ML20009G053
| ML20009G053 | |
| Person / Time | |
|---|---|
| Site: | Fermi |
| Issue date: | 07/29/1981 |
| From: | Colbert W DETROIT EDISON CO. |
| To: | Kintner L Office of Nuclear Reactor Regulation |
| References | |
| EF2-54-193, NUDOCS 8108030285 | |
| Download: ML20009G053 (59) | |
Text
'
T i
e Detroit Edison kW25H:#-
July 29, 1981 EF2 - 54,193 Mr. L.
L.
Kintner Division of Project Management Office of Nuclear Regulation U.
S.
Nuclear Regulatory Commission Washington, D.
C.
20555
Dear Mr. Kintner:
Reference:
Enrico Fermi Atomic Power Plant, Unit 2 NRC Docket No. 50-341
Subject:
10CFR50, Appendix G & H Information Transmittal Please find attached five (5) copies of information requested in Questions 121.16 through 121.27.
The information addresses the ferritic materials used in pressure retaining components of the RCPB within Gener&l Electric's scope of supply as well as additional information concerning the materials surveillance program.
This is essentially the same as that Emery Expressed to your attention on July 24, 1981, with the following i
e;.ceptions :
1.
The response to Appendix H questions has been reorganized.
2.
A response to Questions 121.24 f and g is included 1
3.
The response to Questions-121.26 is given in the response to Question 121.24c which now provides a statement that the program will be updated to include a total of 108 Charpy V-notch specimens.
Qool Sincerely, S108030285 810729 5
PDR ADOCK 05000341 A
{
W.
F.
Colbert WFC/AAS:jl Technical Director Attachments Fermi 2 Project cc:
Mr.
B.
Little
~ _ _
1 Fermi ? Reactor Vessel Beltline Plate and Weld Information 1.
Available Charpy V-notch and drop-weight NDT toughness data are presented in Tables 1, 2 and 4 for Fermi 2 beltline plates anc welds.
Table 2 gives supplementary transverse Charpy results whict.
were determined for one of the Fermi 2 surveillance plates.
Tat 'e 3 shows a typical Test Certificate for a Fermi 2 beltline plate.
2.
The beltline layout is shown in Figure 1.
This gives plate heat numbers and locations, as well as weld seam locations and identifi-cations.
3.
Copper and phosphorous values, to estimate the effects of radiatic-on toughness, are presented in Table 5.
It can be seen in Table 5 that the analysis for Cu and P was not done for the finel weld wire / flux combinatior. weld deposit for one set of longitudinal weld seams.
ues are given in Tame L Estimated starting (unirradiated) RTN v
4.
They are estimated by using the data N Tables I and 4 in accordanca with GE procedure Y1006A006 which meets the intent of ASME Coce paragraph NS-2300.
This proceduref is explained in paragraph 5.2.4.2.2 (Attachment A) of the Fermi 2 FSAR, Amendment 23.
Tne data base for this procedure is further clarified in response tc Zimmer (ZPS-1) Q 121.15.
For the Fermi 2 beltline plates, longitudinal Charpy V-notch transitier curve data are available (Table 1).
Thus, the 50 ft-lb transitic-temperature can be determined by interpolation of these values, an:
by adding 30 F to the result to correct for orientation effects.
These Charpy transition temperatures can then be used with the in accordance corresponding NDT data (Table 1) to determine RTNDT with ASME NB-2300.
For the beltline welds all Charpy values (Table 4) are in excess of The 50 f t-1t-50 ft-lb at +10*f, except for one value of 47 ft-lb.
transition temperature was taken as +10*F for those welds exceeding The 50 ft-lb temperature for the weld with the 47 ft-lb 50 ft-lb.
value was estimated as +16*F by adding the correction factor of 2 F/ft-lb (Y1006A006).
Since NDT data are not available for these welds, an assumption of -50'F for NDT was made. Ju st if ica t ier: fer this assumption is given in Ite:d.This NDT value was used with the in accordance Charpy transition temperatures to determine RTNDT with ASME NB-2300.
values (for % thickness location Estimated end-of-life (E0L) RT 5.
fromthevesselinsidediametehTare given in Table 5.
These values are slightl. lower than those previously reported in Amend-ment 23 of the FSAk, because of a correction to the predicted fluence.
The estimations are in accordance with NRC Regulatory Guide 1.99 Where Cu and P content analyses were not available for the kev. 1.
NSS: ggt /SAI 7/24/81
2 i
l Shi#1 (ORIV ' )1.
deposited wire / flux combination, the maximum RT isconservativelyassumedinaccordancewithRehTGude 1.99 Re:
6.
Charpy V-notch upper shelf toughness was not a requirement when the 1
Fermi 2 vessel was manufactured.
Thus, such data is not available for the Fermi i beltline welds, but is available for the plates as shown in Tables I and 2.
A very conservative assumption of 65% factor on longitudinal uppe-shelf can be applied to the results of Table 1 in order tc estimate transverse orientation upper shelf.
(Table 2 shows that a highe-factor may be justified.) The f actor of 65% (from MTEB 5-2) woulc result in a longitudinal requirement of 115 ft-lb in order to meet the 10CFR50 Appendix G value of 75 ft-lb upper shelf.
This value is met by all plates in Table 1 except C4564-1, which very nerrowly misses.
However, since the Cu content of this plate is only 0.09':
(Table 5) a reduction of upper shelf of only 10% at E0L is consen a-tively predicted by Reg. Guide 1.99 Rev. 1.
Combining these 2 conservative factors of 65% and 10% results in an initial longitudinal uoper shelf value of only 85 f t-lb to meet the goal of 50 f t-it transverse upper shelf at E0L.
This value of 85 ft-lb, as calculate in the following equation, is exceeded by plate C4564-1.
50 =.65(L) - (.10) [.65 (L)]
(where L is the longitudinal upper shelf value at start of life) l As seen in Table 4, upper shelf toughness values are not available for Fermi 2 welds.
However, all Charpy results at the test terre--
ature of +10 F are in excess of 75 ft-lb except for one weld mate-ia!
(Heat 12008/ Lot 3833).
It is expected that further testing at higher temperatures would have revealed an upper shelf in excess of 75 ft-lb for this material also.
Evidence in this respect is presented in Tables 6 through 15 which show weld procedures cad upper shelf toughness results for similar submerged arc weld materials.
All upper shelf (* 100% shear results in Tables 12 through 15) are in excess of 75 ft-lt.
These welds are considered to be representative of the Fermi 2 weld in question (seams 2-307 A, B, C) since the welding processes (generally tandem wire submerged arc for the bulk of the weld), post weld heat treatment, and weld materials are similar (as shown in Tables 8 through 11).
Particular attention should be given to the LaSalle 1 results, since these welds were made by the same vendor (Combustion Engineering) and with the exact same weld procedure (Tables 8 and 9) as for the Fermi 2 weld.
The LaSalle I surveillance program weld material IP3571/3958 in Table 12 i
gave values less than 75 ft-lb at +10 F, but further testing at
+200*F revealed an upper shelf of 110 ft-lb.
l 7.
Drop-weight NDT values for the Fermi 2 weld materials were not determined by testing.
However, evidence for a conservative assumption of -50*F is found in Table 12, based on the LaSalle I result.
All values of NDT are -50*F or lower.
Further results in this respect are also shown in Tables 13, 14 and 15 (CBIN welds) and verify NDT NSS: ggt /SA2 7/24/81
f 3
values of -50*F and lower, except for one case.
This case (IP6484/0156 for Laguna Verde 2) is considered to be nom repre-sentative of Fermi 2, because of the relatively low Charpy test value (17 ft-lb) at +10 and 0*F for this material.
8.
The RT values for weld heat affected zones (HAZ) are assumed the sameasforthebasematerial. Weld procedure cualification test ND requirements for HAZ toughness indicate this assumption is valid.
This is also npported by the folbwing technical publications, which conclude that the HAZ touganess for these materials is actually superio.' to that of the base material:
(a)
T. U. Marston and W. Server, " Assessment of Weld Heat-Affected Zores in a Reactor Vessel daterial" Journal of Engineering Materials and Technology, July 1578, Vol. 300, page 267, (b) D. A. Canonico, " Significance of Reheat Cracks to the Integrity of Pressure Vessels for Light-Water Reactors," Suppleme1t to the Welding Journal, May 1979, page 137-5.
9.
Refer to Fermi 2 FSAR Table 5.2-9, Amendment 23 fer justifications regarding toughness testing calibration and qualification of testing personnel.
10.
Weld material toughness test coupons were made with the exact same weld filler metal and procedure as in the actual vessel weld.
However, these weld deposits were not necessarily made on the excct same heat of case plate es in the vessel.
Base plate of the same specification was employed for this purpose.
This small difference in base plate would not effect the testing of the weld metal since the Charpy specimen would be in the weld metal.
Toughness testing of the exact base plates in the vessel was done separately.
11.
Cross-Reference of paragraphs for resolution of open items:
10CFR Part SC EF-2 This Appendi>
Ouestion Submittal G
121.16(b) 8 I.B 121.17 7
III.A i
l 121.18 1-6 III.C.1, IV.B l
121.19 10 III.C.2 121.22 6
IV.B 3
III.B.4 l
i l
NSS: ggt /5A3 7/2$/81 l
'4 l
FERMI 2 REACTOR VESSEL NON-BELTLINE INFORMATION values shich affect vessel testing and operation are 1.
Limiting RTNDT shown in the FSAR (paragraphs shown on Att achment A). A sentence has been added in paragraph 5.2.4.2.2 of Attachment A to fu*eher clarify that these are the RTNDT values for the limiting - ssel locations and materials that af f ect tasting and operatir, limits.
The other materials in the vessel, which meet specific coughness requirements, do not af f ect the pressure-temperature curves.
2.
The estimation procedures for these RTNDT values are in accordance with GE procedure Y1006A006, and are also explained in paragraph 5.2.4.2.2 of the FSAR. As with the beltline, the data bose for this procedure is further clarified in response to Zimmer (ZPS-1)
Q121.15. A more specific explanation follows:
Both longitudinal Charpy values over a) Non-beltline Plates the full temperature range and NDT values are available.
RTNDT was evaluated the same as for the beltline plates.
The Itmiting plate (highest RTNDT) is in the bottom head (Heat No. C4504-2) with an NDT of +10 F and lowest Charpy values of 40 ft-lb. at +40*F and 76 ft-lb at +110 F.
Linear interpolation estimates the longitudinal 50 f t-lb.
temperature as +60 F.
Adding 30 F for orientation correction and subtracting 60*F (Nb-2300) gives an RTNDT of +30 F.
b) Vessel and head closure flange materials had NDT values of
+10 F (or possibly lower - no break at +20 F) and lowest Charpy values of 95 f t-lb. at +40 F and 167 f t-lb. at +40 F.
The correction of 30*F was added to +40*F for orientation
[
and 60 F was subtracted to give an RTNDT of +10 F.
c)
Feedwater nozzles had a maximum specified NDT value of +40 F, and Quality Assurance records show no deviations in this respect.
The lowest Charpy value for these forgings is 38 ft-lb. at
+10 F.
Adding 2*F/ft-lb. gives an estimated 50 ft-lb. tempera-i ture of +34 F.
Adding 30*F for orientation and subtracting 60 F (NB-2300) gives an RTNDT of +4 F, as determined by Charpy.
is set equal to the NDT value of +40*F.
Thus, the RTNDT d)
Closure Studs - The lowest Charpy values at +10 F are 50 f t-lb.
l and 33 mils lateral expansion. Thus, in accordance with NB-2300 the lowest service temperature is +10 F.
l l
l
5 e) Non-beltline Welds The purchase specification required Charpy tests at +10*F or drop-weight NDT of +10 F or lower.
Quality Assurance records show no deviations in this respect. Charpy requirements at +10*F were for 30 f t-lb.
average with no single value less than 25 ft-lb.
Assumir.g 25 f t-lb. at +10 F as the limiting case, and adding 2*F/f t-lb.
gives an estimated 50 ft-lb. temperature of +60*F.
Subtract-in? 60*F (NB-2300) gives an RTNDT of 0 F.
Data presented in support of the beltline welds indicate NDT values much belcw O'F.
Thus, the RTNDT value is taken as 0 F.
3.
Refer also to paragraphs 7 through 10 of the Beltline section of this submittal, since they also apply to non-beltline materials and testing.
4.
Cross-reference of paragraph 2 for resolu*. ion of open items:
EF-2 This 10CFR Fart 50 Question Submittal Appendix 0 121.16 (a) 2.e I.B 121.16 (b) 3 I.B 121.17 2
III.A 121.18 1, 2 IV.A.1 121.21 2.d IV.A.3 3
III.B.4
6 FERMI 2 MAIN STEAM PIPING AND FERRITIC VALVES (MSIV AND SRV) 1.
The Fermi 2 main steam piping was procured to the USAS B31.7, Class I,1969 Code, which did not require toughness testing.
However, data are supplied in Tables 16 through 21 to show that the Fermi 2 NSSS supply steam pipe materials would possess adequate tou ght.e s s. This is concluded from available toughness information for Fermi 2 in Tables 16, 17, and 18, and from the fact that similar materials (as shown in Tables 19, 20, and 21) have data showing adequate toughness per more current 10CFR50 Appendix G Main Steam Pipe requirements.
No toughncss results are available for the 26" pipe. Ecwever, the material is pipe fabricated from A516 Grade 70 plate which is a tough carbon steel melted to fine-grain practice for low tempera-ture service. Charpy V-notch data for this uaterial in Tcbles 17 and 19 verify this toughness. Furthermore, Charpy keyhole data are available at -50 F for the Fermi 2 26" cibows fabricated from A516 Grade 70. A Charpy transition curve shift of about 60 F increase should give an estimation of Charpy V-notch results for these elbows (
Reference:
W. S. Pellini, ASTM Spec. Tech. Publ. 158 page 222. 1954). Thus, they should have adequate toughness at about
+10 '
even better toughness at tra more current test temperature of
.iable 19). This transition temperature shif t and argument also caou d apply to the tweepolet Charpy keyhole results in Table 16.
Note that the material and pipe suppliers in Table 19 are the same as for the Fermi 2 26" pipe (Table 16).
2.
Fermi 2 Safety Relief Valves (SRV) are in compliance with 10CFR50 Appendix G since they are exempted by the ASME Code from toughness testing because of their 6-inch size.
3.
Fermi 2 Main Steam Isolation Valves (MSIV) were exempt from toughness testing at the time of purchase. They do not see significant pres-sures at temperaturea below that of steam.
Typical information is given in Table 22 for Fermi 2 MSIV's.
Toughness data on similar materials for MSIV's on other projects, where toughness testing was done, is attached on Tables 23 and 24.
In fact, Table 23 gives A216 WCB base metal, weld metal, and HAZ toughness results from the Weld Procedure Qualification used for Fermi 2.
In some cases (Table 24), the materials and valves vendor are the name as for Fermi 2.
These data demonstrate the capability of the Fermi 2 MSIV materials to meet current toughness requirements.
7 PurtherevidenceoftoughnessforSA-105forginga(MSIVbonneft, or cover, material) can be found in the July 1978 issue of Metal Progress, pahas 35-39. This article shows Charpy V-notch toughness in excess of 25 mils et +40*F and ND7 values no greater than -10*F for SA-105 material normalized at 1565'F for 4 hr. and air cooled after forging.
4.
Cross-reference of parsgraphs for resolution of open items:
O EF-2 This 10CFR Part 50 Question Submittal Appendix G 121.20 1, 2, 3 IV.A.3
-=--
yt-u
=ewr+-
-- ag
-yyi
-t1p_,m---+W-e----%-w+
t-
+-n----r-----p,ye-
-*t-t ee--y-t f3a
- w-*
---+- --
o Compliance k'ith Appendix H, 10 CFR Part 50 Question 121.23
Response
A sketrh of the beltline of the reactor vessel showing the location of all of the beltline plates and welds is shown in Figure 1.
The azimuth angle giving the location of the capsules is given in the response to Question 121-24(c).
Question 121.24
Response
The weld caterial has a Cu content of 0.32 wt. % (Table 5) and is very close to being the limiting material in the vess ' beltline.
(It may actually be limiting since the Cu for the limiting material in seams 2-307 is not known, but is probably lower than 0.32.)
ihe plate caterials are very close to being the limiting beltline plates (only 8 to 10"F lower EOL RT rnan the limiting plate).
SDT The surveillance specimens were not taken from alongside the ASME NE-2300 specimens. This is not considered critical since they are just as representative of the caterial in the vessel as the 53-2300 specimens. This requirement has been dropped from the current proposed revision (Nov. 1980).
(a&b)
Fermi 2 surveillance specimen plate and weld caterials are identified, with properties and predicted radiation effects, in Tables 1 through 5.
The weld procedure is given in Tables 6 and 7 and represents weld seam 15-308.
(c)
The actual specimens in each capsule are the following:
Present Program Tensile Charpy V-notch Capsule 1 2 BM Long 8 BM, Long (Azimuth 300 )
2 WM 8 WM 2 HAZ 8 HAZ Capsule 2 3 BM Long 8 BM, Long (Azimuth 120 )
3 WM 8 WM 2 IIAZ 8 HAZ Capsule 3 3 BM Long 12 BM, Trans.
(Azimuth 30 )
2 WM 12 v3 3 HAZ 12 HAZ p __., -
m 1
0 The specimens indicated above are as the program is presently constituted. Capsules 1 and 2 will be updated to include 12 each of Charpy V-notch specimens of base metal (lor'd tudinal),
i weld metal and heat-affected zone.
(d)
Location given in response to Question 121.24(c).
The attachment method of the capsules is in accordance with GE Drawing 922D218. The assembly is attached to mounting brackets (upper and lower) and a bolt at approximately the center of the assembly can be adjusted to secure the holder firmly against the top and bcttom brackets.
(c)
The lead factor is the ratio of the flux greater than 1 MeV at the surveillance sample, divided by the flux greater than 1 MeV at the point of greatest flux in the vessel.
For Fermi 2 this value is 1. 4. This lead factor has arbitrarily been reduced by a factor of 2 in order to improve the probability that vessel fluxes estimated from surveillance data will be underestimated. The lead factor then becomes 0.7.
Note The lead factor is the relationship between the measured flex /
fluence at the surveillance sample and the peak flux / fluence at 1/4 depth into the vessel wall.
This relationship has two variations. One variation is the raiial variation from a position inside the reactor pressure,essel wall to a racial positien at 1/4 thickness nf the vessel vall. The second variation is the variation of the flux as a function of angle from a position adjacent to the surveillance sample to the position of the peak flux.
The peak fluence at 1/4 t was calculated using a one-dimensional program and applying a peaking fac tor to adjust for the maximum point in the angular direction.
In addition to the peaking f actor, a safety f actor is applien to the analysis to insure that the calculated peak is a maximum. Attached is an updated sheet for Table 4.3-2 for the FSAR Chapter 4 that provides the current 251-764 neutron fluence calculations including the data at 1/4 t in the vessel.
Not all of the analysis required is available to define the l
fluence at the surveillance sample. The radial value can be selected from the one-dimensional analysis. However the angular variation from the surveillance sample at 30 to the peak is not well defined.
....._,~ _.....,., _ _ _ _._, _ _
+ *'
h4 (f)
The materials surveillance capsules vill be loaded prior to fuel loading.
(g)
The material surveillance program assumes a *0-year life and 80% capacity factor, thus the capsules withdrawal will be:
Withdrawal Capsule #1 8 full-power years Capsule #2 24 full-power years
. Capsule #3 Standby Due to uncertainty in capacity factor, the cal (ndar withdrawal schedule cannot be stated with any confidence.
Question 121.25 Kesponse:
See response to Question 121.24.
Question 121.26 Respense:
See response to Question 121.24(c)
Question 121.27 Re s p.onse :
Euch capsule also includes a Fe, Si, and Cu flux wire. A separate neutron dosimeter is attached at Azimuth 30 and contains 3 Cu and i
1 3 Fe flux wires, at Capsule 3.
i l
l l
l l
l l
l AAS/br 7/29/81 l
l l _., _.,
- m O^
k Table 1 FERMI 2, BELT 1.lNE PLATE TOUCilNESS DATA (SA-533 CRADE R, CIASS 1 - LUKENS)
CllARPY V-NOTCH TOUGHNESS Lat.
Plate Dropweight Orientation Charpy Fnergy Expansion Heat No.
NP7 (L or T)
Temp (ft-lbs)
_. Mils
% Shear Lower C45o4-1
-20 F L
-80 F 11, 10 7, 7 0, 0
-40 F 30, 36, 23 21, 26 17 10, 10, 10
+10"F 60, 45, 59 44, 32, 42 25, 15, 25
+40 F 86, 74, 63 59, 52, 45 40, 30, 30
+110"F 104, 95 70, 72 95, 90
+160"F 113, 116 85, 83 100, 100 B8614-1
-20 F I.
-80 F 5, 10 5, 7 0, 0 (Also in
-40 F 43, 25, 27 32, 20, 21 5, 5, 5 surveillance program)
+10 F 62, 64, 56 41, 45, 4G 20, 25, 20
+40 F 86, 75, 70 62, 54, 50 40, 35, 30
+110"F 112, 110 81, 79 95, 90
+160"F 17.5, 135 86, 90 100, 100 C4574-2
-30"F L
80 F 8,
16 6, 13 0, 0 (Also in
-40"F 34, 32, 27 25, 24, 20 10, 10, 5 surveillance program)
+10"F 48, 49, 60 36, 37, 43 15, 15, 20
+40"F 76, 63, 69 56, 47, il 30, 20, 25 Allo"F 98, 103 72, 76 95, 95
+160"F 12 *a, i19 85, 82 100, 100 b
E Ttble 1 (Continued)
FERMI 2 BELTLINE PLATE TOUGHNESS DATA Lat.
Plate Dropw ight Orientation Charpy Energy Expansion Heat No.
NDT (L or T)
_ Temp (ft-lbs)
Mils
% Shear Lower C4563-2
-30 F L
-80"F 10, 18 5, 13 0, 0 Intermediate
-40 F 30, 38, 30 22, 27, 23 5, 5, 5 Shell
+10"F 46, 67, 63 37, S4, 47 15, 30, 25
+40 F 76, 85, 61 58, 61, 45 40, 50, 35
+110 F 106, 102 75, 72 95, 95
+160 F 116, 122 89, 87 100, 100 Lower C4540-2
-10 F L
-80 F 7, 9 6, 8 0, O Shell
-40"F 30, 44, 30 23, 34, 25 5, 10, 5
+10 F 64, 76, 74 49, 58, 56 30, 30, 30
+40 F 87, 84, 97 69, 63, 72 40, 40, 50
+110 F 115, 119 85, 84 85, 85
+160 F 344, 146 90, 92 100, 100 C4560-1
-10"F L
-80'F 14, 11 12, 8 0, 0
-40 F 59, 53, 38 45, 41, 30 20, 20, 15
+10 F 85, 79, 99 62, 60, 72 30, 30, 35
+40 F 90, 121, 109 69, 78, 74 50, 65, 60
+110 F 160, 144 88, 88 100, 90
+160"F 158, 153 90, 88 100, 100 M.
C4554-1
-10 F L
-R0"F 11, 25 8,
18 0,
1
-40"F 35, 40, 42 27, 30, 32 20, 20, 20
+10"F 59, 65, 68 45, 49, 51 30, 30, 30
+40 F-70, 77, 87 59, 61, 64 35, 35, 35
+110"F 131, i18 88, 89 100, 40
+160"F 137, 127 90, 87 100, 100
-=:::
/
-~
.12.
METALLLlRGY LABORATORY Table 2 CHAPPY IMPACT TEST DATA TRANSVERSE RESULTS (SURVEILLANCE PLATE)
Requestor:
[<.)
[uo e [es y /
Responsible Engineer:
w S//9/79 Charge No.:
P 793'o cate:
DRF No.:
EWA No.:
bA /3 OJ - O /
Material Condition:
9/4.f'53 13 g/s 7 r
//T. :e-any-z i
Speci en Bath Test Energy lateral Identificatien Medium Temperature Absorbed Expansion Remarky
- F Ft-Lb Mils 3
5 <f Ar4 e7
&38 Menu
-20*
- z 2. o
/ 7..F I Te 63 il ri lo' 32,0
- 22. f S ?.
10 75.o 295 S 'f.
63 L 0
o.
'lo' 50.0 3 f. 5 19 %
63 c]~
n t<
$0 S2 5 dl. S
/o 7 6] P C.3.D A t !?
GF d '/. o 47.0 30 %
l 43 A it 65' 59o y J. F 3 0 ~7a l
C 3 r1 Huo Iop *
~? s' o 60 f
60 %
dit a It 9 '
to ?
7 C. o (Go ?
C3 Y ll
// 9 '
88 C6. 0 VS ?.
63 T it Act' il2 f 93 5 L oo /s 202 l 08, f 79, d lo 0 E (3 E~
1 1
_IlsaS Ofse-- %&J. 7v Cs/i.has75c/su Tf'-So?. 0294 AAL~e IAsT ul4x raf -
7/2c/7 8
&rnu/Du 2.1 7.z. Reu-d nm,p einrso/ - 61/,AnidHuman Test 7: :cdure No. CM55 2.1.7.2 Rev O Specimen Si:e
/ ce ;: / (Joy S/N Tester 113073 5pecimen Orientation TA'A N 5 v #j/3 e Calibr2 tion File No. 309-1 S/NLaterialExpansiong,[ne16602 Perfor ed by_ M/I((
c 3 v i _ u,,
Level _
3
Tabir 1 m
FERMI 2 T.YPICAL BELTLINE PLATE (SURVEILLANCE PLATE C4574-2)
~
LUKENS STEEL COMPANY
~
7-9-68 ais 1771 3^5 a.
10 Cos t.as tion En tr Inc.
TEST CE.1TIFICATE p 707//,
C h :t' c.n c c ; a l'1 y.
.si o.~ine no cu. s eTe o Kr. Jr.c k N1 chat 1, l'i.u c h Ir:pt S
[
25720-2 40-37377 MB 62958 FJ Sracieec..eus
/
-~"
T).a c.Ee.w
,,, y c)Q 7KU Coahustion Spec P3Fli'(C) 9/25A7 (SA-J33-65 cr. Il Claus 1) ASMC Sec 3 C1 son A TE C0000 Req.d 2557 o.1:. <
- o. r:
v.=.
a.
- ~ _. - - _..
.____CHfMICAL....A IJ A l Y S I S
[
mm c_
'-'n ~ ~l
~ s u
u
~56)/
23 '[ ~1.33 olo ',
015' 2:al[17 t
r P.O.P, V.I P. Steel c4578
- 24) 53p 57 20 1.35 012 '
015' Slab 1
/
c81568 23p 1.32 011j 016 7 60 j 56 /
24 61 5 84 1,29 / 01.2 036 C 23 33ab 2 20!
32f ria. 55[
1.34.01g'
- 1. 36 /
54 01 016'
. ciS74 22 /
t 25 55 016 s slab 2 2e i
PRO PE R TIE S PH Y SIC A L
- .;'T;,l.
igl
.~.
o a 5c:ie eo=
mo c4578 1
. 96o'
/ g 3 W'/-l d l
1-291-7/16 x 133-1/2 x 7-3/8";
/
728 939 /
22 l
i 3,;<;. 5
!'3 l-231-5/16 x 172/3/4 x 7-3/8"
. (
c4568 2
%9 -
q 76EI
- 985, 24 /
k i
i on P l
' ce" 2
6,3 'E 2 /
c;. a7
.%,B 7 l prograkole') per Tests heated 1%50-1650*r.' held 4 tes eru
- E. cooli v.
ona ac v-'s I4 hre max rate for 7*-3/8 Cause pl a te.
Tren tempe Fe d I?Oo-13PO"F.
and air cooled.
l l
Tests stress relieved ll25-2h5'F.
i held 40 hrs and furnac s cool ed within a rate of 16 hrs min c. t o 600* F.
l l
Plates furnishedj'in sejrolle,d terippr. /.-
-}
l
.r..
s_.~
- V I*#-
. ~ ~ '
V/c brer'.,y c ee.lg slit t t., ave f. pes.....- (e.,.se e I os...toered m the records of slee cort porey.
,,,,,,,,,,,,3 W
14
' Table 3 (Continu;d)
- c. c.
s'. cia c sucV5TICH ENGINEERING. INC.
t METALLURGtt.AL RE5EARCH A:40 DEVELOF4EN. DEPT MATERIAL $ CERTIFICATION REPORT uATERIAL $7ECIFICAT.O.9 P3r12(c)
CONTRACT NO.
2667 VE,NOOR t.ukens Steel Co peny JCS No.
V.70537-002 HEAT NO.C 4574 2 CODE No. C-3705-2 MATERI AL DE5041Pil0.9 231-5/16" x 172 3/4" x 7-3/S" Lwer Tntermediate s' 211 MILL CHEv. CAL ANALY5t$
I s I to I au l
c.
I u,
i es e,
tver e
- i.,
e 22 1.34
.014;.014.26 i.55 l l.52 i L' E C F a '.. C A L TEiT5 VL T e a f t itst wo.
ca.ag ttit vit LD ft%*.E ELO 0-
- ! :.'. * : d itvet aat. it.a stet.;te, cs:
sta!. :. < 1 w 2 *;
"Isata.
VLT.A
.5*5
?.T 71.6 I
95.0 l
25.0 t
73.0 VLT.B l
.305 g
?.1
/1.6 j
se.]
l
.a.a
}'
t..
INPACT AWO/OR F % A C,T_URE TEJT5 Tv r t I t t m# * '
vaws; lT(sp.**
va usts I
nor
., g Charpy rt /!.b s % Shear te t. E'y p.
Droo *'?irts j
V Not:h
-30 S.0 0
6
-80 16.0 0
13
-40 1-r
-40 34.0 10 25
-30 1-r
-30*r
-40 32.0 10 24
-20 2.Nr
-40 27.0 5
20 0
1-Nr
+10 48.0 15 36
+10 49.0 15 37
+10 00.0 20 43
+43 76.0 30 56
+40 63.0 20 47
+40 59.0 25 51
+110 98.0 95 72
+110 103.0 95 76
+160 !111.0 100 35 i>;60
'119.0 103 82 aposttomaat psTAiNCL@ar EAT TREATantosT:
(a) 1550 1650*,' 4 hou r s wa ter gue.nc.hed.
(b) 1215' : 25"r 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.
l (c) 1150*r ; 25'r 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> furnace cooled to 600*r.
l 1he CVM impoet specimens were takan parallat to the mejor rolling direction of the plots o c the l/41' level, and were notched perpenda cular to the p tote surfact.
The tensile specimens wara taken in accordance with AS1N A.10 68.
The_above tests vare witnessed by G. C. Re p r e s e nta ti ve, 5. G. Holt.
l t.., t.m:
cc: l'. :'.-b ( 2 ) v
- v. %,t,.. ',4o
.:.. ;.. i... : n. '. s..
j l
J. Dr fie1d L t.'e d. 3 4.
i.. = :
.. t i w e n i '-
"d""I"*
' 8 ' " '- " : ' r '"
T. B. Earten T. H. Cull:n g g,3.,3,,g g,.
. g.,.,,,.,
H.
E. Lorentr, Jr.
j.N'=^
af l
Poy 19, IN9 DAtt
h Table 4 l
FERMI 2 BELTLINE WELD TOUCilNESS DATA, POST WELD 1150 F FDR 40 HR. TYPICAL, SUB!fERCED ARC WELDING - B-4 MODIFIED WIRE WITH LINDE FLUX Charpy Toughness Drop-Weight Charpy Charpy Lat.
Iot # cr NDT Temp Energy Expansion Weld Sean Type Heat f Flux #
F
_."F ft-lbs Mils
% Shear 2-307 B-4 Mod.
13253 3833 g ^
NA
+10 79, 79, 82 NA NA A,B,C 12008 3833 d d NA
+10 62, 47, 62 NA NA
$2 15-308 B-4 Mod.
- 33A277
- 3878 3 "
NA
+10 83, 94, 87 NA NA A,B,C,D d
4^
1-313 B-4 Mod.
10137 3999 3 g NA
+10 101, 108, 107 NA NA d
Not Available NA
=
- This material is also in the surveillance program.
N 1
l6 Table 5 FERMI 2 BELTLINE RADIATION t.RTg & EOL (END-OF-LIFE) RTNM 18 n/cm2 ((T wall)
Peak EOL Fluence = 1.1 x 10 A.
Plates - Beltline Y1006A006 REG. GLIDE START 1.99 EXTRAP.
EOL NDT (
}
O NDT ( F)
RTNDT ( F)
HEAT NO.
Cu P
C4564-1
.09
.010
-12 20 8
B8614-l*
.12
.011
-20 32 12 C4574-2*
.10
.014
-16 30 14 C4568-2
.12
.012
-12 33 21 C4540-2
.08
.010
-10 17 7
C4560-1
.11
.010
-10 27 17 C4554-1
.12
.011
-10 32 22 Limiting Plate B.
Welds - Beltline Y1006A006 REG. GUIDE START 1.99 EXTRAP.
EOL F)
ART F)
RT SEAM HEAT / LOT C
2-307A,B,C 13253/3833 f.07
.013I**
-50 f110 60 12008/3833 1 13
.0104
-44 1110/
66 Limiting Weld 15-308A,B.C.D 33A277/3878*
.32
.016
-50 106 56 -
1-313 10137/3999
.23
.016
-50 76 26
- This material is also in the surveillance program.
- Bare wire analysis only; as deposited wire / flux combination analysis not done.
Therefore, maximum ART is assumed.
17 Table 6 BELTLINE WELD PROCEDURE FOR FERMI 2 SURVEILLANCE PROGRAM i
CC!GUSTIO:t C;GI::EE31: 3, I:lC.
NUCLE.G C.U/J.ITY L::31:.T.E31:;3 SURVIILL::CI PRCC311 E T HIFC3T Casto=er General Electric Co:pa. y Contract 2607 Material SA-533 cr. 3, C1. 1 Job No.
V-70711 Dvg. No.
E-232-902
'seem no.15-306 Detail Weld Procedure No. SAA-k-O g,
7 3/3" Code No.
G-3705-1 and G-3705-2 R11er Metal (Tne, lit. and size)
SL, 33A277, 1/8" Plux (Type and Ict)
Linde 124 Lot # 3878 hst Veld Etat Treatmect:
Temp,1150 F I 25 Hours 40-3/4 Veld Dept. or Shop' (fuelear Shop Velders Symbols VP - n - W - TV - W Non-Destructive Tests Ve certify that the statements in this Report are correct as contained in the g7 N&P 2.4.2.4(d) Md.1(a), 3(a)
Records of the company.
PT C0ftlU57 T ENGINEERING. *
.__ ;.?
[
k v
RT W 2.4.1 3(b) Add. 1(a), 2(a), 4(a) gy.
ut Date:
f8 7{
~
f.
/
I
.' s w
m.w-y e _. - -,
IB, Table 7 DETAIL WELD PROCEDURE FOR FERMI 2 SURVEILLANCE PROGRAM y
'f'.
COMBUSTION Et!GlNEERISG, INC.
7 NUCLEAR COMPCiCNTS DEPARTICNT l
CHATTANCCGA, TENNESSEE l
CONTRACT NQ. :
DETAIL WELDING PRCCE0 LIRE ii DPNTIMG NO. :
NO.:
SAA-4 Rev. 0
!{ WEID NO. :
DATE:
l.{
REFERENCES:
MLP 6.1.1.2-(c),
M&P 4.3.8.5(b) l; tr SAA-33-29
.. D
!) QSAA-llA(1), QMA-llA(1)F4
'7- [
\\i
' g ?,
l l, Non-de structive Testing:
{
\\
i? P.T.
- /P.3 P-
./-
b tx~l'x '.
!. ".:?:
I "
.. U.T.
g l
WELDING COWDITIONS :
, Electrode Typa & Sima 1/8"g Mll.3-4
!.i F112er Metal Type & Size Flux Type & Size Linde 124, 20 X.150
- Welding Current & Polartty 550 AC
' Arc Yottaga 33
'F
' Travel Speed (in/ min.)
12.-13 Shield Gas Type & Flow Gas Cu,e Size Cas Cup to Work Distance other
't 105 sf value or Range W B LD I_N_q_pos Iy_IO_N :
F'Ist (Vertical Pro 6resaiai) preheat:
250_,4 Hold nny.na:nd: 'd.
Unt il P.W.H.T.
In te r ra s s :, __.5_00.
- r.
~ Fost-weld heat treatament:._1150_*1__23_v hold one hour / inch
. thickness of vald Interswdlate P.w.m.r. ____._ 1100_.*+ _50_.T, ho2d __ M _..ednutes
19 Table 8 DETAIL WELD F ROCEDURE FOR FERMI 2 BELTLINE SEAMS 2-307A,B,C CGGUSTION ENGINEERING, DC.
EMMAR COMPO:.CNTS DEPARTr'CMT OIATTANCCGA, TENNES3RR CONTRACT NO.:
DETAIL WELDING PROCEDURE DRAWING NO. :
NO.:
TSAA-2 (A)
-Rei. O WELD NO.:
DATE:
PIFERENCES:
M&P 6.1.1.2(c),
~ --
M&P 4.3.8. 5,(b), SAA-33,27
.t w
g I
\\\\ N m
Non-Destru'etive Testing:
W
./D-3 P"-31 P.T.
M.T.
\\,. _. @
R.T.
\\'
l U.T.
/
n,m WELDING CObDITIONS:
Electrode Type & Size See attached sheet.
Filler M2tal Type & Size Flux Type & 512e l
- Welding Current & Polarity
' Arc Voltage
- Travel Speed (inhtin.)
s.
Shield Gas Type & Flov Cas Cup Size Cas Cup to Uork Distance Other l
ai 107. M Value or R nge
}.ILDISC POSITICNS:
Flat
~
l Preheat:
25.0
- F.
Hold DM.Y;GX !:GOC Un til P.U. H.T.
Interpass:
500
- F.
Post-ucid host treatnant:
1150*i 25 _'F hold ena ho.:r/in:h thickness of u::Id.
Inter.::dic te P.U. H.T.
1100 *+
50
- F, hold 15 c.inutes:.
--.~
Table 8 continued DETAIL WELOING PROCEDURE No.:
TS AA-2 (A)
Rev.0 Sheet:
2 of 2 WELDING SEQUENCE TRAVEL AMPS
- VOLTS
- e
~
olst Pass - O.D. 3/16"# Mil.B4 Mod.
Use copper backing bar Single Arc ist Increment - 0.D. 3/16"5 Mil.B4 Mod.
13 IPM 650 AC 31 Single Arc (1) 0.D.
'o 1 " Level 13 IPM 650 AC 31 3/16") Mil. B4 Mod.
Single Arc (2)
I.D.
to 1" Level 22 IPM 600/550 AC 31 3/16"3 Mil. B4 Mod.
Tandem Arc (3)
- Remainder - I.D.
22 IPM 600/550 AC 31 3/16"O Mil. B4 Mod.
Tandem Arc (4) 0.D.
to 3" Level 22 IPM 600/550 AC 31 3/16"5 Mil. B4 Mod.
Tandem Arc (5)
- Remainder O.D.
22 IPM 600/550 AC 31 3/16"5 Mil. B4 Mod.
Tandem Arc Backweld if required 1/4"3 E-8018 C-3 (Flat Only) 325-375 DC-RP 25 Or 3/16"C E-8018 C-3 210-260 DC-RP 23
' Flux Linde 1092 65 x 200 l
t i
Table 9 21 DETAIL WELD PROCEDURE FOR LA SALLE 1 SURVEILLANCE PROGRAM CO.'IBUSTION ENGINEERIt:G, INC.
NUCLEAR CO:i?O:iENTS DEPMJH:.NT Chattanooga, Tennessco CONTRACT NO.:
DETAIL WELDIWG PROCEDURE Dl W.fII:G N O. :
NO.:
TSA A-2 (A)
Rev.1
!! ELD MO. :
DATK:
REFERENC'ES:
M6P 6.1.1.2(c),
~ ~~" "' ' '" ' " '" "
~ ' "
M&P 4.3.8.5(b), SAA-33-27 (3)
QSAA-llA(3), QMA-llA(1)F4
_e.--N4 - @
~(~ -" ~ g
.i Non-Destru~ctive Testing:
P-3,/K.c P' ' - )
V >
P.T.
N l
/ / fc6 s..'_3 n.T.
R.T.
^
/
/ Q'
\\
\\
U.T.
/
-4
\\k
/
8 f ~. C..
_%d
.......,...........m,..,m,---
Urim SG CO'mITIU.;S :
Electrode Type & Size See attached sheet.
Filler M::tal Type & Size Flux Type & Size
- Welc'ing Current & Polarity
' Arc Voltage
' Travel Speed (in/ min.)
Shield C.,s Type & Flo.
Gas Cup Size Cas Cup to Uork Dist.nce Other
'+ 1074 of value. or Range.
WEL.DI#4_P_0_S.lT10ES_1 Plat Preheat:_.__uo._._ F.
Hold n w. u s :'.:.C.
UntiL P.W.P..T.
Interpass:
_ 5 0 0 _.__ ' P.
Post-weld heat treatment:.
11Aq*f _15__'F hold one hovr/ loch thieknes4 of we.1d.
Intermediate P.W.M T._._ __J 100_*+
50. _4',
hol d._ _.
15 minut es.
fl Table 9 continued
- l I'
DETAIL WELDINC PROCEDURE No.:
TSAA-1(A)
Rev.1 L
Shest:
2 of 2
(
l JELDING SEQUENCE TRAVE _L AMPS,'
VOLTS
- i
- 1s t l'a s s - 0. D. 3/16"J Mil.B4 Mod.
[
1st Increment - 0.D. 3/16"5 Mil.B4 Mod.
"~
Single Arc (1) 0.D. to li" Level 13 IPM 650 AC 31 3/16"# Mil. B4 Mod.
Single Arc (2) 1.D.
to 1" Level 22 IPM 600/$50 Ac 31 3/16"# Hil. B4 Mod.
Tandem Arc (3)
' Remainder - I.D.
22 IPM 600/550 AC 31 3/16"# Mil. B4 Mod.
Tondem Arc (4) v.D. to 3" Level 22 IPM 600/550 AC 31 l
3/16"$ Mil. B4 Mod.
Tandem Arc l
(5)
' Remainder 0.D.
3/16"$ Mil. B4 Mod.
Tanden A re Root or Backweld 1/4"5 E-8018 C-3 (Flat Only) 325-375 DC-RP 25 i
or 3/16"6 E-8018 C-3 210-260 DC-RP 25
' Flux Linde 1092-65 x 200 o
g. g.
I Table 10 23 DETAIL WEl9 PROCEDURE FOR LAGUNA VERDE 2 SURVEILLANCE PROGRAM Cat woCLitAm CosPAn.
- wtLo PmoctDURE a
F_
Crooves a buildup spic FICATION ts!.sco aArDcz 4 2MlNI Co.
Inw Alloy sMA s sn
)
owtonge Ceneral Electric company
- d* M..
3 3, _,. m' j
wuctama vaeesta (Class 1) p.gg 1
3, 3
w shielse( Met _et Arc and Submergad Are e.,,
2-17-63 EeTdLag oFM Plzo subtrevo 1 Materiet e
e0-23-ta)e,:-
(f, att e atwca satcaricarca.s
- p. ngxy pg.;ut7IwInts:
.n Cens tal WPS 800 Latest Pavision Minianas preheat of 300*r shall be General WPS 420 !.atest Revision 8Pplied uniformly to the full
'-3..
emoescuna ovaus cAview i thickness of the weld joint and
- ,0..
wo.
-* pesmew Twicawats wawes adjacent base material for a sini-i a'O I'h" 1890($MA)
V 3/16* to 8" ever 8 e8s W ere the 1891(SMA)
N 3/16' ta 8
- *
- U
- f.
1892 (SMA)
OE.F 3/16' to e' d*
C 1893(5A-1:
F 3/16' to 3*
Maintain 300*r min. ' preheat temp.
2200(SA-2l F
3/16' to 4*
until start of postveld heat trea t-ment except for longitudinal and t
circumferential shell and head rest ietar TatATMawr-Procedure atualified with 50 hrs. at seams, prehest may be dropped to 2.50*F mio. $ hevrs after completion 1150*r +25*/-50*r.
Postweld heat treats 6ent of the weld-of weldinf. All tunoff tabs and ment shalf te in accordance with a flux d ans mu s t be rs move d p ri or te>
e p*.
dropping prehe at he t w 300*T.
.{ -
CS&I approved procedure.
~ '
INTE AP A55_ TEMP E RATONE REoullWMDaTS :
'a.
ggg gag, 4
(
ASME SA-533 Cr B Class 1 or The interpass tesPe rature shall
~
not ex ce e d 500* r maalaus.
.C SA-508 Class 2 AsME Group No. 7133 Subgraus T 73ttgg gg7Ag,
'f.
71LA.EA M57AL - ASME submerged Are shielded Metst 4re SpecificatJon - W. A.
.i. *.
Classification - Z8018-4 Clas sification - W. A.
Specification - s#A-5.5 Malysis - A3 (except Ni 0.50 to Analysis - A3 (except Ni 4.50 tol.2!.
1.25)
Usability - r4 Di sbilit;y - TE Trade alame - Alloy Rods E801SMM Trade Name. CSI INMM (in Mickel) k l
Submerged Arc or equal l
? *.
See Adjacent Column..
CtJCTPICAL CN A PACTE A3 TI CS :
.a
?.. -
tj.;,
ELECT RicaL CHamacTlatKTIC3 -
$MA - Oc3p
~*J.
See Adjacent Cole n.
Submer ed Arc g
l
- [{..
- i Tand a Wire l
mLLan=c CAs-None Lead Wire DC 7.P h...
Sacw sas -
Nona Trail wire AC L.
FLut -
Lidde 12d Single Wire -
AP l
.r cusman,movau I
0 0<.'." 1 I
MN l'W *
" l,R *""8 l %8.c"',*1"..
Tn s 1 m '.f M
- * ~ i aa a
T r'.1:"e$',$'.'*?':..T'w,~,.*,
a 'C
- 8 i 1
c rsni i _ A.*E.M'M.'3
,Ib5re.l. D e -
t t
q, e
er
2.4 Table 11 DETAIL WELD PROCEDURE FOR ZIMMER 1 & LA SALLE 2 SURVEILLANCE FROGRAM serclFICATION CONTRACT NO.
OY " Daft
,t Low Alloy SitA 6 SA T
- _- re re A*/
nh/1, Crooves & suildup u
_. a
- %',*,,v *(_ w P S 32 3-7 r6 General Electrie comenny
,m, i,
Paoovet moet r An vettrin fclas s Al pact wo 1
or 1
suscairtio., Sh i e l de d Fle t a l A re _ an d S ubne r e e d oats 2 - i~ 7 - 6 9 Are Welding of ASME P123 S t.b e rou_o 1 Ita t e r a a l ass tsicas mo 4 ' 9 7 0173 -
n-AE FERE NCE 5FECIFICAflCNS
.pggggg7 ggggy gyrgy;S :
General WPs too Latest Revision Gineral WPS 320 Latest Revision Minimum preheat of 300*T shall be PaoCEcuRE QUAltrlCAfloN applied uriformly to the full thickness of the weld Sci-t and no PtolTION THICE Nt 11 R ANCE adjacent base material fCr a 9 6 3 (':v)
T(3ub Are) 4 1/2" to 9.9" minirum distan:e of "T"
or 6",
h F,V,H(SMA) whichever is least, where *T" is the material thl kness.
1261(c") T(Sub Are) 2 3/4" to 8" F,V(SMA)
Maintain preheat temperature until start of post weld heat POST ME AT TRE ATMENT -
treatment.
Procedure qus12fted vith 50 hrs. at 1150*r +25*/-50*F.
I N T E P.P A 5 3 T E P.P E 3.A T U P I FIOUI*IMENTI Pest weld heat treatment of the weli ent shall be in accordance with The interpass terperature shall not exceed 500*r maximu.
)
a C3&I approved procedure.
BUE WETAL-TILLER METAL:
ASPI S A-5 3 3 G r B Cl a s s 1 o r Suh.er:ed Are SA-538 Class 2 Specification - N.A.
ASME Group
- No. P125 Subgroup 1 Classification - N.A.
Analysis - A3 (execpt Ni 0.50 to i
1.25)
Us ability - F6 FILLER METAL - AS:C Trade Nare - Adcom I N.w.w.,(1% Nickel or equal ilhielded Metal Are l
See Adjacent Colura Specification - 5 A-316 Classifiestion - E3013-G
}
An aly s i s - A 3 (except Ni 0.50 to 1.25) l UI3D511IY
- I4 i
ILIcT MIC AL CMAAACT [ Al; TICS -
Fr ade N sene - A11of Rods E1018N.".
Ise Ad); stent Colu.?n CECTRICAL C "7ACT P I57:25:
\\
l wtwi.sc As - Non e l
ML# ~+A3 -
None 3MA - OCF2
~
~
Linde 124 Aubmer ged Arc Tandem ~4 ire S
I
' e s d W i r e - OC AP
/ 2 '"
~#
Trail Wire - AC
}/
1 Eingle Wire - OCPJ w
^
-w.-
m
25 Table 12 MILB-4 ELECTRODE, LINDE 1092 FLUX SUBMERGED ARC VESSEL WELD TOUGHNESS DATA (LaSalle 1 - Combustion Engineering)
Single or Charpy Tandem Lateral Heat No./
NDT Temp Wire Energy Expansien Lot No.
(*F) J[F)
(S or T)
(ft-lbs)
(mils)
Shear 21935/3889
+10 97, 90, 83 NA NA 12008/3889
+10 97, 90, 83 ha NA 30544/3947
+10 82, 66,.80 NA NA 92, 91, 92 12008/3947
+10 92, 91, 92 NA NA 305424/3880
+10 82, 87, 92 NA NA 1P3571/3958*
+10 5
40, 46, 46 N3 NA T
79, 68, 64
+200 T
111,110,109 77,78,79.5 99, 99, 99 4P6519/0145
-60
+10 106,109,116 NA NA 4P6519/0842
-80
+10 110, 79,126 NA 80, 70, 90 4P6519/0653
+60 0
- 88. 94, 96 NA 60, 70, 70
+60 121,121,120 NA 100,100,100
+212 125,133,133 NA 100,100,100 101.17/3999
+10 101,100,107 NA NA 6324637/3499
+10 101,108,103 NA NA SP5622/0831
-80
+10 108,112,109 NA NA 2P5755/0831
-70
+10 109,104,114 NA NA 6329637/3458
+10 103, 65, 88 NA NA 51,874/3458
+10 89, 64, 87 NA NA NA = Not Available
- This material (T) is in LaSalle 1 & Shoreham surveillance program.
26 Table 13 INMM ELECTRODE (TRADE NAME - RACO)
LINDE 124 FLUX, SU1HERGED ARC POST WELD 1150*F for 50 HR TYPICAL Plant C (Laguna Verde 2 - CBIN)
Single or Charpy Tandem Lateral Heat No./
';DT Temp Wire Energy Expansion 7.
Flux No.
(*F)
(*F)
(S or Ti (ft-lbs)
(mils)
Chear SP7397/0156
-50
-70 25, 21 18, 15 5,
5
-50 42, 27, 19 33, 25, 20 10, 15, 10
+10 64, 67, $5 53, 53, 52 30, 35, 40
+10 64, 70 53, 54 40, 45
+40 91, 84, 85 78, 68, 79 85, 90, 95
+212 103, 92, 94 59, 66, 59 100,100,100 3P;966/0342
-80
-80 51, 27, 9
45, 25, 12 5,
5, 5
-20 71, 66, 54 57, 57, 45 30, 25, 20
+10 85, 84, 71 68, 72, 61 70, 80, 65
+10 83, 76 67, 64 65, 55
+40 87, 91 71, 60.
75, 80
+70 100,101, 97 82, 89, 71 90, 95, 90
+212 108,111,108 66, 84, 86 100,100,100 4P;;65/0751
-60
-80 27, 14 21, 12 5,
0
-70 48, 43, 26 42, 36, 22 15, 15, 5
0 63, 57, 68 54, 45, 63 30, 25, 35
+10 56, 58, 90 62, 62, 86 30, 25, 45
+10 87, 55 83, 42 40, 30
+40 67, 97 71, 90 45, 50
+212 118,102,112 88, 71, 72 100,100,100 1P6a8;/015o
-20
-80 5,
8 6, 11 5,
5
-60 22, 16, 12 23, 13, 10 10, 10, 10 0
17, 36, 30 20, 27, 28 25, 20, 25
+10 30, 38, 17, 25, 38, 12, 15, 15, 15, 34, 38 28, 30 15, 20
+30 34, 46, 42 29, 37, 45 25, 50, 35
+40 72, 60, 72 54, 47, 49 50, 45, 50
+212 93, 81, 83 65, 66, 69 100,100,100 SP5657/0931
-60
-80 39, 39 27, 37 5,
5
-60 19, 20, 32 18, 22, 28 10, 10, 10 0
51, 55, 58 50, 50, 63 30, 30, 51
+10 69, 69, 66 61, 65, 59 50, 50, 40
+10 62, 57 60, 63 60, 40
+40 77, 66 73, 72 70, 80
+212 88, 91, 85 86, 75, 83 100,100,100
27 Table 14 INMM ELECTRODE (TRADE NAME - TECHALLOY)
LINDE 124 FLUX, SUBMERGED ARC POST WELD 1150*F FOR 50 IIRS TYPICAL Plant A (Zimmer RPV, CBIN)
Single Or Charpy Tandem Heat No./
NDT Temp Wire Energy Expansion
_ Flux Lot
('F) (*F)
(S or T)
(ft-lbs)
(mi.lc}
Shear KN203/0171 130 S
7, 6
7, 7
5, 5
-80 34, 18, 22 32, 16, 21 40, 35, 40
-20 68, 70, 62 61, 57, 56 80, 70, 75
+10 75, 72 64, 64 90, 90
+40 94, 82 81, 71
- 100, 95
+212 94, 92, 86 76, 80, 80 100, 100, 100 i
-130 T
7, 5
6, 5
5, 5
-100 25, 16 24, 19 10, 10
-80 24, 22, 25 21, 19, 25 25, 20, 30
-20 48, 49, 54 44, 42, 46 45, 45, 60
-10 59, 54, 54 48, 49, 46 60, 45, 60
+10 78, 67 65, 56 95, 80
+40 60, 79 68, 68 95, 95 4
+212 86, 89, 87 87, 86, 85 100, 100, 100 e
r e
O
--re--
--,g n
---r,,
--,---g,---,
g
- 19 Table 15 1NMM ELECTRODE (TRADE NAME - RACO)
LINDE 124 FLUX, SUBMERCED ARC POST WELD 1150*F FOR 50 HR TYPICAL Plant B (La Salle 2 RPV, CBIN)
Single or Charpy Tandem Lateral Heat No./
NDT Temp.
Wire Energy Expansion Flux Lot
(*F) (*F)
(5 or T)
(ft-lbs)
(mils) _,
Shear SP7397/
-70
-70 T
22, 16, 36 22, 18, 28 5,
5, 5
0342
-10 58, 68, 61 54, 50, 47 25, 20, 20
+10 76, 73, 75 60, 65 60 30, 45, 50
+10 75, 69 58, 56 35, 35
+40 91, 84 75, 63 80, 85
+70 79, 75, 77 73, 63, 74 90, 95, 95
+212 84, 81, 87 69, 67, 75 100, 100, 100
-70 S
20, 34, 2i 16, 32, 22 5,
5, 5
-10 54, 50, 59 47, 47, 53 25, 20, 20
+10 65, 59, 69 60, 56, 65 30, 25, 75
+10 70, 75 56 61 45, 55
+40 71, 78 65, 68 75, 90
+70 92, 101, 94 82, 65, 69 95, 95, 100
+212
- 100, 95, 96 88, 58, 82 100, LOO, 100 I
e w
-w-
On N
i Table 16 FFRMI 2 REACTOR COOLANT PDF.MllpE BOUNDARY NSSS SUPPLY MAIN STEAM P!FE DATA TS TS Grain Charpy Deta*
Naterial 0.D.
M in.
Mir.
Supplier Material Component Size Wall Heat No.
ht No.
C Pts P
S 58 hst het Size it-Ib
.21
.99 009 021
.24 17.5 47 7-8 NA NASCO Lukana A155 Class !
Pipe 26" 1.0P8" B2875 Grade "JCF70 ffrom j
lA516-69 Cr. 7Qf (Pipe stress relieveo ll25*F, 2-l/2 hr.)
Taylor Bethlehan A420 WFL1-W Elbows 26" 8.140" tINU
.22 1.07
.016
.026
.26 76.4 48.4 Fine 40-29-27 Crain 802810449 Forse from SA-516 6..
70 Elbows 26" l.140" ECPY
.22 1.01 009
.025
.25 78.2 53.7 33,33,39 802C05d29 1
Elbows 26" 0.950" ECNT
.22 1.11
.009
.020
.24 75.4 50,4 21-56-42 801508420 Elbows 26" 1.140" ECPV
.23 1.04
.017
.030
.25 77.2 52.8 45-41-32 802C09120 II l'
Elbows 26" 0.950" ECNW
.22 1.01
.009
.025
.25 13.2 51.6 P
50-40-54 802C05820 l
Crucible A350 Cr. LF1 Espander 6"s8" Sch.160 f iefY
.26
.83
.006
.025
.21 74.0 46.5 7
33-15-16 Flange 310890)
(Materials normaltred 1650*F, welds stress re!!cved 1175*F)
Bonney Sharon A350 Cr. LF1 Sweepolets 26"sR" 1.0Bd" 219839 QlQ57/
.26
.50
.010
.010
.22 83.3 56.1 Fine 26-25-32 Grata 301M For ge f
218 WI Qlq20/
.29
.81
.010
.021
.23 84.5 56.3 13-16-17 694.16694.1 21830h Q1Q10/
.29 74
.010
.013
.1C d5.0 56.9 19-20-19 695J 26"s6" 1.088" 210MH6 C772
.24
.69
.009
.012
.23 75.3 49.4 23-23-23 jf l'
j, l'
Bethlehem SA-105 Cr. 2 Sot het /
26"s2" 0.950" 6620499 F8 71
.30
.75
.010
.023
.22 88.4 57.6 P
- 15 (Spec.)
Weld (Materials norm.nllred 1650*F, weld stress irlicved It?5'F)
- Charpy Keyhole at -50*F Not Available i
MA
=
.a
,g_
r~
i
, e ; 30
--......l _.
e m
i
.o
.c 9
.2, n
.sJo-L n
~
o
-,m n
wa n
u
=
me
_ = - _ _
- v e
>.,, l
,o c: '
n.:.
.e m
~_.._-_.i o.
w a
x
._._.ua. - m m r, r3 a:. ?
,-, i O.
~-
i t..e O,
- e. g e
e u
o
- u.
r.' s, 9.~ l
~
o m
u,
- a...
i
. m-.-
z 9
bC t
-1 i Q
l l e
,y. _.n;.
~
a: n
~.,
^
c.
m~
a J. _. _..,,- q.-
43 a
n.
v.:3,;: -
,. m.
. J i-
[.
la
.c.
r
- o.
5-O n
o
.,}
)
.2.
t 0
.)
)
.)
g
._.s
. 1..
9 e
e e
Q.3 y.
5 "
- O ' !
- a. 2 T
- 1 a
a cr)
J O.. 't
.3 p:
4
!.2 3
x 4
a
\\ i r
L
.r p+ _._ _ c 2
M Qe m
< 4
,2 4
A m:<.
C 2*
- Z Ar(.
f
--- g lj
- .?
s m
4
- c. =
o av tq
.A 3
(* '-
E 4-
")
es
, y ~.
n m
m
,-e m
..e
$ d a{ ~_
C-
.O g
.s s
.(,
- a.
" a.
Ca.
Et
- P --- ~ ** ; ;
g d. %s
.2
,o 2 ~:
a y
=
v c
e o
1..
3 o
a c
o c
O O s-
-. =
l ". -. '
5i 5
W-c--
s t
. v...
.i.d W
- c 3
27 J.,.
Q!
+
m
- c) 2,
.c
/
a*
T
- m.
m N*
s c:
/
r-c'
.J
.7.
. Q
. O. g.i.
Q OOO O..
O
,,'-00
.. S u1 7*
AO* : OO s
e.
- 3
.a
. fa.
e
- 3
.N 02 w
C. N "a.
.s.
. J a.
.' J N
.a...
.' 2 W ;a.
l g g, g ; g*
O.t')
m at
- a m
_4, d
==
VU
~-
I Q ",~)
o z
O y i O%
- 9 O OOO
'")
- :)
r%
y 3
J m
3Om OOm
'k
'2 ] ~
i 2 a%. -
e ty E o.
.u
- G.
m
.* A
.. :O n.: m
. G *-*
b
- r 9 *-*
. t r-'
ca w w
~.
r
.E-.
- 2 p n.
gu. s r-N.*
N &-
t -
f*.
.C
.OwmW a
c em A;.
c-. o.
s o,w s3:
oOy
> O :a
-)
~)
z.-
eL N
o '.i.:..
O.O.,N g7N p
/)*
q-a e
-g
..Om y
.... i n.
.4
+. O '.
- 1 A,4 r,.;
Q O
.1 ' ) * *l
'A 4
'-1' *1;
=(,-- $
-y C
JS Ct.'
c:
.;r.
ct:
o o
o o
cu O 2. r-
'd j
-i m
.4 r=
=
.J
- 4 (s
.-.. ?
JI
_ fd y
's I
.f)
Cf 4
N Z
"O cri
- - "-.? O O
"d
. ('l
-)
'O
- 4 3
O
!.4 M
I W
4-a l;,)
4 a
3 3
r e.". 3,,,
1, i r
.t.
y eq
. e.-
n
.."O A
I N
n m
3 972%*
Q.
.)
d.-Q q.
j;
- j
.) -
~-
i]
i
.?
U
- *O w
"J
.s c e
y rg
- g... _ _
e o
- d-3 i
r 1, C 0 ': O
-' -' M
..J
'4 4
- r)
L.
=
W g
d "" ' i i' ' +
C/)
7 T.,1 7
".0 O
U1
. t1 c.
.' * :'.) O s).
O 'd.
j
.-3 O **. J n
'r.
.,)
- i e
y b
v
~4 i.
r
- o.. ' p
.. J,4
- 4 r- 0 '.'s.
4 (a
r-t n
3 m
g4 g;)
Di. C4 l
- :,1."" * *J,..",)
M ts)
A
.J.
X r.)
a>
i g
o-
.-9
- O E-*
c4 3 x -
e 3
f3 F)
X LJ
=.,O ll*
1.4
- ;., n-
- Tr.
t, s a.
O Cn c
i.
r4 H, i c.e 5, p. i-Z g;. '.s,., O
.s.
y x
.n, af 3
~
.4
.... f-
'O c
y
. t*
u -.
M a.
9, v
.n.. :';. -
m :
s.' "H o
en v
n
,e n
x' a
m,1 O O ri H
.s I '3 d
- . ' 9 ssJ
'N
.4
'N.
eJ w
- 1
.,e
(
eq
-4 m
(,
w g
'v
- . cJ 3OO
? i-* H :).#~1
- 04 0,
i e
e e e
.3 f :1.
g t r t.1 E s c
O o m..:. -t to E'
l t
J
!.7_.
f* t 'T O
, na
>n G,
6.
". C s ' ' n a,
G ". - 4:
f.
'sq
- 4 O
[d r,
..g o
[a.
, to) e,;
c1 v.s en cJ m
b i !
OJ 8
.1 s.
O o
O O
n 9
o M 't *.-e4
_a s (..,
.%.J G 6.~;;
r:)
su ts) gn to
$4 v.
an l
.)
't C4
'.).*
-2 et
')."
vs
.g c
.g
%a
'O .' O
' E,;*
E- * : ' a 1 * ' '
E-*
b r?
.i r,g k
T.1 e.1 i i M, t-
.] a ".1 *1 b
> c) t)*
b:
t.l ! g R t.
S p.
i l
- c l
E*
31
)
i i
Table 18 FERMI 2 MAIN STEAM NSSS P!PE WELD FILLER METAL 1.
AWS AS.1, E7018 - Meets charpy v-notch minimum requirment of 20ft-lb.
at -20 OF.
2.
AWS AS.17, EHl4 - RACO 123/40280451 heat no. used for elbows reports charpy v-notch values at -50 F of i
47-46-45 ft-lb.
3.
AWS A5.18. E7052-Charpy v-notch minimum requirement of 20 ft-lb.
at -20 F.
t i
i l
I L
l t
a
.52-
- \\
3
\\
Ps A
\\
.k 0,
! k s,
all m
V'N
\\
s
.a g
M,7
\\j fl i e
m W
g C,
R,9 s
> wp l 1 2 !' "
A a
c3.a
[ j )
{N i k
6,Y I cc a.d 4,p.egn u V a < O' r1 s
b i
D I
W.
y; io a >
sM 1
sl i
< g2 b$. Ylh $
Nlu.bn O
r, T,
M v
w n _9 9 1
O s,b N i ts i
~
'3:::
- >. -a d.
.,,i ilib I
X e
l 1
l e w l '-
i ic o a O
i Q
s
.r.
3
,... i ',r,.
ll, 1
e n74e (D
e W
m --
Q" o
I
-Q
. ~ i i :+-
we
! !'!J.
J
- u zu t
a-i 5e 0 O
i
.s i
8* Z 4 0 l
15 i
_d
.c #..- t @ $
O "G J wiWz
?
i i
' ;. : :;. E r i
=
s i,
i 7
o to I
l iWS r, '
!t,,ei1 ww i s ( 'r. %o i i u.s p s
+
dc-I "'i.
v
.Nw os
!, I %' 4. i,
Hsu
!1!j,Pi-j'll!
9 l,3 i m I
c.
y n.
g i
W
'. e l Wo
>j2 d
j E,.$.l
!e
! c,' %,.!.
3 E,e, ZzG u
<u m-j
' ;: 1.1 i.
! v. %.i t i.'
o v
O/5 D ? i i h. t.a.
b,. Z i x N
z w
i
'9
' ii
!3-jg. ln' M o n
.s r
- i 3
o 0t a
u 4<g N
zc' I
bh I d h-Yi. !. s k m,d,
- l. M, h S, ! l l
'd J
F O
n i
m.
m w
De <
4 s
- is
- . ;i.; j
,Q l
! <8 4 p,,!i g l',Q i,.. u u m.s. A ;
s@e
.i>
s 'i a t
!s i i
'i2 I i ! a.:
i nZ 2
(e ci o i s,v lNa g
0 y
t
,e q
s,.
y ; %z n g'.1, u. V, M -
wy j
.I ;j %g y y j 3 n,3 s
l,
=
id I
<'. n.
j s
o p
.;._s 2
i s:.y i.
7J
!4 I.
"f f U
bl
'kN i
d' u.)
6 i
J :'W I, i 4t i j-!tN"'
idd Z
k 9
4
'i 0),,i.M '. ' i ;
i 1k
- 4.,h i2 1,
. :!!.N 5, ! Y4 S
9 E
l p1 m i s. i.s
- i>
m,
}
Q i
m a a, m,,,!
4 4, < m o i
s e
i n;i9-m
>',p m y? i '9 3 ' ;
lh C - ' 's 5 i
.~' ' e 1 t
. g. + t,!
i 3
qJ-ii=i
-I 't,. N id
,o! '-1 d.1u-
,n 1
y C
-(d w! q,i 4
y
,a
> ii-
.e i
- q,
2.
N hl' 2 1 t '..
l
%.$..$.lh}o,,@t'j:.
t i d i
N s t 'i t t st h l
$;' ' h- - a-e,.
[
g ') ' f. 5 [.
I l'
! $x l
s.i
(
d.
s, i m r _,
o 5...d.. ): ;t<}
- 1 ai l
S
- N' 5_
a e
e-.s
.: 'i d
l s,
N si 1,j l j r.
ka o.
Z 3 0 O.
"2
- l o S ;,.
- te- ;;,...
l 5 w M3, E !. $ )_ !' :? M b.:,j l r,? Q 1'lM
,, i -..
a d ' A1 d i
,iiiil!'l 5
E
-il I
1 C4 o
= 6a i,
.3 a
l l
[
l l
bm Cd it $2 92 99 (5
99
%*19 64 tt'u 920*u
%IU*u
(, J dl'u (9WWS
- fal *4"1 tlu'l
- 1 9l Oi 29 2%
(d AJ 99 69 9*gt
%*ld 18*u
%l0*u 600*o 56*0 9t*u 6WMS "u'"1 89"1 ilu'l lla Plan 9Z 04 2%
lt 9%
65 i%
OS 9*0%
6*lu 52*O Ulu'O 920*0 66*U 9t*U 9tus
- uani *9"1 Lto*I 133 Plan,,92 01 it (9
29 69 ui 6%
%*59 6*0W Ul*U 020*0 Ul0*O (6*O ut*U 52465 muan t '9h1 (10*l lla Plan,gg 04 29 69 66 it g9 9%
9*5%
lu IZ*o gl0*O Ulu*o 26*O il*0 1266S out*A agnA glo*l 333 pgan,gg 01 lE C9 59 u*lt
%*l, it e*ut 6*t9 il*o ol0 *ra vou*o is*o 12 0
%%Ils nuanz agnA ggaag 313 plan,gg Ci (8
30 le 298 til utt 1*lt 9*91 Sl*u 920*u 100'O
%W*O Sl'o luuts "r8"1 89a1 (10*3 IIE Pten.92 C4 001 16 66 Olt 991 598 L*95 6*0u (l'u Stu*o cl0*o 16*0 9t*0 15t6S "usar aqnA glo*l asampee,gg Oi 99 09 61 09 59 it 09 08 (l'c (20*0 llu*u C6 0 9t*u 29t il slu**44 106*0 091
.8 04 24 la tv (6
16 16 6*95 9*ef Ll*U 920*O 020*u IU*l 9t*U 1899 mosam*3 (10*l el 5*(!
Si la ti 69 96 W6 96 6*v5 9*6i (l'u 9t0*o clu'O lo't vl*0 1899 uoJan=3 (10*8 el s*gl 01 le di le oil Sit $14 9't5 6*Wi 92*o
%Iu'O Il0*u (0*l 92*o 0199 mosamm3 (Irl el s*(I Gi li 64 di Sul til vil 9't%
6*Wi 9t*u
%IO*0 Il0*o LO*l 9Z'u ult 9
- 9Aam*J (10*l el $*(I E
'881 *trl
- 91-BA a
a SS S
d SW J
4 8 *t1 JWild esce9314A
- gas eels esta slig gg gg essa m egJ VIVO SS3 Nil 3.101 fiddIIS SSSN LMilS NIVH 11 *H3 90lV 1 VNNVil30DSGS 02 *191 d
+<
l
{
I 4
I em t C
C C
e C
C
.C.
C, C.
e!
- =
- =
e.
C N
4 4
E F
\\
=
+
4 a
4 a
~
1 C
1 es,
=m, 4
E 4
4 e
c 4
g M,
=
4 a-4 e
f 4
e, 7
e, C *'
e' 4
e e
a p
4,
.e C*
4 s
4 4
4 n
4 ts
=s. "
J e.
C 4
g e
I e
C C.*
- 2.,.
[
4 f
g c
[
t i
4 s
a.
.e C
g
.e l
E a
4
~
a
~
c s
.e c
4 a
4 e
4 4
c.
4
.e z
C C
3 4
-?
4 4
4 4
4 l-
=
=
m
=z e
<C m
m a
e c
e e
~
e.
g 2
O
=
a C
C.
=
3-v z.
E C
~
s m:
- ~
,C V,
C.
C.
C.
C.
C.
C.
-C.
=
I""
K C
C C
C C.
-r C
C C
C C >:*
~;
e s-
.c N 4 c.
-C.
.a.
e 4
-e,,
C C,
g
-C, C,
-.=,
V g
@ g,
.C.
s -=
4 f/.
O C
C C
C C
C C
O
.C"*
3 - tr.
a l=
m c
S C
gm C
F F
F F
F F-
.Z I
=
c C
C
=
0 C
C Z
e-<
s.
4 c.
e e
.=
NW
.e.
e.
e.
s p
E E
C E
E 2
P
=
.e e
em E
4 5
=
2
.=
==
e p.
E F
.e.
.f-a.
O em em t
. *
~*
r 4
h 4
4 C
==
2 T
2 em ad t
c 1
1 0'
C
.C C
C 6
m m
6=
=E E
E I
bag e-k h
e
$ I v
v V
V V
4 4
L l
V V
V V
V 3
3 L
L e-F t'
s*
/
.P
<P e.r y
.P af 2
4 4
4 4
9 4
C 4
4 F
F F
m, C
C.
F.
F.
F.
C C
C C
C C
.= ;
r e
2'N V.
=
=
se
- e. am
=
=
b I b
b b
e 96l mq u
a a
em 4.
.=
.a ed 3
3
=
-r 4
.?
E.s 4
4 4
4 esa b
ee ce Pe es ce ce er ce h
Pe e
o I
.~..
35 Table 22 Proj ect Fermi 2 Valve MSIV Component Cover Applicable Code 1968 Pump & Valve Code (ASME)
Valve Vendor Atwood & Morril Co.
Material Vendor Cann & Saul Steel Co.
Material Specification ASTM A105 Grade 2 Heat No.
219222 (Typical)
C Mn Si P
S M
Chemical Composition ('a't.
7.)
.30
.68 19 009 014 NA (Typical)
Grain Size (ASTH No.)
NA 0
Heat Treatment 1650 F (12 hr.) Air Coc!
Charpy V - Notch I= pact Toughness Test Te perature:
Ft-lb.
Mils NA
% Shear i
NA - Not Available O
r<--
-,,,wy,,
v
-1
-ra-
- = =a-,
s
36 Table 22 Project Fermi 2 Valve MSIV Component Body Applicable code 1968 pump & Valve Code (ASME)
Valve Vendor Atwood & Morrill Co g Material Vendor Quaker Alloy Casting Co.
Material Specification ASTM A216 WCB F7080(Typical)
Heat No.
C
!in Si P
S __
A Chemical Composition (k'c. %)
0.27 0.79 0.39 0.019 0.012 NA (Typical)
Grain Size (ASTM No.)
NA 1700 'F (4 hr. 30 min.) Air Cool Heat Treatment g
+1320/1340 F (4 hr. 10 min.) Air Cool n
+1245/1260 F (4 hr. 20 min.) Air Cool
+1100fil60 F (3 hr.) Air Cool
+1150 F (4 hr.15 min.) Air Cool 0
+1150 F (3 hr. 10 min.) Air Cool Charpy V - Notch Impact Toughness Test Temperature:
Ft-lb.
NA Mils
% Shear Weld Filler Metal AWS AS.1-69 Type E7018 0
Tested by charpy v-notch at -20 F to meet the requirement of at least 20 ft-lb.
NA - Not Available
37 s.
RECom!E.NDED Fil.... Q 1 \\lANL'FACTURER'S RCCenD O. GELDING PROCEDURE QUAI,lFICATION TEST 5 10-26-71 90- "b9 - Yb J/D Med Date Specirie.iion No, 5.lding Proc e s s Pd *:MA4 Arc Manoel or Liechies DJ1C11 Waterial Specification b 19_..D so_A?16 kC3 of P-No.1 to P.No.1 72ick..e s s (il rire. d'2a et e' *ad ' all sliielne ss) h IP.'de_0 Taickness Range this tess..lifies 3/15 Iich to ci Ir.ches Fiiler kleist Group No. F h FLUX OR AT4tO!,PilERE Teld Metal Analysis No. A 1
Flus ' trade Name or Composition Describe filler afesal if c.at included in Table Qll.2 Ints: Cas Coosposition ee QN II.2 Trade Norse Flow Rene fee osyseetylene weldv e-5:aie if Filles 4teent is sit.
Is Dackkg Scrip used' Yes 0
leco os aluminurs killed.
Prehess Te rnperare f. ease. 5C 7
1".2 :';.':
5 ' D ' 7 " '_ 7;
%ELDING PROCEDURE laterpass Temperature Ra,ge Single os %1 iple Pass
J1ticle Posihen: Tsentment 11 C N ~ir _ i.
- Air Cool Single or wte;ple Are___S.c ?le e osition of Croo.e Ve r'. :C a l - UO'. ' "' *-'.
(cee Pars. Er Fies. Q 2 or Q 3. or QN 2 & QN-))
2 (F lat hen is eriis t..ere nc e s, e e.eese e s el.e et.4 i. eie n e ne the r.e e a ed e, e e. n ord.'
FOR INFOR% TAT!ON ONI.Y Filler tive-Dia-aeter 1/3" - N32" - 3bb" - 1/4" TELDING TECil' l?UES
- "8-3 d. -. ----O
^*--'s,.
y3 joine Di-aensions Accord *is Trade Name C ar0 0.".
E., te e l
,, p.
,,g,,
- ,c3,,p,,,;,,
Type of Dackin g Forehend er DacLhand FO'rE'".1 Curre n Direct Polarity E9'/e rs e REDLC ED SECTION TENSILE TEST (Figs. Q6 and QN-6)
Thal Citi mte Unit Character cf F ail.:e I Specimen No.
A re a Stress psi and Loeeu, redth iThickeess I.c ad. Ib.
l i
c..:
r.w.
..a 1..
.-,w l
SEE P4CE 2 FC ?. C SI'.:I.TS W 3 GUIDED BEND TESTS (Figs. Q-7.1. Q 7.2, QN 7.1. QN 7.2. QN 7.3)
Type and Re s ult TYP' *nd g,,,g,
Figuie No.
Fsgure No.
Q-7 1 sati:fac tory Q-7.1 Siti:f20terf Q-7.1 Satisf10tE:/
Q-7.1 Satisfact0rt Results of Filleise:d Te sts. F az. Q?tc )
E171 22119 73 Cinck No.
279 Siso$p No. -E3 Telden's N a-e no by virtue of Se se re sis e.e er s s e: der ;-rf:--sanc e req airement s.
~7 5 D71 Tes: Condue e4 by Mi T Al' M' C _~ ~' r ~ C O Laborsior> -Te st No.
FAr'~ L*1'i13 p g, Te certify then the state icnis in e..:s record are correce esd ther the use selJs were prepared, melded sad sessed la accordance with the seguireinents of Seesion IX of the ASitE Code.
Signed _ CAKER ALLOYr CAS'T:, CO.
v.as c i.e.e >
Q4~,.
' #J 10-26 71 Br-w-
Date j
so cor i to the <> pe a, y.ber of tests (Detail of secord of sests are illusersiive only and raay be modi e required by she Code. Recommended Foren QI is e silable for purchase at.ts(IElleedquarters.)
NOTE: Any essential va iat,les in addition to those above shall be recorded.
55 P.e-typed P.m:h 20, 1073 Table 23 FERT 2 ftSIV BODY WELD PROCEDURE
- se.a N, ~wh 11.,s M ca?-L9
/
n!tal TFirATION TOUGr1 NESS RESUL'iS
Pe.ge 2 of k 38 o
QAP-L9,3 r%d.
3 Table 23 Manual Shielded Arc Spscimen Dianeter A.raa Ultimate Total Ulticate Unit Iccation of No.
Load Lb.
Strec::, nsi F:tilu-=
1 505
.2 15100 75500 weld Metal 2
505
+2 15000 75000 weld Metal 3
505
.2 1L9ao 7h500 weld xetal k
505
.2 15200
/6000 weld xetal 5
505
.2 148co 740co.:.
weld xetal 6'
505
.2 15100 75500 weld Metal
'7 505
.2 1L90o 7h500 weld Metal 8'
505
'. 2 1heco
, Loco veld retal Cha:py I:pa:t g,
"V" Not.:h @ ninus 20 F Base Metal -
Foot jounds 3h-31-3h Lateral Expansi:n 2h-21-22 Percent Ductile-Fracture 20-20-20 vald P.etal -
Foot p:e.ds 60-72-80 Lateral Expansi:n Lo-52-66 Percent Ductile Fracture ho-ho-50 Ecat Affceted Zone Foot pounds 51-L5-57 Lateral Expancien 23-21-28 Per:ert Ductile Fra::ure Lo-Lo-Lo Non-Dest:u:tive Examination of C::pleted Veld 1.
Padio pa; hic Exar.inatien Accep table 2.
Mag. etic Particle Exa-i ntion Acceptable l
3 Visual Examination Acceptable 1*w lhl John Juppen.[:.2:,IL/
V Jr.
I Quaker Alloy Castu.g Co.
3-20-73
.e
39 Table 24 Project Clinton i Valve MSIV Component Body Applicable Code ASME Sect. III. 1974 Valve Vendor Atwood & Morrill Co.
Sbterial Vendor Quaker Alley Casting Co.
Suterial Specification ASMI SA216 Grade WCB Heat No.
F7516 C
Mn Si P
S A
Chemical Co= position (Wt. %)
0.25 0.78 0.53 0.018 0.013 NA Grain Size (ASTM No.)
NA Heat Treatre.t 1690/1710*F (6 hr. 5 min) Air Cool
+ Temper 1350/1360'F (6 hrs) Air Cool
+ Post Weld 1200*F (6 hr, 5 min) Air Cool Charpy V - Notch Impact Toughness Test Temperature:
+60*F Ft-lb.
30,24,34 Mils 37,27,33
% Shear 40,40,40 l
NA - Not Available t
t
M TABLE 24 Project Clinton i Valve MSIV Component Cover (Bonnet)
Applicable Code ASME Sect. III, 1974 Valve Vendor A_t; gyp & Morrill Co.,
Material Vendor gaan 6 Saul Steel Co.
Paterial Specification ASME SA105 QT Heat No.
214934 C
Mn Si P
S A
Chemical Composition (Wt. %) 0.28 0.70 0.22 0.017 0.023 NA Grain Size (ASTM No.)
N/A Heat Ireatment 1600*F (12 hr) Quench, Water
+ ll75'F (12 hr) Furnance Cool Charpy V - Notch Impact Toughness Test Temperature: + 60*F Ft-lb.
62,60,55 Mils 48,45,50
% Shear 30,30,30 NA - Not Available O
e e a-.
-n...-
n
4I Table 24 Project Grand Gulf 1 Valve MSIV Component Body Applicable Code ASME Sect. III, 1974 Valve Vendor Atwood & Morrill, Co.,
Material Vendor Quaker Alloy Casting Co.
Material Specification ASME SA216 Grade WCB Heat No.
F6406 C
Mn Si P
S A
Che:ical Co= position (Wt. %) 0.23 0.89 0.53 0.019 0.012 NA Grain Size (ASTM No.)
NA Heat Treat =ent 1680/1710*F (5 hrs, 30 min) Air Cool
+ Temper 1350*F (5 hr, 30 min) Air Cool
+ Post Weld 1200*F (6 hr) Air Cool Charpy V - Notch I= pact Toughness Test Temperature:
+60*F Ft-lb.
32,31,3; Mils 33,32,31
% Shear 40,40,40 NA - Not Availcble O
J
~.. -..
f2.
Table 24 Project Crand Gulf 1 Valve MSIV Component Cover (Bonnet)
Applicable Code ASME Sect. III, 1974 Valve Vendor Atwood & Morrill Co.,
Material Vendor Cann & Saul Steel Co.
Material Specification SA-105 (QT)
Heat No.
632202 C
Mn Si P
S A
Chemical Composition (Wt. %) 0.26 0.94 0.20 0.023 0.015 NA Grain Size (ASTM No.)
NA Heat Treatment 1550*F (12 hr) quench in water
+ 1175'F (12 hr) furnace cool Charpy V - Notch Impact Toughness:
Test Te=perature:
+60*F Ft-lb.
66,74,65 Mils 58,64,54 i
% Shear 20,20,20 NA - Not Available e
l l
43 '
Table 24 Project Riverbend 1 Valve MSIV Component Cover (Bonnet)
Applicable Code ASME Sect. III, 1974 Valve Vendor Atwood & Morrill Co.,
Material Vendor Cann & Saul Steel Co.
Material Specification ASME SA105 QT Heat No.
216149 C
Mn Si P
S A
Chemical Composition (Wt. %) 0.30 0.88 0.16 0.006 0.014 NA Crain Size (ASTM No.)
NA Heat Treatment 1550*F (12 hr) Quench in water
+ 1225'F (12 hr) Furnance cool Charpy V-Notch I= pact Toughness Test Temperature:
+60*F Ft-lb.
62,64,60 Mils 56,54,52
% Shear 20,20,20 NA - Not Available a
e
--,_w.,m
,,., ~.
3,.
,,c_,
44 Table 24 Project Riverbend 1 Valve MSIV Component Body Applicable Code ASME Sect. III, 1974 Valve Vendor Atwood & Morrill Co.,
Material Vendor Atwood 6 Morrill, Ltd.
Material Specification SA216 Grade WCB Heat No.
35 C
Mn 51 P
S Al Chemical Composition (Wt. %)
0.2' O.82 0.46 0.022 0.013 NA Grain Size (ASTM No.)
NA Heat Treatment 1650*F - 1800*F (8 hrs.) air cool to 400*F
+ temper ll50*/1250*F (8 hrs) air cool
+ post weld 1095*/1195'T (18 hrs) furnace cool to 800*F (100*F/hr) air cool Charpy V - Notch Impact Toughnecs Test Te=perature:
+60*F Ft-lb.
31.5,37.5,39.5 Mils 33,41,40
% Shear 10,10,10 NA - Not Available e
,..yy w_ _ _ _
.,y-,,.,y y
--,_m-y
,----m v
-.7,.,,.,y,y
...fp.,..,,._.,m.,, -, - -,,
.-y
_w.-
.. - p,
45 Table 24 Project Laguna verde 1 Valve MSIV Component Body Applicable Code ASME Sect. III,1971 with Summer 1973 Addenda Valve Vendor Rockwell International Material Vendor Material Specification SA216 Grade WCC Heat No.
1750262 C
Mn Si P
S Al Chemical Coraposition (Wt. %) 0.21 1.19 0.43 0.011 0.009 0.0e3 Grain Size (ASTM No.)
NA Heat Treatment 1700'T (10 hrs) normalize
+ 1225'F (7.5 hrs) Temp
+ 1100*F (6 hr) post veld Charpy V - Natch Impact Toughness Test Temperature:
+40*F Ft-lb.
29.0,33.0,35.0 Mils 25.0,26.0,30.0
% Shear 15,15,15 KA - Not Available m
yw
--w, v,v.
46 Table 24 Project Laguna Verde 1 Valve MSIV Component Bonnet Applicable Code ASME Sect. III, 1971 with Summer 1973 Addenda Valve Vendor Rockwell International Material Vendor Cann & Saul Steel Co.
Material Specification SA105 Grade NUC Heat No.
211971 C
Mn Si
_P S
Al Chemical Composition ('n't.
%)
0.27 1.03 0.22 0.010 0.014 NA Grain Size (ASTM No.)
NA Heat Treatment 1550*F (10 hr) Quench in water
+ 1175'F (10 hr) Furnace cool Charpy V - Notch Impact Toughness Test Temperature:
+40*F Ft-lb.
35,45,34 31,34,35 45,38,48 Mils NA NA 64,57,65
% Shear 30,40,30 30,30,30 15,15,15 Ft-lb 55,47,43 62,64,52 58,62,72 39,44,38 40,45,50 Mils 66,64,60 74,72,65 70,68,75 56,60,57 58,60,60
% shear 20,15,15 20,20,20 20,20,20 15,15,15 20,20,20 NA - Not Available l
47 Table 24 Proj ect TVA X20 Valve MSIV Component Body Applicable Code ASME Sect. III, 1974 with Summer 1975 Addenda Valve Vendor Atwood & Morrill Co.,
Material Vendor Quaker Alloy Casting Co.
Material Specification ASME SA216 Grade WCB Heat No.
F3547 C
Mn Si P
S A
Checical Composition (Wt. %)
0.23 0.88 0.38 0.016 0.015 NA Grain Size (ASTM No.)
NA Heat Treat =ent 1700*/1725'E (6 hr, 20 min) air cool
+ temper 1345'F (6 hr, 45 min) air cool
+ post weld 1200*/1225*F (6 hrs, 30 min) air cool Charpy V - :;otch Impact Toughness Test Temperature:
+60*F Ft-lb.
66,56,54 Mils 53,50,53 i
l
% Shear 60,40,40 l
l NA - Not Available e
e---
-e,,
. + ~
+n-a
~g
, - - ~, -
-4
>cm
.. - ~ -,
-g w
+
43 Table 24 Project TVA X 20 Valve MSIV s
Component Cover (Bonnet)
Applicable Code ASME Sect. III, 1974 with Summer 1975 Addenda Valve Vendor Atwood & Morrill Co.,
Material Vendor Cann & Saul Steel Co.
Material Specification ASME SA105 Heat No.
217630 C
Mn Si P
S A
Chemical Cc= position (Wt. %)
0.23 0.92 0.19 0.013 0.013 NA Grain Size (ASTM No.)
- 9 Heat Treatment 1650*F (6 hrs) air cool
+ 1550*F (6 hr, 30 min) water quench
+ Temper 1200*F (12 hr, 30 min)
Charpy V - Not:h Impact Toughness Test Temperature:
+60*F Ft-lb.
90,89,77 Mils 71,67,59
% Shear 50,50,40 NA - Not Available O
I e
y
__c..,
M 47 1
Table 24 Project CNV Valve MSIV Component Body Applicable Code ASME Sect. III, 1971 with S73 Addenda Valve Vendor Rockwell International, Material Vendor Rockwell International Material Specification SA216 Grade WCC Heat No.
3760171 C
Mn Si P
S Al Chemical Composition (Wt. %)
0.17 1.09 0.50 0.008 0.011 0.060 Grain Size (ASTM No.)
NA Heat Treat =ent 1700*F (8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />) Normalize 1275'F (8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />) Temper 1100*F (6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />) Post Weld Charpy V - Notch l= pact Toug'in e s s Test Temperature:
+40*F Ft-lb.
35.0,38.0,29.0 Mils 32.0,36.0,29.0 i
% Shear 20,20,20 NA - Not Available I
l e
LIO Table 24
~
Project CNV Valve MSIV Component Bonnet Applicable Code ASME Sect. III, 1971 with $73 Addenda Valve Vendor Rockwell International, Material Vendor Cann & Saul Steel Co.
Material Specification SA105 Heat No.
214943 C
Mn Si P
S Al Chemical Co= position (Wt. %)
0.35 0.78 0.25 0.014 0.023 NA Grain Size (ASTM No.)
NA Heat Treatment 1550*F (10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br />) watar quench 1175'T (10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br />) furnace cool 1100*F (10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br />) post weld Charpy V - Notch I= pact Toughness Test Te=perature:
+40*F Ft-lb.
25,25,29 28,30,34 Mils 36,34,34 36,37,35
% Shear 20,20,20 20,20,20 NA - Not Available
~
e
...r.-,_
p
+, y e-4-
- -+
5$.
Figure 1 FERMI 2 BELTLINE PLATE AND WELD SEAM LOCATIONS 0
0 0
0 90 180 270 360 415 3/8 ".'
i 4-208 g
g Elevation 366 5/16" C4574-2 C4568-2 C4564-1 B8614-1
" " "di"~
8 R
g E
R E
E E
E h
3 j -313 244 5/8"-
g
- 9. 1 L..
216 5/16" C4560-1 C4554-1 C4540-2 R
M 2
8 R
R a
4 a
9-307 121 1/16':
1 t
t m
-,wr--
3---w-e w
a-
-w
-e--
v
-P y
ym----
--'+
-w r
-M---r-"'
-- = - - + - + + - ' - = = - -
53 A TTA CAMENT A ypog.pggp on the liasis of the last paragraph on page 19013 of the July 17, 1973 Federal Register, the following subsection discusses what is considered to be an appropriate method of compliance.
5.2.4.2.1 Method of Compliance The intent of the proposed special method of compliance with Appendix G for this vessel is to provide operating limitations on pressure and temperature based on fracture toughness.
These
" operating limits asaure that a margin of safety against a non-ductile failure of this vessel is very nearly the same as that for a vessel built to the Summer 1972 Addenda.
The specific temperature limits for operation when the core is critical are based on a proposed modification to 10 CFR Part 50, Appendix G, Paragraph IV.A.2.c.
The proposed modification and the justification for it are given in GE Licensing Topical Report NEDO-21778-A.
5.2.4.2.2 Method of Obtaining Operating Limits Based on Fracture Tougnness Operating limits that define minimum reactor-vessel metal tem-peratures versus reactor pressure during normal heatup, cool-23 down, inservice hydrostatic testing, and anticipated operational occurrences were established using the methods of Appendix G of Section III of the ASME Boiler and Pressure Vessel Code, 1971 Edition (Appendix G first appeared in the Summer 1972 Addenda).
The results are shown in Figure 5.2-1.
?
h*i th,k, FOG'eilshell an$ bead are;54,v" Af ? %*AM A*;2, Q; pre'm'ote f rom d I'?k Al e 7ess and the f eedwater nozzles were evaluated, and the operating limit curves are based on the limiting location.
The boltu,p limits for the flange and adjacent shell region are based on a minimum metal temperature of RTNDT+600F.
The maximum through-wall tem-l perature gradient f rom continuous heating or cooling at 1000F per hour was considered.
The safety factors applied were as spe-citied in Appendix G of the ASME Code and in GE Licensing Topical Report NEDO-21778-A.
For the purpose of setting these operating limits, the reference temperature, RTyp;, is determined from the toughness test data taken in accordance with requirements of the ASME Code to which this vessel is designed and manufactured.
This toughness test data, CVN and/or drcp-weight NDTT, is analyzed to permit compli-ance with the intent of 10 CFR Part 50, Appendix G.
Because not-l all toughness testing needed for strict compilance with Appendix G was required at the time of vessel procurement, some toughness.
results are not available.
For example, longitudinal CVNs, instead of transverse CVNs, were tested for plate and forging l
materials.
Also, at the time either CVN or NDT testing was per-mitted; therefore, in many cases for welds, it is expected that both tests were not per formed as is currently required.
To com-pensate for this absence of certain data, toughness property 5.2-23 Amendment 23 - May 1979
54'
. Arm cnWNT A EF-2-F$ AR 33 correlations were derived for the vessel materials in order to operate upon the available data to give a conservative estimate of RTNDT, in order to comply with the intent of Appendix.G criteria.
These toughness correlations vary, depending on the specific material analyzed.
They were derived from the results of WRB Bulletin 217, " Properties of Heavy Section Nuclear Reactor Steels,"
and from toughness data from the Fermi 2 vessel and from other In the case of vessel plate material (SA-533, Grade B, reactors.
Class 1), the predicted limiting toughness property is either NDT or transverse (CVN 50-ft-lb temperature minus 600F).
Longi-tudinal CVN transition curve results and NDT values are available for all Fermi 2 vessel plates.
The transverse CVN 50-ft-lb tran-sition temperature is estimated from longitudinal CVN data in the following manner.
The lowest longitudinal CVN foot-pound value is adjusted to derive a longitudinal CVN 50-ft-lb transi-tion temperature by adding 2 0F/ft-lb to the test temperature.
If the actual data equal or exceed 50 ft-lb, the test tempera-ture is used, If sufficient data are available, as in the case of Fermi 2, the 50-ft-lb temperature is derived by interpolation.
Once the longitudinal 50-ft-lb temperature is derived, 300F is added to account for orientation effects and to estimate the transverse CVN 50-ft-lb temperature minus 600F, estimated in the preceding manner.
Uring this general approach, an initial RT of -100FaEa's*e's"tablished for plates in the core beltline region NDT 23 of Fermi 2.
For forgings (SA-508 Class 2), the predicted limiting property is the same as for the vessel plates.
Both CVN and NDT values are available for the vessel flange and closure head flanges for Fermi 2.
Only CVN results at +100F are available for feedwater-nozzle forgings.
For the flange forgings, RTgo7 is estimated in the same way as for vessel plate, and an RTNDT value of 100F was obtained.
For the feedwater-nozzle forgings, a maxi 7um 400F-NDT value was required by the purchase specification and there were no devia-tions l' rom this requirement.
The CVN results indicate a max! mum RTNDT of il2^F Therefore,,an RTNDT of 400F was used for the feedwater nozzles.
,4, For the vessel weld metal, the predicted limiting p;.perty is the CVN 50-ft-lb transition temperature minus 600F, as the NDT values are -500F or lower for these materials.
.This temperature is derived in the same way as for the vessel plate material, ex-0 cept that the 30 F addition for orientation effects is omitted since there is no principal working direction.
When NDT values are available, they are also considered and the RTNDT is taken as the higher of the NDT or the 50-ft-lb temperature minus 60 P..
When the NDT is not available, the RTNDT shall not be less than
-500F, because lower values are not supported by the correlation data.
The limiting beltline RTNDT for Fermi 2, established from CVN beltline weld metal values, was -440F.
No tougnness data were 5.2-24 Amendment 23 - May 1919
5 ATFA CHMENT A EFo 2-FS AR sat available for nonbeltline welds; however, the purchase specifi-cation required an average of 30 ft-15 and a minimum of 25 ft-lb at +100F.
Quality assurance records show no deviations from these requirements, which produce an RTNDT value of 00F for nonbeltline welds.
For vessel weld heat-affected zone (HAZ) material, the RTNDT is assumed to be the same as for the base material, as ASME Code
. eld-procedure, qualification test requirements indicate this w
assumption is valid.
,3 g3 gqj[
Toughness test requirements for closure-bolting.matefral in Fermi 2 were for 30 ft-lb at 600F bel _ow the Soltup temperature.
Current ASME Code requirements.are-for 43 ft-lb and 25 mils lat-eral expansion (MLE) at t load or lowest service temperature.
The reactor-vessel re studs have a minimum CVN impact energy of 50 ft-lb and il lateral expansion at 100F for Fermi 2.
Therefore, since values for Fermi 2 studs exceed crrrent requirements at 100F, the lowest service temperature is +100F.
The effecc of the main closure flange discontinuity was con-to establish the minimum sidered by adding 600F to the RTNDT temperature for boltup and pressurization.
The minimum boltup 23 temperature of 710F for Fermi 2, which is shown on Figure 5.2-1, is based on an initial..rNDT of +11 F for the shell plate con ~
nected to the closure-flange forging.
The effect o. the feedwater-nozzle discontinuities was consid-ered by adjusting the results of a BWR/6 reactor discontinuity analysis to the Fermi 2 reactor.
The adjustment was made by increasing the minimum temperatures required by the difference between the Fermt 2 and BWR/6, feedwater nozzle forging RTno7's.
The feedwater nozzle adjustment was based on an RTNDT of 400F.
5.2.4.2.3 Temperature Limits for Preoperational System Hydro-static Tests and ISI Hydrostatic or Leak Pressure Tests Based on 10 CFR Part 50," Appendix G, IV.A.2.d, which allows a reduced safety factor for tests prior to fuel loading, the pre-operational system hydrostatic test at 1563 psig may be performed at a minimum temperatare of 1500F, which is established by the feedwater nozzle.
The fracture toughnes; analysis for system pressure tests resulted in the curves labeled A shown in Figure 5.2-1.
The curve labeled feedwater nozzle is based on an initial RTNDT of 400F.
The belt' line weld material is expected to be more limiting at end-of-service fluence levels, and this weld material has an initial RTNDT of -440F.
W 5.2-24a Amendment 23 - May 1979 l
l
A T TA cMMENT A EF 2-FSAR ST The predicted shift in the RTNDT from Figure 5.2-2 (based on the neutron fluence at 1/4 of the vessel wall thickness) must be added to the beltline curve to account for the effect.of fast neutrons.
5.2.4.2.4 Tepperature Limits for Boltup A minimum temperature of 100F is required for the closure studs.
A sufficient number of studs may be tensioned at 700F to seal the closure flange 0-rings for the purpose of raising reactor water level above the closure flanges in order to assist in warm-ing them.
The flanges and adjacent shell are required to be warmed to minimum temperatures of 710F before they are stressed by the full intended bolt preload.
The fully preloaded boltup limits are shown on Figure 5.2-1.
5.2.4.3 Operating Limits During Heatup, Cooldown, and Core Operation The fracture toughness analysis was done for the normal heatup 23 or cooldown rate of 1000F per hour.
The temperature gradients and thermal stress effects corresponding to this rate were in-cluded.
The results of the analyses are a set of operating lim-its for non-nuclear heatup or cooldown shown as curves labeled B on Figure 5.2-1.
Curves labeled C on these figures apply when-ever the core is critical.
The basis for curves labeled C is described in GE BWR Licensing Topical Report NEDO-21778-A.
5.2.4.4 Surveillance Programs for the Reactor Pressure Vessel A surveillance program will be c7tried out to monitor the neu-tron radiation effects on the RPV base metal, the weld HAZ metal, and the weld metal from a steel joint that simulates a telded joint in the RPV beltline.
For the extent of compliance to 10 CFR Part 50, Appendix H, see Table 5.2-10.
5.2.4.4.1 Program Content The program vill consist of three baskets, each containing ten-sile and CVN specimens hermetically sealed in an inert gas envi-ronment in thinwall austenitic stainle. s steel capsules.
The capsules are not buoyant and thus present no handling problems.
The three baskets will be placed near core midplane adjacent to the RPV wall where the neutron flux and temperature will simulate that of the RPV wall.
The three baskets contain test spe:imens made from the original RPV beltline material in accordance with the raquirements of ASTM E185-66.
In total, the program consists of 84 impact and 19 tensile specimens.
In addition, there are 75 impact and 15 tensile baseline and spare specimens.
The speci-mens will include the following:
a.
Base metal impact, transverse and longitudinal b.
Weld metal impact c.
RAZ impact 5.2-200 Amendment 23 - May 1979
56 A TTA CHMw r A EF-2-FS AR f
d.
Base metal tt sile e.
Weld metal te ille f.
RAZ tensile The following general stat 'ments apply to these specimens:
a.
Base mets 1 impas and tensile specimens are taken from the 1/4 T planes of the specimen plate.
b.
RAZ impact and tensile specimens are all oriented parallel to the rolling direction, c.
Weld metal impact specimens are all transverse to the axis of the weld; tcnsile specimens are parallel.
The fracture areas consist of all weld metal.
Details of the manufacture of these specimens are given in Reference 6.
The specimens were taken f rom two plates trimmed f rom the lower, intermediate shell section of the reactor vessel.
The plate sections for the base material specimens were given a simulated stress relief for 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> at ll500F to ensure that they repre-sent the metallurgical condition of the lower, intermediate shell plates of the reactor vessel after final fabrication.
The plate sections for the weld and RAZ specimens were joined with a continuous central weld identical to the reactor vessel
[
longitudinal weld.
The welded plate was then given a simulated I
stress relief for 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> at ll500F, similar to the base mate-rial plate.
The ucid was X-rayed to ensure quality; no repair to the weld was allowed by the specifications.
5.2.4.4.2 withdrawal Schedule 1
(
The withdrawal schedule of the thren sets of specimens in the reactor is planned as follows-l a.
The first set will be withdrawn at 25 percent of the i
reactor service life.
l b.
The second set will be withdrawn at 75 percent of the reactor service life.
l c.
The third set will be a standby.
5.2.4.5 Reactor Vessel Annealing Inglace annealing of the reactor vessel because of radiation embrittlement is unnecessary because the predicted end-of-life value of adjusted reference temperature will not exceed 2000F l
(see 10 CFR Part 50, Appendix G, Paragraph IV.C).
l l
5.2-24c Amendment 23 - May 1979
ATTA C H / HEN T A
EF 2-FSAR fSl C lC' A A l *l I
f FEEDWATER NDZZLE j
i f
1200 LIMITS I
CORE BELTLINE f
I AFTER SHIFT 3
0 g
g
$1000 I
i f
)
/
O A - INITIAL SYSTEM HYDROTEST LIMIT
]
f f 5 INITIAL NON NUCLEAR HEATING LIMIT C INITIAL NUCLEAR ICCRE CRITICAL M
f LIMIT BASED ON GE BWR LICENSING w
TOPICAL REPORT NEDO 21778 Al g 800P f
l i
A', B', C' A, B, C LIMITS AFTER AN g
/
ASSUMED 124*F CORE BELTLINE O
U WELD TEMP SHIFT FROM AN INITIAL 3
/
NOT RT OF 44 F
[ 800
/
/
e 2
5y 400 l
E a.
BOLTUP
)
200 7
1 0
I I
I I
O 100 200 300 400 500 600 MINIMUM RE ACTOR VESSEL METAL TEMPER ATURE (*F)
ENRICO FERMI ATOMIC DOWER PLANT UNIT 2
~
FINAL SAFETY ANALYSIS REPORT FlGURE 5.21 MINIMUM TEMPERATURE REQUIRED VERSUS RE ACTOR PRESSURE AMENOMENT 23 - M A Y 1979
..