ML20009A827

From kanterella
Jump to navigation Jump to search
Viewgraphs Entitled TVA Inner Radius U-Bend Program, Presented at 810603 Meeting W/Nrc.Charts,Tables & Addl Info Encl
ML20009A827
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 07/08/1981
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20009A826 List:
References
NUDOCS 8107140301
Download: ML20009A827 (66)


Text

N e 4

/

O ENCLOSURE SEQUOYAH NUCLEAR PLANT TVA INNER RADIUS U-BEND PROGRAM 8107140301 810708 PDR ADOCK 05000327 '

P PDR j.

s x.

~

TVA INNER RADIUS U-BEND MEETING AGENDA INTRODUCTION AND REVIEW OF R0W 1 U-BEND PROBLEM.

DAVID F. GOETCHEUS (TVA)

OVERVIEW OF TVA INNER RADIUS U-BEND PROGRAM.

. . DAVID F. GOETCHEuS (TVA)

EVALUATION OF SEQUOYAH U-2 R0W 1 TUBING (MANUFACTURED BY WESTINGHOUSE AND HUNTINGTON ALLOYS) MECHANICAL PROPERTIES COMPARED TO MECHANICAL PROPERTIES ASSOCIATED WITH FAILED INNER RADIUS IUBES.

DAVID F. GOETCHEUS (TVA)

QUANTITATIVE ASSESSMENT OF STRESSES ASSOCIATED WITH R0W 1 U-BEND IUBE FAILURES.

J. ED WILSON (TVA)

REVIEW OF CALIBRATION IUBES SIMULATING VARIATIONS OF "0PPOSITE SIDE TRANSITIONS" DEFECTS ASSOCIATED WITH R0W 1 U-BEND LEAKAGE.

DAVID F. GOETCHEuS (TVA)

EDDi CURRENT IESTING TO CHARACTERIZE SEQUOYAH U-2 R0W 1 U-BENDS TO DETERMINE THE PRESENCE AND DEGREE OF "0PPOSITE SIDE TRANSITI0ft" DEFECTS AND BASELINE EDDY CURRENT IEST.

SH0z0 NARITA (C&L ENG. TVA CONTRACTOR)

SUMMARY

OF TVA If4NER RADIUS PROGRAM.

DAVID F. GOETCHEuS (TVA)

~

i:ITRODUCTION AND REVIEW OF R0w 1 U-BEND PROBLEM DAVID F. GOETCHEUS (TVA)

N

'n STEAM GENERATOR EXPERIENG

~

ROW 1 U-BEND LEATA T -

Imakage in Rcw 1 U-Bend secticns has cccurred in two locaticas:

1. Apex
2. Tangent -

~ -

Apex Leaks

~

Three plants;-

- r tr :

- One dent-related: heurglassing, leg displacement (140 gpm).

Two in tubes manufactured by Mannes=an (up to 150 spm).

Tangent Le:. 3 Six plants wit.h tangent leaks; a1151 series st'eam generators. '-

..: Leakage starts very low (M0 gpd). .

Maxic=1 leakage ~ 0.7 gpa With cne exceptien (Surry #2 - Apex leak), denting is not an influence in the occurrence of U-Bend leakage.

~

l l

e e

DIM 12/10/80 m

~

~~

- IDillT-BB0 LEAKS FAVE OCCllRED IN.EIGE PlMS .-

' i

- DJRING ECSE WARS M E.eR toCATIcN 1978,1980 T#!GBE

- FARLEY 1 RIIGIAls2 .

1979,1980 TREE

- ~

AEX D5El.2 1979 TAVAWA #1 1977,1978,1980 TR E E TROJM1

. 1978,1979,1980 TREE NORTH N M 1 1979 TR E E

- 1980 ifE0aN EE2NMJ 2 ,

~

NOT CCEIRE C0Ci( 2 1980 e

e e

$ h a'

- P 3

O O

i .

~

{

(

l esp @

+ - ,

N.oy 3 1980 c- .

b m

7. -m,-

.y _ - _..,_..._,,.._,.._,,,y_,.m.._,, -_., y

.% g, ' M sA i7

/ %~ $ Q

/ 0 '\

/ '45

/ '

/

/

/ / .

/ /

/ /

g

/ /

8 / /

/ /o l

~

ll l -

I j ~

/0 /

6 '

g i

~~ , oo ,

l Cold 45o s. '

Leg 45 i l

Hot leg Fig. - Definition of angular nositions

. . s

/

4 2 *

.[ '

~

1

'CPPOSITE" f TRANSITION

=gm a TRANSmONT '

= .

q/ep ..-

T-A INTRACOS- +

TRANSIT',CN g

  • EXTRADOS TRAWITON 0 . - _ - ..C .'.' . 7. : - -__ '
  • .ee.' I w
  • f/// '////////0//// +

'////

+T s

NT Pt. ATE '

+ S75"+

l T = .050" NOM. WALL Ae.010" 0 07"

= .0 05"

= 403"

(

)

/

. i O .

o y ,-.. . . . . .

y .. . . . . , .

- g

. 4

- x .

w .

n .4 o .

2~ '[. F2 -

8 o

r. n .

~

k S- . . . . . . . . . . . . . . . . . . . .

- - 0 2e n .

-- ge

c H T-C E L4 t,l' -

. UV g . . .. . . .

U>

. *4 ~

m,

.- ;. e4 .

  • o -. .

o-o ,. .

ei v m

-- rJ

~

N -

T r 2  ; z 2 2 o e o o o u o o o -

F

- - y e F r r y F t- 4 0- " 4 4 4 ' * - 4' g

< C u u 1 ~ ~

W C' t: u w w w w W w g L L C' L L L s O O 00 O O O O 2 2 x- 2 2 - r- 2 .

l

> p e F F F e F o o o o o o o o-I z z2 2 Z 2 ~Z

- ~M N E 2

~

4 g N 9 o k o

  • r N EOp

?

  • ^

$- U2 H

  • N' a N.g S * ' d $

V z s

  • J '

8

, a ep % . *.J

  • 2~ d < w J & .a < 1 e .2 tQ a a g. 2
  • V 4 =  % w wR o WW > ~m N N 4> 4> [ 0 1> 3g

' - r-N "m

( r c ~U 4

-

  • n! o 2 # W
  • 4 at , o T >

4 -

~

> GOCd~ -

~

l

}

s >

I

  • e y - U 3 w er E . * > E , y 3 3 e

~

ge o o z t.) 1 W

- .s 4 >" G 80 -O2 JN bU 4 u 1 p 3 w

J .h D

'gg - ?

n C w c, 1

o et 3 c)W 3 W' W< a o w (T C 6 U u W 2 4 ~

W *' m'~w0

- tr ., s a w o * - - 4 o 2 o < -

,5 m c. O r ID D. m m m e z O l4 ID Cr O ler LL Z o x Lt 4

' 3 .< g.f

- e

( -

  • ~ ROW 1 U-BEND LEAKAG .

. EXPERIENG SthMARY Au tangen: voint leakers have occt ed in Series 51 steam generators (SG's).

, Tangent point leakage has been ccnfined in 3 dcmestic plants (6 of 10 SG's) of 14 plants in camercial operatica (45 SG's). A leak in another.1 -JT plant has not been cenfimed to have occurred in the tube with a Rcw 1 tangent point'EC.indicatien. , , ,

Tangent point leakage in detestic plants has been well below Tech. Spec.

allowable limits; ncne higher than 0.1 gpn. Maxir:u::t cbscried tangent point leakage 0.7 gpa.

The pcpulatien experiencing tangent point leakage occurred in tubes in SG's shipped in'1972. .

First leakage events have occurred after apprcx. 400. effective full pcwer

- days cperatien. (Exception: Ringhals 2 01050 EFPD but 216/282 Rcw 1 tubes were plugged at apprcx. 420 EFPD).

  • ~

' ;C Y . ' '

e

. 1 9  %

. 12/80 f l

. - - - - - - - - - - - - - - )

^ ~ '

SIANARY OF PEVIBf 0F TUBE MAhUFACIURING RECORDS .

f

1. FIANT EXPERIENG SHOWS CERTAIN SETS OF 'IUEES, MANUFACIURED BY W, HAVE SHOWN LEAKAGE IN SOE HEATS OF MATERIAL.
2. CERTAIN HEATS AFFEAR 50FE SUSCEFTIELE TO U-EEND LEAKAG

- - - THAN THE GENERAL F0FULATION, AND ARE GARACIERIZED, ,

STATISTICALLY, WITH HIGHER YIELD SEENGIES AND FARDESS VALUES.

3. 10DELS 44, D and F TUBING ie.PmiSBT FCPUIATIONS hEIG, STATISTICALLY, DIFFER FAVCRABLY FFD4 THE AFFECIED 50 DEL 51 HEATS.
4. THE STATISTICAL ANALYSES ARE hUr IhTENED AS A MEANS FOR SPECIFIC TUEE DISCRIMINATION EUT ONLY AS A DLAGNOSTIL TOOL TO HELF EXFIAIN THE PHENGENON.

+

4 Plant S/G No. Tubing Supplier Set No.

PNT: Salem Unit 2 1201 SMD 28,29,30 1202 SMD 28,29,30,31 1203 Row 1: HAPD, SMD 30,31 (27 tubes) .

4 Row 2: HAPD, SMD 30,31 (22 tubes) 1204 ,

SMD 28,32,33 TVA: Sequoyah Unit 1 1221 SMD 34,37,38 1

1222 SMD 31,32,35,37,38, 39,40 1223 SMD 31,32,40,41 a

1224 SMD 37,38,39,40,41 1

i = TEN: Sequoyah Unit 2 1321 SMD 29,31,39,40, 41,42 1322 SMD 39,41,42,43,44 1323 Row 1: HAPD, SMD 35,39,41,42 (24 tubes)

Row 2: HAPD -

1324 HAPD -'

VPA: Surry Unit 1 1021 HAPD -

1001 HAPD -

1002 HAPD -

VIR: Surry Unit 2 1063 SMD 16 1081 HAPD -

1082 SMD 18

,/ -

. EGETRIC CCNGRNS -

. RELATED TO RCW 1 U-BEID IEAKAE -

+-

~

,AP ex leakage shcws sc=e correlatien with tube ovality..

~

Surry 2 > 12%

Doel'2' 7 iSF Chrighein e

Tangent point leakage and indicatiens apear related to presence of

'" g osite" transitica at dxtrados tangent. "

Trojan - laboratmy exaninatiens

, Eddy current data interpretaticn frcm Trojan, North Anna #1,

'.Farley #1, Cook #2 e

e i

l . .

I 1

DD4 12/10/80 I

I .:- --

-.. /

l l

I I I i l i i l i l I l l I I I I i iiI e i 60 --- -

i . 50 -

Indication _

.E Tube by X-Ray Symbol ,

Ta 40 -

p Rl-C6 yes a _

~

- /\ Rl- C22 no o

,1 ,d s x 30 - _

/ k __ ________.o, m -

l \

s

.3 & N 7 10 -

's s --

_ s

' y g 0 j k

.e

. - 10 _

s b

3 o

1 I I I  ! I I i i l i l I i 1 I I I I I I i 1

- 0. 5" 0 0. 5 1. 0 1. 5 2. 0 Apex. 2. 0 1. 5 1. 0 0. 5 0 - 0. 5 Smooth Transition Opposite Transition Fig. 2- Ovality data for Trojan tubes Rl-C6 and Rl-C22 at the smooth transition, apex, and opposite transition. Zero positions correspond tointrados transitions

\,

S

~

SUMMARY

OF THE FRINCIPAL FACTS (9-30-80) - ,

1. DOUBLE WALL X-RAY RADIOGRAPHS IDENTIFIED'THREE TUBES WITH

- INDICATIONS OUT OF 26 R0W l TUBES.

2. THESE INDICATIONS OCCURRED AT THE TRANSITION WITH W' ELL DEFINED EXTRADOS AND INTRADOS TRANSITIONS AND ON THE EXTRADOS JUST BELOW THE EXTRADOS TRANSITION AND IN THE STRAIGHT LENGTH SECTION.
3. THE INDICATION ON TUBE R1-CE CONSISTED OF INTERGRANULAR CRACKS WHICH RESULTED FROM MULTIPLE INITIATIONS ON THE I.D.

fl . THE HARDNESS OF R1-C6 TUBE WAS HIGHER THAN FOR TWO OTHER TUBES WITH INDICATIONS AND FOR THREE OTHER TUBES WITH NO INDICATIONS.

O

=

WESTINGHOUSE METALLURGICAL -

Summary i

1. Trojan row 1 U-bends were characterized by a smooth transition with only a well defined intrados transition and by an opposite transition with well defined intrados and extrados transitions.
2. At the opposite transition, th'e extrados transition was .s0.6" above ,

~ '

the intr' ados transition and closer to the apex.

3. Three of 26 tubes' had cracks which occurred at the opposite transition between the intrados and extrados transitions and at the extrados.
4. These cracks resulted from multiple initiations on the ID and intergranular penetration.
5. No consistent and significant relationship could be established between cracking and ovality, grain size, carbide distribution, minor el ement chemistries, and hardness.
6. No cracking or opposite transition was found on the row 2 tube studied. ,
7. Row 1 bends from Surry 1. and Turkey Point No. 4 had only smooth transitions ( .o opposite transitions), and no cracking at thE transitions was observed.
8. Surry 2 row 1 tubes had opposite transitions like the Trojan tubes and had ID multiply initiated cracks (aspect ratio of $4) at the same location as.the Trojan tubes.
9. On a virgin tube, strain gages and a layer removal technique were used to measure residual stresses where cracking had been encountered, they were compressive.

~

, /-

y+- rr-T$w -* rive ** ,y en--n---,y-y- r-m-Tw-m---- -- y-v-w--- -+m,- gwwe--e- m- a -owwa- g --w-- e 8 yg4 y w - - i-,.- , .-- -

SlM%RY CF U-E80 DISCUSSI&ls U-EBE IBKAE TN!GBE POIIE EVENTS AE CCfFIED TO 51 SERIES STER 1

- ~

GEERATORS F#'UFACIllRED IN APPROXIFATELY TE 1972 PERIOD, TUEE IBKAGE #0 E.C. It01CATICf1S AE CG4FIED TO PDd 1 TIEES, PIM EXPERIEf!CE SHOWS THAT CERTAlf! HIEES PR!UFACTUED BY hESTIt!GHCUSE HAVE L9KED. , ,

IBKAGE NO E.C. It01CATIGIS APPEAR AT G1LY ONE TN4GBiT P0lili.

T#1GBIT POIflT LDK RATES HAVE EEB1 ELATIVELY SPALL #9 hFil EEPAVED -

ORDERLY SHIEC41 IN EACH CASE. .

CPACKS APEAR TO EE SHORT #0 TIGHT WITH LG1 ASPECT PATIO, IBKAGE ENENTS APPEAR IN PlM OEPATIGIS AT APPROXIfEEl_Y VJO EFPD, J

I 1

i i

l

. l l

OVERVIEW OF TVA INNER RADIUS U-BEND PROGRAM.

DAVID F. GOETCHEUS (TVA)

TVA INNER RADIUS U-BEND PROGRAM .

THE FOLLOWING PROGRAM HAS BEEN INITIATED AS A RESULT OF NRC ACTION. THE P'ROGRAM OBJECTIVE IS TO PROVIDE THE NRC WITH ,

SUFFICIENT INFORMATION AND DOCUMENTATION TO JUSTIFY NOT PLUGGING SEQUOYAH, R0W 1, STEAM GENERATOR TUBES.

A. DEVELOP A TEST METHOD TO CHARACTERIZE INNER Rt.DIUS U-BENDS TO DETERMINE THE PRESENCE AND DEGREE OF "0PPOSITE SIDE TRANSITION" DEFECTS, AND TO PROVIDE A BASELINE EDDY CURRENT TEST FOR FUTURE EXAMINATIONS.

B. DEVELOP IMPROVED TEST METHODS TO BETTER DETECT STRESS CORROSION CRACKING AT THE OPPOSITE SIDE TRAN!ITION.

I b

P

}

e

- y < wv- y r, y m-i.. ,- ,-,-,,-,re -

m -w y

, + + = - --r--- en e- w,- . - . , -,w,*.--c-w, - - - . . ~-,,-r.% , y,r-. ~ , ,e,-.---- em, --e_ ~# 'm----

9 4

TANGENT POINT SCC R0W 1 TUBE LEAKAGE -

NECESSARY METALLURGICAL STRESS; EINIRONMENT STRUCTURE

~

SUSCEPTIBILITY PRIMARY WATER "0PPOSITE SIDE "CORIOU" CRACKING TRANSITION DEFECT I

MINOR SUSPECT MAJOR

_. I i HUNTINGTON SMD METALLURGICAL MECHANICAL METALLURGICAL MECHANICAL CONDITION PROPERTIES CONDITION PROPERTIES

}

R0w 1 IN-600 INNER RADIUS U-BEND IUBES PRONE TO STRESS CORROSION CRACKING CAN BE CHARACTERIZED BY:

1. THE PRESENCE OF A MAJOR "0PPOSITE SIDE IRANSITION".

_ . 2. SUSCEPTIBLEINCONNEL500METALLURGICALCONDITION.

3. PHYSICAL' PROPERTIES OF INCONEL 600 (I.E., HARDNESS).
4. MANUFACTURED BY WESTINGHOUSE SPECIAL'y METALS DIVISION.

N

+4e e< , wm-, m -w-

EVALUATION OF.SEQUOYAH U-2 R0w 1 TUBING (MANUFACTURED BY WESTINGHOUSE AND HUNTINGTON ALLOYS) MECfiANICAL PROPERTIES COMPARED TO MECHANICAL PROPERTIES COMPARED TO MECHANICAL PROPERTIES ASSOCIATED WITH FAILED INNER RADIUS TUBES.

- DAVID F. GOETCHEUS (TVA)

(.

I 4

- ,# -.~+.w w sw.-..,. - ,, . , , ,- ,-, . ,,4 .itw,y.,,e,-- --.3--, g_,_- - , - - - we , n , - - . . .p. . - - - - , - , r -, --.m,, we se e-v.3- - - * - - -

I e Table 2 Comparison of wall thickness (mils) and Knoop liardness (500g) for three tubea ,

with x-ray indicatione and three without at various approximate angular -

positions on a straight leg.

4 i Tube / Leg Wall Thickness -Ilardness (mid-wall) 135* 180 225 Avg. 90 135 180 225 270 Avg.

. (Extrados) (Extrados)

R1-C6 Cold *

) l tj 57 55 54 55.3 219.8 233.9 245.0 234.7 216.7 230.0 (Rb = 93)

S

  • o RI-C7 d 57 57 55 56.3 186.7 187.3 178.2 178 183.2 182.7 [Rb- 83)

. Ilot** g u

56.3 199.6 190.4 185.2 201.8 206.3 196.6(h:8l)

R1-C26

)k 56 57 f6 I Ilot**

R1-C10 D 59 60 57 58.66 179.1 186.4 183.1 180.4 186.1 183.0 (%-g3}

Cold

  • j RL-C13 ( 52 . 52 54 52.7 187.8 183.1 187.8 186.5 190.8 187.2(Rb=BS) llot** g ,

Y ,

R1-C22 x 59 57 55 57.0 181.3 185.2 183.5 '

176.8 181.3 181.6 Cold ** f g (Rb = 83) l A Opposite Transition e

    • Smooth Transition

-. Mechanical Property Analysis For Trojan, Westinghouse Manufactured, -

Huntington Alloy Manufactured, and Model 51 Tubes Ultimate Yield Strength Strength Elongation Carbon Hardness Population (Ksi) (Ksi) (%) W/0 R B

Model 51 Tubing .

(800 heats) 101.7 55.2 39.5 ,,

0.035 85.7 Affected "

Trojan tubing (18 heats) 104.3 58.6 38.4 0.037 87.6 Sequoyah Huntington ,

tubing (avg. of 15 heats) 101.7 56.0 37.8 86.3 (range 81-91)

Sequoyah

. Westinghouse Tubing (avg. of 41 heats) 102.7 57.0 38.4 87.1 (range 81-91)

Removed Trojan Tubes RIC 6 -

5 93.0 i Cold Z -

5

, RIC 7 (j 83.0 Hot ~

x '

RIC 26 S 87.1 Hot s A 8

RI-C10 9 E 83.0

, Cold 0 i=

RI-C13 '

, .5 85.5 Hot x a

RI-Cl2 A 83.0 Cold  ; o z

M

. _ , - , _ . ~ . . _ . , - _ . . . . , , , . . . . _ , - . _ , - _ . _ . , . - - - . , . r - ,.r ,

-v-:. m,. - , -m...,,m_.,- . , _ - , , , . . _ - _ .

~

QUANTITATIVE ASSESSMENT OF STRESSES ASSOCIATED WITH Row 1 U-BEND IUBE FAILURES, J. En WILSON (TVA) l l

l f-

9 w

r- - ~,

N 1 N N

i N L~ ~~s N s \

l N \

i .N s N s

\ _ Bu'LGED OUT, THIN AREA

\ \

\~

l (SEE VIEW A-A)

I t ' IRANSITION REGION

+ ,

I i 1

. BULGED OUT, THIN AREA IO OI - IRANSITION REGION j * *]-- (TENSILE STRESS)

View A-A

  1. +

II

" OuT-OF-ROUND p ': CROSS SECTION

\\%..y//

SECTION 3-B

QUANTITATIVE ASSESSMENT OF THE STRESSES ASSOCIATED WITH R0W 1 U-BEND IUBE FAILURES

1. SPRING BACK OF THE BULGED OUT, THIN REGION AFTER RELEASING THE MANDREL BALL PRE 5SURE RESULT,S,IN COMPRESSIVE RESIDUAL

~ '

STRESSES IN THIS AREA. IENSILE RESIDUAL STRESSES THEN OCCUR AT THE TRANSITION REGION TO MAINTAIN EQUILIBRIUM.

THIS IS WHERE MOST TUBE FAILURES ARE KNOWN TO INITIATE.

2. DIFFERENTIAL PRESSURE LOADING ACROSS THE TUBE WALL TENDS TO ROUND UP THE CROSS SECTION AT THE BULGED OUT, THIN REGION. THIS RESULTS IN THE NEARLY ROUND TRANSITION REGION BEING THE STRONG BACK WHICH PICKS UP MORE OF THE TENSILE LOAD IN THE HOOP DIRECTION.
3. THE MAGNITUDE OF THE TENSILE RESIDUAL STlESS AND THE

~

TENSILE PRESSURE STRESS AT THE TRANSITION REGION WHERE MOST TUBE FAILURES ARE KNOWN TO INITIATE IS DIRECTLY RELATED TO THE DEGREE OF OUT-OF-ROUNDNESS AND THINNING OF THE BULGED OUT AREA. ,

REVIEW OF CALIBRATION IUBES SIMULATING VARIATIONS OF "0PPOSITE SIDE TRANSITIONS" DEFECTS ASSOCIATED WITH ROW 1 U-BEND LEAKAGE.

DAVID F. GOETCHElis (TVA) g

9

~

INNER RADIUS U-BEND TEST PROGRAM CALIBRATION TUBES 1.0 Percent Reduction in Wall Thickness .

1.1 Tube 1019-1 1.2 Tube 1019-2 1.3 Tube 1019-3 1.4 Tube 1019-4 1.5 Tube UB-I 1.6 Tube UB-III

~'~

2.0 Ovality Data 2.1 Tube 1019-1 2.2 Tube 1019-2 2.3 Tube 1019-3 2.4 Tube 1019-4 2.5 Tube UB-I 2.6 Tube UB-III 3.0 EDM Notches 3.1 Tube 1019-1 3.2 Tube 1019-2 '

3.3 Tube 1019-3 3.4 Tube 1019-4 3.5 Tube UB-I 3.6 Tube UB-III

i INNER RADIUS U-BEND TEST PROGRAM CALIBRATION TUBES

, 1.0 Percent Reduction in Wall Thickness a

I e

9 i

e l

l'

- 1.1 -

PERCENT REDUCTION IN WALL T 11 1 C K N E S S

  • CALIBRATION TUBE 1019-1 m

m sa n

  • ' ' ' ' I ' ' I I ' I ' ' ' ' ' '

O - I I 3 I I I I I I I I o >

H e -

10 -

2 3 -

=

c 20 O e e

o -

a A

  • 30 - ,

g i t i t i e t i I I t I t t I t I t i I i i f I I I I 1

-0.5 0 0.5 1.0 1.5 2.0 2.5 APEX 2.5 2.0 1.5 1.0 0.5. 0 -0.5 Dg D D U D D9 D10D 1g D 12 13 14 15 16 D Dy7 3 4 5 6 7 8 S M 0 0 T 11 TRANSITION OPPOSITE TRANSITION Percent reduction in wall tlyickness at the extrados (180"C) for the smooth transition, apex, and opposite transition. Zeros correspond to extrados transitions.

l

1

- 1.2 - '

PERCENT REDUCTION IN WALL T 11 I C K N E S S CALIBRATION TUBE 1019-2 m

m W

0 0 - I 3 I 3 I I I 3 3 I I I ' ' ' I I I I I ' i 8 3 H

. -)

e =

10 -

a _

3 -

a g

  • o 20 -

m a H C U - -

a O

  • w 30 -

g i e i t I e i i I i i e i i i e t a f I I I I i f 1 I I

-0.5 0 0.5 1.0 1.5 2.0 2.5 APEX 2.5 2.0 , 1. 5 1.0 0.5 0 -0.5 "1 2 3 4 5 6 7 8 D9 D10 11 12 13 Dg4D 15 D 16D 17 S M O O T 11 TRANSITION OPPOSITE TRANS.ITION Percent reduction in wall thickness at the extrados (180 C) for the smooth transition, apex, and opposite transition. Zeros correspond to extrados transitions.

4

)

\

\ l 4

s

- 1.'3 -

  • PERCENT REDUCTION IN W A 1. L T 11 I C K'N E S S CALIBRATION TUBE 1019-3 v1 vs W

Lt

  • ' ' ' ' ' I I ' ' ' ' ' ' '

I I I I I I I O e' , )

3 O - I I 3 I 3

' u s

H -

10 -

3 -

.g

  • c 20 -

s s

o -

D Q

w 30 -

e I i i I I i t i t 1 i t i a i t I i a # t I I I I I I I I g -0.5 0 0.5 1.0 1.5 2.0 2.5 APEX 2.5 2.0 1.5 1.0 0.5 0 -0.5 1 2 3 4 5 6 "7 D 8

D D D D 9 10 17 12 13 14 15 16 17 S M O O T 11 TRANSITION OPPOSITE T R A N S.I T I O N Percent reduction in wall thickness at the extrados (180 C) for the smooth transition, apex, and opposite transition. Zeros correspon'd to extrados transitions.

N

\ l ,

f

- 1.4 - ,

PERCENT REDUCTION IN W A L 1. T 11 I C K N E S S CALIBRATION TUBE 1019-4 m

m w

Z

  • I ' I I I I I I I I I ' I ' ' ' '

O -

3 3 I I I 3 5 I I I O .

H O OO 9 -

r1

" 10 -

a _

3 _

4 z .

o 20 - -

s

  • H .

U -

a O

w 30 -

g i i i t I i t i t i s t i i e e t i i i t i I I I I I I i l

-0.5 0 0.5 1.0 1.5 2.0 2.5 APEX 2.5 2.0 1.5 1.0 0.5 0 -0.5 1 2 3 4 5 6 7 8 D D D D D D 9 10 11 12 13 14 1$ 16 17 S M 0 0 T II TRANSITION OPPOSITE TRANS.ITION Percent reduction in wall thickness at the extrados (180 C) for the smooth transition, apex, and opposite transition. Zeros correspond to extrados transitions.

\l i

t > ,

e t

  • i 7

s o

. - - - - p

- D p I

l 6 N o .

1 5

0 O d i

5 g

n l

0 D

. I a

s I

g T x

D I e 3 p 4

0 -g S I

a D,

l .

N ,

l n

D A o i

5  ;

i

! . y R t 0 D i I

g T s

's  ; 1  ;

n S D a 1 0 r S _ I . ,, E t 1 D E I T h f t

' . N 3 o

i o K f 3 m

- 1 s

C i 3 a e I1 h B 1

' t iU t

t 0 P

- r T9 l 2 O o 1 I f 0

1 5 )

L f .

C 2 "

L 0 E S A I .

B ( s U ~ n U I

.- E' 3, r. o

. f P D oi T A d t N ai

. - s I

t. n

- N xa i

5 er

5. N O 1 I i

e t

2 h s O i t o

- T 1 d

I t a A I t 0 art T .

R 2 sx C I s e 1

B i

' e 1

I I 5 O no k t D i c

L 1  !

d E I f h n A 8 T t o

. R p C I 0 -

t D

1 l s l e 1

S ar

- T 6 wr D '

o N .

nc E

I

f T> .,

A i

') s

- U R no C I or

. f D

R T i e I -

e t Z c

E f O D u

. 1 P 1 d .

i en I

D T r o

'. i I

O t t

0. D ni

- O es l

I t c n

  • r a er S P t g 0 1

0 2 .-

n.

- n :u e zf =. g Ja< 2c E Ua = . 2 g I

8 s-

.a.

. a'

- 1. 6 --

PERCENT R E D U C T I.0 N IN W A L I. T 11 I C K N E S S CALIBRATION TUBE 1019- UB3 m

v:

a
4 ' i i i i i

.; O --

q', l 1 i i i i g g , , , ,, , ,. , , ,  ; , ,

=

~

E--

.- T-s 10 -

~

u _

z ..

" ~

c 20 .- -

H +

u - .

a }

=

.. 30 -

  • ' I I I I I I I  !  ! I I i i i f I t n ( { 3 l l g g g g

.x -0.5 0 0.- 1.n .5 2.0 2.5 APEX 2,5 2,0 1,3 1,n G . ') 0 -0.5 "1 2 " 3 " . " '2 "6 "7 D 3 D D1,)D11 D,.,D,.D

.- 4 3 14 ,D13

.DI n. D17

's * O O T !!  ? ' "

s I 't'

- 0 -

OPPoS ITE 'l' T R A '.' S I T I O '.'

e Percent transition. recluc/.c t ion rosincorre:;

we'll cpond  !: i cto knextrados es s . a tt riins the ext ons. (180"C) for clic smooth t ransit ion. '9ex, anit opposite' i t irmlos l

\~s

INNER RADIUS U-BEND TEST PROGRAM CALIBRATION TUBNS 2.0 Ovality Data 4g i

i

~

i

[ - - -. __ _ . .

, e i i t

.- l

- 2.1 -

(l TllBE1019-1 l' i i i i i i I l 1 I I I I I I . .

i i i I I I IllDICATION TUBE. BY X-RAY SYMBOL _

60 -

R1-C6 YES. A o

~

R1-C22 tio .

. 50 -

E 1019-1

-a m ~

u l

e 40 -

p ' -

~ / ,

l

'\ V -

30 (w _ _

f= / - _ _ _ _ _ _.o, ,

l i

20 -

i

's

  • a -

.2 s 10

's, ,

/ -

T s A i o 0 gj g

\

. - 10 -

b

.e o

1 I i  ! I I I I I i i i I I i i i iI i i t i

- 0. 5" 0 0. 5 1.0 1.5 2.0 Apex. 2. 0 1. 5 1.0 0. 5 0 ' - 0. 5 Smoot!) Transition Opposite Transition o

OVALITY DATA FOR TROJAN TyBES R1-C6, R1-C22,. AtlD TVA CALIBRATI0tl TUBE 1019-1 AT ShDOT11.TRANSITI0fij APEX, AtID OPOSITE TRAtlSITION.' LERO POSITIONS CORRESPOND TO INTRADOS TRAtlSITI0tlS

\, . .

  • o f .

- 2.2 -

i I i ERF 1019 ')

I e 1 i i i l I i )  ! l I i i I I I . .

INDICATION 60 -

BY -RAY h>Bg SYlyL _

Rl-C22 tb o 50 -

1019-2 0 --

.E.

m l 40 a

~

9 -

30 - '

l ,N r ' -

O c / o_ _ _ ________q

's '

20 -

/

o -

.5 o. s ,

10 -

s -

I s

0 0 s 4

' ' F .' A

%W T

_g - 10

(

O

' ' I I l 'l  ! ]  ! l l '  !

!  ! I J l  ! l l  ! I

- 0. 5" 0 0. 5 1. 0 1. 5 2. 0 Apex. 2. 0 1. 5 1.0 0. 5 0 ' - 0. 5 Smoot!1 Transition Opposite Transition OVALIT( DATA FOR IROJAtl TUBES R1-C6, R1-C22, AND TVA CALIBRATION IUBE 1019-2 AT St00TH TRANSITION, APEX, AND OPPOSITE TRANSITION, ZERO POSITIONS CORRESPOND TO INTRADOS TRANSITIONS.

I

\

st *

, o

- 2.3 -

TUBE 1019-3 I I i i l I l i l I I I I I I I I I I I I .i 60 -

IflDICATION _

TUBE BY X-RAY SYMBOL R1-C6 YEs a ~

50 -

e R1-02 No

~

O-i 1019-3 o I

c 40 -

9 .

~ / ,\

I 30 - ' -

/ w__ -. _

_. _"_ .o' '

20 --

/ N s o --

.3 O- N c s i 10

- s /

I s sy o / .

,sg g 0 g

(

\

j - 10 -

O l  ! l  ! I I l l l I l  ! l l I l l l l \ l I

- 0. 5" 0 0. 5 1.0 1.5 2. 0 Apex. 2. 0 1. 5 1.0 0. 5 0 -0.5 Smoot!1 Transition Opposite Transition

OVALITY DATA FOR IROJAN TUBES R1-C6, R1:Q2, AtlD-TVA CALIBRATI0tl IUBE 1019-3 AT SMOOTH TRANSITION,' APEX,

, N!D OPPOSITE TRANSITION. /ERO POSITIONS CORRESP0tlD TO IllTRADOS TRANSITI0flS

\, ,

- 2.4 -

TUBE 1019-41 1 I i i I I I I I i l i F. I I I I I I I I I e i INDICATION l

60 -

TUBE BYX-RAY SYMBOL R1-C6 YES 6 j g 50 -

m R1-C22 NO .. o -

4- '

1019-4. .

a 1 40 - -> -

. 0 P., ,

> ~ a V

f 30 -

'g -

c // w__ -. _ _ __ _ _ _ _.o,

's ~

3) __

// a -

.d w s j 7 10

\ ' ,

l s"4 ' ' -'

0 i'b.-d l 8 8

g

j - 10 --

b

~'

o i i i I i  ! i i i i i i i i i i t i  ! I I i i

- 0. S" 0 0. 5 1. 0 1. 5 2. 0 Apex. 2. 0 1. 5 1.0 0. 5 0 - 0. 5 Sm00th Transition Opposite Transition DVALITY DATA FOR IROJAN TUBES R1-C6, R1-C22, AND IVA CALIBRATION IUBE 1019 AT SMOOTH TRANSITION, APEX, AND OPPOSITE TRANSITION, ZERO POSITIO!!S., CORRESPOND TO INTRADOS TRANSITIONS 1

\, ,

- 2.5 -

lljBEUB-1 I t 6 i i i i I i i i i i I i i i i I ..

t01 CAT 10N TUBE X-RAY SYMBOL 60 - _

R1-C6 YES A

. SO - R1-C22 to - p o _

I u

.E UB-1

  • a m . . .. ,'

l o 40 -

p '

~. -

~ / ,g .

- , ,:. c:

V '

f 30 - '

'g -

- / w__ ____._____.0,

's s 20 -

/ o -

.3 O- N a r i 10

- s i i s

^

s '

s "Aq#

(

h 0 a

,, g 7

_j - 10 a

!r

( --

1 I I t  ! I I I I I I  ! I I I I I l- [ l i I i

- 0. 5" 0 0. 5 1. 0 1. 5 2. 0 Apex. 2. 0 1. 5 1. 0 0. 5 0 ' - 0. 5 Sm00tl1 Transition Opposite Transition OVALITY AND OPPOSITE DATA FOR IROJAN TRANSITION. L TUD,ERO POSITIONS CORRESPOND TO INTRADOS TRANSITIO

[ O e

i

- 2.6 -

TUBE UB-3 '

I I I I I I I I I I I I I I I I I i i i 1 . i JilDICATION 60 -

TUBE DY X-RAY SYMBOL -

R1-C6 YES 6

. 50 -

,R1,-02 NO O ,-

c g- UB-3 o '

1 0 40 -

9 -

1

- / ,g -

V f 30 -

'g -

= w__ ________.0,

's s m _ _

.e o. s a s /

i 10 a '

s o i

._. s o - " s -

0

$ 'E k s

- 10 -

b

.e a

1 I i i I I I i l I i I  ! l I I I  ! I I I  ! I

- 0. 5" 0 0. 5 1. 0 1. 5 2. 0 Apex. 2. 0 1. 5 1.0 0. 5 0 - 0. 5 Sm00th Transition Opposite Transition 0/AUTY DATA FOR IROJN1 iUBES R1-C6, R1-C22; n4D TVA CALIBRATION IUBE UB-1 AT SMoved TRANSITION; APEX,

NID OPPOSITE TRNISITIort. /ERO POSITIoris CORRLSPOND TO IrlTRADOS TP^NSITI0tlS

\

't I i

INNER RADIUS U-BEND TEST PROGRAM CALIBRATION TUBES 3.0 ?)M Notches O O t,,

l' 9

=e a

APEX i f 4.G DPOSrTE' "SpooTH" fTRANSITION iT<ANSmONT E./gy INTRA TRANSI l+ EXTRADOS g

- - . . . . . . _ _ _ . a __ _ g.k _ . . TR4dSITIO INTERNAL EDM NOTCH- d LOCATED EELOW BULGE SEE IJOTE NO, I f/// 7///////////// '///A SUPPORT 15-PLATE '

l

+.875"+

NOTES

1. TUBE D(NOTCH DEPTH) 3.1 IOl9-I 40%T 3.2 IOl9-II 30%T 3.3 IOl9-III 50%T -

3.4 IOl9-IV 60%T --

L= 4x D W=.OO5 f

p - __ _ _ _ _ . _ _ _ _ _ . .

' 3.5 i TUBE IOl9-UB-I _

NOTE I. NOTCHES

1. D=60% T
2. L= 4 x D l .

~

/

2.188" j .

/

3/ A 7"

l

+ + /s l 3 INTERNAL s Y -

EDM NOTCHES 3" l

+ + D50" WALL SINGLE INTERNAL- >/ T EDM NOTCH \ .

/

l

.- ~~-

-LOCATED END lli+ TO END WIT}j J _

%- gXjO5 '

A-A M l

^

/

-- ..--- - . _ __. v ..__ . . ~ , _ , .. ---- -- - - - - .

g-ewww e-. as-. - - --w-- g --w--+-e w e,m,6, r----y v w-v-w-w--ww-. +- y--- ww -m---mw--+----g ---'D - - - - '-----N-~-

- 3.6 TUBE 1019-UB-III

. NOTE I. NOTCHES

!. D= 40% T 2.L=4x 0 l

/

2.18 8 "

/

RADIUS

~ / -

p{-

'N I a

+ + I8" / e- +

3 INTERNAL #

EDM NOTCHES ~ 3"

+ +D50" WALL SINGLE INTERNAL-

' EDM NOTCH >( )

l i l

, ~ ~ -

-LOCATED END lll+ TO END WIT}t

'X ~ ~

APPOX. 005 OVERLAP

. . .. . . . . . . . u n . .u n u u mu u wn . ....

T10-00731 Customar Order No. 0607 Mr It. Nos. ,.

f (W) Order Numb::r_ ,

i, Ultimate Yield 1b eleat Strength Strength 5- larh

, umber C Mn Fe 5 Si Cu Ni Cr A1 Ti Co P B PSI PSI Elong. nes' NX-1019 '.047 .26 9.00 .001 .18 .28 74.49 15.74 .24 .23 .04 .008 .005 96,000 55,000 34.0 88 (Item 1 .875" 0.D.) -

U l r---

NX-1748 .032 .25 .8.75 .001 .19 .27 75.36 15'.15 .21 .16 .03 .008 .004 109,000 59,000 37.0 I 87 (Item 2 .750" 0.D.)

'------~r---

t i

i i

l s

. .; . .n.

<.  :-: r.. . .p.,  ; ,

,. . .. .. ...u.,.-

l IPR 271E i 0 -

  • l, x . ..a.. . . . , .

. . . , . . ..J..

J i

r 9

i l

a- q Q e, E,:wd,m ~C BL 1 .

. s'I e

9

SUMMARY

OF CALIBRATION TUBES .

EDDY CURRENT TEST CALIBRATION TUBES DEVELOPED BY TVA SIMULATE ACCURATELY THE FOLLOWING VARIABLES:

1. ACTUAL MODEL 51 STEAM' GENERATOR ROW l BEND RADIUS 2.188 IN.
2. ACTUAL MODEL 51 OuTSIDE DIAMETER
3. SIMULATE VARIATIONS OF "0PPOSITE SIDE TRANSITION" OVALITY CONSISTANT WITH FAILED TUBES REMOVED FROM TROJAN NUCLEAR PLANT
4. PERCENT REDUCTION IN AREA ASSOCIATED WITH OPPOSITE SIDE TRANSITIONS WAS 16% - 20%. TVA CALIBRATION TUBES HAVE 15% - 25% REDUCTION IN AREA.

MAJOR DIFFERENCE IN TVA CALIBRATION TUBES

1. WALL THICKNESS OF TVA CALIBRATION TUBES HAVE .050 IN.

AND WESTINGHOUSE STATES THE MINIMUM WALL THICKNESS USED ON MODEL 51 STEAM GENERATORS WAS . 05 2 'I N .

(

/

t

i

. ~

4 1

i d

d 4

EDDY CURRENT IESTING TO CHARACTERIZE SEQUOYAH U-2 R0w 1 U-BENDS To DETERMINE THE PRESENCE AND DEGREE OF "0PPOSITE SIDE TRANSITION" DEFECTS AND BASELINE EDDY CURRENT IEST.

SHoZo NARITA (C&L ENGR. TVA CONTRACTOR) 1 4

e

?

J

[

f-1 i

4

~

- -r .n--. , - , , , - - - - r--,-.--,- r n-, ,- .v , ,,,,,-.------nn,---..,,-n,,m.,,c,---e.. n,~, , - , . , . . , . , - - ,, - , . . , ,

l Oesec cives I i

i. - 3erter ANo CHARACTERIZE bEVERhT OF O PPoSITE SDE TEANSIThMS

~

, 4

E- Detect Aso Ca^re.acree.ize Deem or bgins AT An O PPos'rrE 8iDe TRANSITION -

I 4

e f

I z.

A?PROAC -

usise 1%crivnequency Eony CueeeNr IssrmsesTArion:

[- Dertcr Ano Ca^ancreeize Oeresire Sioe TEANsirica wira Sisce hequency (100 gad l f- Supecess Opposiw Sioe Teansirion Sicsat By Mixiuc Iwo DiFFEl2ENT Feequencies Oz4cgaz Ano loo xae. ). Detect ANo CHAR.Acregize GRAcidN6 Wira Mixeo Sicaat.

4

\1 . .

3.

i 1 .

}

j

'2ESU LTS I

[- Goon Derecries Aso CHARACTERIz ATiog OF j OFYbsnt Stoe fraAssirios.

i 1

EDooz Cra^ce DerECTABid ry, No CHARACTERizKrioN

) OF CRACK DeeTa. .

a i

.i i

i 1

i i

! w

i t MOCK-UP OF Sil0RT RADIUS U-BEND '

i s .

f. ....

,N 1

/ .

i ~ ~'%

, ff <[ g ,

/ -'

.874" .876"

\ -

7 1

/ / II

' / / 2.188 i x j Rkosus -

-\ \

; I e i l \ d i . 1

.- i p__ _ 1  ;

g s . . . .

__ __ . . __ )__... . . . . . _ _ .

. i l ,

.850" .852" At Least 2"

Jg .._w q_

i _; .

Onc 1og i

i O'O' '

y 1

.. at least 4" long Jewelers en sawcut

-+ ,* # '

100%

. ia Au- Thru-wall e

l r

uw

{ k, ' g.s l

l c> [~

,, A_ . er ye,p_.y . g '.;J_t_ ,cw. - - ao a4A.4.h.m .*;L., a a ..g,a.--AhA.a.m4 4 ---4 -.e

  • 4 .. 4 - 4h;-- .-*_.Au, e ,

4 t

W .

..  : p a .

g z

..g Iy i f-L..  % , l

. (f) tr g: -

a >f .

fs::, i b o"~ p. :. - .

l

_ w. ~ .- o ,

y . . - .

a; 7 g p . . . ...; yd '

. . .3 q$

3 ,

s x .  : ',

M -

<. . -1 ,; ; ... .. ._,;...._;.-

l ,. . . - -- ro g:- y-i

c. . . ,, . ' H :. . . 4. ..: .+

' r' .* .

i .o N x

M

~

q s . w 3~. y ; '.

y r . . r .- , -

o * ,

in &

', . f'"

[ _

.... . , i ,

m .. . . ._

l

(*'-' ', ..n, [

< ,- .7',.' . .

s , . - * .

a w ,

e#~

^ ,;

(D , N+ e J n

'6,-

.,'s.'-*.,"'*a.1_,:

'y- jm  ; ,

'O vg r . c . ; . -  ;. ._ :,,

  • ~

J , , -l h

~h g

..,,.m.

f

.. ' _ ' ,' L_ -

()

.. ~. . .. . 3, .

r ,1 ...y ).-

91-. t .q..

~ , . - ,

_ . 2 ,,,,

.s m >q

. ep 5; 1. :' f Mm g_: '-

O SE

? o g

.z o m. . , c. #-

. , %... .g: y'.e , .

7. .:,. . :. :e ;~ ,n.w;,...-. ,

, - . , ' . ~ -

.ng-

'e

[ (, ,1,* j " ., '.. ,

g'.'., y 7g;EeI ~' ,.:

. .{.,',",( .

.4

~ '

,,.'-~~.*

p . .:c . 3-p w. a.r..'n' .. : ._e.;

_ ..,. 4

l. ..\ . -
./'.nv,,. U,3

,.f.

't (

p - '. [ [f h,(.h' -[ ,

[.[,

M f';:; $

h, , jf, ' 'j[^' M M i *u Y'A

., ,d g ; . v / .,*, . . . , , ,'-','4,,.

_ , - v 3 '

n e a , 'g

_';- }^: :i * .:- , . , *. , j - y" '

.N.', ., :.;

,' U  ?'<*. . J~.' ..f2 ' *;'%,. ,:.36 ,

fin; J ".' - G , ' : % . l,,

. - - . . - . . . . - . - _ ~ . . . . - . _ . . - . - - . _ . . - . . - - . . _ - - - - . - _ . - ._.

F

-j 3

L1) n $~

O 3 f Jd g 3 $-- g co y- >4 g o .

o .

o o o o o . . .

2. QQ i i + i T

a 8 4 we b) l G @b M_

E

<g J M W m m

m o e M e J K

  • a -

6 J O O v) t<

a 3

W Ch O

~o -

5 1

l i

O b) N s

\0 V

2J m c0 m J W Q.

N r<) 9- s -s :s i , i R

i i h

i Y

5 5 T

5 v

5 8 v C o

C o

B V) --. - -- -- - - -

~

I p

rw *

. (0

?

' 88 k #

oO '

\

Oh9 w35 '

G&

Oc T v$

C'tC I

A k

Es uI a

Y 9 6

U '

E

. . O.

2 8 O-C J

uJ O!

Of C

O

.M - -

o l

5 i

l l

O e I

t N 1 O C C q O q I" ' '

$;H>nt +

a (0G0 A_L1IbA' o

4 I

!i .

i C LASSI FICATi oN OF OPPOSITE SIDE TRANS'ITioNS i .

, LARGE Loop AMPLITUDE (v6as) CLASSIFICATION l.0 6 At4PtiTuote 1.1 MitJon OPFbsiTe See liANsiries l

l 1.1 6 AMPLITUDE 4 l.3 buSPECT OMbsiW SE. TRANSIdod

. A M etiraoc sa 1.3 F Asen Oestsiw sioe Teusrnos' I .

1 9.

9 4

9 e

3 o 2

4

  • k '3

$ .$ .b u if ,

o r g .E r

2 W

a N

g g. - m.

1 2 ru O 16 a x - d .. d -

M M.2 '

O o

<- o

~

W CO 2

~"5 y . 9. -

Od h k u S Yo y 5 a Vj e

- d 51 E 9 $

E o E g& 3 G s

k V

Z. -

LU

~5 O h M U

m 5Wv3 !o $o 2:

- 2 'F c0 h C I O M V a a o g = le d" w o E I r

d H

$ E w

\> <

.2

a 0 g -

z w y .E ,

l oEs 'du g 32&o y$<s Y <s e ,

i V) x

.h o b 1d K eq OO

_ O o O o Q on

{ -.

c.

d) O  :

F -

W '

a y ......

.o =s h< weL l-- .-

my2 W~

M 3 3 '9 .G g O _. E U __ _ __ .._ __ _ _. __ __ __

C x% ..

ta a

<b M b O + e o*to

'M 0& W

~

Y 2 2':-tB s H .1  :: B x

N M

s d

\ '.

_ dO .3 i

N s N t ' -

U d 1T.I Q3 "j"

i i +1 b) -

M

.5 J i

I a

x O

! M

~

l /

I

l J e e ' ,

4 _

+

, . y .

a p ....

Q .- .

^'; -

e

', - t

_a y <a

_g wQ

^

7 h' , *

'. ~

. , .- x -

e K.

n

- r ,. . . ..

.t -

Q .

. s.

~

..5 n,y . g f' , .

~

  • . ~.- 1- / '

N. -

d .,,u. . 4<

, :1. . . ' , ,

, . : - c . -[,,c.

r .- - <C j

K

<  ?

@ q -

p...

8

._. .-.3 g -

t 3 g s e.v. y:e q.O g;-

.7, . . > ,

o o

gg ,~. c 2. ..- . .

.g a ,r y. ~ ,m;w ,. (<.. .

+. .,+, . c..A :....

. ,u . ; . ;.,,... a:

<y '

p..~ p}.

&, J l..

.m.'

4. .

. .. d .

.\

m.4 e ,y , 'f . . . p . _ 5 3 ,.., . -

,F ' 7 ,- l.: ;%.*7

.n

a. ; s.

K~ jy N. ' N. ':3 [dl ;;' .;':'.-., ',; y hg,r _ 7. :-_ = _5Q , [. 3

^

e

\ e' ..

,- _  ;-l' , ; y .

gr ,._ $. ..

'y .-

f'i..[: , . ~ ' ,

'^ . . .

.*i _ f ' # I '

,; oo@

~

tag ;; .-

g

$ _' 7 ..

_. _ _ , '5 _

N Yf. . .; . . .

,; _ l , ' .7 -

g_...n.:.

  • h y

.%, l._y;j'l, .+~,;-' .. [ '_l ' . , . . , . 7 }. ',,.

. r-.;>

4 %a ,, , , ,. rx- -,

c;. -

' , . 1. - ~ d4 :

j,l.-

- .. l,, ' ['

[~>

f

g% , .,, ., '. _ '. ' .7 - . . .; .

~

' .f '

): '), ". f ' ' '  ::.,_.-.

. . . l:m .w..-..,_.1;._' f' ; i ; '

3;. .. . . m. 9

.h.? . 5. , ' . .' ' * * . ' '-

O E

em

.. y [li.._p__:  !

_I..i_d I LI f j_ l l___j . '

j

_!.._ ! . . ! .. t _.I

' I I '

. _ .. 4- I g .

.s y .._ . . . . _

j; 7( , . .

I i  ! I I I  ! I l I I I l 1 l l 1 l l i  ! -l

! y e4 e N 0- N c. b Si b N bl b N oJ rN N N oi N N Nl bl l Q{(-  !-~[_

I el W oj N o M o Hfo Ni 01 H oiT (~T RT W ij cl gj ei yr l

$' . T .o ' <

i Im I;

l i II I i i I

.i i i i I

.h4 I " - '-)* tc l ~ ~- g l lai is J7 l l I I I I I I a k di ed di H c t 6 n r--I rL rL _I 1

D3.f.t 'vgi a . '. '-l sl kc< @:fa&ij_d 1;g.246lA 1l 9rdtjdiMe<! c< -;- 2. c'< kl M A [

ip i ?.M h[@,p. - . d. s I W.olcJ.eje J

ol cJ m ,1 y e i c<l ij e Jom

. .j i el o-<l A I j ;/V_ . 4,g%. fC 9 .

i i l 1 g-i l ',=I el g mi m @ o,i 9 g 9 o,i di -t "i -I m I , --

i

. k_.__j.:.

i j -....k .8) m mdlM -H n -dd et td ned.M mm 6 N,/ ej a sd~;l el.# M dcled_d m m m .y_ei e redr M l

g .4 g I iiiI

, I.L.4;f%h'-_

, i .k I I  !  ! i i cp % 3 3 _ri C~~R i i  ! I i L i  % I m i ei E,N'l_5_N'il I FF F TF W G D W- F _s T- ~

I

t
%;W, u 11 J i l l c Oc m.w - e o ~ v L4L J;
i. I  ;

c i I I i i I i i 2_. . b% vHx.

v -.

9(% 6 Iol g c. M MM M td j .. . e WM m WM_.d . d F t

g%.

i

_I __' . I I I __ l l l l l.__. _ .._.l _j _j_ l i

. i  : i l l l'i i i i i I l I I i i l l M[  ! i Si %I ed nd d ed w cJ e I tJ of eJ.NJ e-I N e I eJ s cJ N si I m v i- Q,'s4 . 1 , 9 , w , m 'i m m m ,s', m D! b M

i

- y .l Co i 41 =ol

%vr *di ~9l n :-nla.s-l j 1 ' ~r

. a l Ni d.e.ll o 3 t4 o'

.. ..' ts' . ' z

.y o d a! ?' $

9- l d ~,',,' _,  ! l l I I 1 'I 'l 't I l 1 l "I *l

.,1 r14l -3i :, 'l r a \

O j __ _s{;g;.g .] .q.Sj.* y w p p . g g e. S. p i . l.

! u ,m e ;e m - ~,< o gu w e s, g~i g-,@-p %s g %- si m wgjs7s p min ~ m qs >n j i

N _ _.. ! _

I s k. <mnuN il !NI N'NlN N Nl N N NNN N NN NNNl l l l l i --

3 _

i i

<t*g. I I I i i i i i i i  ! I i i i l I 11 ! I s

g,', -q g

g

.a o v s. - w o ~i M QS @l M;*l di N @e' e Nf7'Nfml

-im eig ]e kN u s TkN[ m ~ ~

y -

. . _h ._

! U,4 - N-- l_ N m arN _de.!_ .-_i 1N _;_ .. T rl -

i .

y 2 a is!.. ___. _ t 2 - l.

i a ziu. --

i  !  ! .t i i i i  ! I i i iii - i

.[ }l  !

  • M lN N l I '- lNI  ! '- I '-!

qq.yTlyl g mung.% g g q

~ i l 'l ~~

.k u mlw .r.,w n, w; :v.: n

, i. .

"4, m - ~ c~w --, r- - , - a w- ,

_. .. -. .- . - . . - . - . _ .-- - . - - . _ - - .._- - - = - - . .. .-.

.+_

d

-a d

W i 2 ~w  !

i O * - ~

.s i

_ _ }- o -

3 t

0

- O E

F e vi i 5 a

2 e W O 3

w 4

Cr e tu a

' e

)

e 1 Z l 0

G O

O e Z _w .

w a

s O. e a

e e

1 o

i o o M M .o

(%) AON3nO3Bd -

~

1

- - - - , w c.,., , e-w--.% .-..--.---.-c,

,,-..-..-.v.. ..-,-------,-.---w-,----- rm,---r m - +-,' m -, - , , - , ,-,- .,

a- - m - _

- S

~

J -

gh Nm -

D O O O 2

@7 2

w w O MI 19 eg O O h t --

'2 2 .Q 3 -

. c

< Od -

r -

m T E h n m 2 W M o

'E '@y 2 2 2 2 d.2 t3 0 o E .F go ,F g N

.S 'E @,b 9

.- .o n in bw gi)d t--

b6 ~

1h_

m Z U ' '

2 3 -

'T o 0.. n g

-'7 Oo -

@ OG - M W ~

r0 y ly N v -

U ~5 A <C AI

@.h vi VI Q 2 '-.2 9 4

<E

=

J

~

s

SUMMARY

OF TVA Inner RADIUS PROGRAM.

DAVID F. GOETCHEUS (TVA)

O-

+

~

SlWARY AND REC 0WENDATIONS

l. TWO NECESSARY CONDITIONS FOR ROW 1 TANGENT Polta SCC CN1 BE IDENTIFIED. THE DEGREE OF "0PPOSITE SIDE TRANSITION" AND PANUFACTURE BY SMD CAN BE USED TO IDENTIFY THE SUSCEPTIBILIW

~

~

OF TUBES TO FAILURE. IDEfEIFICATIONOFTUBESBYTHISMETHOD

~

WOULD BE CONSERVATIVE, SINCE THE METALLURGICAL STRUCTURE CANNOT BE CHARACTERIZED AS.TO ITS SUSCEPT'BD.:TiTOSCC.

TUBESMAYBEIDENTIFIEDTHATHAVEAMETALLURGICALSTRUCTURE IMMUNETOSCC.

2. PcW 1 TANGENT PblNT IUBE FAILURE MORPHOLOGY IS ASSOCIATED WITH THE DEGREE OF "0PPOSITE SIDE TRANS m 0N" AND B E ASSOCIATED STRESSES.
3. C0fEERCIALLY AVAILABLE ECT MEBODS CAN BE USED TO CHARACTERIZE R0W 1 TUBES' PROPENSIW TO SCC.
4. ECT MEBODS ARE CURRENTLY BEING DEVELOPED BY EPRI AND WA TO IMPROVECRACKDETECTIONATU-EENTIANGENTPoltaS. THESE IMPROVED TECHNIQUES WILL BE AVAILABLE FOR SEQUOYAH UNITS 1 -

AND 2 AT THE FIRST REFUELING OUTAGE.

5. TESTING OF SEQUOYAH UNIT 2 ROW 1 TUBES HAS IDENTIFIED:

5 MAJOR"0PPOSITESIDETRANSISTIONS" 18 SUSPECT"0PPOSITESIDETRANSm0NS" 32MIf0R"0PPOSITESIDETRANSm0NS" ALL MAJOR "0PPOSITE SIDE TRANS m 0NS" WILL BE INSPECTED AT THE FIRST REFUELINGOUTAGEFORSCC. IF SCC IS DETECTED, E EN ALL SUSPECT TRANSITIONS WILL BE INSPECTED.

f b j

6. AT THd FIRST REFUELING OUTAGE SEQUOYAH UNIT 1 R0W 1 TUBES WILL BE CHARACTERIZED AND MAJOR "0PPOSITE SIDE TRANSITIONS" WILL BE INSPECTED. THIS ADDITIONAL TESTING WILL BE ACCOMPLISHED PROVIDED THIS WORK DOES NOT ENTER INTO CRITICAL PATH TIME AND/OR INFR!NGE ON SECTION ELEVEN REQUIRED TESTING. -
7. THE ADDITION OF INSPECTION PORTS WILL NOT PROVIDE PERTINENT INFORMATION TO THE R0W 1 LEAKAGE PROBLEM.

DEGRADATION OF GENERATOR INTERNALS IS NOT A NECESSARY CONDITION FOR ROW 1 TANGENT POINT LEAKAGE EVENTS.

GENERATOR INTERNALS CAN BEST BE MONITORED BY ONE OR A COMBINATION OF THE FOLLOWING METHODS:

EDDY CURRENT IEST DATA ANALYSIS PROFILOMETRY DATA ANALYSIS FLOW SLOT MEASUREMENTS REMOTE IV CAMERA INSPECTION

8. SINCE ALL ROW 1 TUBES DO NOT HAVE THE REQUIRED CONDITIONS FOR SCC THEN PLUGGING ALL R0W 1 TUBES IS NOT JUSTIFIED.

ESSENTIAL VARIABLES FOR TANGENT POINT SCC ARE KNOWN AND CAN BE USED TO IDENTIFY SPECIFIC TUBES TO BE MONITORED TO CONTROL POTENTIAL LEAKAGE EVENTS.

-