ML19340D744
| ML19340D744 | |
| Person / Time | |
|---|---|
| Site: | Oyster Creek |
| Issue date: | 11/14/1980 |
| From: | Finfrock I JERSEY CENTRAL POWER & LIGHT CO. |
| To: | Grier B NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION I) |
| References | |
| IEB-80-11, NUDOCS 8101050263 | |
| Download: ML19340D744 (120) | |
Text
.
fo'*s OYSTER CREEK NUCLEAR GENERATING STATION a
~
we y ;jea"f g 5j g (609) 693-1951 P.0;B0{31g3
- FCRKED RigR e NEW JERSEY
- 08731 c.,ne suc we s,*"'
November 14, 1980 Mr. Boyce H. Grier, Director
'.'4.,L-"C Office of Irspec-J.on and Enforcanent Regicn I U. S. Nuclear Regulatcry Car:trissicn
~
631 Park Avenue King of Prussia, Pennsylvania 19406
Dear Mr. Grier:
Subject:
Oyster Creek Nuclear Gerarating Station Docket No. 50-219 I. E.Bulletin 80-11 Our letters of July 7,1980 and Septerier 19, 1980 supplied the prelimirary inform tion as. @.ed by I. E.Bulletin 80-11.
In accordance with the request Zcr informtien described in iten 2b of the bulletin, the attached represents the majority of cur response. %e firal reevaluation of tra design adequacy of all identified walls to perform their intended function under all ;cstualted 1mds and load contanations is hcwever, ret yet ccr:plete.
t
'Ihe delay in meeting our criginal schu*nle, enclosed in our July 7,1980 subnittal, is attributed prirarily to difficulties encountered in the develogrnent of the reevaluation criteria. me final reevaluatien for all walls will be subnitted on or before May 1, 1981.
If additional information or further clarification is needed, please contact Mr. J. Knubel of my staff at 201-455-8753.
Very truly yours, f
Mh).
u "Ivan R. F nf* Jc, r.
Vice Pres
't Swcrn and subscribed to before me this /u' day of /',cs.i d t, 1980.
Y0 N Notary Puolic cc: NPC Cffice of Inspection and Enforcement Division of Reacter Cperatiens Irspection Washingten, D.C. 20555.
IFF/lcp 1922 F'
-1 C E O 803' Q
Oyster Creek Nuclear Station Reevaluation of Safety-Related Concrete Masonry Walls NRC IE Bulletin 80-11 GPU Nuclear Corporation 100 Interpace Parkway Parsippany, N.J.
07054
I l
l TABLE OF CONTENTS I
En closu r e 1 - Summa ry 2 - Criteria f or the reevalua tion of concrete mason ry walls 3 - Justification for the criteria for the reevaluation of concrete mason ry walls 4 - General arrangement of block walls 5 - Configuration of walls I
6 - Function of walls 7 - Floor responses spectra - Reactor Building j
8 - Wall No. 18 - Reevaluation and calculated e
stresses 9 - Construction practices (masonry wall specification) 10 - Schedule i
l l
l t
l l
l l
)
I l
f 1
l r
f e
ENCLOSl$E 1 l
l l
l l
\\
-1
SUMMARY
1.
Reanalysis Status In the sixty day report we had identified forty-seven aafety related walls that were required to be reanalyzed.
Thereafter, for convenience, wall no. 36 had been incorporated in wall no. 42.
Con sequen tly, there are 46 safety-related walls that require reanalysis.
In the course of the plant survey, it wa s determined tha t minor praemptive modifications to 19 selected walls would remove the potential missile hazard to the vital systems.
The removal of ef fected sections of these walls will preclude further reanalysis.
Howeve r, the reporting requirements for the Bulletin's 180 day response will still apply.
The block walls included in this scope a re wall no. 's 1, 3,
4, 9,
10, 11, 12, 13, 14, 16, 34, 35, 37, 38, 39, 40, 41, 46 and 47.
The preliminary reanalysis o f the remaining 27 walls have been performed.
Only wall No. 18 nas been completely reanalyzed.
The results of the reanalysis will be discussed celow.
2.
Prelimina ry Analysis The results of the preliminary evaluation for twenty seven walls can be classified in three categories.
3.
Walls which appear to be difficult to qualify with-out some modification.
Block walls included in this category a re wall no. 's 8, 29 and 30.
Tnese walls have been reassigned to be high priority for reanalysis, b.
Walls which are marginal.
These are walls for which calculated stresses exceed the allowable limit wnen modeled conservatively.
These walls are wall no. 's 15, 17, 19, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 42 and 44.
With accurate modeling and detailed reanalysis some of the walls are expected to qualify.
l These walls have also been reassigned to be high priority for reanalysis.
c.
Walls which should qualify.
These are walls for whic'.r calculated stresses fall nea r or within the allowable t
l limits even when modeled conservatively.
The block walls in this category a re wall no. 's 2, 5,
6, 7,
31, 32, 33, 43, and 45.
I 1
___.~
In the final reevaluation of the walls, considera-tion will be given to the seconda ry ef fects such as penetrations and doorways, attached equipment loads, and t he effects of nigher wall response modes beyonc the fundamental.
3.
Final Reevalua tiqn The results of the final analysis for wall no. 18 show enat the calculated stresses are below the allowable (see enclosure 8).
The mathematical model in this i
analysis had assumed pinned at all four sides of the wall.
The north vertical boundary of the wall is interwoven with clock wall no. 17.
To be consisten t with this design assumption, boundary supports will be provided at the top and south bounda ry of the wall.
4.
Reevaluation Criteria A reevaluation criteria for concrete masonry walls is provided in enclosure 2.,
This criteria document has been used for evaluation of the clock alls.
The main topics in this criteria are:
Governing codes, load and load combinations, Materials, Design allowables, Analytical techniques and alterna-tive acceptance criteria.
5.
Ju s tif ica tion for the Criteria The jusitification for the c'yiteria for reevaluating the concrete mason ry walls is in enclosure 3.
6.
General Arrangement of Block Walls The location of the walls including wall identification number, floor elevation and the plad structures are shown in enclosure 4.
7.
Configuration of 31ock Walls For configuration of the walls, specific location and the type of material see enclosure 5.
1 3.
Function of toe Walls Tne f unction of the block walls including the reevalua-tion status is shown in enclosure 6.
9.
Floor Response Spectra The design floor response spectra for block wall re-analysis are shown in enclosure 7.
10.
Construction Practices is the original plant design masonry specification tha t outlines the requiremen ts for the material, codes and standards, testing and installation for the concrete masonry walls.
11.
Schedule 0 shows the schedule for reevaluation of the remaining walls.
This sphedule is based on experience to date performing the reanalysis of the concrete Block walls.
1
(
r I
i l
l l
t e
ENCLOS W E 2 l
l 1
l
j CRITERIA FOR THE RE-EVALUATION
}
OF CCNCRETE MASONRY WALLS OYSTER CREEX NUCLEAR POWER PLANT I
I t
l l
Prepared for GPU SERVICE CORPORATION Parsippany, NJ 0
l i
by COMPUTECH ENGINEERING SERVICES, INC.
2150 Shattuck Ave.
Berkeley, CA i
l l
t i
October 1980 l
l 1
l Co@HJULIC@@N
i i
CC*lTE'lTS Page 1.0 GEt4ERAL,...........................
1 l
1.1 Purcose 1
i 1.2 Scope 1
i i
2.0 GOVERilIttG CODES.........................
1 3.0 LOADS At10 LOAD CCMSIflATI0t15..................
1 3.1 Servic'e Load Conditions 1
]
3.2 Factored Load Conditions.................
2 3.3 Definition of Terms 2
4.0 MATERIALS...........................
2
~
4.1 Concrete Ma sonry Uni ts..................
2
)
4.2 Mortar..........................
2 4.3 Grout...........................
2 4.4 Horizontal Joint Reinforcing...............
2 4.5 Bar Reinforcement 2
5.0 OESIGil ALLOWABLES.......................
3 I
5.1 Stresses.........................
3 5.2 Damping 4
i t
j 6.0 AtlALYSIS AftD DESIGil............
4 6.1 Structural Response of Unreinforced Masonry Walls 4
6.2 Structural Response of Reinforced Masonry Walls 5
6.3 Accelerations......'................
8 6.4 Interstory Drif t Effects.................
8 6.5 In Plane Effects.....................
8 6.6 Equipment 9
6.7 Distributio, of Concentrated Out, of Plane Loads....
10 7.0 ALTERt1ATIVE ACCEPTAtlCE CRITERIA (OPERARILITY.).........
10 7.1 Re i nfo rced Ma s on ry....................
10 7.2 Unreinforced Masonry...................
11
$55 l
l l
1 i
l l
CRITERIA FOR THE RE-EVALUATION OF CONCRETE MASONRY WALLS FOR THE 0YSTER CREEK NUCLEAR POWER PLANT 1.0 GENERAL l
1.1 Purpose This soecification is provided to establish design requirements and criteria for use in re-evaluating the structural adequacy.
of concrete block walls as required by NRC IE Bulletin 80-11, Masonry Wall Design, dated May 8, 1980.
1.2 Scope The re-evaluation shall determine whether the concrete masonry walls will perform their igtended function under loads and load combinations specified herein.
Concrete masonry walls not sup-porting safety systems'but whose collapse could resul4 in the loss of required function of safety related ecuipment. or systems shall be evaluated to demonstrate that an SSE, ac?.1 dent or tornado load will not cause failure to the extent that functions l
of safety related items is impaired. Verification of wall adequacy shall take into account support condition, global response of wall, and local transfer of load.
Evaluation of anchor' bolts and embedments are not considered to be within the scope of IE Bulletin 80-11.
2.0 GOVERNING CODES i
For the purposes of re-evaluation, the American Concrete Institute
" Building Code Requirements for~ Concrete Masonry Structures" (ACI i
531-79) will be used except as noted herein.
l l
3.0 LOADS AND LOAD COMBINATIONS The walls shall be evaluated for the,following loads.
3.1 Service Load Conditions 0+R+T+E l
- ' - ~ - -
3.2 Factored Load Conditions 0 + R - T + E' 3.3 Definition of Terms 0 - Dead loads or their related internal moments and forces including any permanent equipment loads.
R - Pipe reactions during normal operating or shutdown cenditions, based on the most critical transient or steady-state conditions.
T - Thermal effects and loads during normal operating or shutdown conditions, based on the most critical transient or steady-i state conditiens.
E - Loads generated by the operating basis earthquake.
E'- Leads generated by the safe shutdown earthquake.
l 4.0 MATERIALS 1
The project specifications indicJte that materials used for the i
performance of the work were or@inally specified to meet the following requirements.
4.1 Concrete Masonry Units Hollow concrete blocks:
Non load bearing C-129 f
Load bearing C-90 4.2 Mortar ASTM C-270 Type M 4.3 Grout None specified.
4.4 Horizontal Joint Reinforcing Extra heavy "Dur-o-wal" - where shown.
4.5 Bar Reinforcement ASTM Designation A15, intermediate grade, deformed bars per ASTM 305.
(Grade 40) l 2
kTC=
1
I 5.0 CESIC ALLOWABLES 5.1 Stresses Allowable stresses for the loads and load combinations given in Section 3.1 will be as given in this section based on the folicwing compressive strengths:
Hollow Concrete Units fy=1:00 psi (load bearing)
Hollow Concrete Units ff=400 psi (non-load bearing)
Mortar M, = 2500 psi Stresses in the reinforcement and masonry shall be computed using working stress procedures.
The allowable stresses for service loads given in Section 3.1 shall be the S values given in Tables 1 and 2 for reinforced and unreinforced masonry respectively.
For walls subjected to themal effects the allowable stress shall be 1.3 times the S values given i
in Tables 1 and 2.
The allowable stresses for the factored loads J
given in Section 3.2 shall be the J values given in Tables 1 and 2 i
for reinforced and unreinM rced masonry respectively.
,)
i 6
.=.._.
5.2 Damoing The damoing values to be used snall be as folicws:
Unreinferced Walls 2" - CBE 4'; - SSE Reinforced Walls 4" - OBE 7", - SSE 1
6.0 ANALYSIS AND DESIGN 6.1 Structural Response of Unreinforced Masonry Walls 6.1.1 Out of Plane Effects The following sequence of analysis methods will be applied.
1.
Walls without significant openings shall be assumed to be a simply supporsed beam spanning vertically and/or hori-zontally and the natural frequency shall be determined.
A fully grouted wall may be evaluated either as an uncracked wall or if it is grouted it may be assumed that the mortar joint on the tension side is cracked and the mor. tent of inertia calculated by neglecting the mortar an9 block on the tension side.
If the latter is used the grout core tensile stress is evaluated.
l 2.
The maximum moment and stress shall be determined by applying a uniform load to the beam.
The maximum value of the uniform load shall be mass times accelerati a taken from the response spectrum curve at the appropriate fre-i quency for the fundamental mode.
If only one mode of vibration is calculated the moments and stresses shall be multiplieci by 1.05 to account for higher mode effects.
l 3.
If the calculated stresses exceed the allowables or the wall has a significant opening (s) the wall shall be modeled as a plate with appropriate boundary conditions.
For a multimode analysis the modal responses shall be com-bined using the square root of the sum of the squares.
4.
If the calculated stresses exceed the allowables and the wall is multiwythe steps 1,'2 and 3 shall be repeated using composite action if the wall contains a verifiable collar joint.
5.
If the calculated stresses exceed the allowables in step 3 for a single wythe wall and step 4 for a multiwythe wall the wall will be evaluated for operability.
@@H]EGE@B@)D
6.1.2 Frequency variations in Out of Plane Uncertd nties in structural frequencies of the masonry wall resulting frem variations in mass, modulus of elasticity, material and section properties shall be taken into account by varying the modulus of elasticity as follows:
Ungrouted Walls - 1000f; to 600fy Grouted or Solid Walls
- 1200fy to 800f; If the wall frequency using the lower value of E is on the higher frequency side of the peak of the response spectrum it is considered conservative to use the lower value of E.
If the wall frequency is on the lower frequency side of the peak of the response spectrum the peak acceleration shall be used.
If the frequency of the wall using the higher value of E is also on the lower frequency side of the peak the higher value of E may be used with its appropriate spectral value provided due consideration is given to frequency variations resulting from a.ll possible boundary conditions.
6.1.3 In Plane and Out of91ane Effects Provided both the allowable stress criteria for out of plane i
effects and the in plane stress or strain criteria are satis-3 fied the walls shall be considered to satisfy the re-evalua-tion criteria.
If either criterion is exceeded walls will be evaluated for operability.
l 6.1.4 Stress Calculations All stress calculations shall be performed by conventional methods prescribed by the Working Stress Design method.
The collar joint shear stress shall be determined by the l
relationship VQ/Ib.
l 6.2 Structural Response of Reinforced Masonry Walls 6.2.1 Out of Plane Effects
.The following sequence of analysis methods will be. applied.
1.
Walls without significant openings will initially be assumed to be uncraclied and Steps 1 and 2 of Sec. 6.1.1 will be followed. Note that either.or both the uncracked section.or the section neglecting the block cnd mortar on the tension side may be used.
If the latter is used the grout core tensile stress is evaluated.
If the allowable stresses for an unreinforced wall given in Table 2 are I
5f.)
(~=
t
exceeded the wall will be assumed to crack and the ecuivalent moment of inertia for a cracked section given in Sec. 6.2.2 shall be used.
If the calculated stresses exceed the allowables of Table 1, Step 2 shall be used.
2.
For walls with openings or those exceeding the reinforced stress levels in Step 1 the wall shall be modeled as a plate with appropriate boundary conditions assuming the wall is uncracked. See Step 1 for section properties.
If the allowable stresses for an unreinforced wall given in Table 2 are exceeded the plate will be assumed to crack and the equivalent moment of inertia given in Sec. 6.2.2 shall be used. For a multimode analysis the modal responses shall be combined using the square root of the sum of the squares.
If the calculated stresses s
exceed the allowables of Table 2 a single wythe wall will be evaluated for operability; a multiwythe wall will be further evaluated using Step 3.
3.
For multiwythe walls where a single wythe of the wall does not meet the stress criteria in Steps 1 and 2, Steps 1 and 2 sjall be repeated using ccmposite action i
provided the wall contains a verifiable collar joint.
j 6.2.2 Equivalent Moment of Inertia 6.2.2.1 Uncracked Condition The equivalent moment of inertia of an uncracked wall (I ) shall be obtained from a transformed section con-t sisting of the block, mortar, cell grout or core con-crete.
(Note that a centrally reinforced wall has the same moment of inertia as an unreinforced section.)
Alternatively if the mortar joint is assumed to crack or actually cracks the equivalent moment of inertia may be calculated by neglecting the mortar and block on the tension side.
6.2.2.2 Cracked Condition If the stresses due to all load combinations exceed the allowables the wall shall be considered to be cracked.
In this event the equivalent moment of inertia (I ) shall ei.ther be conservatively calculated l
e from the fully cracked section properties of the wall or as follows:
l O
=@J1
3 tM y3 M
cr}!
cr /
7 (7) 7 M
I
=
cr e
M j
t 5 a/
a I
f f
I t
l M
=
cr r
Ly
/
where:
M
= Uncracked moment capacity cr M
= Applied maximum moment on the wall a
oment of inerda of Wansfomed section I
=
t I
= Moment of inertia of the cracked section cr f
= S value of tensile stress defined in Table 2 I
multiplied by 2 for mortar and grout if the masonry joint is assumed to be cracked.
y
= Distance $f neutral plane from tension face If Ie of Equation 1 is calculated this should be used over the full length of the wall.
If I is used this cr can be used in the cracked region only If the use of Ie results in an applied momemt Ma which is less than Mcr, then the. wall shall be verified for Mcr.
6.2.3 Frequency Variations Uncertainties in structural frequencies of the masonry wall resulting from variations in mass, modulus of elasticity, material and section properties shall be taken into account by varying the modulus of elasticity from 1200f6 to 800f4 It is considered conservative to use the lower value of E l
if the wall frequency is on the higher frequency side of "the peak response spectrum.
If the wall frequency using the lower values of E is on the lower frequency side of the peak of the response spectrum the peak acceleration shall be used.
If the frequency of the wall using the higher value of E is also on the lower frequency side of the peak the higher value of E may be used with its ap-propriate spectral value provided due consideration is given to frecuency variations resulting from all possible boundary conditions.
7 bbbh bb
6.2.4 In Plane and Out of Plane Effects Provided both the allowable stress criteria for out of plane effects and the in clane stress or strain criteria are satisfied the walls shall be considered to satisfy the re-evaluation criteria.
If either criterion is exceeded the walls will be evaluated for operability.
6.2.5 Stress Calculations All stress calculations shall be performed by conventional i
d
-methods prescribed by the Working Stress Des gn metho.
The collar joint shear stress shall be determined by the relationship VQ/Ib for uncracked sections and in the com-pression zone of cracked sections. The relationship V/bjd shall be used for collar joints in cracked sections between the neutral axis and the tension steel.
6.3 Accelerations For a wall spanning between two floors the envelope of the snectra for the floor above and below shall be used to determine the stresses in the walls.
6.4 Interstory Drift Effects e The magnitude of interstory drift effects shall be deternined from the original dynamic analysis.
6.5 In Plane Effects If a masonry wall is a load bearing structural element shear stresses shall be evaluated and compared with the allowable
~
stresses of Tables 1 and 2.
If the wall is an infill panel or non-load bearing element, shear stresses resulting from interstory drift effects will not be calculated.
In this case the imposed interstory deflections of l
Sec. 6.4 shall be compared to the displacements calculated from the following permissible s' trains for service loads. For factored loads the stra'ns shall be multiplied by 1.67.
The deflections shall be calculated by multiplying the permissible strain by the~ wall height.
(
Unconfined Walls (I}
y
= 0.0001 u
Confined Walls (2) l y
= 0.0008 e
Y 8
-r Nbf
Notes:
(1) An unconfined wall is attached on one vertical boundary and its base.
(2) A confined wall is attached in one of the following ways:
(a) On all four sides.
(b) On the top and bottom of the wall.
(c) On the top, bottom and one vertical side of the wall.
(d) On the bottom and two vertical sides of the wall.
If an infill panel or non-load bearing element is subjected to both interstory drift effects and shear stresses due to inolane loads fecm equipment or piping the following criteria shall apply.
actual inolane shear stress actual interstory deflection allowaote inolane snear stress allowaole interstory ceflection A more refined analysis may be performed if necessary.
6.6 Equipment If the total weight of attiched equipment is less than 100 lbs.
the effect of the equipment on the wall shall be neglected.
If the total weight of the equipment is greater than 100 lbs. the mass of the equipment shall be added to that of the wall in calculating the frequency of the wall.
Stresses resulting from each piece of equipment weighing more than 100 lbs. shall be combined with the wall inertial loads using'the absolute sum method. The SRSS method may be used provided its application is justified.
j Stresses resulting from the equipment shall be calculated by applying a static load consisting of the weight of equipment multiplied by the peak acceleration of the response spectrum for the floor level above the wall.
If the frequency of the equipment is known it may be used to determine the static load.
~
e a
6.7 Distribution of Concentrated Out of Plane Loads 6.7.1 Beam or One Way Action For beam action local mcments and stresses under a concentrated load shall be determined using beam theory.
An effective width of four times the wall thickness shall be used; however, such moments shall not be taken as less than that for two way plate action.
6.7.2 Plate or Two Way Action For plate action local moments and stresses under a concentrated load shall be determined using appropriate analytical procedures for plates or determined numerically using a finite element analysis.
A conservative estimate of the localized mcment per unit length for. plates supported on all edges can be taken as:
M = 0.AP g
where: M = Localized moment per unit length (in-lbs/in) g P = Cofcentrated load perpendicular to wall (ibs)
For loads close to an unsupported edge the upper limit moment per unit length can be taken as:
M = 1.2P L
6.7.3, Localized Block Pullout For a concentrated load b. ck pullout shall be checked using the allowable values for unreinforced shear walls in Table 2.
This allowable.shall be used for both rein-forced and unreinforced walls.
7.0 ALTERNATIVE ACCEPTANCE CRITERIA '(OPERABILITY) 7.1 Reinforced Masonry Where bending due to out-of-plane inertial loading causes flexural stresses in the wall to exceed the allowable stresses for reinforced walls, the wall can be evaluated.by-the " energy balance technique".
7.1.1 Effects on Equipment If the deflection calculated by the energy balance technique exceeds three times the yield deflection, the resulting de-flection shall be multiplied by a factor of 2 and a determi-nation made as to whether such factored displacements would bb
3dversely impact the function of safety-related systems attached and/or adjacent to the wall.
7.1.2 Effects on Walls The maximum deflection in the wall due to out-of-plane inertia loading shall be limited to 5 times the yield displacement. The yield displacement shall be calculated by reinforced concrete ultimate strength theory, and the masonry compression stresses of 0.85f' based on a rec-tangular stress distribution shall be used.
7.2 Unreinforced Masonry When, due to out-of-plane loading, the allowable stresses for unreinforced masonry are exceeded, the arching theory for masonry walls may be used to measure the capacity of the walls.
Due regard must be paid to the boundary conditions.
l 7.2.1 Limiting Deflection The deflection of the three hinged arch could be determined by assuming that the arch members are analogous to regular compression members,in a truss. The method of virtual work (unit load method) may be used to compute the deflection at the arch interi~or hinge.
The calculated deflection should not be more than 0.3T where the "T" is the thickness of the wall. A determination should be made as to whether such calculated displacements would adversely impact the function of safety-related systems attached and/or adjacent to the wall.
7.2.2 Allowable Stresses The total resistance of the wall (f. ) shall be calculated using the following stresses:
j I.
Tensile stress througn the assumed tension crack shall for ungrouted walls.
be 6 @ for gro,uted walls or fg II. The crushing stress of block material = 0.85f'.
l By applying a factor of safety of 1.5 to the total resistance t
(f ) as calculated above, the allowable load on the wall is i
limited to f /1.5.
7.2.3 Boundary Supports The boundary supports should be" checked if they-are capable of transmitting the reaction forces applied to them. The effect of support stiffness on the reaction forces should be considered.
b T flfL h k % T O:
1I
7able 1: Allowable Stresses in Reinforced Masonry l,
5 l
U Allowable Maximum Allowaole Maximum Description (psi)
(psi)
(psi)
(psi) li Ccmoressive Ax ai 3.22f; 1000 0.44f; 2000 i
Flexural 0.33f; 1200 0.85f; 24C0 g
Bearing g
f 1
On full area 0.25f; 900 0.52f; 1800 n
On one-third area 0.375f; 1200 0.95f; 2400 g
or less Shear J
Flexural members (2 1.1[f; 1.7ff' 75 50 Shear Walls (3'#)
j l
Masonry Takes Shear g
56 I
1.5/f; M/Vd)1 0.9/f; 34 3.4}f; M/Vd = 0 2.0/f; 123 74 Reinforcement Takes Shear M/ Vo>.> l 1.5 ff; 75 2.5 f; 125 3.4/f; 180 M/Vd - O 2.0 f; 120 Reinforcemen t Bond Plain Bars 60 80 Deformed Bars 140 186 Tension Grade 40 20,000 0.9F Grade 60 24,000 0.9Fy Joint Wire
.5F U"30,000 0.9F y
y i
Ccmcression 0.4F 0.9F
-y y-12
t g
Notes to Tacle I:
{e (i) These values should be multiplied by (1 - (40t 3)
.e wall has h
y I
a significant vertical loaa.
1 (2) This stress should be evaluated using the effective area shown in 1
Figure 1.
i_
f t
1 mbr-6: on scacing y
anichever is less for running mono l l t
x! > y~
,; cyw//.g. //.y
..mp
{
i J
[ 1
,f
[;
u
.y as t
I g
l Aree assurned ef f ectswe in flesural compression, forcytormal to f ace I
FIGURE 1 (3) Net bedded area shall'-be used with these stresses (4) For M/Vd values between 0 and 1 interpolate between the values y
given for 0 and 1.
l l
t 13 l
l e
L
IL' e
x
?
i
'i k
Allowable Stresses in Unreinforced Masonry g
Table 2:
l g
U l
5 Allowable Maximum Allowable Maximum Cescription (psi)
(psi)
(psi)
(psi)
Compressive b
II)
- 0. 22 f '
1000 0.44f' 2000 e
m Axial m
h 3000 Flexural 0.33f; 1200 0.35f; i
a Searing 0.25f' 900 0.52f' 2250 On full area m
m On one-third area or less 0.375f' 1200
- 0. 9 5f '
2000 m
g m
' Shear i ff 50 1.7ff' 75 Flexural members (2, 3) i 34 1.35/f; 51 l
Shear walls (2) 0.9/f; Tension i
Normal to bed joints Hollow units 0.5gm 25 0.83 ja 62 g
67 Solid or grouted 1.0)m 40
- 1. 67)ng g
Parallel to bed joints Hollow units
.0/m 50 1.67/m 84 g
g 2.5/m Solid or grouted 1.5/m 134 80 g
g Grout Core 2.5/f' 4.2 /f'c Col'lar joints 8
12 Shear 8
12 Tension
{.
14'
Y t.
E Notes to Table 2:
h i
These values sncuid ::e multipliec by (1 - (,L;)3) if the wall has a p
(1) w.
y signi ficant vertical lead.
O Use net bedded area witn these stresses.
(2)
For stac'<ed Ocnd construction use two-thirds of the values specified.
(3)
For stacked bond construction use two-tnirds of the values specified
}
(J) for tension normal to the bed joints in the head joints of stacked l
4 bond c:nstruction.
L i,.
b Tf n
i I
e i.
I e
l 15
's
EflCLOSURE3 1
I f
1 I
}
[
r f
)
^s r
JUSTIFICATION FOR THE j
l CRITERIA FOR THE RE-EVALUATION OF CCNCRETE MASONRY WALLS OYSTER CREEK NUCLEAR POWER PLANT i
i Prepared for e
GPU SERVICE CORPORATION Parsippany, NJ l.
i i
i i
l by COMPUTECH ENGINEERItiG SERVICES, INC.
2150 Shattuck Ave.
Berkeley, CA I
October 1980 n
i.
CONTENTS Page I
1.0 GENERAL........................
1 2.0 GOVERNING CODES....................
2 3.0 LOADS AND LOAD COMBINATIONS..............
2 4.0 MATERIALS.......................
2 5.0 DESIGN ALLOWABLES...................
2 S.1 ALLOWABLE STRESSES................
28 5.2 DAMPING.....................
28 6.0 ANALYSIS AND DESIGN..................
6.1 STRUCTURAL RESPONSE OF UNREINFORCED WALLS 28 6.2 STRUCTURAL RESPONSE OFdREINFORCED MASONRY WALLS 30 31 6.3 ACCELERATIONS 6.5 IN PLANE EFFECTS.................
31 37 6.6 EQUIPMENT 6.7 OISTRIBUTION OF CONCENTRATED OUT OF PLANE LCADS 37 7.0 ALTERNATIVE ACCEPTANCE CRITERIA............
37 7.1 REINFORCED MASONRY................
37 i
l 7.2 UNREINFORCED MASONRY,......
38 1
i
l JUSTIFICATION FOR THE CRITERIA FOR THE RE-EVALUATION OF CONCRETE MASONRY WALLS 1.0 GENERAL The specification is provided to establish, design requirements and criteria for use in re-evaluating the structural adequacy of concrete block walls in nuclear power plants. Direct reference to building code criteria was not used for the following reasons:
- 1) The definition of the magnitude of seismic loads in building codes is different than that used in nuclear power plants.
In building codes damping, ductility, site effects and framing systemsarefactoredintoth)seismicdesignbaseshearforce.
In nuclear power plants these factors are considered explicitly in the design of components.
- 2) Building code allowable stresses do not consider two levels of earthquake ground motion and the magnitude of the ground motion included in the building code design spectrum is not explicit.
- 3) Factors such as damping, analysis procedures, effect of attached equipment, two levels of allowable stresses, operability and frequency variations are not considered in building codes.
Thus the specification was developed to address the problems unique to nuclear power plants.
2.0 GOVERNING CCCES As noted in Sec. I the specification covers,most of the factors unique to nuclear power plants.
Items not explicitly covered by the specification will be governed by the American Concrete Institute " Building Code Requirements for Concrete Masonry Structures". ACI-531(29).
This code incorporates most of the recent research data available on concrete t
l masonry.
1
3.0 LOADS AND LOAD CCMSINATIONS
.i These are in conformance with the plant FSAR and are in accordance with 5
the design of all structural elements.
4.0 MATERIALS The project specifications indicate that materials used for the per-famance of the work were originally specified to meet the requirements given in this section.
5.0 CESIGN ALLOWABLES The design allowable stresses given in Tables 1 and 2 are based on the mortar compressive strength or fytheprismcompressivestrength,mg f the steel yield strength. Themorjarcompressivestrengthisbasedon y
the mimimun specified compressive strength of ASTM C-270.
The concrete block unit compressive strength is based on the applicable ASTM Standard -
ASTM C-90 for hollow units, ASTM C-145 for solid units and ASTM C-129 for hollow non-load bearing units. The steel yield strength is based on the specified grade of the steel.
Theprismcompressivestrengthf;isbasedonthespecifiedvalues given in Table 4-3 of ACI 531-79. This Table provides a conservative estimate of f; based on the mortar and concrete block unit compressive l
strengths. The minimum ASTM specified values of these variables was used in deter nining the conservative estimate of ff.
5.1 ALLOWABLE STRESSES The justification for the allowable stresses of Tables I and 2
(
follows.
2
5.1.1 A7IAL COMPRESSION-(Reinforced and Unreinforced)
The following discussion of test results has been extracted from the ccamentary to the N.C'M Specification for tne Design and Construction of Load Searing Concrete Masonry.
The objective was to develop reasonable and safe engineering design criteria for nonreinforced concrete masonry based on all existing data.
A review in 1967 of the ccmpilation of all available test data on compres-sive strength of concrete masonry walls did not, according to some, provide a suitable relationship between wall strength and slenderness ratio.
Frcm a more recent analysis, it was noted in many of the 418 individual pieces of data that either the masonry units or mortar, or in some cases, both units and mortar, did not comply with the minimum strength requirements 9
established for the materials pernitted for use in " Engineered Concrete Masonry" construction.
Accordingly, it was decided to re-examine the data, discarding all tests which included materials that did not comply with the following minimum requirements:
Material Ccmoressive Strength Solid units 1000 psi Hollow units 600 psi (gross)
Mortar 700 psi Also eliminated from the new correlation were walls with a slenderness ratio of less than 6; walls with h/t ratio less than 6 were considered to be in the categcry of " prisms." For evaluation of slenderness reduction l
criteria, only axially loaded walls were used. The data that was available consisted of tests on 159 axially loaded walls with h/t ratio ranging between 6 and 18. With this as a starting point, the-data were analyzed t
assuming that the carabolic slenderness reductfon function, (1 - (40t) I' l
is valid.
Basic equation used to evaluate the test data was:
3
h C fy(1-(40-))
(I)
=
g e
test C x S.F.
(2)
=
fy(1-(4ht))
C x S.F.
K (3)
=
g where f'
= Assumed masonry strength, net area, based on strength of units f*est = Net area compressive strength of panel S.F.
= Safety factor C
= Strength reduction coefficient g
h
= Height of specimen, inches t
= Thickness of specimen, inches Net area used in the above formulae is net area of the masonry, and does not distinguish between type of mortar bedding.
In the evaluation, mortar strength was assumed to be constant and was not considered as a significant influence on wall strength.
l It was determined that the objective of reasonable and safe criteria l
would be met if 90% of the "K" values were greater than the K value selected and gave a minimum safety factor of 3.
Accordingly, the K values were listed in ascending order and the vilue satisfying the above conditions was K =.510 for the 159 tests as seen from Table 3.
l Therefore, from ecuation (3):
4
C x S.F.
=K g
C x3
= 0.510 g
= 0.
0 = 0.205 Cg This value, 0.205, agrees very closely with the coefficient 0.20 which had been used for a number of years with reinforced masonry design.
An analysis of the safety factors present with the formula:
i 0.205 f (I ~ (40t f
=
m m
indicates tne following:
Safety factor greater than 3 is available in 93% of the tests; greater than 4 in 51% of the tests; greater than 5 in 15% of the tests, and greater than 6 in 5% of the tests.
In ACI 531 the factor of 0.20 was increased to 0.225. The recommended value of 0.22 for unfactored loads has factors of safety comparable to l
those given above.
Doubling this value for the factored loads was deemed reasonable and gives a factor of safety of 1.5 for 93% of all tests performed.
Although the derivation given is for unreinforced walls the same values are recommended for reinforced walls.
l f
d
'3ased en for=ul (2), "n" fac:::s were calculated for all of the
- es: specimens as lis:ed in the following ::ble:
TA3L'd 3 i
Cenere:c Mason:v Units i
Mortar i
Walls S:rength, S:rength,
/
Fcrcent psi, ne:
S:r.,
psi, ne:
es.
f
- F.e f.
Solid a-ca f', psi, psi Bedding. h/:
f cs:
fj(C) K S.F.
.r s
1 63 1160 930 1130 Full 6.0 750. 97S
.798 3.S3 63 1160 930 11S0 Full 6.0 635 973
.701
'3. 4 9 a 62 1160 980 1160 FS 6.0 670 978
.686 3.42 63 1160 930 900 FS 6.0 555 97S
.568 2.83 Full 6.0 560 995
.363 4.30 l1230 63 1200 10C0 730 Full 6.L 625 995
.627 3.12 63 1200 1000 63 1200 1000 l 960 jS 6.0 580 995
.582 2.39 63 1200 1000 780 FS 6.0 650 995
.652 3.25 i 63 1320 1060 SSO Full 6.0 1110 1055 1.050 5.25!
63 1320 1060 S10 Full 6.0 970 1055
.91S 4.58 ;
63 1320 1060 S10 FS 6.0 780 1055
.738 3.69 '
l 63 1160 980
- 1050 Full 6.0 SCO 978
.318 4.0S l 63 1160 980 10SO Full 6.0 670 970
.6S6 3.42i l 6.0 940 1270
.739 3.67 !
63 1810 1275 1270 Full j
63 1810 1275
!1270 Full i 6.0 940 1270
.739 3.67!
63 1505 1150 1670 Full I 6.0 825 1145
.719 3. 6 0 '.
s 63 1505 1150 1570 Full [ 6.0 S20 1145
.715 3.57 -
63 1240 1020 980 Full ! 6.0 1010 1015
.993 4.95 -
63 1240 1020 930 Full 6.0 870 1015
.S56 4.26 i 63 1720 1230
! SSO Full 6.0 1035 1225
.S44 4.21 ;
63 1720 1220 l 380 Full i 6.0 940 1225
.766 3.81 -
63 1380 1090 11730 Full ; 6.0 1000 10S5
.920 4.58 '
63 1350 1000 l1730 Full l 6.0 1010 1055..930 4.63 63 1750 1262 l1370 Full l 6.0 1450 1257 1.152 5.75 63 1750 1262 ilS20 Full l 6.0 1570 1257 1.243 6.22 43 3300 1790 l1230 Full l 6.0 1560 17S2
.S74 4.36 43 3300 1790 il230 Full l 6.0 1730 17S2
.969, 4.84 70 1645 120S 11140 Fu.11 l 6.0 1000 1200
.830 4.15 70 1615 120S 11140 Full i 6.0 1220 1200 1.013 5.06 l
i i
I
.09 450
.3140 Full i 6.0 303-455
.664 3.30 *
,S 63 63 509 458
{1610 Full j 6.0 295 455
.d46 3.21 *
{
63 509 453 11000 Full i 6.0 295 455
.646 3.21,
i I
I 63 S40 756 33140 Full i 6.0 532 753
.706 3.52 '
I
' ?.610 Full I 6.0 540 753
.77.0 3.58 63 340 756 63 540 756
'1060 Full l 6.0 505 753
.670 3.33 63 875 7S3 13140 Full 6.0 13S 785
.558 2.79 -
6 i
i
7,iS L 3 (Ocutinued)
Concrc:e 'Scenrv L* nits I
Mor:rr
!.'a lls l
Streng:h,.
l S :r en g,:h,
?creent psi, ne:
' S::,,
psi, ne:
Scdding,h/:
f:est ff C K S.F.
Ref.
Sclid crea fs, pci pci -
n S
63 573 7SS 1610 Full 6.0 430 785
.547 2.74 63 375 7SS 1050 Full 6.0 500 783
.637 3.17
$3 1030 940 3140 Full 6.0 605 936
.646 3.22 63 10SO 940 1610 Full 6.0 715 936
.763 3.81 63 1030 960 1060 Full 6.0 765 936
.317 4.07 63 1230 1015 3140 Full 6.0 1160 1010 1.146 5.70 63 1230 1015 1610 Full 6.0 1000 1010
.988 4.92 63 1230 1015 1060 Full 6.0 1110 1010 1.097 5.46 63 1410 1105 3140 Full 6.0 1140 1100 1.030 5.16 63 1410 1105 1610 Full 6.0 9S5 1100
.393 4.45 63 1410 1105 1060 Full 6.0 1020 1100
.935 4.66 63 1520 1157 i3100 Full 6.0 660 1152
.572 2.35 63 1520 1157 1610 Full 6.0 740 1152
.642 3.20 63 1520 1157 47S0 Full 6.0 830 1152
.719 3.58 63 1860 1295 3140 Full 6.0 1476 1290 1.143 5.70 3
63 IS60 1295 1610 Full
!6.0 1539 1290 1.192 5.94 63 1860 1295 1060 full 6.0 1365 1290 1.053 5.27 63 2510 1554 3140 Full 6.0 1693 1550 1.096 5.47 63 2510 1554 1610 Full 6.0 1365 1550
.SS1 4.39 63 2510 1554 1060 Full 6.0 1325 1550
.856 4.27 l
63 3030 1710 3140 Full 6.0 2222 1705 1.304 6.50
! 1620 Full 6.0 2222 1705 1.304 6.50 63 3030 1710 1
63
.3030 1710 1060 Full
- 6.0 1984 1705 1.164 5.30 t
63 3740 1923 3140 Full
'6.0 1857 1913
.969 4.32 l 63 3740 1923 1610 Full 6.0 2523 1918 1.316 6.56 I
63 3740 1923 4700 Full
. 6i. 0 2317 1918 1.209 6.03 I
63 6640 2400 l3140 Full 16.0 3587 2392 1.499 7.48 ;
63 6640 2400 11610 Full l6.0 3356 2392 1.612 8.04 !
63 6640 2400 147S0 Full
!6.0 5031 2392 2.102 10.49 !
1 1
12**l100 1333 1257 2562 Full 7.0 1140 1254
.910 4.13 l 100 13SS 1640 3017 Full 7.0 1353 1635
.330 4.57 !
l 100 1392 1853 g2317 Full 7.0 1469 1846
.795 4.52 100 1923 1630 '2153 Full 7.0 1394 1625
.S58 4.29 100 250S 2390 242; Full 7.0 1947 2330
.317 4.56 100 2529 2630 23'7 Full 7.0 2151 2620
.S20 4.63 !
100 2545 2130 l2113 Full 7.0 1930 2120
.909 4.17 100 2610 2220 i3195 Full 7.0 2078 2210
.939 4.71 100 2678 2030 '2322 Full
- 7.0, 1032 2020
.905 3.99 ;
j 100 4474 2210 l2792 Full j7.0 1010 2200
.S21 4.10 j
(
l 100 4474 2540 2155 Full 7.0 2157 2520
.937 4.09 l l
f
- f $ vniucs f rc:e :hir ref orc.nce ucre de:crained fren pri = :ests in-l i
s ter.d o f ar.suced val ue:.
7 cst recui:s c:ul iplied bf f ac:or of 1.2 'l 7
l
1 TAE12 3 (Cont inued)
Concrete !'e senrv '*ni:3
'!ct:nr L'a ll s
- Strength, Strcug:h, Per cn psl, ne Str.,
poi, no fE, psi psi 3eddingt h/:
f ff C 7
S.F.
Ref.
Solid area ees:
I l
5 62 2347 1556 1400 FS 9.0 1241 1540
.307 4.05 62 18S6 1305 1400 FS 9.0 1153 1290
.S94 4.50 62 1999 1350 1400 FS 9.0 967 1335
.724 3.63 62 1499 1150 1400 FS 9.0 685 1135
.603 3.02 62 1934 1325 1400 Full 9.0 1354 1310 1.033 5.19 62 2305 1473 1400 FS 9.0 1096 1455
.752 3.78 62 2136 1405 1400 FS 9.0 1123 1390
.312 4.07 62 1773 1260 1400 FS 9.0 1038 1245
.373 4.38 62 1293 1049 1400 FS
'9.0 854 1037
.S23 4.14..
62 124L 1031 1400 FS.
9.0 685 1010
.673 3.411 62 1612 1196 1400 FS 9.0 991 1150
.338 4.20 i
62 1505 1273 1400 FS 9.0 10SS 1260
.564 4.33 62 1491 1146' 1400 FS 9.0 854 1133
.754 3.78 62 1033 944 1400 FS 9.0 629 933
.673 '3.33 62 1918 1313 11400 FS 9.0 1072 1302
.322 4.12 935 I
'FS 9.0 605 975
.621 i
62 1169 3.12l 1598 'l4001400
- FS 9.0 989 1578
.626 3.15 45 2655 I
62 1038 944 1400 FS i9.0 564 933
.604 3.03 62 1290 1045 1400 FS 19.0 701 1032
.678 3.41 1, 9. 0 1104 1335
.326 4.16 i
62 1999 1350,1400 FS I
62 1862 1296 1400 Full ; 9.0 137S+ 1230 1.075 5.444-62 967 870 1400 Full 9.0 758 860
.3S1 4.42 i
l 62 1967 133S,1400 Full ; 9.0 1241 1220
.933 4.72 l
t
~
i 5
57 2230 1463!1400 FS
! 9.3 122S 1450
.349 4.27 67 1917 1313! 1400 FS
! 9.3 G36 1302
.642 3.23 l 67 1330 1090 i 1400 FS l 9.3 724 107S
.672 3.37l 67 1902 1312l1400 FS
' 9.3 1223 1300
.943 4.74i 67 1246 1023 i 1400 FS i 9.3 739 1010
.731 3.67i 57 20S7 1336!1400 FS i
1193 1370
.371 4.3S l 9.3 57 20S7 13S6 l 320. FS 9.3 1293 1370
.94S 4.76 57 2285 1505}1400 FS-9.3 719 14SS 434 2.44 57 2335 1505 i 1400 FS
! 9.3 7S9 14S5
.530 2.67 57 2285 1505'1400 FS
' 9. 3 1105 1435
.743 3.74 57 2385 1505 '1400 FS i 9.3 1140 1455
.766 3.35 l' 1
39 1590 1157!1130 Full SS5 1i70
.756 3.79 l 9.5 9.5 1000 1170
.S53 4.28 39 1590 1157 i 1010 Full 39 171E 123S, 1070 Full j 9.5 949 1220
.777 3.E9 l
39 1713 1228. E40 Full i 9.5 910 1220
.745 3.738 l
l i
I l
8 t
~
i f
TABLE 3 (Centinued)
Concretc '*.ronre Units !
"Oric I
Malls S:rcanth, lS:r.,
S:rcag:n, psi, nc:
Tercent psi, na:
gef.
Sci d crea fE, psi psi Ecdding h/:
f 33 fyC K
S.F.
n
=,
1 63 1159 9S5 1150 Full 14.3 633 940
.726 3.62 63 1139 995 14-0 Full l14.3 690 940
.734 3.66 i
8 63 1159 935 1440 Full 14.3 73S 940
.784 3.91 63 1159 935 1060 FS 14.3 532 940
.565 2.32 63 1159 955 900 FS 14.3 563 940
.599 2.98 63 1159 985 1920 FS 14.3 563 940
.599 2.93 63 1206 1020 1230 Full 14.3 738 974
.753 3.30 63 1206 1020 730 Full 14.3 683 974
.702 3.51 63 1206 1020 1130 Full 14.3 746 974
.765 3.a3 63 1206 1020 960 FS 14.3 571 974
.586 2.94 63 1206 1020 750 FS 14.3 603 974
.619 3.10 63 1206 1020 1250 FS 14.3 595 974
.610 3.05 3
63 1317 1030 S30 Full 14.3 905 1030
.877 4.38 63 1317 10SO 750 Fuli 14.3 1063 1030 1.030.
5.14 63 1317 10SO S10 Full 14.3 929 1030
.901 4.49 63 1317 10SO i1020 FS 14.3 714 1030
.692 3.45 63 1317 1050 l1020 FS 14.3 667 1030
.547 3.23 i
e 63 1159 985 1120 Full 14.3 579 940
.616 3.07 63 1159 9S5 1150 Full 14.3 635 940
.675 3.37 63 1159 985 1080 Full 14.3 635 940
.675 3.37 63 IS10 1274 1270 Full 14.3 873 1213
.717 3.54 63 1310 1274 940 Full.14.3 381 121S
.725 3.58 l 63 1810 1274
.1120 Fuli 114.3 S17 121S
.671 3.32 i.
I 63 150S 1153 i1350 Full 14.3 706 1100
.641 3.17 !
63 1503 1153 I,13SO Fuli 14.3.
746 1100
.677 3.34l.
63 1503 1153 11670 Full 14.3 643 1100
.534 2.58 !
63 1238 1025 11920 Full 14.3 333 97S
.851 4.24i 63 1238 1025 I
980 Full 14.3 802 978
.319 4.09i 63 1233 1025 1230 Full fl4.3 817 973
.835 4.16 i 1111 1172
.946 4.73i Full l14.3 Full 63 1714 1230
- 300 4.79l 14.3 1127 1172
.959 63 1714 1230 l 800 63 1714 1230 i 750 Fuli 14.3 1079 1172
.913 4.59; 63 13S1 1090 !1730 Full 14.3 960 1040
.330 4.64 i 63 1351 1090 l2200 Full,14.3 960 1040
.923
- 4. 61 l 62 1774 1245 12100 Full !14.3 1240 1190 1.043 5.21 !
t 63 2253 1450 ;1230 Full 14.3 936 1335-.675 3.42, 63 2253 1450 ; 1270 Full '14.3 920 13SS
.664 3.37 !
70 1643 1206 i1100 Full
,.14. 3 S07 115,0
.701 3.55 l 70 1643 1206 !1300 Full j14.3 9S6 1150
.857 4.33!
55 1273 10!.0 '. 1220 Full (14.3 727 993
.732 3.66 l 55 1273 1040
!. 1220 Full.
764 993
.770 3.S4 i
'14.3 i
f 3.93 l!
r I
i 7 100 2903 1665 !1475 Full ;15.0 1250 15G5
. Sol s
5 65 1746 1250 1400 Full 118.0 11C0 1135
.975 4.S7 :
I s
65 1246 1015 1400 Full j13.0 785 925
.850 4.25,
65 1562 1175
,1400 Full l13.0 1203 1C65 1.J31 5.65 ;
l
_i 9
FLEXURAL CCMPRESSION (Reinforced and Unreinforced) 5.1.2 It is assumed that masonry can develop 85". of its specified com::ressive strength at any section.
The recommended procedure for calculating the flexural strength of a section is the working stress procedure, which assumes a triangular distribution of strain.
For normal loads an allowable stress of 0.33 f' has a factor of safety of 2.5 for the peak stress, which only exists at the extreme The fibre of the unit and has been used in practice for many years.
recommended value for factored loads also only exists at the extreme fibre and is the value reccmmended in the ATC-3-06 provisions.
5.1.3 3 EARING (Reinforced and Unreinforced)
These values for normal loads are taken directly from the ACI The value recommended for factored loads is the value code.
recommendedintheATC-3-06propsion.
5.1.4 SHEAR (Reinforced)
Two major test programs have evaluated the shear strength on concrete block masonry walls.
The first was performed by Schneider and his test results were used as the basis for developing the U8C, NCMA and ACI code allowable stresses for reinforced masonry.
A more recent and extensive test program has been performed at the University of California, Berkeley and these results'will be used as a comparison with the code allowables. The test results are shown in Figure 2 and lower bound values are indicated for rein-forcement taking all the shear and masonry taking all the shear.
These are compared to the allowables recommended for unfactored and factored loads in Table 4.
10
1 For the unfactored loads the factor of safety varies from 2.22 to 3.0.
1 For the factored loads tne factor of safety varies from 1.20 to 1.76.
The ductility indicator associated with stress levels for the factored loads is of the order of 3 which provides an added factor of safety.
Table 4: Comparison of Test Restuls and Code Allowables Test Tests Tests S
U Results S
U Cescription 7
Masonry Takes Shear M/Vd = 1 0.9[ 1.5 ff; 2 ff; 2.22 1.33 M/Vd = 0 2.0[ 3.4ff; 5 /f; 2.50 1.47 Reinforcement Takes Shear M/Vd = 1 1.5 [ 2.5jf; 3ff; 2.0 1.20 M/Vd = 0 2.0/f; 3.4ff; 6 ff; 3.0 1.76 11
Lower Sound 'J1timate with Hori: ental Reinforcement Lower Bound tlltimate with no Horizontal Reinforcement Code Allowable with no upper limit.
Reinforcement takes shear Code Allowable with no upper limit. Masonry takes shear G
No llorizontal reinforcement g
0:F. Ilorizontal reinforecment 6
>.3"! ilorizontal reinforcement S)tm P.
O
\\
o L
c' ed 9
6jfm N
T1 m
s ui n
6
=
- ""*=
i=m" g
=
%%.N A
- a W= 41 fm C""-.-
el N * . %
J N
W l
H
.N
'a.. t-!
.JJ-.
. N.
$l C
=}
Hai
= ~-
---. ~..,,, - -
g,
~
gy 2} fm
. 1, _
,--****=.%
z W
- n l
t 0.5 I.0 2.0 IIICIC11T TO WIDT11 IL\\TIO 0.25 0.5 1.0 M/v0 4
Figu re 2
t l
l l
l l
l 12 l
l l
5.1.5 5 HEAR (Unreinforced)
INTRODUCTION The present literature on shear strength capability varies greatly on the approach used to determine acceptable values and to some extent, the controversey over these approaches and interpre-tation of the results. Debate, on the applicability of model or full size tests and the effects of monotonic versus cyclic loading further seems to complicate this resolution.
Much of :ne effort to define a permissible in-plane shear stress may be somewhat academic, in that the normal case for unreinforced walls being used in nuclear plant structures, the nature of the shear is one of being forced on the structural panel as a result of being confined by the building frame and not one of This depending on the panel to transmit building shear forces.
forced drift or displacement refults in shear stresses and strains, but because of tne complex interaction between the panel and the confining structural elements strain or displacement is a more meaningful index for qualifying the in-plane performance of the i
panel. The area of in-plane strains is being addressed in another comittee report.
The most extensive review on shear strength literature appears to have been done by Mayes, et al, and published in Earthquake Engineering Research Center Report EERC No. 75-15 which was done i
for both brick and masonry block.
This report attempts to summarize some of the findings that appear to be pertinent towards defining permissible shear stress values that can be used for reevaluation of the non reinforced concrete masonry.
SUMMARY
The shear value of 0.9 [provided 5y the ACI-531-79 code for reinforced masonry appear to be reasonable basis on which to proceed with the reevaluation program. This value appears to conservatively bound the actual expected shear strength of concrete 13 1
A summary of several different sources for shear block masonry.
stress-desien values is shown by Table 5.
An increase in these allowable values for the re-evaluation program of 1.35/f' for severe loading conditions appears warranted.
Any further increase at this time without further substantiation and review is not seen as advisable.
DISCUSSION A number of tests have been identified as being the primary basis for permissible shear stress values in both National Concrete Masonry Association (NCMA) " Specification for the Design and Construction of Load-Bearing Concrete Masonry" 8 and the American Concrete Institute Standard " Building Code Requirements for Concrete Masonry Structures" (ACI-531-79). 2.2 No apparent tests are traceable to the origin of the Uniform Building Code (UBC) chapter 24 on " Masonry."'
e Those tests performed to substantiate the NCMA values are primarily performed by the National Bureau of Standards (NBS) on These full si:e (4 ft by 8 ft, and 8 ft by 8 ft) test panels.
tests were performed by '4hittemore, et al and Fishburn" within the period 1939 to 1961. The Whittemore tests were done, as usual in that period, utilizing a hold down detail and thereby introducing a clamping or compressive stress within the assemblage. A number of studies have shown that compressive stresses affect the shear strengtn significantly. The Fisnburn tests, utilize a racking configuration with the testing being performed on the panel in its original laid up position. A load setting up principal tension stress causing failure is an accepted measure of shear stress determination by the American Society of Testing Material for brickwork. ' The test results frem the above references used by NCMA are shown on Table 6.
The princical tests that seem to formulate the ACI 531 basis are tne tests performed on concrete masonry piers for Masonry Research of Los Angeles, by Schneider.1 These tests had a system for removing the comoressive load on the specimen being loaded by -
14
shear and were set uo to vary the a/d (M/'id) ratio and measure this effect on a parametric basis.
The two ;redominant failure moces of a masonry panel under shear are diagonal tension (causing a "solitting" failure) and shear band (causing a " joint separation" failure) or some combination of these The theory behind these were elaborated on by Yokel two effects.
et al.13 The parameter of normal stress and its effects on a shear strength, which was also reviewed by Yokel" and Mayes.1",
l has been demonstrated to be consequential on the determination of actual shear stress capability. This parameter is not identified, today, by any of the codes
's " " shown in Table 5.
It is excected that under zero or small comoressive loads the predcminate shear failure will be by the shear bond mode of failure.
Tests which have been done with regard to the determination of. joint as well as Hamid, separationwereperformedbyCooglandandSaxer.l' et al.15 These tests are, by their nature, extremely sensitive to normal stress and consequently do relate the effects of normal stress This relationship is shown on Table 5.
on permissable shear values.
It is of interest that there appears to be good correlation between these tests on the shear strength with zero normal stress.
The Applied Technology Council (ATC) is presently reviewing a formulation for increasing the shear stress as a function of normal This formulation is develooed to coincide with their present stress.
permissible shear stress of 12 psi and is consistant with the USC's fundamental direction as a desien code, forcing reinforcing for seismicly designed masonry structures.
As a practical matter, walls subject to the conditions of confinement will experience large compressive loads - although these are difficult to detennine. Ccmpressive loads for the most part, imparted by boundary conditions and behavior of the building If frame are ignored in the evaluation of the, masonry panel.
these normal stresses are added the shear resistance would be This implies a conservatism on the allowable shear increased.
value when one assumes this value as chosen on the basis of zero 15
On this basis, and the tests results discussed, the normal stress.
shear value of 0.9/f; chosen by tne ACI code appears to be justified and should be established as a reasonable basis by which to proceed with the re-evaluation.
Out of plane, or so called flexural shear is defined by the code as equalling 1.1g The derivation of this value is analogous to be permissible shear value of concrete, disregarding any reinforce-l Although this is somewhate different (there is no I
ment, of 1.1 ff'.
tension steel by which to determine the appropriate j distance), the actual value is a mute point since tension will be the critical value for determining out-of-plane acceptability of a flexural member.
Because of the nature of the stresses, however, and the various concerns with regard to the correctness of interpretation of theactual effects on boundary conditions as well as such conditions as:
mortar properties; absorbtivity of the mortar; confinement or lack of it on the test specimen duriftg test; arrangement and effect of actual load, it does not seem warranted to increase these stresses beyond a value of
[(1.5x0.9 f').
This value is consistent with an adequate me. gin of safety for both the full panel wall test Any specimens referenced and the shear band values observed by test.
additional increase in the shear stress values for nonreinforced masonry under extreme environmental loads is not recomended at this time.
e is
IA3LE 5 St.M'.ARY - UNCRCU ID MASC?!RY dale Shear Stress Remarks Source
- 1) ACI-331 79 0.?ff'$sg34 M/7D jg 1
- 1) NMCA 79 34 Type M or S Motor 23 Type N Mortar Based on NBS tests (circa 1959-1961) i-(1) USC 79 12/10*
Type M or S/N Mortsr 6
- 12 psi for solid units (1) ATC 3-06 78 12 Lightweight units limited to 35 percent shear value
- 12 + 0.200E ; 30
- being proposed for compressive j
stresses bec.veen 0 and 120 psi (1) Masonry proposed 1.0)lFS[f635 1
6 a/1 sc May be increased by 0.20 e Society (due to dead load)
I 75 + 1.didT Ultimate value based on Ha=id, et al 79 type S mortar 70 + g/2EI'(fitted)
Ultimate value based on Copeland/Saxen 64 2630 compressive mortar strength (1) values based on inspected workmanship CTc = compressive stress.
t f
a 17 i
l l
l
TA3LE 6 RACRI*G TEST DATA--NONREINFORCED CCNCRETE MASONRY WALLS Ultimate Racking Mortar Load, psi, Net S. F.,
Construction Type Mortar Bedded Area Act./ Allow Re f.
S" Hollev Units N
66 2.87 7
N 58 2.52 7
N 57 2.48 7
6" 3-Core Hollow N
69 3.00 8
N 62 2.70 8
N 78 3.39 8
8" Hollow Units N
79 3.43 10 N
79 3.43 10 N
73 3.17 10 N
119 5.17 10 5.61 to N
129,
N 109 4.74 10 S
132 3.88 10 S
139 4.09 10 S
129 3.79 10 S
159 4.68 10 S
132 3.88 10 S
159 4.68 10 4-2-4 Cavity Wall M
103 3.03 9
of Hollow Units M
108 3.18 9
M 102 3.00 9
Avg =
3.65 Range =
2.48 - 5.61 (h From Reference 5 4
18 y
-r w
y y.
+-,
7 m,
e
LIST OF REFERENCES FOR SHEAR (Unreinforced)
" Literature Survey - Compressive, Tensile, Bond and Shear I Mayes and Cloup Strength o f Masonry," Earthquake Engineering Research Center, University o f California,1975.
for Concrete Masonry Structures,"
ACI Standard, "Siisiding Code Require =ents (ACI 531-79).
Commentary on "3uilding Code Requirements for Concrete Masonry Structures,"
3 (ACI 531-79).
" Specification for the Design and Construction of Load-3 earing Concrete Masonry" - NCMA - 1979.
Research Data and Discussion Relating to " Specification for the Design 5
and Construction o f Load 3 earing Concrete Masonry" - NCMA - 1970.
Unifor:s 3uilding Code, Chapter 24 " Masonry" - 1979.
6 Whitte= ore, Stang, and Parsons " Structural Properties of Six Masonry Wall Con-7 structions," suilding Materials and Structures Report No.
5., N35 - 1938.
Stang, and Parsons "Strucfaral Properties of Two Buch-Concrete O Whittemore, 31ock Constructions and a Concrete Block Wall Construction Sponsored by the National Concrete Masonry Association," Building Materials and Structures Report.
Stang, and Parsons, " Structural Properties of Concrete 31ock Cavity 9 Whittemore, 21, N3S 1939.
Wall Construction" Building Materials and Structures Report
.J on the Strength Fishburn, "Effect of Motar Strength and Strength of Unit 10
) of Concrete Masonry Walls," Monograph 36, NBS,1961.
ASTM Standard Specification for Brick and Applicable Standard Testing Methods 11 for Units and Masonry Assemblages - May 1975.
Schneider, " Shear in Concrete Masonry Piers," California State Polytechnic 1
College, Pomona, California.
Yokel and Fattal " Failure Hypothesis for Masonry Shear Walls" - Journal of 13 the Structural Division, March 1976.
14 "A State of the Art Review - Masonry Design Criteria" - Computech - 1980.
15,, Tentative Provisions for the Development of Seismic Regulations for Buildings"
- Applied Technology Council Chapter 12 A - ATC 3<-06-1978.
for Masonry 16 The Masonry Society Standard Building Code Requirements Construction, First Draft.
Copeland and Saxer, " Tests of Structural 3end of Masonry Mortars to Concrete Block" - Journal of the Structural Division - November 1964 Hamid, Drysdale, and Heidebrecht, " Shear Strength of Concrete Masonry 13 Joints," Journal of the Structural Division - July 1979.
_. _ _.. _. ~ _
5.1.6 TENSION (Unreinforced)
A.
Normal to the Bed 'oint A-st8raary of the static monotonic tests performed to determine code allowable stress for tension normal to the bed joint was given in the NCMA Soecifications.
Stresses for tension in flexure are related to the type of mortar and the type of unit (hollow or solid).
Research used to arrive at allowable stresses fer tension in flexure in the veritcal span (i.e.
tension perpendicular to the bed joints) consisted of 27 flexural These tests of uniformly-loaded single-wythe walls of hollow units.
Table 7 monotonic tests were made in accordance with ASTM E 72.
summari:es the test results.
Fr m Table 7 the average, modulus of ructure for walls built l
with Types M and 5 mortar is 93 psi on net area.
For Type N mortar, the value is 64 psi. Applying a safety factor of four (4) to these o
values results in allowable stresses for hollow units as follows:
Mortar Tyce Allowable Tension 'n Flexure M&S 23 psi 16 psi N
These values are consistent with those published in the 1970 ACI Committee 531 Report and whien have been only slightly altered l
in ACI 531-79 Code.
Based upon these tests the minimum factors of safey for eacn mortar type are:
Mortar Tyce Factor of Safety _
M 3.37 S
2.60 N
2.81 To estabi'sh allowable tensile stresses for walls of solid These walls, units, the B-inch composite walls in Table 8 were used.
I comoosed of 4-inch concrete brick and 4-inch hollow block, were l
greater than 755 solid, and tnus were evaluated as solid masonry 20 i
l l
~
Mcdulus of rupture (gross area) for these walls d
construction.
averaged 157 psi, giving an allowaole stress of 39 psi when a safety c
The ccmcosite wall tests in Table 8 used Type factor of A is acclied.
To establish allowable stresses for solid units with Type N S mortar.
mortar, the mortar influence established previously for hollow units l
was used:
E : E ; f = 27 psi 16 f
The minimum factor of safety for these tests for Tyce 5 mortar was 2.33.
Recent dynamic tests have been performed at Serkeley and the values of tension obtained at cracking at the mid-height of the walls are as folicws: 13 psi; 20 psi; 23 psi; 27 psi.
The recommended values have a factor of safety of 2.8 with respect to the lowe'r bound of the static tests for the unfactored loads a o
towards the lower limit of the initiation of cracking for the dynamic An increase of 1.67 appeared reasonable for factored loads based tests.
on the static tests.
4 1
0 21 1
c,.,--e w,,,
..rv-
~ - - ~. -
+,
T r
TA3LI 7 FLEXGAL 5.ca..v.n-SI.:0LI LT!HI k' ALLS OF HOLLOW m;ITS-ClIF07. ! LCAD-Vn!! CAL SPAN Mortar Type Proportion Modulus of Rupture ASTM C 270 psi, Nat Area Reference M
110 10 N CIA M
108 M
102 10 M
97 10 M
95 NCR S
94 NC%
M 91 NCE M
89 N C #.A N
88 4
5 84 10 S
'83 NCR S
- 81*
10 S
75 NCR S
69 NCR N
67 4
N 62 4
S 60 10 N
58 4
N 45 4
0 60 10 0
41 4
4 0
36 0
36 4
0 33 4
0 32 4
0 30 10 0
27 4
1 O
o G
l ts 22 l
I l
7*.IXU?.M., S ?.I :STF., VI?. IC.;L S?M* CO::0RITI MASC!!RY " ALLS TA3LI 3 FRCM TIST3 AT :: PA M3CFATOPi'
(
Wall
! Modulus of Ruoture Net Max.
Ne
, Mer:ar Uniforn See:ica Cross l Bedded ASTM Nc=inal Thickness Load Mcd lus Area, 1
- Area, Type
- in.
psf.
in 3/f:
psi psi Mortar Moncuythe Walls of Hollow Uni:s M
8 85.15 80.97 61.74 88.73 87.10 30.97 63.15 90.76 M
S M
8 91.00 80.97 65,97 I 94.82 M
3 103.35 80.97 74.93 !'
107.69 5
8 62.40 80.97 45.24 !
69.47 5
8 72.15 80.97 52.31 !
75.18 5
12 18'.3 164.64 57.11 93.94 16$.2
~ 164.64 30.22 32.62 S
12 i
(I, ce=posite Walls of Conerece Srick & Hollou CHU I
S
'8 222.3 103.82 161.16 l 180.67 S
8 219.7 103.82 159.29 178.55 l 5
8 187.2 78.16 135.72 202.09 !
S 8
228.8 103.82 165.88 185.95 i 5
8 218.4 78.16 158.34 235.77 l 5
8 223.6 78.16 162.11 241.38 !
S 12 171.6 139.83 53.46 103.55 ;
5 12 150.8 139.83 46.98 91.00 1 S
12 136.0 139.83 I 48.60 94.14 5
12 213.2 139.83 66.42 128.66 Cavity Halls S
10 98.8
,50.36 15S.62 165.55 !
l 50.36 250.44 261.38 i S
10 156.0 S
10 88.4 48.16 141.91 154.38 S
10 119.6 50.3G 192.01 200. A0 ;
5 10 114.4 50.36 183.66 191.63 S
10 l
109.2 48.16 175.30 1S1.32 '
I 50.36 233.73 2?2.91 :
lS 12(4-4-4) 145.6 145.6 50.3G 233.73 2' 3.9a.
S 12(4-4-4)
S 12(6-7-4) 135.2 77.80 127.33 lag.G3
- S 12(6-2-4) 119.6 77.00 112.68 329.70l I
i 3
23 e
... s......
- ... 2.
3.
Tension Parallel to Sed Joints Values for allowable tension in flexure for walls supported in the hori: ental span are establisned by doucling the allowables in the While it is recognized that flexural tans 11e strength of vertical span.
walls scanning hori:entally is more a function of unit strength than Table mortar, it is conservative to use double the vertical span values.
9 lists a sumary of all published tests and indicates an average safety factor of 5.3 fer the 43 walls containing no joint reinforcement and 5.6 for the 15 walls containing joint reiiforcement.
It is important to note that the factor of safety for those walls loaded at the cuarter points, Reference (6), have an average factor of safety of 2.02 with a minimum value of 1.22, while those loaded at the center had an average factor of safety of 6.08 with a minimum value of However, it should be noted that the values tested at the k points 3.59.
were also tested at 15 days.
The results associated with the early date of testing and the use of quarter point loading are difficult to explain other than to state they are at variance with all other test results.
1 An increase in the allowable by a factor of 1.67 is recommended for The committee believes that the recomended values could factored loads.
be increased because of the larger factors of safety in the test results; however the value of 1.67 was chosen to be compatible with the increase in other stresses for unreinforced masonry.
The values recommended for stack bonded construction although at variance with current building codes (which allow zero) are thought to be In a test program performed reasonable values for a reevaluation program.
1/3 the capacity by PCA(O a horizontally scanning stack bonded wall had l
of an equivalent wall laid in running bond. The recommend".1 values are in accordance with this test data.
i.e.
two-thirds of the value nomal to the bed joint is eouivalent to 1/3 the values recommended for parallel to the bed joint.
i l
Reference:
- 2) Portland Cement Association, " load Tests of Patterened Concrete
(
Masonry Walls, " Trowel Talk an aid to Masonry Industry,1963.
1 24
\\
e,r A..,
2 v......,..
w...... w. n.,
lh.....w.
6 n w
..w...
Ad has
,...,S s..
.:........D c......... a.:....., e. s... y
.m
.... c.... : w :. :.
Modulus S.:
M:::s
': 2 '.n:
c:. Rupture Cons: ue:ien Tvee l T ee e l :sf i Na: Are:. es t ' AC
//f:w Ref.
Mon:vy:he S" N
Uni 5cr=
127 1.2 4.13 4
Hollow, 3-Core N
136 141-4.41 4
N 127 132 4.13 4
N 169 176 5.50 4
N 173 130 5.63 4
3
' "w 4.00 4
0 O
158 '
164 5.13 4
Menewfthe 3" N
149 155 4.84 4
Ecllow, Join:
N 160 166 5.19 4
Reinf. G 16 in.c N
193 201 6.23 4
0 150 156 4.88 4
0 136 193 6.03 4
M:nov/:he 8" N
203 211 6.59 4
H:llev Jcin:
N 196 204 6.33 4
Rein 5. G B in.cc 0
202 i 210 6.56 4
s 0
195 '
203 6.34 4
Monoef:he-S" N
1/4 p:
56 i 53 1.81 6
Helleu N
38 l 39 1.22 6
l N
61 l 63 1.97.
6 N
60 i 62 1.94 6
l N
69 l 71
\\ 2.22 6
N 93 96 3.00 6
8 I
l 8" M:now/:he M
Center 199 -
217 4.72 26 Holleu, 2-Care '
M 176 i 192 4.17 25 H~
151 165 3.59 26 l
l 4-2-4 Cavity M
111 210 4.57 26 Wall, H=1 low M
135 !
255 1
5.54 26 I
3.91 26 l
Units M
95 180 l
I S" Menewf:he M
159 l 173 1
3.76 26 i
Ecilow 2-Core i M
159 t i73 l
3.76 26 l
Join: Ec. G ~"ec M
191 '
2c8 4.52 26 l
1 i
4-2-4 C:vi:7 ofi M
159 :
300 6.52 2G I
3 Holleu Uni.;3 Ticd M 159 1 300 6.32 26 l
159 ;
20c c.32 2c w/Jein: 7.c.
"c M
I i
i l
i I
l 1
5 l
t j
~'
~.
TA3LI 9 (Continued)
Modulus S.E-Mc :s; Leadin2 of gup:ure Cons: rue:ica Type l Type l
psf
'Ne: Area, psi AO */Allev Ref.
4" gc11c..
N Cen:er 135 365 11.41 25 s.
o
,e-
- -c
-- 9e 3.
39 Monewy:he
.i
-/
N 101 263 S.33 25 8" Eclieu M
263 202 4.39 25
- Moncuy he M
214 237 5.15 25 a
v.
31<,
93i c
3=
s.-s s" Eclieu N
277 210 6.56 25 Monewy:he N
314 237 7.41 25 N'
314 237 7.41 25 S" Eclieu o
259 195 6.09 25 Monewy:he c
277 210 6.56 25 0
277 210 6.56 25 l
8" Eclieu M
,268 202 4.39 25 3
lMoncuy:he M
297 224 4.37 25 i
l M
277 210 4.56 25 1
8" Ec11cv N
277 210 6.56 25 t
- newy:he N
259 I
195 6.09 25 N
297 224 7.00 25 t
I 8" Ecilow 0
360 271 3.45 25 Moncuy:he o
297 1
224 7.00 25 t
O 268 l
202 6.31 25
~
I.
12" Ec11cu N
352 142 4.44 25
- 1 newytha N
314 127 3.97 25 l
N 333 134 4.19 25
[
i l
1 l
1 26
i i
f SHEAR AND TE!!SILE BOND STRENGTH CF MASONRY COLLAR JOINT l
5.1.7 l
The collar joint snear and tensile tend strength is a major factor in the benavior of multi-wythe masonry construction, carticularly with resnect to weak axis bending. A widely stated position is that for composite construction the collar joint must be completely filled Mcwever, even if this joint is filled, there must be with mortar.
a transfer of shearing stress across this joint without significant slip in order for full composite interaction of the multiple wythes Since the cracking strength, coment of inertia, and to be realized.
ultimate flexural strength, of the wall cross section are significantly j
influenced by the interaction of multiple wythes, it is crucial to l
establish the collar joint shear bor>d strength.
The only applicable published data on the shear botd strength of collar joints is that determined by Bechtel on the ~rojan Nuclear I
Power Plant. A number of 8/# collar joints were tested and the accepted NRC allowable for the shear bond strength was 12 psi, Based on this information 12 psi is the recomended value for factorW f
loads.
l There is conflicting data available on the relationship between I
the shear and tensile bond strengths.
In most tests performed on mortar bed joints (couplet tests) the shear bond strength was In a more recent approximately twice the tensile bond strength.
l method of evaluation by means of centrifugal force the shear bond The l
strength was found to be 60". of the tensile bond strength.
authors of the report consider the test procedure to be an improve-ment over present methods since joint precompression is essentially eliminated as a result of the testing procecure.
Because of the conflict in the test data the comittee recomended that the values for tensile bond strength be the same as for shear bond.
Unless metal ties are used at closely spaced intervals (less i
than 16 incnes on center) it is recomended that their contribution to shear and tensile bond strength te neglected.
27
Reference:
(1) Hat:inkolas, M., Longworth, J., and Wararuk, J., " Evaluation of Tensile Bond and Shear Bond of Masonry by Means of Centrifugal Force," Alberta Masonry Institute, Edmonton, Alberta.
5.1.3 SOND (reinforced)
Values for bond stress are taken directly frem the ACI Code. Due to the sensitivity of workmanship, degradation under cyclic load and the implications of a bond mode of failure it is recommended that these values be increased by 33 1/3 for factored loads.
5.1.9 GROUT CORE TENSILE STRESS Thetensilevaluereccmmgndedforthegroutcoretensilestress l
is taken from ACI 318 for concrete with a factor of safety of three.
An increase of 1.67 was deemed reasonable for the factored loads.
5.2 DAMPING The damping values for unreinforced walls are based on judgment and include a differentiation for the OBE and SSE force levels. This is based on the premise that damping increases as the stress level increases.
The damping values for reinforced walls are based on the accepted values for reinforced concrete.
There is no test data available in the literature to validate or refute these damping values.
6.0 ANALYSIS AND DESIGN 6.1 STRUCTURAL RESPONSE OF UNREINFORCED WALLS.
l L
6.'.I OUT OF PLANE EFFECTS l
The steps given in this section provide a logical conservative evaluation methodology to determine the stress levels in a masonry wall 28 i
[
suojected to out of plane forces. The first two steps provide a lower bound estimate on the frequency of the wall since it assumes tne wall spans in only one direction. For a wall with two or more sices capable of acting as boundaries the stresses resulting frcm one way or beam action will be conser/ative compared to those obtained from a more rigorous olate analysis.
If the stresses resulting fecm the analysis exceed the allowable stresses or the wall contains significant openings the beam analysis is not appropriate and the full effect of the actual boundary ccnditions must be accounted for in a plate analysis. For walls with openings it is recomended that a finite element plate analysis be performed to correctly model the effect of the opening. For walls without oper.ngs either a finite element analysis can be perfomed or standard test book formulae for plates may be used.
If a multimode analysis is not per-fomed it is reccmended that the mcments and stresses be increased by 1.05toaccountforhighermo8eeffects. Many parameter studies have been pe-famed that indicate that in most cases the first made of vibration contributes 98% or more to the total response of the wall.
Thus the 1.05 factor is considered adequate.
i 6.1.2 FREQUENCY YARIATIONS OUT OF PLANE This section acknowledges the fact that there vill be variations in the frequency of the wall as a result of uncertainties in the mass of the wall and attached equipment, material and section properties and the modulus of elasticity of the masonry. The method selected to account for these uncertainties was a variation in the modulus of elasticity. The range of t 25% for ungrouted walls and t 20% for grouted walls is conservative when coupled with the use of a smoothed If the frequency of a wall falls on the low frequency side spectrum.
of the amolified region of the response spectrum adequate provisions
~
are included to ensure that the determination of the stress in the wall is conser/ative.
29 l
i
l 1
5.i.3 IN PLANE AND OUT OF PLANE EFFECTS The plant FSAR provices for the design of a two-direction (one horizontal and one vertical) earthquake. The provisions of this section are consistent with the FSAR. The vertical ccmponent of motion is not included in the analysis procedure because the positive effect of the dead load on bed joint stresses is not included in the evaluation criteria.
It shculd be noted hcwever that the effect of vertical acceleration is included in determining tne pipe and equipment loads on the wall.
5.2 STRUCTURAL RESFONSE OF REINFORCED MASONRY WALLS 6.2.1 OUT OF PLANE EFFECTS The centents in Sec. 6.1.1 are applicable to the uncracked condition of a reinforced wall.
If the wail cracks in either the vertical or hori: ental direction cracked section properties of the wall are used to determine the frequency of either the beam or the plate.
If a plate analysis is performed an orthotropic analysis must be performed in which different section properties in the horizontal and vertical directions are used.
6.2.2 EQUIVALENT MOMENT OF INERTIA 6.2.2.1 CRACXED CONDITION The recernended value of I is taken from ACI 318. The formula e
was developed for slender columns and was considered to be appropriate for the out of plane analysis of masonry walls. The formula was checked against the test results of Dickey and Mackintosh (I) and reasonable agreement was obtained.
It should be noted that if this formula is used it should be usec over the total length of the wall i
and not over the cracked section.
I The fully cracked section moment of inertia provides a lower I
limit and can be used over the cracked section of the wall.
It is very conservative to use it over the full length of the wall.
30
Reference:
(1) Dickey, W. L., and Mackintosh, A., "Results of Variatien of "b" or Effective Widtn in Flexure in Concrete Block Panels," Masonry Institute of America,1971.
6.2.3 FREQUENCY VARIATICNS See Sec. 6.1.2 for cements.
6.2.4 Ill PLANE AND OUT OF PLANE EFFECTS See Sec. d.1.3 for coments.
6.3 ACCELERATIONS The masonry walls are analy:ed in a manner similar to that of equipment and piping systems.# It is therefore conservative to use the envelop of the floor level spectra to which the wall is attached.
If the wall is not attached at its top, forces will be induced from the floor level of the base of the wall and this should be used in the analysis.
6.6 IN PLAfiE EFFECTS f
Load bearing structural masonry walls shall be evaluated on an allowable stress basis. The shear stress on the wall is determined i
from seismic analysis of the building and evaluated as in conventienal design.
The majority of the masonry walls are not intended to be primary structural elements and for the purposes of this specification a non-load bearing or non structural wall is defined as follows.
1.
It does not carry a significant part of the building's j
story shear or moment.
2.
It does not significantly modify the behavior of adjacent structural elements.
l l
l 31 l
L
In other waros, the expected :enavior of the building must be substantially the same wnether such walls are cresent or not.
In-plane effects may be imposed an these ma:enry walls by the relative displacement between floors during seismic events. However, the walls do not carry a significant part of the associated story shear, and their stiffness is extremely difficult to define.
In addition.
l l
since the experimental evidence to date demonstrates that the apparent in-plane strength of masonry walls depends heavily u;on the in-plane stress boundary conditions, load or stress on the walls is not a' reasonable basis for an evaluation criteria.
However, examination of the test data provided by the list of l
references for this section indicates that the gross shear strain of walls is a reliable indicator for predicting the onset of significant cracking. A significant crack is considered to be a crack in the central portion of the wall extending at least 10% of a wall's width or height.
Cracking along the' interface between a block wall and steel or concrete members does not limit the integrity of the wall, and is not addressed here. The gross shear strain is defined to be:
l 8 = df-where: 3 = strain Zi = relative displacement between top and bottom of wall
}
H = height of wall Test results indicate that to precict the initiation of significant cracking, masonry walls must be divided into two categories:
1.
Unconfined Walls - not bounded by adjacent' steel or concrete primary structure. Significan " confining" stresses cannot be excected.
2.
Confined Walls - at a minimum, bounded top and bot;cm or bouaded on three sides.
For unconfined concrete block masonry walls the works of Fishburn (2) and Becica (1) yield an allowable shear strain as defined above of 0.0001.
It should be noted inat Fisnburn's test specimens were 15 days old, on average.
32
.~
d For confined walls, tne most reliable data accears to be that o
'dayes et si (a).
In static and dynamic tests of masonry ciers (con-fined top anc bottom) varying block properties, mortar properties, reinforcement, vertical load and grout conditions, significant cracking was initiated at strains exceeding about Y = 0.001. It snould be noted here that reinforce:aent can have no significant effect on the benavior prior to cracking. Similarly, the presence of cell grout should have no effect on stress or cracking in the mortar joints at a given strain. Both predictions are confirmed by the data in reference (4).
In addition, the data shows that the onset of cracking is not sensitive to the magnitude of initial applied vertical load.
Klingner and Bertero (3) perfomed a series of cyclic tests to failure and found excellent correspondence with a non-linear analysis in wnich the behavior of an infilled frame prior to cracking is deter-mined by an equivalent diagona$ strut. While the equivalent strut technique has been used by many investigators to study the stiffness and load-carrying mechanisms of infilled frames, Klingner and Bertero found that the quasi-compressive failure of the strut could be used to predict the onset of significant cracking.
After some simplification of the relations in reference (3), the strength of.the strut corresponds to a strain at cracking
, 7. h) 10008/H in which B = wall width H = wall height assuming E = 1000 fin In su: mary, the ecommended value for pemissible in plane s* rain for service loads in ucconfined walls is:
'( = 0.0C01 l
and in confined walls
'( = 0.001 For factored loads these strains may be increased by 1.67.
l 33
For ncn-load bearing walls that are subjected to both in plane shear stresses and interstcr/ drift effects tne combination equation scecified limits the comoined effect such tnat the sum of the propor-tion of stress induced by each is less than 1.
The complexity of this type of 'Toading has not been validated by tests and the procedure recomended is deemed reasonable.
e a
34
62." :w:LT,'st'utiet; i
t..
/;
'(
E 2.
h.
t 4
Y'
&,p
.C w
- x..
+
u,
..J
' w.x..
..i:.........v con *17d Confined
. ora m wn.i.-wer r~r.n
,,r.,,,~ r.w n.,.- i.~.,,
4 h.
S w
P2
'e f
r:
x g
p1
't
/
1
.,A vi
~.. '
.P.
S V;I N,
~
- 4..
P s.,,,.,,..,,,.+:i,..<.i gr.-
,/. <..9. a........ u.. n.......
a confined c,n.. ed n..
e 9t Fi.'ure Exples Defininc.
r n
Q
" Confined" an:',
S.
'Tncenfined" KaIIs r
t2
$1i
.h 2
t lin.nu,,, <.,,..... n +.
u:~.::niined 35
l l
c J
REFERENCES Becica, I.J. and H.G. Harris, " Evaluation of Techniques in the Direct Modeling 1.
of Concrete Masonry Structures, " Drexel University Structural Models Lacoratory Recort No. M77-1, June 1977.
l
-."Effect of Mortar Properties on Strength of Masonry," National Fish: urn, C.C.
2.
Sureau of Standards Monograph 36 U.S. Government Printing Office, Nov. 1961.
i Klingner, R. r and V.V. Bertero, "Earthouake Resistance of Infilled Frames,"
l 3.
Journal of the Structural Division, ASCE, June 1978.
]
Mayes, R.L., Clough, R.W., et al, " Cyclic Leading Tests of Masonry Piers,"
4 76/8, 78/29, 79/12 Earthquake Engineering Research Center, 3 volumes; EERC College of E5gineering University of California, Berkeley, California.
Benjamin, J.R. and H.A. Williams, "The Behavior of Cne-Story. Reinforced Concrete 5.
Shear Walls," Journal of the Structural Division, ASCE, Proceedings, Paper 1254, Vol. 83, No. ST3 May 1957, pp. 1254.1-1254.39.
4 Benjamin, J.R. and H.A. Williams, "The Behavior of One-Story Brick Shear Walls,"
6.
Journal of the Structural Division, ASCE, Proceedings, Paper 17&3, Vol. 84 ST4, July,1958, pp.1723.1-1723.30e
~
Benjamin, J.R. and H.A. Williams, " Behavior of One-Story Reinforced Concrete I
7.
Shear Walls Containing Openings," Journal of the American Concrete Institute, Proceedings, Vol. 30, No. 5, November,1958, pp. 605-618.
Holmes, M., " Steel Frames with Brickwork and Concrete Infilling," Proceedings 8.
of the Institution of Civil Engineers, Vol. 19, August, 1961, pp. 473-478.
Holmes, M., " Combined Loading on Infilled Frames," Proceedings of the Institution 9.
of Civil Engineers, Vol. 25, May, 1963, pp. 31-38.
Liauw, T.C., " Elastic Behavior of Infilled Frames," Proceedings of the Institution 10.
of Civil Engineers, Vol. 46, July, 1970, pp. 343-349.
Mallick, 03/. and R.T. Svern, "The Behavior of Infilled Frames Under Static 11.
Loading," Proceedings of the Institution of Civil Engineers, Vol. 39, February, 1968, pp. 261-287.
Smith, B.S., " Lateral Stiffness of Infilled Frames," Journal of the Structural 12.
Division, ASCE, Vol. 88, No. ST6, December,1962, pp.183-199.
13.
Smith, B.S..." Behavior of Square Infilled Frames," Journal of the Structural Division, ASCE, Vol. 91, No. ST1, February,1966, pp. 381-403.
Smith, 3.5., "Model Test Results of Vertical an'd Hori: ental Leading in Infilled 14 Frames," Journal of the American Concrete Institute, Proceedings, Vol. 65, No. 8, August,1968, pp. 618-623.
Smith, 3.5. and C. Carter, "A Method of Analysis for Infilled Frames," Proceedings 15.
of the Institutien of Civil Engineers, Vol. 44, September,1969, pp. 3148.
36 l - - - - - -,, -
6.6 EQUIPMEtti The metnod scecified to account for the effect of equipment is The effect of equipment mass is included in the fre-conservative.
quency calculation of the wall and thus the inertia effect of the mass of the eouipment is included in the determination of the stress in the % 11. This procedure by itself may not be sufficient because it does not account for any amplification of the equipment. Thus it is recomended that the fully amplified effect of the equipment be included-by applying a static load and combining the resulting stresses with the stresses frem the inertia loads. The ecmbination shall be performed by the absolute sum method.
Refinement to this procedure is permitted if the frequency of th6 ecuipment is known and the SRSS method of ccmbining stresses can be
)
justified.
6.7 DISTRIBUT 0N OF C0ftCEi4TRATED OUT OF PLAllE LOADS The :riteria for distributing concentrated out of plane loads is taken from the Uniform Building Code and is applicable to both reinforced and unreinforced construction. The limitation on stresses for beam or one way action is specified to ensure that these are not lower than those obtained frcm plate or two way action.
j The allowable stresses for block pullout are based on the shear bond strength of a block since this is the mode of failure for uncon-fined block pullout. The discussion given in Sec.f./.S for the allcwable values for unreinforced shear walls indicates that these values are in accordance with the available test data on the shear bond strength of concrete masonry.
7.0 ALTER!!ATI'/E ACCEPTAtlCE CRITERIA 7.1 REIttFORCED MAS 0t1RY Reinforced masonry walls whicn are well anchored and supported can undergo large ductile inelastic and out of plane flexural defor nations (1).
l An approximate analysis method of determining the out of plane inelastic 37
Seismic res;:ense is the " energy balance" technique.
This analysis tecnnique is, in essence, similar to Blume's (2) reserve energy tecnnioue and is analogcus to flewnark's (3) inelastic seismic response spectrum technique.
References:
(.1 ) Dickey, W.L. and Mackintosh, A., "Results of '/ariation in "b" the Effective Width in Flexural Concrete Block Panels,"
Masonry Institute of America,1971.
(2) Blume, J. A., tiewnark, it.M. and Corning, L.H., " Design of Multistory Reinforced Concrete Buildings for Earthquake Motions," Portland Cement Association, 1961.
(3) Newnark, fl.M., " Current Trends in the Seismic Analysis and Design of High-Rise, Structures," Chapter 16. Earthquake Engineering, Edited by R. L. Weigel, McGraw-Hill, 1970.
7.2 Ut1REItiFORCED MAS 0t1RY An extensive test program perfor ned by Gabrielson (1) on blast loading of masonry walls provides validation of the concept of arch action of masonry, walls subjected to loads that exceed those that cause flexural cracking of an unreinforced masonry wall. An analytical procedure was developed to predict with reasonable accuracy the ultimate capacity of the unreinforced walls tested. With a factor of safety of 1.5 the procedure is used to determine the ultimate or collapse capacity of masonry walls.
Reference:
(1) Gabrielson, G., Wilton, C. and Xaplan, K., " Response of Arching Walls and Cebris from Interior Walls Caused by Blast Loading,"
URS Report 2030-23, URS Research Co.,1975.
38
I l
i t
I ENCL 4SURE 4 l
l
GPU Service CALC.NO..
...j..
SHEET No.
).... C F. 3...
.C.;'*6.x..
C 4 & & <,-.....$.1. 'Mi c. t) * *)Ast.7.'..#l DATE.......
$UB.EC,.
. ;.,' ['. [?'
COMP. BY.'O ATE.. k;. ',
.(.. '. M-M:A:ncy s) A.t. ;....!.0.:.27../.0..)......
CHK.D. SYtc,,E... 7.. )..;p, t.,. j, A
M 9
5 a
a t,
7 a
i i
i I
i i
I L
I j
5 g
i l
-r N
C f W P Tt!4 4 R ccR f
Tuwm b utoIHG 4.
6TS8 AW
- Nb !..
m I
m
,t a
s 7.
e e9 i
di 6L s
c ouis(
~$
m
@J 1
i
<a.-
t
.-..s.
-I h $8 ib h <$'
I~
3 m
__ "."_ p, Q
t 84 l
, p,
.- d I
l m
av G:
o ;:.e. -:. a
. s.w.. 1 : :.s r. : z
.== *
- I.*- y;
. />. :.. f.: i ' i *
- ZE,M.71) A fittu){AiQ
.(e l
m. u.' c r< n
,b
.,, U.
e " hr.
I PL4+4 6L. 4 6' /c
<c 1
2h:-
Q *Wa 4 $bl 4ff*I l
f i
f a
i
{
l 2052 l
l l
3s61
==
I eh l
k h km (h
dk t
l l
D D
D p 3f' oc c
o oI L
a AOCC 0016 cwJ
.~
CALC. NC...
GPU Semco r
SHEET No. 7... CF... A......
. O.. v.;..-.L..C..... C 64<. 5. 7..e. / C. u..
.V..A.s.t.7..#../........s...........
OATE..........................
,UBJECT CCMP. SYlOATE. d.. d.[.'.d.('!7.9 M
CHK'3. SYICATE k.. ' (?.N:$$
.Y..
? '.E N
S b
(,
y 4
9 to I
t I
I A
~
i i
i ll l
-~
I t
i i
J u n. o ts k w ult. DING l
I i
4
&l r
, at:,th. CMi
-r-5 o
r 6L34-e l
l
.L 1
7 m' l
- LcCIRICM.
i l
=
TRAY R.M p\\
J j
h I
' 4 m ay oFPCE sc M fu j
.-- c :
C A
AEA7tA $4//I.0/Nf I
\\
es I
I PL A 4__A L._.Sf-O.
RE[-t PW G 4510 I
2 c51 1 l l
,.f D*P D
~
9 A l 42
<h ei a l, 5
sf 3
4000 0018
GPUSemco CALC.NO.,
/
S H EET NO...... C F... 3...
C. y '.7. s t C O '..<... $. 7..M.I C..U.. *....f) AJ.I.T...# l..................
CATE.........
SUSJEC,.
CCMP SYlCATE..M. h... M'$.#3
)......./.f.d..
.u pp,w e 4 4 9, / e g p,g,,,,,,,,,,,,, cys.,,,,,,,,,f,z,fg,9,;f, h3 3
s J
6 7
a 9
'O i
i I
I i
1 4
,.~
i i
e i
l l
i
.-~~
i
.7u'ghjus.#s u/LP/M G v,
r t
i 1
7 l
- SWITCHGL AR. 2.Mm&
Q t28 I
1 I
i
- :p
^
t U
A sC@TCA.64t/t.0/NS eC
.@ @C a
4 l
6T M '46LL " I'Q l
7' u :t d. 6 5
~, 'anToe
/jC 1
i p4 l
?
i
-t--- J
\\
sc pw&
v50 4f/o I
l l
l
-s
~
afot A l
.( 7-d 44 c)
. (,
8/
l j
'5 4 um A000 0016 l
l l
~.- _
CA LC. N C........................
GPU Semco
$H EET NO.. d... 0 F....
... C.. /'. $. 7. &.k... C K. M R....$. '.T.MI.C U. *...t) M..I.T...# l CATE.........................
SU8 JECT COM P. SYlD ATE..
.h....'..D
.........(.........
..... s w a y...N...m.t... L o cm.....m...............
CuK.D. SYID,TE g..r... y, w, f. o LM Ms N
3 a
.h
/,
7 a
9 l
I i
I
..~
i t
i i
4
+
e 6
l l
j I
i 4
1
-. s I
Ivw)u t, b ull.9/ MG ft.M Lt.
- . C ')
r f.sf. O W4 2 c.fo
-a e
4 biMM }
i mum i
i
,O fM"o A.64//t.0/N+
f*
.\\
g s g u'
~
FL M &L (-n i'- 6 k
il l
'g l
l
+
esAcne hu't.oev(r m on - acto I
I I
I xi a s
a fsi 4 l
<1 43
,a cf 4
g/
lD F
D ~3~l~
A J m o M L ft. A R L, A000 0016
[
e
GPU Semco CALC.NO.... 3..
1 SH EET NC.. 7.... C P.... Y......
. C y AT'.S.. C"M. ST"'c ' :.Y a!r.."./..
oAra.......................
sus.sc:
coup. syicArs.d.dd.Uf'.Tb e,wn,,,,carg gy,,jp, zp, _f()
. flM - M:A : n 4, s)M. :.
(,,ccspot),
M 1
S s
t, 7
a 9
i I
a,
}.
i
~
i e
i i
t 4
Cr I
i l
.Tuwn s a utf.p t NG I
p 1
~
-l
-a i
1 c.-
C A
ksV.nA $1.11U)tN+
~
Huf l
ev cpw644 eC i.-
I PLN GL SI'- 3
.i I
l k
I fy I
l
<l 6
a w
<f if.
8 l
D D
7 s\\-
em o
A
,oo v).1 h ?
o ACCO 0016 l
ENCLOSURE 5
cat.c. no......
opu s.mc.
SHEET NO.
[... 0 F.,
. 3.M?.. 9.W.%..ET&TE N r...U.u. ! i"... No.....l..........
DATE....................
sumacT CCM P. SYIDATE. [.' b..'. Y
}
. !Y:.[.. h
~
. hJ. 6h.....N.h........ -...C.QNM0!. 4.9....$.e.u T//....L.d4.t.'
cHK'D. SYlDATE.' *
^
I
- Tr#$'7 WL'r' - 23' f L :'M G o
%] Y THidKMLSS : (,,"l4cLLovl 6tAs;o bip;.u]ty 6t Qcg ( $f Aegso)
Mocrn Yips >
M
'M h _t 4
dTr./A)[04.C6P 7ES
{&f D tA7-?.
St 2.rn -
1 I
II ll iI ll i
,1 Il 11 I
li y
h t!
s j'
g'l p
i i
Il I
i i
il AA.
il i
- -4 i
- 3),
7
. _.
i l
l mag i i
ll enWI 5
I T
ll "g;,
4 s ll s.
l ll t
i I I Y
o o
ll i
I l o
'4 a
f j
O p 0 ll ll I
o o
t I
o II ll i
it i
l h a_.
_.p _
l,
[
a '_o l
14'~ o ro (o n
'?.'~ l e,,
Y0 b ' * ?.
h b. f~ $,.
E~&
h
[,' o 1
i g
t 2
Ir6 p
lQ 1,
c w
vsiria m. __.
u y.,,,,, <,
</,o
-v i, s. /,,-,,,,,. n z s
1 l,
D po W D ia,- i-o a
gi 6ju J
(=
A000 0016
agu %,c.
c^u:. uo.........
snserno.
2...or. 3 6...
.. n.. C..u... e. k 9fmah..-:J9.*1. N.s..l................. cars..
.C.1.
sumsc:
,s COMP. BYICATE...
...... s.
,l
?$... ?-
~....
CHK'O.81tDATE...
~
- Wr:, ST HM F
- %5' 8 Led G 6
- i B
GCMs* Mn scA)27 SL *
- U"" * *)
~'
+)p.t.
- fpn.<Qus s
M plp tp* 'f1pr.
1 gg, f gcap
'j6S OF 9W9 El ASII-6 4C/ 7 - 9 I 2'-8,
k
'l iIlI
. l l
~
j.,.
-. ~.
(...
kk W..
t 9 99 x.
5.k'4
~
y)
)hti a
tJ 4 V Y
> 2 o
-i l8 o o
~a N' Y b ll s
e1 7%
l.
io'- a l
sto 4c-W 4*a.
$~O bb, (m
3'-l.L h p
11 y
1 7
p m
g)'
o a L~
&~-w anoa k
'N M.V N*M f D W10 l D*}10 4/
li w o N e p
.k N, k; g.,.,
8 Acoo oote
i GPU Service CALC. NO....
SHEET NO.. 3... C F..M....
[.N...kd$... M/2[.
."~
DATE..
SUBJECT 9
t
- r, CCMP. SYlDATE./t.4. /8.. y. /.. s. R
..h. k k
. CHK'D.SYlDATE.
...U '.N.7
.. ~.
(diceMr/F'AE)
/s;'-gW Jgy'g S 'souow & Cc.e R M u. f f11 G G E/.!'a )
Mu 7Wi?xHeH Mt4rdL ;yi r W
o iP'ff f f E Akt/ C f.
.:1!9 7/- 6 '
AF/ursf.cco
-=
A f/3 a
/ # f:3 G.
i-
/,
+@
+-
y gh.
/h
,k.
4 h'
i.
.e I
(
i 5
t.
- A
..g h
b g'
g
~
. ~
I g ; 49 i '
s r l 1
i WAR J M
doA/d l
's i
re.c 4
)
W' $'
IP s s 's
~~
slev4 L8,
$55 l*l Yb N ~W b/$NYffff/ N &~//WM~
(if.
(
pl
[
a C
k
/ 5'- Z % '
s
,h N N < g bf =
m s'
['
k
., J //[NALLaD2 A
I so o
k,s i - o
,g, Acoo oota
r, GPU Service CALC.NO....
SHEET NO.. 4..CF N.....
susa ECT..V.v'.ev.,g....v%...T..../,.. g...j../9. 9../.)....
2.Al/I" ;U G.I 9
DATE.
!# [' C CCMP SYlDATE.
b
...#d#...S./. 7(. N.@$N'IY.d.6..EN@E. A.f/2.'
CHK o.aYioATE.h' f
lFfut/TY/nds N/W,
~
b Netccuv glpt.C.k/ML fi#$dMD.)
WIL: R/CrveTS t
M047M I'tYs' kl MINFolde:,0 9%
/ET~JWG5 h4-6
/
M/3 a
~~
/f $10 l
J s
i a
y y
+
g q
(
r.
g\\
h' t
y s%,
2 >; b c
t, N
l N
/
N.
,tb.A,=h.
s M
frMe una s.
$ '/ y$ % ',
n i x
(~ d4-$ e l
(,.
- )
i
. ~.
h, / N4
~
I l
4 i
i w
r*
+*
"Q 'Qsmwsg6 s')
hb l
A l.
E '. / 44 "
l 3
Q s
\\
(-
i i
i l
l
,a, e D%D
- D W n
, -o OO W
5 l-A000 0018
GPU Service CALC. No..
SH EET NO. E CF. 5 G
..bd
.~~....N DATE.
SU BJ ECT.,.
CCMP.SYICATE.k b* M' 78 0
(
.... ~...
/
h[k' kHK'D. 8YICATE......./...
~
/
~
(ffda.//7'Y/Ms* WA/.L.).
8*/o# u ddVd, A/.seK
/rt?GGe2n)^.
A
- RL TNiC.etters :
Nsi'rPL rrM:
M'
~
g,0 - d -
6 Ank W /ecp
%S.
Af?= JVGL s/
33 f
=
/ffz06 l
- l-b g u
7-3 b L
i
/ 9
,rr gs.!
' '/
f N,
e I
i 1
(
l Ni a
l f'. 2 6
\\kx
,.)
4 t !
)
y sf-g "
e
{!
i t
/
L 4~
7, T.
^
4 use. na /
4 w
44 't k
5 N!-
f t
J i
>g.
M
?:
6Er /-/
sej y@
Ns y
.F.. ei
==
.[
s, s0 l
', h n**
D J'
A
- Sxxxxx) av::
G v Ildb h on
'Q N
.cc
[
i f
4
,- o n
I i
Acoo ooie
GPU Service CALC.NO..
SHEET NO. 6.. 0F. 35...
SUBJECT.!..
...d
...k
..T..
04TE.,
cow. swo4TE. 8.$..........
A
. NAll. N..U.....~ 5l84~.M.E. didf<t@C. W'70NS p.
W84....
cnwo. amcarE P.... '.'/'.%.
2 /Q 0
L
- se an:rwn
- s'Rmh saza an *.acar,wrt$na=4)l i)7sa r M W / E.
M
- ~
A f d W M~dfJ l
NO,
/EF dwr : M//- 4 145/3-8 NonfMWofWRL
@I w
- g i
k O
4
{/-S
}.-
v w
I./,
.'N l
\\'
I 8
- O X
i j
~~-
~ ' '
19 2'-/
i, Qi X Qo
-h-I f
c-1,f; pe", a, I w wr x
L
'g-4 65~hx7W.
? -ll bW k
J2 54 l
u x
g gt Q
x
+-
g m.
g sI w
(y %%]
+
s N
V h;
N u
l 1
..~
6. ", -
19- & '/el'
.q@
9 J
b i
6 g6 W#ew.v',,W W wwxww v w<w h i 4
@l y
l,.
7 7
4
~.
9 9 '1p~ 3 a(
~
k
--..-q,
,y
_ ---lhu,-
JJL.Lq u M
t c
-}
,h
(
Y e
it
'-O k
l T h9 9't I, f-/O i
1 1
'j f
Aouo ooia gj gf/ 'r 7
r CALC. NO.....
GPU Service susacT.Nfd. #f@.d4Fk#
.8 # Q.[l.....
a[7s "I,. ',. '.
can.'a. sytoirs**" '* * **
'. Y,.,.... fgr
.A.ll.
- 0...Ck!l.E TGVAdc.?..[.. gg7....p/.At.t y/.
32 /0
- DMG).....
.?...
- - ALL 7~HKEUSG : G "M.WW Sti1Z.=.) !dHC,WK0027N/ChtGMM) sto M as rep 5 - :
p/
~
fnWF94M;0
//O.
A ff div6 C M *4 - 6 J{/f -g i
A G //Jc~OF<fel l
S 4$
14, i
l N hT i 't j
t l
y N
'g g r-7 3
t 9-4 i
i
,, 24
( ~
,9k lonT. '
C><3 i f h'
i kr yell
,t l
/13g
.,I-f.
4'f 'e
{
- - ~
~ ~ ^ -
T 1
i l
G
'i w
\\t t IN di k
l h
i l
g a p
S Y
/d'- W O "
,,6' tJ L ~ - w k "'k',~O g g g odLdSM q
.)
g
,1
' h.
I
- % \\,
Nj 2/ -O
/
/
I/5 f, I d /~f f
1 JS 6" aooo oom
o,u m, c x c.n o..
SHEET NO.,b...CF. h....
sumer !WM..MG @T/N.
.!!d!.E f /
anE..
.... =............./. M.. <
COMP. SYlO ATE.
2/44..? !.9.PUM dM..MME./& 4"T" Eda-e-o.sviccE. '
. 9.M-L
!& a LOAM wu r.vutur.r; 6 "Cazr3 /;WMwift)' twirs(driaeb),
- inot rel 7WF M
aewrown
- /Yo.
Le~his:: 45// - b -
~
45/7-6 i
s I_
, /-?,',
4_'/.V i,
Q. v..t pt.ggst/c' '., g r 4 4 de s
e L
> [.
~
Nll' xW il
'k l'\\
,z, egi Y t
- 24 i
u.
Le k Y
--(~~
ll, p ktu m C4 m r ff M r y
x q.
[l
>t 4
i
_ l i
su s
/,
N
.w
(
m y
s, I
k
(
h I
j e
i f
L I
f I
l 4
.,w w
' to 1. - gs v'- r:
m yr'
-7',i g/p I
'i 1
}j //
8
' 1
~
toJ' "Y )
0,.
y I
nu.+42 %
3V _p 4
i 7
m h v>vm m n w e m w v w w-R L
m i
~6.
w.
u i 6~,g" i
f lj~
'a
'S
^
M-Io,
,.7 n
s-4 f_o M j
? fbeP WN b
V'/ *
^= =
G L
"D)d@jJJLda D
vJO a
apus,m.
cAu:. uo...
SHEET NO.
- 9.. 0F. 3..
sus;Ecr /h'I.T6d..NEM
- FN'V
~ #W#~ #
DATE.........!
Wdil. # /5.....)..!CH/7M b'd dkJH6;F~sM-fMHfAd **".';",{',o",
C
.. e
. -ssa miaors 6 quuo you oa M m o r ( c p e c oo)
. At/A 7~44 7PPf pt
' ~ arwmea;o
//a per. Jws: l5ll-6 J517-8 4
7
-\\
n f.(j g
s
~ g s
- i
~.
(
- A
..w.....
{
w (x
\\
h I
9 sg L
g Jg s,
~
D
%s b
I N
t-= & - (p f
1,
_ __.-__._.._.._4 f.ll',. ;
,2. * > *)
pnr I-I deer t-e l
g-
/-O l
l n
l I,
Om o-a h_
m om Acco cots
cat.c. so..
"S==
susa ncr.5~Ed. #A. c.W..... '.. J...M... 7.7. 0..A. /...
./4'ANI~El',,
, 'c,rg,,,, ",.,',',,,,,,',,,,,
c=MP.avio^re.06.N.9.lo
-...... 'r'!.L 4 /7 - s97;gy ppy Q g',g) c3ye,3wc,7,,gg,,gj,,,;jf, N/
C'-
- 4a.(.,,,,..,,,,,,,).
,r/ err secwas dQMW
- u-3' W e~CS
%
- h'c W ' & / W C M M a # 2 7 m 7 ? ( ; M i n = a.
wsir,u rrAr- :
y AwMee:D s
Ac.
Aff ar/S. 49-[3 A
I h9 l
!VAU-o l
mm
..., _ an
~~
~ ~ ~
~ ~
y 4
~
e
~
ta;.
.r u
'o
! do k
i N
1 f
k i
\\
kf 4
N y}
g x u; N
a i'
e jf.
9 ~
- j..;
g j (!r'o#
% L, '
E igigo pi LGa)--
1 1'
1i dEC7'/-/
l M
74 I, 1
.,'i,~
i
., i,,
. -... {a
,,x _.
l
=
lVAUjf '
G'.e a '- o a
/
~
3 L
i +'-5 "
'Tl~g a Acco oota St?_p. U Il
GPU Service CALC.NO.,.
SHEET NO.. M.CF.. M b
[....
- E
..h
. 7.
DATE......
3.............. ~
SUBJECT.
CCMP.SYlDATE 6/.Id* M' 4
- HK'D: SYICAF.. h../
...dbS7ivML M'- G' &/G
- 9% ratst/str
- f"roy
&#d. //A//#d AAry'buseLED)
Mfdr#L 7YPF s M
- Awmedga No.
J9' 7= JWG.' W/d -3.
. h o,,
3,- &
i}
i
,a...
i f,
M, 1:
Il, r=
,s t
N
.1 ';
li I l I I I
g I;
s.
1I IIll 1 it y_
ll
- 364 k
M'4"
'I i
/3 - &- @
?,. !'?
1 1
h),
M+
gI x mn wwumxmxwn wn y
s Yzwam
~
/4'- G',
QT
[- s '- o l
SI l' N A000 0018 D"
T ij)
~
~
j
,[b l.
l m
GPU Service CA LC. NO.........
- 'U
.I,.'.....
(([ ~
.fI/78. '#d@..N oA a
"?
susaect ma + 19. aursit ; aray(pare ws
== sr'o^rc A': ?.[/.Y m
N CH K'O. BYIDATE
......./.p.ry... ogg U....
UdB 77//5~u/87.C C"Hc(LsY40#3 JAf04'AY 2H/Kf [HeCKED
. e47A-4 7?W9~
H RE/A/FfMD l
gg, fff fg&(( $j/$-j
~
a f-2 6 8't e
uu p
e.
W U/
/$ $
fff 2
~ 0 2"/:7"
- Q' [G "tske 7PMfutF Jt44
~
_1 i
1 t
y
/,
- .=
i g
(-
.?
l, h
l
' \\ du/c.65t#
r l
>(*
I l l
-k
(
\\
i l
l
'f(
u J
i
- 4>
i i
4 v
ll 1
t l
I e
- i h pio'
- !')
?
1 l ?...,. N,
, f'3 _
ggLg'/
g; f.'f',
iz' 4" 1f 1
@ h$
.K'. ;,
l
~~
O:- l '[I 5r 33 [$1l4 m
.0. r.1 G%A MMt _X KAtt e x < g ysAs - vpjpg
~
'es'
'es9Ik b
,[01, lYAl./. $&
- v..'..
s j'{.
/S@'
t, ih 4', i o
v' / ' l A000 0016 4
w-y
1 GPU Service CALC.NO....
SHEET No../3...CF. 3 h...
SUBJECT E
.7..
DATE..
...............b
./ !#' !O'..
CCMP SYl0 ATE.
' 'Ya..[$7[3.gf' pgjg.SYIDATE..
I
./Y
/fN. CHK'D
~
~~-
/g;;
JY4tl rHim'53 : d"Ho'4 cal droc Maw /AV MWrS(Wi9cK4-J).
' Myrr#,c' 7~p.5 M
M /N MiedfJ l
IVO.
4"f JMGE:..l5/& 6-l h*
i, hN$ N/Nh 7
q
/ // j e]
T i
4
(_
r}
l~ '. f.
V* '
.,"s N
. * : r.
s_...
p.
~
is q
- ' s
-s k
- *p N,
)
\\
h l
\\
st J
i y
.a, ri.
x
.sv.
f.
- /es' d*'
{TTf' D ]
L '[
f O
N.
u 3.
g 7
WCfAF +D/'H4 Wfk,wAM f,
s
.*' R r~
t k
'?
- N '
~
.f&ll.Al0,p,
/
2 /Lo
[r } ',(
4 h
s~-,
A000 0016
GPU Service CALC.NO....
suaasCr ( U & f..../.4" F Z.4 T M N Y.
.. 8 d M M..... IATE "?.?....
C......M.?..?..?.!:......(.2"'""~"GW eM
. 'T.'" ^"!5?$$
n/AT71 WALL)
M-p LO/JG -
^
TNNANW! :6'MJuw devc #4kH/7.9 pin'.( rMse%Q).
WAH Mp/7HL rr'PE M
~
~ AC tNi= M cED NO.
/EF 44.6 : 45/O-2 i
I FC/ UWl~I g wfJr kT NW SHEff
(
[
OPB]IWG i ',/
l)
\\pa e.
Q s
_ _gi. __
s; s
\\g k
h l
i N
s q
. 6 p.
pe
//
- 2s4, _
7 0
h, Al # (
I,.3 ' O ' l, 5
0 4
Dg*
f
/
$e
', ' /.
L j
L' 7 O 4 O' Y., ' =. '
f) 3 O,
i s I 4'--s "
\\,2 -py
!L =i'- o 1
l l
A000 0016
CALC. NO..
GPU Service SHEET NO../k. 0F. 3.h..
k...
.7...
DATE.
!O'
'4 SUBJECT CCMP. SYl0 ATE.
W. ??!.'.~..b*?..?#(((HGM$.N?t'[J4,..Cun o.erioxT
!E i
'04M MA!.L ),
a L&, WMl )
7MMNET/ ld%utdNM Af4fCHAYkWm'$rM6EFEO).
M'H4 MMr#A iWe M
AW M M EJ AG,
/F,R JW6.r:
-/5/0 m3,
=_
_ ( fcLMM
^
5 m ,..
- -- <(yg gg JF EkST t
o I.
i
\\.
. 4fnMEs p!
Y,l
[
\\,.
yi t
l
('
/a.
t I,!
k h
V.,FN....i,r%..
~.
i 7
V.
g.' 5 4 "
\\,
s'o n
1 11 g
'~
- l_3 4
t e
\\;
W o
c f
iy I
-f l
,f G
20'-o
\\,
g
-1' t
O s
t D
' }th a
_ J1. G Vf i
I Q
k
/oo h
s
\\
i
)7 P 1
%7 l
V IJ
.r t
)
o, n.
.p h, h!ji j#
f'
/9]Cf 'I l
'BB /7'
'F 4 oo com
i GPU Service CALC.NO..
DATE.... 3r.. p.u s.
SUBJECT
..?.
? ?.h. [ ? $.. $ N h51/TE~C &4C&e' //A/L 23& "./.ob's..'
CHK'O. BY10 ATE...
~
/Y4u Thcx.vt= s :6%uaw ddN! M#foM s' f,tN/73*(fr4GGg?Q),
i u rits rv,*f :
M st RawrMcf;0 i
NO.
Aff. DWG: $dl0 ~3~
^'
~
t i4 I
, cos,x,, y' r
,1 ~,' s ~. o,,, -
1
'l '
(_-
l
>' o L. T : j '
~-
.a m
L '.h f
h f
.3-7,lE'-4"I, ji 3
r
.I r
' # Il
$#I f
I' i 2-4 1
3
(
l 7.
[
g i
l
?
a I
I I
(95'.f W.'
l l
i j
.i l
-f N A 23 #
[
I 5
44 n
3 D) %yl3X))N u
.D D
~
l 4/
b3 r
%1 l'
h
' do wJ 2bld:
',, L iv a.4
%k i
y
- . -! wwwc,,w wx m m m x _.y F
- M i
s L
y fy(
i is
?z-9
~
n t- ? >.s 1-iafft
@ = / '- 0 A000 Omc t
- ~
s
+
GPU Servu:e CALC.NO...
~
WS7E. g..... W..... i=. X....... l.. 7. #.'. 7. 75A../...~ A.
ours..
coup.swo4ral..........,....E.#. da. 2o sumect
... 4.. 4................
4 ' O 3.
- W u 'G< W a n o..
ena.o.ario re.y..t.s.4.16
(?. 2
- 23
^
6"h'0Fo"WC #4.GWAP' /Wff f87#$fs&&
WAM 74'xws.sY :
tY$$?A$ W$
W dg' iomm
/VQ.
MFJNG ! MIO ~C
~
4-l0 a
I*
1 f. f
$ f5?%
p],
I
(
's 3
,f I.
4-j[d
%}j N
, ir
[",.y
.e.
e e,
" i. 6 h \\'s i
A s%
/
p i
i g
l/ 21
{
l l
_ g l,*
I [r
}
1
,s I
1 I
-23;6 l6~
t_
l
'I
_ [~/ _ A 11 )
[
, e 1&Rp ff 1
y3 off'*]o D V Wg:
I_
h bc w
2-
.p,. _
s (4
~
I l
,n
{
' Wl,W'. ';ff^fi O' -,' a '-/Hf,< W f oK N/ / /A /VPOU0(1
'^
' l-j o
J l
]
Q n
{
4 I
h
/
- .4 I
a/=Q 4 r.9 s>
l l
s k
~
. ~, g,,.
A000 0018
GPU Serv 6ca CALC.NO...
SHEET NO. [ b..CF. M.....
SUBJECT p b..
dd...
ff.
. 7......
CATE.
C.
M '.l ? ? ?.' ? A " U ( W 'S @. T.?! ?.{ @ ? ? L T 'o'."e'r'io ?rE
'$Yb
^
C
.i AS4 ONG) g@',.,, x... w.9(c wer Wat
/
/
1 m
3
' q-p.-
9
~
~
~
k.
~
'l
\\
x\\
w N
4
. i
/l*
Q.- + :- c, w-N
,1
.[
l 4
e
~.
,1 j h '
i 't.u
- 1. ' ~; esw. see s
=
~
,y M,
{
p't: <
~
.~..
~.
~
- ~,
l l
.-{
i i
IW l s'!
l#
g-9f l
O qi
,A i
V r~-~
y l
O n,
i
.1
\\
d q
V 4"
l
- 3,- ;,- p.2.u{
i
};
s 1
l g
Q.
5/ W0 i.d J. %
A N
s l-i Na
- g,! N
\\
}-
'- s h j-
\\
Q 4
\\n 1
N e
y 11 I
I ad n
LQ y';?:;g 1
/3-9 ",
1 U,(
is m J
3 ia g f
t
, E' r
N' w
m;..,.- -~~~
e..2-.
o e* ~
r
~
.~
f -O I
l lb'$
A e
{
A000 0018
GPU Service CALC. NO...
SHEET NO.
[k. 0F.. 3 b..
Su m ser # # &...r M {.. E M E e.
.. 4 m r g,(,
.. ?.
O...... VAll r 24. M&stdaags irugger m : f* " "'r'n.A E I"f,.f.7/r.
.g..
wO. au
..........................................Y..
lY H f NYN d.
/3
'f9f)Q L-Am" are sumy Mw.r(esas-m)
Du rnasc: :
po4rs e /7 M M
A!WNM
/V0s fif Jt#6S' 2ffd-3 yae M
4ED-m-=-e e m e 4.O M-i
,e O
l
\\
l l
v l
A000 0016
CALC. NC...
GPU Service SHEET NC. 7 0. 0F.8M...._
a.
k.l.
. ~..
CATE.
\\
^'
SUS.JEC*.
b
~
.h.
. h.
b,i.
C K' 3YlCATE
. /.
'l4VLodt
%/c.u Tibcod653 8 desLw doce b-N-d T
b ff Mc4-T.4T R : pds w/ams7eq,
P.. e i
a dr[l..43e
id 6'-d I.
(531'$
.. _Xi
.7
' Y t
w
.y l
g
(
/-
o.
i ill
(
4 I
~9d
-ll i
l}/
l e
~;
i G
J J.
I!
N_
l?
s(-
o_ -
i Id.- 9,,
r 1,
i 1
1' l
I-l
\\
.T. w'w.%, T l
?
_/
/^A^tv'M NXxxAA+ &
Eh de D *N J9D f D '3G}
a L
1 a EJ.1 A000 0018
E cAu:. uo..
agu s
,c.
SHEET No. /U... oF. 3 h...
SubECT.b
....N DATE.
L
.@.M*M
.WAu.#7G. Sm.. snD%.fg 9h.g.sq,y.L!qw.nkcswo.SY COMP.
4 SvioATE
..<, - w.a C
go t.ar
%/stL Tdled.Wut, r d kLtcW Etoc.4 Iffdf M fth /uuspur fy b dos-L Q. co in 6 6 6 M re t d e E (t o c 4 t
=
.'A/_
T L X __
I y, g i
[ q.,g '
fx l,
- /'th k @d[
l i
1 1
ll
=4 j
O I
l r+,
._s[ s g
r b;~
l e >
s, i
1 t.*[.
[,
wwxmxxxxxwp W
w A000 0016
E eu. no....
SHEET NO..M..CF.3k.. -
_,c,. oyez..cVss%.d..0v.}.n1..
g;,;;.
g-o 0
..w.45.c.b...?.ge4.hwM.Knn'g caa a = =
.~
~
" k3 9.,F u u m s s] a st b d IlAltA M !
(
su w e.e<
($
h s.
~
x 2
i i
s
- h Y*O
~
g 1
o 6
x
/
- b h -
.c...y x
IC- \\\\
- 6.
3 1-l l
l
,gw E.,*
1
's w w a w m x h
.a Y
1 0
'D P
P(Q 'i FI A
w1LJ]J/L l
AOOO 0016
-,.e--
-y
CALC. NO..
GPU Serwce EET No..N.3.. OF.
SUBJECT..
^
P SYICA kl L.,
....~.
sw t.w ggt TMy%% a $ ECLLOAl EC&--
- M i icg.TM;L TTFE EtiuFopD Y'*- d*9%
g g Te tc. s Uc ti - 4
~
~~
+
1 s
1 I
+1 I
=a.
i I
j i
s x.
[,
e'. 8/
6}
4,
i l-l l
4 p' 'NAll.
9 1
4
- y vcexx
]O?
]D ?TT O,1 J w aAi o AL J1 }R!iL, t
A000 0013
m w
" ~ '
GPU Service CALC.NO..
SHEET NO.. D. 0F..M....
SUBJECT
/
. 7..
DATE..
~
CH K'D. SYlDA
./
~ /] k bl/V E lk? N //d/$ ?"!$$ $ ' D los/S ).
~
~
JyEJ7*
JYALL.
[24 -
irAu lWErMnT :$/10/405 ft#d. /fiffej/g)',w/i?7 (L"dGGEtaW).
/
/wtr e in=r :
'M RRA/ waded
/VG, R f?" sa/G l 45/d e
ai t
i s
e W
D
,,.q-
~.
h,,
h St-7 4
g/
l g
'Y '
y(
h w
4 g
yp
..g j
..n,! >1 gN 7
4o l'/ Y,. w. s.
~..
n.. ~...
if 6,
~
94c 4G7N o
c
.s n
,_,______,N l
^
W4l.L +Wh i f t
it G"
l u -4 9.
1 1i t
Zn D
d loon oota
GPU Serytcp CALC.NO..
,ger /.)..'!..r. f.. A.... C..A..t..~f.. t....f.. n t T N N
....(. f.. M../ 7 3 /
e4Ts.
COMP. SYIDATE' y #d [E C
.....dA ?..?.Y ~?df!?A. 4 Ell 4MG..S Wl@f-M!/' Cun o
/
d 70 -/9 6 ' NGA JVAfL.
/ s...!/O ' LCil/G JrMl )
WAL/ 7WdnMsr: :$H2ed G9/0 AthwM' W/tr.r(2YdCRfD).
MMrat TWr M
l AE/NF9K05LO Yd~$
- ff dP/G. 4-50f
/4 4 '
- l-W '
1 W..
P Q.
l
),
,F f
v%MV#/.(MAX /MX((X %M%**.
- -'t p.
s
-I N
. L em (s
- l; g 3,b w
,e
%+
~
O C'
r.
1 x
s a
r.
'h, ':
1
. ( r, *.
1 n
Q 4
l
,+.
l.
\\
p a.4 > ij s
I 6Ecr 2 - 2 hE /
O h
wo!
wR n
(
A000 0016
A>
/g 4A p+e)/
%s<f TEST TARGET (MT-3) i J
1.0 l# 8u EM y @ El l
1.1
['" l!llE
]l 1.8 1.25 1.4 j i.6 h
4 44f 0/////
4
?
%[$-
Qp Q
4*
/////
4h
- $M*
%d7,
+
s
- E--
TEST TARGET (MT-3)
I.0 W M BA a m g=n E IB l,l l'2 EM 1.8 1.25 1.4 1.6 6"
- % y,,
/
4%
>/s
'4A<t,
- Of>ff o
GPU Serv 6cs CALC.NO..
SHEET NO. db..CF. 3S..
SUBJECT <
.. I [
.. ~..
.......... CATE.
[8'M 88/@/I d[d I/M/Nd5/I-CCMP.BY/DATE.././.h.!.h
. "[ 75..
<N.k..Md h.
CHK'O. 9Y/DATE..
..J.t.
^'
. N' t
.p
' { /7 4
., 3-
,4,,,,,,
.,.y tT+' y,
~
'lGj-21douterE
~
%*h i
^
} q :;
70 n. na Le "
t 14 x,-
1
\\.
d
/ //
-l s
i
!Z./Z-6 1 s
2 x
A
'g u
d i
r Y
N
~
'fg ',
3, l
1 4 I
f,
- 'O
)b
.4
(<
i
{-
y i
y g
x X
h..-
- - - - - - - - - - - - + - < ~ - r.
?!
+
l g
I.
.?
if r \\.
f t
?.h r
x,
+
N
,~
r\\s s
s
+
h d;
s N
')i v
l Y, :
i
- 4
.Xi k
o
\\
i X
Y h
y k
t Y
1, v
7 f
~
x T
g g
y X
g.
s f,_
h se / O b l f
g
'% i l\\
f,<
l v
f l
y X
4 r
l s
I l
4 D f ]i AOlkz]Me D
'MM K
2 w
(rs/-/
f A.,6 9.a t
..1
.,.,,i a
6,,
s m zw,
~
CALC,30,,
GPU Sennce SUS 4ECT..
(
I. N......d...[.M...T././...~.
..M.. M. // N..
DATE.
WAl! 9. 3. 0.....
..RFd=.t driisim S= J*rdtfr/ ELL **"p.syrpTs..
^
... /.#cyt can m ~ /?'-G'
-H/F7 PMLL.
J-4 4
'G.
~ b u 7Wie LV m : f%w gsyc pgjsypyypn(Sidc/';g)
.- =
MMr+x i?pa : MNE CWL2/g; dfg,o-3
- g, A?Mmm :
y I I
$n2skfb NN0 s.
,y f 9
e li I
j I
I l
N i
t i
. ~ _
2 4
I c
7 v
m l
i e
/
e v
1 t #
' 3 -0 e
rF a
j j)
/,
i O.
I
~
~
~ ~ ' ~
~
b Q
~~g l
h s I '~ O I
I l
-g!g" A000 0016 M-d w -6< f.
~. - c.
"" 8"*
cate.uo......
3 1 c" 3 4 su m a ' O M.. M n w... k d d a...... o.. a..r... w...... 'o m ~.
"c
"~"==d E'Wo C
.. M.'d.t59... Man a.n..s.w..e.sgm:a..w,cuwo.,po,y.._ y (s,7,if,
'0
' IV,";,7 f-d
'l,$"ffff.,f,ffll//M'#4aHe"AMb#LP'wss*()
~
~
~
y~~=
z va es, ns. e r.g -.
- W d
f p l
- 3:
g t.
s 9
4 J
l 9
s f
WY hh
' ?,
5 1
s e
-.g
-/,
t s-5 k
k I
's
~,
.%u 7
%~
so
./-4?'.5ff t
s I
?l t
//
d'Y
(
l
^
xj C DP"D 9F h
ad_v km 31 m
l Acco cois
a5--
cac. so..
'"'" " " " 3 '-
s w e= R. M M & %... & d #...T.4 p / r # /.
c"'~E?'NN
.. 2HK #3l....amrac seawks am;u
'" *'*! **? d d " */ d !'I A l '
'*Y' /
f~f~ r"2 J/~':'' /Efr"' ~it/,'4LL l
~" ~
/O-4
~
6%TA M,HoutYzv/W )%CH=.C)-
L /
MM Menties.S :
'q $j #
i.
M/474L TY/r M
0
_ f/b'AMCr4 e ff.5'
,...z, s.{
r fsf
~ ~f, ' y
'f' f i
e
/2 I
f';i' i
l v
f R
i l
l ll I
d
'\\
I l
Il N l
I j
E #'
w j
i N
I u
I h
k I
il s
I k
t ll I
l,.
N\\
I I
};
i i
l8 I
l M
I lf
,-+-
le
' ?g l
li
)
1 i
1 l
l, I
i' l+
ll I
l i
I l
.J l'AJ l
l I
8.h
!h
'AD 'z'.
6/-n //
}
<g4 3
O
...Y f l a
/d'--4 4'
(
r J
c g.
~
f'Arbui45 y
@ af O.
Tf M/Dx^h d
W WALL 4b b hi > L o l
I
. %l
/G 4 y
/.-
L I
L A000 QQ1g g) w
GPU Service CALC.NO..
SHEET NO. 3 C..CF. 3 h.
SUBJECT
...k
...4
/
. DATE.
CCMP. BY/CATE..(.
t i..
p
/. *(.[
/
.E CH K'D. SYIDpTE.f.s,f.. l.'.bDb
.f 25L " 17 5t'5" />2m trAu
/9- /.2
'DA/G -
- 4L wig' vers. 8"/4eed Ma&dYAwo3'$Alh M'
is n Molme npe-
- .i
. _jff,
'pristrons.o
- YFJ' BR JNG.46 &.15 s
Q C.1
.f.
> + <
' u n
,N U d=AiV
',1 i
l l
y i
I s'
[
g I
'3 I. 4
(
i[
i i
eX v
I f
t,<
Il in s 1
i N
1 3
X i
<(
l lll p,(l j
l i
l i
a Ik, l
lI i
/
x 3
f f
I J
!)N i
I Il 4
I $
M I
i
,.i
('
'/
l Ik I
i 1 4
i.x 3(
j l
l lk l
x j
nl IX
)
il i x I
1l X
j i
3 t
k.
k l[
i j
l l
's 3
i I
'I l {
I i,
I t
,I 1
i t, i
f d]
1
(
j
! k
.i7 k h,6 l
l iI e-g i
ia i
g4 j!
t ffH L
i s
// 2 4"
! I'6;"
4 ist
--L 10 4 '
1 I,$' R'u @. Yt I # 'S #I -Q S'l%*" # ' 0 4'
? 6 4 " ' -- '
- 'EA 8-
. hi y g 27 y
,$.t ig
-jj
,y g w e w -- m m m m 6I
-c y u s < n /., m. w
. o.; -
~, ~
p Q ig'
)
h," ', ~,
3 J
'lle,., ! L p u.y 2 3
/'f,/'1 l A L;,
f
-Q ' a Sc7 /-/
l
]
aooo oose
l
., =,, -
GPU Service CALC.NO.,
SHEET NO. 31..CF. 3G.
OYTTER UEEK [T,477bW -
Xub"N-care -
SUBJECT
..J........ 7 CCM P. SYtDATE.u. f... p !-.....y
.f Y(
.7 $k.Y CH6}-}Y$AlOSf'
~
5' fs-6 13 5/
jVsS<' WA Lt.-
d
- esa reaxse.cs
- 6"seEw M4sw2Y dir5Qsu'Mf.KQ, -
nara re :
,w -
a=. s RE/WCACE.,0 : YF6 x
r i
.v.
?c i
l
't 1
y
'/.
b t
i s
i
+
V X
l t
5 I
,\\ d(r# ave 4&
l w,
f JrMMAcud) e I
y sh V
1 h'
4 5
si s
I g
g%
j
,i.
i N.
i l
,c l
l
+
q..
/'
I I
3 l
l l
l
+
I g
o 4
s i
i\\
c.,]
)
l l
l
> 1-
{$$ h
(
..w.z-c.~,
f, h !. 4.
- l!;tG' fX 4,&
g 4
7-watrae L
4 W
,,, 7 0
lo.g p y 3 i
'o o N J h 2 d\\1 ff
%m
,~,g;3 wxam o
& e' g 4a
,1 '.)
k=',*
3 O P f 7 I - I [-
AOCO 0015
= ' ' ' '
- g. -
GPU Sen6ce CALC NO..
SHEET No. M. 08.. 3 h..
SUS.;ECT./
.. V CATE.
. 2......./. 41b CORRI00A HC 5.lwG). ML-ch"'i'e*,o^,s'.~I' ais2h EdLl..t 42 "AE '
(4-9 '/O" TWtcm/Ess *fH" c,&m gif-ggry zutrs. &&rze).
Watt iw7iY TMF
'h'O NuTM rypE
- /O RE=.L WG. 4c!7-0 V
45 toc.ecc 95// -3
/Wl1W//b f
/fd'#R
/
dd%/WS FAf[]
,42 2:0Wldic&
aren: n p.T.--X7~ A'=~ff n N,l II l
l 6
i I l ll I
, $~41,
!!'7 $
l f- /G
,/-ll Il 4
i, i
I g
I X
l
[
s I
\\
1
- g I
I" l
sti Il l
l i
l e
i
..s lI Il
\\
l J
l lh{i
'1 I I s4 I
I w
i i
m I
Ii l4 s
l b
i I
4,'
u i'g' 11 i
i i i
lI ll 1I l
i l
I j
4l 3 i
l i
1l, i
1 i
[ 'as's.6-O '
/_ f 8f! o#
.G?
? o
,6(
7/I
do".k#
is WALL
\\\\
% Wll 4??
e a 1-2 (xa *!6 f
Wu x 4 //'g y
aze
?
4eo i
42c Ai re,s s y ;< p,x / _pN _ <,<
_x ap,w.< mapn w.,
p s i; Y4 e
r r
l E-
-V
.., u 5., 7,a ci l
9
-., r,, -
r, xi I
d
- 2
=
3 s
I.4*/-0 A000 0018
- f,.. *,
GPU Service CALC.NO..
- ~
sus:1Cr !?f'W $Ml@s'!'AI
.. HA'/ W
'[
o
'N*
cc"' B"E
, MIL # 4?
U N/ks,W 5 -gas 7 9/g!.L cax D. SYlDATE.,, d. !.?/.",N.0 n
..g.pj/0.....y............q..
. /.D4/G, CVwaufu2EJ MAW /ty NA//7C]/4s~ Sy.SrddG Nel I M wi3Y :
K
,n//7H i M N T M Tfi' "
Ef/A/FMdia
's
/VG,
??E,M'd.
45/7 -6 45// - 5.
lfM7~b' lU5~dF h/A/d 4NF./ 9G d6e=.E7~ )
@Ja sf///7f/MF/F l
WNd &9~d04/7 d,/ '
l l ! j 'l
,,l-Lf lI i '.
'l i
18 -) 5,
lIl l
~
4 i
't11 l
l
,i' 5
I I
l!
i f-e.s, uf E O
I lj i. l2C
- lll;l 76 R4
' '/-0,
l,J.
I p 15).j bI, i
~'
i Il ll i
I 1 lll f
(
l'I I'
l l
l 1 -
i ll l
llll**
i;
~
I I
Ij 3, -
l l l l @A-se I
W l
ll' ll il s
'ljl I
5 i
I ll ll m4 I
l i
I li
!l Illll
,v I
I il il lil Ii l
x
/0./b" 5"d','G,'
7 '/0 "
B' l
$'l I '6 "
l@ u 43 % g G & ALL.+3 5
'i Whlt.5 Y N y [( WM1.43{
$6 %
&f 5 4%
hifty da 5 t?/
42A Ji w y ~ e f ~ ~, n
. z ; x-,,,,,,,,,,,,, w.n y
'j
O yI
/
j v
kh, bb hbbbbhb h h.
I
@ l 1
(f @ @ n U nU @ UlM r91.6 i
7 g
GF e
/ ::. / - 0 A 00 001G 4
\\
+
GPU Semco CALC.NO..
SHEET NO. 3.h. 0F.. 3-k.
DATE..
SUEJECT COMP. BYID ATE.
... kd A I....d d h....N.9ff.F#'2.8@YM..
Ca rD. BYIDATE..............
f ApdM -#647~Y IVAu-(Kvoeuur acrid),
ou rmbxceu :
W c Mucri-wyrus sTAckoo Gku.)
potra.e ryer M
seiwreears Na CERAWG, : fad /-4 W w A l.L Mp10V46LE l
r l
I l
( c.o uc wA a.
- a.,,a a:..
- r
-s t
i
~
f y
l I!
s, -
\\:
e i
g I
sg.
i.
. P y.
'?
2*
a I'
i 4
s l
//
/4/-//
1 J
1
,et.otJC WALL e
s
/
s., v -,,
w euuA n A000 0016
GNSece CALC. NO...
'~
DATE.
SUBJEC* --
'../.1w/f.
/kN h
~./YWh (( T Q}/gl(/fQ.[fff'.
Css.o. syio475. =
T M 6/# 5 h "f4 4 P N/.G R 2 d.
- 947# NA//L.
(&'-&"l946).
@a an,nwey:wic(mssee).
2
,vu w amr
,waru ze Ef/MFJ,4CE.0 b'9.
4M Jd/4:..Y5/$ -j l
l l
l l
u!
4.CONG %H5
(.-
f l 9 j
4-smo
~lt
~' f Hbf
\\
,y, D
,,i, i
.'jj fnye sue ri w
e
.'y.
g o
y
- 3'
. (~.p;-f; v.
i
~
z m
i * :.'.. !-'
4Fh1
.4:.
fm g
car l-l y' rm e,o,!
3 Ni I'.I '
0)?
g jipYX W W Ae xx Nv j
- e,.*
UNkl.$$b i
l}
tj si,e
~-
I, *-/-O gt fl
\\
I 8
a ;.,.,
GPU Serves CALC.NO..
SHEET NO. 3 6..cr. 3 6...
y j,4//,#. ;;**l
^' "' M 'Z.... Y. ' ' ' '..g*,",/
SU BJ ECT. f.*V '*[**E-[.... "/ / C:
. #.J~~/
~
CATE.
e9
,,o fl
- AlL $$$
<WAOOA. d/lllAlAI$ ETE!/A758 7y ',yjg
/g7_.d?ff(9.,78((
}[f g hj!j'l',1,ig)'//cu.s W //#$9MWMD/7T (J~~ihCM
'~^ ' ' ' '
hlALL 7~#/2,UEE.!.:
6'
+1947'44 7Y;?~
j%4
- @ m,,- JM. Mof-3 Yer awaan 4
to e
5 i
z l
0 4
y v
l
.s k
N 4
1
%x
{t<l 4
i x
x f
I x
I h.d" 3
9 y
y l
4
,'s
,e g.
o n
c, t
t m'
/
I v.
vf
,t
/
-f N
l A
si i l
4 l
1
{
i K
p<
l
\\
i y
2
'<^
l l
g V
I b
l Q<
t I
//
l' N<#
l l
e
'X Jl
.o o
a h
y io - ~
vu' ar 2 -a i
a
.s z
-:,' l ',l 9
,ch 4dya,>
. ^'
Y M AA;h
^
M.U.+2lYl }t, A' A of A V VAcuvs+ TOR %,i 6 v\\
o
'4 ' ' '
?
gy(7 / -[
!$ i, aae,8 ~O "",Z,2*
- e. / "O ',
A000 0016 w
I 1
l 1
1 I
I 1
}
ENCLOSURE 6 l
l
{
t 1
.. ~.._. __ _
OYSTER CREEK NUCLEAR GENERATING STATION
?
NRC IE BULLETIN 80-11 I
CONCRETE BLOCK WALLS l
REEVALUATION WALL FUNCTION STATUS (SEE NOTE)
WAL' NO.
WAU LOCATION t
D IV 1*
l Control Room North Wall F, S I
fControlRoomSouthWall i
D Ie 3*
, Control Rcom Eas: Wall D
IV 4*
Control Room West Wall 5
f Observation Room Enclosure - South Wall 5, F II i
j 6
Observation Room, S. E. to N.W.
S, F II
?
S, F II 7
Observat'.on Room West Wall r
l S
Cable Tray Area East Wall F (partial)
II J
Vestibule No. 2 Computer Room, 9"
PP III Iast Wall O
10*
Health Physics Office - North Wall l
PP III PP III 11*
Health Physics Of fice - South Wall 4
PP III 12*
Health Physics Of fice - East Wall i
1 13*
Contaminated Clothing Area, EP Tech Office PP III South Wall la*
Contaminated Clothing Area -East Wall PP III 15 Monitor and Change
- South Wall F
I P
16*
Control Room Center Ca u=n Block Facing D
IV i
17 3actery Room (A&B) South Wall (West Section)
S,ES F I-13 3attery Room (A&B) West Wall (South Section)
S,F CCPf 9CETA,'
19 Elec--ic Tray Room - North Wall ES I
E5 I
Electric Tray Rcom - East Wall 20 i
21 480V Switchgear l'.com - North Wall S, F I
22 180V Switchgear 3com - Center 31ock Wall F
I I
23 450V Switchgear Room - South Block Wall I'
I i
d l
4 i
--,,v.---,w..,_m..~.-r.,m.,,3%...,,%.mme m. w...%,mu,... c e -c e
,,...-.re..-.m_m.-._,
._,.._,.,,..mr..,,,,.,,..,..e,%
+,, -,,.. -.
, REEVALUA' LION i
'4ALL FUNCTION STATUS (SEE NOTE)
WALL NO.
WALL LOCATION 24 Turbine Building North East Stairvell -
F II West Wall F. SS II 25 l Cable Spread Room - West Wall l
26 l Cable Spread Room
' Jest section of F, SS II I Noreh Wall ei 27
' Cable Scread Room - North-South 'Jall on F, SS II col. line H r
23 Northeast stairvell from turbine operating
-F, CC II ficer - West Wall 29 I Reactor Su11 ding S/E stairvell to
}I F,SS,FC 19 '-6" North '4all 30
' Reactor 3uilding S/E stairvell :o r
,F,ES,FC I
19'-6" Wes: '4all
.i Peactor 3uilding Elevator 23'-6" to 31 l
F, FC I
51'-3" '4es: '4all 32 Rx 3uilding Stairvell 23'-6" to O
F, FC I
51 '-3" Nor:h Wall 33 Rx 3uilding S tairwell 23'-6" to F, FC I
51'-3" Wes: '4all l
34*
Office Building 3rd Floor locker room PP III North Wall
(
PP III l
35*
Shcuer Room North 'Jall i
a Incorporate in '4all No. 42 v
36 Shower Room West Wall PP III 37*
Toilet No. 4 - North Wall PP III 38*
Ioile: No. 4 - South Wall PP III 39*
Supervisor Shower - North Wall PP III,
40*
Supervisor Shower - South Wall j
t 41*
, Super tisor Shower - Eas: Wall PP III I
i PP
.I 42 Corridor No. 5 - East 'Jall t
l l
43 Shaedown Heat Exchanger Room - North l
Wall (knockout section)
SW,F II I
i 44 Northeast Stairvell frcm turbine operating floor - North Wall F, CC II i
t Rx Suilding Elevator 23'-6" to 51'-3" 45 l North Wall F, FC I
g I
f l
1
..._,-,-.....r REEVALUATION WALL FUNCTION STATUS (SEE NOTE)
WALL NO.
WALL LOCATION l
D IV 46" iMonitor & change b;c - East Wall i
i PP III 47*
l Duct chase - South Wall 6
I XEY:
+o be deleted from IE-20-ll Scope (Sea note,s,, wo g) o = Walls 3 SW = Shiele val' D = Decorative F = Fire barrier S = Security PP = Personnel partition only SS = Saf ety equipment support ES = Equipment Support (nca-safety) other than conduit FC = Flood control to protect safety equipment CC = Contamination Centrol 4
N0'"E I: Field survey, sketches and sections, Preliminary Reevaluation, Mathematical Models, Frequency Calculations completed.
Field survey, sketches and sections, Preliminary Reevaluation completed.
NOTE II:
Top portion of these walls that was initially cortsidered te be NOTE III: missile hazard for safety related equip =ent is scheduled to be removed.
NOTE IV: Decorative tile to be removed.
EHCLOSURE 7 i
f l
l 1
N 4
l r
w
+e e
5e P* %
/
,/
<^7 g -
I G
~y" *.
. - -; 3-i
- i.. Ei[
p*
M l
z M
!t.
q
. -. ry y
i 4J y
r r-.,, m s
1 J
.w
-c
- , t
.=*=
W
.~*%*~
a
\\4 N
s/
w
?
h L.
?'
?
rc 3
O L
~
O 7
L P *a g,
~...
(
~..
t==*
u w
l 1
r,-
.~
=
r g'
}- -
m,,
-- 2 2,
0 l
['
I-. C.
~-
,, 3
=mmm.
=
n.
k 3
t.
w
~
h*
e.
a
.w
-s m
y C
R,-
^*
l C
V' l
e.
\\
e E
\\
~-
l 1
te -
i e.um.
"Emud I
t r-
\\
FC
..' I.
'W V [ l ] 1 9 '.. -
g
.a f.
C t
i l
i C
C C
C C
C C
O C
C..
m y
=
c 7
~.
W em>W b.
I
M*
ma og 9
6
,b G
e e
W
% :.~
i 1
e s
M
-a
,.. ~9 y
,/
/
~
e e J
r V) g n*
p k
~
r.
s y
?
r a=*
W
- w. PR W %mer N
O.
s
)
===-,
h
[- - [;
k c:.
q i
N H-C l
W l*e s
~
's y.
G
_. n d e
&e C. C
/
i
~ %y
-CW
?..
i
(-
t i
M, r-y L.
'/.
=
'A i
~.
\\,
,w
~
t u
t Dame O
A' l
4
.-mo.
-3 g
s e
- .0 D
W r
po.
.s.
66 s,
4 s
g
. c eh.
F*
e OE "s"
t c
g 1
em O*
g b
. ehe
. man e 7.
A g-4.s..
p.
I O C... a l
o g.
i N
3 H.
/
.t w
y
,\\
~
M-i-i t c
,s --
V=a is w vv i,
s
-t
- 's A v h
l k
h I
i 4
6 8
I o,
e.
e.
p w
w w
w w
E Y
w end w
'I Dd O
)
6.s en my 9%
Om p%
Oe me w
=mm#
w W
%8 w
%euosr ts>W w
=.
b.
A
-we OMO te.
b x
9 L
-c to i,
[
v.
t
]
g f
W M
t l
'~
e
~
I l-
['
U c-p-
=
n
=
'Cr -
t,
L.
P 1,,
\\
N L.sm
-u m
i c,
t I
N
~
l
'd V
'"" C C I
I G
C
-l b
O l%
[
cL t
i6
_ _ ~
r_ >c L_ 7 L
)
-- m!
s j _ _Q_ _. __ _ __
3.
o hs.'
~
C i
" L: ]
L
.*" CC f
!" '~'
I,_~_
5_
8 i
I
[es.
~
m
.s.
I.
'n
(
j
~
t.
v C
..s
%)
~ C y
--C.
e l
O(,'.
L _04
)
I+
h
- f. -
r LJ F.
4 we
,e b
.a s
f,,,
go l c c
I __ C.
t Z L-IC
~
a
[ C i
i e.
l9 l-" O en-3 9"*O y
g g o
- _l i i h1 : ira u
i e a(a) n t
c i
i i
i i
i t
i i
i e
=
=
a
=
=
a a
a
=
=
M.
04 o
=.
'O.
Q
'r c.
=
0 C
O C
C C
C C
P e
- e. A we
T, v.
w y-i i
t
-r
' Cs N
J e4
.__ c L
uo L
1 e
l i
i e
i_
e-_
i.__ u i
C-3 r
1 9
's l
"S:
-a,,
L.
\\t
! ca r 't ro e
l M
o i
Q fW l
l V
l % o*
a-t f
l Gg L w~
_c i
i e
- t F
e-x
- e. _ :
f u-e>
[.-
C t
e y
c M.
x
}
^
f t_ m j_-e Lw c
w l
i aumme L r" x
l p
N g
,n
~_
g e
,Lc 1
c g
~
, ~
6 g
- +
=
[~~ -
? w L_
t Li.,
I h[
m I
3, C
N
~
c l
~
IW
- o. -
i l
e I
t I %
t 1
n.
I
-a I.__
w i_ __,
i
.0 I
(0)
N,.O I l. u _d I d J 3..
m.
ce 0
I i
l I
I i
i i
i o
\\
I O
C O
C O
- O C
C C
C t
=
=
.r u
=
=
=
-r
- s 4 d g..
4.m' i
f i.
m I-W f..v. ?
.t O
p.
C C
j N
-f e
I c 1
4 m
A f-W l
1 f
8 I
U
=-
w w
o.
g..
N~ C I,
s a
s 5
P
~
k
{~~
3 W
s l_.
o l
Z si L CZ l
tL2 i
V
- a ~D L
lUC I
cd,
- c u.
}
{g h, ~ Y
'9-i
[J.
~
L I
g
.~
l>
}
e O
- C.
sw i o
- i,,
D 1
rp 1-l Cn, x*
9
.o. *,
- n 4
er
!I
[c c.
1 h
-L w CJ p
i g
S' y u.
e.
9 Ea*
I 1
y u
w
~
-d
.e i
-a P
DJ.
! O h
I O c
F-l r ~_
e l
rM
)
M D
/
l
[r 6
I F
t W'
h
\\
C l'
s.! r *1 f. W 'd 3 9 0 'J u :
\\
w
[v9 'J
_l-
. tJ v
e i
i I
l i
l i'
I ch s
a
=
=,
=
=
=
=.
=
=
=
m
=
e.
=.
~
~.
+
m C
O O
O' C
O
~
=
i
)
N-i E'
g.
,. /
e
.e o
k 1
t em
,v esW I
~.=,,s.
4 d
I e..*
l k.
9 y A Y /
>=e
/'
O
/
==
?*d v
w e
l'
%.s i
e =
I,,
- ," j~
em~~
g e
y N
g L.
i-4 t
- .O
(
"- O C m
^)
/
w 3
/
e H
I'Q;
/
--rL,e
/
l b
,y' p- -' Z
-"T 0
/
eoo 1
X j
~.
V
/
- e..h m
f IE t
_o pO l
_a M
-o
[
me I
,N
- I e
e.
O
% e, W
5 Q
me-e.
. C, c
w.fJ a.
1
\\
s 1
.X. -
1 I
e i
6
.e 1
-ne s,-
o A
v.I i
l
~.
, O
+
I O
m
\\
- ~
\\
w
\\
1
(
i.ese g W
\\
l
~~
\\,
l I
(
o.
n*
as-0 &
6 m &4 m,,e
-$,,me m
M Q
t L.m a w w s
l l
l 9%
m s
40 %
v i
--~
L_.,
C W
Oj i
~
~
+
l
==
- e
.g c
r; l
i
=
1
(
l I
i l
l ENrLOSL!2E 8 1
EVALUATICN OF e
CCNCRETE MASONRY '4ALL FCR THE OYSTER CP.EEK GENERATING STATION t
1 t
l l
9 October 27, 1980
Evaluation Technicues Calculations were based on the following procedures and assumptions:
1.
The wall was modeled by Finite Element Model.
for both Frequency and Static analysis 2.
Boundary Condition for the 3eam Model was assumed pinned at both top and botten of the wall 3.
Boundary condition for the place model was assumed pinned at all four sides of the wall 4
The masonry details for the wall shown on J.C.P.&L Drawing 4514-2 were used to determine block dimensions and reinforcing 5.
The reinforcing used at the intersecting bleek was wire mesh at every other course with a minimum projection length of 12 inches 6.
Analysis procedure for the wall was based on
" r/Tc:rict for the re-evaluation of Cone:i,e ' 4 C
Masonry Falls" by Computech Engineering Services, Inc.
7.
The wall was evaluated with the following load and load combination Service loads D'E Factored loads D+E' 8.
All attached loads on wall such as piping, conduits and panels are transferred into the wall at the supporting point i
l l
Results:
3e results of the evaluation are sucr.arized in the following table.
Stresses of wall when modeled as plate and simply supperced on all A edges are within the allcwables as given in Table 2 of the Specification.
4
SC7.ARY OF T!ALUATICN --- WALL No. 13 i
Battery Room (A&B) West Wall Wall Locatien (South Section) i I
Height x Width = 11'-0 x 14'-6
' Dimension I
i l
6" unreinforced running bond Type of Construction ASTM C-90 Block, Type M mortar Frequency Range, H:
3eaml 10.23 - 13.21 Piste2 16.73 - 21.60 Response Acpeleration - g 3eam' O.41 (SSE) ; 0.22 (CBE) 2 0.60 (SSE) ; 0.33 (OBE)
Plate l
t Stress - psi (Tension E'Ex U ral) 3eaml s70.3 (SSE) ; 41.1 (CBE)
Plate 2 - Normal to bed j t.
37.3 (SSE) ; 21. 3,(OBE) parallel to bed jt.
Allowc ble
- 4. (, i (,5 S&) ; 2K o (c8E)
Notes:
1.
Based on wall modeled as a simply supported beam.
j Based on wall modeled as a simply supported piste.
2.
l
% carmy 3rress -
f t. (o gS L E.
"A *w
/
t
o ENCLOSURE 9
i
. O. 2 M/[/ - *~~/ / O ^
Y,; n' ; * *:,y Dl.$ (~~~k M*~* [.
s'/;,.t. [_ { 5;'atQ.
...-...n.
- m.
,*,, -lChl
- l t
)
I.
N M.1..
.O. o a.
.q.d a.x.a.
a
.e -
.e
....,. n f a.
e.
- a.... n. a
,.w e,
_4 3..s... A.
,.... a.. a.
..c. e w. n./,. n.
.. c. S,.
A, n.,,
a.
.w...
,.... s
, a.. g.
1 y-
-, a
- 4..c.e
.s
- 4.,
O..n c. a.. a.
,- a S e.
-3 A..e. m...4. 3 p. c.a.e.e - 2...e. w p..e a
w..A a
=.a. r.....
.a. d. a. - 21 s-ww e.,.w..s.,. 9
..a. 2 n. w.a 1 = =. e 5.. a. y a. S a. -....w. e -a..
7
.... a.
- 4. 2..,
t.
n.
a.
re..
3 -* ' t. e a e
"*.a S C"'l'"J' e3.-b as -
-3*.4 a
.aa...
... - - ~
n
..a.,
S w..s..,,. C...c C....,. M..x.t
.c. y e. a..c e.... 4.
.d A.a.s'.s. d
.w.o. -a. n...
a L.,2,,,2, c(. 2,. %,,1.,
- a. y. a. y. ge
~
w.
a'.r u. a.
C..a. w..e. e v.r w s e. a -,.. a. e 2S 3 s. 4..., s. e d o
a4 a--
3 y-w..
(.an M.e. ',s.
y. n..a. c 4..Csw w. n. e.
V 2.,2,
- 3.. A.
ua s m a
a..
.c.o. n,.. a e.
a. -. a g.. a. 3
- c. C "..d *.**J
~g3...
g.
- 3. gg...w a. 4..w.
s e
33
....g
- e...
.Ca. r *.* *. w* r. 6 n
. 4i. e. 3..r.. - a 33 3.4 u9. 3 ". *. d 4..-
p
.y
- y. e, 4..ed
- a..d.. w..
C.'". 7.1, y d. ';.1
.g *.
(.4 )' 4..
n.C *.. 't C-n k m.
- a. e,,w.4
- a. d.
w 1
- m. a. S
,. n n, u..n S 3.. A.
.a u.
w.
A a. S
- g-e.
Syy.mVaA
. e.. C. 4. a. S
.e s.2.1 9 % e C.c e
w 1.. u.e.S w
w w
..w.
e 3.e. A.
o..u.a.1 1 %a
~._4..e.. C e 3. 0.
- r. e.. e,sb, S n. e. 3.1,
C.
A w
~'"..a.
C C a *..* *.. * ^, #
. w.a..ay.e.
"..C ". *. d " e '.C W.
(
s ma aqm
.C.Aw.4 a m..e..a.n., 2. A.
. e. a.,
,w.. a.1 -.
C..cw !"N.
e w
c a,
- 4..c _4 s. 4. e.
A ?. :.":, C1.2SS 2.', 20 C ". 23 a s
.y a r.,, J.-a. d.
3.
()
W '. *. *. "..e S.". * * *. S P. C ". 2 "..*. ".C,"..S *3
- C "..*,. ". *. *. *. -
C.
w
.. a S C
./.,b, 4. - s. s s. a. e,...a O
- a. X e,.4
..w.
yu.
?
... - d a C.e
=,,. e a.1
.d a
C.
j 4
wa
,.l a.9 9.. e.w.2.,.,
c
.a w.
\\
- n..s u... a..- o. u...,...v.:s.w d:.e.....n s.. i n. ;w m e:e a
e
.a. )
.a..
.a
(
3 g
.e.. w.1.*..e S
.=.94.a.t8 *. L* *.*,. C.
.I,,
w2 w
d4..S=. *a.*
2..M.
- 4... w. a. S w.de, g.r i a...., w.. s 3 3 4.d4
.,.ad a
3
...d n.,,/ a.
...a X....u.,..
,. c
- 4.. n...e. h.
4
('2)
F.'.gid Steel Strap anchC: S Shall be 1 inch b/ 1/4 'nch wi.th ends Ourned dCwr.
,a...
- w...e. e
.. m..
S,,
,a.
. s..S S
.~
..w e.
_.as.
,s..
0 *
- D)
" ]D fY $
o o M o Mud d Inla n;_1
.O.
g y.
,.f 3~
s 1-\\
e..,.....
s*., '. '
.*.g 38.3,.1 u.e.....
.,2..
t
...-.3..
.. e.., d.
. d.
1... g.. w f
a
,3 y.
4...
g
-..~.
u c.... c. s.
I
- e. 3 n u..,... a n.
. u.. n.
g a. A.
e A.. e *r e
A 4.,.,. =. g y 4.
".w...
- y. 4. *. e.*. *2. i9 t
- /* I.
a.
.',A f.
d
%...........a....a,.
.e..e w
a
.yy..
4 m.
'.. s.e.
~1,.*.
n.e.u...
/
.a.n.,
.n e.
g. s.... a..e. 3 4
3...,
.a.#...,
g.o.d
.w 39
- w. r..4.
..A 77..
.. y.
9.3
,y
'...."..a.
~=.~..~.a.
.- - - - v " ^ a.
a..
- a. '. ' a... '.. =.
y..
...c. s.,.. g
.i
, s. ~. ~. s 'a a '. '. s * *.u.... 3.- *. v a...'.' '
A ti n ')
.aa.,,
n..
- s., 2.....
s..-. s
.4.,.. s <..
- n. n.......
n shall have deve: ail anchors spaced in E'.",,*.~...'.*.
*.. '.*.* *. e.. *..*. c. a. / '.'.1.'.
- e s.
A u. ". o *. s *...* '. 'A "., e g a l v '...*. a. d, '. # 3 a"- 3.,
devn 1-1/2 inches wide, and shall be ben:
L
- a.. o u.. e. s.
s.
- u..,c.,s.
c. 8. 8 e
.,-.,.,.4..,,
. e 3..-., "., *
(A,
- 7... -*.. d. g g *. 7.3
- d.
e sb..S..,* b..4 3
1-1/2 inch galvant ed steel, 1-1/2 inches 1cng plus 1-3/4 inch bends.
(4.)
vg.cn.s n a ' '. s '. - ~. '..*. s e n '.
s., e =..'.... " - e.. a d 3
.wall ties tt face of concrete or =asenr/
shall be 1/4 inch by 2 inches Parker-Kalen
='
galvanized hardened masonry nails or
.,,.., a,.
a r e.,.,,v a. d *y *." a. fn
'.n e a..
u
. e Jc.
- 39. c4... c r..._
4...
e.
dv n.
.an.me.
... c. o. c C,.,
.,.
- e..~, s Cu. g L,, 4. s
+
.e4 e.
- ". a '. '.
- k. e
...a d a.
c '. ~ '.v.,. c - *,. a. d w '. ~ a.,.-...'-..'.e-
.,, e m. v. e e,. c.. g., ~. 1 n.-82.
7,. r. - ',," d.*. a.' w *.. a. s aw 3
y i
be smooth or deformed and shall be not
=27
-_am=.
e..
C. css-d'
- 3...-n...,, wman 2.,/,_4
- 4....w..
- 4...
s wires shall be not lighter than 0.1483 inch
.e
(
.,. =. )
- n. d '. a...a.. a...
- " a.
d d. s '..n c a.
". e. w e a...
33
-d
,.,.. a r.
a.
^ '. c. ^,. s s -w '.. a. s w '. 9.. i c. 3. "" d
- u-a.' w '.. =.,
shall net exceed 6 *nches for smocth lcng-e a
...,d
..,,..a.
.s ae.,4, c.,,w. s. o. d o,....e -
'. c.. '.u d..'. a '. w '. - a..*.
' " ".. =. s ~y a c * ~.~3 o f '.h.e ' c..3 -
3 shall be itudinal wires in joint reinforcement 1-1/2 inches less than the nominal width of the block.
Crcss-w' res may be placed between
. '....=. a s, d =. 'o....a. d '. '.u d *...'. '
...s.
.= n d.*.*.
- . =. s a...a.
w u,, =. "u.' '. '. '.'. P e. = e. * ' " v =,. -. *. *.'. ~. ' ".' c 4.7 3 -
,,...s,..o.,. w.
3, w 4.a..p.s 3 o.r
. e3_w
-.s
...3.--..
- a..v.. e.. d.'. 3 7 c.
..c. a,.
- ".. a r. '. /'8 'un e"u h a. v,,,.. d,,".,.
- 6
..'as e.
...a.
',,..'.ud.*..*'
w '. a. *..
s' o '...
cu. =. ~.
(.
reinforcement shall be 'u:nished 'n flat sections c
3....w
.- m 10.o c0 c. mor.
.e..,,
...3
.,..3...3 Reinforcement sha~11 not be furnished in rolls.'
D""
'3 L
u.2 e
m
I I
l y4....
- e...... n.
a.
........... ~..
(~
.4........
S...-
4.
,.,.nc
..e
\\
- a. a.....a3
)
w...
4
, o - ~. j. g n. n. wg a s..s. a gg 4.
a.n n.,. o. p i p....
n 4
.r.4..
- a.,.g.
g.
a.
w 33
,...3...
.g...w...
3 4
. y j 3
w...4. n. e..
- o e..a.e.na.. da.
...-.e.
- a.. 3
.p w
t. e ~. 4., a,
93.S we e.
.w* _e S
4 4..e 4..n.
s
.w 1
p.
i
.~, 4 a.4.
_...3 1
.e....
c.e 9 s. a. a, w...s.1. $
w../.
.s ?. 4 i
w.'.'..
C'*.'.'.'.'.*.w***a.*...*.d. *****'..**.***.L*S
- /*.*.*.*'.'.'.'.*.'
^^
u e.
- n. o... 4..... n. 3 Sn ',
- c...
,l.
. 4. a.
4.
e s a. e...
n
..v.
n.,
, A -0C.
a
- a...
J Ee. A. 4 3 4 a.n... S.,.g 1.
.. y i
. w y
neCo..ega.
C wC.a a.n m.n e.
1
.g p wy eo
- 3 *. /.o. g m.,
3 * *.e.. w.
-Q
..he-.
n
.,As
.,. C. 4.. 4.
O.,74_.
3 a
n
.. w y
9_..
.wo91 w o.
a. m...
.e f. 4.. S 4,
- 1..n.. w
.A 4. 2.. e. S 3....
i t.I. 4..S n.,..,4
.4 4..e n
- e...
i w n. n s...s.
3 e
.a 4_..
w D e 3 C _.4 a.9..f
. 4 9 ".l. A
%' 4. h.w.
C.1 3..e 3 A 1
P
..... =.. e k...e.1 7 CC..C..., 23
- 5.. a. 4. e. a.. A,..d s Sec.4.
,"r*C.n...e".
4 w..
3
- u.. n. 4.. -....o.1
- te.c.. e. C., e n..
- e..s.
a
'W'h e "*. Sh CWU C ".. ". h. e d ". '.W '. ".. ~ *.,
h.C*.*.**"..'.*1 3
n Ct w -w a 3,. n m..
e.......
a.w...e.9 7 %e
.X...
h. s %..
wa
.r.
w
- y*y " '. C'/ a. d D'f
'.b.. " ~".b-.**--..
C ".
- C,"- $ '.
.c.
Co
... y m 3 C
, U c. 4.. 3.
......i.
.'w"'w*.-
.d C w.. w. *. *. * *
- 3 C 3.- u '..
3".. '. '. '. *e
's'.
l a
w j
d.e.
S_
3 a..4 Sha11 4.7,.s.
.m 7.i
- 1. w,... S,
4
.w.
v..
j a.".b
" ' '.. ' '.. ', h. *..' d a ". S 1".. d. **y*.**.S.'.
@..a"f.5 a*..d a.
3.
-n4 -.a
..a
- r..,. m 7..... h. *. W C ". k 1 3
'7-
-4 3
y
- e. n,
. ** S 3 w...e 1 7 d 4. a. a. o..
il.. 4.
- we1 e v.4.
m *_
d
. ~.....
w.....
3 u.u 1 9... $..
U.4.,
e.v. yC *. *. d
'.O V'.*.W 3".*'.'
ke w.
c. *. ". *. S a *..* a *p "r..* ". '.".. "
- 1". d * *..* '. '
b e C". ". *. d ". ".,
e a
r i
f.- n e e n e..
. u.. 3 ~,...
wi a.
I
. w.. u.i.i. o.
.e... C.c
- d. i. e e.,.n a,...s w
- Jn.4. o.
s 4_.3 3
.,.,,'.7,
_"9_ a *.... r.
a.'.*.**.Msa. ****'
... n G C *.. * *. *. *. *.
"...a*.^*.'..'*7 "."...S
".".a*".
- h. a v a.
D *. *. ". a.ub -
jeC;ed :C a Saturated Steam pressure Cf nC:
. q " a ". *.
'..".e ".." a ". *
,. 3 v.
e.
- s. e g y cu.a a,...
w e
.w..
w~~e
- m..... c..,... e..
o.
g.,.., a S. S S C C"..
.S S C ^. C '. a d.
w
..w
-j w.Va.
".. C ". %.. *. n * " ".,i, a. * '. *. d "O
t g..4
. w.. a,
..c e-OC t
.a w. -.
e ro..a.
.r.
s-.
w
.... = u -. o k.. s i t.
l 3.
w i
f e_ b.
.. a -o d
- o. b.. o.1.
- w.
a_._ 1_ 4_
i
. e.. o.
g e. 4 s
4.3
.s n 3.
d. ;. m e. a 4.. 4_%..
- q..... m, e..n.
4
_.4...
e
.w s.........
3_.
. 4.
g c.
a.
14...__
e
.._.._a___
.we, e
4
..1m y C S.$.4 w....C...... C e,.,n.. n..
i
)
v,,.s e
[
(,. -)
s.,..........e...,.........
....3
~.~~..e.-...a.
.O n.c ~. v,
.e. e...e.n.,.*... " C, r.,
.3
..C.*.'a.d"..*."*.'.*..,
d
..~..y.
Ww.7 4
- e.. A S. 9 i.
8.*...
,, e. o. f
.4.e.
. X*...= 4. wa.
e
..44.
w., 9. 3
....,4..4...
y.
4..,a 3
.. a.. e.m m. e. n. 3 3.1
- a. a.* =. a...... e. a. C e...=..
( o. ') sI-
?.aaA D. a.
8 =. 3
.g
,t
. w..
S y e r a..c.e,.1. a..n n.n.
e, _ e n
.. n.e.
e
,, a. S,
t
....... 3
~..
- 3.. s ' '
k
.=... d.
- e
- s. d
- k..
- a.. d. a..,
v. 0.C,,. v.a.. a *
- 1 se
+
.y.
D,
,,S.A e.3
.a... a.
,,..,.1. 4 a.4 C..
4.
.3
.. C "k., * * *. *. *. *. *
- a ". '. ". a d hea".
..4..
n
.a
' e '.' *. *. d..
4.
,,3. 4..
.j
.e
.J 4...
. S.., *. a...
... -.,,.. 4 3
(' ~., ')
4
.......s c,
S
,4 p,. C, C S..
5 3.
- a. e.s..a.a1 3.S
.w.
- *** ". *g*,D *. * *'* a '. W ' '. '. 3.V *.
. w s i,. s*
C.
.n
...a w e 4 %. 3, aA
- e. C a c.. S S * */.,,
O
- h.. e.,u, =. = e.s
.y
....4 e.v b 1 - e k e..a.s W a. b a" d
- h * '. '.
.. q e...
_v e
w
-h.4,.*C'.. S 3 Sw. 1 1 C CU. C.....C o
Qn..
- 5. p.
S C.
'. '. ' '. *. U.". d *. *.*W ". ". *. * ". 3 'La'"-
7 a
c.. c.4.
3.. -. o w..en. 3 e.n..
....A s
.w..
i
.e s 4
- a.. S. S
- E
- a..
D 1. C C,C.
et' O
.e. e e d.8 i
\\-
,4,3,
. e 1. '..*
C.
- k. '. C C 'e*. S ". a *:' h e
- . '. '..'. *. d i
1 a.< A.
.w. w 3
... w C,,C...e
,S a...
)
- !;. Gla:ed CCnC: ete MaSCn.- Un'.:S S...s.1 1 k
V..s.
. A CC.....
a 3C. -.
b..=.4 3
- i. 9
...g
..".'.'..".*.d
'y S a a.
..>. -v". ' e u.. '. S y.
"u.n. 4 4.= e A. G1o eA,
- ll C.du C e,
- 3 1. *.= 4 C.,
- a yy.eu.d k */.k...
. e.,,..e. 9
- /.s 1 a.m. A g
ec m.
.f.
T.*.3......
- 9... e.s
..* h.. d.v... A eX"yCSed Su".-
d e.s a.
3 gh.. s i. l.
%. >. ^ ^ y. a.. A 3
".'.e..
e c i.m... c.^
6
. p
-..,e.. W..w 2
4 n,.< l.e se.u r
n x
n
~ n ~.b.'
fe.
-d-,.,_
_~
.~.-
. _.. - _. -.~
r I
i
. '. e..... a. e.... - -... ~.. c ". ', s. y. "... d.,... o.. ",.. d a
.... ~ ~
5...
e u.,.m..,.
s. n.a.,, s S n. a.,..! C <
u.
.sa a
a.
I a..
A..'t ". *. ~... a '...','. a. S.,. c ' ".g.. * *. * '. e w.'
w i. c.s.
y.
., j w 3.. r.
,w,-
s..
.. e,,..... s f-.-
F
'.- ^. '. -. a..
,. a. r. '.' _' a. d P. a..- a. '..~.
t 5
--i....o,..d_..
(1. )
- r..a. a,.
. -...s... 4. 3 *,
e...-
s ss
.n.
n..c. _..
,w,,
4
... s c. n,e...,..e.,.. _. e _.. a.. ~ ~.. C '. "c.
c.
C.
,a.
G.
m _.. e._. -
,w..a,_ s. u..a...
a
. a. e
.3 flane spread not in excess of 30 as
. e. =..~... _.-'. a. d.",3,,.-
."..a.
. ' '.... =. '.e =.
- . ~.
a
-..a_._.. ae,,,._n.
e.
a c.,,,a... a
.n _. u.
n.e.. r e.
1
- : n..
,,..,. ' a.. * ;..., s.'.a.'.' b e w.
uniformly s=cc:h and shall nct show
.,... n u. s c.e. u..
u,a,e
\\
. u...
.... ~.
3...
block on the surface or along the edges
^/",
c.'
.. c '_.. - ' ".. a ' '. a.u,-^
c '. ",, "..a.
- '. = *_.1 :,.
".a.
3 over the ends of tha bl0ck, forning a
.w,,,
,/.,...w,,.,
o 3. s s
.w.,
o
- 3.. -
c.
_y
....*. k '.. e a o s e.' *.' a - "..a
" a. a. c.' a.'/a.*....".
q w
r s
a.
,..,.e,.,ae -.....,s. jo...
(2 )
Colcr shall be as selected by the a
Fhginee g.
l (3 )
2.e facing of glaced casen y units shall show no effect when subjected to the following chemicals for the per'od i
of time indicated :
i Glacial Acetic Acid 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 24 hours
~
(10%) %)
Citric' Ac' d 1C 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> i
Sulphuric Acid
-u u..cu.. s
- m.,..,,..a. ac _ a.
(,::,,
c Trisodium Phosphate (5%)
2h hours (35, 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> (1C%))
Pc/drogen -eroxide 21 hcurs retergen T' d e "
24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> Vegetable Cil Undiluted NF.20H
- 12. hours i
Ethyl Alcohol 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> E
c.i u. _ci 3ck ?
k.
b..C u ",.
i
,. hou,.
a i
m..,..,.,... c.c _c o.,.
4 (h )
Siere shall be no visible change of color, gicss or texture when glazed mascnry units are exposed to 500 hcurs t
of strong ultra violet radiation, con-
' 00..'_.u'. e s o '.
s ' s '.*.- o ".
"; e ' a. s o.c ultrs violec rays alone, followed by
'.u.,e s o #. u,'... a.'_ e. _'..
'ua wa. -
, =.
s,,.. v..
oa m
D D
- 31 f
al.
. M.h n.a. _ _
oo f,.
-n
==:..
i>
J
-w--
+ = -. - -.. _. _,,,...,..,
...v,r_.~er_,
,,.,.w,,,,..,,,w
-,m..-sr,_,,,
,,w,,.,wc.,c
,_.,.y
,...e.g.
w,,..
-,,,.,...,.w-,-
-ce m-
wa...- v. c.c. e,....,,*
b.
/ =, ')
. w....t...a.
... 3.....
t
. 3
.....c_,..
C."...'.d
.". C.
'.".*W 4
..... a
- -. =., ~. '. '. '.. c c7. -". a c '..w. a.
". a. a.
" ' o ^ V.
w
-w.
. a.,e
,,.,.....,.... g..
(
.w...
.r.
e..... e.,
.w,*,
w, e.
e.
.wa c.
a.
.3 w+J e.4.
. s. y... 3,
... s, j
3.e....,
3
- c ". a.. '....*..'a.".._'c.-
.. ' a.
.a
,. a. a. '. '.. 3,
d a.
."..a a,.
- a. n. e..c a.
c '...". a.
wall when viewed frc= a distance of
- e.. v. ( : )
- e. a. a.
a. ~. *. 3.".. a. -' a. s,, c *.h a.
w a ' '..
n' '.'
- a. x y c a. a. d
- a. x.. a..-...' '..-.... a.. s s.w.
w.
w1,,.c..
J
..a_.
e.. n..e_
,, w (c)
C.,.. a.
w,
c.,c..
. s
.w a
- e. s..
- a. s..... <..
.,. s
.a. _..w.
.w
..a. a
,..,,..,.,.c 1/,c.w. c.
...w..,
. e
,.. 4 a w,.. w..
- 3. /3 s..
w
..........3 inch exposed bed jcints en the glazed w ". ' '. a...'*.7...*..e-w,
c'r. =.". ',a a a s
o...a.,. a.
8...e.n..s.
u (s) n' -. d a..' '.A a. d.
- ~.. T. a. d e. a ' c '. a..d a
- d. 141, 4,e.w a.... c,c,
.w. wea.
'a ~. ~ a.
.a. h a '. '.
.. c f
enceed 130, using standard Tabe-(
1 nc n. m...
2.... e a.,.g g. c e 1 w 4...w.
.e _,. t e
.w calibrase wheel and a cne thcusand
(
gra= weight for 500 wear cycles.
(S) cla ed sleek shall de=cnstrate the 3._
.s su.r.
C.
- 4. s an.n..
<--aC.
....y a Cn e '. C.h d ' a"...a '. *..
y_e..e..-
w.7 A.
........ 3
%, e. T 1 "C
A.e.yy.&
a do*s..,..c c'
w o
- . a. a.. W i '.".".. C"
^. a c'c*,.'.. 3 o. s.ha e '...
ke a'.*va.a.d.
- o ~.". e d
(o,)
-'ha.
'....' *. s.= h.a ' '.
s_.
4 n
..,s..i.a,.a,
,,,... n, s,.,.,,.,4
-4..
4.
.e under cover until placed in the wall and handled in such ma.ner as to pre-clude da=25e to finished faces, ends
.d-.s.
3 (10)
-'he glazed bicek supplier shall sub=it
..w..,..,
...a
...,,.e.,...,.,,.
...3
..s....
a o u.. o...... s g,..,. t a s.
- e...
- n. u..as n.o en.
a
\\
y
.....,o......e.
.w...e c,..,.....
..-..,..n.s s..
,c. w..
..n.
.v......
(
i l
(=
l D**D D' M
~ ~J ~ -~~
m i
I wo
@J,U..
~
3
- n A
i..
i I
i '
-~-*r--
V~#
w-r.-
_mm
_2
-_.__m 2m.
=_,
m.
.m m
_..___m.
..m-
.m.~
i 1
d i
.6w.
. =. _
i
.h 9 *
,.,.. a. m..'q
=. W. a.
e.
- 4..
. o.
- 3..
4...s..
.... y. j g
y.,y
. a..
P.. %.
- 4. e..
s
- a.. s.e e... o. e.
d.' s..
- . e a., ;.f.
g$
a......
_,j ;.
- e. c ~i e p a v..a a. y..
a...
m a..,.
.n..e..i..e y,.,
- a. r a.,....
- m. a,, s. a. A
- r..* =..g.=. a. = = m a m a.*. d..a a.
- k. a.
.=..a=...p.a i
. "" :,",I.
e,***
a d*
- 4. * *..o
- e. '. ey o e e
-. h. m a.
o k..o * *
'eg 2.J a.
t.
2 m.
...a yk.. a..e.
.=.. 4 v.. a. d- *n g e.
- i. m.. '. 4.m.1 P 1. A.y mP w
- k.. a,. a.. *ae.ed
' C ". C ".".."y *. a. *..*. ' */ e
, c. ",. o *. h a d..
q w
. 3 4 a.
- a..* a.
8.=d.m.
- a. m.i.9 8
- a. c a...
- s p
s.
g
- k.,.'
o.
a
.....g..
r-.-
a.A A.w.. n.C..* g.
.C
- a. C..#.8a. as 4
- n d
d'C
. s.
g. d.
, e, s.
y
- d"4.
=
ea.
3 0.g, 3 e, %
t**W a.
v 4'"6 V
.e W g
- ga."
ee 7 A w'**.-
-Fr-J*
o #.
, 1. C a. s a. a. a...
J%
A.e k.
.o.
- a. a. e.. 4..#' t. a A
.ys e e a*
- j
. G s..r a s a,
- a. n. a..,. e. s.
. u.. a
~. %. a.
e.
m
.ea.d
..w.
e"
~..u. a.
t
.wa yg y
..a. a. m. e =. %. a.
- m. a. n.,o,4 m a...s. e.*..e m....
4..
v. a m e. =ew d e n..e - m a.s e s, e.. 4.C.
op
. e re y.
_e 4 1,g p f, v_.
,C.
- 4..
h e...
-n.
~he follCwing sas.Cles of mater' ais proposed nu '..g... m A
- o
.w.a r.. _ 4
- a. m. -
4 a.
3..n 1 1 be.
- c. o.. g3,.
p
..3..
a y
.. ~.,e *. #. '. s 3., 4.h
- s 3 *y "". ~..' a 'L
". * *. *..d 'l a. d D e.#C ". a.
S-r
. - - ]
- h. *. s a"...*y 's e s a *. *. d a. '.' V a. *. *. d ". a u
i
. a. -. m 3... *. a A y
. cow s.. a..
.he s
n.Cw..-.s u.s m.. a. s
- m. o ( O ) O.#
- * #.1
". *s**' a." ". ". "e C.' 3. d.'C".
Us*..
i n n2,. z: a. s r.-.. n. a.. e
.L,. c,.,.
,. U n <. s c
Tao (2) Color samples of each ty.Ce pro-posed "cr use.
.r n....
- c.. a..s...r -.. a... a. n...
.a,
- -,e
^#
. =. '. ' c. C =. -
C..a
( '. ) y '. a r. *. o.' e a C.,*
./
a
,m 4,..w.. n..
3....,
.h.ow*.n. 3 'a l =. = s *.
...m..=.,
two (2 ) Cros s-f oints.
.e.e. - r.
e. - :..
-. e.,.... s _.
r
,-a
.. u.. c,. a.
,,. n. a.
o.
.e..y a..
( s ) <.,.. s.
., < a n,,
a.
a o
s c n,.,a..,.. e
- m.. a. n...., a.
o.
C o,.n.. a.. a
-g.
u....o y.
s, C,
w..osa
.. _,. c....
- a.. i.
a.
....c..
a
.e. a.,-.. y C. a. d.co. u,sa, s n a,.,
- n. a.
, e,. a.. m. a s
- a. d/o.
....., a..... a.., o... - -
- c...r...
y....
....3
.,...3
...=.u'a..'*"..,
an. d
- e =
- e d *. o v a. a. '. ". -]
b 6
CC..al.*2nca. y * *.k.. g =ppl. i. n.e.'a l a.
n.C m..y
- c. a. e.,u *. *. e..a. n
- e..
. y
t p
.ja.
A. a. e.
. a. n. = =
.s. m ' '.
m.
.s e '. a.
,. q.4. s.,
t' a.
... y e.._..g1 4.*,......
..s.g3 g e.
= =..w. a..
b a.
d'
- s. a.
.a,.. c,...... s u...,..... u...
-..a
(
s.s,,.,
v
. 4.. w. A. p,a a.
a.
.s A
.,.i8....
=..c.s. a: 3
- a. a.
. a.
w-..
...,,...j n
.y p k..
W.
.e.s. e f,,. o. 4..
- a. e.
-..d d 4a.A 3.e. A. p.. o. A s.
j
~~.*.~A.*.c,=*. '..._*.3
- a..m..e T.
- a. d
%. a.
i y
ss
.%..-oa y..f 4.'. m.
. o.e p.
4.
. w a.
,a. C A..
_ 9. 9 %* d_.. g Ch
-..gg n.d'
.%. e t** 4 m. 0.,4 e C n. o a.* e 4e
- 4 M.
.e3s v.a
.R %.. w. m w
p 4.%. e..... 19.a.4.Cn s.W.o11.a
.Y.s n
. ti c.4..
e a w... y v..
- %..s..
4_
s
.:.,..,.,..e3*
...a
.3 w 4
=. n,4 q,
.. s n,,.. s
- o. n. _., i. sns es,
- o..k. _e.,. a.
- .m...
y r
sh.s.i 9 k.e,s,,.
,,.,_a_-e
,.,. s.a...,.
- 4. -. s.
..u w.
- s..:
. _.. a
.. da. * - a r..' y ~y ~. v =. d....~..a..'.$'
.3 3. h a '. '.
- a.
as
. a. s. '_. - '. $ " r. a.., e-. s a,.
- k.. a.
- a. x.r..- a.
."."..a.
.t.uk -
a e
2 s
3 c ~. ~.~ ~. a a. o..
%a'
. f d'
. O
==..=.:...Oy.~
g Li
' b dl a
da I
gn..r.
z C
a.
General _
c,......,
, 4.,.,
p,,m, w_..., u m.
.~.
s.. =, 3,
w.
w
- v. a. c
,.v.,,
=...d
- a. ". a...
v..a s e.. /
.a."...'.'A'.
lo,, *. a.
=. ~ a. a.
a d L:*7,
- e r.*.ye. ",,"m. a. *s "a.i-w wh. a."..
- k.. a.
= x *. a....
4.
. e,..,f....... s 4 c n c,.
.,,w.
.3.......
w.,_
, x n. o.
No r.
No "rc en work shall be built upon.
e.,,..
e,. w r,, e,. e,. c.-
s., en
,...,w..2..._,.,
m d*3 sb. *.s. g o.
sh : 1 1 b,.
- 7. a d.4.n
- .k. o.
.a.a 1 1. s.
4 Y ** s C.. ~.~f sh..' '. '. b e "p. ^. '. a C '. e d ~ *. C 7a ". *. *. * ' *.. ~g 4
it
'SCu s u*
e
- w. a. 4.
1.
4 a.
yasen., f q c.
it hO eC a *. _ d w a a,.h. a..J n'". a...
%..e am-a.- a... a. d. " " '. ~
bient a '.
has a temperature of more than s..ada. a.d
- a. a..' a *,, 4 v a. h"....' d ',, / o.c w
l c c.,
- r.n... a w
,,ss
.w,n pCr> s..,,.,.
w... r..uo.r ed +... a4.
s w
ect exposure to wind and sun for 46 hours5.324074e-4 days <br />0.0128 hours <br />7.60582e-5 weeks <br />1.7503e-5 months <br /> a.o. e....a,,.,, 2
- 4...
S,,,a.. s a..und.ie,.a,
a. c c 3..o. 2..d o'h. a..
k.,u' d '.
- 4... i*e s s ". = '. '_
s.
k.,e a C _ _a x i
- r. _a i_ l. o. a y <. *.k..
...c. *. a..
An c". - - *,
t
- - * *. b.. '.". s~ s
'2
. d
. 1e o^^*ssC.4*s, yc.19.
3... 3,
i e.w
..,...3... * ' - a. d *o "a. k.u '. '.. '" w'.5
..,......d
- o a a a
.....c da. a.
- " a. wo.k o..gi.l ke dene
'D
. s SC. ;. C g..
.w e.
C.c
.. w a..,.
w
.w...e
- n 4.ne.
, a13 s...
(
.. a. n
.d a..,.,.,. a e
n.
y s
4 an...
A hA.o
_. ~. -,..
a r
. =
. ~
= -
I L
9 I
8 X m
- g. d.
.*. ".. 1 e. a... =.=*g*
- 8. *,. e, e C.s *
- b.
i 4
yw..
h..
.s a a 7... a.,
- 2
.......e1u
. e. a..g =.
j yy
,...g
- .... m..e.
......g
(
- r.. y.
- a
- ai.. d. *. A d
4*
4*
.w
..g i.a p..
a 3
P e. 8
- s
- e. w...s. 9. ' b..
,i;%. w.. 3 g4.**..,.=...a.a.=.8....
d.
4.* c.
t'.a m. 7.
S..w.. = =,.=. A
.A.
.e.
- m.. m..
8...y.,,
w.
.y
..S.,n...
d.'.. a.. g A...,.. a.
e.
.w.
g py.
..g J
g.#*
ew.
J. e, a. 3, A.
gg c.
- t..
T
- 9 8 *. a'"
f
. =-..
.Y..S e., **=.*
1 7 a..J.
(*a a.
J.
y..
ww...
- w s*
1
.v. e. * ~
e..g..
.e
.'w.A.
M,.. n.... w., ~. ~.. e. o. *.m..,
a w
sc.. w... g.
.e
.2
. r.4 3.. A.
- a. w t -,. 3 3
- a u..
- 2. "....g w. a. w. i.. y. 7 n...
e y
w d..
'e
- 2. r. 4... o.
s w
.e.m. $ y s.w.
- m..k..
See e
.. a =.%...c
- f.. qs. 3.
3 a
w.
w
- 1. w.h.
f,
- 4..v=. s =.1.a '.s.
w C.M
.A e, w
..... =4.
g -..
g.
w.
.w 4
. = 4 T. 9
%.*.=.
m.. n..A..=a m
,4, Q _ m.=. 3 4
- . H. $ *. q.
- e. 4. m m 3_
a a..
e e.
. u. o.
L.. e. a.
r
- k. a...a~..
j r 4_
. e.
w.
~. w.. e a
w....
w.
4.. o. s.e.s. * '. v. ". e '. CW c" ".. d V a. ". ~. '_ ". '.
s' C '.*.*. a-be-
.y..., ur. ' '. s 'a' '..' '. ** '.7 S'.*e".'*.*..*.".".
- C C.
v
- "*i'.....
.a
. w.... W a '_ '.
T S * ". ".. ".. ' *.
- w e.e 4n..
wC..v.
.... w a A. s.... e d. -
- 4. s. s., a 1 pCs.4. a 3.,
4
.h.
e 4..
w
.a.a 9 *
.w'n 1
- d., e. *. *.
- 4. s e * '.7. *. sC.6 aA== 7. a s *. 4. a.
w
.- y
- a.,.
w,s
- r... ;
- 4....w..s. 4s d s.u D.A r.
o
.*re..,.n.d
- w..a i n. %.... CV. d
.s.A
- m. a. n. a 4 5 W.
w.~
4
..A w... n...
- c..,n m 3.
r C..d ya.. ~... sh a *.1
..y.
v..u y.....M.. w. m....,.b.. w m,...
C....,
3nA
.... e 1. s s n e 1
- y.w, b*."'.".*..ba.'*"."..**..
W w' '. '. s C '.
"y a *. *. * *. '. *. ".. s
,w..,.._
1.,
w
,,s s.'..
ka.
a.a..5. C. *. d.
v.
3 s.w.s 1 1 w e J n 4.*.e
- .k...=.m.
- i..a n. C. *..
....m. s C m.
f
.... w w
e4,
s h. a ' '.
n voa. e.
s w.... s,
- w. e. w-.., 2_ y.. 3 c
'c.
p.o e m e. y.e....n
. T..r
- l C
- n e.k.
y44..
3.A J o A_.m. u. e.
s n a '. '. w e su "..
...a *. '. ua.. d. *. a '. u s j ^ '... s "..a.'. l p
w
-e,,,.s s.
8,.,,. w..,
- s. t,,..,. j,w...,.,
4.
y....s, w w....
and p' lasters and startihg Curses Cn CCn-
.e u..d, 4 -,.
.a.
3,s,
,nA s,,ws,
.,. C1. a n
...v..
_m Cn beams shall be full bedded under both C. w j c _4... s s... i i.
w
- w..s.
.a. w
.e.m... w.. i.1..,
a.
e
,a
..w n2 y.
- c.. 1 1
...,..2.
c.y. 3 e q w. w. e.
- C 7 '. a *..
a". d v a... *. ". _ '_ #. a w *. s b. a. 7. '..e, k u ',,
...C."*. ' a s h..= '..' n C*.
a extend thrCush the und.t Cn the web ed;;es.
ee C Aed a.,
C,.,.,...
r, w...,u e
s..el, w
w w
w
-Jamb units shall be of the shapes and sizes w Cn
- 4..w. W a 1.,.... _. S.
e.5,3 C._ 7 1 s a
._,....A.
n
.a..a.
- v. 4a s _
w e
- 1.. c., meea
- 4..
- e. s o..,,. c w
s...,. 3 %
w we.*
.A.
o.r... j.
,,.4*.
w e i_ l. s C ".
"y a ". *." ' '. ' *. a. s.". ".
- C, C " *. *.". ~3
.Y.*.*.'"a.*.
.$ 7. d p 3... w a.
, w g a. a.n 3' 0 ". w.".*.'.*
3 w..d w '...d ow j o'..."
.=." C. "...
^
~. ~ ' " s
.$. *. d C-
=-
w l
- '*.#.*Q..4**.**S 6 * *Q***
[$3 4.h gI I w.
bj ~ )~
- 8"%
~~
.e. gi
- 4.. e..
- C 4
D"
- D'T n
a
\\
.e o s.3.1
. d.J
. \\.
m 9-9,-,em-g.--e
,.-.wy
_.m.-w
.-m i--
=
I j
1
....g 3.
4
- 3..,. g
, 4 m
- 1
- ..egi Y.
~,.3 4
3
.........~
y.
. e l..e.4 gd.. h.
.. w.. S..
.4. god.=., p.g.d.e..
a e
/.
.#.17.6 g
3 v
4
[
d g a. '*...3*.*.'.'.**g*.
- 7..
0.3.
4.
- 4....g c.
. w. 9..
w.
,,4...4......,
..e
. a
- a. 6.....J
=...
.. 4.
w.
...4. e 4 4 C#
4.**.n.,
O.e.
au s. C.'
4*
d 4* 1..m,.
.m w.-..
.w gw
- 4... d 4.e...
mf g 4-...... 4..
.. C.t g,
gX..
gq
..y.
4.sy.
.e.
s....
.w.
.s... A.
e.
a 31.
. a 4.G..a
?.#.
1 aa 4...
V. s..e., e... ".
4
- 2..
4
1...
w
.f
..1*4.... 3 4
..., 3 C 4.
4.a4..
...j y...
.e..ai 9 k.
C a.
S. =.
- a. *. e G'
+ 4.'
.e.=. e..e.o 9 *1..
P.
w.
w w
7
,y
.a 14.
3 C
..v.Snc.
ed..
..S e s 3 1.. A r
r S.,. 4y,...e.4. d CC...., a5 C, w 4.
w..
.s
.2 a
n n
..,C.
4.",
,,S
.3.-
,,ww S.
-a.
,, a 2 S e o.
- 4.,..
w w..
o
..,4..,
a33. a.e,.e 1/c-4n,n.
voo.
m 3
S...,
a..d
.w
,3 w.
4 n.co..d as 4
..... w di:ated.
Mowever, not lesS than two
( 0) "..C. h '. a. s, * ". e.^.'. '. '. '. *. n. '.". C '..". a.
lintel, shall be provided.
Lintels
(
e,,...nd a.,
,. s. 3 4.n w... s
., u.n A s.
o C.
.w.
O.. 4... 3 e
24h
,4.a.
t p..
- 4...
w219-w.
cd e. n.... * " ' 3 C *.. '*7,,
g
..... 3 i..4 *. S.
G.1.
3 3 m. w ~. a. 4.e. 4..A4.g.,..d,
)
.w
.'.'.a ' '. h,e * *,.*.u'.'.'*.e d
.w.
g,,. 4
... 4 '. S
.. 3 w.
6 C #.. '. *. *. g a#..D S a.'. ' C 'o ".. e **. *. *4
- m* '.S, a '...N
-. -. 4.m.d.a n.o e d 2 -e1 m. A e. o,4,. C. 4. m n 3 - k..e.
a.
w f
w.
C "..
'o h a.
d*.*'.'m'.'"'
S. 3-
.'*-..'.."."*a.".'n...C"..'.**g'.
3 f a..Cw o..a w.e
. 4
, bl.
S...,
- 1 w
- .... a.
3
.w
.3
- ~
ym.i.S, C *.*. a '. e C ". S '.' a. *. '1 WC. A n*
...s.
... g.
a...
w.
- w. 4 9.... a.
..,1 g. ge g
.,-s..d gr.
my.-
w..
..w
.y...
,.. n.... -...
no.4.,n..a....
a,..d n ty c..
n.,
c verticall/ and placed so as to Coincide
, o. 4..., 3.n a Cn,.
a,.
4.
4
.4 o.
n w..e
..3 s
- g..... s ^. -. a.n
.a. h a ' '.
- k. a.
s 3. c b a. d d a. d.
... 3
. -..,.. c3
,.. u...
.w. 4
..,g n..
. r. _. 3
.-.'.3-
. =.. c^'".....*.
.a..d
.' y'e. y ' * *.
l cst..,
- a. w..a. 9 9
..C.
w.
-OC.A d."...wo.-
.w
.v
. r.
w...
i
....a.a.,-.
w.d.
.,.9-w.
an.3C c.A.--
.h.
..o
...j -.
...-.J.
w-
- g..
....,1
. 4.
3.
l f
k 1
f l
n-
..-.n-
,n.
., ~,..
.,.4....*=*.*c. $.
- w g., m.
d.
....,.2..,
.,
- a.,. 3 w.e n.,..a.*...
n g
~
C * *.. *. *, % '..c. '.
- "..^^*.*'.*.d.,
~ ". *. *=.^.'.*.3
. '.. ". ". ". ' *. 4
~
.e... a * *hp. =... m i. a. a. 2 1...
.e o a s== s.. a. 4 w.
aoy-.
w
.w y
4..
.. 3,3 C' w,
- q g a..
. =. *
- a. e. e.
...e g e o a a.
A m.
. 8m.g.m.. g g..=
y-w w..
a
- e. w.
o n.
..n. a,.
- o..u.,..
2, s. n.u. a. g W. a. a.,
a..x a n.y.
a os w
4.-
. w.. e.
w vy.4...a.....g.
g 2..w.. O.e 4.
w.
.... w a.,., w.. e. '. ". e S a,. C" " *. '.*s*
- a. d ' C ~ a. '.k.. e.
s n;...
a.'id.* "y *.* a. d
- *.a '3 3. ".. d
-a
- w 2 y 4.../..., 3... '. a. 5
"****~~'w.'.'.'.'..'g w..
nw w
.s
- m. w *..g
- a. g a a n. d
,C
- d. e.. w ".. e *..* *y*.* ** *.,
a
. w
,w =
4 m e.. w *
< E&
s
.a sA
- 9. A. a m.. w.k. a. 3 s ae..
y o.
- a. n. n 1. T. e
..w ge e
wy m i.1. a a. 4,.
g* 4. a. '.. s. %.
-..w wa
.ns1*
m 3., #....... a 1 1.= d. a..
w.
p a.
c p.=. 8.=. ~ 3
.g 9 w...b. 3 g #.
(.1 ?
o w.
is=
g
.s
.wa.$
a.c
. h.. m.
W..g a..
- b. a.
%-*7, *. *.. e *. 5 ". *. ". C ".. a. d.
w w
W
- a..g a. n. a *y.
- a,. *.b.. a. a.
W.. %..
.=.a*z.e ga.. f =. a *.* *
- m. 3
.s..
.1'a. 3.
4e 4
3
=
c.a.d T. h. a g. =. t a g e. n.
k, g *.y m. a. n.
- *g a.
.# g w= #..e 8
W..* w.3 g g h. 3.1 1 k m.
- p. s...
n.1 a a =.
g=. A.
y y.
% a. = i = 4..v ts...g y....
.=.C e. 4 = 4.= e *y *y a.. 33 %7 ** a...a C e.
w
...s d
w.w q 1. a. c= =.. O.
.. C C ^.
'.'..'.'yS
' *
- d.
'.h. a. W E '. '. ' ' a. 5 a".#
C s
- 49. 7. i..f 49.0.=eA Cb. *.
- b. a. P. n. e.g a.
... a.
n a X*.
e.,..
a w
n p1..a.na.d.
o.
- .*a.S C.
,, n.u. C. 3
.s w
r
(.
v '.d a d 32 *..c". a.
- a.
Wea, ".. w+ '. a. s * "..a '. l h e y, w m
w e
4m4 m,
c.,,.nn en a.n.
e.n. m...cn.a so n..
m.
w m
a maw
- exterior **~fthe along the bottem of
- 3. y
- he cav'. 7 over
- undations, bend b e = ~.*, aa. d o'..=~.
a'e.
s *. C a,. s '.. w a '. '.,
w.,.
- 3.,-,
4. 3. h o.
'. a.'.v..". 3 o." we'.l
-.a.asad Nc.
.'O,
- /'. A <.. w h n c....'..m$ '.
w.
u.,4 a.s.
,n. ". C.. Sa D o.a u
3 s
a w
w w
A a..,.
- a....
..e
- ,w g.d g 4. *..w.do. gy..4.3.wa e
- wo
< a..
w.
k x l i.. <s. s. a. a. m.
e d a. m. a. 3 C+
- a. m a. A t#.6em
- b. a.
o e
w =
c..y.
.ed.
C.b.. a..
.a. '. "..c d
- c." c,. ".. d.' a. ~
y.
3 39*.a b.
Wga.m
- b.. O '. a. 3
~...*."y h a,. " *. *. d S u s' a " ~. ". C b
y 1 C.'
- b..e 1.".n 4.m. a. m..*
J e.
- y y
- n..,.
,me.
c.
O p
O..
e.
,.*3
.A
.a v.,......
a_.
- e. h. 1. *
- 4
- %.. *. S m C *.'.*.
a.**4_ 3 0
.d..M J.
- 3. ** t. 5..
v
,....3..._...... j
...s, ay,..-
.e. 4i.A
...ae.
w
.w
.e... - r.
w,=. A a a.,
..A. s..
5 C.1.
.4 w
3.
. p a_...
.s
.w.g
.4..o*
.w w. ** *g o..a..'..*.=..**.=m.
- b..
aa*
<e...
u 4
4 e
- 1..,,... A C...
.w...
C.n..,
C.
. w...
....a 4.
....,,.....,. 4.... A _* a. a..
- g-w.1.- a-
- n.., A, w
,.w.
.3 w.
w,... e.
.. 4.... a
..e 3
a_.
w.
,,. a...
so...
.. a.*.
4
-4e
... e
... wC n.
.wy
.w..
a
- . 4.. A. v., +. v o. 4_.....a O.
r.w.....
m..A
- r..
.~ =sa.s a..d
. a 'u-a d - C". s,..'. s s...=.. _
o e
.... _.. a.
,w. C. w...., s.o..
e...
.c u-y.
.4 C. _. 4_....,.Cb
. C -d a.. '. a. ***u.a
...*.a, s b.a. y,.
...a.
s
....._..a.
v.e
.d_.
, a., _, C.,..,
... g o
e.
~. *. a,. w s b..a. ' ' " a.
, a...'..... a. d.
=..~. * *. d. C w a
.u.
..4 s a.a.
..- e
.y...
- e.....c C. s. O e
._... d w
'4crk.anship shall be neat, with joints w a,.' _' a.-. *... e-a. d. 0 -. d"--e
=
y.
ye.
- y.ea.-
c e
=...,.i e
..f u,,,,,,..,
. a.
.e.-,....
.-. a exposed " ace of blCCk and leave surface
(
...d..
.3_
y o g
f.
Cv"_ d lia..' ' 'ia..** ~ * *. ' ' ' 3 ". ' o ".
4
'. e '."..*y
. * '. ". a.
(1')
h C.a ". '."..e CU'. S '.d e 2 "
a w
n d
'.2,2 '.T, ".*. *
- C 9.. ".~;~
'S
". e '.w a,. a.l 3 E ' 7 w v...
7. 1,/
ow D.
',C,. y.
...a.1 9
,..4.3 y...
CO./.-.d 8.d
.c
.a c.
a...
_4C.
a.A 3..Cer.
.w r[.w.a.
...* v. ~a.n_ ug.ge. o m.
- a. a..f e n. m. c..3.
e
.a. I' 3 ~ 1 %e uea,.c" O a.
..,.-a....ea.
u
.. w w.
l
- D O 9." *n e.n ( O 0 7 53 9.d 1.0087
%... a _4 **
e
.w I
- w... y e m... -. On DC.n e44.S C&
...e
...o..,. C. *.,f. Snu.7
%, e.. 8.4
+ s.4 e c>
- s. w. v-,It,.,
- 29 m
he*w can a..
- d. C - C.r 8.
.i o..n.e. (4 A
V
.w.
y..
. 012..
r.f.u..e
> a C e - e w..
9 1 S, w a.
- c. C.
w gyy.cyg1,,. w.. -..e".".*dS n' a,
- C y *,,.
- e *
.w y
.oueeC. -. C " e *, *..' ".
'. h. a.
.~..
C.. '.'f e
y
- ' ' l_ d, *.*. e*
8 a d.". *. *.
'.C W '. 8.7. "y *. " 3 ". U ". a. S.
,w 3
.d v. L...4S e m. C h4 %. d.. e A.
.c. n....
s.l C.U m
o l
y p
g o m D) * ~D')% } [L a
,o.,M eM A
~
a;_12 m
4 i
s
'"r m
,,--wg--
e,
n,-
_._.. - -. ~...
.i I
- .a w b...y t.
ww,
.e,
- a..y. a... =. w..w..q.
.w
^. a.. 9
- a. o
.,d.=*.=e
- 8 M
M.
.. a.
.e. 3.I.i ba
- a y.
w... a.. ~. 1..
- 8. *.
- S. *. s ** a. A.,
%*w
- 3
- a w.
a. 2. 3.**. *.
.S 3 4..
- s..e
..,.,4'.*a.
.%.w..... a.
yw.....
.e. 9 4..m.....g y
j
.s.' s
_ n - e..s e %.c e.
s.
=. g. e.. a. s.
. m. a.
4.
4 =. 4..s..?
e
=.P g e.
- #.e. 3 i m.
g, A. a.. 4 w.
..s
.a g o..,
.4..b..
q w
..w.
.4.1.*.
- b. a.
.. 3.
- 4.. s.,,. a.
33
- w..s.... a.
.. e
. s -
n.
w wA
- e. e..e. a. A.s.3.43
_s 4
y
...,,..6.i..
.% m.... y2
=.a.A s
7
- g.. J
~. m i.a.. 3 s.77
...v.
)
.4_.o.
,e.
... a.
w ww
..e a.
- a. A 3.
-a, w
'..s. S a
w.# a. s.
a n..s.
..a = =. s a.
..**49 s
- a. v..
.a A. m...o.
w w./.J.,,. = a.
.# 4 4
4 =. 4. s *
- e. a. =w.
i 4.
.J
=. w.. a.. _.o 3 i'...
a..=.*.w=.G..a a.
.1. g a A,.
..n.4.=.3
.=
C.
b,.y. a..= 4 4..
a w.a. j.
g
_..., g w.. s _9 D e *.*
- r*. *. " " ' ' '.
/
. ww
~: N w
.. A.
. w, w.
- a. A., 4.
- 9... w w. s.. a..
...g....g
_.. a,.,
a.
. a. s. %...a.
S.4 d a 4
- c. r -. w......e.aC
. '. ". '. '.'3 ". ". 3 e' * *. d s..
a.c
- a. v.. a. 4._3
..* S C ". " "s W E _' _' S m
- 1. n. e.
- a. s. A...
- c. w.. a..s. i s....
w e.A
',1 4,,. w g
e w, 4_
..e.
.a...d**.*..
~..*.*,,,S'
'".S.*...**.
2 ".. d w
f.),
f
, a n.....g.
4 pa.,
aA
- p. ')
v w..a.
. C.<.., S. u.a.
a
.....n w..
~-w 4
4
- m. w..p. f.=.s*.4_.m..e=n..
t.s e.e
_4y
- a. a. td.C
. r.
n.
t
%...e 4_ 4... e n a. A 4C s. n. Sw. 2 9. a.
- e.. a.
- a. d k a a'a, J
7 w
yy w
r L
m.w c.w. 4 e..g
. o.4.. 4
-.g4 4a., a. y
.g n.. t..
4 e
w
.e
- e ** *
- C *.* e^ d,.
"w " C T.'.*g*
W.*.
- P.
5 "y
- C ' # '
.w.
s.'
w r,..e. _1 * *
- a ":.s"p". C */e d.
.f.' '_ 'CC*.*
'...C"~.5.".
S '6". '.'
...w g
,r
.2
(,
p.
. a.
e..ja a.A a.y. y c e. a. s a' C.' 1 ~ S n
~
. w w m. u g.., *.. m 1_ a. s 3. a. 4 wa.r. C." *. '.*"j'."." **W 3...
.... w
...g w
'.v' C. n'. ' < " ". * ' '. * *.
- C. '..'*.,v*"..*"f"..*"'v*e'.".~
.e f
"p ~. w* "ye ". ' "s"y " O *v ". w ". *. d,
(
WC"ka.d C "..
37 - 4...s e d... _., - C C "...*. ". ". r.' '. '. C ". C "ye ". -
7 3.
w.
.3
'.. ~.. ~ ' ". *.. ",.
4 c. ' C '.. '.,,
'.O.'.*,."..'..'"..C".
'".."w*..*
2 ".". ' ".. *.
'd C ". k. ". 4_ S d '. 'a C C".. 'v _ "." a. d, ". ".. ". '. C "y 5 i
d.
,I w*
a..v.
m a. d. %s,o C..... s. n.s 7,
S.w.s.1 7
.e w
yw.
n.
..n.
- a. s g4.. u..
s.
m ~.. c.,
- q. g. a,.. w c.'
..a e....
[
43 ad w. S, a.
.g a. l 7 e a,.... a A 4.*..
_7.s. n. a,..
n e @.S'.*.
l
.. ~~-
y n c n.g.. n n.
- ~
a 4-j
.. e. e 4_ m, g..g _ n
- .o
..s
- s. An.
w.
w
.. 3 y...
- 4. A.
4..
w..
. s e,.a..a
%,...e. g.
wg
.a l
~. 4. v
., v, f.
I 4,,
y,
P s,
., 2 -
w,.
S w _.* e.. s.., a. s O a.,., c U. a.
4 2
v.
w..w w A.w-C.". *. *.i. " a '_ ".*.aa..'.*.".,
d " *.
o hv,, d "m...* C".,
m..
i S g a a. e. J.#.'. a. d f
m._s9*
- e. 4 v v wg 1cgA.
_N.a s. *y *.
s y
ea m-s b., p
- w..v,
..g a. w - -
- e. b. 3 _ 71 h a.
- n. e a. A 3 *1 p.isand A
m c.
w ww-f I
I I
I 4g_.y *,
..-e
- - + -,. - - -.
.-w w.-..m-ww-,
.w-w,.-m.--
,..m,,w.
-.--,r-.w,4,,c
--,,,ea-y.,.,w-,,
..y e,
+, -,
g
,w.
sw
in final vosition wit!'n 2-1/.
u"s
- a.. n o,.
.=,t
. =.
4 g.e k n.,, m 4. c. 4.m. e_,.... g., n.
3 e.
o c... r v o.r:' O,
.a. q,
- 3.,,,
<n n. 4 w.e. h 4..
~. v, p....
On a-s a
--o..
3 4.
D.c.. n.,
....,4.
. d., o.,.. a a4-r.w w
.s br:ar ro:
1 w'th' 1ess than cO*"0...a_,S s.u.
. J., m.
n.. e...,.,
a.,
Shu,,..,
v....
o Wnen coment or ce. ant: ':: c d u. :ns mortar hav.: been tested and the o'ccer-4 4..., c........,
ue_,,
n3 c....
, s u..
..u
.._._u.
AST:I Specifiestion C166 has ceen a:,ce:
...,4,.
t0.4n.d.,
n,.,,_.,.
...,a ci,,...._..3 o
y
..as.
.e..., 2 the m,n
- m.. _., e_
.=oe4,wn
- a. wo c A
- r,... 4
.e. e e.l. a.se
.e.o _i _i m.,
r a a.4e e
".a.6
.a
,*.S,.
- 4.* n.
A_4 *,
6 S.ea. ow.
y.=,,"p
. o.
- J m,3
'A..
- ?.... J e.
s. o. a g
'll'.
{e *. a.. n.
(
.g A 0 c,, h., e,.i, c.
- m... o i
_4 ni, _,.,1 v
cet minus 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Incs than c0 Time of initial set minus 1/2 hour Mortars tilat have stiffenad within the time interval as determined above, becauce of eitporation of moisture from
]
the mortar, may be retempared by adding 1.,ai,.c.
e
- n..,c.,_,.,
o s c n. a..a, 4 t,. o. a..
.s
.t i
store uo"kable censistency.
4 A.
C.
Shrinh.'_.re Crack' n: Co-trol
~
."...'. a.. "*f u. * ",
.cha..i.n.'a..,'.,. c " a. Pm'.. "..,- i n. c a ~...~ a ',,a s.
construction chall be controlled by ccmbinatiens of co. i,c, s,c4n 2 2
.e.i.
4 o 4.,,.....a c..., 4_. _..
_4 s _.
.v strict accordon::e with the detail: 'ndicated on the drawings and as specified hereinafter.
a.
Jo*nt Reinfor:1 ment j
n., d e - v.e. e n i.L+.
e w.6.1 1 h. n.
4n.s o a 1.9 o A.
4n
- 4..
Jo.4..v 4.,
n
.,._...v.
every on.".er cource.
Joint reinforcement at a ~..
- w.....
y-.,.u. a,. e...n o. le.n -
4 w,.1 -a 4.7. ),, e i
...c..
w y
.. r, a u
beyond the end of calls and '.intels.
M in _
,,e
_ut. na o' w
z
., em. c
. o,,r l
r c..,,,. c... ~.
.w...,,.,._,
.n..__
e p. v <,..at 1.".*..'.
c '... ~.~ - a o p. 3
..w.e
,3 w
..w
_w 1:irc'of each piece of re'.nfer:ement.
Join:
reinforcement chall be accurc:cly formed around corners'and at tall in:creectionc, 1
F
\\
D*
0 D
.) -
S..
4A-14 o
o
.a l
[
i I
b.
Control Joints J
Control joints provided at 00nc ret::
I the locations indicated in the mesonry work sh111 be constructed by On the uriing cpan end stretcher unita.the control c.'.torier fc e of the wetil, joint sha]1 be ra;;ed to a dapth of 3/h Co n--
inch cnd left reafy for :alkinc, trol joints en er.po::cd to vieu or painted i
interior walls or partitione shall bc I
rcked to a depth of 1/h inch and shell I
Join n in incluc. Sealing of centrol,.
...-,r not be calked.
ec unuer Secbien a m.-
- n. '
SEALEIG section of these sp3cificntions.
c.
Flashin (0_
into masonr'/ walls shall j
Flachings built be pressed down into e bed of fresh portar and be covered with a full bed
~
l J
of mortar to reccive the ner.t course of masonry.
d.
Jamb s_
e (3) cells of mason:"/ units at door jambs shall be fill'ed with mortar full-Tnroe height.
c 4 A. 10..Tointin: cnd Cl_ean._inc
~
al2 masc:$ry sur-
'B3 fore complation of the work, faces chall be left elec
!~.-:t a l and with tight mortar joints throughout.
cleaning tools end metal brushes shall not be with imperfections shall be uned.
All joint:
raked bcek 1/2 inch and pointed cne. tooled to Glaced Concrete V.auonr/
match existing joints.
units which cre damaged, marned cr chipped shall be removed and replaced with undsmaged unitc.
set end htrdoned, all Af ter pointin;; mortar h:
- etted and then 3
cy.pou<:6 f ece ::rialnicrk shall p2colutic:. of 1C5 by vo} u: e of com-clocned with t
, applied : ith stiff brunnes
- acid, r.h311 mercial muricti; and irr edi:'tcly after clacning tne curf::ce:
be thor:ughly rinsed down *.;ith clean wator.
~,.
. ~........,.....,..
_...=.s
-.2.
_..m_
l
_a
.,..,,s.
a.
=
..-...., s.......
,,._,-..,._.,.,s,
..=._
._,.._..3 o
I f
s
)
1 I
l l
1 I
s j
.. e--
e f
0 'D A
9 D**D ij\\
31.k..ru!._a
o ENCLOSURE 10 t
/
i l
I 1
i i
I
d Jun' L N
-f N
.s W
supM w o
a-4 N
3*
==
4 2:
.=t, M'
ag j Oi 3
E.
A m
el a m R i..
8 4 O kJ 3
A e
3' 2:
W.
mie WE F 'I W
p.g p EI
== m I
N
.i di e
t Ei N
h.t Wl 5
m El
- ee At u -=
=g a
O 2
Af e
a h
6
=,
w.
e 41 N
- - I Ai 2]
N
- 31 s
E
r 2
'J 2
=
Z "I
N ee M
==
- ai wiP 4 mi
- +
w~
r=
- Q Nl h
n y,
^l
=0
=
=
M m
ud i
4
==
3 se e-a A
M V
3*
u 4 A 1 se %
4 em M
4 **
1=
- A 1 1Q 1 9
- M 2 3
==A a'5 C 0
f.
k W
= c-2
- a s
2
..,3y-
= ~
d L.W.=-
Q~
2 aC U 2 e 14 aC u
a a
a 3 = W 3
.J
==
L
=
J
]
O*
2 p
- ~ -,..
e i
~
2 l
RIE quG se sus m
(
l 1
_.