ML20002D495
| ML20002D495 | |
| Person / Time | |
|---|---|
| Site: | Millstone |
| Issue date: | 05/31/1980 |
| From: | Mcdonald J TEXAS TECH UNIV., LUBBOCK, TX |
| To: | |
| Shared Package | |
| ML20002D494 | List: |
| References | |
| CON-NRC-04-76-345, CON-NRC-4-76-345, TASK-02-02.A, TASK-2-2.A, TASK-RR NUDOCS 8101210181 | |
| Download: ML20002D495 (26) | |
Text
_ - - _
O-TORNA.30 AN) 5"M G W N) - AZARD 3 ROBAD _ TY i
fer MILLSTONE NUCLEAR FOWER REACTCR SITE. CONNECTICUT bY Jcmes R.McDcnold, P.E.
l ns:?:ute fo, 7sas:er Researc, EXA5 "EC-U$ VEAS Y l
_ubbocs, kxas 79409 82omol%
TORNACO AND STRAIGHT WINO HAZARD PROBABILITY for MILLSTONE NUCLEAR POWER REACTCR SITE, CCNNECTICUT by James R. McConald, P.E.
u Prepared for U.S. Nuclear Regulat:ry Ccmmission Site Safety Research 3 ranch Division of Reactor Safety Research May, 1980 l
f l
Institute for Disaster Research Texas Tech University a
Lubbock, Texas 4
l l
l i
l
FORE'ACR0 Hazard probability assessment for tornadoes and other extreme winds at the Millstone nuclear power reactor site are presented herein at the request of Robert T. Abbey, Jr., Site Safety Research 3 ranch, Division of Reactor Safety Research, U.S. Nuclear Regulatory Comission. The work is supported under NRC Contract NRC-04-76-345.
Principal Investigator and Project Manager for the Institute for Disaster Research is James R.
Mcdonald, P.E.
4
I.
INTRODUCTION The objective of this report is to assess tornado and straignt wind probability hazards at the Millstone nuclear pcwer reactor site.
The hazard probability analyses are developed using storm records from the geographical region surrounding the site.
Ninety-five percent confidence limits on the probabilities are presented to give an indication of the accuracy of the expected hazard probabilities.
The final hazard probability model is cresented graphically in Figure 5.
Windspeeds corresponding to selected orobabili y values are t
summari:ed in Tacle 8.
The basic data used in the calculations are presented in this recort.
Derivaticn of the tornado hazard assessment methodology, the rationale and assumotions are given in Mcdonald (1980).
Use of the Type I extreme value distribution function for straight wind hazard assessment is well documented in Simiu and Scanlan (1978).
1
A 44+
t VI?WCNT
- Ed iw NC# M weseg j
a5!.:r
! O:
- i.
s pyg h
l
[ g:i3
-I....
WAL3.
- .;O !sf!!!
REGCN M.3 OM.
]!?
Eik BEN FAEN l
\\
M f.: *6 '
Npusicne
.h:5;il
- E.......5,jj*C 4
sx.
...$M
'ss
~ '
/
/
Givingp"s'n-h9i f
< :.,gi33:sgpss, i::::;;;.!ff:!!!
y
,;pi:!
f*J N a
!!I!!!!!! ', ;;j!h!!!
w fiY
~
s 8i8i?
<ii -
8
- x. :.,
.!. :!! iib 5
- i i
- .::g::
~
- . 7.:
- i.::1
, S.it.i?.i.
iig?.:i.
- ?:i.?
e
.-3;
- igis,
!,b!
'if.{h{!{!
s,
's.. s
$II.[di!!! <'
- sy;;; '
!!!)!$'
- $, '+:f; ! s:s,.
'!!ii{!iji s FIGURE 1.
LCCAL AND GLCSAL REGICNS FCR MILLSTCNE 2
II. TORNADO HAZARD PRCBABILITY ASSESSMENT A.
METHODOLOGY The tornado hazard model developed by the Institue for Disaster Research (IOR) accounts for gradations of damage across the tornado path width and along its length (McConald, 1980). There are four basic steps involved in the methodology:
(1) Determination of an area-intensity relationship in a global region surrounding the site of interest.
(2) Cetermination of an occurrence-intensity relationsnio in a local region surrcunding the site.
(3) Cal'culation of the probabilities of a point within :ne local region experiencing windspeeds in some windspeed interval.
(4) Determination of the orobability of windspeeds in the local region exceeding the interval values.
B.
CALCULATIONS 1.
Site Millstone Nuclear Powe-Reactor Site 2.
Coordinates Latitude 41 18' 32" N U
Longitude 72 10' 04" W 3.
Area-Intensity Relationshio Global Region Latitude 39 to 44 N 0
0 Longitude 70 to 76 W Data DAPPLE Tornado Data Tape UT1678 (.:ujita, et al., 1979)
Period of Record l
1971 - 1973 3
See Figure 1 for definition of the global region. The region is selected to be as large as cossible and still give reasonably homoge-nous c nditions for tornado formation.
The relatively shcrt period of record is used because the data are mere c molete and accurate than that collected prior to 1971, especially with regard to tornade damage path enaracteristics. The area-intensity matrix is shown in Table 1.
It gives the numcer of tornadoes in each corresponding area-intensity classification.
From this information, the mean damage path area per F-scale can be obtained.
~
TABLE 1 AREA-INTENSITY MATRIX Numcer of Tornadoes
- Area Mean Area Interval F0 F1 F2 F3 F4 F5 (se mi) 0 4
13 1\\
0 0
0
- 0. 315E-02 g
1 10 26 7 N O O
O 0.100E-01 N
2 4
25 5
2N O
0 0.316E-01 N
3 2
12 10 2
NO O
0.100E-00 N
4 0
5 7
1 0s0 0.316E-00
\\
5 0,g 2
0 0
0 Q
0.100E 01 6
0 NO O
O 1
0 0.316E 01 7
0 0s 1
0 0
0 0.100E 02 s
3 0
0
\\0 0
0 0
0.315E 02 9
0 0
h C
0 0
0.lCCE 03 g
10 0
0 0
\\0 0
0 0.316E 03 Totals 20 83 31 5
1 0
- Those tornadoes outside the dashed lines are considered cutliers and have been eliminated frem tne data set.
Mean Camage Fath Area Per F-Scale f
F0 F1 F2 F3 F4 F5 Mean Area, se mi 0.0220 0.0707 0.4337 0.1153 3.150 Median Windspeed, mpn 56 92.5 135 182 233.5 229.5
4 Area-Intensity Function Linear regression analysis of the above area-intensity data, based on a long-log plot, yields the following functional relationsnip:
Log (Area) = 2.95 Log V - 6.889 (1)
The coefficient of determination is 2r = 0.397 Area-Intensity Relationship The expected mean area is obtained from Ecuation (1) accve.
Upcer and lower bound confidence limits are calculated at the 95 percent level.
These values are shewn in Table 2.
Figure 2 shcws a plot of the area-intensity relationship.
TABLE 2 AREA-INTENSITY RELATIONSHI? WITH 95 PERCENT CONFIDENCE LIMITS F0 F1 F2 F3 Fa F5 Expected Mean area, a, sq mi 0.0187 0.0824 0.2515 0.5079 1.2637 2.3933 g
Lower limit a,j sq mi 0.0079 0.0349 0.1063 0.2542 0.5239 0.9744 Upper limit a$,
sq mi 0.045 0.194 0.596 1.454 3.072 5.873 Median F-scale Windspeed, moh 56 92.5 135 132 233.5 239.5 4.
Occurrence-Intensity Relationshio Local Region U
U Latitude 20 to 43 t
0 0
Longitude 71 to 74 Area = 32,220 - 11,560
= 20,560 sq mi An area of 11,500 sq mi is deducted from the lccal region because of the ocean. There are, of course, no tornadces recordec over water.
See.:igure 1 for defini-ion of local region and its relationship to the site.
5 I
l t
- 00
_.:2 to
!/
O
/
/
l i
/
/
I W
/
/s Z
/
/
Y l/
/$
/
Z
/
/
H
/
/
/\\
0.1 w
/
/
l
/l (D
/
95% CCNFIDENCE
<<l E
/
INTERVAL
+
s
/
C.01 56 923 133.5 l82 233.5 289.5 WINDSPEED MPH FIGURE 2.
AREA-INTE.'4 SIT / RELA 7:0NSH:: F^R MILLSTONE E
l Data CAFFLE Tornado Cata Tape UTl67S (Fujita, et al.,1979)
Feriod of Record 1950 to 1978 The records used do not necessarily include every tornado that has occurred in the local region.
For one reason or another, some tornadoes go unreported.
Because the coculation density of the local region is fairly high (greater than 200 persons per so mi, USNRC,1979) and because the terrain is such that identifiable oaths can be seen snould a tornado touch down (damage to structures, trees, fences, or cower lines), the number of unrecorted tornadoes in the region is likely to be less than ten cercent. The numoer of recorted tornadoes in the local region is shown in Table 3.
TABLE 3 NUMBER OF TCRNADOES IN THE LOCAL REGICN F0 F1 F2 F3 Fa F5 Number of Tornadoes 38 98 49 9
1 1
Cumulative Number 196 158 50 11 2
i Lower Sound F-Scale Windsceed, mph 40 73 113 158 207 261 Occurren' ttensity Function The funct ed is obtained by performing a linear regression analysis using 0 and F1 tornadoes and another linear regression analysis using t r2 to F5 tornadoes.
The one F5 tornado in the records is the Worcester tornado of 1953.
It creates problems with the occurrence-intensity relationship because it overloads the func-tion towards the more intense tornado side.
Because an F5 tornaco is a rare event, and because the period of record is only 29 years, One one event will tend to overemphasi:e the more intense tornadoes.
For this reasen, a rationale judgment is made to treat tne F5 tornaco as if it is Fa in defining the occurrence intensity function.
Over a longer period of record, a larger number of less intense tornadoes will occur so that if the regression analysis were cerformed at some time in the future, the net result would be essentially the same as tne ene performed today using tne F5 tornado as an Fa.
1 I
I 7
Linear regression analysis of the data in Table 3 on a semi-leg plot gives the folicwing functional relationshics:
y = (254.51)10-0.00224x (x < 88 mch) y = (3487.55)l0-0.0157x (x > 88 mch) where y is the cumulative numcer of tornacces with windsceeds greater than or ecual to x.
Occurrence-Intensity Relationship The ex ected numcer of tornadces in the 29 year seriod is obtained from the occurrence-intensity function (Ecuatier. 2). Ucper and icwer bound c:nfidence limits are also oc:ained at the 95 cercent levtl.
These values are then divided by the period of record (29 years) to obtain the numcer of tornadces per year for each ?-scale classifica-tion A, wnich is the needed cccurrence-intensity relationshic recuired for the hazard or:bability assessment.
Table 4 lists the values used in the probability calculation.
Figure 3 shcws a plot of tne occurrence-intensity relationship.
TABLE 4 OCCURRENCE-INTENSITY RELATIONSHIP WITH 95 PERCENT CONFIDENCE LIMITS F0 F1 F2 F3 Fa F5 Expected number of tornadoes in inter-val, 6 38.00 99.41 47.08 9.55 1.58 0.278 L:.:er limit n 27.15 85.59 35.35 3.55 Upper limit 5 48.85 113.12 58.81 15.45 4.21 1.31 Expected number of 1.31 3.43 1.52 0.33 0.05 0.010 tornadoes per year Aj Lcwer limit A.
.93 2.95 1.22 0.13 1
Upcer limit A.
1.58 3.90 2.03 0.53 0.15
.045 1
5.
Tornade Hazard probability The tornado ha:ard precability calculations are performed by c mouter, although they can easily be dene by nand. The ex:ected hazarc probabilities are obtained by using the ex:ec ed area-intensity relationshic (a4) and the ex:ected occurrence-intensity relationsnio l
(%).
Uccer and 1:wer limits of ha ard :r:bacili:y are cotained :y k
usinc the u::er and icwer limit 1.'s and a'.'s res ectively.
The l
- moutar rin: cuts for -hesa calcdlati:ns are c:n:ained in ',ccendix 2 2
- U
- 3 ccoo eQwwc.
I m
C l
3E w :cco 3o I
_a 5
E C% ~~b 5 3 ico
' N.
9 N N m d:i N -N w w N
Oe
\\
N Or
\\
N
<H N
I N z
io s
e
\\
gl w
Se
\\
s z
6 N
ti. U
\\
\\
oW
\\
l%
i w
N 1
\\
@Oy
.0 0
50 10 0 15 0 200 250 300 350 WINDSPEED MPH FIGURE 3.
OCCURRENCE-INTENSITY RELATIONSHIP FOR MILLSTONE l
9
Table 5 summarizes the tornado hazard probabilities, and includes the 95 cercent confidence limits.
The tornado nazard crobability model is plotted in Ficure 4
.inal hazard cr:bability results Iare su=mari:ed in Section IV of this recort.
TABLE 5 TORRADO HAZARD ?RCEASILITIES WITH 95 PERCENT CONFIDENCE LIMITS Mean Hazard Tornado Windsnesds. moh Recurrence Probability Excectec Lower Ucper Interval Per Year Value Limit Limit 10,000 1.0 x 10~
39 10 SI 100,0C0 1.0 x 10~3 120 74 170 1,000,000 1.0 x 10~5 134 140 239
~7 10,000,0C0 1.0 x 10 245 203 31 2 i
I l
10 l
l l
l d
a O
PROBABILITY OF EXCEEDING THRESHOLD WINDSPEED IN ONE YEAR l
M w
w w
o o
o o
d de s'se de 4
j
/
/
s Di
/
/
/
/
my e
a n
N8 o
en 8
y; 1,.
u r*
(n O!
a f
/
u
/
uw
)
u
/
/
'in
/
L!g g
/_
P
/
M
/
~
it' 8
/
/
8 7 8:
O
III.
STRAIGHT WIND RAZARD ASSESSMENT A.
METHODOLOGY A set of annual extreme fastect mile windspeeds are used to fit a cumulative probability distribution function in crder to obtain the straight wind hazard probabilities.
The Type I extreme value function generally fits the data well.
In view of the studies by Simiu and Filliben (1975),
the Type I distribution function is used in lieu of the Type II that was used previcusly (ANSI,1972). A detailed description of the methcdology is given in Simiu and Scanlan (1978).
3.
CALCULATIONS Annual extreme fastest-mile windspeed data are not available at the power plant site. The closest weather station with the needed data is New Haven, Connecticut, which is located twenty-five miles southwest of the site (See Figure 1).
Terrain and meteorological conditions are such that the data should be representative of wind conditions at the site.
The data are taken from weather records from the Environmental Data Service, National Climatic Center, Asheville, North Carolina, and covers the eighty-year period 1888 to 1968. The set of annual extreme fastest mile windspeeds for New Haven, Connecticut is given in Table 6.
The windspeeds have been adjusted to a standard anemometer height of 10 m.
A type I extreme value distributien function is fit to the data.
The expected windspeeds for various mean recurrence intervals along with 95 percent confidence limits are given in Table 7.
l l
12
TABLE 5 ANNUAL EXTREME FASTEST-MILE 'AINDSPEEDS AT NEW HAVEN, CONNECTICUT
'4indspeed Windsoeed Year moh Year moh 1888 46 1928 35 1889 33 1929 38 1890 41 1930 29 1891 32 1931 27 1892
?
1932 32 1893 38 1933 32 1394 31 1934 33 1895 10 1935 35 1896 41 1936 3a 1897 38 1937 33 1898 36 1938 37 1899 33 1939 39 1900 36 1940 39 1901 38 1941 30 1902 41 1942 30 1903 51 1943 25 1904 43 1944 33 1905 38 1945 37 1906 32 1946 39 1907 38 1947 41 1908 43 1948 26 1909 39 1949 33 1910 40 1950 55 1911 38 1951 41 1912 38 1952 37 1913 38 1953 35 1914 42 1954 45 1915 43 1955 42 1916 32 1956 33 1917 33 1957 38 1918 35 1958 34 1919 38 1959 48 1920 32 1960 al 1921 30 1961 44 1922 33 1962 da 1923 30 1963 50 1924 38 1964 43 1925 38 1965 42 1925 37 1966 18 1927 20 1967 da 1958 54 l-Mean Winds::eed:
37.2 mch Standard 3eviation: 5.96 mch i
l 13 j
L
TABLE 7 STRAIGHT WIND HAZARD ?ROBABILITIES WITH 95 PERCENT CONFIDENCE LDtITS Mpn Excected Upcer Lower Recueence Hazard Fastest-Mile Limit Limit Interval Probabili ty Windsceed, =ch mon mon
-1 10 1.0 x 10 46 48 43 20' 5.0 x 10~2 49 52 45
~
50 2.0 x 10-2 33 gg 39 100 1.0 x 10~2 56 62 51 200 5.0 x 10~3 60 56 54 500 2.0 x 10~
64 71 57
-3 1,000 1.0 x 10 67 75 50 10,000 1.0x10~f 78 38 68 i
100,000 1.0 x 10~'
39 1 01 76 1,000,000 1.0 x 10-6 gg j)4 g4 The straight wind ha:ard probabilities along with the 95 cercent confidence limits are presented in Figure 5.
f
e h
O PROBADILITY OF EXCEEDING THRESHOLD WINOSPEED IN ONE YEAR M
M ad M
M 0
g g
a 8
e,a su on 3
l
/
/
/
/
s n
s
- i'
/
,/
c
/
/
,n
/y n
ui z
/
", Y x sn O
5
- "! 5~l M
o a
~U io 23 M
u n a:
m I.*i u"
O
'0 E
.flM Mc r
8 nh m
I 9,s c:'d L J ta N
s a,0 O
h
.. g F. P
,o i'i *:1 8
.d W.
o.
OO O
IV. WINDSPEED HAZARD PROBASILITY MODEL l
Windspeed hazard probability, whicn includes both tornadoes and straight winds, is the probability of a point within scme defined geographical regicn experiencing windsceeds greater than or etual to scme threshold value in one year. T'ornado ha:ard probabilities are the same at any point within the cefined local region. The Type I extreme value distribution function ob-tained from data collected at New Haven, Connecticut is used for the straignt wind probability ha:ard assessment at the Millstone reactor site.
- Thus, in effect, New Haven and the reactor site are contained in a common local region.
Tornaco windspeeds are referenced to 30 ft above ground level (acprox-imately 10 m) and are tne 'r.aximum horizontal windspeeds.
According to Fujita (1971), F-scale windsceeds are fastest-one-quarter mile winds.
Mcwever, because of the translational speed of a tornado, winds acting on a structure may be of considerably shorter duration.
Because tornado wind-sceeds are based on appearance of damage, they are considered to be effective velocities, which include effects of gust, structure size and structure frequency. For design purposes, the gust resconse factor for tornado winds may be taken as unity.
The straight winds are fastest-mile windspeeds which have a variable l
time duration, depending on the magnitude of the windspeeds. Values are normalized to a 10 m anemometer heignt. For design purooses, gust rescanse factors greater than unity are aporopriate (See ANSI A53.1,1972).
The tornado and straignt wind models are comoined in Figure 5 to obtain
- ne final windspeed model.
For design or evaluation ourposes, one neecs to know tne type of storm that controls the criteria.
F:r windsceeds less than 105 mch, the straignt wind medel governs.
For windspeecs greater than 105 16
i l
mph, the tornado mcdel governs.
In the case of a tornado, the atmospheric pressure cnange and missiles must be taken into account in addition to the t
i wind effects.
Because of this, the union of the two events (tornado and i
f straight winds) 10 not of particular interest. Table 8 sumarizes the final windspeed hazard probacilities.
l i
1 4
t 0
t 17 i
Ix10
\\
\\
\\
\\
O
-2
\\
a
_J l r 10 3
o
\\
r.
g STRA!GHT Cn
\\
NINDS w
\\
E
\\
\\
A
\\
\\
H Ix10'3
\\
\\
'\\
CDz z
\\
\\
5$
\\
\\
d >-
\\
\\
4 O
Ir0 XW I
.D N W8
\\
\\
u.
\\
N o z
\\
N
-5 1
I
\\
/
I x lO m
T b
\\
k as
/ N N
TCRNACCES 2
\\
I r 10
-3 9
i X
n 95% CONFICENCE
\\
LIMITS
\\
l :10' 50 10 0 ISO 200 250 300 350 WINDSPEED MPH l
l
- .!3URE 5.
TCRN.100 AND ST AIGHT WIND -AZARD PRCEASILITY MCDEL :CR MILLSTCNE PCWER :.EACTOR 5:TE, CONNE:T: CUT 13
TABLE 8 SUFFARY OF WINDSPEED HAZARD PROBABILITIES FOR MILLSTONE Mean Expected Recurrence Hazard Windsceed Interval Preeability mch Tyoe of Storm 10 1.0 x 10~I 46 Straight Wind 100 1.0 x 10-2 56 Straight Wind 1,000 1.0 x 10-3 67 Straight Wind 10,000 1.0 x 10 #
78 Straight Wind 100,000 1.0 x 10-5 120 Tornado 1,000,000 1.0 x 10-6 134 Tornado 10,000,000 1.0 x 10~7 245 Tornado i
19
.. 's REFERENCES 1.
ANSI, 1972:
"Suilding Code Requirements for Minimum Design Loacs in Buildings and Other Structures," A58.1, American National Standards Institute, Inc., New York, New York.
2.
Fuj i ta, T. T., 1971 :
"Procosed Characteri:ation of Tornadoes and Hurricanes by Area and Intensity,: SMRP No. 91, The University of Chicago, Chicago, Illinois.
3.
Fujita, T. T., Tecson, J. J., and Abbey, R. F.,1979:
" Statistics of U. S. Tornadoes Sased en the CAPPLE Tornado Tace," lith Conference on Severe Local Storms, Kansas City, Missouri, Octooer 2-5, 1979; published by American Meteorological Socie y, Boston, Massachusetts.
4 Mc0cnald, J. R.,1980:
"A Methodology for Tornado Hazard Assessment,"
Institute for Disaster Researen, Texas Tech University, Lubbock, Texas.
5.
Simiu, E.
and Scanlan, R. H.,1978: Wind Effects on Structures, John Wiley and Sons, New York, New York.
6.
Simiu, E. and Filliben, J.
J., 1975:
" Statistical Analysis of Extreme Winds," Technical Note No. 868, National Bureau of Standards, Washington, D. C.
7.
U. S. Nuclear Regulatory Commission,1979: Cemographic Statistics Pertaining to Nuclear Pcwer Reactor Sites, NUREG-0348, Office of Nuclear Reactor Regulation, Washington, D.C.
20
o Os.c j
i gt J4 sjLA XL
=
=
- R.^
.3
. As
=
- 3 9
=34 e
.3 33
-g
==
O3e>34 C
=
- s ?.
. 1 =
= =.
33.-
E M. e. 4. a9 3 3 4
.=.,
y
==*=O33
.=
=3 33
-a
- .=
33
=4.
3 4-C
=3
.e m. 3 1 3 =. =
=. =3
= > * ?; S > **
4 3 3. ?. 3 4. =>
$. = 3
=g
- 3.1 3
. 4.*.
=12 3*
3J33 *
=.
4 5EY 3T a ** * =.2
- 3. y. =.
==
=.=.
33333.
33g33-
=33 3
=
4 34 g=33-33.333 3.13 3-
.34339 333333
- 3. 4
.=
3 i
3*.=
334333 330033 r=
4 4
a e
e
~~
- .e m
3CO3%%
3 3 3 3 4 Pe 33%
34333*
343 33 g 3333%
433335
- 3. 3 C.=
3333.o.
~3 3*
333333 333304
- 3 ?...
5 ee m
>* e w
".J
- 1 3
I, 33*e03 4 3 3 15 e e 334 4'4 340%? 4 333*33
- *43 3.*
4*
.s 333333 e.4.53 3=
3 4 3. =. =. =.
3 3
M 333333 433333 6 Q4.
=
=
=
=.m==.
e og.
~
>==
?$
- e
==
=
=
- T 4
.7
- =9 3 3 = 3 = =.
3 3 > 4 >.1
>34
.3=
e 3
- *43 33>34*
2 3
.1 = 3 O
C 4
3 3. f.a ?. *.+ ?.s 3 3.. J. G. 3
..*3 4
t 3
3 ?. 9
,.g e
=
333343 333334 a =
=
=]
=
=.
es 4
N.
.3 3
3 *.1 P 3p
>c=>
e 3.?
i 2.* a.4 *;== %
4 3 ?. 3. >3 3 4
- .1 4, 3
l y
e 3 *. 3
- 3 s 4
- 4
=
=
3 9..*
- e. =.
.e
- 3. =. ?.
4 g E =
So3aas
=.
3 333333 3. =..
=.
.1 11 4
1 3
- 9 2=
JI
=
'5 4 = 4.* =
- e s = 3.1
- 2 3.
4
.13. P. % Ps.1
=
4?.44 4
+ 3 ** 3 % ? 4 444
.3e
'3 3 9 3. >. >. >.
- 3. e. *. =. 3 3 e.
=3 4
g
- 340 9
343330
- ~**t.
?.
C C 2
.1 4
=
4
.1 4
.1=
4 3
C j
=
S G
.1
.4
=-
.14. E 4
g a
.e
4 SO %
o::R3RO3DNA_
3.
3
- t 3 T.
=3 3
- =.4
{
3 32 4
= * = 3 *.1.1 E.
=3*s***
- - 43 q > O. 1. =. 3 3.3
.3 *:
=
.m en s a 3
,2 2=-
- 3.
- J.&
=. -
3a
. ~4.
3 C
A=
4.g.)
.3 q ;5
- j
.e49,3 9 7 >.1 % %
2*3
-2 C 3.
1 9 3 3
- 23 8
333 4
4 G C. a 3 *T C
a
- 3 43 12.4 33300*.
3333
=c%
%=
$33339 333
-43 3
3 3 0 3. C. 3 3 3 3. 3 =
i,343 0.4 3
- 4 3
334030 034343 e C r..
3 3
e.
e.
.1 e1 3330%%
3CC3>$
34 4%
o3C33%
3 3
- 3 = *e
.>1 4 0 e
C@
- 4. C. G. 3. O. O.
@Q3033 i 3.10 4re
-3 330300 occooc e o r..
3 :.
3 e.
9 4 C C e 2. J h c o.1 % Pt
,I a
- S.*
.3.3 333%
4 3 3. c a.1 e
- n. 1 3
- 43
- 3.. =....
.. o. o.
3
=_
044303 O3CG33 e S t....
=y
.e.
3 5
e.
9 M.1 3o.3-3 3 3 Pr % 44 i.13 1
.1 m
.e 33>34s 3*
. 5. m.1 = = 4
- %. 4 J 3
e 3=
i
- o. o. r.s t.e r.a r.i
. re. 3 i3 3.
.C 330GOG SJO@O3 e 3 r..
=s 4
a 2
9
.1
? -
k o,3.%
2 3
g,i ci ci. %
, g 7,
, g 3,i
,9 4
I Co.ieem
=.3 3,e 3
..43 o%
- s. e.....
3 4...
4.13 o
3 g
3 333334
- 334044 4
4
- =s*..=
.3 3
4 C.
5
.1 2
z 3 4
- . o N % ?: ni
.1.-
w
?.1 3 = >.1
.' >3*
- 3 4 *a 4 4 e% > - ?.
1 g
_3
.=033
=4 3
3 3e w
- e. 3. >. >. >.
- =. c. ? N. e. ?.a D o.4 3
10 3
=
. g g
3-.33o a rt.
2, e
o 3
4 4
$ A 0
.' 4 -
E
.1
. =
{
i x
s
.1 4
g I
<. c 4
i i
I I
i i
I
i 4..,.
kO l
a.
3<,
=;
2 3
.= =.
2 C_
-41 4.1
-3
- 5. >3.. f
.>-.33
- 5. 2.-
- 2. 3
. 333
.-a
-a
-.. 32
-4.
=
5,.
.e.3 3
4...
3.
3
< s.3.3.:n %. n. 1.,.
333333
- l. _..
3 I.
=_
4
-4_
33%
3 2 4 ;,=a.3 3.,s..
8333..;
3 4
34.3 s ?.
- 3. a. 3 31..3 333
=.. -
3 33.
3 333333 33333 3 ?. _ _
4 3333*-3
- to 3 3 g333%%
3838..3 3 3. a. a. i. !. i.13 i ?.
3 334303 303333 s 3h.*.3 3
=
Soc 4Pa=
>3%
%3 e.s 3. 3 % ?. S 3g3e:
333333 343 3.1 4
2 333333
- C 3=
4 3 3 3. *. =. =.
- 3. 3 t
4 g
333433 303333 s 3 *s..
1
.3 e.
S.
A f
e
.1 4
8%
M*
3 3 = >.* =
r ?s J e 4M
33,3-3 43933g
.? 4 3 33-
- =.
3 4 *a 3
-.C 333333 333333.
1, 4.13 3 3 76 7.' *. *.B 33333..
3 6 3 ?4.s 3
Ps 9
a 4
.m 4 k h 5
4 I.-
3.1 f a *e = %
3% 4.1
- e
. =34 4*
3%
=
4 3.1 = 3 ?; 3
. O e al
- 3 *5
..43 y
33333 3
4
- 3. e. 1. *. *..
.e 3
g k -
333333 333333 3 t..
4
=
4 G
3 4
e g
f 4 >
a
.1 I. a e
- 4333e 33.1 13 3
.1 3 % % ?:.1 e.*
3e w
- .4 3 4
%.4 4 *J e 4 4
=*-*-3 i
- 3 3
3 a 8
- 840
- 3. =. =. 3 3 3 i
3.+.3.>.>.>.
.e
.a
=
- 333333 3 f' "3
- 3 2
=4 4
I $
-J.SI 5
a -
.1 4
.i s
a g
.14 e.
"C 4
i i
a e
/
- ew