ML20002C083

From kanterella
Jump to navigation Jump to search
Public Version of Calculations Re Establishment of Primary Emergency Planning Zone (EPZ) Radius of 5 Miles for Big Rock Point Plant
ML20002C083
Person / Time
Site: Big Rock Point File:Consumers Energy icon.png
Issue date: 04/24/1980
From:
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
Shared Package
ML19310A975 List:
References
NUDOCS 8101090087
Download: ML20002C083 (10)


Text

.

O PERSCIIAL fpi y acy Itirci"3AT10'i DELE "DIUACCCICIUCEE'IIU yywon 021y:G?:,:AI103 ACT w{b 5 9

CONSUMERS PO'a'ER CCMPANY Calculations Relating to. the Establishment of Primary E:nergency Planning Zone (EPZ) Radius of Five Miles for the Big Rock Point Plant April 2h, 1980 PERSCU AL FRIVAcy IniCRMATI0li D11ETED lil ACCORDAl;CE AIDI UIE Flur0!!. OF IU;cR:2AIION ACT e

81010 0 0,og '

canC;0 s a f

~[

g ANALYSIS Whole bcdy penetrating radiation dose rate in a se=1-infinite cloud may be expressed as follevs:

D=i = 0.25 E,X (1)

y. t y

where D=,

= ga=a dose rate frc= a semi-infinite cloud in T

rads /see delivered by nuclidei

^

E

= average ga=a energy per disintegration of Tf nuclidei in MeV/ disintegration X, = concentration of ga=a e=itting isctope in cloud at time T in Curie /=3 The class 9 accident to be censidered was suggested by NRC to be a 100% core inventory gaseous release and 25% halogen release to the enviren=ent over a period of 2h hours.

With X =

G e and 7

7g gg = qoi,-A t g

h = a meteorlogical dispersien factor in sec/= as given in where Q

Reg Guide 1.3 Qri = release rate fro = centainment in Curies /see A

= decay constant for nuclide i g

travel time fro = contain=ent to 5 =iles = 1609 =/=1 X 5 miles /1=/see T.

a och5 sees or 2.23 hcurs for a vind velocity of 1 =/see

=

e 1: = 1.0 for iodinc.s Q = containment release rate at t = 0 t = time post accident (0-2h hours) substituting and cenverting X to dps/=

yD"i

.WO 5 fQ

-AT.(,-At

=

g g

g where Qoi is ncv in dps/see 1 Modeled after Reg Guide 1.3

l 3

Frc= Ftegulatery Guide 1.3 X/Q values are given for periods of 0-8 hours (28800 sees) and 8-2h hours (86h00 secs). From this it follows that the integrated dose due to release of nuclide i can be expressed as:

f

[2h f8 2h D

y,1 =

.Y *i +

, Y *i l*

Yi o#

yo

.0 08

(

s X

28800 x

86h00

)

-Ai+* dt + Q Ai+'dt Q _g e

e S-2h

,'g s o d28800 Integrating:

1 1-*

Y "*, =

76x10~

Q e'^i t D

Qo-8(Ai j

Y oi j

L (10 X

1 /

-28800A4

-86h00A

--e

~i i(e

+

4 A

8-2h For all nuclides the dose contributions may be su==ed so that the total dose delivered is expressed as:

i (2h D, (rac. ) =

s D

Y,<

^

WO l

The following tables shov parameters used and values calculated.

From this analysis using Pasquill F ccnditions with a 1 reter/see vind speed, the whole tody penetrating dose at 5 =iles is 3h re=.

Pasquill F or vorse conditiens occur approximately 5% of the time. Pasquill G conditions at a vind speed of 1 =eter/see yields a dose of S5 re= at 5 miles. This =eteoro-logical condition can be expected to occur 1% or less of the tire.

The effect en dose of increasing vind speed is cc= plex. While values of X/Q vary inversly with vind speed, the value of,-A Tgt increases due to decreased travel time, particularly for those nuclides with Tg<T.

As such, t

dose contributions were recalculated for vind speeds of 2, 5 and los/see for those nuclides with T

<T.

Doses after these Pasquill F conditiens are.

Wind s;<ed (m/see)

Dese (ren) l 1

3h.0 l

2 17.5 i

5 T.5 l

10*

h.0 l

I l

i

h Similarly for Pasquil1G ($ 2.5 x Pasquill F).

Wind Speed (m/sec)

Dose (rem) 1 85 2

hk 5

19 10*

10-Hence at 5 miles doses under severe meteorological conditions remain below 100 rem.

  • Equals 22.h mph. Increasing wind speeds, beyond 5 m/sec, reduce the dose due to a stronger effect from decreasing X/Q versus increasing,-AT.

g O

TABI.E I 5

Big Hock Point Plant - Coie Inventory and Noble Gas Nuclide Decay Data Isotope A (Sec-)

Fission Yield (%)

Core Activfty (dps)

E (MeV)

I' 16 b

3.6fx10 8.1x10 Kr-83m 1.03x10 O.l B6 i

i 16 Kr-85m h.38x10 1.183 8.86x10 0.151

-5

-9 15 Kr-85 2.03x10 0.257 2.31x10 0.002 16 Kr-87 1.52x10-2.083 1 56x10 1.37

-0 16 Kr-88 6.90x10 3.182 2.38x10 1.Th

-3 lI Kr-89 3.63x10

14. 0 01 3.00x10 (5)

-2 lI Kr-90 2.15x10 h.226

?.16x10 (5)

I Kr-91 8.07x10-2. 8 71:

2.15x10 (5) lI Kr-92 0.377 1.601:

1.20x10 (5) 17 0.l63 3.47x10 (5)

Kr-93 0.537 i

15 Kr-9:

0.693 0.089 6.67x10 (5) 1

-I I5

-3 xe-131m 6.72x10 0.018 1.35x10 3.28x10

-6 16

-2 Xe-133m 3 55x10 0.190 1.h2x10 3 26x10

-6 17

-2 Xe-133 1.52x10 6.780 5.08x10 3.00x10 16 Xe-135m 7.37x10-1.052 7.88x10 0.l:22

-5 17 Xe-135 2.10x10 6.822 5 11x10 0.2h6

-3 lI Xe-137 3.02x10 5 961 h.h6x10 (5) 1I

-N l.51x10 0.809 Xe-138 8.13x10 6.017 i

-2 lI xe-130 5.1x10 3.1:13 2.56x10 (5) 4 16 xe-lisi 0.h03 1.103 8.26x10 (5) 15 Xe-113 0 722

0. oho 3.00x10 (5) 4

-5(4)

I' ab-88 6.90x10 O.570 le(6)

Cs-138 3.58x10 2.08 (1) Compilation of Fission Product Yields, Vallecitos Nuclear Center, 1972" NEDO-1215h 16 (2) Core Activity = (3.12x10 fissions /see MWT (Y%)(0.01)(240 MWF)(1-e-AT) T = 2 yr.

(3) CPCo llealth Physics Dection Reporta.Tgr 5-79 and 12-79 (ii) In equilibrium with Kr-88 after 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, starting with pure parent.

(5) Not considered.rurther due to short hair life compared to release end travel times (6) Henches max activity in 0.5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> from pure parent of Xe-138 (Max activity % 0.5 initial parent activity)

.~. - - - -.. -

6 TABLE.I (Contd)

-E (McV)(3)

Isotope

~A (Sec-1 )'

'Flasion Yield (%)(1)

Core Activity (dps)(2) a'

-I lI I-131 9.82x10 2.997 2.25x10 O ~i71

-5 1I 1.33I' 3.23x10

'd. O I-132 8.52x10 8

17 9.38x10-6.776 5.07x10 0.377

. I-133 4

6 lI

- I-1314 2.22x10-7.177 5.36x10 1.988 r

-5 lI I-135 3.05x10 6.316 1,71,x10 1.77 t

4 "s.

L i

+

i

(

t i

4

+

1 I

c I

s a

2

-e,

./

8 TABLE II Release Rate Data and Meteorological Parameters Isotope Q

dps/see M

Kr,,83=

h.21x10 1

Kr-85=

1.02x10 10 Kr-85 2.67x10 ll Kr-87 1.81x10 11 Kr-88 2.75x10 0

Xe-131=

1.56x10 Xe-133m 1.6hx10 2>

Xe-133 5.88x10

  • Xe-135m 9.12x10 Xe-135 5 91x10'2

^

12 Xe-138 5 22x10 Rb-88 2.21x10 12

' Cs-138 2.67x10 11 I-131 6.51x10 11

~

I-132 9.38x10 12 I-133 1.h7x10 12 I-12h 1.55x10 12 I-135 1.37x10 Pascuill Catero-v (2)

G (sec/=3)(3) 3

  • 'ind Speed (=/see)

F (sec/m )

a 0-8 h-8-2h hr 0-8 hr 8-2h hr

-5

-6

-5

-5 1

3x10 6x10 7.5x10 1,5x19

-5

-6

-6 2

1.5x10 3x10 3.8x10-5, 7,5xyg

-6

-5 5

6x10 1.2x10-6 1,5x19 3 0x10

-E

-6 10 3x10 6x10-T 7,5xio 1.5x10-(1) Cere inventery/86h00 for Gases and Core Inventer /3h5,600 for halegens f

(Rb-88 release rate is at I hour, Cs-138 release rate is at 0.5 hour5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />)

(2) Values given are for grcund level releases. Stack releases result in

~

icver doses.

(3) Calculated frc= values in R.G. 1.1h5 e (G) = 2 y (F) and ae(G)=dec (F)

-o y

3

8 TABLE III Twenty-Four Hour Integrated Miole Body Radiation Draes, (Pasquill F conditions)

Inotope (6.76x10-1 ) (Eyi) (Qoi) (e it)

Al(1-e-

)

Ai (e-0

-c D

Q Q

y =1 g,p; g_

0 Kr-83m 1.01x10 X-( 2 76x10

+

3.0x10-3 )

2.82x10-

-3

-1

=

-1 K r 8'>m 7 32x10 X

(h.91x10

+

3 57x10-2) 3.86x10

-1

-1

=

+

3.h6x10-I )

I'

-1 h.37x10 K r-8'>

3.61x10 X

( 8.6hx10

=

l.93x10 X

( 1.95x10

+

4.96x10-b) 9 61x10

-1

-1

-2

=

Kr-8'(

i

-1

-1 Kr-88 1.86 X

( 3 75x10

+

1.17x10-2) 7 19x10

=

3.lhx10 X

( 8.56x10

+

3.32x10-1)

-b

-1 h.09x10-

=

Xc-131m i

-2.-

Xc-133m 3.51x10 X

( 8.21x10

+

2.82x10-1)

-2

-1 3.87x10

=

Xc-133 1.18 X

( 8.l:5x10-

+

3 17x10-1) 1.37

=

-3

-2 2.82x10-Xe-135m 6.92x10 X

( h.07x10

+


)

=

Xe-135 8.30 X

( 6.148x10

+

1.09x10-1)

-1 6.29

=

-3

-2

-2 1 52x10 l.12x10 X

( 3.69x10

+

)

=

Xe-138 i

-1

- )

1.89x10-Hb-88 4.89E-1 X

(3.75x10

=

+

1.17x10

-1

-2

-)

'cs-138 2.09 X

( 8.36x10

=

1.75x10 Total Gas 9 27 Rem I-131 1.62 X

( 8.52x10

+

3.27x10-1) 1.91

-1

=

1-132 15.2

~

X

'( 3.22x10

+

6.01x10-3)

-1 3,,99 I-133 16, 7 5 x

f 7 56x10

+

2.03x10-1)

-1 h.55

=

1 I-134 20.3 X

( 1.35x10

+

h.52x10-5)

-1 2.Th

=

1

-1 I-135 16.14 X

( 5 75x10

+

6.76x10-2 )

10,5h

=

21.73 Total Hulogen 6

Total 34.0 rem

[

9 TAllLIC IV Correction Factors and Corrected Doses for Nuclides with T

<T i

Doce Correction Factors' Corrected Doses (rem) (each nuclide)

Isotope 2 m/sec 5 m/sce 10 m/sec 2 m/sec 5 m/sec 10 m/sec

-5 Kr-83m 0.75 0.39 0.21 2.11x10-1.10x10-5.92x10

-1

-1

-1 K r-85m 0.60 0.66 0.69 2.32x10 2.55x10 2.66x10

-2

-2

-2 Kr-87 0 92 0.53 0.30 8.87x10 5 11x10 2.89x10 1

-3

-3

-3 2.7 x10 6.149x10 5 92x10 Xe-135m 97 23 21

,r~-

-2

-2

-2 Xc-138 13.2 3 7. 14 36 2.01x10 5.68x10 5,3,7,1g

-1

-1

-1 Cn-138 2.11 2.00 1. 334 3.69x10 3 50x10 2.35x10

-1

-1

-1 1.51x10 Kr/Rb-88 0.66 0.31 0.17 5.99x10 2.81x10 4

0.50 0.20 0.10 y>T T

g (and iodines)

Correction Factor = e Where:

A = Decay constant for radionuclide 1 (sec-)

g

"" (A1)(8015) 6 u = Wind speed (m/sec)

W