ML20003E792

From kanterella
Jump to navigation Jump to search
Slide Presentation from 810311-12 Meeting W/Mark II Owners Re long-term Program
ML20003E792
Person / Time
Site: Nine Mile Point, Susquehanna, Columbia, Limerick, LaSalle, Zimmer, Shoreham, Bailly  File:Long Island Lighting Company icon.png
Issue date: 03/11/1981
From:
Office of Nuclear Reactor Regulation
To:
Shared Package
ML20003E791 List:
References
TASK-A-08, TASK-A-8, TASK-OR NUDOCS 8104100572
Download: ML20003E792 (67)


Text

. -_ _ __.-

12

-r

~

n [_} _-

n 0\\*.55 huAtced

\\ /

3 5 i

AGENDA i

PIARK II OWT4ERS GROUP /tJRC MEETING l

PIARCH 11, 1981 e

ff I

SUBJECT f

o PtAIN VEf3T LATERAL LOADS 2:00 r.M.

o PLASS FLOW t TEf PERATUllE DEPE!JDEt1CY 2: M r.M.

o WAl t. LOAD M1PLITUDE vs LATERAL LDAD AMPLITUDf)

F1ULTIVENT APPLTCATIOf1 EXPLAriATION 3:00 r.M.

o j,

! ['

3:30 P.M.

O ST ATils Of* COMPARISOff TO JAERI Puf4T APPLICATIO!I DISCUSSION Ir 4:00 r.M.

o

~

i 4:45 p.M.

o NRC CA'.lCilS 5: 50 P.M.

o NRC cot *.'10.NTS l

l I

y s f.

._" ^ ^ = = ~

s c.1-Ef Ao desca AGEf4DA F1 ARK II Ouf4ERS grout / taint tiEETII80 MARCH 12, 1980 l i S:30 a.m.

e CHUGGING LOAD o

INTRODUCTION SUVARY OF LOAD DEFINITION & APPLICATION l'

o o

RELEVANT DATA TRENDS-SOURCE DEVELOrtiENT F1ETitODOLOGY o

DESYI4CHRONIZED l'.ULTIVENT f1ETHODOLOGY o

'e'~COMPARISOf4 TO JAERI DATA o

APPLICATIOf4 IN MARK II 12:00 NOON e

LUNCH a

NRC CAUCUS NRC CO"MENTS ON CilOGGING 13:45 e.n.

e e

POOL SWELL OWIIERS RESPO!45E TO NRC QUEST 10f4S 2 30 P.M.

o 3:15 p.n.

o 7%I20 CRITERI A

'4 :00 r.n.

o SUr7AR1/E COf4CLUS 10fl3

{

ADJOURN MsSO v.n.

e

~

9 9

9 he 4

e e

(c '

l' !) / n r

.a, t

u, l ll l,i 3

'- ' s

> lio n f} l

', }- r

/7,, l,,

i

/<'u

?. G'LTA WEL A N 2C. / DSI /C58

.JR ft.

l 5H N GY<

8 N L.,

4tN 4 SON /Al M/7~ffrBA/L}

~7),,, Av/. L-e Ab?c / M s /Atrx3 Skm - n e'en Ou NKc / Nct/ McG

$Aac $ NAc) 54Ok8k?h/d$

Wc_ho M & Ara __.

M E % swo Gm Gtawa N A ".DvRtA 37005

  • k*ss7ze.

kwsn fa t.n mst.o 9H y Sec hfel h v Op.

ND s'STE~)JV UK t 4 A.%4 0 to L yt es u ans

  • t4.He4CJ l< J. G REDV S h W,cra + LO N D1 f,d. f A618$

Not 7+MxalM/4# (q&w TMd. &,

On+). d/S / Edc. Lo.

S (A I.

~D. TERAo NRC./ m st$

c. A. Ma.lov r-h gge e u)e4sf e c.

Sum 3 4 A o e.

M.j4EA3HE}hury sh.Puua Pon Qi y Q&.~

EU. Fr bn t

e

{} (. Yafcev 6u ns + lk f& wen L* F 2

'Ro Wpk

%.Mm.m SacI(

11WM t.

?>.c;oeba kwa

3) \\e Ron Roca. Powe i k h4 g

ca.M. Dua q

cs

y MARK II MAIN VENT LATERAL LOADS NRC ISSUES

~

@ JUSTIFY THE EXISTING SINGLE VENT DYNAMIC FORCING.

FUNCTION IN LIGHT OF THE LIMITING KARLSTEIN DATA v-POINT.

DETERMINE THE DEPENDENCY OF LATERAL LOAD AMPLITUDE ON MASS FLUX AND POOL TEMPERATURE

@ DEFINE THE 28" LOAD FOR AN APPLICATION PERIOD OF 3-6 MSEC

@ ADDRESS THE IMPACT OF RECENT TEST DATA-(4TC0) ON TH i

EXISTING LATERAL LOAD DEFINITION.

@ PROVIDE FURTHER EXPLANATION OF HULTI-VENT LATERAL

-LOAD METHODOLOGY.

s

@ PROVIDE RESULTS OF JAERI LATERAL LOADS STUD.

ADDRESS PLANT ANALYSIS ISSUES.

L WCM 3/81

- a.

.. =.

-4 4

w-4*

MARK II MAIN VENT LATERAL LOADS

@ DETERMINE THE DEPENDENCY OF LATEPAL LOAD AMPLITUDE-DN MASS FLUX AND POOL TEMPERATURE o

APPROACH:

RATHER THAN DETERMINING THE EFFECT OF TEMPERATURE -

ON LOAD AMPLITUDE, DEP.0NSTRATE THAT GKM II AND 4T v '

TEST CONDITIONS ARE REPRESENTATIVE OF MARK II PLANT CONDITIONS.

o CONCLUSION: MARK II PLA.NT CONDITIONS ARE REPRESENTED BY THE 4T AND GKM II TESTS.

i l

t i

WCf13/81 g,-

.-_,-e,,

f1 ARK II MAIN VENT LATERAL LOADS PROVIDE FURTHER EXPLANATION OF fiULTI-VENT LATERAL LOAD METHODOLOGY

- PRESENTATION BY DR. A. BILANIN-i i

l l

l o

WCM 3/81

' i ' 's MARK II MAIN VENT LATERAL LOADS

@ PROVIDE RESULTS OF JAERI LATERAL.

LOADS STUDY

- PRESENTATION BY R. PALANISWAMY-t l-b 4

('

l I+

WCM 3/31

~

MARKLII MAlli VENT LATERAL LOADS

(])> ADDRESS PLANT ANALYSIS-ISSUES

- MODEL AND' ANALYTICAL PROCEDURE

- STEPS IN PERFORMING ANALYSIS y_.

lSIZING OF BRACES DEVELOPMENT OF FLOOR LOAD

- EFFECT ON STRUCTURAL ELEMENTS LOAD' COMBINATIONS

- ACCOMMODATION FOR THERMAL EXPANSION WCM 3/81

y 1

1 MARK II LATERAL LOAD CONSERVATISMS SINGLE VENT DEVELOPMENT

- USED ONLY HIGHEST 15% OF 4T DATA BRACING LOAD PREDICTIONS VS DATA

- BOUNDS 4T

- BOUNDS GKM II

- BOUi1DS KARLSTEI.*

- BOUNDS 4TCO MULTIVENT APPLICATION METHODOLOGY DEVELOPMENT

- MULTIVENT REDUCTION FACTOR AMPLITUDES DERIVED l

FROM 4T DATA TO CONSERVATIVE LOAD DEFINITION LEVEL

- NO CREDIT.FOR PHASING MULTIVENT DATA EVALUATION

- KARLSTEIN 300 MM TESTS SHOW SIilGLE VENT BRACING t

LOADS SAME AS MULTIVENT BRACING LOADS

- PREDICTIONS IN JAERI USING MARK II METil0D0 LOGY l

BOUNDS DATA i

l

I e

r r

[..

4 g

e

-BASIS OF THE MARK II.

4 i

I MULTIVENT DYNAMIC-CHUGGING i

DOWNCOMER LATERAL LOAD.

I.

f

(.

i r

L i^

f

(

I t.

l

- e I-f'

{

BETHESDA 3/11/81 f-AJB-1 f-

\\. -

e.

[.-

L

@qE--

4-

,3w t

-.*w-ser'-

gy g@.,gy t s g pg eeg.-

p.---ygggwygvey.y a sty % g g.. p q

g. egg 4.g...gwmw,p.yvy96 vg y g yqpgg.*yywg wwy g, wg9 gy ge-y-y g, py9 y,reMe p - p ey,y p ey-ma+p a ye y* 9*

g.-gey e Sp+ W-**

g m eg g

OBJECT REVIEW THE' APPROACH TAKEN TO-DEVELOP THE

~

MARK II MULTIVENT DYNAMIC CHUGGING LATERAL LOAD.

IDENTIFY AND DISCUSS CONSERVATISMS IN THE-MULTIVENT LOAD, t

b I

I e

t

.6 i

AJB-2

APPROACH USE THE. SINGLE VENT BOUNDING-DYNAMIC LATERAL LOAD.

STATISTICS'0F THE I4-T CHUGGING DATA, CONSERVATIVE ASSUMPTIONS WHEN COMPUTING PROBABILITY. DENSITY FUNCTIONS

' TO DETERMINE THE PROBABILITY THAT AN IMPULSE 4

MAGNITUDE APPLIED TO EACH OF N

DOWNCOMERS IN THE SAME DIRECTION WILL BE EXCEEDED, j

e f

n O

s i

AJB-3 4

w-+

.e

-,--4...

~ + - -,.,r---

-,w---.

.p y,

-,--r-v---,e - -1 c ve y

e-i-c--

d THE ANGLE OF THE CHUGGING IMPULSE HAS A DENSITY FUNCTION UNIFORMLY DISTRIBUTED OVER 2n RADIANS IN THE HORIZONTAL PLANE.

FOR A GROUP 0F N

DOWNCOMERS, COMPUTE THE PROBABILITY P

THAT THE RESULTANT TIP IMPULSE ON THE GROUP OF D0WNCOMERS WILL FALL WITHIN A GIVEN TIP IMPULSE INTERVAL (MAGNITUDE AND DIRECTION).-

4 THEN, IF P

IS THE CUMULATIVE PROBABILITY y

THAT THE RESULTANT TIP IMPULSE WILL NOT EXCEED THE IMPULSE VALUE AT THE UPPER BOUNDARY OF THE INTERVAL IN ONE CHUG, 1 - (P )J IS THE PROBABILITY OF EXCEEDING 1

THE GIVEN TIP If1 PULSE MAGNITUDE AFTER J

CHUGS, AJB-7

CONCLUSIONS A MULTIVENT DYNAMIC LATERAL LOAD SPECIFICATION HAS BEEN DEVELOPED WHICH USES THE CONSERVATIVE SINGLE VENT DYNAMIC LATERAL LOAD AND CONSERVA-TIVE STATISTICS OF 4-T CHUGGING-LATERAL LOAD DATA.

l CONSERVATISMS EXIST IN THE SPEC.

ONLY THE HIGHEST 15% OF THE 4-T CHUGS WERE INCLUDED IN THE DATA SET.

THE IMPULSE FUNCTION COMPUTED FROM PRETECH'S LOADING FUNCTION BOUNDS ALL 4-T DATA.

NO CREDIT IS TAKEN FOR LACK OF SYNCHRONIZATION BETWEEN VENTS.

i AJB-10

6?D MARK II DYNAMIC LATERAL LOAD e

OBJECTIVE e

JAERI TEST FACILITY AND TEST DATA e

MARK II DYNAMIC LATERAL LOAD i

l e

ANALYSIS OF JAERI BRACING SYSTEM I

e RESULTS l

k OBJECTIVE h

CALCULATE THE STRAIN IN THE JAERI BRACING SYSTEM DUE TO THE MARK II DYNAMIC LATERAL LOAD AND COMPARE WITH THE MEASURED STRAIN.

l i

i l

l l

.-w--.

.- =

.*--wv-,.,..-,-

..--e,-,.,

,_y.

,,. _,.,..n

..,y,,

s.

Vent Pipe.. mc.,

Strain Gage NPIP -

l Jg.

I i

. T' I

~ \\,, Bra,ce, sto*

a ro=

[

w sr.e t

--j q

W= p

- NE;

,e

_ o.

rk <

t m

1 5

2:

il A

A 1

1 w.

so*

O N"

0 l

1 Section A.A Section B-8 2

\\

Strain Gages (4 pts) to v n tJ-o os locations of Strain Gages O

r."

O Os e

9 6

f JAERI TEST FACILITY e

TEST FACILITY.

- 20 SEGMENT OF A MARK ll CONTAINMENT

- 7 DOWNCOMERS

- BRACED AT TWO LEVELS, AT THE TIP 0F THE DOWNCOMERs AND 13 FEET ABOVE THE IIP

- STRAIN GAGES AT 4 LOCATIONS, 3 IN THE I

LOWER BRACES AND ONE IN THE UPPER BRACE

- EXTREME FIBER STRAIN MEASURED I

5 1

..., n

..,,,-n-.

--,,.nn,---,,,-c,,-, - -, -. -. -,

er.,_..-

-,,,-..~

a,.

r---,-

n-

JAERI TEST DATA LIMITED DATA AVAILABLE

~

INSUFFICIENT DETAIL AVAILABLE FOR THOROUGH DATA EVALUATION DATA COMPARED INCLUDES SPIKES OF EXTREMELY SMALL PERIOD WHICH ARE INSIGNIFICANT IN STRUCTURAL EVALUATIONS STRAIN GAGE LOCATIONS ARE VERY CLOSE TO STRUCTURAL DISCONTINUITY MEASURED STRAIN INCLUDES PHENOMENA SUCH AS CHUGGING DRAG LOADS AS LATERAL LOAD

- PLANT ANALYSIS OF SYSTEM INCLUDES ALL APPROPRIATE LOADS IN COMBINATION

- IN GENERAL RESPONSE TO CHUGGING DRAG LOADS AND 25% - 50% OF RESPONSE TO LATERAL LOADS c

4

.n..

~,

r

TESI ~2101 F hI"'DbNLL l'HMn 11 t.ft i O VPSF.102 touts peact etts. vPs a veg 1

F y

y N

o M

E'

............g..........!...........g.....................

B

..........i............,..........

I

'y

............p.......

g g

I I.

e l

3~

l.

I.

in n

i-,

- - - * -, - - - - - =

A w

a. J. :

.n..

l l' f j

[

t

{

8 3

i r

e a

M -

em

  • n 8

...........y...................................g.....................................o..........

I.

...........y...........

8.,

g

. n se o(es eies e(es se' ee se se erise se se es.es e.'.se es.ee f!Mt IS Flet 8-1-31 Straf n of Vent pfpe trace TEST 2101 FULL-SCRLE MRRM !! CRT O VP5F-201 urete seact attu. vP a Ptetstat I

g S.

3. '

8 h.

....e I

g 1

.MJ..a a.

, an L1

J M.

i g.

, -...e og-u i

. w w gg rwi ;. i... - -

pyi ur 8,

l

,l.

. -lr

_f

.r

u. *

.c g

m..

.s MS p--.---

.pn---

3

-.-.-.g..

.-.ngn.. -..-.......~.3.-.n. -..

p----

S;.

3 3

3_ -

l E'

i.

a

  • es-se se' es eies ee' ee ee' ee se'. se e6ee ee'ee soles e.E so es.es flMt 131 riosa-t-3 Strain of Vent pfpe trace

- 111 -

l

t MARK 11 DYNAMIC LATERAL LOAD 9 MAGNITUDE AND TIME HISTORY F(t) a F(t) = M*A( f ) SIN (r t/r) ogtgr

.E o

t l

T

= 3MS TO 6MS A (r) 30 KlPS 10 KIPS 3MS 6MS T

O REDUCTION FACTOR FOR LOADS ON MULTIPLE VENTS M o 1.0-

  • M = REDUCTION FACTOR FOR A PROBABILITY LEVf L OF,EXCEDENCE EQUAL TO 104 0

e'0 1$0 NUMBER OF DOWNCOMERS 9 METHOD OF LOAD APPLICATION'

~'"

- SO AS TO MAXIMlZE THE DESIGN FORCES IN THE BRACES

STRUCTURAL ANALYSIS OF THE BRACING SYSTEM

~

e MODEL AND ANALYSIS

~

- BEAM MODEL OF THE JAERI BRACING SYSTEM

- HYDRODYNAMIC ADDED MASS INCLUDED

- VARY LOAD IN THE BRACING SYSTEM BY VARYING A.

LOAD DIRECTION B.

NUMBER OF LOADED DOWNCO?.ERS

- TIME HISTORY DYNAMIC ANALYSIS

- SCAN TO OBTAIN THE MAXIMUM STRAIN IN THE BRACE

- APPLY MULTIPLE DOWNCOMER REDUCTION FACTOR AS APPLICABLE

- PREDICTED STRAINS COMPARED WITH THE TEST DATA INCLUDING SPIKES.

t o

--.-,,.e.-

RESULTS AND CONCLUSIONS e

RESULTS

- CALCULATED PEAK STRAINS EXCEED THE MEASURED PEAK i

STRAINS IN IHE JAERI FACILITY

~ve, f

o CONCLUSIONS

- MARK 11 DYNAMIC LATERAL LOAD BOUNDS MEASURED STRAIN j

DATA

- MARK ll DYNAMIC LATERAL LOAD IS CONSERVATIVE SPIKES IN THE MEASURED STRAIN INCLUDED IN THE A.

COMPARISON l

CONTRIBUTION TO MEASURED STRAIN BY IHE CHUGGING B.

DRAG LOAD IS NEGLECTED.

4 9

6)

Chu~gging Lateral Loads o Shoreham Bracing System o NRC Ouestions (2-23 81) Regarding Plant Analysis Mathematical Model Analytical Steps

- Affected Components l

Thermal Expansion i

O l

l

SHOREllAM DOWNCOMER BRACING SYSTEM e

4 DOWNCOMERS IflSIDE OF PEDESTAL EACH VEilT BRACED TO PEDESTAL PIN CONNECTIONS-6 FT ABOVE POOL SURFACE

. FUNDAMENTAL FREQUENCY APPR0XIMATELY 9 HZ i

- e 84 DOWNCOMERS OUTSIDE OF PEDESTAL ALL VENTS BRACED TOGETHER NO CONNECTIONS TO PEDESTAL OR CONTAINMENT PIN CONNECTIONS IMMEDIATELY AB0VE POOL SURFACE LOWEST SYSTEM FREQUENCY APPROXIMATELY 2 HZ SINGLE. VENT FREQUENCY APPROXIMATELY 11 HZ 9

i i

t

F SHOREHAM BRACING SYSTEM q

4p s

\\J

^

1 i

e b

4

\\

L 1

Q'

/


w---

NRC Questions (2-23 82)

Regarding Plant Analysis 1.

Mathematic Models and Analytical Procedures

~

Downcomer Model:

o S&WlProtech Solve Same Governing Equations of

~

Dynamic Motion e

Pretech Uses Finite Difference Beam Model o

S&W Uses Finite Element Beam Model(NUPIPE) o FSI Accounted For by Added Hydrodynamic Mass at Submerged Nodes o

Bracing Mass Represented by Added Mass Bracing Stiffness Represented by a Spring o

Spring Rate Determined from System Model o

System Model (STRUDL il)

I o, All Downcomers Represented by Beam Elements i

o All Bracing Members Represented by Truss (Axial) Elements i

t o For Any Given Set of Lateral Loads, Displacements at Any Downcomer/ Bracing Connection can be Determined.

o Spring Rate for Downcomer Model Equals Applied Load / Resultant Displacement For a Given Downcomer and Load Set i

- ~ - - * - -, -.

..r

.,e..-.,

-m--.me.--.

.~e.

e,-

ne,4-.

....+=

.-3

i I

2.

AtlALYTICAL STEPS DOWNCOMERS:

1.

DEVELOP MATHEMATICAL MODELS 2.

DETERMINE BRACIllG SPRING RATES FOR SINGLE AtlD.MULTIVENT LOADINGS 3,

APPLY DYNAMIC LOAD TO DOWNCOMER MODEL-SPRING RATE VARIES WITH fiUMBER OF VENTS AND LOAD' DIRECTI0il LOAD AMPLITUDE VARIES WITH NUMBER-0F VEllTS 11.

SlHGLE VEllT LOAD C0llTR0 LING FOR DOWNCOMER STRESS f

BRACING AND FLOOR SLAB:

l l

1.

SAME CONCEPT AS FOR DOWNCOMERS I-2.

MULTIVEilT LOAD IS CONTR0 LING 3.

DIRECTION OF LOAD SELECTED TO MAXIMUM DESIGN FORCE.

~

l l-i

l 3.

Affected Components l

Downcomers Load (at Floor)

Bracing Floor Slab l

J l

SEISf11C (AtlD 70 %

Small 90 %

MARK II ARS) i 10 I l

LATERAL LOAD 20 %

60 %

l DR/jG LOADS 10 %

40 %

Small TiiERMAL Small Small Small l

Downcomers:

Maximum Stress = 18,000 psi A.sowable Stress = 2.45S= 36,000 psi h

Bracing:

Large Margin in Free Floating System Floor Slab:

Acceptable Based on Static Multivent Load 4.

Thermal Expansion o

POTENTI ALLY LARGE LARGE l.0AD IN llIGliLY RESTRAINED SYSTEM O

INSIGillFICANT LOAD IN UNRESTRAINED SYSTEM 1

J

(%c h-TC n ac. Me etL ;

- //

r/

.)/h,,jeca C V p,. u.

^

$ /i (! f9., <[c !..,,

.u(UI)Ds?/57xt R.H Sca,1/en Prince 1m wrv/BNL T /C LEHNt= z SNi-7 ~,, M. /_,r a.

A/AC/AEC/AD8 chacI s A. MalovrN, s n e, w e l.sie n Bad. 2. fag 1 AcaseAw.

'R o %\\pk :

C-.JK.Ebi

)6 S T-6C G x,Bie>kws/cc PnkeL Lw/BM-T.E. Metc26 su t u,w h 06/A0 kodG $5'LAdb G//7?x/6

/A641. D a ai,

&GE 1

4. t<. Ashly x aw bez Gapaana4 F. CCfA VEL A NRC/DSZ/C.s&

Ain A. Sonm Mt7~

(cp<. sm) 6 Parlez-12^= qed c ~ fs (mx )

ll Zt..: e lu CFE

/7) d 6?,CM64dd J}saus[Jan+Asae SA,Me/4, M.1%.s e Bow 4 noe.

Sd fra buy Mid.lL6t,c Ps + r-ppi r k y ys

_ khes fiq cm. Gas /nec. ca.

j(.J. Gree n daqed + Lug D. S7cmorr-6E b Y [. WONG S7bN& + kVliBS/2R H.W. Vou sea.

Pan. wain 5.amc G,wuy Pa e c.Lf d - 5s 65 eeg d t- '

J. A

~D a. l e. Kok

9e0A, 9e eer % Li gkk

- OV E R -

E L. AlsFAM.MD fe d M./ k M Og?R NeH M. ))owaed kddelPow Cup.

L. Sack Kwu D. G6 bel k Wl4 P. Anh>ng_ Spies Kww T vuw6

&n +vh % canc)

W C_, RusWL hak G%w 3R F n r c. e G w :a eo-+:=

u e L emd coax em tu e N EMM S-5.c.s u k k 6em Avmu

~

.....1 EA I

l r

e l

MARK II GENERIC CHUGGING LOAD DEFINITION

(

R. E. KINGSTON MARCH 1981 l

i

\\

l e

i

r o

AGENDA t

INTRODUCTION

SUMMARY

OF LOAD DEFINITION AND APPLICATION 4TC0 CHUGGING DATA BASE SOURCE DEVELOPMENT METHODOLOGY t

DESYNCHRONIZATION l.

COMPARISON TO JAERI DATA

\\

MARK II APPLICATION L

I L

REK 3/81

...,. ~... -,.

OVERVIEW 0F MARK II GENERIC CHUGGING LOAD DEFINITION

^

e AC0USTIC METHODOLOGY NEDE-24822-P e 4TC0 CHUGGING DATA BASE NEDE-24285-P-t

- NEW SOURCES DEVELOPED

- REPRESENT FREQUENCY CONTENT 0F 4TCO DATA e MARK II APPLICATION

- DESYNCHRONIZED

- SYMMETRIC

- ASYMMETRIC

- RIGID WALL LOADS l

e i

i REK 3/81

~.

MARK II DESYNCHRONIZED APPLICATION 1

  • WIND 0W CONFIRMED BY JAERI DATA I

e SEPARATE APPLICATION OF EACH SOURCE e TEN SOURCES I

e SYMMETRIC CASE

- APPLIED WITH EQUAL STRENGTH TO ALLLVENTS

. ASYMMETRIC CASE

- SOURCE ~ STRENGTH ADJUSTED-T0 CREATE ASYMMETRY

- FOLLOWS METHODOLOGY OF NEDE-214822-P 1

- STRENGTH ADJUSTMENT CONFIRMED BY.JAERI DATAl 9

0 0

4 REK 3/81-

COMPARISON TO JAERI. DATA

  • BOUNDING DATA FROM MOST SEVERE TEST TO DATE

~

e TWO ELEVATIONS

- 1800 MM 3600 MM e COMPARIS0N SHOWS SUBSTANTIAL CONSERVATISM 0F SOURCES-AND DESYNCHRONIZATION WINDOW e

9 REK 3/81

e BACKGROUND e PREVIOUS LOAD DEFINITIONS WERE BASED ON 4T DATA BASE

- DFFR (NEDE-21061)

- AC0USTIC METHODOLOGY-(NEDE-24822)

I e 4TCO CHUGGING DATA SHOWED CHUGS WITH DIFFERENT CHARACTERISTICS THAN 4T e ANALYSIS OF DATA SHOWED CHUG STRENGTH DEPENDENT ON SYSTEM CONDITIONS i

i u.

.O l

e 1

i REK 3/81 i-

Mark II Gen?;ric Chugging Load Definition logic Path

  • Acoustic 4TCO Chugging Methodology Data Base 1

2 JAERI Data

,r

'r

,r Source Desynchron-Comparison Chug Strength Development ization Da ta Va ria tion 3

4 5

10

,r 9

P 1P Comparison JAERI Basis b

Comparison 6

7

,r Ibrk II Application l

Symmetric Asymetric l

8 9

Mark II Generic Chugging Load Definition 11 REK 3/31

Mark II Generic Chuqging Load Definition Logic Path 4/

4TC0 Chugging f

Data Base 1

2 JAERI Data 3r 3r t

1r r

37 Source Desynchron-Comparison Chug Strength Development ization Da ta Variation 3

4 5

i6

,r 9 r 9P JAERI Comparison Basis b

Comparison 6

7 1r Mark II Application l

, r l

l Symmetric Asymetric l

8 9

l

, r Mark II Generic l

Chugging Load Definition 11 l

REK 3/31

3

~

AC0USTIC METHODOLOGY e ACOUSTIC MODEL - NEDE-211822-P 1

1 e TREATS MARK II POOL GE0METRIES~

  • CALCULATES MARK 11 POOL RESPONSE MODES e CALCULATES LOAD SPATIAL DISTRIBUTI0li 4

e 6 e REK 3/81-

Mark II _Ceneric Chugging Load Definition _ Logic Path _

Acoustic

/

[g Methodology a

j l

2 JAERI Data

< r if P

+

9F r

qp Source Desynchron-Comparison Chug Strengtn Development ization Da ta Variation

~i 3

4 5

10

,r 1 r P

Comparison JAERI Basis b

Comparison 7

6

1r Mark II Application 1

P Symmetric Asymetric 8

9 t

Mark II Generic Chugging Load Definition 11 REK 3/31

~

h CHUGGING DATA BASE-

/

e IITCO TESTS NEDE-24285'-P.

i

.. PROTOTYPICAL e.

{

- -. VENT-LENGTH DRYWELL/WETWELL ARRANGEMENT

}

e 4

f 1

1 I-t t

i i

L

.O e

g I

e REK 3/81

--..,e

-gw,,,g

--.,-c 9-

,-n,yn,-s,,

y-.

., t T-'

    1. +7k*'*--

Y-T v

  • -vr -w e '

9-'r-<-v

  • * ' Y f i T T

---v' Wf w--v+

*-*~t'D ee--

Y

-4T

i h 12 tt e f

.W.

f _-}

^

I DRYWELL

~*

DREAKER 18 7 f t

(

I I

8 I

l n

l I

J w

l l

c 2

(___:

di y

2 ft r

+

7 ft %

52.5 ft e VENT BR ACE e

4TTANKl C

45.3 ft g

VENT

/

(DOWNCOMER)

I 34 ft 3

STEA M GENERATOR t

g VENT H

'2 T

BHACE I

JL ll ft H "-

i g

e it ir l

20 01 0

e 11.8 ft r LOW ME ASURtNG As VENTURE i,

3, l

Test Configuration for Mark II 4T Condensation Oscillation (4TCO) Tests REK 3/81

4TC0 CHUGGING DATA BASE c-4TCO TESTS e 28 TRANSIENT SINGLE-VENT BLOWDOWNS (297 CHUGS)

- SEVEN STEAM BLOWDOWNS

- 21 LIOUID BLOWDOWNS

- NOMINAL ~ MARK 11 CONDITIONS

- SAME TESTS USED FOR C,0. LOAD DEFINITION KEY CHUGS (SEVEN) e DISTRIBUTED AMONG SIX BLOWDOWNS

- CONTAIN THE SEVEREST CHUGGING OF ALL 28 TESTS 4

- CHUGGING DATA + NEDE-24285-P i

G e

h REK 3/81

l

)

4 -

e l

k I

4TCO CHUGGING DATA BASE

SUMMARY

e t

t

- 4TCO FACILITY IS APPROPRIATE FOR EXTRACTION OF-

- MARK II CHUG DESIGN SOURCES i-4 f

t-I f

I t

i t-REK l-3/81 r

1 i

4

- - y g - h y,3.--

,r

,,, -m.,,---%+

3

,e e y-+

p y y, w.-..,

p.

ets os+,,+w-.--eyr,,,y,-,-seg.

,er.yee-a-ww-.>-e-v.,.,,

w.r e -w e -g-e.--,.

zw, m.+wv*-w.=,c

-er~

w,

Mark II Ceneric Chugging Load Definition Logic Path Acoustic 4TCO Chugging Methodology Data Base 1

2 JAERI Data 3r 3r

'(,'

,r 3r Desynchron-Comparison Chug Strength m

/

ization Da ta Varia tion 3

4 5

10 9

P P

I

_ Comparison JAERI Basis T/

Comparison 6

7 3r Mark II Application Symmetric Asymetric 8

9 Mark II Generic Chugging Load Definition 11 REK 3/31

DESIGN SOURCE DEVELOPME!!T 3-PROCEDURE.

~

Select Chugs to Seven Represent Bounding PSD b

Key Chugj;_,,, l Select Higher of the Two Adjacent Chugs to Each Key-Chug Generate Sources-For~Seven Key Chugs and Higher Adjacent Chug To Retain High Frequencies Use I

Three Contributing j

High Frequency Key Chugs i

i Average Key Chug and Adjacent Chug Sources e

1 I

y Chug Design Sources

-801 - 81.0 e

r 3

6.

t 4

REK 3/81 t

x

-l--- --

~

k s

BASIS FOR AVERAGING 4

e CHUGS-WILL OCCI'R WITH RAND 0M AMPLITUDES IN MARK:II' e EVIDENCE OF VENT-TO-VENT VARIATION OF CHUG STRENGTHS

- CREARE SUB',-SCALE TESTS -

- JAERI TESTS e FINAL MEASURE-APPLICATION OF' SOURCES IN JAERI i

g.

4

.}.

REK 3/81-i 5

, _..,. :-_.~... _ _ _,

~

t SOURCING~ PROCEDURE 4

OBJECTIVE-

~

e DEVELOP-A CHUG ~ SOURCE WHICH REPRODUCES Ift4TC0

--POOL FREQUENCIES

- VENT FREQUENCIES

- OTHER CONDENSATION FREQUENCIES

. THIS SOURCE IS THEN TRANSPORTED T0 A. MARK--II GE0 METRY.

AC0USTIC MODEL ACCOUNTS FOR DIFFERENCES IN POOL RESPONSE DUE TO GE0 METRY DIFFERENCES BETWEEN 4TC0 AND MARK II i

s

- 4 f

a r

- REK' 3/81 m..

. 2 2..

SOURCING PROCEDURE-e IDENTIFY P00LLRING0UT FREQUENCY FROM TARGET-PSD

. SET ACOUSTIC SPEED SUCH THAT' IMPULSE EXCITES IDENTIFIED RINGOUT FREQUENCY I

e ADD SINUS 0lDS TO MATCH OTHER PSD PEAKS e ADJUST IMPULSE AMPLITUDE, POOL DAMPING RATIO, SINUSOID

' AMPLITUDE AND ADJUST VENT DAMPING AS REQUIRED TO MATCH TARGET PSD INCREASE IMPULSE AMPLITUDE TO MATCH TARGET POP e

e MUST MEET OR EXCEED TARGET MSP 4

REK 3/81

4 SOURCE AVERAGIflG PROCEDURE e AVERAGE SOURCE PARAI'ETERS

- IMPULSE

- SINE WAVE AMPLITUDES

- POOL ACOUSTIC SPEED 0

Ob REK 3/81

I f

d SOURCEDEVELOPMENTPROCEDORE-

SUMMARY

.e l

- e FULLY REPRESENT HIGH STRENGTH CHUGS IN 4TCO 4

  • REFLECT FREQUENCY CONTENT 0F ENTIRE!4TCOl CHUGGING-DATA BASE 1

e COVER WIDE RANGE OF P0OL ACOUSTIC SPEEDS i

J i -

i e

9 4

4 4

i 4

i REK 1

i 3/81 r

4 i*- -, +,,..,

,,,m__-,_-..mx_,,gy,

.,_,,,r-.,_,.,.,,,,,,,,,,

,w.,w...

...m..,.,..,

..-,,-...m

~....,_,.,,r--,

1 Mark II Generic Chugging Load Definition Logic Path Acoustic 4TCO Chugging Methodolo9y Data Base I

, r u

u 5,-

u

.,r Source

..g _ g[(

,/j

/

Comparison Chug 5trength Development p

gi Da ta Va ria tion 3

4 5

10 u

3 r IP 1

Comparison JAERI m

Basis T>

Comparison 6 v 7-ir Mark II Application 1

P Symmetric Asymnetric 8

9

~

I Mark II Generic l Chugging Load Definition 11 REK 3/31

4 a

b DESYNCHRONIZATION v'

DESYNCHRONIZATION.IN THE LOAD DEFINITION:.

e ALL VENTS CHUG e 50 MSEC UNIFORM DISTRIBllTION 1

e USE THE TIMES GIVING THE MINIMUM TIME VARIANCE AMONG VENTS IN 1000 TRIALS FROM 50 MSEC UNIFORM:

i

  • RAND 0M ASSIGNMENT TO VENTS 4

e SYMMETRIC AND ASYMMETRIC CASES i

REK 3/81-

+

4.,

t-.

---~r-g-,

y--

-w

-p--

,,4+n y-.,-.

- - -,,.w-+

w e, v g

,,,.-,.--,..,.m, y-

--v.

,+er,%-w--

ccow 4,,

.4 v-.r e

  • we n

e'-*-

DESYNCHRONIZATION-e CHUGS OCCUR _AT RANDOM, INDEPENDENTLY AMONG VENTS, IN-A SHORT TIME WINDOW.

DESYNCHRONIZATION.0BSERVED IN ALL MULTIVENT TESTS.

e NO-DETERMINISTIC CONTROL BY THE FIRST-VENT TO CHUG:

- NO COMMUNICATION THROUGH DRYWELL.

- PATTERN OF CHUG LIMES DOES NOT SUPPORT COMMUNI-CATION THROUGH POOL.

O 4

kEK 3/81

i DESYNCHRONIZATION OVERVIEW hlTEMSWILLBEILLUSTRATED 1.

DEFINE DESYNCHRONIZATION BY VARIANCE 0F CHUG TIMES WITHIN

..y P0OL CHUGS -USING VENT EXIT PRESSURE HISTORIES POOL BOUNDARY,.

' HISTORIES SHOW-COMPOSITE EFFECT,

@ DETERMINE CHUG TIMES IN 25.0F 44 JAERI POOL CHUGS, 2,1 WELL-DEFINED FIRST CHUGS 2.2 NO SECOND CHUGS 2.3 3, 4, 0R 5 0F 7 VENTS 2,4 EXTRAPOLATE T0 VENT EXIT FROM HIGHER VENT; SENSORS 3.

FIND THE 25 SAMPLE VARIANCES, 2

4, FIND THE AVERAGE SAMPLE VARIANCE, 313 MSEC

--(= 61-MSEC WINDOWh 5.

' ACCEPT AVERAGE SAMPLE VARIANCE AS TRUE VARIANCE OF THE CHUG

PROCESS, 5

REK 3/81

\\

6I ACCEPT. UillFORM DISTRIBUTION FOR CilVG TIMES.

7.1 CONSISTENT WITH DATA, BY SIMULATION-

7. SMALLER TIME VARIANCE LEADS TO LARGER PRESSURE MEAN SOUARE.

'8 AD0PT 50-MSEC UNIFORM DISTRIBUTION AS TRUE-CHARACTERIZATION '

2 0F CHUG PROCESS.

VARIANCE = 208 MSEC,

THIS IS CONSERVATIVE 2

COMPARED TO 313 MSEC.

(THE CHANCE OF'0BSERVING > 313 FROM A 208-PROCESS IS-LESS THAN 1%.

THEREFORE, 208 REFLECTS GENUINE CONSERVATISM).

l (f) AVERAGE.VARIANCESOFTHETESTS~ARECLOSEL THEREFORE, A SHORTER WINDOW IS NOT ANTICIPATED UNDER VARIOUS PLANT CONDITIONS.

10. FOR FURTHER CONSERVATISM IN PLANT APPLICATION, THE MINIMUM TIME VARIANCE IN 1000 SAMPLES FROM 50 MSEC WINDOW IS USED; ABOUT 153 MSEC 2 (= Il3-MSEC WINDOW).

e h1-

,v w

s

+

v"

-m-n s--~sm'+

r v

  • c~-

s-

"*Mi=

-s--

1 2.

DETERMINE CHUG TIMES

~

e JAERI'7-VENT DATA

- VENT EXIT PRESSURE TIME HISTORIES v-

- USE AN INITIAL UNDERPRESSURE FOR END OF BUBBLE-COLLAPSE AND BEGINNING OF " REBOUND" POSITIVE PRESSURE SPIKE,

- CHOSEN TIME PRECEDES STEEP POSITIVE PRESSURE RISE AND LIES WITHIN " MULTIPLE EVENTS" PERIOD ON-POOL.

' BOTTOM, MAY BE EXTRAPOLATED FROM HIGHER IN VENT,

4 S

9 4

REK 3/81

=

,-m-.

,-n,

9ee, gn--,,

-.r-~

,,er-c, v,

I DESYNCHRONIZATION

.r -

SUMMARY

  • DESYNCHRONIZATION WINDOW ESTIMATED FROM FULL SCALE-MULTIVENT (JAERIl DATA f

e C0flSERVATIVE WINDOW, AND METHOD, ADOPTED INDEPENDEllT OF TEST CONDITIONS e

b l

l-I REK 3/81

[

Mark II Generic Chugg_ing Lead Definition Logic Path Acoustic

'4TC0 Chugging Methodology Data Base t

3r 3r 3r 3r Source Desynchron-

/f.)a'rg Chug Strength Development ization

/}pf Variation 3

4 5

10

,e 1 r P

Comparison JAERI Basis b

Comparison 6 v 7

3r Mark II Application 4

Symmetric Asymmetric 8

9

~

Mark II Generic Chugging Load Definition 11 REK 3/31

e

- COMPARISON TO JAERI DATA

- DATA USED -

o EIGHT LARGE CHUGS FROM JAERI TEST 000'2-4:

  • FOR EACH CHUG SPATIALLY AVERAGE THE PRESSURE TIME 7

HISTORY.AllD COMPUTE PSD

- 6 LOCATI0f1S AT 3E00 MM ELEVATION

- 3 LOCATI0ils-AT 1800 MM ELEVATI0tl

~

e AT EACH ELEVATI0t1 EllVELOP Tile EIGHT: CHUG PSDs

  • RESULT - TWO PSDs

- 1800 MM-

- 3600 MM 9

5 Q.

r 9EK 3/81 c

y-

+-.,

-.w.

,.-.,,..r.,.

y_,..

,-m.,,

,yeg.,-c-

,,,..7,-.

--e,-.w..y.

py,

-.y y-.~p

i J

JAERI' Da ta ' Used as Comparison Basis _ -

Test Number:-

0002

'Ventu'r'i Size:

~100mm (3.937.in)

Blowdown Type::

Liquid-Initial Vent Submergence:

3.867m (12.69'ft).

~

Initial Pool: Temperature:

24.6 C (76.3 F)

.4 Non-Prepurged Drywell Sensors'Used in Averagina-Chugs Used (Start Times).

1.6m (b.9 f t) trev.

3.bm (70.8 1 E) t e ev.

1.

58.65 sec.

~WWPF-201 WWPF-202

-2.

62.37

-4 01

.-302 3.

66.35

-501

-402

.4.

-72.65

-502-5.

74.65

-602 6.

76.75

-702 7

78.80 8.

80.25 f'

PSD Information PSD Uindow Hone Trend Removal Linear Evaluation frequency increment 0.889 Itz Duration of PSD Analysis Per Chug 1.125 Sec Nyquist frequency

~ 227 liz REK 3/81

~

h 1

r i

I J

A t

'201 O

p 302 401

'e 02 O

VP3 VP2 VP1 t

a VP5

)

501 V

VP7 502 yp4

- O 702

/

3 4

i i

4 t

JAERI Sensor Locations Used in Averaging REK l

3/81.

M 9W' W

F'd P

-WerM*"-

M7?Y 1sD pt "t

'"T=9+"t'#"'

s4--

~#+r99-=^"W 4W 4

  • --4M-1et-TW-W=+

9W-F' TP Wtt-7 +

WV"arS'19't'-y' W4p w t-e -

==7-tMW"et-wir ?

Comparison ' Data' Generation it:thod Flow C_ hart

-Select Sensor -

Locations'For Averaging v

' Select a Chug 1

g

-)

{.s of Interest

.t r

P Obtain P/T Histories at.

Selected locations y

)...etc.

v Arithmetically Average P/T Histories EP PSD Compute PSD of Averaged P/T History D

PSD No re a hugs Pro-ss

... etc.

3 Yes 9

V >

Psb Envelop PSDS-of'all Chugs

~

4 4

PsD Comparison ~ Data p

REK 3/81

~

COMPARISON DATA

SUMMARY

e BOUNDING CliUGS FROM JAERI DATA ENVELOPES OF PSDS e

e TWO ELEVATIONS t

9 REK 3/81 t

Mark 11 Generic Chugging 1. cad Definition iogic Path _.

Acoustic 4TCO Chugging Methodology Data Base 1

2 JAERI Data TP v

v v

v Source Desynchron-Comparison Chug Strength Development ization Data Variation

~

3 4

5 10 v

9F ir N

r's

/

6- "

7 u

Mark II Application 4

v Symmetric Asymetric 8

9 i

V 5

1 f*

Mark II Generic Chugging Load Definition i

11 REK 3/31 i

e t

JAERI COMPARIS0ll e TAKE CHUG DESIGN SOURCES e APPLY THESE IN JAERI

- ACOUSTIC fiODEL MSEC TIME WINDOW e COMPARE AGAINST TEST DATA

~ ' '

REK 3/81

.JAERI COMPARISON BASIS e REALISTIC COMPARISON TO TEST DATA ENVELOPE

. PSDS OF TIME HISTORY AVERAGED CHUG' DESIGN. SOURCE-RESPO

- SAME SENSOR LOCATIONS AS TEST DATA e MAXIMUM ENVELOPE OF EIGHT RAND 0M. TRIALS-(EIGHT CHUGS WE ENVELOPED IN-TEST DATA) e REPEAT 20 TIMES, COMPUTE MEAN ENVELOPE e ENVELOP FOR TEN CHUG DESIGN SOURCES f

I

\\

?7 REK 3/81

PSD Obtain maximum envelope of eight

/ aximum Envelope of Eight Trials M

random trials

- one Design Source -

\\

'? '

f PSD Calculate mean of 20 Mean of 20 Maximum Envelopes such maximum envelopes

,'s\\

- one Design Source -

1 i

a i,A; ),

'N

,',,yir,',.

,y

'[' ' $' 2 b._ _ [ M f

PSD Repeat for other de-Maximum Envelope of Design Sources sign sources.

Envelop for Design a

Sources'

')

f Generation' of JAERI Comparison Basis From Design Sources REK 3/81 e

s--

- +

?w-

JAERI COMPARIS0tl BASIS

SUMMARY

e SIMULATION OF TEST DATA e ONE-TO-0NE COMPARISOff WITH DATA e LOAD DEFlflIT!0!1 RHOWS SUBSTANTIAL CONSER-VATISM WHEN COMPARED TO JAERI DATA w

REK 3/81

Mark II Generic _ Chugging Load Definition Logic Path Acoustic 4TC0 Chugging Methodology D,-'. Base 1

2 JAERI Data

,r 3r

,r

,r Source Desynchron-Comparison Chug Strength Development iza tion Da ta Varia tion 3

4 5

10-

,r 1

P P

Comparison JAERI Basis N

Comparison 6 "

7

,r 9

P Asymetric

~ 8 9

<)

Mark II Generic Chugging Load Definition 11 REK 3/31 e

APPLICATI0ft TO MARK II SYMMETRIC CASE PROCEDURE

- 1000 SETS OF CHUG INITIATION TIMES TAKEll FROM A UNIFORM DISTRIBUTION OF 5011SEC WIDTH

- SET WITH MIlllMUM VARIANCE SELECTED

- INITIATION TIMES ASSIGNED RANDOMLY TO VEllTS

- EACH collRCE APPLIED SEPARATELY l

l T'

e REK 3/81

~

SYMMETRIC CASE

SUMMARY

e AC0USTIC MODEL OF MARK II POOL NEDE-24822-P e MULTIPLE DESIGf1 SOURCES WITH WIDE RANGE OF POOL ACOUSTIC SPEED e DESYNCHRONIZED USING WORST IN 1000 TIME VARIANCE WITH C0!1SERVATIVE WINDOW CONFIRMED BY JAERI DATA 9

REK 3/81

Mark II Generic Chugging Load Definition Logic _ Pat'h_

Acoustic 4TC0 Chugging Methodology Data Base 1

2 JAERI Data or ir 1Y 1P

?

y Source Desynchron-Comparison Chug Strength Development ization Da ta Variation 3

l.

4 5

" 16 1 r 9F Comparison JAERI Basis T/

Comparison 6

1' 7

1r g

4 Symetric 8

9 9

Mark II Generic

~

Chugging Load Definition 11 REK 3/31

APPLICATION TO MARK 11 ASYMMETRIC CASE e-e NEDE-24822-P APPROACH WITH

- MULTIPLE CHUG DESIGN SOURCES

- DESYilCHRONIZED CHUG DESIGil SOURCE APPLICATION

- CHUG STREllGTH VARIABILITY CONFIRMED BY JAERI TEST DATA '

. ACCOUNT FOR PRESSURE IMBALANCE DUE TO SOURCE 1 STRENGTH ASYMMETRY

- ASSUMES CHUG STRENGTHS OCCUR RANDOMLY AT VENTS

- USES A STRENGTH ADJUSTMENT FACTOR,c<, FOR CHUG DESIGN SOURCES Oli OPPOSITE HALVES OF THE C0f1TAINMENT

<1 REK 3/81

4 CHUG STRENGTH VAPIATION

.r -

  • 4TC0. DATA INDICATES VENT EXIT RMS PRESSURE VARIATION IS REPRESENTATIVE OF CHUG STRENGTH VARIATION e EXAMINED JAERI VENT EXIT RMS PRESSURES'

)

- THREE TO FIVE VENTS

- 38 P0OL CHUGS 1

e CALCULATED NORMALIZED VARIANCE AMONG VENT EXIT SENSORS WITHIN P0OL CHUGS e AVERAGED OVER POOL CHUGS i

O 1

REK 3/81

I-i i

ASYMMETRIC' CASE i

SUMMARY

  • SIMILAR TO PREVIOUS METHODOLOGY NEDE-214822-P-t.

e CONSERVATIVELY-MODELS PRESSURE IMBALANCE IN MARK PLANT 1

i I

,q i

l

.REK 3/83 I

SUMMARY

THEMARK11GLNERICCHUGGiNGLOADDEFINITIONUSES

- AC0USTIC METHODOLOGY o.

- 4TC0 CHUGGING DATA BASE

- JAERI FULL-SCALE MULTIVENT CHUGGING DATA TO PRODUCE A LOAD DEFINITION WHICH

- REALISTICALLY MODELS THE PHENOMENON OF MULTIVENT CHUGGING

- TREATS MARK 11 GE0METRIES-UNIQUELY

- CALCULATES LOAD SPATIAL DISTRIBUTION AND, WHEN COMPARED TO FULL-SCALE MULTIVENT DATA, SUBSTANTIALLY B0UNDS ENVELOPE.0F SEVERE CHUGS E

REK 3/81

4

.4 I

4 4

i i

i i

1

. MARK II POOL SWELL' I

i r

2 4

t o.

i h.

t -

5 1

I i

l e

DRYWELL FLOOR UPLIFT e

j I.

4

  • l In-e MASS ENERGY RELEASE Y

. r nG OG 1 essa s ped.,

s i.

4 e

i ROIll LOADING I

4 4-1' s-1-

i p'

p L

+.

t 4,

~..____ _ _..-....._.-._,,...._.--

MARK II-POOL SWELL DIAPHRAM FLOOR UPLIFT e

NRC REQUEST FOR-1.

DIGITIZED DRYWELL AND-WETWELL PRESSURE FOR 1sT 5 SECONDS'0F TEST #20 2.

PLOT OF AP VS, TIME s

1 4

!.1.

(!'.

c

MARK II P0OL SWELL

.s -

t DIAPHRAM FLOOR UPLI'FT e

DIGITIZED DATA PROVIDED PER NRC REQUEST e - ADJUST S0 THAT AT TIME ZERO Pgg_= P

= 114.7 PSIA-wg AND 6 PUP = 0 e

PLOT PROVIDED PER NRC. REQUEST E

- i 4

l

(.

t

-..._..._:..,___._.__._---_.-........_.__,,_..,-_...._-.._..__.-....,_.--.~.._,,._,_,,...-._._1

}_...

i-..

3

~r~..

D t.M? WA 'Vn Tr L CCR Wh-W~ ".4W.

J s,

I....

j I

i

m..

___2.....,

i qs7.s.9 m.- _. %..,

t.3 s

t

.i t.

.s-

, 3,.As...,..

,e :,.uc.,

t i,.

......)

p;

...g..

i-

--o-a i

.n.

a M

5 e

, )-

(

-)

c 4

i

_n lh PRELIMIflARY

!.i,

-a i

11

,i M. -9 1

E*.

q

/

t..

IT-D.

i p:!

i y

3 n...

u

.c.

i

,m..

~

q M

V*-

4".

z. k,. ;.

1/ ( f.'.' {..

i i

M

  • .Ia.'

t A

4 e

/

.,./.

q

.i.

p.

i

. s,.

-- 3.

6 I

i

. y t

s

. g*. t y

=t c

t 6

I I

t

.i:

i.

.)4 i

d:t 1

t'

.. f

,d v

s 1,

.I 1

8

. ~~...

8.

J.T;

.O I

i e

j i

u,

\\

-).

... ~..

.. s.

.A o

i.

i...

.c y

-s (mr I

o?

i

_7

.y

.- s --

~

'..i.

i,:4 I;

t

=

C ).;s.....'..1.,

u.;

s

. r...

g.

)

4

{,....

....l a

D Q4 1,

'.t i

,.. 1 -..

s

...r t

t

.3, i

i.

.e...

i s

.g

  • ),it i

i

,,i

.i... j._..,i......,....*......;._......{.

]

l

.,..b-e ;.

m...... L

~............L

.a

.l...i i

g.

}V:.r: ontf, i..

.i j t.

.d,l.

1 w t:a: :; n '.M t.t. anH es 1 v w,t ~,.

Li

.H i

": a. c ere r; n > :a n a M.t.,

I or p

.-35 I

.I M *..U..... W..

~

i.....

i

(.

. _ ;..... !..........;j.....i :... i.. j

'M

'.yg. __

u L.

l3

.s.

~,

r O

j

y d

....}

I

.l.

i i

, n.5 e

.s

......j.

>I

.J 8-

... j

.,.--.3

...g... q t,(.

.) -

i

.. Ij 1,n, T*

.$m g

. MARK 11 l'001.. SWI.ll MASS / ENERGY' RELEASE e

NRC RE0llEST FOR COMPARISON MARK I NID MARK II.--METil0DS-o MARK I METHOD APPROVED BY NRC'

(

~

MARK II POOL SWELL 1

MASS / ENERGY RELEASE - MEll10DS COMPARISON l

e MARK'I

- MOODY HOMOGENE0US EQUILIBRIUM MODEL (HEM) e MARK II - MOODY SLIP FLOW MODEL (SLIP) i e

ALL 0 tiler ASSUMPTIONS IDENTICAL d

-A

MARK II POOL SWELL

  • 1 MASS / ENERGY RELEASE - TYPICAL RESULTS e

PLOTS FOR ONE TYPICAL MARK 11 PLANT

- DRYWELL PRESSURE VS. TIME e

ONLY DIFFERENCE IS fiEM VS, SLIP t

4 I

t

o J

e I..

w i

I PRELIMINARY!

v.

~

HEM FLOW MODEL

.r_. m e c u o - = =. e = ~ e... :-

n-~

o TYPICAL MARK II r>Ec isc v2.=-

30.;

(

,5:5..g...

i

,: WL__iWELL I

a i

40.

L3 i

~

i t

N f

i t

4 L1J CE

-u 2

CD 20.

CD

-l i

p LLI DE 2

i C._.

?

Y I,- J, I

n a'O.

2.

4.

3.

S.

TIME', SECONDS

\\,

l h

1i i gg) u)

J 1,

ti in U) j,y, 11 1 43

..r il 18 i f

! l

!._ I s

o

,to a

..; o,..<

w (s)

(-

,'--l r

_ 'Lj C

fj )

Cl-lt 1 ()

'J3 (C t:1 O_.

CC (O

(/)

f7 Z.

(c)

(J l Ll r /)

-(

. l Li.1 3 _

F -4 w -

A l-O M IC E9 x

t.

n OJ J L1-

<C LJ CL -

- CL J >-

c.n p

W kh

,1 m

~

~ '%g L&w i i i O

O O

O O

(D

P (N

OIS H URSSilUd i.>7

3 t

I.3 FPS MAX ac 10

,v 4

EL 35'-o" t / < g.

osEps-ex

//

\\

.;_z__

. /-f

, u, - ~

~

p 7

s-

\\

50c $

/

\\

SHOREHAM DRYWELL PRESSURE

'<(

T' s

>8 ' -

/

g i

.0 FPS - EL30-

. c'

/

\\

_I POOL SWELL TRANSENTS' sy L>

\\

s

,~,

N

/

\\

HEM VS fl.OODY

/

\\

l 3

>oy a f

\\

SLl? W'?H

' i "'

//

' q *RN*

l

/>l

.StiECOOLEO INVENTORY l

,.c'kh.S'pg ji. u %

e

\\

l

/'

i RECIRC SUCT:ON DBA l

/j'

' e9 (Dji k %

\\

HEM (MAX S','lELL-EL46'40") ~ $4(

/,[

~

2 j/

f(,j, i k s"

/

\\

_..- - M 00 DY SU ?

ICjj/

/'

(MAX S'# ELL-EL4G4")

I I

/

\\

c.

\\,

i TIME AFTER DBA-SEC. \\ \\

l

~ ~ ~,

\\\\_.

f(

o 0.3 0.7 0:3 0.9 1.0 1.1 1.2 1.3

!.4 5

1.5

!;?

" FROTH" LOADING e

SUBSCALE POOL SWELL TESTS WITH BRACING (EPRI/ SRI) - 2/2Ll/81 PRESENTATION

- NO DEPARTURE FROM 1D FOR BRACING LOCATED INITIALLY BELOW P0OL SURFACE.

DRAG EFFECT NEGLECTED.

- MINIMAL-DEPARTURE FROM 1D IMMEDIATELY AFTER IMPACT FOR BRACING LOCATED APPR0XIMATELY ONE VENT DIAMETER AB0VE INITIAL POOL SURFACE.

- SIGNIFICANT DEPARTURE FROM 1D FOLLOWING IMPACT FOR BRACING LOCATED'APPR0XIMATELY THREE VENT DIAMETERS AB0VE INITIAL POOL SURFACE.

i e.JAERI BRACING LOCATED APPROXIMATELY 1.5 VENT DIAMETERS AB0VE POOL SURFACE o

" FROTH" FORMATION AT JAERI MOST PROBABLY ASSOCIATED WITH BRACING

. FROTil" LOADING v

1 e

MARK II POSITION

- PLANTS WITH BRACING BELOW INITIAL POOL SURFACE:

NO EFFECT

- PLANTS WITH BRACING AB0VE INITIAL POOL SURFACE (WITHIN ONE VENT DIAMETER):

FR01H LOAD C0llSIDERED AS FOLLOWS:

(1)

VERIFICATION THAT ALL' PLATFORMS ARE GRATING (2)

" LIGHT" STRUCTURES TO BE IDEllTIFIED AllD EITHER SHOWN TO BE ACCEPTABLE OR PROTECTED (3)

FUNCTIONALLY IMPORTANT VACUUM BREAKER ACCESSORIES TO BE EITHER SHOWN ACCEPTABLE OR PROTECTED w

UNITED STATES NUCLE A2 RecuLATOAV COMMISSION f

7 WASHINGTON, D. C. 20066 Postaos AMo pass paso u.s. MucLean maeuLavoav OFFICI AL SUSINESS commissioM PEN ALTY FOR PRIVATE USE.9300 k

d Y

e f

l 1

4 4

l 1

l k

'