ML19351D303
| ML19351D303 | |
| Person / Time | |
|---|---|
| Site: | Nine Mile Point, Susquehanna, Columbia, Limerick, LaSalle, Zimmer, Shoreham, Bailly File:Long Island Lighting Company icon.png |
| Issue date: | 08/29/1980 |
| From: | Anderson C Office of Nuclear Reactor Regulation |
| To: | Kniel K Office of Nuclear Reactor Regulation |
| References | |
| REF-GTECI-A-08, REF-GTECI-CO, TASK-A-08, TASK-A-8, TASK-OR NUDOCS 8010090495 | |
| Download: ML19351D303 (98) | |
Text
r
- UNITE] ST.",TES
/parag%,
NUCLEAR RE ULAT!RY COMMisslON Si '
, I 'g WASHINGTON, D. C. 20655 8*
'I MI6 2 S 1980
%*..../
Task Action Plan A-8 Docket Nos.:
50-358,50-352/353,S0-367,50-373/374,50-387/388, 50-410, 50-322, 50-397 MEMORANDUM FOR: Karl Kniel, Chief Generic Issues Branch Division of Safety Technology FROM:
C. J. Anderson, A-8 Task Manager Generic Issues Branch, DST APPLICANT:
Members of the Mark II Owners Group
SUBJECT:
MEETING WITH MARK II OWNERS TO DISCUSS THE LEAD PLANT INTERIM C0/ CHUGGING LOADS (AUGUST 5,1980)
Backgound Preliminary observations of Mark II related tests conducted during 1979, and early 1980, led to the modification of the NUREG-0487 specified lead plant condensation oscillation (CO) and chugging pool boundary loads.
The Mark II owner's proposed interim C0/ Chugging loads were first discussed with the NRC during a June 12, 1980 meeting. A report describing the new loads was submitted to the NRC in July 1980. The purpose of this meeting was to review the general approach and to discuss questions that were raised by the staff and our consultants in advance of this meeting.
A list of these questions are attached. An attendance list and a copy of the r.ceting handouts are also attached.
Sunmary A summary of the discussion is provided below.
1.
Introduction Dr. Chau of the Long Island Lighting Company provided an introductory description of the interim C0/ Chugging loads. His presentation included: backgound information related to the interim loads, the 8010 090H5 j
g
Y J
Karl Kniel documentation schedule for the related generic and plant unique C0/ Chugging loads and load evaltation reports and a summary of the owner group's conclusions related to the proposed loads.
2.
Condensation Oscillation Loads John Torbeck of General Electric described the proposed interim C0 loads. The C0 loads were developed considering the results of the 4T C0 tests conducted during 1979 and early 1980. Two loads cases are preposed. The first is the basic C0 load which was determined considering all 4T C0 condensation oscillation data. The second C0 load is for the combination of C0 and ADS. The second load is based on test runs and conditions representative of conditions during ADS actuation. The basic C0 load represents a bound of the C0 loads observed in the 4T C0 tacts. The load consists of 12 pressure time histories. The cri tria for the selection of these time histories was to bound the power spectral density (PSD) observed I
throughout the C0 period in all runs, in approximately 2 second blocks, for each frequency up through 60 Hz.
The design of the 4T C0 facility and the test parenthesis considered during the tests are such that all the Mark II designs are bounded.
Development of a plant unique load was accomplished by limiting the data base to the pool temperature response appropriate to the specific plant. In addition an adjustment is made in the load based on the relative values of pool-to-vent area ratio for the specific plant pool the 4T facility.
The boundary C0 load arising from an event at each vent is to be applied in phase to the containment structural model as a rigid wall load. Preliminary observations of related full scale tests indicate that the load magnitude and the inphase load assumption provide significant load conservatisms.
3.
QuggingLoads Dr. Patel of Creare Inc., described the pro)osed interim chugging loads. As in the C0 load development the ciugging load was constructed from the 4T C0 dete collected during the 1979 and early 1989 tests.
Five chug pressure histories were selected as represernatives of the boundary chugs observed during the tests. Each of these pressure histories were adjusted with an amplitude rWG:.Wn factor. The factor for each chug is an average of the peak overpressure
)
{ Karl Kniel and its neighbors. An averaging factor of approximately 2.5 was obtained for each of the five pressure histories. This factor is applied to account for the magnitude variation in chug strength from vent-to-vent in a multivent geometry where all vents experience the same nominal mass flow, air fraction and pool temperature.
Plant unique considerations include a pool size adjustment of the 4T C0 derived chugging loads to account for the difference in the plant unique pool size. The adjusted pressure histories are to be applied in phase as a symmetric wall load to the plant specific containment.
Preliminary observations of recent Mark II full scale multivent data indicate that the proposed 4T C0 derived chugging loads are conservative.
4.
Lead Plant Evaluation Results Representatives of each of the three Mark II lead plants (i.e.,
LaSalle, Zimmer and Shoreham) presented an assessment of their The assessment plants to the proposed interim C0/ Chugging loads.
included both the containment structures and the response spectra The assessment used in the evaluation of piping and equipment.
consisted of a comparison of the new loads to the current design basis loads. The current design basis for each of the plants
- However, utilizes, as a minimum, the NUREG 0487 C0/ Chugging loads.
additional conservatisms were voluntarily incorporated into the The additional conservatisms plant unique design loads by the lead plants.
varied from plant to plant - one of the plants increased the magnitude Conservatisms were introduced of the design basis CO load magnitude.
for some plants in the load combination method (i.e., absolute sum versus the SRSS method) or in other loads included in the specific load case (i.e. very conservative 3RV loads were used).
As a result of the additional conservatisms included in the current design basis loads the assessment of the lead plants showed that, for the most part, the interim C0 and chugging loads yield forces that are lower than the design basis loads.
In addition, response spectra generated at sample locations indicate that for frequencies less than 50 Hz, the new 4T C0 loads are bounded by the current Upon approval of the new loads the lead plants design basis loads.
plan to provided a complete assessment of their containment and
)
h y
Karl Kniel associated structures, piping and equipment. Where the new loads are bounded by the current design basis no additional justification is to be provided. For those limited areas where the response of the containment to the new loads exceeds the old loads, additional justification will be provided on a case by case basis.
The Mark II Long Term Program (LTP) is scheduled for completion in April 1981. The lead plants stated that plant unique assessments to the LTP loads will be performed at the program conclusion. This will be done to confirm the conservatism of the plant specific design basis.
5.
NRC Staff Comments Cliff Anderson of the NRC staff summarized the staff's review of the proposed interim C0 and chugging loads.
A bounding C0 load was oroposed by the Mark II owners. The staff's preliminary review of tie interim C0 load leads us to believe that the pro)osed interim C0 load is conservative. The questions raised )y the staff and our consultant prior to the meeting have been resolved. These questions are attached. However, the staff is still reviewing both the 4T C0 test report and the related plant unique POOL G&M-II-M test report to confirm the conservatism of the interim C0 load.
The chugging load proposed by the Mark II owners is based on the five highest chugging pressure time histories observed during the 4T C0 tests. These loads have been reduced, however, to account for the expected magnitude variation in chug strengths from vent-to-vent in a multivent facility. The staff agrees with the Mark II owners that relevent full scale multivent data supports a significant reduction in the highest observed 4T C0 chugging loads for plant application. The staff does not believe however, that the curiett hasis for the new " average" load was adequately documented in the July 1980 chugging load report. This report based the load reduction exclusively on the variation of load magnitude observed in the single vent 4T C0 tests. During this meeting, the Mark II owners introduced full scale Mark II multivent test data that was only recently made available to them. A preliminary review of this new data appears to support the proposed " average" chugging loads.
The staff requested that this new data be factored into the interim chugging loads justification in the form of a report to be submitted to the staff by the end of August 1980. The staff indicated a
Karl Kniel concern that should be resolved in this report. The proposed average chugging load pressure time history was developed in such a way that the low frequency component of the load was reduced significantly. If is not apparent to the staff that this can be justified based on 4T C0 data along. This concern should be addressed in the August 1980 report.
The Mark II owners recently subnitted several reports dealing with These tasks are to be discussed subtasks in the Long Term Program.
in the next Mark II owner's meeting with the staff currently <cheduled for September 4 and 51980. The staff and our consultants prepared a list of the topical report discussion topics for this upcoming meeting. The discussion topics are attached.
/
Clifford J. Anderson A-8 Task Manager Generic Issues Branch Division of Safety Technology Attachments:
As Stated cc: A-8 Internal distribution list A-8 External distribution list
lE/ LEAD PUM MARK 11 ORERS
- RIST 5, 1980 E ETING INTERIM CD/CHJGGING LDOS DIS 0JSS10NTOPICS i
I I
I l
- FN'e***
- e eee n aw e gewe.co m e
~.,,-......., _,
IIHERIM CD ll%D
- 1. PR[NIE TE CRITERIA FOR SEECTING TE B0l10 LNG RLil FO EAW 2.048 SEC.. TIE IfGERVAL.ITISNOTAPPAREllTHOW A SINGE EAL PSD Cati B0l!0 ALL OTERS AT ALL FEQUENC 2.
IT APPEARS THAT EAW OF TE PESSUE TIME HISTORIES LISTED IN TARE 2.1 NO 2,2 AE APPLIED TO TE MARK II STRUCTURAL MDDEL FOR llE DURATIW LISTED #0 fl0T PE ICALLY. PR(NIE ASSURANE THAT THE STRICTURAL ESP 0f 110S ELICITED IS INDEED A MAXIfVI IN TE SENSE OF E-j SP0tlSE SECTPA. IS STRUCIURAL IWPING INCWDED IN TIE STRUCIURAL IDEL?
)
- 3. PROVII A TRAJECTORY R)R LASALLE W TE C0fROUR MAPS OF 4TC0 SUCH AS FIG, 4-84 IN TEE 24811P, THIS IffDR-l%TI0fl INQ.tEltE TBfEPATUE MASS RUX ERADR B0f0S SHOULD E USED TO JUSTIFY TE EJECrim 0F SEECTIfE IRTA F0liUS BASED W FOOL TBfERARIE.
y 1
S
- 6. PROVIE JUSTIFICATION FOR f6 W1SIERING A REVISED AS-SWETRIC DiUG LOAD EFECTING TE ESULTS T TE 4TCO TESTS.
- 7. TE EQUIVALDIE OF VBIT 591 MASS R0W C0f0lTI0f6 IN 11E 4TCO #0 JAERI C0ffARIS0f6 APPEAR TO E OPBl TO QUESTI0flS,
A If(IERifi OljGGifE LOO L SELECT 1010F 5 WDRST 00GS DOES NOT ASSUE B0lfolfE IE WILL AWAIT TE LTP SECIFICATION TO ASSUE 00fEERV 01UGPSD.
- 2. TE ETHOD USED TO DERIVE 11JLTim SYSTEM LOOS FID SINGLE W DATA IS ARBITRARY #0 llEUBSTNRIATED. TE EXOWIGE OF TIE #9 SPATIAL OijGGING AVEPKE LDADS HAS fE BEB1 DBUETRATED.
3.
IT APPEARS TIMT SINGLE M TESTS CAN QLY JUSTIFY EAK LDADS RJLL SCALE litTlW DATA IS IEEDED TO JUSTIFY Nh' f EDUCTIQ1 DUE TO #FLITUDE VARIATION Fim W TO W.
TE 2.5 REDUCT101 FACTOR IS A RESULT OF TE ASSlfPIl0 USED IN AVERAGifE. DIFFElBT BilT EQJALLY ESP 0fEIBLE SitPT10fis WOULD LEAD TO A SIG11FICNif OW1GE IN TE R TION FACTOR.
j 4e
- 4. TE LACK OF,PIODUCIBILITY E RESULTS FIDI TEST TO TEST DOES NOT ECESSARILY CalFIIN TE APPRDACH USED.
- 5. TE C0FARIS010F TE 4T #0 li1E JAERI TEST ESULTS DOE fG DEIDETPATE TE CWSERVATISM OF THE APPRDACH U IlE USE OF TE EFEATED 4T TEST WOULD HAVE LEAD T ERBIT CQlCll)SION AB0lli TE ELATIVE MAGNITUDE BEIM i
TE TWO TESTS.
a
3 s1 s
M aik E o c. / Ainc ne ed..,7 C c,, /c.,4 e r ys C
/ ffo
+
.3 Y Ab $Ub$len f p*2 ']$ L' n l',0( ! C t l
l
Q GBERAL LATERAL LDAD QESTIONS #0 C0ftBff 1.
TE APRIL 9,1980 LETTER KPORT DESCRIBING llE ITLTIVENT LATERAL LOAD E110DOLOGY DOES NOT PRf#IE SlfFICIENT DATA 10 ALLOW llS TO CONDUCT
- 1 EVALllATI0il 0F TE ETHODOLOGY. Tlils REPORT SHOULD E EXP#EED TO INCLUDE TE BASES FOR TE ETHr)DOLOGY. A TYPICAL EX#RE RULD E ELPFUL, 2.
&RTAlli ELDENTS (F llE ITLTIVENT fETHOD ARE DIF-FICULT 1D EVAWATE WITHOUT C0fflRMATORY ITLTIVENT DATA. WE CONSIER YOUR PEDICTIONS OF TE B0llD-ING JAERI BRACING LDADS #1 Iff0Rf#ff CONFIRMATORY SIEP.
3.
SUINIT YOUR LATERAL LOAD SECIFICATION FOR DOWi-C(KRS WITil A DIREER GEAlER THN128 INCES.
4.
E fit 0 THAT TE F0EIGN LATERAL LOAD DATA DISCUS-SED IN flEDE-24794-P APPEARS TO IMPLY A DYHAMIC LDAD #PLITUDE WHICH f%Y E 26% HIGHER TlWI GE'S POSTULATED OfE AT T=3re #0 50% HIGHER 11W1 GE'S ATT=6Ms.
(A HALF-SINUS 0ID Dif WIIH CONST#ff IM-PULSE OF 36.1 LBF-SEC #8 DURATION VARYING E-TEB13 #0 6 MS WOULD, HOWENER, B0lf0 ALL DATA.)
PELIMINARY EVAUJATICN E TE IEGS/ MARS A.16 CHUGGING t0 DEL T E E-24822-P 1.
OTISIERING TE PROPOSED 0%4GES TO TE SOURCE SWCIFICATION, TE SOURE SRCIFICATION WAS NOT EVIEED.
2.
TE IEGS/MRS APPRDACH APWARS ADEWATE StBJECT TO ESOLIITION OF 11913.
3.
E HAVE SCE OVESTIONS EGARDING TE FLEXIBE EL APPLICATION ETHOD SHOW1 IN FIG. 8-1. E WILL AT-TDFT TO RESOLVE TIESE QUESTIONS BY MID-AUGUST.
4.
SIGNIFICAlE STAFF QUESTIONS LATED TO TE A.16 IfMNED CHUGGING LDAD CENTER Otl THE SOURE S CIFI-CATION. OUR PRIMARY OUE5fl0NS ELATED TO THE SOURE DEVELOPENT CONERN TE DEVELOPENT OF A SPATIAL DIS-TRIBiffl0N OF IE SOURE FROM SINGE VENT TIE DIS-TRIBlKIONS. WITHDUT FULL SCAE f0LTIVENT DATA, f%XI-firi SIfELE VENT DATA SHOULD E USED.
IN AIDITION, FULL SCAE ftLTIVENT DATA IS N mm TO JUSTIFY N0ff-ZERO PHASIflG OF TE VBff SOURIS.
A Jom 5.
ABS 8E PREDICTION SHOULD BE MADE OF TE CHUGGIfE LOADS IN JAERI USIf6 THE IEGS/MRS f0EL WITH A lillT SOURE AT TIE VENTS.
y SRCIFIC EDE-2479FP CRf0ffS 1.
Ill BOTH ltitttiiE lESTS 1 #0 2, GiLY BPAE LCAD DATA ARE AVAILABE #iD, IN TE CASE OF TEST 1, EIATIVELY LITTE OF THAT. HOW WAS TE DYilAMIC LMD ERIOD T (AS EPORTED IN FIGS. 5-3 #0 6-3)
ETEfMIED FROM TE MTA IN THESE EFERBIE TESTS?
TE 0001ED ERIODS T ARE MJCH SHORTER THAN TE IXMIN#ll NATURAL PERIOD OF OSCILIATIQ1 E TE E-SECTIVE DOMJCTERS. UER SUCH CONDITIQ1S, TE BRACE LOAD SHDUD DEPBS ALPDST BITIELY Qi TE 1511 SF 0F TE DYilAMIC LDAD, IIIDEPB0 BIT OF ITS ERIOD. HEHE, TE ERIOD OF TE IMWilC LMD CAffiOT E BACKED OUT ACCUPATELY (OR lilI0VELY) FROM LO4D BRAE DATA.
2.
IF IN0EED TIE VALUES OF T CN#10T E DETERMIED UlIQELY FR01 TE DATA 0F ltttElE TESTS 1 #0 2 TEi1 TE EXPERIfBffAL MTA FROM TESE TESTS SHOUD E SH(Mi NOT AS POINTS, BUT AS HORIZ0tlTAL LIfES, 01 FIGURES 5-3 #8 6-3. THIS WOUD EN1 THAT TE EXPERIf0ffAL DATA 0F EERBE TEST 1 (FIG. 5-3)
LIES SOE 50% ABOVE TE CURVE 00mITED FROM TE GE DLF AT T = Sts, #0 llE DATA 0F EFERBE TEST-2 (FIG. 6-3) LIES STE 10% AB0VE TE DLF CURVE AT T = 6Ms.
l-
o s
3.
E D0 TOT [flDERST#0 ERTAIN DISCEP#lCIES BETEB1 FIGS. 5-3 #0 fr3 01 TE QE HNID, #0 FIG. 3-1 ON EE OTTER.
FIRST, SIllE TE STRUCTURAL IUJEL IS LIEAR, A PAR-TICULAR BRAE LDAD (FIGS 5-3 #0 6-3) SHOUlHBE LINEARLY RELATED TO TE #PLITUDE A 0F TE CORESP0tD-IfE APPLIED DLF, OEER WINGS ElllG INVARIEffT. WHY, BB1, IS THE T = Sns DATA POINT FOR ItttIO!E TEST 2 ABOVE TE GE DLF CURVE IN FIG. 6-3, BLIT BELOW IT IN FIG. 3-1? #0 WHY IS 11E HIGHEST DATA P0 lilt OF REF-ERBKE TEST 126% AB0VE TE GE DLF AT T = 3 ms Ill FIG. 5-3, BLTT QLY 16% ABWE IT IN FIG. 3-1?
SEMBLY, Ill FIG. 3-1. MEE DID TE EFERBJE TEST 2 DATA P0lflT AT T = 3Ms COE FROM? ON FIG. 6-3 T IS GIVBi AS 510.3 Ms FOR ttttlelE TEST 2.
4.
ERTAIII P0lflTS AB0VE TIE " PAR #ETRIC [0RMALIZATIQT NEED EXPl#lATIQ1. FOR EXNfLE, E Fits 01 P. 5-4:
"TE POOL TBfEPATUE DEFB0BU PREVIOUSLY REFORIED FOR EFERBlCE TEST 1 DOES f0T APPEAR TO PERSIST WHB1 TlE LATTER DATA IS NOR%LIZED TO TE 4T TEST CalDI-TIONS."
E D0 l0T SEE HOW A EPBlDE?U Qi TBPERATUE CNi DISAPPEAR JUST BY NORMALIZATION, FURTIERMORE, TE "NORf%LIZED" DATA STILL SED 1S TO SID1 A TUPERATUE i
EFRCT - COPARE FIGS 5-6 #1D 5-8, FOR EX#PLE.
l l
l
(T)
MARK II LEAD PLANT /NRC MEETING CHICAGO, ILLIN0IS AUGUST 5, 1980 o
INTRODUCTION o
CONDENSATION OSCILLATIONS e
LOAD DEFINITION DESCRIPTION BASIC C.0. LOAD C.0. LOAD FOR COMBINATION WITH ADS SINGLE CELL CONSERVATISMS e
SELECTION OF DATA e
PLANT UNIQUE LOAD MODIFICATIONS P0OL TEMPERATURE e
POOL GEOMETRY e
SUMMARY
o CHUGGING e
SELECTION FOR INTERIM EVALUATION
- SINGLE VENT APPLICATION - GENERAL CONSIDERATIONS
- BOUNDING DATA APPROACH
- COMPARISON WITH FULL SCALE SINGl.E AND MULTIPLE VENT DATA
SUMMARY
CONT'D, ON PAGE 2 WMD/8-80 k^
1 d
bh
- E h $
p 9 g
r---
-e
e O FLANT P/ALUATICN ESULTS
- LA SAli F
- PRIMAR( CCNTAlfPEli STFJJCTUE ASSESSES
- EUILDING ESFCtEE SPECTFA COPARISCNS ESIGNBASISVSC.O. DATA CESIGN BASIS VS C4)CeING DATA
- ZIltER
-EUILDING ESFCfEE SPECTPA COPARISON
. CESIGN BASIS VS C.0, DATA CESIGN BASIS VS C4)C41NG DATA
- CONCLUSICNS
- SHCFEicM EUILDING JESFCNSE SECTRA CCMFARIS0iG CESIGN EASIS VS C.0, DATA i CCNCLUSICtG
- SLWARY
N
+
s MARK II ATTE?IDAftCE LIST
@9 7
Y gjg)pc pg
& A(
Date Hy a. it R ap..,. n c'Ma<o
SUBJECT:
/tfX E ).8 4 0 *PL ANYlnJ/t c
/ffg 6 TJNG (Ck yy y 4 9 j C. 0,)
0li 03 ' d
,ll,. ltr s..,
CT!? /DE7 ' /> ' C
, / ou
/Z Z. c m -
23 u c.
'=
/v/t T
',A, ' u
.sm R. H. Sean /a n Fernce M /wz.
G.k~Ls1>dTrEiJ f% t-f C_ Bier knwckl PR /Wesnx/BW L G2002 EL-rA w rL A N RC / D S I,l C S 6 k.0 S Piryumanu E. L~ d i
/
' _s '_,4. ' /,
/' O N
/f{ 0 I-
- 5. u ~
m..
+ / L...!.
WA Y$l$2'Ali)Fn Fn TA Cfyr* Y l N /2 V RAM S RI N I VASAN 6ARGEMT E
LUNDY 1
y. t. '..
N. 7. GREEN SW%ENT S LUNDN j
D J. P~ee ne e t c v C G $ E Co.
G5 bel kwe l
L. Jowk
+1 v u-J ws.1an#
Beokh/
3hh R.+L PPiL.
B. A VL),e O C/A tt!
NJ M 'I ! O E '"E -
A N k'm 1-,-
UPers 6s Frededur e wPDs<;
E 6su o_c_:#E_
ATTEflDAtlCE LIST J/cleo Date g., H fty ~ y o 'm e
- y
( e f y,:.y f c.o,)
JBJECT: i v/ X 5 L E of O PtA N 7'/ sun.C wf& K 7s44, E' [Y' b'
/V4ff 0/
/
~
A y' c wou s s h a tuack M> K C H A k R GYO R TY WPPSS v.
8.C.
b b AT-N--
b@
'D M @m Becwret-
[L&S)
E L. M ePML.ub Emsrat A (%, m -
NRc/0ac i
'2 T. /L'A r.1 c-Sc w -i e i e N
/
t N. Kesha swmv n
G. /ditz h%w24;;c cssw/s- /xeoc/u L.. b.
Siaivw G &~~
~T Ti?- 0 Ch: l 6E A. P. S e ve <a n, e Nzpsco
.7 i o ESEc<
GE-G6 la M o z.7_.Y XA.Bt.eca Cesae d M. M UPt4k S W,b.
S [ fATEL.
02EAtE C. A. /S. /ovd be c VL4 der--
' 3.E. Ptelcztf SM & tJeMer
/-l, 8H A e)
AodGIst. Aonde#77de 0 60 4. Pub G. E.
7
J
.,,)
MKII LEAD PLANT CO & CHUGGING INTRODUCTION BACKGROUND DOCUMENTATION SCHEDULE
SUMMARY
J.S.A.
8-5-80 L -.-
'M k
,-,- ^
J
.a i
f MKII LEAD PLANT CO & CHUGGING BACKGROUND i
GENERAL APPROACH DESCRIBE JUNE 12, 1980
^
USE 4T CO DATA SELECT BOUNDING DATA COMPARE DESIGN TO DATA 4T CO DATA SELECTION REPORTS SUBMITTED 7-11-80 LOADS BOUND JAERI 4
J.S.A.
8-5-80 s
N
'=
sr'=
y-wy,,
r-
,,.,,a 7
m-,
p_
8
.h a
a N
MKII LEAD PLANT CO & CHUGGING j
f DOCUMENTATION SCHEDULE 4T CO TEST LOAD DATA REPORTS 7-11-80 CONDENSATION OSCILLATION LOAD DATA FOR LEAD PLANT CHUGGING LOADS FOR ASSESSMENT OF 4T CO DATA l
COMPARISON OF 4T CO LOAD DATA TO PLANT DESIGN PLANT UNIQUE DAR'S (LSCS 6 WEEKS AFTER APPROVAL)
CONFIRMATORY PROGRAM MKII GENERIC CO
& CHUGGING - OCT. 1980 PLANT UNIQUE ASSESSMENTS - LATER J.S.A.
8-5-80 a
d
'A' 1
1 MKII LEAD PLANT CO & CHUGGING
SUMMARY
e PURPOSE OF MEETING REVIEW CONTENT OF CO &
CHUGGING REPORTS ANSWER NRC/ CONSULTANT QUESTIONS
SUMMARY
OF LEAD PLANT DESIGN i
EVALUATION
SUMMARY
i CONSERVATIYE SELECTION OF 4T DATA CONSIDERED AVAILABLE JAERI DATA GENERIC METHOD FOR PLANT UNIQUE POOL TEMPERATURE POOL GEOMETRY CO & ADS LEAD PLANT EVALUATION RESULTS ARE POSITIVE t
J.S.A.
8-5-80
-J J
MKII LEAD PLANT CO & CHUGGING CONCLUSIONS LEAD PLANT INTERIM LOADS DEFINED INTERIM LOADS CONSERVATIVELY REPRESENT 4T CO DATA INTERIM LOADS BOUND JAERI DATA INTERIM LOADS OR METHODS ARE GENERIC FOR LEAD PLANTS PLANT DESIGN ADEQUACY SHOWN BY PRELIMINARY REPONSE SPECTRA COMPARISONS REQUEST NRC APPROVAL OF INTERIM LOADS w
J.S.A.
8-5-80 l
t
-- 5
t a
.x e
DESCRIPTION OF LOAD DEFIt!ITION e TWO LOAD CASES e
BASIC C0 LOAD e
CO LOAD FOR COMBINATION WITH ADS e LOAD SPECIFIED AS TIME HISTORIES e
4TC0 BOTTOM CENTER PRESSURE ADJUSTED FOR POOL GECETRY e
e DISTRIBUTED AS SHOWN IN FIGURE 2.5 e
4TCO DRYWELL PRESSURE e
APPLIED UNIFORMLY THROUGHOUT DRYWELL JET 8/80
5 Y -
ORYvvELL WETWE LL Ao45 PACE y VENT FOR NODE ON PEDESTAL POOL SURF ACE j
v r.
w w
=
+
+
+
]
T 1
T von Noo t oN CONrAo.us n r o y oo g ov o 9
<rou up o <r o<,
/
' 90n NOCE ON *LOOR FIGURE 2.5a) OVERVIEW OF DISTRIBUTION MATER SURPACE) l 2
j (VENT EXm 7>
~
T fCONTAINMENT SASEI 1
l NomuAuztu rne ssunt (P/P4TCO)
FIGURE 2.5b)
DETAIL OF DISTRIBUTION l
FIGURE 2.5 WETWELL PRESSURE !/ATIAL DISTRIBUTION t
l JET 3/80
v e
i.
TABLE 2.T*
4TCO TIME PERIODS FOR LASALLE BASIC CO LOAD Run No.
Time Interval (sec) 4 10 to 12 5
18 to 20 7
14 to 16, 18 to 20 8
5 to 7 9
10 to 13 10 26 to 30 12 21 to 25 15 34 to 48 22 11 to 19 26 11 to 14, 16 to 18 27 16 to 30 28 15 to 21 TABLE 2.2 4TCO TIME PERIOOS FOR LASALLE CO LOAD FOR COMBINATION WITH ADS Run No.
Time Interval (sec) 13 50 to 59 14 50 to 59
- Table 2.1 prepared by S. Levy, Inc.
JET 8/80
a 4TCO DATA SELECTION FOR BASIC CO LOAD e
INCLUDE ALL 2 SECOND PERIODS WHICH CONTRIBUTE e
TO PSD ENVELOPE IN FREQUENCY RANGE O TO 60 Hz LEAD PLANT APPROAG AND M( II GENERIC APPROACH EQUIVALENT, EXCEPT LEAD PLANT DATA BASE LIMITED TO SUPPESSION POOL TEMPEPATURES REPRESENTATIVE FOR SECIFIC LEAD PLANTS JET o on
.L
~
ir
.a 4TC0 DATA SELECTION FOR C0 LOAD FOR COMBINATION WITH ADS e
e CRITERIA e
21/8 INCH BREAKS VENT STEAM MASS FLUX LESS THAN 6 LB./SEC.-FT 2 e
e SELECTED 4TCO DATA e
BOTTOM CENTER WETWELL PRESSURE AND DRYWELL PRESSURE TIME HISTORIES e
TIME PERIODS RUN 13 -- 50 To 59 SEC.
RUN 14 -- 50 To 59 SEC.
l JET 8/80 l
l
d J
^
e SINGLE CELL (4TC0) CONSERVATISM COMPARED RATIO 0F POOL BOTTOM PRESSURES TO VENT e
EXIT PRESSURES IN SINGLE VENT (4TC0) AND MULTI-VENT (JAERI) FULL SCALE TESTS e
SPATIALLY AVERAGED 4
e TIME AVERAGED e
OVER FULL FREQUENCY RANGE
/
4 e
MVM ~ 0,5
~ 0.5 fP OR:
Poot BTM poot 37g (P vENTEXIT)JAERI fveNTExtT) 4TC0 1
JET
~
8/80
.@ '9) l
//
f
++<> fp
(#
4 ee Ev <e 1,e~
TEST TARGET (MT-3) i I
l.0 li's IBA g a 2""
c at l,l h..,
lllllb l.25 1.4 i i.6 i
i*
6" MICROCOPY RESOLUTION TEST CHART dhfr),*'
't d b
,9
%%,\\w <(b
-.. _.,/..
- gt g ?
=
o
<(&
i l
l q>
C ay ST@
/////
/h
$eM+
'+d.7 TEST TARGET (MT-3) 1.0 lNM EM
[illl B!llE I.i LmN2
"~
i-I.8
'l.25 1.4 1.6 6"
=
MICROCOPY RESOLUTION TEST CH ART 4k,Ill,,4
[.,,f>
~* t :
S
a 4
w-,----
0 5
1 PLANT UNIQUE MdDIFIChiiON5"T0"4TCfDXT LIMIT DATA BASE TO REPRESENTATIVE POOL TEMPERATURE RANGE 8
ADJUSTAMPLITUDEFORPOOLGEOMEkRh l
l
-,--=y
, =
-y 4-,_,
y.-.
g=.
g -,,
e
-...wr,
.yy,
4-J-
POOL TEMPERATURE LIMITS i
e 4TCO MATRIX TESTED POOL TEMPERATURES OVER A GREATER RANGE THAN EXPECTED FOR f
LEAD PLANTS 8
SOME BOUNDING TIME SEGMENTS OCCURRED AFTER POOL TEMPERATURES EXCEEDED EXPECTED j
LEAD PLANT POOL TEMPERATURES 0
IEMPERATURE LIMITS USED TO DEFINE A MORE REALISTIC DATA BASE FOR LEN) PLANT BOUNDING '
f 1
TIME SEGMENTS LIoulD BREAKS - 140 F l
1 y-
t AMPLITUDE ADJUSTMENT FOR GEOMETRY 0
EXPERIMENTALLY OBSERVED SUB-SCALE CREARE ' DATA BASIS'0F MULTIVENT EFFECT S
CAN BE DEMONSTRATED WITH MARK ((.
IMPROVED CHUGGING MODEL a
4TCO TIME PERIGOS FOR LASALLE BASIC CO LOAD Run No.
Size Tyoe Initial Pool Temo.
Riser Time Interval (sec) 4
.3.82" L-74 F yes 10 to 12 0
5 3.00" L
79 F no 18 to 20 7
3.00" L
93 F no 14 to 16, 18 to 20 8
3.82" L
112 F no 5 to 7
0 9
3.00" L
ll4 F no 10 to 13 10 3.00" L
73 F no 25 to 30 12 2.50" L
107 F no 21 to 25 '
0 15 4.125" L.
71 F yes 34 to 48 0
22 3.00" L'
109 F no 11 to 19 0
25 3.00" L
ll1 F yes 3 3 gg 34, 16 to 18 0
27 3.00" L
110 F yes 16 to 30 28 3.00" L
110 F yes 15 to 21 4TCO TIME PERIOOS FOR LASALLE -C0 LOAD FOR C0f1BINATION WITH A05.
Run No.
Size Tyoe Initial Pool Temo.
Riser Time Intervai-(;ec) 13 2.125" L
109 F no 50 to 59 14
'2.125" L
-70 F no 50 to 59
. c,.
v; t-
SUMMARY
t 4TCO_EXPERIMETAL PARAMETER RANGE BOUNDING FOR MARK ll 8
3OUNDING TIME SEGMENTS OF DATA USED FOR DES!GN LOAD e
LEAD PLANTS EVALUATIONS LOAD BOUNDING FOR TEST CONDITIONS TYPICAL OF THOSE EXPECTED FOR I.EAD PLANTS f
LEAD PLANT EVALUATION LOAD EXPECTED TO BE CONSERVATIVE
--USES WORST 0F SINGLE CELL LOADS
--INCLUDES DATA WITHOUT A VENT RISER
--BOUNDING TIME RANGE GREATER'THAN EXPECTED FOR LEAD PLANTS.
t BOUNDS Jt'_l,l DATA s
4TC0 CHUGGING LOADS FOR ASSESSMENT dF llAOiM PRESENTED-TO THE NRC CHICAGO, ILLINOIS AuausT 5, 1980 i
d 4
i
- 3. R. PATEL CREARE INC.
8/3/80 d
r,-
= -,
---,.e-m
=
.m,---,
e e'-+-
r
i e'
SUMMARY
OF PRESENTATION GENERAL'0BSERVATIONS FROM SINGLE VENT AND MULTIVENT CHUGGING DSTis
'EPENDENCE OF CHUGGING ON-SYSTEM CONDITIONS l1ULTIVENT EFFECTS 1
DEVELOP AND DESCRIBE METHOD FOR USING THE 4TC0 DATA FOR-LEAD PLANT ASSESSMENT
- SELECTION OF 4TC0 BLCWDOWN SEGMENTS AND BOUNDING CHUGS
- CHUG AVERAGING PROCEDURE TO OBTAIN BOUNDING " AVERA CHUGS
- COMPARISON OF-BOUNDING " AVERAGE" CHUGS WITH THE 4TCO A JAERI DATA.TO SHOW CONSERVATISM
- APPLICATION OF THE BOUNDING'" AVERAGE" CHUGS TO THE b: a J
GEOMETRY-ASSUMING ALL VENTS IN PHASE i
j r
i GENERAL OBSERVATIONS - SINGLE'AND MULTIVENT CHUGGING SYSTEM CONDITIONS DEPENDENCE
' CHUGGING HAS A STRONG STOCHASTIC ELEMENT, I.E.,
EVEN UNDER CONSTANT SYSTEM THERMAL-HYDRAULIC CONDITIONS, A WIDE VARIATION ~IN CHUGGING WALL PRESSURES C TURS STATISTICAL PROPERTIES SUCH AS MEAN P0P, PUP AND PERIOD BETWEEN CHUGS ARE A. FUNCTION 10F SYSTEM THERMAL-HYDRAULIC CONDITIONS SINCE SYSTEM THERMAL-HYDRAULIC CONDITIONS VARY IN BLOWDOWN TESTS, AVERAGE PROPERTIES OF CHUGGING ALSO VARY AS A FUNCTION OF TIME IN THE BLOWDOWN
a GENERAL OBSERVATIONS - SINGLE AND MULTIVENT CHUGGING MULTIVENT EFFECTS UNDER IDENTICAL SYSTEM THERMO-HYDRAULIC CONDITIONS, CHUGGING WALL PRESSURE AMPLITUDES IN A MULTIVENT GEOMETRY ARE SIGNIFICANTLY LOWER THAN IN THE CORRESPONDING SINGLE VENT GEOMETRY.
REASONS FOR THE ABOVE OBSERVATION ARE:
- VARIATION OF CHUG STRENGTHS AT INDIVIDUAL VENTS DURING A
" POOL" CHUG IN A MULTIVENT GEOMETRY
- CHUGS AT INDIVIDUAL VENTS DO NOT OCCUR AT PRECISELY THE SAME TIME DURING A " POOL" CHUG IN A MULTIVENT GEOMETRY--
I.E., VENTS CHUG OUT-OF-PHASE
t DATA FROM CREARE SUBSCALE AND JAERI FULL-SCALE TESTS SFJWING VARIATION OF CHUG STRENGTHS AT INDIVIDUAL VENTS IN A MULTIVENT POOL' CHUG.-
I t
t f
s e
o 9
p.
- 7 3
-e--
-.w.-,,
.y--
-...e.r,,
-i
.t' J
DATA FROM CREARE SUBSCALE'AND JAERI FULL-SCALE TESTS SHOWING VENT DESYNCHRONIZATION IN A MULTI-VENT GEOMETRY b
i 1
4 i
I i
4
.(
[
)
O F'
4
?
4 I
1,
- r J
0 l
1
al
.I l
- 1 DATA FROM CREARE SUBSCALE AND JAERI FULL-SCALE MULTIVENT TESTS SHOWING REDUCTION OF WALL PRESSURE AMPLITUDES IN A MULTIVENT GEOMETRY
^
i t
4 I
l i
i 9
3 t
4
,w y
,.-yy.
,,y_,
-yy
..,r,
-.-,,-w-1-
i
.t i
GENERAL OBSERVATIONS - SINGLE AND MULTIVENT CHUGGING CONCLUSIONS BOTH SUBSCALE AND FULL-SCALE DATA SUPPORT THE OBSERVATIONS ON DEPENDENCE OF CHUGGING OF SYSTEM CONDITIONS AND MULTIVENT EFFECTS BASED ON FULL-SCALE JAERI TEST DATA, CHUGGING LOADS EXPECTED TO BE VERY LOW IN MARK II GEOMETRY.
i
)
i i
l l
r
)
]
J J
REALISTIC MARK II CHUGGING LOADS METHODOLOGY A REALISTIC METHODOLOGY WOULD INCORPORATE THE OBSERVATIONS MADE FROM THE SINGLE AND MULTIVENT DA 7A USE BOUNDING SEGMENTS FROM FULL-SCALE SINGLE VENT BLOW-DOWNS SUCH AS THE 4TCO BLOWDOWNS
~
INCORPORATE VARIATION OF CHUG STRENGTHS AT INDIVIDUAL VENTS IN THE MULTIVENT MARK ll GEOMETRY INCLUDE VENT DESYNCHRONIZATION DUE TO PRESENT PROGRAM SCHEDULE CONSTRAINTS SI,CH A METHODOLOGY IS NOT IMPLEMENTED A
d
- l B0UNDING " AVERAGE" CHUG SELECTION PROCEDURE SELECTED SEGMENTS FROM FIVE BLOWDOWNS--EACH CONTAINED ONE 4
OF THE LARGEST CHUGS SEEN IN THE 4TC0 TESTS
-THE FIVE LARGEST CHUGS (EACH 0CCURRING IN A BLOWDOWN SEGMENT)
HAD FREQUENCY C0:iTENT REPRESENTATIVE OF THE RANGE OF FRE-QUENCIES OBSERVED IN ALL THE 4TC0 CHUGGI'NG DATA DURATION OF THE BLOWDOWN SEGMENTS WAS SELECTED SUCH THAT IMPORTANT SYSTEM PARAMETERS WERE RELATIVELY CONSTANT AND ALL THE CHUGS IN THE SEGMENT HAD SIMILAR CHARACTERISTICS ENTIRE TIME HISTORY OF THE LARGEST CHUG OCCURRING IN A GIVEN BLOWDOWN SEGMENT WAS REDUCED SUCH THAT ITS POP WAS EQUAL TO THE AVERAGE POP FOR THE CHUGS OCCURRING IN THAT SEGMENT THIS RESULTED IN FIVE BOUNDING " AVERAGE" CHUGS
=
_y,.m, r.
m
-d of PROPOSED METHODOLOGY"LF)T) PLM
-ASSESSMFMT USE BOUNDING CHUGGING SEGMENTS FROM THE 4TC0 BLOWDOWNS FOR DEVELOPING LEAD PLANT ASSESSMENT L(MDS ASSUMES SPATIAL VARIATION IN CHUG STRENGTHS AT THE
.'NDIVIDUAL VENTS IN THE MARK 11 GEOMETRY IS THE SAME AS THE TEMPORAL' VARIATION OBSERVED IN THR 4TC0 TESTS USING ABOVE ASSUMPTION, " AVERAGE" CHUGS ARE OBTAINED FROM BOUNDING BLOWDOWN SEGMENTS TO RETAIN CONSERVATISM, ALL VENTS'ARE ASSUMED '0 BE IN-PHASE IN THE MARK l1 GEOMETRY-IMPLIES APPLICATION OF THE " AVERA CHUG PRESSURE DIRECTLY TO THE BOUNDARY POOL VERIFY CONSERVATISM OF RESULTING LOADS BY COMPARISON AGAINST 4TC0 AND JAERI DATA
~
J COMPARIS0N OF BOUNDING " AVERAGE" CHUGS WITH 4TCO AND JAERI DATA POP OF THE LARGEST BOUNDING " AVERAGE" CHUG OF,34.5 PSI GREATER THAN 98% OF CHUGS IN THE ENTIRE 4TC0 DATA BASE A
POP OF THE LOWEST BOUNDING " AVERAGE" CHUG OF 14.9 PSI AT
=
THE 90% LEVEL OF CHUGS IN THE ENTIRE 4TCO DATA BASE PSD ENVELOPE OF THE FIVE BOUNDING " AVERAGE" CHUGS BOUNDS THE 90% PSD ENVELOPE OF THE ENTIRE 4TC0 DATA BASE AT MOST FREQUENCIES--FREQUENCY RANGES NOT BOUNDED ARE COVERED BY THE ORIGINAL 4T BOUNDING CHUGGING LOADS SPECIFICATION POPS OF THE BOUNDING " AVERAGE" CHUGS GREATER THAN OR COMPARABLE TO THE LARGEST CEUGS OBSERVED IN THE JAERI TESTS i
APPLICATI0tjOFB0UNDING" AVERAGE" CHUGS TO LEAD PLATT UNTAlff0ff SNPLITUDES OF THE " AVERAGE" CHUGS REDUCED BY 23% TO ACCOUNT FOR THE LARGER LASALLE POOL PRESSURE TIME HISTORIES APPLIED DIRECTLY~TO THE POOL BOUNDARY SIMILAR TO THAT USED PREVIOUSLY IN LIT BOUNDING CHUGGING LOADS SPECIFICATION THIS IMPLIES ALL VENTS ARE IN-PHASE AND FURTHERMORE, ALL FREQUENCIES ARE IN-PHASE AT ALL POINTS ON THE CONTAINMENT, WHICH IS AGAIR CONSERVATIVE.
e i
.I a
CONCLUSIONS HAVE DEVELOPED A REALISTIC AND CONSERVATIVE METHOD FOR ASSESSMENT OF THE LEAD PLANT MARK 'll PLANT.USING THE 4ICO CHUGGING DATA i
i e
1 i
i d
s 4
e w
e
, - - +
.mz
---+ --,-
e---e- -.. -. - - -
,g.~
-,-,- - --g e -.
e,
d.
. [-
PLANT EVALUATION FOR 4T:O' LOADS O
CONDENSATION OSCILLATION 0
CHUGGING i
PERFORMED PRELIMINARY ASSESSMENT OF PRIMARY CONTAIN-0 MENT STRUCTURE RESPONSE SPECTRA GENERATED FOR SAMPLE LOCATIONS IN O
THE STRUCTURE 3
i 1
J SARGENT & LUNDY R.S.
8-5-80
t f
STRUCTURAL ' RESPONSE"T0~4TCO t0 ADS AXISYMMETRIC LOAD DISTRIBUTION (DFFR)
STRUCTURAL RESPONSE GENERATED FOR THE 4TCO TRACES AND ENVELOPED VALUES USED IN ASSESSMENT S
~
i
,J p
y-.
I I
[- ' O F
',1 AC TO R i
~
l\\
\\ --- - -
l
^l RI. scTo a i
c. ; p o. n. o..r _..3 a
.."DRYWELL FLCOR
.].
\\'
W A T E R - i. E V E. t.
l s
i fi
.I I
s
,n g
i
/
\\
h-ij
['
\\
4
/
/
.I l
i 4
i j
m.
\\
/
h Ii
\\
a 1
l
.4 l
.i I
I i
i i
---[-
l e,
d t
c.
3l y
s jl N
p esi 1
1' i
t
- t-s
+
l I
[
l, v
w
-r
__i b-I.
9 f_-c. w.c
.. 4
~
S P/- 1 A L
,, i-i.
Gc.JE 4 c.s i
_t, k _T I 0 2*A
.!_. *7..*'%I) f1 q
n1 4
r.a.
- i g%
. [ hL b
em # - _
- ! i! -
,,m '_ _ _. _ _ _..! l B
I G '-- C - "
'Ji
)
cwas --
, db
- n.. Itta
- r...:...
p_
--j
- un
s.
c;e.
.e
I i
PRELIi4INARY ASSESSMENT OF LA SALLE PRIMARY CONTAINMENT STRUCTURE O
4TCO (CO AND CHUGGING) LOADS PRODUCE FORCES IN CONTAINMENT STRUCTURE LOWER THAN DESIGN BASIS LOCA LOADS.
O PRIMARY CONTAINMENT STRUCTURE IS ADEQUATE TO CARRY 4TCO CO AND CHUGGING LOADS.
-l
14~
.J i
i CONSERVATISMS IN LA SALLE PIANT EVALUATION O
ABSOLUTE SUM LOAD COMBINATION USED FOR CO LOADS.
IT WOULD BE MORE APPROPRIATE TO USE SRSS METHOD FOR THE 4TCO LOADS.
O FOR THE SRV RESPONSE CALCULATIONS 1.5 MULTIPLIER ON KWU TRACES WERE USED.
A MULTIPLIER OF 1.1. HAS BEEN APPROVED BY NRC FOR FIRST ACTUATION CASES.
AND SRV_(LOWSET POINT)
O SRVALL USED INSTEAD OF SRVADS O
ENVELOPE OF SEVERAL LOAD CASES USED FOR EXAMPLE, SRV (SYM) AND SRV (ASYM).
i 8.00 I
i l 4 I III l
h
[
~
1 7 00
=1 r w f
.)
~~
q_
6.00
~
l i
I 5.00 e
m 73 CURRENT DESIGN BASIS--D' a
e 4 00
'Y O
=
3 00 t
_J 1
f J
~
2.00
)
/
9
} "
//
N 1.00 A
[
/
- /
./ k 4Tco 5
.'.(
\\
s 1
g g
l l llll A
O.00
.i I
i I
i p
b 100 50 33 20 10 1
0.5 FREQUENCY - HZ.
PEDES.TAL e DRYWELL FL66R VERT 2% DMIPING
i s
=
i i
8 00 i Thi i i 1
i
.\\
7 00
\\
6.00 a
MF 5.00
-o w
2a
~
=
w c-cc4.00 w
1 w
O p
- CURRENT DESIGN BASIS 3.00 f
(M 4TCO f
^
1 2.00 9
i f
\\.'
((
- J Q
f.T
\\e 1.00 4
e j\\/'
O
(
\\
H 0 00 I
I I
i l
l 100 50 33 20 10 1
0.5 FREQUENCY - HZ.
CONTAINt1ENT WALL EL 694 HORIZONTAL 2% DAMPING
i J
8.00 I
I I IIII i
- ).00 I.
b
~
6.00 O
t 5.00
[_
c 2
C sc
-CURRENT DESIGN BASIS g 4.00 l
1 t
t l
.3 U
ue 1
r--A 3.00 f\\.
i L
)
t D
2.00
[
\\
/
\\
~
/
(
l.00
(
[
\\
k f\\ !)
4TCo Y
\\
\\
'g' sk
{
- "** (S
- 7 8"? l C }
O.00 1
I l _
i i
N 100 50 33 20 10 f
0.5 FREQUENCY
'HZi CONTAINl1ENT WRLL EL 694 VERT 2% DAMPING ii.
s-n 8.00 E
1, 7.00 I
h 6 00 I
l 5.00 a
w 2
O e
[CURRENTDESIGNBASIS g 4.00 J
a d
\\
a:
i
\\
3.00 I
4TC.7
/
\\
p 2.00 i
l
\\
/
/
J l
f 1.00 Y
/
e 3
~
1/
\\ \\
-o N
N 0 00
.I I
I 1
1 100 50 33 20 10 1
0.5 FDY.JENCY IIZ.
CONTRINMENT WRLL EL 740 VERT 2% "V! PING x
5
_m+.-_
-4m
8.00 I
I IIIll 1
ch 7 00
\\
6.00 O
I I
t 5.00 cm z
co C
Ce 4.00 w
3 w
a O
C CURRENT DESIGN BASIS r
3.00
/
o l
~
2.00
[
\\
[
\\
I 1.00 1
\\
\\
}
(
t/'
N Dqk~
/
G.00 I
I I
I I
i 100 50 33 20 10 1
0.5 FREQUENCY - HZ.
REACTOR. BUILDING SLRB VERT EL 694 2% DAMPING wn-.
.+m;
,..-._g.,_
e 16 00 k
I, s.
14 00
\\
12.00
-CURRENT DESIGN B SIS
,,10.00
/
e
(
z a-g 8.00 d
o i
UC 6 00 i
4.00 i
\\
f N
2.00 X
\\
s 3
dN 49 sf i
0 00
. 100 50 33 20 10
~
)
~
1 05 FREQUENCY - HZ.
REACTOR BUILDING SL.RB VERT EL 823 2% DAMPING
9
.8.00 I iiiiii i
c
.I 1.
s d
7 00
(
'p l
l
!O b
'l
\\
. c
- h 6.00
- I l
~
,. 5.00 l
i 1
e o
l '
e
- Q.g i
P"'*
y4.09 1'
i[
t \\g',-- CURRE!;T,DESIG:
I
~
I l y'-m-(J l
u l
i o
.I t
c
^
l
./i l
3 00 i}
iG7 l
i 1
\\
l 4I J
t i
b u
l l
t 6
}
... ~
U i
l ilI j
2 00 i, \\
/' I. [
i.j f'
\\.
c I
s
/1
}1
)
d s
a-
\\
1.00
/
-m
'M I
i
/
/l l
Ib!.l!l i
/ 5.I l
J s
-j r aco
{ { 'j]-
,~ w Isass (ssI; + savans) + co j.
i 3..
i 0.00 1
1 I
I.
I t
J.:
100 60 33 20 10 i
FREQUENC'i - 117.
PEDESTRL a DRYWELL FL60R VERT FD '210A,
'W3 3 20 60 19 2s mum c1
J e.'
8.00
, g g ; iii i
h.,
t
'7 i
7.00 j
'6.00 I
a 4
4-5.00 o
w z
O m
H cr I
E 4.,_.
i i
w
.J l
}
"u O
cc I
,i 3.00
.I l
l l
1!1 i
! -CURRE:G DESIG:: 3 ASIS f
l l
N,,'
I i
2.00 i 4
)
C\\\\'
l f
\\, ;l' l
/]
v \\
/N'~
4 d'::/
,rd-1.00
/
/
N
/
\\.
v
'lIL ke-
/
4TCO T
SRSS (SSE + SRVADS' 2
+
J
,').
I 0 00 l.
l l
I 1
100 50 33 20 to FREQUCICY - EZ.
COETRIN!1ENT WALL EL 694 H6RIZ6i:~;.L 2% DAMPI.':G Wc
.c.
8.00 l I I i1il 1
G.
I, 7 00 1
.j 0.00 i
l 9
g 1
5.00 c
w 1
z C
CURREN"' DESIGN BASIS H
,g Il cc h
a: 4.00 N
u u
b J
o 4.
I f
o I
4TCO m
i SRSS (SSE + SRV, Do,,) + 50.,
i
\\
n 3.00 I
f k
?
i l
2.00 i
1 1 00
.[
{
i
[
sN l
/
/ /
K V=#'
k
'./
Y s
%li N s
8 0.00
.I I
I I
I 1
0.5 100 50 33 20 10 FREQUENCY - H2.
CONTRINNENT WRLL EL 694 VERT C h'd h'N 'f h
mm}D' j
D 2% DAMPING
,frLa o e Ju e c
d 4
8.00 I IliiI i
g 1
I 7 00
[
.\\
I S.00 f
e 5.00 o
w i
z CURPSNT DESIG! BASIS e
i I
i 4
1 I
4 c-I i
a: 4.00 tu
/
\\.[
d
~
I
\\-
4rCO r~
i i i i
uu j
\\SPSS (SSE + SRV.as) + C O.,..
m P'k I
3.00 l
l 4
1 I
i
_ L..
j i
2.00 i
l l
i I
r
{
jl
\\
f i
[
\\
[
h--
1 00 l
f p J /
h.bl
.l fir
'y!
i I
1 1
0.00 L
I I
i i
100 50 33 20 10 1
0.5' FPIQUENCY - HZ.
~
CONTAINMENT WRLL EL 740 VERT D
~D)3
~
)~
@l w o 2% DAMPI?!G alu.].
n
4 8 00 L
I3 7.00 l
b 6.00 l
--.y!
t 5.00 t
c z
m H
ecc 4.0 0 su s
W s
u CURRENT DESIG;I BASIS p
g 3.00 j
q-k 2.00 4TCO l
SRSS (SSE + SRVADS}
2
+
\\'
I F
1 00
- f#
N h
k
[
A
.Kl
...- -=u l
g 8
I 0 00
.t 100 50 33 20 10 1
81.
FREQUENCY.
'HZ.
REACTOR BUILDING SLRB VERT EL 694 2% DAMPING T.
o 18 00
..l 3
n TJ I
e t
~
14 00
\\
i I
i I
12.00 L
l! ! IIIi
-CURRENT DESIGN BASIS
~
[
l J
10.00 I
-o l
w LT r.
p(m o
6-crcm8.00 w
J w
2 a
o cc
~
t 6.00 4.00 l
I 1
g I
i
(
4TCG SRSS (SSE + SRV,DS) + CO f
I
il' I
2.00
\\
ur p
-s i
d' N f
0 00
.I I
1 1
I
'N i
t 1
0.5 100 50 33 20 10 FREQUENCY - HZ.
REACTOR BUILDING SLRS VERT EL 823 2% DAMPING 4
J 4
r 3.C3 g
1
-1 5
l r.,,.
l
~-
.i s... -
l I. \\.
.i \\
\\
(
{ - h-
- .00
{
.I
~
i I
3 U
4 n
r -- CURRENT DESIGIT Bd. SIS S
', I t
i E.i..a
.1 l\\l l
i i
U
.l l
l '.! l 4TC0 SRSS
'lj pe r g (ssn + SRV + CIIG) 1 1
\\
o 1
=
l l
\\
,/
4 I.
l l
i 3.I:.0
- t. _ _.,
'.' [
t 1
3 I
t
, /
i l
\\
Il l
{
.,. 3 >,
~..
-l f
i i
\\,
j#,f k.
f
\\)
\\
a
/\\
k
/(
hr 1.00
('
l I/,I l
-l i
g I
I 1%
C.00 I
I I
I I
J 100 50 33.
20 10 1
0.5 FREQUENCY - HZ.
PEGESTRL a DRYWELL FL60R VERT 2% DAMPEG
g 8.00 I
( i iiil I
9-1
-3 7 00 l
k 6.00 i
I 5.00 A
to
=
co H
tr.et. 4 00 I
,l w
f
\\
-t h
I i
W I
e L.)
I CURRENT DESIGN BASIS
{$
f.
5 f
3.00 h
'O t-Y
\\
,\\
/
4TCO SRSS (SSE + SRV + CIIG) 2.00 m
/
/
\\
\\
/
u-1.00
\\ [
}.W I
0.00 L--
1 I
I 1i i
1 i
a I
i 100 50 33 20 10 1
G.5 FREQUENCY - HZ.
CONTAINt1ENT WRLL EL 694 H6RIZONTRL 2% DAMPING i
N.
_ __.. - : z -: -
= - - +.
=
4 8.00' j
i i
i4 iiii a
I C'
~
}1 3
j' q
7.00 l
i
\\
\\
'l 6.00 I
L C,
l 1
t 5.00 7.
l,
~
c3
" CURRENT DI:SIGt: 3 ASIS g
t-g a: 4.00 t.
l un y
u u
g i
4TCO l
x
-\\
\\/
3.00
/I l
I
/
h P%,%.
It s
2.00
.~
li g
n y
A 1.00 2
.jV y'
y
'...rw J
i
%i I*
l i
t 1
i t
100 50 33 20 10 1
0.5 FREQUEYCY - HZ.
t CONTAINNENT WRLL EL 694 VERT 2% DAMPING l
e n
--.,e
,e.
8.00 J
4 7 00 N
l.
6.00 l
O I
t L
5.00 e
z I
e3 i
w i
CURRENI DESIGN BASIS
$4.00
./
ta s
v
.J J
l l
I i
i U
_ I
' ;f 4TCO SRSS (SSE + SP.V & C:!G:
y j
I P
3 00
!-c 1
t 2.00 m-l if I
)l re"
/
N.\\
1.00 f
[ f-U'
\\
^
A g
~N
's.'i.
- .J l
i 1
I
[
~j 100 50 33 20 10 1
o,e FREQUENCY - HZ.
CONTRINMENT WRLL EL 740 VERT 2% - DM1 PING
4
,e i
6.00 I 1 I it6s i
i 7.00
\\
1 I
o 6.00 5.00 l
C z
O c
cc4.00 tu J
td O
Oe 3.00
(
h 1
I i
-CURRENT DESIGN BASIS
' c::
i
~2.00 I
L
\\
a l
1.00 P'
N t-
\\
l
~
f w 4TCO
\\
7 i
0.00
.I I
.I I
!b' I
100 50 - 3 3.
20 10 1
0.3 FREQUENCY
.HZ..
RERCTOR BUILDING SLRB VERT EL 694 2% DAMPING
4 d
+
16.00 I
I i iIII I
g i
14.00 i.
b I
12.00 10.00 t
_ti i
1 c3
[
U r
ce
_ _ L_._ _.;
j lj 3 00
-i l
i tu J.
i u
o
-l l
i a
u c-l 6.00 ll Il l
-?- - CURPIMT DESICli D.%TS l'
f.
l l
l 4.GC 1
T-i i
6 't j
1 i
i l
I l
l i
r-4TCO i
k Sass (Cst + cic! + c;ic)
I
/
I 2.C0
-m r
1 l
\\
l
/)
1 x,,
I:
o~
s
't Ah x%'
. -- 'i, t
i 0.00 1
i a t l r-i
-100 50 -33 20 10 1
e.3 FREQUENCY - HZ.
RERCTOR BUILDING SLRB VERT EL E23 2% DMIPING
i
1
.I~
1
SUMMARY
L 0
PRELIMINARY ASSESSMENT OF LA SALLE PRIMARY CONTAIN-1 MENT STRUCTURE INDICATES THAT 4TCO LOADS CAN BE ACCOMMODATED.
t RESPONSE SPECTRA GENERATED AT SAMPLE LOCATION IN-DICATE THAT IN GENERAL', FOR FREQUENCIES LESS THAN 50 H2, 4TCO LOADS ARE BOUNDED BY CURRENT DESIGN 1
BASIS.
~
+
l
. -... ~...
J s!-
CONSERVATISMS IN ZIMMER PLANT EVALUATION O
ABSOLUTE SUM LOAD COMBINATION USED FOR BOTH CO AND CHUGGING LOADS.
IT WOULD BE MORE APPROPRIATE TO USE SRSS METHOD FOR THE 4TCO LOADS.
O POR THE SRV RESPONSE CALCULATIONS 1.5 MULTIPLIER ON KWU TRACES WERE USED.
A MULTIPLIER'OF 1.1 HAS BEEN APPROVED BY NRC FOR FIRST ACTUATION CASES.
SRV ;n USED INSTEAD OF SRVggs AND SRV (LOWSET POINT)
O 3
O ENVELOPE OF SEVERAL LOAD CASES USED FOR EXAMPLE,
)
1 4
~
p s/
5 i
18.00
~
14.00
-~
5
)
4 8
12.00 l
L
,A, p
i 10.00 3
CURRENT DESIGN BASIS Ii z
3 S
?
a: 8.00 oc w
j k
d J
u S
{
+ CO
[!
l 6.00
.d r
~
4 00 f
2.00
\\
j
/
\\
-v/
T\\
/
\\
/
s s
e J
i Na7 O.00 i
i I
l-100 50 33 20 10 1
0.5 FREQUENCY - HZ.
(SSE+SRV-RDS)
+
(C0-C01 4 4TCO-C01) 104-H 1
CONTAI:!PIIIT WALL EL, 497e-7a 1
t O
8.00 G.
7 00 e
I i
-\\
~
6.00 I
a I
r l
I 5.00 e
z CURRENT DESIGN BASIS c
e w
e g4.00 U
y e
3.00
[
k f--,
V F
2.00 h
A l
\\/
]
\\
/
r
\\
/
/
~
1.00 A
t
//
\\/
gx
' M/
\\
-w I
l l
I I
l 0.00 100 50 33 20 10 1
0.5 FREQUENCY - HZ.
(SSE+SRV-RDS3
+
(C0-C01 4 4TCO-C01) 104-V CONTAINMENT WALL CL. 497'-7"
i a
8.00 t-t 1
7 00
=,
l l
6.00 1
l r
i 5.00
,?
p CURRENT DESIGN BASIS -
t 1
a:: 4.00 c
+ CO
j y
4TCO:
G u
uM fk 5
3.00
\\
/
/
/
)
M i
2.00 j
V 1 00
/
/
$d k
x w i
O.00 1
1 I
I t
1 j
100 50 33 20 10 1
05 FREQUENCY - HZ.
(SSE+SRV-ADS)
+
(C0-C01 4 4TCO-C01) 301-3 REACTOR BLDG. SLAB EL. 504'-4"
i 16.00 q
14.00
\\
1 0-l 12.00 CURRENT DESIGN BASIS 1
i i
10.00 A
[
z
+ CO I
y bm uJ J
u a:
i 6.00 i
[
I 4.00 J
\\
7
)
j
\\
-~~
)
9 r
~
,I I N
\\
2 00
[
g
\\\\
0 00 i
I I
l I
I 1
" 2 :'
100 50 33 20 10 1
0.5 FREQUENCY - HZ.
(SSE+SRV-RDS)
+
(C0-C01 4 4TCO-C01) 129-V PEDESTAL 9 DRYWELL FLOO51 EL. 521'-10"
f 4
8.00
~
q 7 00 1
\\
O I
e 6.00
(
t i
I 5.00 cs z
O i
,I CURREUT DESIGN BASIS g
\\
i m 4.00 w
3 d
L U
. + CO y 3.00 1-7 Y
r A
l 2 00
- \\j i
d j
/
\\
/ )
AN
\\/
j 1 00
/I N
n s
\\
{
%r
\\
/
g 0 00 I
i l
10 1
0.5 100 50 33 20 FREQUENCY - HZ.
(SSE+SRV-ADS)
+
(C0-C01 4 4TCO-C01) 111-V
~
CON'IAINf1ENT WALL Ci. 546'-0" l
J
./
18.00 E
~
14.00 I
~
12.00 a
10.00 C
z L
$8.00 CURRENT DESIGN BASIS f
W f
f
~
9 u
O C
6.00 4TCO: SSE + SRVADS +
O 2
/
2 00 k
/
N
/
\\
s T
s
\\
" y N
k
/
s s --
x_-
0.00 1
1 1
1 1
I I
100 50 33 20 10 1
0.5 I
FREQUENCY - HZ.-
(SSE+SRV-ROS)
+ (C0-C02 4 4TCO-C02) 104-H CONTAINMENT WALL EL; 497'-7"
./
8.00 L
8 r.
7.00
)
6.00 i
qp_.
i 5.00
-o w
x as
~
- e m
g 4.00 CURRENT DESIGN BASIS L
j t&J L
u u
G 3 00
m 2 00
'sf
)
/
l f
1 00
/
l [
k I.
I I
I I
I f
- - -0.00 100 50 33 20 10 1
0.5 FREQUENCY - HZ.
(SSE+SRV-ADS)
(C0-C02 4 4TCO-C02) 104-V
+
I CONTAINZ1ENT WALL EL. 4 9'7 '- 7 "
O
8.00 (E.
s 7 00 f
I 6.00 i
5.00 cs 3
7 CURRENT DESIGN BASIS' 3
y i
r a: 4.00 J
f ua J
b g
4TCO: SSE + SRVgg + CO2_,
a:
3.00 I
s,
t
'/
2.00
\\
l
/
\\
1 00 f
s
(
X 0.00 l
l I
-I f
100 50 33 20 10 1
0.5 a
FREQUENCY - HZ.
(SSE+SRV-RDS)
+ (C6-C02 4 4TCO-C02) 301-3 REACTOR BLDG. SLAB EL. 504'-4" t
l I
l
R C
l r
8.00 c_
~
I
_. CURRENT DESIGN BASIS-7.00 p
(
v
~
6.00 l
} 4TCO: SSE + SRVgg + CO2-1 5.00 o
g
\\
z I
8 f
i-w 1
g 4.00
{.
_J u
G i
3.00 e
I
(
f d
~
2.00
/
l
/
l r%
)
% )
\\
1 00
\\
/
\\\\
g D
O.00 I
f 1
I I
I 100 50 33 20 10 1
0.5 FREQUENCY - HZ.
~
(SSE+SRV-ADS)
+ (CO-C02 4 4TCO-C02) 129-V PEDESTAL @ DRYWELL FLOOR EL. 521'-10"
~._.
d fs i
i 8.00 k
~
1 3
7 00 h
6 00
~
1 t
7 5.00 o
2
.s s
mg 4.00 L
-J EaJg CURRENT DESIGN BASIS e
3.00 e
4TCO: SSE + SRVgg + CO2~,
I 1
Y 5-/
2.0c
[
[
[f-j I /
m
/
x>
1.00
/
/
~
--A)
'--N 1
I I
I I
I I
100
.50 33 20 10 1
0.5 FREQUENCY - HZ.
(SSE+SRV-RDS)
+ (C0-C02 & 4TCO-C02) 111-V CONTAINtiENT WALL EL. 546'-0"
/
4 16.00 I I l l 111 l
ll.
14.00
\\
~
12 00 d
in f
f 10.00 3
- CURRENT DESIGN BASIS 2
E
[
y m 8.00
'L U
4TCO: SSE + SRVADS + CHG S
=,
i 6 00 1
}
\\
4.00
\\
)
~
\\
\\ \\
j 2 00
./
\\\\
/
\\
N N
/
g
\\L
,/
i l
l 0.00 I
I I
1
.00 50 33 20 10 1
0.5 FREQUENCY - HZ.
(C02, 4TC6-CHUG) 104-H (SSS+SRV-RDS)
+
i CONTAINMENT WALL EL. 497'-7" w
, _ :_,=._
.. J
t N
8 00 I I I IIll I
~
c 3
7.00 I
l
\\
6.00 j
.e
~
i
_ 5.00 e
z c
~
~
E4.00 U
CURRENT DESIGN BASIS 3.00 f:
4TCO: SSE + SRVADS +
0 y
1 N
(
2.00
\\
\\
l i
fy
/
1 00
/~
/
v J
M h \\
0.00 I
I I
I L
l 100 50 33 20 10 1
0.5 FREQUENCY - HZ.
CSSS+SRV-RDS)
+
(C02, 4TC6-CHUG) 104-V CONTAINMENT WALL EL. 497'-7"
4
.i 5.00 5
i' 7 00
~
b
~
t.
6.00 R
5.00 O
z
[
~
CURRENT DESIGN BASIS E
e g
I L
h4.00
/
e
/
d a:
3.00
~
4TCO: SSE + SRVADS 2.00 d
r1
/ \\
v 1 00 f
p O
Q
(
N -
t I
i 0.00 100 50 33-20 10 1-0.5 FREQUENCY - HZ.
(SSS+SRV-ADS)
+
- CC62, 4TC6-CHUG) 301-S REACTOR BLDG. SLAB
'EL.504'-4"
)
<4 8.00 h
7 00 l
(
)
O-I 6.00 CURRENT DESIGN BASIS- +
I
?
5.00 e
z
~
I.
$4.00
)
h rs) j\\
S a:
3.00 1
1 k
\\
r e-O i
h J
~I 2.00
]\\
(
\\)
'J
")
- 4TCO: SSE + SRVADS +
A 1.00
[
A?%
l l
I I
i 1
l O.00 100 50 33 20 10 1
0.5 FREQUENCY - HZ.
(SSS+SRV-ADS)
+
(CO2, 4TCO-CHUG) 129-V PEDESTAL @ DRYWELL FLOOR EL, 521'-10"
j A
8.00 t iiiiii I
k 7 00 g
()
,1 6.00 5.00 cs 2
i er r
G:g 4.00 i
d y
u og CURRENT DESIGN BASIS 3.00
\\.
r 4TCO: SSE + SRVADS + CHG y
f 2 00
/
f)
~
n
( /
r
\\
1.00
[\\
y h
4 %
0.00 I
I I
100 50 33 20 10 1
0.5 rnEcurNCr - az.
s (SSS+SRV-ROS)
+
(CO2, 4TC6-CHUG) 111-V CONTAINMENT WALL EL,. 546'-0"
J.
b f
l.
1 4
SUMMARY
t i
0 RESPONSE SPECTRA GENERATED AT SAMPLE LOCATIONS IN-DICATE THAT IN GENERAL, FOR FREQUENCIES LESS THAN SO HZ, 4TCO LOADS-ARE BOUNDED BY CURRENT DESIGN I
. BASIS.
1 i
l i
i I
i l'
r.
e 4
f.- '
3 4
1 1
4 4
t.
~,,
-. - - - -..,. - -. ~.
)
'O
/
stl LEAD PLANT 4TCO CONDENSATION LOADS COMPARISON WITH SHOREHAM DESIGN ASSESSMENT BASIS PRELIMINARY EVALUATION COMPLETE FOR LEAD PLANT APPROACH GEOMETRIC REDUCTION NOT YET QUANTIFIED - EXPECTED TO BE SIMTT TAR TO LA SALLE BASED ON SIMILIAR POOL AREA / VENT AREA RATIO DATA BASE RESTRICTION FOR CO NOT YET DETERMINED - SNPS POOL TEMPERATURE RESPONSE SOMEWHAT GREATER THAN LA SALLE RESULTS FOR CO GENERALLY LESS THAN DESIGN ASSESSMENT BASIS RESULTS FOR CHUGGING LESS THAN DESIGN ASSESSMDTT BASIS AT FREQUENCIES BELOW ABOUT.40 HZ l
l 0
J a
o
- 4 / nW
-[ ' -i. ' '***';Lt..
1
'1 L,.o Y
A==s= =
f,,,,,../ r_
=u o 7
@; :c;;
Y;;._,
f e
.g e
i n
.- y =r e
g A.
~
l..
..u==
m <<
a,_
+,
e-
' Q. '
' [. l,. ; _
f ~ ~ ~' P f iI6%
I
, $A ~/t,=.m:, [mU
.s I
i JJ
=
et. <
a
,or m 9tg -( 4 iWF
.i 7
i --r
^
' v'
}
Jg /
I:p r
i I l=
I w.2.-
' 7'
.oi p+-C i
"'"'* h%'
g; 2:='
i.
- - = =
_n..ri
=er trA \\
6 e
a j
,e. c ptroeu eamuna seas l43 e
,c.. ;
u a, m-1 rom
...r,
==
\\
_ J_....-
gl l j'
C I
161 I
-:=.
l q,
--h
\\
w
...7
.t
.9
- 1
- = =
d
'b. Ell $ (r
',E,
b_
_1
/*'"'**' d
,[O..f ll
,'a w
r r
...grover l
ij g
g
}
c suu. een ri'. r*
^
I1 1
- '1 j
t
.... I, g.c.
.c<.
n
,+.
)
=
4 a:
t
_ _ _.i M,u;. T. :
~~
c'H.;,
r-..
w s--,q r
- n. =c:'
v'Itl,*...t' i h @ F. ' ~ i
- -J's !. :
L i
t i
i. P.V. -
,;--a:
'j
..,Tn..i. -
g E
y, p.
r,J
- i. pM.
h,--
.m p.
s l,
e
.c 9
j R!G%__. '
{, m
)
j u
pr
-x
' -,,M
[A b
b l
I l p.. '
t gAE i,rq N 'g.,
ya t
j l,'""
j [
- :r I n
g
(
[
t.
i c -.a t.,_p
.I
- l
.. as m
i i
um
,u n
c i).
1.*--
pu_f T pa'aowrq
=
p i
i=c)
I':
_.m 3--
I
[
i sta vn W
y
, p.. = <
maar
,3,.,
1 as **o* 4 I
I 4-a
- 2 i -
M' i
j
( n W fe O i4.e}. 4 m
ti t.
i A T
l-
- b...
4
.. e #,~ -
x N
i.rpi.W 1
. i.
N,
~w
<- o m D"*D D 'T '\\([
wof 1.
o
J-aL ela o t
_3,,_*, 1, 13gei6 i
- t. _. e.a laaese r
i
- M
- EU'F -
N Ella
._ =,
I
-pe-
'm d
s "W
~ : [
T *%
y-I r ha._
1 I
'-2 w
I I
'a
=~1
- N i
f -
I, W
9-1
- mu Ff
-4,,
L--
Tw
_p 7
t M i
. ME -
Z i
- er-
~-
-1
_F 31 IF;W 1
b'"
y
- w,.-
w,-
M'--
y y
- W _
.imm.
E
-mg um A'
M-
'n rm :.. :
-I
.4
^I N"
awns t I
- WY I
A r
w1 1
5 N N 1
y is I
m X m
ww I
wy mx w
n_
M N y
~
P 1
f7t
_r i
1 L
s P
t a 7
[
1
+-.
I
}
I X,.
mean '
I u
L.--*-
I y
T' pu=.3"'""
\\
L IPA 1
-' )
I L
1 t
3 I
L -
'1 1'
M J
w' m_
"T.
F I
I P
I e
1 h
f
-M
^
I
__jf-h A
' g
_m F
__3 w-an m
u M
Z Y
t".
anse =
- a
-aexam 7I uma a m LL I
n_
l
- i' j
h.
DE g
I w
.-, et
,i 1.
f 1
m_
f V
u
~
3 "W=
1
.Z__
1 I
- 1
'.m 1
1
---e T
g I PJ "J'
-t#
d4
- g as
.N
- = -'
EI
- O
.n m-g
_m F:
"F I
j w
weI im I!
y m'
{
MA LA
,A EI
.l.
..,m! X, I_'
3A
,.iw
,p,_
y.
m u.
hAL E ?M h
A A_-
1 aa r yi A
a l
i I
I j
-h 2. o 2 2_
oe
i 2
mi
-n P
V a
M i
x i
- m f
1
- td m
- K 1
'A 6
s I
I-F M M.
m '
E M -
m '
I E j
. m, m1 g
}
=
m I E 7
f
~
n.
w w
-E w. ;
men h'
v M S r-M
--^.
l l
^--
)
a a
w-M f
A d
y em mN-k l
]
E 5
6 e
]
vy J
l em "
l a
I_
3 i
I I ME
' C m
m 1
~
n m'E T-A l
h pi
'Bi g
l w w
~
g' M
I
- M s=
'T
! n m
J E
I M
.c.-
. i
.n M
G Wi W
A m i.
.as M
_r M
~
l l
.m I
_a u.
Y M
R
[
i I
w am N
1
.-a.
Ai
)
i i
I l
F' M
[
M
-O M-4 g 1 ' _ - _ -
- M
-I I
--a l
jq Na&
}
._.-,M4,w i
i I
1 1
AD D'9~
~
D f
x
1 e4 l
.m.
.. mon w? -.
. m o n a m
,,.m m 7
y pm 3 3
-~-
-n~-
). j,9.', -.@,e ",
a e
ei i
e i
1
=
i
==
'm
' M N
, m
" Y Tn*
.m T5 f id m
t
. E
'_m I
T
-J "hd
=
c -
- w AV J
r\\r w a n '
I m
- xx
-M M
a
'M
'r'M Y~:
upw r-A
[&
E.
[
c-1 y T 2 M l
r m.
~
-"^
t I
g yy
_1
~
k I w m,
m?
I" f
E d'
h~r' 1
d m
x -
- O x
i -
"W w
E I
h
,e A
M i i
=_m-j w-r M, A
.. i e
l m:
I Z2 1
O m
}
j
~^
.1 t
A K
L
- N
.9s
^ --
i W'--
AMaP Pa
-w
>s
^
- W
_,__7
. =
_W
^
7 Y M
.m g
=
Mu p
n O
w 6i I
P'
_ z98'9 F'
x w
%F J
.2 kM I
w ua
- 13.
.EI rw L1h '
J l a na..m4hM^^*
- Yl a
XE T '--' -
A-
___t
_m E
4 m M i-1 1
. i i,. i m--
\\
y a,
ID r) m D
" 0" 1
4 JJ utn 2 1.n u nit ida t..
A'
" I
.D
' e(
' V "wk
--d 1SU.O T
I i
- "n g
' 7 l'
. a M
M'
!.m a _ r l
'W EE-
. EW '
N1A 1
C I
I M-
--.w p
_#h_
__N I' i.e ?
em
^
E
' [
a w
=
w-_i
_ _ ' ~ _
m
^
FM 6
1.'
w M-w
- y pT 4i E d p's m
.N' E.-_
I 1
E I
w,.
we Y
h%\\
'aI
. Id
- e
-I 1
1 3
asme 1 Mh
! we "
'T'T
^~~
.n i
i r
- a s
- -^
w m
- =
e.
A
_ L y
M'%
1 21 m
~
W T 4.
1-mm _
M M
h L.
m.F d'9. w "'-.
4 O
.C y w
" I &:
T C w3
,...a La.A
.m
~
,g I
~
~
FT W
SoI
- 4 Nr
_Y
.M m
M Y.
m tdw M -
m.
E E
Li h
l F
gal Iw th -
.a,
' C1
'-E2 m'
J
- M L
.a l
1
-a r s r =Em 1
1 I I Y ( T 1
I F
3 ( y 1 1,
-A
=
c 1 r* %,i LJ ' '
ju'
' y '} b N'
U V
V
a
} i l
u [
u Y !
u N '
i
. 'TPr
" gum I
m a
I
'mT'M f-I N 7
Y N I
I y n 1
I I
II_
]
1%
i 3
A -
A.
E IM F
y I N
__ E y
^
ma l I
~
I U
h d'
M Wa m
E T '
I
_.~
v._V M
_ _ _. i M -
w m m;
'M W
L_
Bu4 I
%i i
h-
.' E M'M "
7 1 -
t a,
_w mus wL mu
-I d
M
^
E-g
- W M
N:
M M.
[ p i.__*
M.
WT I
- ^
'l' n
EM s
a I
I
. m[
r m_m a ad I
a9
' N a.e ATi L
L 1
1 X
w I
M
. Dmw y
- m 1
_~_N I
1 I
i T
1 D I
'_1 1
aufD a
f A
u e
n es
.A
~
a.J m. w y
']
m, m
~ -
p B
m v-w
. y m,
M u
SBM M
m.M L
2MT 9
9 1i M
L W
A w
a 1
- o a
.- M La E
,u-,u W
M
=
\\
- m
.1 M
m s-m g
G
-a' a
g
- N P1. mbt 3
A rh h CI em 1
u "Y
M uunumT W
4 m
]
-!d Z'
I D n
I
-g IE1 L
L.h m.
hmma.
A_
i mLi a 1.
==End M
1 M
4M4N*
A gi
,p i(A e
a_M g
T 3.J 1.
2-U l
I 7'-
z-s
__ - K I E 1 h
I i
1 I
^ '
- ou
A. -
ma M RSIONS SKPS DESIGN ASSESSMENT BASIS CONSERVATIVE WITH RESPECT TO 4TCO DATA EFTECTS OF HIGH FREQUENCY EXCEEDANCE BEING EVALUATED -
CONSIDERED OF LIMITED SIGNIFICANCE A
l l
wP w-7_
wg
M.....
i
. m_
r
- m 2
W al
-.E, m
.M
.m I
N I
I
^
M I
E
'1 m ms I
m W
M m
. y Z.
I M I 1
n w -
7 i
E I
3
- W m
-3
. 1 M
_ _ Nj e
Mh M[
~MI
=
=m
_ e i E
~'
g l
_,m 2:
- mm -
-4..
I
.m-I v4.
hE ag 1 1 We'
%O3 I
I m I
s I
\\
u I
1 1
-l u:
u 1
.~
N.
.-f*%
x y
g C' J x
a==
X "E
Y
~.
N m
M e se w 9
$ W
".
- m a
T
].
i EZ m
T C M
m r
M A
ear' i. :
y
/
m.m Y
d N_7 M
I ZI I.
' ^
m T
e=
7"5 m
- L L
'M'_ "_.
sBK e
n.
Ama.
M n.
1 W TL 5
.m_
n.k m L
mI.
W W
r - - '
A L
'W
~
L 1
m 2
.m
.mo NT m
m
.'a
-E a
h
(
,w-
^
.C ws er w
L sL
-I m
r-g M "'-
M
=
w v' f
1 D L d 1
m.M'M3 D_
74 1 dBd
'h M
I N
af.
E.FFE
'31.2 M
IEI IA 1.hM r a
M4ANA
,w w-
,.m i-I J'im ru' M
-_J E 7
B'-
I l
l
]
'. M '
V' T
T I
L
_i
_m 4.
m I
a T,i j -
y Qo o
l oo 1
1