ML19343A539

From kanterella
Jump to navigation Jump to search
Forwards Addl Info Supporting Proposed Change 125 Re Core 12 Tech Specs D.2.c
ML19343A539
Person / Time
Site: Yankee Rowe
Issue date: 03/03/1976
From: Johnson W
YANKEE ATOMIC ELECTRIC CO.
To:
Office of Nuclear Reactor Regulation
References
WYR-76-31, NUDOCS 8011140571
Download: ML19343A539 (22)


Text

r 5)pplcmint No. 7

_(

)

y

.idrndum No. 1 Telephone 617 366-9011 no $.one

/<

NSN YANKEE ATOMIC ELECTRIC COMPA Y 2 4

WrR,6 21

/w wg 9

arp.

20 Turnpike Road Westporough, Mosso!hu>sep-T I.29 12T' a

01581

,YAuxes 1,

r;77;;

t

<C$(c-F{?*,,Cy.

Reguictory t

March e

k{C /' fg (C.n United States Nuclear Regulatory Commission Washington, D. C.

20555 94R

/gg (9

Attention: Office of Nuclear Reactor Regulation g

Subject:

Core XII Technical Specification D.2.c.

Eh

  • s/O

'l

Reference:

(1) License No. DPR-3 (Docket No. 50-29)

/f (2) Proposed Change No. 125, Supplement 7, FG dated February 19, 1976.

Dear Sir:

With reference to a conversation on February 26, 1976 between your Mr. Burger and our Mr. Cacciapouti, enclosed is additional information in support of Reference (2).

We trust that this information is satisfactory; however, should you desire additional information feel free to contact us.

Very truly yours, YANKEE ATOMIC ELECTRIC COMPANY j

HW W. W. Johnson Vice President COMMONWEALTH OF MASSACHUSETTS)

)ss.

COUNTY OF WORCESTER

)

Then personally appeared before me, W. P. Johnson, who being duly sworn, did state that he is a Vice President of Yankee Atomic Electric Company, that he is duly authorized to execute and file the foregoing request in the name and on the behalf of Yankee Atomic Electric Company, and that the statements therein are true to the best of his knowledge and belief.

M44

/

Armand R. Soucy Notary Public My Commission Expires September 9, 1977 80 111406 )

g o c

~ g.~,. 4u

A i.

t-l.0 INTRODUCTION The xenon multiplier was chosen to conservatively account for the maximum transient xenon peaking expected due-to. control rod motion at full powsr.

In the development of this multiplier, only control rod motion above.75" was considered, since rod insertion curve limits the control rods to this band during operation at the maximum allowable power level.

Control rod insertion below 75 inches requires a concomitant reduction in power level -below the maximum allowable value. The reduced load multiplier was therefore chosen to offset the increase in peaking which could be induced by an increase in power level combined with control rod withdrawal from below 75 inches to above 75 inches. The

'24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> hold at the reduced power specified by this multiplier allows sufficient time for the initial xenon caldistributio'nlo accommodate t

itself to the new power distribution.

~

The following approach was used in evaluating limits for this Technical Specification:

A.

Results for the Technical Specification were evaluated in

' terms of the ratio:

F (equilibrium xenon) max F (transient conditions)

B.

The F 's used were those for the assemblies containing the hottest GULF fuel rod (assembly location C-4) and the hottest EXXON fuel rod'(assembly location F-2).

C.-

The maximum allowable core power level was assu=ed to be 600 MWt, evenLthough the application of item C of the Technical Specification may limit core power to lower values. -

=

2.0 XENON TEST AND' COMPARISON WITH CALCULA1 TONS On December 30 and 31, 1975' a xenon transient tes't was performed at Yankee Rowe to verify the adequacy of the three-dimensional nodal cod 6 SIMULATE to follow' xenon transients.

The test was performed as follows:

A.

The plant was at equilibrium conditions at 125 MWe, 250 MWD /MTU, 1684 ppm boron and the Group A ceatrol rods at 83 inches.

Power i

was then r' educed to 33 MWe by inserting control rod Group A to 45 inches. This maneuver took 1.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />.

i B.

The load was held at 33 MWe for 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />.

C.

After 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />, load was increased to 115 MWe by withdrawing rods. This maneuver took 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> to co=plete.

]

D.

Full core traces were taken at the equilibrium condition, at reduced load and every six hours after return to power.

In accition, incivicual traces in ene asse=nites in locations F-2 and C-4 were taken every hour for 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> after return to power.

The SIMULATE cockup of the test was as follows:

A.

Core XII was depleted to 250 MWD /MTU, Equilibrium Xe was built in at 125 MWe (407 MWt), with Group A at 83 inches and 1680 ppm boron.

B.

Load was reduced in three steps; 363 MWt for 1/2 hour with I

~

76 inches, 249 MWt for 1/2 hour with rods at 62 inches rods at and 131 MWt for 1/2 hour with rods at 49 inches.

C.

For the next 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />, load was kept et 105 MWt (33 MWe) and the ro'ds were kept at 45 inches.

D.

- Load was increased in two steps; 19011't for 1/2 hour with rods at 56 incies and 336 MWt for 1/2 hour with rods at 72 inches. l

(

l E.

For the next 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />, load was hel'd at 374 MWt (115 MWe) and control rod Group A was held constant at 86.5 inches.

The comparison between calculation and measurement of the relative axial power distribution at equilibrium conditions before the test for the assemblies in locations F-2 and C-4 is given in Figures 1 and 2.

These assembly locations contain the hottest fuel rods in the Exxon and Gulf fuel assemblies, respectively.

The comparison of the relative axial power distribution at reduced load with control rod Group A at 45 inches is given in Figures 3 and 4 for the assemblies in locations F-2 and C-4.

A comparison two hours after return t'o power in the same assembly locations is given in Figures 5 and 6.

From these six figures, it can be seen that SIMULATE gave excellent agreement with the test results.

For 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> after return to 374 MWt, incore traces were taken in

' assembly locations F-2 and C-4.

Comparison of the calculated and measured values of F are presented in Figures 7 and 8 for these assemblies.

Again, this data showed excellent agreement between'the SIMULATE calculation and the measured data.

Based on the data taken and the comparisons made', it was concluded that SIMULATE could be used to adequately predict xeno'n transients.

3.0 DETERMINATION OF XENON REDISTRIEUTION MULTIPLIER To determine the xenon redistribution multiplier in Figure 8-4 of the Technical Specification, a number of rod motion studies were made between the rod insertion limits of 75 and 90 inches. The studies were made using the SIMULATE model of Core XII at EOL (O MWD /MTU),

MOL (6000 MWD /MTU) and EOL (13000 MWD /MTU).

l l

1

)

=

.~

.. =.

t Y

i.

Using the critical boron at each' time in life the following transient 1

was calculated:

l t

]

A._

Rods at 83", equilibrium xenon, 600 MWT.

i B.

Instantaneously insert rods to 75 inches with power remaining constant.

0

)

C.

Hold at 75. inches for 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />..From sensitivity studies with SIMULATE, it was determined that a hold between 6 and 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> l

j would give maximum axial ' peaking.

i r

D.

Instantaneously withdraw rods to 90 inches with core power remaining constant and follow transient for 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> in one hour. steps.

i j

For EOL, the ratios-of the maximum F, to the eqitilibrium values are given in Table I for the assemtlies in locations F-2 and C-4.

With similar data at BOL and MOL, the maximum ratios as a function of

]

lifetime were plotted.

For added conservatism, a straight line was l

l drawn above the data to.be used for the xenon redistribution multiplier

' in the Technical Specification.

Figure 9 shows the calculated data and the xenon redistribution multiplier presented in Figure 8-4 of the Technical Specification.

4.0 DETERMINATION OF REDUCED LOAD MULTIPLIER The reduced load cultiplier, Figure 8-5, was determined by typical transients using the SIMULATE model of Core XII at BOL (O MWD /MTU),

I l

MOL (6000 MWD /MTU)'and EOL (13000 MWD /MTU). All tra,nsients used the critical boron at that' time in life.

SIMULATE calculations were run L

as follows:

s d.

i s

-e--,w s-9 p

w sn-we

<,.---+,,ne-,

-e re

~ ~- -

-r w

1--


e-

('

A.

The initial power was 600 MWT with equilibrium xenon and control rod Group A at 83 inches.

B.

Power was instantaneously reduced to 450 MWt and control rod Group A instantaneously inserted to 45 inches.

These conditions were held for 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />.

C.

After 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, rods were instantaneously withdrawn to 83 inches and power was instantaneously increased to 600 MWt.

The xenon transient was followed for up to 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> in one hour steps.

To show the effect of this maneuver, the relative power at three axial positions in the core is plotted in Figure 10, node 3 which is 1/4 of the way up the core, node 6 which is half way up and node 9 which is 3/4 of the way up.

Figure 10 presents the ratio of the average axial power in'the node to the equilibrium value of power in the node, showing 1

l how rapidly the oscillation is damped.

For assembly locations F-2 and C-4, the ratio of the maximum Fz over the 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> to the equilibriue values at EOL is given in Figures 11 and 12 as a function of time. As can be seen, the ratio starts at a high value and decreases rapidly with time.

The inverses of the maximum ratios at BOL, MOL and EOL were plotted as a T in Figure 13.

For added conservatism, a straight line drawn below this data is given as the reduced load multiplier in Figure 8-5 in the Technical Specification.

Application of this restriction insures that the maximum linear heat rate during the xenon transient does not exceed the value in Figure 8-1 ef the Technical Specifications.

The requirement in the Technical ~ Specification for a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> hold came after a series of calculations to determine the optimum time at the e

(

I.

.The 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> hold allows sufficient time for the initial reduced' load.

-)

xenon maldistribution; to accot:modate itself to the new power distribution.

i The restriction ~in control rod location during these 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> assures

  • hat the return to the allowable fraction of full power will not cause additional redistribution due to rod motion in excess of : hat given in Figure 8-4.

4 4

I

)

i 1

4 4

4 4

4

)

e 1

1 5

1 t

4 i

4

EOL 4

'aatio of F ca.s Function of GrC.) A Position and fins in Assemblies F-2 and C-4 For 8 Hours During Rod In'sertion Group A Position Time Ratio of F to Eq Value of F:

(inches withdrawn)

(Hrs)

F-2 C-4 75 0

1.017 1.018 75 1

1.020 1.021 75 2.

1.027 1.027 3

75 3

1.032 1.033 75 4

1.034 1.035 i

75 5

1.037 1.038 75

~

6 1.038 1.039 75 7

1.040 1.041 75 8

'1.042 1.042 For 15 Hours After Rod Withdrawal Group A Position Time Ratio of F to Eq Value of F (inches withdrawn)

(Hrs)

F-2 C-4 vu u

1.019 1.024 90 1

1.006 1.009 90 2

0.991 0.997 90 3

1.004 1.010 90 4

1.017 1.024 90 5

1.024 1.032 9

90 6

1.032 1.041 90 7

1.034 1.044' 90 8

1.036 1.047 90 9

1.038 1.049 90 10 1.039 1.049 90 11 1.040

'1.049 90 12 1.040 1.049

'90 13 1.039 1.048 90 14 1.037.

1.045 90 15 1.032 1.038 4

--4 e,.--

n.-

,,7,.,y, i

COMPARISON OF SIMULATE AND MEASUREMENT IN ASSEMBLY F-2 EQUILIBRIUM 01.3TRIBUTION

~

l.40 guiiiiJs: e i e i e i i e i p i i i uus ; i e i i i u.u p.u u.u n.p.u.uu i e iiieieieiiu.o uiea;eiie>i.tu_ 1 40

=

=

5 5

1.30 L pr--

2%

.jI.30

'E N

5 E

5

^

1. 2 0 E.

. 11 20 E

i 5

5 1 105.

_il.10 5

i

=

l.005.,

_it.00 5

3 2

5 a-w 90 5.-

s 5

. 5 90 5

o E

5 m

. 80 E.

_i

_i.80 J7 c

<c E

5-1-

~

=

=

n x

.. / O :_.

ct

=

. i.70 g

w E

i

. G 0 5.

. i.60 n

5-5 (t

a

. 5 0 E.

w

. i.S0 a

M 5

5

  • 40 3 3

5-SIMULATE Group A at 83 l aches.

- 5*40 5

A Test Data Group A at 83 Inches 5

.30 5.

.5.30 0

5 5

. 2 0 E.

..i.20 5

5

.10 :

.10 5

5 5

5

. 0 0 (n,,,,,,, ;,,,,,,_,., rb n rrri r -t i-rri i r r r r h43 ri v r T rh ri rrrr i r i........ I r r i,,.... :......... i.00

.0 10.0 20.0 30.0 40.0 5 0. 0,-

60.0 70.0 80.0 90.0 CORE liEIGifT ( IN INCifES) 3/3/76

__.-_._____m.

COMPARISON OF SIMULATE AND MEflSUREMENT IN ASSEMBLY C-4 EQUIt_IBRIUM OISTRIEUTION

' I. 4 0.u tu.u...........

.... u u p..... u p i i i n n i. u.cp.c.u....
........ :.. u.. =. ; = = = u.u.i__1 4 0 1 30 il

_il.30

=

=

=

-5.

5 1 20 =

nl.20

=

=

'5 i

1 10 E.

it'10 5

E i'

1. 0 0 E.

il.00

_i 5

u_i 0 0 =5.

_i.90 cr

=

=

6 5

I

=

m

. 8 0 =.

a_.

g.80 f

g c

T 5

5 n^

m x

.70 5.

m 5

_3.70' 3

=

uj.

.60 :._

_3 60

=

n-5 i

.50 ::

C

.50 s

h8 5

SDfULATE Group A at 83 Ir ches I

cc

-E A

Test' Data Group A at 83 inches i

.40 :

.40

=

5

. 30 E.

3

. i.30

=

5 i

.20 E E.20 1

i

.10 3

. j.10

=

=

5 2

00"r....................

.............rrrr-...=.........=.............................i.00 9

.0 10.0 20.0 30.0 40.0 50.0.

60.0 70 0 80 0 80.0 CORE HEIGHT (: 4 INCHES) 3/3/76

~

~

1 C0liPRRISON OF Sit 10 LATE AND (1EASUREMENT IN RSSE!1BLY F-2 CONTROL ROD ud.r;P A PT 15 INCHES- '

I

! n3 p...u.a.u.i ;

.u i e a n.g.u. a. u.u u. p.u i

. i i. i.u. p.

i pi i i u

. ' '-t * ' ' ' ' ' ' ' '

E

.E.

E l.C3 5

. i a

l.

E E

2 5

1. L. 'l :

m=

l. 4 0.=.

{

E.

.g u

}

}

l

[

.m 1.30 8.

n

.i i

s h

f

,. =-

i

,g

-g ce a

t4J l

E 2

E o 1.10 :

-Tf c.

=

=

=

>r m

=

=

n

(

E 1.03 5.

a E

1 E

n x

=

. co C

2 h

. 9 7 E.

u a

w 5

E

{

E B

.80 2 E

1

~

e-g-

J o

.3 a

=

.70 3 i

E' w

cr-g-

s n

5; 5

60 SIFRILATE Group A at 45 Inches 5

^

y.

.-3

.I I

W X Test Data Group A at 45 Inches i

1

.50 aif-

-E a

E u

=

. 4 0 :r h

E

\\

/

n

. 3 0 E.

7 3

5 E.

20 dtr........

.............................'.I ii7..,,.'...................

E

.0' 10.0 20.0 30.0 40.0 50 0 60.0 70.0 80 0 90.0 a

CORE tiEIGtt f ( Iti ~IrictlES )-

i

'I

.w.

COMPARISON OF SIMULATd ANC' MEASURENENT IN RSSEMBLY C-4 CONTROL ROD GRCUP A RT 45 INCHES 1.10 pu.

it u..;.....................

......;..t.r......

=-

=

=

=

1 60 $

i J.

. 5:

2 1 50 !

5 E

.- 3 T-E 1 405.

.E

=

x e

j Ej j

1. 3 0 E,.

  • ,s

~

5 I

=

c 1.20 5.

o:

tsJ

-3 '

i

c 5

2 1 10 E_..

.r 0

  • n o_

B i

m a

e c

c ' 1.00 5.

}

E-a

=

x-5 i

.s3 5 t.J,

E

_5-(

5 5

i

[

60 5 i

a:

3 g

a

.=

e'r'..70 s.

s u

=

. 60 5..

SIMULATE Group A at 4.'i Inches 3

_5

.i 2

I 1

3

.bg 3.

X Test Data Group A at.55 Inches

,g 5

5 3

2

.40 3.

.a 3

5:

a g

. 3'] }

4

~

2 0 1 r r r rr i... l......... l......... !.

... i 1........ l......... l......... l.........

5 0

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80 0 90.0 CORE 11EIGP" (IN' INCHES)

9 COMPARIS0t10F SINULATE AND NEASURENErlT IN ASSEMBLY F-2 2 ff00RS AFTER RE fuRrt TO POWER 1 4 0 fu e i

.u; e i i > >

i_ l i i i i uu.i.p i i ut.u.s.;.us.uu.up.u

> > i n.; i

. = = a i p.u i.i i i ui i n's a a i t.u 1 4 0 2

2 1 305.

_it.30 i

.. N l

31 20 1 203 a

3 I

1 105.

. 51 10 5-3 5.

i c

. 1 00 1 00 j.

p 3

90 =

=

x

_E.90 w

1 5

i m

r

. o oo

.80 :

.80 c

a.

2 a

5

.x Us 3.

x

.70 :

.70' x

5

- w.. 6 C :.

.5.60 5

. ~, _

5 x

2

_3.50 a

. 50 E.

w E

i SIMUL'TE Group A at 86 Inches i

A A

Test Data Group A' nt 85':'nches g.40

.40 -

j

=_

i

'l

.30 5.

.i. 3 0

~-

20 5.

. f.20.

.10 5-U.1'O 3

i;

=

2

. 0 0 4,,,,,,,,,:,,,,,,,,, :,,,,,,,,, :,,,,,,,,,:,,,,,,,5 0. 0rt m

,,,,,,:,,,,,,,,,:,,,,,,,,,:,,,,,,,,,=.00 0

10.0.

20.0 30.0 40 0 60.0 70 0 80.0 90.0 CORE IfEIGilT f: N ItiCilES 1 l

3/3/76 t

g

>n

~

C0tiPARISOft OF SIriULATE RtiD ME flSUREt1EttT IN AS'iEl1BLY C-4 2 tf0URS RFTER RE" URN TO POWER l. /.9 Ag g g_gAgg gig e e e a e e e a e g_g e a e e a e e J,g a e e a e a Lt.2 g_Lg_g.g_3 J L Lg*,g_g,tt,Lga,J J.,1 g a e a e a e e e J,g.LLs.t.e e e a a g e a a a e e a a a l_ t. 40 5

i 1.30 E 21 30 E

i

=

=

=

1.20=

1.20 i

5

~

^

5 i

1 105.

-_E1 10.

E 2

=

=

=

t. 0 0 =E.

51.00 5

E x

=

=-

=

to

. 90 1

_E.90 3

3 o

s i

.?

_s

=

.i.80

'2

.60 i

=

n a.

5 5

o

.70 cr

=

.E.70 x

5 i

uj.

=

=

.60 =

_f.60 6-5 I

cr ia

=

. i.50

. J O 2.

=

cc 2

i

. 4 0 E.

SufdLATE Group A at 86 Ir.ches

-j.40

.E A

Test Data Group A at 85 inches i

.30 E

_i. 30 5

E

=

20 3 i.20

=

3 i

=

=

.10 :

. L O 5

i 9

i 3

. 0 0 :"1.........................................=....r.......................e......................00 0

10.0 20.0 30.0 40.0 50.0 -

60.0 70.0 80.0 90.0 CORE IfEIGttT ( :tt INCilES )

3/3/76

COMPARISON OF FZ IN AUSENULY F-2 SINULATE VS TEST DATA SIMULATE'OATA FRON ORO-YR-401 1 4 0.:_ - -

i

..___2_.

2 i_. 4 _..

t

~

1 35_.

F m

g-c w

x

.=

=

x

=

x n

x x

m

,a r.a 1.30__

[x 5

SIMULATE

~

X Test Data 1 05._

1 20

.00 5.00 10 00 15 00,

20 00 25.00 30.00 TINE (HOURS) 9

i c.

li COMPACIS0tl 0F FZ IN AS$En8s.Y C-4 SINULATE VS TEST DATA l

SINULATE DATA FROM OAO-YR-401 j

i 1._.a_._,

t.40,

1 4

1, L

m o

ei

.i-.

%g 1 35_.

F i

.1 m

?

>=

,e

- 00 4

C.

. n 4

fD i

s'

-~

m w.1 30__

.4 M

Jg N

y _.

6

_.II-t

'y W

g x

4/

l{

4 e%-

4_

1 25 SIMUJ; ATE M

Test Data q

p 4

g 5 00 '

'10 00'

'1k 00'

'20 00'

'25 00'

'30 00 1 20 t

T[NE fHOURS) 0 e

+

~

./.._

Figura 9

4.,...,4 o

c ts N.

..i..... j.............

4....

.,y n

. _ _..... _.,_...1._.

_. _...... _. _. _........_.p..__.__-_.

...-}._..__.

.4

y. ~....

4 n

_ _......1... 4....

_ y

. p_

. _.1 _.). _.. -.1

__.t__.5._s__.

.. _... _..._. L

.. _,._. _,... _. v. _...

.l._..__.._._...._._._..

+._

.. 7_.

. 3.

_... _. _...._..,.._.._.._,.. }

..t.. _....... _... _.._-..., _.......,.....

_4...

. ~

g g

..._.1.__.....!........._.... _....._..J.

... _. _ ~ _ _._... _..............!._...

-4..

_..L _

_. _....;._..._1_.. } _...

.... _......._1._...

.3.........~..

I_......_J.

.._.1 :3 _-

_.,....,...._..__....__.{_......+_

..t _....._... _ _

t_-..

- _1..

1..__

_. _.a._.u._._-.._-._n..__

..r.._.. _

_z_c -,; __. _ _. _} _...... _. _ -. _l._.......j :

.[._......

O4

_....,_..3

.4-_

1_.__..

t_.._

_ L _.._.._..__.._.,

.g.

~.~_'-1__

6 1

.'\\___,_

.. _ _ p _.. ]..._. _

.___.g._-.

--.4

__.4 i_

!_.,,.~___

_(...,..._

9 G

cc

.v4

--.. _ ~ _

g

.a 4 _

1 C.

._L..._._

_.T_--..._. 4..._. 1._ _.._. _

..-.4 M..

.a.._.

m g..

'd w

g..

..__.4 n

g g

_.4 _. - _ _ _.__

_-._\\_._.,_._.___....,._._

g 1

s c

i O

4_._,u_..______.._..

_ _._....___Q_....-L._..

Q g

w

,e

__._._1_........._.._3 y

.... _... _....... _.9

_y_.___._

y e

o w4

t. _. 4 _.._1_ _ -. 4

_. _... _..-.~1

.... _ _ _ _.. -. _.... __ _.1_

._......_ 3 _.__.

o 2

y p, _.

_J.

2_. _ _.

-4 4_

g to v

4

.a.-

g y

u

_.__i g

C v.---

a u

g

___1_.-..___.,.,-.

rs c

_ -. - - - _.._._....t--.

C

p. _...

4 9

g; m..

o c,

rf) g C

..a T

_.I

~~.

O

.4_~.'.~.-t_---'".---*-

A y....

y C

u 4._

.._....~._.-

C I.. _

4..

.I._....

4_....

C U

..J-._..,._-...4....

._.4._

w i_.

g g

p

[.4

..........,....... 4 _..._.. _...

..f

.......e s...

g y

U I>

.a aN

.--.1.-.

.t-.~....... ~. ~.

1.-.

...-.1

.s C

O

... - ~

O 4

.. _.. _...... -. N

._. _.l.. _ 4

.3....._...........I.._.._..I.__.....I..4...

6.

.. e..

3

^

v

.__........._.3 y _.

.._y

.. _.1.

i -. -...

.....l' ___.6..._...

......._q.

. _ _._.....7*_._.J_.... _.

.4._.

3

..._.._..,..-._.4.._......-....4._.......

._._.._L_..

........ _.. _.. r _.. _ _.

_4.._

. 1...

_4

......l._...........i_..!..._,.............._.......

......l.

n....., o t

c0 r%

%.D L9 4

M N

o'-4 s

o.

o.

o.

o.

o.

.v4 o

o

,_4 e4 e4

~4 A

l

.ta ndTMng uouaX Pm MINAL

4 l

1 j

' CORE XII EOL RATIO 0~ AVERAGE POWER 600-450-G00 8

OATA FR01 OAD-Y't-407.418 1 25

........;.........:.........:..iu u.i__p2.......;.........:.........;.........:.........

1 20:.

E 1 15:-

Node 3 (22.5 In. from bottom c - core)

- 1.10 ~

j r

o Node 9 (67.5 In.)_.

1 05:_

6--

ge N

p N-

~

1 00 ~

~

m A

-t 2

y hS

.95 b.

.h h F

c ia E

un:.

O

~

b m. /g $

y CP y ia 90 j e

Node 6 (45 In.)

-e R-

% cc g: -

g

.as:_

~

_;f f~

~

\\D'

~

With Doppler Feedback

t. -

~

K@

.80 :.

cn r.a

\\

4 D

. 15 WJ1.0 t

"lN P t

.10 -......................................

r,..............

rrn.................

.t?

10.0 20.0 30.0 40.0 50.0 60 0 70.0 80.0 90.0 100.0.

TIME (HOURS) 3/3/76

CORE X11 EOL RATIO OF FZ'TO Eil VALUE IN ASSEMBLY F-2 600-450-600 DATA FROM DAD-YR-407.418 1.20 i

I

~

~

~

~

~

J 1 1 0.1 4

n JC s

l 3

O-

+n w

1.00C-cn

~

N N

~

W4A 1.?Q

_c=.f a

..GZ

~' G!ba-p.3-.-

WM

~

90..

~

C'ja #. 9 4,

t sd

~

TArag WO';d/

~

~

.80

...........................................i......................-

0 10 0 20 0 30 0 40.0 60.0, 60.0 70 0 80.0 90.0 100.0 TIME (HOURS)

Figure 11

' L....

t i t i e i t t I t t 't I I t t I f I t t i I I I e it t I t I t i t i 9 t.

1 -

y

.a

.o

.o

.a>

- o o

o o

j

.o.

t m

j

.o i

50 o

o a

. o, s

u

.o

.o o..

r 1

go.

m-:

o m*..-

cr

.o 3

.e Zo-m, i-m we-x o >. -

i o

o o cr o.

x l

>T-.

..o O.

.tD s.o LAJ w e ]1 r

o-ce:

r w u..

..o se..

u. w.

.o e-

u. o -

o o

-w

o cr x

.o

.p) g o

W

.o y

...o y

-N e

o o

.o

...o

-o.

.o o

o o

o N..

o.

a.)

CO.

3070A 03-01 Z.i.40 01188 4

e

(

- _ -. _ _ = _ _.

_ - ~

Multiplier for Reduced Power as a Func:: ion of Exposure 4

rr m+ l. n

. '. tj q..,i

,t. li l

[l,t '[ jr I -}j7,7 p !-+ ry

-[ lr:

l-

[h l

7'1,'rri'ji j

l-ll1 Tr ip iri'Tri ltp tt::

3 ih

i. t, p
:h llkh.

l'l::.

lp:.: a.

a jl t

,e -:

.p:

t q

i i

ef

p;
n. :.

e

n 1

il' l'

.ru

! l-1 r i

1 n.;{.[.[:

l.1

. I' '-

I I

I,i p-n l

i j I

. nn i

n 4

l ;i l

i i

P 1.00 "j

b g

l l:

I I hlI l' Inl, j,

,ll

u. ;

tr

1; er "N l:ja

- + +

I O

l ll l d!

3:

I l1 I j i

O

. Calculated Data ti.!.-

l i

. :t 1

)

- %4 t

    • i l-f

.I l! ! hl l:l' 2-

l-l h

P

!!l lJ

!!jt.i I n,:IN' l l Mh;l

, li Hl ;l-l 9

4 ti d'

!)i 0.98 jl"W tlt f.:t j

t' h.yi yf i

For Tech. Spec..

t 4:

pt!!' il]

FlL L-.

I ti O.

h

?! 9 ljljl]'il'l.j-ll,j.p; t:

l

',l

!' ;db

!l ; x :l' l

l; [i 9'

t;i; 'i : p::-!l!:.'

':;;! :p:.

th ip i

ni

-~l:

p*

l;

j. 1 l l-' -l'.i ",; i
u :,-

,j n

i L

0 96

". : o::'l: 2 M

a

-i d

';;"i d su

=

-d I<

' + h*in t h-t

[l; p

in:

N

.l l

I i

ici m: n::

8 i i l

lli ih ip:i h::

"u n n

t- :n.

tu

!!!: tH-

...r:t

.a

ll
l:t

":; t1

~:

k g:m ao 1 r i : 1 I,"o 'tfl

. !i.

n,J i

nn nn 2:

.H: e p' ;j,: P:p Wl1 l n.

3 nr

@~'t:a.i. :.p-c o

y.s i'

h

- l<l 0*94

=

2--

"A' d!

l: 2 e

'i

'l

--i! jill '[:!j!: l i}

1: A

IIj, t'j
n J'

s4 3:.

,.; ill ip; i'i I"I li', (.). !;F r+g i

.i;; j:!;

i

@l.t j};!

l

't

! !.!li!!- :T: li!!

i:

'j:: :fr :!:

!! Pli

.p ur u.

@i II: I i I 4 ii $"T:

!Id l:

"; l. !'p"d.

Il n

.p W

j]

1

", l'

'l l l"r!!I' !'l l!

p t

i.

i !! lli! T hll:..lll! lli: b d

!!1 b

l' A,

I.p*h'p:

e <.: -

w 0 92

.t '::

I i-l ap i

i I

*1 N.

i.-

d'.1jp N

!l,j. slli :ll l' 3

i u

.j :.

a:; :!:;

a.y:

n:..:
t u

i

l: :j 1[j

.' ;l l 1.

t, i

...n..

.I.

,u

p:y fV l" i

t.

h

in L:.
.p: -
j.

t Nl p.,

!...:.l ; "L.i Ll.!a[g I ',

h A.

[;:

it.

1.p I.I;:

p: ":ip: :{: ml':

t-t
..:t w

i

!:nl I. p-1-

6 u.p Qp.1.

s n

i p

.L

-y; w

.a

p. ': n4:;

s p"

in ta i v

.u U:

j

o. 0.90 I

plap j

l.

i

-lh: !, l. [J.J

- i.i, I

lg I i I.

. s

' l n:!.i, of g;

. :. ::i.-

l n..n; ;d::.. h.t :

e.! :

. ~. n.

..t i..

L.

i.

ij u

: e l

M 1

I i

t 1

u.!.l

-.I :.

il3l.

..i.!.l

.. i.l.t '..I..id i

1]Il 0..

D l:ih:

t

.p h.,o r

3 8l x

s,.m

,lf.

. g l

. l, l,l1 !.l! lo. k

.7..!.:

w _,,.

O.88 r

.,i

.. 7 7

,n....I

. t.

i

,. :!{ :i

,Ihi

gb N".

n..

a l

ilt

.:1

.l.,

C3Lrgrq W#

I: l{!: d! '.!!

l.. :.I

]!' l

! l5 f!b l.p Id! !!!!

. a.

iii

^

il i f!h.3-+llh' rty! II:: g;,:g

.e

~

j

} id' se t il d.! ai!! i,h.

.h.

.,i

.. [ !h !!:..-

U H: "

'i i

1.

nesm 0.86 e

.- [

L'

.j:--l i-:t l

.,;;;plI l

7 m

n l l n..

j,

b h

.l.

t-u n

, "j;

a i;;,,

I!.:

a{ : ";

P 1

a

af Ii.!.

.o.

. ;d;i, F:::

{:

n.

t!]

,a u:: :

uit N

,] il'.;

!,. n:.

M: 7 a

. J.

.h:!}U ;n d:t Ll! !L i

i..

d. n': r. -i,l E l. *

', d:i: "d:-

t.

4

.n c ummir m 0.84 1

!!.i e

i J!

0 2

4 6

8 10 12 14 Core XII Fuel Exposiure (1000 MWD /MTU)

I. "

3/3/76 e

N R C p r;'.+4 195

-(.

u.s. NUCLE AR REGULATT.Y C

. ilS$lON DOCKET NUM BE 7 12 7e >

gn_pg NRC DISTRIBUTION r:R PART 00 DOCKET MATERIAL To: F~

U.S.N.R.C.

, FROM: Yankee Atomic Elec. Co.

o^TE o' DeCuuENT Westboro, Mass.

1 1 7A W.P. Johnson DATE RECElVED 1 R 7A O qTTEa pNotoRirED

  • ao=

INPUT FORM NUMBER OF COPIES RECElVED I ] O:~. IC IN A L C UN C LASSl p lE D o,,.

.m g y,--. r w QCOPY y

DesCmPr ON Ltr. re. conversation of 2-26-76 ENCLOSURE Ltr. notarized 3-3-76...trans the following..

Additional information in gegard to Proposed Change # 125, Supplement 7 dated 2-19-76...

(40 Cys. Received)

_.....J ACENOWLEDGED n,

donor nm oyg 1 wu PLA!TE NAME:

Yankee Rowe SAFETY FOR ACTION /INFORMATION ENVIRO SAB 3-8-76 ASSIGNED AD :

ASSIGNED AD :

ll.# BRANCH CHIEF :

Purple W/6 BRANCH CHIEF :

~

PROJECT MANAGER:

PROJECT MANAGER :

7EI~C. AS5~T. :

Sheppard LIC. ASST. :

~

ii INTERNAL DISTRIBUTION

-T AEG FILF)

S*UiTEMS SAEETY PTANT RYST~tG FWTun 'rren 1

[_g NRC PDR HEINEMAN TFnESCn ERNST l

L-I__6 E G)

SCHROEDER BENAROYA BAL_ LARD 6

l 2 DELD LAINAS SPANGLER I

! ! / COSSICK & STAFF ENGINEEELNG IPPOLITO MIPC MACCARY SITE TECH i

CMiE KNIGHT OPERATING REACTORS CAMMILL MIMMER SIHWEIL STELLO STEPP

'L__J ARLESS

,,PAWLICKI HULMAN OPERATING TECH

.i PROJECT MANAGEMENT REACTOR SAFETY u-EISENHUT SITE ANALYSIS BOYD ROSS

. -SRA0 VOLLMER v

P. COLLINS NOVAK

-BAER BUNCH i

,.J.

COLLINS HOUSTON ROSZTOCZY

-SCHWENCER v

l PETERSON CHECK m

CRIMES KREGER MELTZ HELTEMES AT & I SITE SAFETY _& ENVIRC SKOVHOLT SALTZMAN ANALYSIS t

RITfBERG i DENTON & MITLLER EXTERNAL DISTRIBUTION CONTROC NU'.iBER d-LPDR; Greenfield. FA.g s. NATL LAB BROOKHAVEN NATL LAB

, E TIC REG. V-IE.

ULRIKSON(ORNL)

-f,

-NEIC LA PDR

,/'

A_SLB CONSULTANTS 2194

_ ACRS 16NhtVpfg/sgrr 1