ML20002C083
| ML20002C083 | |
| Person / Time | |
|---|---|
| Site: | Big Rock Point File:Consumers Energy icon.png |
| Issue date: | 04/24/1980 |
| From: | CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.) |
| To: | |
| Shared Package | |
| ML19310A975 | List: |
| References | |
| NUDOCS 8101090087 | |
| Download: ML20002C083 (10) | |
Text
.
O PERSCIIAL fpi y acy Itirci"3AT10'i DELE "DIUACCCICIUCEE'IIU yywon 021y:G?:,:AI103 ACT w{b 5 9
CONSUMERS PO'a'ER CCMPANY Calculations Relating to. the Establishment of Primary E:nergency Planning Zone (EPZ) Radius of Five Miles for the Big Rock Point Plant April 2h, 1980 PERSCU AL FRIVAcy IniCRMATI0li D11ETED lil ACCORDAl;CE AIDI UIE Flur0!!. OF IU;cR:2AIION ACT e
81010 0 0,og '
canC;0 s a f
~[
g ANALYSIS Whole bcdy penetrating radiation dose rate in a se=1-infinite cloud may be expressed as follevs:
D=i = 0.25 E,X (1)
- y. t y
where D=,
= ga=a dose rate frc= a semi-infinite cloud in T
rads /see delivered by nuclidei
^
E
= average ga=a energy per disintegration of Tf nuclidei in MeV/ disintegration X, = concentration of ga=a e=itting isctope in cloud at time T in Curie /=3 The class 9 accident to be censidered was suggested by NRC to be a 100% core inventory gaseous release and 25% halogen release to the enviren=ent over a period of 2h hours.
With X =
G e and 7
7g gg = qoi,-A t g
h = a meteorlogical dispersien factor in sec/= as given in where Q
Reg Guide 1.3 Qri = release rate fro = centainment in Curies /see A
= decay constant for nuclide i g
travel time fro = contain=ent to 5 =iles = 1609 =/=1 X 5 miles /1=/see T.
a och5 sees or 2.23 hcurs for a vind velocity of 1 =/see
=
e 1: = 1.0 for iodinc.s Q = containment release rate at t = 0 t = time post accident (0-2h hours) substituting and cenverting X to dps/=
yD"i
.WO 5 fQ
-AT.(,-At
=
g g
g where Qoi is ncv in dps/see 1 Modeled after Reg Guide 1.3
l 3
Frc= Ftegulatery Guide 1.3 X/Q values are given for periods of 0-8 hours (28800 sees) and 8-2h hours (86h00 secs). From this it follows that the integrated dose due to release of nuclide i can be expressed as:
f
[2h f8 2h D
y,1 =
.Y *i +
, Y *i l*
Yi o#
yo
.0 08
(
s X
28800 x
86h00
)
-Ai+* dt + Q Ai+'dt Q _g e
e S-2h
,'g s o d28800 Integrating:
1 1-*
Y "*, =
76x10~
Q e'^i t D
Qo-8(Ai j
Y oi j
L (10 X
1 /
-28800A4
-86h00A
--e
~i i(e
+
4 A
8-2h For all nuclides the dose contributions may be su==ed so that the total dose delivered is expressed as:
i (2h D, (rac. ) =
s D
Y,<
^
WO l
The following tables shov parameters used and values calculated.
From this analysis using Pasquill F ccnditions with a 1 reter/see vind speed, the whole tody penetrating dose at 5 =iles is 3h re=.
Pasquill F or vorse conditiens occur approximately 5% of the time. Pasquill G conditions at a vind speed of 1 =eter/see yields a dose of S5 re= at 5 miles. This =eteoro-logical condition can be expected to occur 1% or less of the tire.
The effect en dose of increasing vind speed is cc= plex. While values of X/Q vary inversly with vind speed, the value of,-A Tgt increases due to decreased travel time, particularly for those nuclides with Tg<T.
As such, t
dose contributions were recalculated for vind speeds of 2, 5 and los/see for those nuclides with T
<T.
Doses after these Pasquill F conditiens are.
Wind s;<ed (m/see)
Dese (ren) l 1
3h.0 l
2 17.5 i
5 T.5 l
10*
h.0 l
I l
i
h Similarly for Pasquil1G ($ 2.5 x Pasquill F).
Wind Speed (m/sec)
Dose (rem) 1 85 2
hk 5
19 10*
10-Hence at 5 miles doses under severe meteorological conditions remain below 100 rem.
- Equals 22.h mph. Increasing wind speeds, beyond 5 m/sec, reduce the dose due to a stronger effect from decreasing X/Q versus increasing,-AT.
g O
TABI.E I 5
Big Hock Point Plant - Coie Inventory and Noble Gas Nuclide Decay Data Isotope A (Sec-)
Fission Yield (%)
Core Activfty (dps)
E (MeV)
I' 16 b
3.6fx10 8.1x10 Kr-83m 1.03x10 O.l B6 i
i 16 Kr-85m h.38x10 1.183 8.86x10 0.151
-5
-9 15 Kr-85 2.03x10 0.257 2.31x10 0.002 16 Kr-87 1.52x10-2.083 1 56x10 1.37
-0 16 Kr-88 6.90x10 3.182 2.38x10 1.Th
-3 lI Kr-89 3.63x10
- 14. 0 01 3.00x10 (5)
-2 lI Kr-90 2.15x10 h.226
?.16x10 (5)
I Kr-91 8.07x10-2. 8 71:
2.15x10 (5) lI Kr-92 0.377 1.601:
1.20x10 (5) 17 0.l63 3.47x10 (5)
Kr-93 0.537 i
15 Kr-9:
0.693 0.089 6.67x10 (5) 1
-I I5
-3 xe-131m 6.72x10 0.018 1.35x10 3.28x10
-6 16
-2 Xe-133m 3 55x10 0.190 1.h2x10 3 26x10
-6 17
-2 Xe-133 1.52x10 6.780 5.08x10 3.00x10 16 Xe-135m 7.37x10-1.052 7.88x10 0.l:22
-5 17 Xe-135 2.10x10 6.822 5 11x10 0.2h6
-3 lI Xe-137 3.02x10 5 961 h.h6x10 (5) 1I
-N l.51x10 0.809 Xe-138 8.13x10 6.017 i
-2 lI xe-130 5.1x10 3.1:13 2.56x10 (5) 4 16 xe-lisi 0.h03 1.103 8.26x10 (5) 15 Xe-113 0 722
- 0. oho 3.00x10 (5) 4
-5(4)
I' ab-88 6.90x10 O.570 le(6)
Cs-138 3.58x10 2.08 (1) Compilation of Fission Product Yields, Vallecitos Nuclear Center, 1972" NEDO-1215h 16 (2) Core Activity = (3.12x10 fissions /see MWT (Y%)(0.01)(240 MWF)(1-e-AT) T = 2 yr.
(3) CPCo llealth Physics Dection Reporta.Tgr 5-79 and 12-79 (ii) In equilibrium with Kr-88 after 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, starting with pure parent.
(5) Not considered.rurther due to short hair life compared to release end travel times (6) Henches max activity in 0.5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> from pure parent of Xe-138 (Max activity % 0.5 initial parent activity)
.~. - - - -.. -
6 TABLE.I (Contd)
-E (McV)(3)
Isotope
~A (Sec-1 )'
'Flasion Yield (%)(1)
Core Activity (dps)(2) a'
-I lI I-131 9.82x10 2.997 2.25x10 O ~i71
-5 1I 1.33I' 3.23x10
'd. O I-132 8.52x10 8
17 9.38x10-6.776 5.07x10 0.377
. I-133 4
6 lI
- I-1314 2.22x10-7.177 5.36x10 1.988 r
-5 lI I-135 3.05x10 6.316 1,71,x10 1.77 t
4 "s.
L i
+
i
(
t i
4
+
1 I
c I
s a
2
-e,
./
8 TABLE II Release Rate Data and Meteorological Parameters Isotope Q
dps/see M
Kr,,83=
h.21x10 1
Kr-85=
1.02x10 10 Kr-85 2.67x10 ll Kr-87 1.81x10 11 Kr-88 2.75x10 0
Xe-131=
1.56x10 Xe-133m 1.6hx10 2>
Xe-133 5.88x10
- Xe-135m 9.12x10 Xe-135 5 91x10'2
^
12 Xe-138 5 22x10 Rb-88 2.21x10 12
' Cs-138 2.67x10 11 I-131 6.51x10 11
~
I-132 9.38x10 12 I-133 1.h7x10 12 I-12h 1.55x10 12 I-135 1.37x10 Pascuill Catero-v (2)
G (sec/=3)(3) 3
- 'ind Speed (=/see)
F (sec/m )
a 0-8 h-8-2h hr 0-8 hr 8-2h hr
-5
-6
-5
-5 1
3x10 6x10 7.5x10 1,5x19
-5
-6
-6 2
1.5x10 3x10 3.8x10-5, 7,5xyg
-6
-5 5
6x10 1.2x10-6 1,5x19 3 0x10
-E
-6 10 3x10 6x10-T 7,5xio 1.5x10-(1) Cere inventery/86h00 for Gases and Core Inventer /3h5,600 for halegens f
(Rb-88 release rate is at I hour, Cs-138 release rate is at 0.5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />)
(2) Values given are for grcund level releases. Stack releases result in
~
icver doses.
(3) Calculated frc= values in R.G. 1.1h5 e (G) = 2 y (F) and ae(G)=dec (F)
-o y
3
8 TABLE III Twenty-Four Hour Integrated Miole Body Radiation Draes, (Pasquill F conditions)
Inotope (6.76x10-1 ) (Eyi) (Qoi) (e it)
Al(1-e-
)
Ai (e-0
-c D
Q Q
y =1 g,p; g_
0 Kr-83m 1.01x10 X-( 2 76x10
+
3.0x10-3 )
2.82x10-
-3
-1
=
-1 K r 8'>m 7 32x10 X
(h.91x10
+
3 57x10-2) 3.86x10
-1
-1
=
+
3.h6x10-I )
I'
-1 h.37x10 K r-8'>
3.61x10 X
( 8.6hx10
=
l.93x10 X
( 1.95x10
+
4.96x10-b) 9 61x10
-1
-1
-2
=
Kr-8'(
i
-1
-1 Kr-88 1.86 X
( 3 75x10
+
1.17x10-2) 7 19x10
=
3.lhx10 X
( 8.56x10
+
3.32x10-1)
-b
-1 h.09x10-
=
Xc-131m i
-2.-
Xc-133m 3.51x10 X
( 8.21x10
+
2.82x10-1)
-2
-1 3.87x10
=
Xc-133 1.18 X
( 8.l:5x10-
+
3 17x10-1) 1.37
=
-3
-2 2.82x10-Xe-135m 6.92x10 X
( h.07x10
+
)
=
Xe-135 8.30 X
( 6.148x10
+
1.09x10-1)
-1 6.29
=
-3
-2
-2 1 52x10 l.12x10 X
( 3.69x10
+
)
=
Xe-138 i
-1
- )
1.89x10-Hb-88 4.89E-1 X
(3.75x10
=
+
1.17x10
-1
-2
-)
'cs-138 2.09 X
( 8.36x10
=
1.75x10 Total Gas 9 27 Rem I-131 1.62 X
( 8.52x10
+
3.27x10-1) 1.91
-1
=
1-132 15.2
~
X
'( 3.22x10
+
6.01x10-3)
-1 3,,99 I-133 16, 7 5 x
f 7 56x10
+
2.03x10-1)
-1 h.55
=
1 I-134 20.3 X
( 1.35x10
+
h.52x10-5)
-1 2.Th
=
1
-1 I-135 16.14 X
( 5 75x10
+
6.76x10-2 )
10,5h
=
21.73 Total Hulogen 6
Total 34.0 rem
- e-i i = 1.0 for iodines (Reg Guide 1.3)
[
9 TAllLIC IV Correction Factors and Corrected Doses for Nuclides with T
<T i
Doce Correction Factors' Corrected Doses (rem) (each nuclide)
Isotope 2 m/sec 5 m/sce 10 m/sec 2 m/sec 5 m/sec 10 m/sec
-5 Kr-83m 0.75 0.39 0.21 2.11x10-1.10x10-5.92x10
-1
-1
-1 K r-85m 0.60 0.66 0.69 2.32x10 2.55x10 2.66x10
-2
-2
-2 Kr-87 0 92 0.53 0.30 8.87x10 5 11x10 2.89x10 1
-3
-3
-3 2.7 x10 6.149x10 5 92x10 Xe-135m 97 23 21
,r~-
-2
-2
-2 Xc-138 13.2 3 7. 14 36 2.01x10 5.68x10 5,3,7,1g
-1
-1
-1 Cn-138 2.11 2.00 1. 334 3.69x10 3 50x10 2.35x10
-1
-1
-1 1.51x10 Kr/Rb-88 0.66 0.31 0.17 5.99x10 2.81x10 4
0.50 0.20 0.10 y>T T
g (and iodines)
Correction Factor = e Where:
A = Decay constant for radionuclide 1 (sec-)
g
"" (A1)(8015) 6 u = Wind speed (m/sec)
W