ML20032C595
ML20032C595 | |
Person / Time | |
---|---|
Site: | Yankee Rowe |
Issue date: | 10/29/1981 |
From: | Autio M, Babineau G, Henderson T YANKEE ATOMIC ELECTRIC CO. |
To: | |
Shared Package | |
ML20032C591 | List: |
References | |
PROC-811029, NUDOCS 8111100626 | |
Download: ML20032C595 (38) | |
Text
--
I I
I I
CORE X]
START-UP PROGRAM FOR YANKEE ROWE OCTOBER 29, 1981 I
I I
I
.I Prepared by:
f Wregpry Babineau Reviewed by:
C M, 7/ Mm-d_-
Reactor Engip6ering Manager Approved by: M/Mg M, //g h
,I Planf Superintendent "~
l YANKEE ATOMIC ELECTRIC COMPANY STAR ROUTE ROWE, MASSACHUSETTS 01367 i
I B111100626 811030 DR ADOCK 05000 I
I I
I TABLE OF CONTENTS PAGE List of Tables, Figures......................
iii I.
Introduction 1
II.
Summary of Results 3
III. Discussion of Results 4
A.
Control Rod Replacement and Drop Times 4
B.
Control Rod Group Worths 6
C.
Ejected Rod Worths 6
D.
Dropped Rod Worths 6
E.
Moderator Temperature Coefficient 6
F.
Power Plus Xenon Worth 7
G.
Power Distribution 7
H.
Power Coefficient 8
I.
Critical Boron Concentrations 8
lI i
J.
Fuel Assembly Changes 8a I
E I
I I
l'I I
LIST OF TABLES, FIGURES TABLE TITLE PAGE I
Delayed Neutron Fractions 2a II Summary of Results 3
III Control Rod Inspection Results 5
IV Group C Worth 11 V
Group A Worth 15 VI Group B Worth 18 VII Ejected Rod 16 Worth (C in) 22 VIII Ejected Rod 16 Worth (C + A in) 24 IX Dropped Rod 7 Worth 26 X
MTC Results 28 XI MTC Results 29 FIGURES 1
Core XV Loading Pattern 9
2 Control Rod Locations 10 3
Group C Integral Worth 13 I
4 Group C Differential Worth 14 5
Group A Integral Worth 16 6
Group A Differential Worth 17 7
Group B Integral Worth 20 8
Group B Differential Worth 21 9
Ejected Rod Worth (C in) 23 10 Ejected Rod Worth (C + A in) 25 11 Dropped Rod Worth 27 12 MTC Results 29a I
13 Power Distribution Map 30 14.
Critical Boron Concentrations 31 15.
Location of Reconstituted Assemblies 32 16.
Assembly H-4, Location of Reconstituted Rods 33 I
17.
Location of Reconstituted Rods For Type A and Type B Assembhes 34 5
INTRODUCTION The intent of physics testing is to measure and record various parameters which are characteristic of a particular core.
These parameters are used as a basis for routine plant operation and surveillance.
They also serve to verify the nuclear design calculations used in analyzing plant transients and accidents.
Data was collected by intentionally varying one core parameter and measuring its response, or its effect on a second parameter, while all other parameters are held as constant as possible.
Variable parameters include reactivity, time,
boron concentration, temperatures and rod position.
The desired correlations include inverse boron worth,
- caperature and rod worths in units of reactivity, rod drop times and temperatures relative to each other.
Plant Chemists provided boron concentration measurements by manual titrations, multiple samplings and repeated titrations providing a good degree of reliability in the boron concentration data.
Time, temperature and rod positions were measured with calibrated timing devices,
thermocouples and the plant Honeywell Visicorder Model 906B, respectively.
Reactivity was measured with the plant's Westinghouse Solid State Reactivity Computer.
The reactivity computer is a hard wired analog computer simulating the differential inhour equation.
Delayed neutron l
fractions for Core XV were computed by the Yankee Nuclear Services Division, Framingham and were programmed into the analog computer. (see l
Table I).
l t
1 1 i I 1
4 I
A series of tests during and after physics testing verified that the computed ddayed neutron fractions matched Core XV and provided proof that the reactmty computer was operating with a high degree of accuracy and precision.
I Core XV is loaded with 36 new Zircaloy clad fue. assemblies around the perimeter of the core and 40 partially burnad Zircaloy clad assemblies make up the middle (see Figure 1).
Core XV is composed of fuel fabricated by I
Exxon.
The core average burnup for the beginning of life Core XV is 7338 MWD /MTU as compared _o 5268 MWD /MTU for Core XIV.
Twenty-four control rods divided into four groups are arranged as shown in Figure 2.
Fuel assembly positions were verified by underwater television and videotaped following refueling and prior to reactor vessel reassembly.
I All parameters measured and/or determined were found to meet the Acceptance Criteria of Section 8 of the Core XV Performance Analysis.
I In order to compare measured to predicated values the predicted values were normalized to reflect actual conditions, (rod position, temperatures, l
etc), at the time of measurement.
l I 1
5
'I iI 2-lI
T ABLE I YANK?.E I. OWE XV DELAYED NEUTRuN FRACTIONS BOL, HZP, ARO.1900 ppm I
E FRACTION EFFECTIVE LAMBDA GROUP BETA BAR FRACTION (sec)-1 1
.00018582
.00018417
.01253 2
.00133001
.00132280
.03055 3
.00121221
.00120391
.11528 4
.00248005
.00246067
.30966 5
.00085383
.00084914 1.16319 I
6
.00030414
.00030245 3.04021 Beta Effective =.006323 Beta Bar
=.006366 I Bar
=.9933 Prompt neutron lifetime = 19.48 microseconds STARTUP RATE PERIOD REACTIVITY (decades / min. )
(sec.)
(percent) l l
.100 260.6
.0263
.500 52.1
.0953 1.000 26.1
.1478 E
2.606 10.0
.2414
- l 5 I
I I!I
-2.a-f iI
I II.
SUMMARY
OF RESULTS Table II summaries the measured parameters. The acceptance criteria is from the Core XV License Submittal and represents the allowable tolerance between measured and predicated values.
I DIFFERENCE PARAMETER VALUE OR PERCENT ACCEPTANCE PREDICTED MEASURED DIFFERENCE CRITERIA I
Critical Boron Concentration (HZP, ARO) 1900 ppm 1852 ppm
-2.54 1 10*o o
Integral Rod Worth (Sap) o Group C 1.63 1.625
-0.3%
7.5%
Group A 1.23 1.273
-0.5%
1 7.5%
Group B 2.65 2.502
-5.6%
i 7.5%
Moderator Temperature Cooefficient ( ARO, HZP)
I (ap/ F)
-0.46x10 4
-0.502x10 4
-0.042x10 4 0.5x104 Ejected Rod Worth (%ap)
I (C in) 0.63 0.644 2.2%
15%
(C and A in) 0.84 0.839
-0.1%
i 15%
Dropped Rod Worth (%Ap) 0.31 0.338 9.0%
Power + Xenon Defects 3.59 3.63 0.9%
(Ap)
Power Coefficient (%ap/ F)
-1.68x10 5
-2.1x10 5 25%
25%
I Rod Drop Times < 2.5 sec. (TS 3.1.3.1)
Longest Drop Time = 1.76 seconds Average = 1.57 seconds I
I I I I
III. DISCUSSION OF RESULTS A.
CONTROL ROD REPLACEMENT AND DROP TIMES I
During the reactor shutdown for the Core XV refueling, rods 10 and 17 could not be inserted fully as their respective groups were inserted.
Each of the rods was subsequently inserted through use of the pull down coils and/or single rod scram.
Following visual inspection of Rod 17 it was determined that it would be replaced.
Since Rod 21 was the only other hafnium rod remaining, it too was replaced, (Rod 17 wi.s a hafnium rod).
All control rods were rotated 90 and then tested for drag force.
Subsequent to this each rod was inspected with a transit to measure rod bow.
The results of these inspections are summarized in Table I
III.
Based on these results, Rods 1, 5, 8, 10, 11, 12 and 18 were replaced.
A second set of drag force tests were performed after the I
vessel upper internals were reassembled and Rods 9,13 and 15 were replaced due to excessive drag force.
The acceptance criteria used in the inspections was a drag force greater than 60 lbs and/or bowing of greater than 0.2 inches. In all cases the bowing was found in the Zi-caloy follower of the control rod. All control rods presently in the core are Ag-In-Cd rods.
Prior to the critical approach, but after reactor vessel reassembly, control rod drop times were measured. The drop time is the interval from the moment power to the control rod latching mechanism is cut to the moment each control rod reaches the 6 inch coil at the bottom.
Drop times are measured with Tave > 515 F and all four main coolant pumps operating.
An oscillograph provides a permanent record.
Just prior to the drop test, a control rod operability check was l
performed by moving each rod group in turn from 0" to 90" and back to 0"
and verifying control rod movement by the rod position l g 5
ndicators.
l Table III contains the measured rod drop times following vessel reassembly along with pertinent data from the control rod inspections l
which were performed. l
~
TABLE III CONTROL ROD INSPECTION RESULTS I
. ROD SERIAL #/
CORE REPLACEMENT POSITION Rg pegpedI#
DRAG (ggpCE BOW (inches)
DROP TIME (sec)
F I
1 A-107/A-132 125 0.3 1.40 2
A-129 25 0
1.54 3
A-109 35 0
1.64 4
A-110 50 0
1.68 5
A-111/A-130 70 0.3 1.48 6
A-112 50 0
1.50 7
A-113 45 0
1.50 I
8 A-114/A-131 85 0.3 1.71 9
A-115/A-134 70
<0.2 1.65 10 A-116/A-139 120 0.4 1.58 11 A-117/A-140 75 0.3 1.48 12 A-118/A-133 100 0.3 1.66 13 A-119/A-137 80 0.2 1.46 14 A-120 40 0
1.52 15 A-121/A-108 75 0
1.46 16 A-122 40
<0.2 1.69 1.53 17 A-65-H/A-138 Not Measured 18 A-124/A-141 85 0.3 1.61 19 A-125 40 0
1.61 20 A-123 20 0
1.76 21 A-55-H/A-136 Not Measured 1.48 22 A-128 50 0
1.55 23 A-123 40 0
1.51 24 A-124 40 0.2 1.58 I
I I I I
B.
CONTROL ROD GROlfP WORTHS Differential worths of groups C, A and B wce measured.
The technique used a constant dilution rate (s 15-20 gpm). The reactivity change due to the dilution was balanced by inserting control rods at intervals which allowed the reactivity to vary from plus to minus $10 pcm from just critical. The effect was to create a saw toothed graphical measurement of differential group worth.
The results are depicted in Figures 3-8 and I
Tables IV, V and VI.
C.
EJECTED ROD WORTHS The ejected rod condition is defined as a single control rod forced out and held out of the core by coolant flow following the complete severance of a control rod housing.
I The technique used is similar to group worth measurements.
A small dilution rate was used and the highest worth ejected rod is used to compensate for the reactivity change.
As with group worth, the result is used to measure worth.
Figures 9 and 10 and Tables VII and VIII show the resulti,1or Group 'C' inserted and Groups 'C' and 'A' inserted.
I D.
DROPPED ROD WORTH I
The dropped rod condition is defined as a single control rod dropping into the core while the rest remain withdrawn. The highest worth dropped rod was measured using the dilution balance technique described above.
The results are shown in Table IX and Figure 11.
I E.
MODERATOR TEMPERATURE COEFFICIENT (MTC)
MTC is measured by varying the moderator temperature and measuring the I
corresponding reactivity change for a series of heatups and cooldowns.
A linear least squares correlation yields the MTC. Tables X and XI list the measurement results which are plotted in Figure 12.
I I
The mod:rctor t:mp:rature co:ffici:nt is measur:d at various boron concentrations. Rods are moved to compensate for the boron concentration changes instead of thc turn-up compensation which occurs during normal operation.
Consequenity, the measured MTC must be corrected for rod insertion. This can be seen in Figure 12.
F.
POWER PLUS XENON WORTH An integral measurement of the combined worths of power and Xenon was made by comparing the hot zero power to hot 88.6% rated thermal power conditions.
The A boroa concentration worth plus the a temperature worth plus the A rod worth yields the combined power and Xenon worth. Table II contains the results.
I For this test:
@ HZP
@ 531.7 MWt Boron 1650 ppm 1347 ppm Tavg 512 F 517 F Group C 14.75" 87.4" G.
POWER DISTRIBUTION A power distribution map (YR-15-001) was taken at $34% power to check for gross quadrant tilt.
The analysis of the data yields the following results:
I 0.9555 1.0067 1.0153 1.0225 This result was founc' to be acceptable.
A power distribution map (YR-15-003) was taken at $63% power to measure radial power distribution.
Figure 13 shows the results of the measurements.
As required by Table 8-1 of the Core XV Performance Analysis the measurements were done @ >50% power with Group C)75" The measured reaction rates Ogreed within !5% for high powered assemblics. I
H.
POWER COEFFICIENT The power (or Doppler) coefficient is defined as the reactivity change per F change in average pellet temperature.
It is derived from data sets taken during the first power ascension of the core. Data was taken at s80%
I and at $100% of maximum allowable power to calculate the power coefficient:
I th 80%
th100%
418.7 MWt 531.7 MWt Boron 1402 1347 Rods C @ 81" C@87. 375" Tavg 516.5 F 517.5 F Xenon 2.681%dp 2.905%6p Fuel Temp.
855 F 948 F 5
The power coefficient was determined to be -2.1x10 Ap/ F which is within the acceptance criteria of 25% of the predicted value.
I.
CRITICAL BORON CONCENTRATION Just critical boron concentrations were measured at conditions as close as I
possible to:
1.
All rods out 2.
Group C inserted 3.
Groups C and A inserted The small deviations from the @ove conditions at the time of measurement were converted to boron equivalence in units of reactivity and added or subtracted for comparison with predicted values.
See Figure 14 for the I
results. As noted on Figure 14, the predicted values were corrected to reflect actual conditions at the time of measurement.
I I
J.
FUEL RECONSTITUTION An In-core Fuel Sipping Test was conducted during the Core XIV-XV refueling to identify damaged fuel pins which had been suspected from preliminary chemistry samplints of the Reactor Coolant System.
An excess of radic. activity in Assembly C-9 of Core XIV was observed and resulted in tt.: replacement of nine damaged fuel rods.
Solid Zircaloy rods:were substituted in place of the damaged fuel rods.
Figure 16 shows tile position of the inert rods for assembly H-4 in Core XV.
Furthermore, to prevent possible future I
damage, 24 Stainless Steel inert rods with Zircaloy cladding were placed in eight fresh assemblies.
These assemblies are positioned as shown in Figure 15.
Figure 17 shows the replacement pin locations for A-type (2 pins) and B-type (4 pins) assemblies.
Due to the fuel changes made in the Core XIV-XV Refueling to the eight fresh assemblies and one of the recycled assemblies (H-4),
the impact on four physics parameters was determined.
These parameters are: (1) total core reactivity, (2) relative radial assembly power distribution and radial core tilt, (3) peak pin power in the core and reconstituted assemblies and peak channel power (F AH) in these assemblies, and (4) change in control rod worth and shutdown margin.
The total change in core reactivity was calculated to be.02% or approximately three ppm.
The relative radial assembly power in assembly H-4 is 2.6% lower due to the nine Zircaloy pins added, I
with the greatest increase being 0.6% in any other assembly.
The assemblies that have two replacement pins are depressed about 1.0%, while the ones with four replacement pins are about 2.5%
lower.
In total, the core has a 0.5% tilt in the southeast ll (unaffected) quadrant.
The core tilt will burn out quickly and is not a problem.
The change in assembly power distribution is also i
not significant because it does not affect the limiting assemblies l
assumed in the safety analysis, and is so small.
The change in lg both peak pin and hot channel factors in the reconstituted B
assemblies was transparent, and in fact was lower than the design values.
The total core pin and channel peaks were 0.40 and 0.35%
higher respectively.
Calculation of the control rod worths found them to be unchanged, as well as the shutdown margin of the core.
-8A-l
.5 _
I Figure 1 CORE XV LOADING PATTERN SHOWING BURNUP (WD/MTU) ON RECYCLED FUEL I
g A
BC D
G J
4 l
l l
1 1
l l
l l
l l
I g
l
_ _ l _ _ _ l _ _ _ l _ _ __
I I
I l
l 1
I i
l l
l 9666 9374
--l--I---
i l
l i
I I
11786 17514 18437 11941 1
i 11703 19149 12304 11910 19139 12143 9596 18207 12016 17251 16993 12195 17652 9815 I
9653 17530 12598 17211 17240 11707 18161 9408 I
11832 19529 12127 12420 19145 11655 11706 13240 17741 11780 h
9265 9982 I
O Region A 40 Assemblies, once recycled originally 4.0 w/o U-235 Region B 36 Assemblies, fresh 3.5 w/o U-235.-
FIGURE 2 I*
YANKEE ROWE CONTROL ROD GROUPS l
l, b
l A
B C
D E
F G
H J
K I f j
D n
c' 24 14 j
. )
B B
o 5
6 18 D
B A
n 23 9
3 10 g
C_
A A_
c 13 1
2 15 B
A q
D _.
12 4
11 19 n
B B
g 22 8
7 g
C D
,D 21
/0 li h
~
Key:
A - Group "A"
B - Group "B" C - Gro"? "C" D - Group "D" 1o l
e
%r TABLE IV w
YANKEE ROWE GROUP C WORTH FROM PHYSICS TESTING OF JULY 28 1981 TOTAL INTEGRAL WORTH OF GROUP C IS 1.6245 %
INITIAL FINAL DELTA AVERAGE DELTA DIFF.
INTEGRAL INTEGRAL HEIGHT HEIGHT HEIGHT HEIGHT RHO WORTH WORTH WORTH INCHES INCHES INCHES INCHES PCM PCM/ INCH 0 TO 90 90 TO O 90 85.5 4.5 B7.75 14.2 3.15555 14.2 1624.5 85.5 77.25 8.25 B1.375 60.4 7.32121 74.6 1610.3 77.25 73.375 3.875 75.3125 39.6 10.2193 114.2 1549.9 73.375 70.375 3
71.875 35.5 11.8333 149.7 1510.3 g
70.375 68.125 2.25 69.25 30 13.3333 179.7 1474.8 5
68.125 66 2.125 67.0625 32.3 15.2 212 1444.8 66 63.75 2.25 64.875 34.5 15.3333 246.5 1412.5 63.75 61.75 2
62.75 30.1 15.05 276.6 1378 61.75 60 1.75 60.875 31.3 17.8857 307.9 1347.9 60 58.125 1.875 59.0625 33 17.6 340.9 1316.6
%F 58.125 56 5 1.625 57.3125 27.2 16.7384 368.1 1283.6 I
56.5 55 1.5 55.75 28 18.6667 396.1 1256.4 55 53.5 1.5 54.25 29.3 19.5333 425.4 1228.4 tr 53.5 S2.125 1.375 52.8125 29.3
' 21.3091 454.7 1199.1 I
52.125 50.5 1.625 51.3125 31r1
'19.1385 405.8 1169.8 50.5 49.375 1.125 49.9375 24.2 21.5111 510 1138.7 tr 49.375 48.25 1.125 48.8125 25 22.2222 535 1114.5 48.25 46.75 1.5 47.5 34.5 23 569.5 1089.5 46.75 45.25 1.5 46 36 24 605.5 1055 45.25 43.75 1.5 44.5 38 25.3333 643.5 1019 43.75 42.625 1.125 43.1875 29 25.7778 672.5 980.999 L
42.625 41.5 1.125 42.0625 30.4 27.0222 702.9 951.999 41.5 40.375 1.125 40.9375 31 27.5555 733.9 921.599 40.375 39.375 1
39.875 32 32 765.9 890.599
[
39.375 38.5 0.875 38.9375 22.3 25.4857 788.2 858.599 y
38.5 37.375 1.125 37.9375 33 29.3333 821.2 836.299 37.375 36.625 0.75 37 22.4 29.8667 843.599 803.299 B
36.625 35.5 1.125 36.0625 33 29.3333 876.599 780.9 l
F 35 5 34 75 o 75 35 225 23 3o 6667 899 599 747 9 34.75 34 0.75 34.375 22.9 30.5333 922.499 724.9 34 33 1
33.5 36 36 958.499 702 l
33 31.75 1.25 32.375 36.1 28.88 994.599 666 i
1 31.75 30.75 1
31.25 36.5 36.5 1031.1 629.9 lg 30.75 30 0.75 30.375 24.6 32.8 1055.7 593.4 l
30 29.25 0.75 29.625 24.5 32.6667 1080.2 568.8 ig 29.25 28.125 1.125 28.6875 35 31.1111 1115.2 544.3 28.125 27 1.125 27.5625 36 32 1151.2 509.3 l
27 25.875 1.125 26.4375 36.2 32.1778 1187.4 473.3 l
25.875 24.75 1.125 25.3125 36.4 32.3556 1223.8 437.1 l
24.75 23.625 1.125 24.1875 35 31.1111 1258.8 400.7 l lhr 23.625 22.5 1.125 23.0625 33.5 29.72/8 1'92.3 365.7 l
22.5 21.375 1.125 21.9375 33.1 29.4222 1325.4 332.2 i E 21.375 20.25 1.125 20.8125 31 27.5555 1356.4 299.1 t'
20.25 19.5 0.75 19.875 19.2 25.6 1375 S 268.1 19.5 18.75 0.75 19.125 20 26.6667 1395.6 248.9 l
18.75 17.625 1.125 18.1875 27.5 24.4444 1423.1 228.9 17.625 16.5 1.125 17.0625 25.5 22.6667 1448.6 201.4 i
16.5 15.375 1.125 15.9375 24 21.3333 1472.6 175.9 IL 11
f TABLE IV (CONTINUED)
INITIAL FINAL DC' To AVERAGE DELTA DIFF.
IN7EGRAL INTEGRAL HEIGHT HEIGHT HEIGHT HEIGHT RHO WORTH
's0RTH WORTH INCHES INCHES INCHEE INCHES PCM PCM/ INCH O TO 90 90 TO O 15.375 14.25 2.125 14.8125 23 20.4444 1495.6 151.9 14.25 12.75 1.5 13.5 27.2 18.1333 1522.8 128.9 12.75 10.75 2
11.75 28 14 1550.8 101.7 10.75 8.25 2.5 9.5 32 12.8 1582.8 73.7 8.25 0
8.25 4.125 41.7 5.05455 1624.5 41.7 GROUP C JULY 28 1981 F
f L
L E
I t
I I
12
m m
m M
M M
M M
M M
M YANKEE R0WE CORE XV l
STARTUP PHYSICS TEST BANK C
INTEGRAL WORTH 1
1,$Q eeaeeeeeeineaeeeeeeleeeeaeaeeleeeeeeaeeleeeeeeeeeleeeaeeeaeleeeeeeeeeteee. eeeeleeeeee ee I
I I
I I
I I
I 1.s0:
t.40:
E t.20:
y g
b, i5 1 00 m
a:
w g
a
.80:
g m
z
.60_
m 1,
t
.40.
o l
o
.20_
l:
i 0.00.
I
........ g,....... b' ' ' ' ' ' ' ' b a' ' ' ' ' ' ' ' i )' ' ' ' ' ' ' ' s)' ' ' ' ' ' ' ' s )' ' ' ' ' ' ' ' t )' ' ' ' ' ' ' ' b )' ' ' ' ' ' ' ' b )
g ROD POSITION (INCHES WITHORAWN) il
aus em amm amm um amm YANKEE ROWE CORE XV STARTUP PHYSICS TEST BANK C DIFFERENTIAL WORTH 4o...................,.........................................,....................,.........
t 35:
u z
30_.
.=
c
=
=.
w
=
4.
2sl r
u
=
a.
2
=
= n L
z a
zo_
i m
i
~
g
=
=
u is_
g W
to_-
=
t e
t b
t o
1 s_
p t
0g........g,........b'''N)'''i)'''h)'''62'''t)'''63'''d
~
ROD POSITION (INCHES WITHORAWN) 9 1
TABLE V
YANKEE ROWE GROUP A WORTH FROM PHYSICS TESTING OF JULY 29 1981 TOTAL INTEGRAL WORTH OF GROUP A IS 1.2729 %
%w IN'EGRAL INTEGRAL T
INITIAL FINAL DELTA AVERAGE DELTA DIFF.
HEIGHT HEIGHT HEIGHT HEIGHT PHO WORTH WLRTH WORTH INCHES INCHES INCHES INCHES PCM PCM/ INCH 0 TO 90 90 TO O L
90 85.625 4.375 87.8125 23.4 5.34857 23.4 1272.9 85.625 78.75 6.875 82.1875 62.3 9.06182 85.7 1249.5 78.75 75 3.75 76.875 3'.
4 10.5067 125.1 1187.2 3
75 72 3
73.5 33.5 11.1667 158.6 1147.0 F
72 69 3
70.5 36.2 12.0667 194.8 1114.3 69 66.75 2.25 67.875 28.1 12.4989 222.9 1078.1 66.75 64.5 2.25 65.625 30.7 13.6444 253.6 1050 64.5 62.25 2.25 63.375 32.2 14.3111 285.8 1019.3 62.25 60.375 1.875 61.3125 27.1 14.4533 312.9 987.099 60.375 58.5 1.075 59.4375 28.7 15.3067 341.6 959.999 g
58.5 56.625 1.875 57.5625 30.1 16.0533 371.7 931.299 m
56.625 54.75 1.875 55.6875 31.4 16.7467 403.1 901.199 54.75 53.25 1.5 54 25.8 17.2 428.9 869.799 51.75 1.5 52.5 27.7 18.4667 456.6 843.999 r
53.25 51.75 50.25 1.5 51 28.8 19.2 485.4 816.299 50.25 48.75 1.5 49.5 29.2 19.4667 514.6 787.499 48.75 47.25 1.5 48 30.3 20.2 544.9 758.299 47.25 45.75 1.5 46.5 31.2 20.8 576.099 727.999 45.75 44.25 1.5 45 31.2 20.8 607.299 696.799 44.25 43.125 1.125 43.6875 24.4 21.6889 631.699 665.599 I
43.125 42 1.125 42.5625 24 21.3333 655.699 641.2 42 40.875 1.125 41.4375 25 22.2222 680.699 617.2 t'
40.875 39 75 1.125 40.3125 26 23.1111 705.699 592.2 39.75 38.625 1.125 39.1875 26.5 23.5556 733.199 566.2 38.625 37.5 1.125 38.0625 26.7 23.7333 759.899 539.7 37.5 36.375 1.125 36.9375 26.3 23.3778 786.199 513 36.375 35.25 1.125 35.8125 25.6 22.7555 811.799 486.7 L
35.25 34.125 1.125 34.6875 26.9 23.9111 838.699 461.1 34.125 33 1.125 33.5625 27.1 24.0889 665.799 434.2 33 31.875 1.125 32.4375 28 24.8889 893.799 407.1 31.875 30.75 1.125 31.3125 26.8 23.8222 920.599 379.1 30.75 29.625 1.125 30.1875 26.4 23.4667 946.999 352.3 29.625 28.5 1.125 29.0625 25.9 23.0222 972.899 325.9 28.5 27.375 1.125 27.9375 25.4 22.5778 998.299 300 27.375 26.25 1.125 26.8125 23.8 21.1555 1022.1 274.6 26.25 25.125 1.125 25.6875 23.3 20.7111 1045.4 250.8 25.125 24 1.125 24.5625 22.7 20.1778 1068.1 227.5 r
24 22.5 1.5 23.25 28.3 18.8667 1096.4 204.8 22.5 21 1.5 21.75 26.6 17.7333 1123 176.5 21 19.5 1.5 20.25 24 16 1147 149.9 48 19.5 18 1.5 18.75 21.4 14.2667 1168.4 125.9 18 15.75 2.25 16.875 28.4 12.6222 1196.8 104.5 15.75 13.125 2.625 14.4375 26.3 10.019 1223.1 76.1 48 13.125 7.5 5.625 10.3125 35.1 6.24 1258.2 49.8 7.5 0
7.5 3.75 14.7 1.96 1272.9 14.7 W
15
men sum um aus mum a u s --
mus-
= sum w e YANKEE R0WE CORE XV STARTUP PHYSICS TEST BANK A
INTEGRAL WORTH 1.40
.............................c.........
i i
i i
i i
1 20:
1.00:
1 2
d 3
[
- E
.sq
=
=
,c e
o to m
a J
a:
. 8 0.-.
g w
=
m
.40:
l
.202 i
i 0 00-i g........ b' ' ' ' ' ' ' ' t )' ' ' ' ' ' ' ' b )' ' ' ' ' ' ' ' 4 )' ' ' ' ' ' ' ' h )' ' ' ' ' ' ' ' b )' ' ' ' ' ' ' ' 9 )' ' ' ' ' ' ' ' b b' ' ' " ' ' ' b )
R00 POSITION (INCHE8 WITHORRWN3 A
men men
=
que
==
YANKEE R0WE CORE XV 1
STARTUP PHYSICS TEST BANK A DIFFERENTIAL WORTH
{$
eaeaeeeaeieeaaeeaenIeaeeeaeaaIaeeaeaaeeieeeaeeaeeIeaeeaeeaeieaeaeaeae eeeeaeeeeleaeaeaeaL_
g l;
.=
.z co_
=
o
=.
5
=
=
y
=
E u
15_
S
==
.}
a.
~
I e
p C
e, 10_
~~
a z
td aC t
b s_
o ei a aaseisi aiseasua ieaaaaea aeaseaai suaaeaea eaeieaee iasuases aaaaaaes isssuaaa ROD POSITION (INCHES WITHORAWN3
v TABLE VI YANKEE ROWE t
GROUP B WORTH FROM PHYSICS TESTING OF JULY 29 1981 TuiAL INTEGRAL WORTH OF GROUP B IS 2.5023 %
INITIAL FINAL DELTA AVERAGE DELTA DIFF.
INTEGRAL INTEGRAL HEIGHT HEIGHT HEIGHT HEIGHT RHO WORTH WORTH WORTH INCHES INCHES INCHES INCHES PCM PCM/ INCH 0 TO 90 90 TO O g
90 82.5 7.5 86.25 57.8 7.70667 57.8 2502.29 g
82.5 79.125 3.375 80.8125 41.6 12.3259 99.4 2444.49 79.125 76.125 3
77.625 41.1 13.7 140.5 2402.9 76.125 72.375 3.75 74.25 56.7 15.12 197.2 2361.8 72.375 69.75 2.625 71.0625 42.4 16.1524 239.6 2305.1 69.75 67.5 2.25 68.625 43.2 19.2 282.8 2262.7 67.5 65.25 2.25 66.375 42.5 18.0889 325.3 2219.5 65.25 63 2.25 64.125 44.9 19.9S55 370.2 2177 I
63 60.75 2.25 61.w 5 47.9 21.2889 418.1 2132.1 60.75 58.5 2.25 59.625 50.6 22.4889 468.7 2084.2 58.5 57 1.5 57.75 35.8 23.8667 504.5 2033.6 57 55.5 1.5 56.25 37.5 25 542 1997.8 55.5 54 1.5 54.75 39.5 26.3333 581.5 1960.3 tr 54 52.5 1.5 53.25 41.8 27.8667 623.3 1920.8 52.5 51 1.5 51.75 44.-7
'29.8 66).999 1879 I
51 49.875 1.125 50.4375 35 31.1111 702.999 1834.3 tr 49.875 48.75 1.125 49.3125 37 32.8889 740 1799.3 48.75 47 625 1.125 48.1875 37.9 33.6809 777.899 1762.3 47.625 46.5 1.125 47.0625 38.9 34.5778 816.799 1724.4 46.5 45.375 1.125 45.9375 40.4 35.9111 857.199 1685.5 45.375 44.25 1.125 44.8125 41.5 36.8889 898.699 1645.1 44.25 43.125 1.125 43.6875 43 38.2222 941.699 1603.6 43.125 42.375 0.75 42.75 29.5 39.3333 971.199 1560.6 42.375 41.625 0.75 42 29.8 39.7333 1001 1531.1 41.625 40.875 0.75 41.25 30 40 1031 1501.3 40.875 40.125 0.75 40.5 32 42.6667 1063 1471.3 40.125 39.375 0.75 39.75 32 42.6667 1095 1439.3 5
39.375 38.625 0.75 39 32.8 43.7333 1127.8 1407.3 l F 38.625 37.875 0.75 38.25 33.5 44.6667 1161.3 1374.5 37.875 37.125 0.75 37.5 34.5 46 1195.8 1341 37.125 36.375 0.75 36.75 35.2 46.9333 1231 1306.5 36.375 35.625 0.75 36 35.6 47.4667 1266.6 1271.3 35.625 34.875 0.75 35.25 37.2 49.6 1303.8 1235.7 34.875 34.125 0.75 34.5 38 50.6667 1341.8 1198.5 34.125 33.375 0.75 33.75 39 52 1380.8 1160.5 l
33.375 32.625 0.75 33 40.5 54 1421.3 1121.5 32.625 31.875 0.75 32.25 40.8 54.4 1462 1 1081 31.875 31.125 0.75 31.o 42 56 1504.1 1040.2
([
l3 31.125 30.375 0.75 30.75 41.6 55.4667 1545.7 998.2 30.375 29.625 0.75
'O 43 57.3333 1588.7 956.6 29.625 28.875 C.75 27.25 42.5 56.6667 1631.2 913.599 48 l
28.875 28.125 0.75 28.5 43 57.3333 1674.2 871.099 l
28.125 27.375 0.75 27.75 43 57.3333 1717.2 828.1 l
tr 27.375 26.625 0.75 27 42.5 56.6667 1759.7 785.1 26.625 25.875 0.75 26.25 43.8 58.4 1803.5 742.6 25.875 25.125 0.75 25.5 42.8 57.0667 1846.3 698.8 tr 25.125 24.375 0.75 24.75 42.2 56.2667 1888.5 656 1
24.375 23.625 0.75 24 41 54.6667 1929.5 613.8 f
18
TABLE VI (CONTINUED) w INITIAL FINAL DELTA AVERAGE DELTA DIFF.
INTEGRAL INTEGRAL HEIGHT HEIGHT HEIGHT HEIGHT RHO WORTH WORTH WORTH INCHES INCHES INCHES INCHES PCM PCM/ INCH O TO 90 90 TO O 23.625 22.075 0.75 23.25 41 54.6667 1970.5 572.8 22.875 22.125 0.75 22.5 40 53.3333 2010.5 531.8 22.125 21.375 0.75 21.75 39 52 2049.5 491.8 21.7'5 20.625 0.75 21 38.4 51.2 2087.9 452.8 20 223 19.5 1.125 20.0625 53 47.1111 2140.9 414.4 3
1 ',. 5 18.375 1.125 18.9375 49.2 43.7333 2190.1 361.4 F
s8.375 16.875 1.5 17.625 57 38 2247.1 312.2 16.875 15 1.875 15.9375 60.2 32.1067 2307.3 255.2 g
15 13.125 1.875 14.0625 53.5
.?8.5333 2360.8 195
{
13.125 11.25 1.875 12.1875 41 21.8667 2401.8 141.5 11.25 8.625 2.625 9.9375 44.5 16.9524 2446.3 100.5 8.625 0
8.625 4.3125 56 6.49275 2502.3 56 GROUP B JULY 29 1981 f
I.
t L
E i y t
.r 19 l
l
=
=
num
=
sum uma amm um uma um e
ame uma men am sua
=
l l
I YANKEE R0WE CORE XV STARTUP PHYSICS TEST BANK B
INTEGRAL WORTH
- 2. 0 I
I I
I I
I I
I s
f l
2.40_
2 00_
A p
U
~2 T
j 1.80_
z 8
2 E
~
i 1.20_
g w
e-2
~
.e0_
.40_
l l
\\
o.00 g.........,,........ t )' ' ' ' ' ' ' ' s )' ' ' ' ' ' ' ' 4 )' ' ' ' ' ' ' ' s )' ' ' ' ' '. 1 )'''t)'''b)'''b)
E00 FOSITION (INCHES WITHORAWM) b
M M
M M
M M
M M
M M
M M
M M
M M
M M
YANKEE ROWE CORE XV STARTUP PHYSICS TEST BANK B DIFFERENTIAL WORTH 70 i
i.
i==
i==i 1
I I
I I
I I
I 80_
s pn n
up r
u um g
e z
p e
~
~
50_
=
=
=
==
E
=
m l
r a
as t
u g
g 40_
g 2
e,s i
a co w
,e e
s o
30_
s, s
a E
M e,
s 2
s ta m
20_
m g
i w
s l
'}
b s
i t
o 10_
a 0
.......53.......53 43 53 63.......53........h3 93 e
i If 13 i
ROD POSITION (INCHES WITHORAWN) 1
I TABLE VII YANKEE ROWE E
EJECTED ROD 1 16 WORTH FROM PHYSICS TESTING OF JULY 29 3"2 W
TOTAL INTEGRAL WORTH OF EJECTED ROD 1 16 IS 0.644299 %
(GROUP C INSERTED w
INITIAL FINAL DELTA AVERAGE DELTA DIFF.
INTEGRAL INTEGRAL HEIGHT HEIGHT HEIGHT HEIGHT RHO WORTH WORTH WORTH INCHES INCHES INCHES INCHES PCM PCH/ INCH O TO 90 90 TO O 90 77.625 12.375 83.8125 39.6 3.2 39.6 644.3 3
77.625 72.875 4.75 75.25 35.7 7.51579 75.3 604.7 F
72.875 67.5 5.375 70.1875 33 6.13953 108.3 569 67.5 63.375 4.125 65.4375 34.5 8.36364 142.8 536 63.375 59.625 3.75 61.5 34.6 9.22667 177.4 501.5 59.625 57 2.625 58.3125 25 9.52381 202.4 466.9 57 54.375 2.625 55.6875 25.7 9.79048 228.1 441.9 54.375 51.75 2.625 53.0625 26.7 10.1714 254.8 416.2 g
51.75 49.125 2.625 50.4375 27.6 10.5143 282.4 389.5 3
49.125 46.875 2.25 48 24.4 10.8444 306.8 361.9 46.875 44.625 2.25 45.75 25 11.1111 331.8 337.5 44.625 42.375 2.25 43.5 26 11.5556 357.8 312.5 42.375 40.125 2.25 41.25 25.4 11.2889 383.2 286.5 40.125 38.25 1.875 39.1875 21 11.2 404.2 261.1 tr 38.25 36 2.25 37.125 25 11.1111 429.2 240.1 I
36 33.375 2.625 34.6875 2 7..
~10.2857 456.2 215.1 33.375 30.75 2.625 32.0625 27.5 10.4762 483.7 188.1 tr 30.75 28.125 2.625 29.4375 26.3 10.019 510 160.6 I
28.125 25.125 3
26.62G 27 9
537 134.3 25.125 21.75 3.375 23.4375 25.6 7.58518 562.6 107.3 tr 21.75 16.5 5.25 19.125 31.4 5.98095 594 81.7 16.5 0
16.5 8.25 50.3 3.04848 644.3 50.3 L
L EJECTED ROD 1 16 JULY 29 1981
- F i
l
m m.
M m
m m
am m
m e
e e
e m
y e
YANKEE R0WE CORE XV STARTUP PHYSICS TEST EJECTED ROD EF89 INTEGRAL WORTH (BANK C IN)
.70
''''''''ii''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''I
[
5 8
5 5
I I
I 1
~
l
')
.80.
i
,l g
i
)1
.50_
j k,
<1 a
1 a
2
~
~
I
. 4 0_'
y w,_
m j
i
=
g g
.30_
j d
5 M
.l 9
2
.20.
~
(
.10.
q 0 0 0 '
........ g,........ b' ' ' ' ' ' ' ' b )' ' ' ' ' ' ' ' 4 )' ' ' ' ' ' ' ' b )' ' ' ' ' ' ' ' b )' ' ' ' ' ' ' ' i )' ' ' ' ' ' ' ' b )' ' ' ' ' ' ' ' b )
g R00 POSITION (INCHES WITHDRAWN) 1
TABLE VIII
%r YANKEE ROWE EJECTED ROD 4 16 WORTH FROM PHYSICS TESTING OF JULY 29 1981 w
TOTAL INTEGRAL WORTH OF EJECTED ROD # 16 IS 0.839499 %
(GROUPS C AND A INITIAL FINAL DELTA AVERAGE DELTA DIFF.
INTEGRAL INTEGRAL HEIGHT HEIGHT HEIGHT HEIGHT RHO WORTH WORTH WORTH INCHES INCHES INCHES INCHES PCM PCM/ INCH 0 TO 90 90 TO O 90 77.5 12.5 83.75 56 4.48 56 839.499 3
77.5 73 4.5 75.25 33.7 7.48889 89.7 783.499 P
73 69.375 3.625 71.1875 33 9.10345 122.7 749.799 69.375 66.375 3
67.875 30.2 10.0667 152.9 716.799 66.375 63.375 3
64.875 32.5 10.8333 185.4 686.599 63.375 60.75 2.625 62.0625 29.5 11.2381 214.9 654.1 60.75 58.125 2.625 59.4375 31 11.8095 245.9 624.6 58.125 55.873 2.25 57 28.2 12.5333 274.1 593.6 h
55.875 53.625 2.25 54.75 29.8 13.2444 303.9 565.4 5
53.625 51.375 2.25 52.5 29.8 13.2444 333.7 535.6 51.375 49.5 1.875 50.4375 26.2 13.9733 359.9 505.8 t
49.5 47.625 1.875 48.5625 27 14.4 386.9 479.6 I'
47.625 45.75 1.875 46.6875 27.1 14.4533 414 452.6 45.75 43.875 1.875 44.8125 27.5 14.6667 441.5 425.5 tr 43.875 42 1.875 42.9375 29.6 15.7867 471.1 398 I
42 40.125 1.875 41.0625 2 &. 4 15.1467 499.5 368.4 40.125 38.25 1.875 39.1875 29 15.4667 528.5 340 br 38.25 36.375 1.875 37.3125 28 14.9333 556.5 311 I
36.375 34.5 1.875 35.4375 27 14.4 583.5 283 34.5 32.625 1.875 33.5625 26 13.8667 609.5 256 tr 32.625 30.75 1.875 31.6875 28.3 15.0933 637.8 230 30.75 28.875 1.875 29.8125 27 14.4 664.8 201.7 5
28.875 26.625 2.25 27.75 28 12.4444 692.8 174.7 tr 26.625 24.375 2.25 25.5 25 11.1111 717.8 146.7 24.375 21.75 2.625 23.0625 26 9.90476 743.8 121.7 I4F 21.75 18.375 3.375 20.0625 28.3 8.38518 772.1 95.7 18.375 13.875 4.5 16.125 27 6
799.1 67.4 13.875 0
13.875 6.9375 40.4 2.91171 839.499 40.4 I.
I*
I*
EJECTED ROD # 16 JULY 29 1981 Iw w
99I.
24
ums
==
som nas inn sum
==
amm um um f
YANKEE ROWE CORE XV STARTUP PHYSICS TEST EJECTED ROD EF89 INTEGRAL WORTH (BANKS C
AND A IN) i t.00 i
i i
i i
i i
i
.80-7 4
4 n
w
.60-a w
h5
[
[
x o
o x
~
.40:
8 hJ e.e
.z0:
t
~
0. 0 0 '........ g
,........ b' ' ' ' ' ' ' ' b )' ' ' ' ' ' ' ' 4 3' ' ' ' ' ' ' ' s )' ' ' ' ' ' ' ' 6 3' ' ' ' ' ' ' ' i )' ' ' ' ' ' ' ' h i'''b) g R00 POSITION (INCHES WITHORRWN) i l
1
TABLE IX YANKEE ROWE I
DROPPED ROD 4 7 WORTH FROM PHYSICS TESTING OF JULY 28 1981 w
TOTAL INTEGRAL WORTH OF DROPPED ROD # 7 IS 0.3377 %
INITIAL FINAL DELTA AVERAGE DELTA DIFF.
INTEGRAL INTEGRAL HEIGHT HEIGHT HEIGHT HEIGHT RHO WORTH WORTH WORTH g
INCHES INCHES INCHES INCHES PCM PCM/ INCH 0 TO 90 90 TO O g
90 80 10 85 15.5 1.55 15.5 337.7 80 68.25 11.75 74.125 39 3.31915 54.5 322.2 68.25 60.75 7.5 64.5 35 4.66667 89.5 283.2 60.75 54.375 6.375 57.5625 34 5.33333 123.5 248.2 3
54.375 48.75 5.625 51.5625 32 5.68889 155.5 214.2 F
48.75 43.375 5.375 46.0625 31.3 5.82326 186.8 182.2 43.375 38.25 5.125 40.8125 31 6.04878 217.8 150.9 38.25 32.625 5.625 35.4375 30 5.33333 247.8 119.9 32.625 26.25 6.~75 29.4375 33.2 5.20784 281 89.9 26.25 15.75 10.5 21 39.3 3.74286 320.3 56.7 15.75 0
15.75 7.875 17.4 1.10476 337.7 17.4 i
WI W
DROPPED RUD 4 7 JULY 28 1981 lt L
F l
r f
\\
l 26 1 -
am sa mas sum um num aus em m
um uma en am um um um P
YANKEE R0WE CORE XV i
STARTUP PHYSICS TEST DROPPED ROD FG78 INTEGRAL WORTH i<
.40.........................................................................................
8 8
8 8
8 8
8 8
t
~
~.
.30!
4u 2
3 m
6 5
O
.20_
g a:
g w
r5
~
.10Z
[
0.00' f,,,,,,,
g R00 POSITION iINCHES WITHDRHWW)
%v TABLE X
YANKEE ROWE N01)ERATOR TEMPERATURE COEFFICIENT (MTC)
RUN 4 RODS TEST MODE TEST DATE MTC (PCM/DEG) 1 ARO COOLDOWN 7
28 81
-6.3596
[
2 ARO HEATUP 7
28 81
-5.12881 F
3 ARD COOLDOWN 7
28 81
-3.15265 4
ARO HEATUP 7
28 81
-6.58962 g
5 ARD COOLDOWN 7
28 81
-4.98815 g
6 ARO HEATUP 7
28 81
-3.89468 7
CGO HEATUP 7
28 81
-9.54382 8
CGO COOLDOWN 7
28 81
-8.12165 9
CGO HEATUP 7
28 81
-9.5485 10 CGO COOLDOWN 7
20 81
-7.06722 g
11 CGO HEATUP 7
29 81
-9.1901 3
12 CGO COOLDOWN 7
29 81
-9.1624 13 CSA O O COOLDOWN 7
29 81
-14.2374 14 C8A G O HEATUP 7
29 81
-12.7799 15 C8A G O COOLDOWN 7
29 81
-13.7247 W
16 CSA G O HEATUP 7: 29 81
-11.3554 I
17 CSA O O COOLDOWN 7 '29 81
-12.8826 18 CSA O O HEATUP 7
29 81
-12.044 W
L E
F F
F lf W
l L
=e
TABLE II YANKEE ROWE CORE XV STARTUP PHYSICS TEST MODERATOR TEMPERATURE COEFFICIENT (MTC)
CONTROL RODS PREDICTED MEASUREDt
~
POSITION MTC(x10 4)Ap/ F MTC(x10 4)Ap/ F DIFFERENCE ARO
-0.608
-0.502
.106 Bank C in
-0.876
-0.877
.001 Banks C and A in
-1.292
-1.284
.008 I
e ACCEPTANCE CRITERIA:
0.5x10 4Ap/ F for ARO l
t Average of six measurements i
I I
I iI
- I I I I
g-
i YANKEE R0WE CORE XV STARTUP PHYSICS TEST MODERATOR TEMPERATURE COEFFICIENT
.2 8
8 8
1 j
ARD:
i ',
.81 A
PREDICTED j '.
a O
HERTUP C IN io O
C00LOOWN
.e g
m x
-1.0_ _
g, c
.i e e o
a s
UNRODDED
+ A IN O
g e
i
-1 4_
e i
o i
i-t-
-1.a:
C + A > B IN i
-2.2.
i Cf S C d,,,,,,,,,,,,,,,,,10 3 0 1530,,,,,,,,,,,,,,,,, h0 30 BORON (PPM) l e
s FIGUnE 13 COMPARISDN OF MEASURED AND THEORETICAL SIGNALS INCORE RUN YR-15-003 7
376.0 MWT. GROUP C AT 82.3 INCHES
- 50. MWD /MTU y
MEASURE! SIGNAL
.725.
THEORETICA! SIGNAL
.735.
5 PERCENT DIFFERENCE
.-l.260.
.9bt:.
1.004
.-4.749.
1.061 1.03v.
1.071.
1.036.
.94Y.
.30/,
4
~.
1.044.
)
1.030.
.615.
1.033.
1.039.
.516.
1.146.
1.044.
1.044.
1.101.
1.037.
1.075.
4.095.
.677.
.-2.902.
1.078.
1.053.
l 1.067.
1.07G.
g..
1.02!l.
.-2.009.
jg
.771 1.003.
l g' 3
.720.
1.001.
l 7. 0 <i 0.
.203.
i f
l l
AVEHAGI*t ADSOLUTE DJFIERENCE BF78 E i P ME AmED aM!' 'iHEORETICAL 2.022 '"5:CEH1 l
' )
Rt"
.lf:
2.057 30 l )
I FIGURE 14 YANKEE ROWE I
STARTUP PHYSICS TEST CRITICAL BORON CONCENTRATION I
CONTROL BANK POSITION PREDICTED
- MEASURED
% DIFFERENCE I
ARO 1879 1852
-1.4%
I Bank C in 1703 1672
-1.8%
I Banks C and A in 1528 1488
-2.6%
'l
- Utilized actual plant conditions I
I I
I I I
I Figure 15 Location of Reconstituted Assemblies in Yankee Rowe Core XV I
g A
BC D
G J
4 l
l l
1 I
l l
l l
l 1
l l
A625
--l---l---l---
1 I
I l
l l
1 l
l l
A619
--l--I---
l l
i i
l g
l A593
--l---
1 I
A615 B574
[,
5 O
g B604 B"2 l
B618 B596 l
l i
B574
.a Serial Number l
lE l 3 l
I I
Figure 16 Location of Replacemert Rods in Asser:bly H-4 (B574) for Yankee Rowe Core XV I
I X
I X
i X
~
N I
M l
e e
K
.7 X
l
~
X 00 I
D0
~
I
'h
~
o I
o iX
- X X
I 1 2 3
4 5 6 7
8 9 10 11 12 13 14 15 16 Damaged Fuel Rod g
I ;
I
Figure 17 Location of Replacement Rods in Yankee Rowe Core XV Assemblies I
x 00 X
X g
l M
c y
I L
E I
J X
mEi X
I y
e.
C 3
X X
X X
OO l
ll X
X M
L 1
l
' 2 l
TYPE B H
X S
l c
D C
E X
l
~X J lZ
,,....,,.,,,e..
' l
.. _ _.