FOR T[ FIRST TWO 0F 7 WRilflG CYCES.

m

NPR EFFURIS LINL IGNITER IESTS c

BCL A1ALYSES D

D e

,,y

.m,, - < -... __

=m..-

- - +.

.,e.c

= -- -

  • - - - - - - - -==,..... -

lift WRK OBJECTIVE:

EXRRIENTALLY EVAllRTE IGNITER EFECTIVENESS #0 ELIABILIT/

FACILITY:

700 PSIG PESSUE VESSEL 4 FEET DIRETER X 8 FEET L0fE INSTRtBITS: PESSUE TUPERATUE GAS S#PLifE SOEDULE:

1sim & BUILD: JULY-SEPT.19T TESTS

SEPT-OcT.,19%

PEPORr

OcT.,

1980

+ s e. 6 e. %.

.m.

wee w.

w ow. v

+ + = *

---.d*

  • - + - + - * *
  • N-

I 1

1

\\

i i

Schematic View of Igniter Test Apparatus i

Steam Generator f

Sample Bottles i

J Wall and Gas O Thermocouples N

i u

i Solenoid Peak and

{

Operated Equilibrium Valves Pressure Transducers Distilled Water O

O I

1 O*

A-n Dry Vl Air i

l i

i Hydrogen h

a t

1 mm m

.m.

BCL'dDEK N ECTIVE: EVAUJATE EFFICACY OF PROPOSED IGIITER SYSTEM h4ALYSIS NEL: f%fUl COE fEATURESOFCOE MELS PRIMARY SYSTEM

$ELS CONTAINENT SYSTEM MJLTI-CDPARTENT TRACKS AT?0 SPHERE CDNSTIEJENTS MOELS HEAT SINKS, Im BED, FANS, SPRAYS SCEDUE PRELIMINARYWORK: DONE 3ALANE OF WORK: OcTmER 1980 t

t t

i.

7-..

~.

^^

HYDR 0 GEN PRODUCTION

-DURING S D 2

CORE MELT SEQUENCE 1600 -

1500 -

1400 -

1300 -

1200 -

1100 -

1000 -

900 -

800 -

700 -

600 -

500 -

400 -

S00 -

200 -

100 -

i h

h 3000 4000 5000 6000 7000 8000 TIME (SEC) t-e T

m

j l*

l TAME,

BATTEL 1E #1ALYSIS OF lh WRlING IN SE0lM41 CONIAltt0E i

l CASE thIGNIT10ll lh BURI BufN TIE C0tlTAltisir SETP0ltR LIMIT (SEC)

PEAK PWSSUE (PSIA)

(%)

(%)

A01W.

ADIABATIC i

-l 1

E O

1

3 2.

f 2

10 0

25

22 58.-

1 3

12 0

1

24 64.

4 8

0 25

22 51.

I' i

5 8

4 1

n i

6 10 0

1

31 79.

CASE 6 - IE BED ELTED BEFME BURilflG OCCURS.

B 4

OIC11SIOFI l_IFELIHOOD OF A DEGRADED CORE ACCIDENT IS SImIFICANTLY REDUCED BY IWL.9fNTATION OF IMI SHORT TERM l.ESSONS l. EARNED TVA HAS PROPOSED TO FURDER IWROVE SAFET( MARGINS BY USE OF AN INTERIM DISTRIBUTED IGNITIM SYSTEM kCISICN @TIWS:

OPTIm A: HOLDAT5%.

OPTIm B: tbMINAL 50% LIMIT OPTION C: LIMITED 10(N OPTION D: thuMnzD 10(H STAFF %CCtHENDATION: @TIONB 1

i l

1

+e w.

=+-

e e p=

s

-g

-e-

,,,w

y

% e.h

  • g A ex - 32. o

@Battelle Columbus Laboratories 503 Kin; Avenue l

Columbus Ohio 43201 Telephone (614) 424-6424 Teles 24-3434 February 29, 1980 Dr. Richard Coats Sandia Laboiatories Albuquerque, New Mexico 87115

Dear Dick:

I have reviewed Joe Rivard's " Review of In-Vessel Meltdown Sequence", and have the following comments.

In general, I feel that Joe has done an ex-cellent job of evaluating the analysis capability of MARCH for this phase of the meltdown accident, particularly considering the timing and constraints imposed on him. Our own feelings about the deficiencies in the existing models are in good agreement with Joe's. Although I sill make some comments about the review, none of them indicate significant disagreenent with these conclusions.

An overall comment that I would like to make is that the modelling requirements for meltdown analyses may be more demanding for studies relating to mitigation i

of meltdown accidents than for studies investigating absolute risk.

In the latter case, there are other major sources of uncertainty which obscure uncer-tainties in the meltdown models.

When we attempt to mitigate the consequences of core melt accidents, on the other hand, the actual behavior of the physical processes of core melting becomes much more important.

I believe that Joe is quite correct in pointing out how the uncertainties in meltdown behavior cascade with time into the accident. As a result, it becomes very important to model the initial slumping behavior accurately.

Specific Comments (1)

On page 5, the need for improvements to the modelling of heat transfer to the steam generator is indicated. The needed improvements are probably more extensive than implied. We believe a few volume loop capability is necessary and have layed out the basic model. We are not yet authorized to make the im-provement, however. The modelling changes will improve the code's capability to model break flow, pressurizer hydraulics, and secondary behavior as well as steam generator heat transfer.

(2) The description of boiloff on page 7 is conceptually instructive but ignores the significance of heat generation from metal water reaction.

(3) On page 12, the results are presented of an analysis of the fraction of the core which must be covered to provide adequate steam to remove the decay heat from the remaining portion of the core. My calculations indicate the number should be more like 1/4 than 1/2.

\\

50 Years Of Service 1929-1979

F'

~

0r. Richard Coats 2

February 29, 1980 (4) On page'17 there is discussion of the possibility of core barrel failure prior to failure of-core support structure. We have done some evaluation of

- core barrel failure and agree that within the associated uncertainties this 'is

- possible. We would not say, however, that it is the most likely pathway. The important conclusion is that, within the existing uncertainties,-it is not pos-sible to choose between different scenarios for in-vessel core melting behavior

- which can have a major impact on subsequent phases of the accident.

- (5) -The amount of conservatism in.the treatment of fission product release from the fuel as described on page 23 is probably small.

(6) MARCH has the capability to model steam generation in a steam explosion, failure of the pressure vessel (by input control), and failure of the contain-ment building (by input control).

I don't believe that more mechanistic model-ling of steam explosions (page 28) in a-systems code like MARCH is necessary; at least it should not be given high priority.

(7) Heating of structures above the core (page 43) is currently modelled in MARCH. A gross heat balance should probably be made on the vessel and inter-

.na s, nowever, which is not currently done.

l (8) The modelling of fuel motion in MARCH is discussed on pages 15-16. It should be pointed out that, while we normally speak of three distinct meltdown models, the code does permit the use of various combinations of the available fuel slumping options. This may be accomplished by choice of input options.

Furthermc.e, MARCH does include provision for the holdup of the core debris on lower ;upport structures but does not model heatup of the structures

- mechanistically.

If we can be of further assistance, please give me a call.

Sincerely, Richard S. Denning Research Leader Nuclear and Flow Systems Section RSD:erc xc: Mr. Joseph Rivard Sandia Laboratories Mr. James Curry Nuclear Regulatory Connission 5

e i

r-,

---v,-,

,r e+

n r,-,-

~

w

,w-

-