ML19331D920
| ML19331D920 | |
| Person / Time | |
|---|---|
| Site: | Vallecitos File:GEH Hitachi icon.png |
| Issue date: | 08/31/1980 |
| From: | EARTH SCIENCES ASSOCIATES |
| To: | |
| Shared Package | |
| ML19331D919 | List: |
| References | |
| NUDOCS 8009040256 | |
| Download: ML19331D920 (93) | |
Text
_
I 1
l GETR LANDSLIDE STABILITY ANALYSIS Prepared for:
General Electric Company Vallecitos Nuclear Center Pleasanton, California 94360 I
By:
Earth Sciences Associates 701 Welch Road I
Palo Alto, California 94304 zzassansses"gt st55""5"g I
A,.
NEON 0EE H. JOHNSON a
e N
. NOTARY PUBLIC-CAltFORNIA y FRINCIPAL OFFICE IN g
0 SANTA CL/.RA COUNTY g O
My Comm Empir, July 25,1981
@me,.mr777srssGGGG%55GG"G*"
THIS DOCUMENT CONTAINS POOR QUAllTY PAGES 1886 - August,1980 Earth Sciences Associates 8009040 9.56
GETR LANDSLIDE STABILITY ANALYSIS rinsanosuaanonuncannunuraanns.
OFFICIAL SEAL ELEONORE H. JOHNSON t
y 1
,b. NOTARY PUBtf 0 CAUFORNIA A[
ontents FRtNCIPAL OFFICE IN f3/
SANTA CLARA COUtlTY g
My Comm. Empires Jufy 0
25,1981 L G35GGGG55%Qt.kGGGGGGGGGGY '
Page I.
SUMMARY
OF CONCLUSIONS I-1 II.
INTRODUCTION II-1 A.
Purpose II-1 B.
Related Studies II-1 C.
Investigation Procedure II-1 III.
SITE CONDITIONS III-1 A.
Geologic Units and Structure III-1 B.
Ground Water Conditions III-3 IV.
SLOPE STABILITY IV-1
, I A.
Geologic Evidence IV-1 B.
Stability Analysis IV-1 1
V.
REFERENCES V-1 APPENDICES A
FIELD INVESTIG ATION A-1 Introduction A-1 Sampling A-1
.g Field Testing A-2 m
Geophysical Logging A-4 P'.eometer Installation and Monitoring A-4 B
LAPJR ATORY INVESTIG ATION B-1 Introduction B-1 Material Types B-1 Sample Preparation B-2 j
Static Triaxial Tests B-3 Direct Shear Tests B-5 Supplementary Test Data B-6 Interpretation of Test Results B-6 j
Earth Sciences Associates
1 L EA W
nionou n. sonson I
L.
,; NOTARY PUBuO. CAL *ORNIA FalNCIPAL OFFICE IN e
E 4gg.
$ANTA CLARA COUNTY dg U s (Continued) 25,1983 r
My Comm Espires July I
on0000a0000000u000000ao00 Page C
STABILITY ANALYSIS C-1 Introduction C-1 Landslide Model C-1 Seismic Stability C-2 Static Stability C-5 TABLES B-1 Summary of Triaxial Test Data follows page B-8 B-2 Summary of Direct Shear Test Data B-3 Summary of Direct Shear Test Results B-4 Summary of Miscellaneous Test Data C-1 Results of Stability Analyses follows page C-5 FIGURES 1
g Exploration and Geology Map follows page V-2 L1 2
Geologie Section X-X' 4-1 Summary of Penetration Test Results follows page A-5 A-2 Comp.osite Lithologic and Geophysical Log - Boring RD-2 A-3 Composite Lithologic and Geophysical Log - Boring RD-3 A-4 Summary of I fezometer Readings, RD-2 and RD-4 A-5 Summary of Piezometer Readings, RD-3 I
Summary of Atterberg Limits B-1 followa Table B-4 B-2 Gradations - Material Type 1 B-3 Gradations - Material Type 2 B-4 Gradations - Material Type 3 B-5 Gradations - Material Type 4 B-6 Consolidated - Undrained Triaxial Test Results - Maf erial Type 1 B-7 Consolidated - Undrained Triaxial Test Results - Material Type 1 B-8 Consolidated - Undrained Triaxial Test Results - Material Type 1 B-9 Consolidated - Undrained Triaxial Test Results - Material Type 2 I
l Earth Sciences Associates 11
[
Contents (Continued)
[
FIGURES (Continued)
B-10 Consolidated - Undrained Triaxial Test Results - Material Type 2
{
B-11 Consolidated - Undrained Triaxial Test Results - Material Type 3 B-12 Consolidated - Undrained Triaxial Test Results - Material Type 3 B-13 Consolidated - Undrained Triaxial Test Results - Material Type 4 B-14 Photographs of Failed Triaxial Test Samples - Material Type 1 l
B-15 Photographs of Failed Triaxial Test Samples - Material Type 2
[:
B-16 Photographs of Failed Triaxial Test Samples - Material Type 3 B-17 Photographs of Failed Triaxial Test Samples - Material Type 4
(
B-18 CU Direct Shear Test Results - Boring RD-2, Sample PB-4 Material Type 1 B-19 CU Direct Shear Test Results - Boring RD-3, Sample PB-4 Material Type 2 B-20 Strength Envelopes at 10% Strain - Material 1
{
B-21 Strength Envelopes at 10% Strain - Material 2 B-22 Strength Envelopes at 10% Strain - Material 3 B-23 Strength Envelopes at 10% Strain - Material 4
[
C-1 Computer Model-Existing Mid-Slope Failure Surface follows Table C-1 C-2 Computer Model-Existing Full-Slope Failure Surface
[
C-3 Variation of Factor of Safety with Horizontal Seismic Coefficient C-4 Variation of " Maximum Acceleration Ratio" with Dept:. of Sliding Mass
(
C-5 Variation of Permanent Displacement with Yield Acceleration -
Magnitude 7.5 Earthquake l
REONORE H. JOHNSON
)
NOTARY PU3LIO.CAUFoRNIAE PRINCIPAL OFFICE IN k
E bL_,_wex=UNTY1 SANTA CLARA CO T
Earth Sciences Associates 111
{I
[
[
I.
SUMMARY
OF CONCLUSIONS
[.
This report presents the results of stability analyses of the landslide cmrnlex present in the hills north of the General Bectric Test Reactor facility near
(
Pleasanton, California. The conclusions derived from these analyses are summa-rized as follows:
{
1.
The landslide complex present today on the southern slope of the Vallecitos Ilills is an erosional remnant of an ancient slide complex whose principal movement occurred more than 100,000 years ago.
2.
Geologic evidence and field observation indicate that the landslide complex is presently stable and has been stable for at least the past 8,000 years.
3.
Geologic evidence suggests that the landslide complex has remained
(
stable even under strong seismic loadings.
4.
Static stability analyses corroborate the field observation and geologic
{'
evidence indicating that the landslide complex is stable under present loading conditions. Factors of safety of 2.9 and 4.4 were calculated for
[
the two modelled failure surfaces analyzed.
5.
Seismic stability analyses indicate that the 0.75 g design earthquake postulated for the site could cause downslope movement of the land-slide mass, conservatively estimated at 18 cm.
6.
The landslide complex poses no hazard to the General Bectric Test
{
Reactor. Ifowever, a value of 18 cm of movement on the B-1/B-3 shear should be accommodated in the design of the proposed Fuel Flooding
{
System.
[
l
[
[
I-1 Earth Sciences Associates e
II. ;NTRODUCTION A.
Purpose An investigation has been conducted of the stalJ1ity of a landslide complex present in the hills north of the General Electric Test R eactor (GETR) facility near Pleasanton in Alameda County, California. The objective of this investigation was.
to evaluate and characterize the potential hazard, if any, to the GETR or appurtenant safety-related facilities posed by the presence of the landslide complex. In particular, possible loadings on the proposed Fuel Flooding System (FFS), a portion of which crosses the surface projection of the basal shear of the I
landslide complex, were evaluated.
This study is responsive to the Nuclear Regulatory Commission staff position that an investigation program should be conducted to evaluate the potentiallandslide hazard at the GETR site (NRC,1980).
The scope, objectives, and proposed methodologies of this investigation were reviewed by the NRC staff prior to the start of the program.
B.
Related Studies I
The results of several earlier studies related to the issue of landsliding at the GETR site have previously been submitted to the NRC. Geologic evaluations cased on field mapping, aerial photo interpretation and some subsurface exploration of both the large-scale, deep-seated landslides and surficial slides were presented in the Phase I and Phase II Geologic Investigation reports for the GETR site (ESA, 1978a, 1979).
In another investigation the relative stability of the landslide complex was assessed in terms of geologic, geomorphie, and climatic conditions and stability analyses were performed based on data available at the time (ESA, 1978b).
I An imdependent evaluation of potential landslide hazard at the site was included as part of the geologic studies conducted by the California Division of LIines and Geology (1979).
C.
Investigation Procedure The investigation of the stability of the landslide complex in the hills north of the GETR included review of geologic evidence, field and laboratory investigations and analysis and interpretation of the data collected.
Extensive geologic studies have been conducted at the GETR site as part of carlier investigations (ESA,1978a; 1979).
The geologie data relative to the
,I j
II-1 Earth Sciences Associates
L
~
[
{
structure and stratigraphy of the hills north of the GETR were utilized in formulating a model of the landslide complex for computer stability analyses. The geologic data also provide a useful check on the reasonableness of the results of the stability analyses.
The field exploration performed for this investigation had three main
(
objectives: 1) to establish the stratigraphy at depth within the slope, and, to the l
extent possible, the location of the landslide failure surfaces; 2) to obtain samples
{
of representative subsurface materials, includiag shear zone material if possible, for laboratory testing; and 3) to obtain information on the ground water e aditions within the slope. During the field investigation four rotary wash b tings were drilled a'ong the section to be analyzed. The borings were logged, samples were taken, in-situ penetration tests were performed and piezometers were installed.
Geophysical logs were run in the two deepest borings. The results of the field investigation are preseated in Appendix A.
(
Samples acquired during the field investigation were tested in the laboratory to establish index properties and strengths of the subsurface materials. Both static
{
triaxial and direct shear strength tests were performed to provide appropriate data for use in the slope stability analyses. Several triaxial tests were run at high
[
pressures to simulate in-situ conditions at the base of the very deep landslide complex. The test procedures and results are discussed in Appendix B.
Data from the preceding tasks was analyzed and interpreted, and a model for
[
the landslide complex amenable to slope stability analysis was formulated. The stability analyses were performed using a computer program specifically developed l
[
for this purpose. The procedures and results of the stability analyses are presented in Appendix C.
{
A slope monitoring program has been initiated at the site to detect and monitor ground movements of several inches or more which might accompany
[
reactivation of the landslide complex, particularly as a result of seismic loadings from strong earthquakes in the vicinity. Altnough this monitoring program is not specifically part of the investigations reported herein, it should provide a useful
[
means of checking the results of the stability analyses in the event cf future seismic activity in the site vicinity. The survey monitoring program, including the
{
results of the initial survey, was described in a memorandum submitted to the NRC (ESA,1980).
Earth Sciences Associates g
III. SITE CONDITIONS A.
Geologic Units And Structure The regional and site geology of the Vallecitos Nuclear Center vicinity have been described in detail in previous reports (ESA,1978a, b; 1979). Of most interest I
for this investigation are the character and distribution of geologie units and struc-tures within the Vallecitos hills just north of the GETR. The geologic section in l
this area consists predominantly of dense gravels with thinner interbedded very stiff to hard silty clays, both units being of the Livermore Gravels, and dipping gently to moderately to the northeast.
The generalized distribution of these material types within the hillslope is shwn on Figure 2, GeNogic Section X-X'.
I The contacts shown on Figure 2 were interpreted from cvtensive trench data, geologic mapping and lithologic and geophysical logs of borings.
Where boring control was not available contacts were projected to depth based on the dip of the section as exposed in the trenches, in outcrop, and in the Fuel Flooding System (FFS) cut.
Predominantly fine-grained materials were encountered throughout boring I
RD-1 and the middle portions of borings RD-2 and RD-4, although at least the upper 15-20 feet of RD-1 is known from previous studies to include late Quaternary colluvial deposits and superimposed palcosols derived from the Livermore Gravels (ES A,1979). As a result, the samples from RD-1 cannot be considered represent-ative of the materials existing down dip within the hills to the north. The fine grained units meountered in RD-2 and RD-4 include units of clayey silt to silty clay in the up, er part of the section. The section grades to more plastic finu downward and includes variable amounts of sand and gravel. The interpretation shown on Figure 2 assumes that this generally fine-grained section consists of either material type 1 or material type 3 as defined in Appendix B.
The lower parts of borings RD-2 and RD-4 and of Shannon and Wilson's (1973) borings B-1/B-1A and B-2 all encountered clayey sand and gravel which has been designated as material type 4 as described in Appendix B.
This material is interpreted to underlie the fine-grained unit discussed previously to the depths of interest in this study.
An interbedded sequence of fine and coarse grained units was encountered in the upper half of boring RD-3 as shown by the combined lithologic-geophysical logs on Figure A-2.
Samples from the fine-grained units have been designated as l
Earth Sciences Associates nl-1 i
1
k
[
{
material types 1 and 2 and are described in detail in Appendix B. For the purposes of this study the entire sequence in the upper part of RD-3 containing fine-grained
[
units was directly corre'ated with the massive fine-grained unit exposed near the center of Trench G-1 (see Figure 2). Because the lateral extent of the two gravelly units interbedded with fine-grained units in RD-3 was uncertain, these coarse
[
materials were conservatively replaced by fine-grained material in the inter-pretation shown on Figure 2.
(
As described in Appendix A, sampling of the coarse-grained unit encountered in the bottom half of boring RD-3 was not possible. However, very detailed log descriptions of the ma" -ials present in the downslope portion of Trench G-1 (see ESA,1979) and direct observation of exposures in the FFS cut pad are available.
These data indicate that this section is composed almost entirely of low plast'.:ity silty gravelly sands / sandy gravels. No clayey fine-grained units were observed in the extensive trench and cut exposures, nor are any indicated from interpretation
[
of the gamma or resistivity logs of boring RD-3 (see Figure A-3). For the purposes of this investigation, this section of the slope is conservatively assumed to have the
{
index and strength properties of the clayey sand gravel designated as material type 4 in Appendix B.
Similarly, samples are not available from the section upslope of RD-3 (see Figure 2). Based on trench log descriptions these units are, for the most part, interpreted to have properties intermediat9 to those of material types 3 and 4, as described in Appendix B.
One fine-grainJ' unit of material types 1 and/or 2 has been interpreted from trench log data with this scetion as shown on Figure 2.
(
As described in the Phase I and Phase H geologie reports (ESA,1978a, and 1979, respectively) several shears have been encountered in exploratory trenches at
{
the GETR site. These include the low-angle northeast dipping B-1/B-3 and B-2 shears to the southwest and the steep southeast dipping shears (G-6 and G-9) to the northeast (see Figure 2). The B-1/B-3 and high-angle shears are slip surfaces of a large landslide complex on the southwest slope of the Vallecitos hills. The head-scarp, bench, toe geomorphic expression of this large landslide complex is shown by the distinctive amphitheater-like structure near the crest of the hills, the broad, gently sloping spur ridges at mid-slope and the lobate steeper slope at the foot of
(
the hills (see Figures 1 and 2).
The stratigraphic sequence encountered in borings RD-2 and RD-4 was very
{
similar to that penetrated by BH-3 in which several shears had been observed in s!*u duimg an earlier investigation, (ESA,1978a). However, despite concentrating l
Earth Sciences Assc,ciates
[
{
sampling attempts in the locations suggested by BII-3, no shear zone samples were recovered from borings RD-2 or RD-4. Due to the coarse-grained nature of most of the section penetrated by boring RD-3, evidence of the location or character of shears which may have been intercepted could not be interpreted from the samples, drilling progress or geophysicallogs of the boring.
[
B.
Ground ger Conditions
(
Grosnd water conditions within the hills north of the GETR have been interpreted from geologic conditions, the presence of springs or seeps within the
{
drainages incised in the slope, and piezometer data from the field investigation.
The piezometer data from borings RD-2, 3, and 4 provide an upper bound for the location of the main piezometric surface within the hills north of GETR (see Appendix A and Figure 2). If the portion of this surface defined by the boring piezometers is extended down gradient it coincides with the water level contours plotted by Farrar (in press) from well data in Vallecitos Valley. This piezometric surface is also consistent with the presence of springs and seeps in drainage courses
(
adjacent to the spur ridge investigated. The elevations of the springs and seeps are all approximately the same as the elevations of the adjacent portion of the
{
piezometric surface beneath the spur ridge (see Figures 1 and 2). Farrar (in press) points out that runoff on the hillsides in this area is very rapid and minimal infiltration cecurs where Livermore Gravels are exposed on the hills.
These factors, together with the great depth of the main piezometric surface, suggest that seasonal depth fluctuations of this surface will be small to non-existent.
(
Piezometer readings in borings RD-2 and 4 may indicate the presence of perched ground water above the main piezometric surface (see Piezometer Installation and
{
Monitoring in Appendix A).
Perched water conditions were observed in-situ in large diameter bucket auger borings located about two-thirds of a mile east of the GETR (see ESA, 1978a).
These borings penetrated approximately the same elevations as RD-2 and RD-4.
[
[
E Earth Sciences Associates
[
[
IV. SLOPE STABILITY A.
Geologic Evidence The southern slope of the Vallecitos hills has been interpreted as the
(
erosional remnant of an ancient, massive landslide complex (ESA,1978a,b,; CDMG, 1979). Geologie evidence exposed in exploratory trenches at the toe of the slide
{
mass indicates that principal movement of greater than 80 feet occurred more than 100,000 years ago (ESA,1979). Minor additional movements totaling 6 to 12 feet occurred between about 17,000 to 100,000 years ago. There is evidence that no movement has occurred during at least the last 8,000 years. This evidence is compatible with the deep erosional dissection, subdued and modified geomorphic expression and overall gentle slope of the remaining landslide mass.
Geologic interpretation suggests that the landslide complex in the Vallecitos
(
Ilills was initially activated during a pluvial epoch when the climate was much wetter and erosional base levels were significantly lower than at present. There is
{
also evidence that the Vallecitos hill front may have been over-steepened by a previous west-northwest flowing drainage. The role of earthquake loadings in the initiation of movement is not known, but may well have been a contributing factor.
The absence of movement during the past 8,000 years and the difference between the climatic and geomorphic conditions existing today and those inter-preted to have existed at the time of major movement of the slide complex both attest to the present stability of the remaining landslide mass. Based on estimates
{
of recurrence intervals for large earthquakes on the nearby Calaveras fault, it seems likely that the landslide complex has been subjected to at least several
{
episodes of very strong ground shaking during the past 8,000 years. The fact that there is.to evidence of offset during that time indicates that the remaining landslide complex is stable even under strong seismic loadings.
B.
Stability Analysis Even though geologic evidence indicates that the landslide complex in the hills north of the GETR is stable, a seismic stability analysis was performed to
{
estimate the magnitude of permanent deformations which might occur under earthquake loading conditions. The methodologies and results of these stability
{
analyses are described in detail in Appendix C and summarized briefly here.
l l
Earth Sciences Associates I
IV-1 t
l
[
'i
[
{
The basic technique of analysis derives originally from the method of Newmark (1965) in which the landslide mass is considered capable of limited slip whenever the seismic coefficient acting on the mass causes shear stresses to exceed the yield stresses on the failure plane. Knowledge of (a) the seismic coefficient acting on the mass during the design earthquake and (b) the seismic coefficies*
I meessary to cause incipient yielding are required as input. The output of the analysis is net final slip at the end of the earthquake.
l To evaluate (a), we have determined that the design M 7.5 earthquake will cause seismic coefficients up to 0.34 to act on the landslide mass. This estimate is conservatively high because it neglects the " tau" effect arising from the great size I
!I
' the landslide.
l To evaluate (b), the coefficient causing yield of the landslide mass, we have determined the yield shear strength of the soils which we infer to lie along the failure plane. The residual undrained or remolded strength values are used, on the l
l basis that the materials are disturbed by past Jandsliding, and that the disturbance has not " healed".
Usir.g these strength values, the seismic coefficient causing l
incipient movement is determined by trial-and-error stability analysis. The yield seismic coefficient is shown to be 0.18. This estimate is probably low because of the conservative interpretation of the laboratory test results (see Appendix B).
j II The results of the seismic stability analyses indicate that small movements, l
up to a maximum of about 18 cm, could occur along the existing landslide failure I
surfaces as a result of strong ground shaking associated with the most severe earthquake postulated for the site. On the basis of the geologie evidence of no movement in at least 8,000 years it appears t. hat either these estimates of permanent deformation are quite conservative cr the GETR site has not been l
subjected to seismic loadings equivalent to the design seismic event during the past 8,000 or more years.
l Based on the results of the stability analyses it is our judgement that the g
landslide complex poses no hazard to the GETR. The analysis indicates that a 5
value of 18 cm of movement of the landslide complex along the B-1/B-3 shear should be accomodated in the design of the proposed Fuel Flooding System.
This value is well below the one meter of surface offset which has already been accepted as part of the seismic design criteria.
E E
w Earth Sciences Associates IV-2
L
(
V. REFERENCES Ambraseys, N.M., and S.K. Sarma,1967, The response of earth dams to strong
{
earthquakes: Geotechnique, Vol.17, pp.181-213.
Bishop, A.W., D.L. Webb, and P.I. Lewin,1965, Undisturbed samples of Iondon clay from Ashford Common Shaft, strength-effective stress relationships:
[
Geotechnique, Vol.15, p. 1-31.
Boutrup, E.,1977, Computerized slope stability analysis for Indiana highways.
(
Joint Highway Research Project, C-36-36L: Engineering Experiment Station, Purdue University, Indiana.
[
CDMG,1979, Geologic evaluation of the General Electric Test Reactor site Vallecitos, Alameda County, California, California Division of Mines and Geol.: Special Publication 56,19 p.
(
Dames and Moore,1960, Foundation investigation, proposed boiling water reactor, Vallecitos Atomic Laboratory, near Sunol, California:
unpub. rept.
for General Electric Company (Order 205-61905).
[
Earth Sciences Associates,1978a, Geologic investigation, General Bectric Test Reactor site, Vallecitos, California, February,1978:
report to General Electric Co., Vallecitos, California.
,1978b, Landslide stability, General Electric Test Reactor site, Vallecitos, California, July 1978: report to General Electric Co., Vallecitos, California.
,1979, Geologic investigation, Phase II, General Electric Test Reactor site, Vallecitos, California, February,1979:
report to General Electric Co.,
Vallecitos, California.
,1980, GETR landslide monitoring system: memorandum from R. C. Harding, ES A to D. L. Gilliland, G.E.
[
Farrar, C.D., in press, Water quality monitoring network for Vallecitos Valley, Alameda County, California:
U.S. Geological Survey, Water Resources
{
Investigations, report,47 p.
Franklin, A.G., and F.K. Chang,1977, Earthquake resistance of earth-and rockfill dams.
Report 5, Permanent displacements of earth embankments by E
fewmark sliding block analysis: Waterways Experiment Station, Vicksburg, Mississippi.
(
Lamb, T.W., and R.V. Whitman,1969, Soil Mechanics: John Wiley & Sons, Inc.,
New York, N( w York.
[
Leps, T.M., 1970, Review of shearing strength of rockfill:
Journal of Soil L
Mechanics and Foundation Division, ASCE, July.
rL V-1 Earth Sciences Associates c
l
{
V. REFERENCES (Continued)
[
NAVFAC DM-7,1971, Design manual, soil mechanics, foundations, and earth structures: Department of the Navy, Naval Facilities Engineering Command.
{
Mak;iisi, F.I., and H.B. Seed,1978, Simplified procedures for estimating dam and embankment earthquake-induced deformations: Journal of the Geotechnical Engineering Division, ASCE, Vol.104, No. GT7, July, pp. 849-867.
- Newmark, N.M.,
1965, Effects of earthquakes on dams and embankments:
Geotechnique, Vol. 5, No. 2, June, pp. 139-160.
(
Newmark, N.M., and W.J. Hall,1980, Seismic evaluation of Vallecitos site: report to Mr. Chris Nelson, Division of Operating Reactors, Nuclear Regulatory Commission.
{
3 i
NRC,1980, Safety evaluation by the office of Nuclear Reactor Regulation for the General Electric Test Reactor, General Electric Company, Docket No. 50-70.
j h
- Sarma, S.K.,
1975, Seismic stability of earth dams and embankments:
Geotechnique, Vol. 25, No. 4, pp. 743-761.
{
Seed, II.B.,1979, Consideration of the earthquake resistant design of earth and rockfill dams: Rankine Lecture to be published in Geotechnique.
r Seigel, R.A.,1975, Computer analysis of general slope stability problems: Joint L
Highway Research Project, JHRP-75-8, Engineering Experiment Station, Purdue University, Indiana.
[
Shannon and Wilson, 1973, Investigation of foundation conditions G.E. Test Reactor: for URS - John A. Blume & Associates,8 p.
[
[
E E
E r
Earth Sciences Associates V-2
l ofg j-
\\cA 4Ak a}e
[. a
' y.
=
(
-))
"sl% g( +4(,Q{~%
e s 4 w (<!y j b
t es 'f s
g
?:
af;xkl??
0kh h
h.> -
\\\\\\ q
't k.
{~
(< _
{ s 'g
\\
~
)
E=f C
L wp 4
1/
gg; y
fk; a
( w n;.h
) ) g){bhff:.,
ee n,
rm
k j'
7 j
s 2),
lwfT JPCT
.\\
W
$$ '$ %s f~Q g %
$M/*g{g*T{gdj y
31/lt g3 Gi x
y_
AM l
b
(
lll-fs.s
~
} f gy p !)l,lyl'e'- g?qQty i
C o f.
f, l
l lj !.
l ry fv.
s s
[
I J'
-M
/ /[! (\\ x+q/ f /\\ WM'/((
N '\\ Q [$((\\
\\
N
'x 7# ~I, p/
/
56 g'
4-E X P L A N ATIO N SCALE RD-2 h Expforatory boring - ESA,1980.
,gg ggg,,,
B-2 O Exploratory boring - Shannon and Wilson,1973.
I t
I G-1 c neour interval-to feet Exploratory trench - ESA,1979.
(5 feet for dotted contour)
X X'
Line of geologic /stabi!ity analysis section, see Figure 2.
)
I i
Earth Sciences Associates NOTE r.6. uto. c.nro,n Base map from Figure No. 2. ESA,1979. See Figure No. 2, ESA,1979, for f
GETR LANDSLIDE STABILITY ANALYSIS comp!ete explanation of other map symbols.
1 EXPLORATION AND GEOLOGY MAP Checked by ___8W '
s DateQ Project No. Figure NoI
^-
Approved by
- Mw Date 188 L ~1
I k
Tren,ch B-3 X
i l
l 1200-1000-on and W;g,on bord pps Cut Pad 1
800-4 g.110-3 Shear j
N6 80 2. 804 e 4
B-2 Sh"'
n04 y
n
/
600-7 'M._ W::O Gb JOO':DJ;4 Gie.e.
m7.n m.m. mm m
/
l I d!E O L'k L'x: 'm. + e
~%.':.'.:. '
~. -i.'.
400-
.wiig 200-SW EXPLAI Geologic contact.
1_
Ground water table.
Material types 1 (clayey s l
l Material types 1 and 2 (ci l
l Material types 3 (sandy c1 i
{
l l
Material type 4 (clayey gr (Note: see Appendix A ar
-?
Exploratory boring: ESC
{
(Note: RD-1,2,4, and B 6._
Exploratory trench: ESA a
r f
NOTE: See Figure 1 t
Horizontal c 4
Iu w
1 i
Trench G.1 Trench G-9 X'
I I
G-9 shear I
- 1200 Trenches G 2 - G 8
[l I
I C-6 shear
- 1000 BD-f 4
~~g
/,y' y =
.' y. y =
800 f
V
., - %g 9
q
-L
.4
- 600 W
d 2
-4 a
~~
z
,A '
400 Y
EZ."",".
Q., w,'
4.,;,..,,:'lh' '[-' ".,' 3 -
-s
.;L
_;g
- n'Q:g:%,.;..,.;
- 7.*
- 200 NE IATION Itdity city) and 3 (sandy clay).
lyry silt-silty clay).
py) Ond 4 (ctlyey gravel and sand).
sves tnd sand).
d Q for dittiled descriptions of material types) 1980: Shinnon and Wilson,1973.
- 2. B.1/2-1 A til projected to section) 0979.
for locition of section.
Earth Sciences Associa*es I
vmicti Sett2 Palo Alto. Cahma GETR LANDSLIDE STABILITY ANALYSIS GEOLOGIC SECTION X-X*
Checked by... y / #T'O Date d'Ejifb Project No Figure No.
Date[ yh 1886 2
, Approved by.
e
APPENDIX A FIELD INVESTIG ATION Introduction Subsurface exploration for this investigation was conducted during late June and early July of 1980. The field investigation involved drilling, logging, sampling and standard penetration testing of four rotary-wash borings in the GETR vicinity.
Piezometers were installed in all borings and water levels are being monitored. All borings were drilled using a Failing 1500 truck-mounted drill rig. The borings were located as shown on Figure 1, Exploration and Geology Map.
The borings, identified as RD-1, RD-2, RD-3, and RD-4, were sampled using Pitcher Barrel and I
Modified California Drive Samplers to obtain materials for laboratory index property determination and testing. The borings ranged in depth from 30 to 433 feet, wi;h a total footage of 673 feet. Standard Penetration Tests were performed in 3 of the 4 borings.
Drilling operations were conducted by J.N. Pitcher Drilling Company of East Palo Alto, California, under the direction and field supervision of Earth Sciences Associates (ESA). All borings were logged by ESA personnel and copies of the field I
boring logs are included at the end of this appendix.
ESA personnel handled, packed and transported all samples to the ESA geotechnical laboratory in Palo Alto, California.
Sampling Samples for index property determination and laboratory strength testing were recovered from all borings using either a Pitcher Barrel Sampler (3-inch OD) or a modified California Drive Sampler (3-inch OD). The Pitcher Barrel Sampler I
yields relatively undistrubed samples except in gravelly materials and was used whenever possible to obtain good quality samples.
ESA's field engineer en-countered numerous difficum;s in using the Pitcher Sampler in the formations being drilled. The local substrata consisted predominantly of clayey, gravelly sands to sandy gravels. Scattered cobbles up to several inches in diameter were common in much of the section penetrated. As a result two particular problems often occurred. First, cobbles protruding from the side wall of the bore hole often blocked lowering of the sampler to the bottom of the hole, or the end of the sample tube was bent as it was introduced. The borehole then had to be reamed with a I
rock bit before a new sample run was attempted. This procedure was time-l Earth Sciences Associates A-1
consuming and often occurred repeatedly so that further attempts at sampling those intervals were abandoned. The second problem would occur when coarse I
gravel clasts or cobbles were present in the material being sampled.
These materials would bend the tube as it was advanced and caused poor recovery and very disturbed samples. These problems were most prevalent in RD-2, RD-3, and R D-4.
No sampling was possible at depths greater than about 200 feet in boring RD-3 although several attempts were made. RD-1 yielded, for the most part, good quality Pitcher Barrel samples. Average Pitche-barrel sample recovery was 88 percent for RL-1, 79 percent for RD-2, 72 percent for RD-3, and 61 percent for RD-4. Overall average recovery was 78 percent.
A modified California Drive Sampler was used to obtain blow count data as I
well as 2i inch diameter, slightly to highly disturbed samples. Either a 140 lb or 300 lb hammer was used to drive the sampler depending on the hardness of the formation encountered. Average recovery for the California Drive samples using the 300 lb hammer was 73 percent for RD-3 and 63 percent for RD-4.
Overall average recovery was 70 percent.
Use of the 140 lb hammer yielded lower recoveries. Interpretation of blow count values fromthe modified California Drive I
Sampler are discussed under Field Testing.
In general, target sampling depths were chosen on the basis of geologic projection of shear planes observed in Trench B-3 and computer generated failure surfaces from preliminary stability analyses.
Sampling was not, however, re-stricted to these depths since the field engineer tried to avoid sampling the very gravelly material which tended to result in poor to no recovery. Finer grained silty and clayey units were the preferred sampling horizons.
Samples were handled and transported carefully to minimize additional disturbance. After the sample was removed from the hole, it was logged, labelled, I
capped and sealed with tape and wax.
Samples were transported to ESA's geotechnical laboratory in Palo Alto oy ESA field personnel.
Field Testing Standard Penetration Tests (SPTs) were performed using a standard 2-inch OD spoon with a split inner barrel. The tests were conducted by driving the sampler a distance of 18 inches using a 140 lb hammer and a 30-inch drop. The number of blows required to advance the sampler each of three successive 6-inch increments was !. corded. The sum of the blows for the last two increments is the Standard Penetration Resistance (NSTD) in blows /ft. These values are plotted Earth Sciences Associates b2
[
1 versus depth on Figure A-1.
A modified California Dr.ive Sampler was also used to obtain penetration resistance data. This sampler consists of a 3-inch OD thick-walled barrel with three 21-inch OD, 6-inch long steel liners.
The liners facilitated handling, transport, and storage of recovered samples. Penetration tests using this sampler were conducted in the same way as the SPTs, except that a 300 lb hammer was used in very dense or hard materials.
In order to compare the penetzation resistance determined by these tests with the SPT values a correction factor was applied to the California Drive Sampler test results.
The correction factor accounts for the difference in input energy when different hammer weights are used and for the difference in wad thickness of the samplers. The cot ection factor is calculated as follows:
C=BSTD = 0.0005 Wh
- where, C
=
correction factor, dimensionless BSTD =
STP - equivalent penetration
(
resistance, blow /ft NCAL =
field blow count for modified
{
California Drive Sampler, blows /ft W
weight of hammer,Ib
=
h height of drop, inches
=
D
=
sampler outer diameter, inches
[
g D;
sampler inner diameter, inches
=
(
The SPT-equivalent standard penetration resistance values from the modified California Sampler tests are plotted versus depth on Figure A-1, along with the
{
SPT results.
Estimates of in-situ strength can be made based on the values of standard
[
penetration resistance summarized on Figure A-1. Using published relationships of unconfined compressive strength to standard penetration resistance suggests that the undrained shear strengths of the fine grained soils tested in-situ is on the o:cer
[
of 5,000 to 10,000 psf to depths of about 100 feet (NAVFAC DM-7,1971). Similar b
E Earth Sciences Associates A-3
[
[
relationships between friction angle, p, and standard penetration resistance indicate that the 4 angle for the coarse grained soils tested to depths of about 40 feet is at least greater than 35 degrees and is likely signficantly higher
[
(Lambe and Whitman,1969).
Pocket penetrometer tests were performed on the finer grained materials
{
whenever possible to obtain approximate values of undrained shear strength. In most cases the sample strengths exceeded the capacity of the penetrometer (4500
{
psf) or the sample was too gravelly to test. The results of the penetrometer tests are included on the boring logs accompanying this appendix.
[
Geophysical Logging A suite of geophysical logs was run by ESA personnel in borings RD-2 and
[
RD-3 using ESA's WIDCO 1200 Logger.
Natural gamma radiation, spontaneous potential and resistivity surveys were run in RD-2. Gamma and resistivity logs
{
were recorded in RD-3, but an equipment malfunction precluded recording spontaneous potential in that hole. Copies of the geophysical logs are included as Figures A-2 and A-3 in this appendix.
Piezometer Installation and Monitoring Piezometers were installed in each of the boreholes to provide data.on ground
(.
water conditions within the slope explored. Since perched water conditions were suspected, two well points were staged in RD-2 and a third deeper piezometer was installed in the adjacent boring RD-4. A typical piezometer installation consisted
{
of a 3 foot long slotted PVC well point attached to the bottom end of a length of 1-inch diameter PVC piping. The well point was inserted to the desired depth in the completed borehole.
Then 4-1 inch diameter pea gravel backfill was packed around the piezometer tip to the desired depth of the interval to be monitored.
Impervious bentonite seals were installed to isolate the desired monitoring interval.
The seals were emplaced by pouring high density dry bentonite pellets into the borehole. The pellets expand on exposure to water in the bo ehole and form an
(
impermeable seal within a few minutes. More gravel was used as backfill on top of the seals.
Details of the piezometer installations in each of the borings are
{
included on the drilling and sampling logs.
The completed piezometers were all flushed with compressed air in an attempt to remove any remaining drilling fluid. Water levels have been period-ically measured since installation with an electric water probe.
Earth Sciences Associates g
'm Piezometer reading; from borings RD-2 and RD-4 are plotted on Figure A-4 and those from RD-3 are shown on Figure A-5. The piezometer installed in boring RD-1 remained dry throughout the monitoring period shown on Figures A-4 and A-5.
As seen on Figure A-4, the upper piezometer in RD-2 and the deep piezometer in RD-4 are recording very low heads and the fluid levels appear to be declining slowly with time. The readings in these piezometers may actually be residual drilling fluid which was not removed by the compressed air flushing. The readings in the deep piezometers in RD-2 are erratic, but also show a general decline in fluid level with time. During the blow-out operation, compressed air input at the I
bottom of the deep piezometer in RD-2 caused some fluid to be blown out of the top of the shallower piezometer. This indicates that some hydrualic connection exists between these staged piezometers in spite of the presence of two bentonite seals. A conservative interpretation of these data is that the fluid recorded by the deeper piezometer in RD-2 is due to a zone of perched ground water above the top of the piezometer in boring RD-4. The maximum head due to this inferred perched zone would be about 20 feet of water.
I I
I I
I t
I
.I
.I A-5 Earth Sciences Associates
STANDARD PENETRATION RESISTANCE, Blows /ft.
0 20 60 80 100 120 140 I
t e
J 0
X
[
i 10 -
1 x
b x
20 -
(p a[
30 -
X i
40 -
I N
50 -
{
.0
&g 70 -
80 -
e 90 -
EXPLANATION
,PT clays, silts
{
uod.cas.
SPT X -
@ f **"
- 8'"
Earth Sciences Associates Mod. c.r.
e..o Ana. c.wo,n.a nch rat on asocheved.
GETR LANDSLIDE STABILITY ANALYSIS
~
SUMMARY
OF PENE' RATION TEST RESULTS F
uodified c aitornia values era converted L
to oive equivalent SPT values.
. Checked by 2M Date 8/ER/% Project No. Figure No.
Approved by N Date F/L8/&
1886 y A1
._--_-c-
._,__m__
.,,r-.e,...
,.,,--,_,-y
[
Earth Sciences Associates PROJECT NUMBER 188s H0LE NUMBER RD-2 SCALE 1"- 10%isinMLINE SPEED 25 ft./ min.
- 0GGED BY CJP DATE s/24/so ELECTRIC LOG RADIOMETRIC LOG e en H0LE DEPTH (MIN) 9 5ft- (MAX) 118.s tt.
3O H0LE DEPTH (MIN) 40 ft.
(MAX) 119.1 ft sp_ 10 mv/ division RES 10 ohms / division
- z TC 3 5'c-
-s c, t
REMARKS poor SP response n
r-REMARKS rnQO SPONTANEOUS RESISTIVITY -
- 9 NATURAL GAMMA POTENTIAL RAY INTENSITY -
0 CL.-
sc
- 77 g_
7;
,,q,
-t... '
_._._._ w GP
-_.q..-..
,g g _ t._.q. _
._T,.4._,..
.t '&
. _.1' __. 41.m.. : :. : :a
._3
+
p-.._
. I.r.v. t E.
_ _.7 L, -.,._
1
.-_. a.
4. L... - -. _ _ Lc...44. t.4. _
,..t
_.1 !.,_>. _.
4.
. },._. : _.
e.
E
. ~.
~
w._
!a-i...-,.-.
. _ t.,.
.-..1_.
1-l-
.7..
.T
..+
_ t,
. I. -
5 t.
. i
+
t
- t:'.1-
. t. -
t.
.7..
- .---+
- ..
~h.
M. ' N '..
73 1 tt :!-
SM 113,2 !Z' IJ!TI-*2'
_1_
_.. i...
_..e
.t_
.t__t.
- T_ L -
- +.. !. 1
}
._ I + t...
t -
. ! t_
- 4. _
t.t.
tc eA.
~
g 4C
_. 3._:t r. '.
_-:;_E...t.' t"
- '~ ! 1 + - -t ; c_:c-41:_t; t +
t-pt.t.-
- +~
- ~
+-
- y t :t~-
- 1.-_j-j : }+-
+-
.i L..t UI.
tr :
4
.._.r-,.
_ 1
.t.
.t. il,,. I
_l.
t
..4.. _ s.. -- *":.t.:t,.
...,_'e.
_u. t. __ t_ r.
~,.
.t.
-_44. _.*
2 t_
d.. u...I.._._.
-.4 s.
._r.
.l.
_.t. t g. J
_,--.-.-.1,l..
4
+
t._.t _.
_ + _... _
. } g y.
..f.
. t__,.
_ t...
.3
.y
+
+a...
1 L t. ;._. t_t~! t-~T
. t :
_.._t..
- rr 7t r h ;t. ' -
z' -!- I' T' ' I "i -fi' _r
' i 327 l:!J 1 I-l d-
- lr}:t i fut t
'._1 tr-+- : -
- "t '.r+ I - ' ;;r*
' * + - * -
_ L-t ' t ~ +~ '-
L
-. t-t
t { ;. '.[t-{f'rg.--
r i _ t.
r.r ! t
- ..t
+ ~ -
r t --
4_ '..; _
F' h;.-i.i;
_r
+
l!.j..} 1,
- ii4tr:t'[rht-
- ~r~
.., f h
- {
- qc.
tr!-! ;
} ;-
SM fj ;
q_{
.1...._ _t._; g - -.; g
_ l n. ; g
..L.,.
4C
.i
,.._ -l__.._._
L_. t _...
T!
.n
_-.- 7..!.
L_.
_j ;
.+ t_.'
._ _.'.-.; _.; 4 -
.;.3 1:t 50-CL IY2 '
- --i=!
b-13 3.
I1I~'~I~I I-I 2I2
. 7._
4 1-t
. _ " -' E IL.t
- t_.. r, i
_-._4-_T_~
1
. -. I __ : ;
.__ t _ h t..
J L t :.1_ ;_._.
- 7...'_I,
.i :
_g g
+
.'ng_..
121 rt.
- j n
- 1 t-
.-4' t!.. ; ;
l.
r{.
,7..
(.,.
1.
g 7,
.... }. 1 *
- +.:
- .. +.
.:2:
_._. !._.t...
.c t
_:=_ =_ ju=_:a a.2=.
_p 7
a _y a _: w
,,.,p g.jq y ;,;
g;g 7
_.. e.._.._
r r
. t 1..
CL
--. _ e:.. -
- r,
. ; t.,. t_.,_
_+
.1_.
4 4 -
- r. +. i--
- ; tm..;.1 r
- .-+.-I
.SC
- r. t,'."! q..
~ ! 1.-4 f' :
4~.:
.,- y JJ-
- + i ~*
g t-4 it T ?-*r i
, 4.
g*
_I.;
!!.O.'. _-'.. 1, :
+
in
- t
. u
- t 1 !
w/
g_
I.J-1. _! T.
-..L
. l'..
-.,.J.
o
!1!..'.
t y.
t t g-+-
!-t - ~
... t'._1+r gray,#
.4.. !...,
- 1
. t..
C-.
MT,,
m: t-
--*--~t-*-
21 ! T! J+1.-~1 ' i - t ".
~*-
SC
+ - - + - ~ + -
t -*
J.:tn'.T. --'
- i..i T..
' '.r..
T.
- T*
111,;; :
in'. :.
g
!.11.: ;-
-?..L_. - _
7 __. _;_..-
7-
....T.-T..
L. _~
p
_- _ r.,4__
. _._ _4 i..
u
...s
...., -.+ 7. 7. _7..
J -
1
._.,___.t 4C
'-t tzt
~. t t ::t --~r t ;.
..y +
mc.! m.t -t-t.
_.. t __.1 m.
=-.
.7 r.._,__4,..
-4,_.---._
.-~_:
- i. S.
i g_...p. _ +_.
.4__._
_3 ' ! _ ! [.1. !,i_'.[ ;.. I -l_9.'! '-
jI.:i~ [ f
]izi.r-m_
gg
- {
- -1 Th f _. I.- i+}-"--
~ ;rr i
- g.7,,..
7
}.
. t.
.I g --.- t t*
t; i
- t..
f, i, t.
^
.. - _ p-l, [ !.. L.
__+g__..
- /
g i t
- ~ -+-
. l l
?
[
}
. -t '1"~
-.1 1.
_+;g #. '
'"t '. p ! ?
100 -
-'.'~,_2.
.ea L tr t-
- -*~ H
-t:r.;
.t
- + - ', * - - + -~. - *c*tti
.!_+-.
_-+..-..
t L,_
r_ ; t_ t.
_-.t _. !.. -
e : : -
- 1. F.
-.c.. _ !.; ;
'_;.-.t _- :-
- L. +.t +'_
I t-1
- .t *
' c' i'
-+
t c
_r;; t.;._ [E
_ r. -
+
- ;-+{_- +i,-
.. L7.
~t,_.3_
L....
r
- r. i..,.
..._ _t.
t_ g _; L._h_ f.
_ j '.._.1 -...
._ L_.
- i. L '
._ ; G.7 a_.
t-t
- tr.
rttt-t
.r 4....s.
-*'F'
- _~...
.+
g
..._2 _;il_i
+
+
TI
't-3:{.
-l'
!- birtf Mci A
^ n.!
N.@
_j._ La_j._, '_'
y_.L.*
t
+; ;
__ _.-. u.1 - 'w-.- * '.*
u
_r.. ; e
- n. 11..
r_:ru_. =t_:_ t-i ' + s +-
- c.. _. t.. t. n. + t n.
. ' '. _ ~..
x...
t*1
~, ~ ' a u
L
- See Drilling and Sampling Log in Appendix A for detailed descriptions.
Figure A-2
7.
"" ~*
g% _,. -
Earth Sciences Associates HD3 PROJECT NUMBER isse HOLE NUMBER SCALE i'0*'*adllhE SPEED 2s n t LOGGED BY D*v DATE 75 "
ELECTRIC LOG RADIOMETRIC LOG o co HOLE DEPTH (MIN) 44 ' M IMAX) 42e e n OS HOLE DEPTH (MIN) 10 0 h (MAX) m SP RES.5 ? ='d ee h TC '**
REMARr5 SP a=a iwac=*ad REK4R K5 -
sPoh nsEcus REstST viTY -
-S NATURAL -.2 POTE NTI AL RAf !NTEhs!TY -
0
~
' T -~
,.m.,..
(l 5
,w ML ci, f
ti
'l
-t 1
l
]_7._.
,g, c
=6.
Lp i._
g lI 1
l
]'
- {;
i l
---i i
I.
4 I
f r }
i' r w I
_,y__
i.
I
}_1__
e too -
l.
6 14 g
..m 2
u
+h.
[cll.-,
I
- =
im u.
I
~
i; E,ml 11! -r i
.n i@
m-4 Ja -
a n-J.su-
.i ear.m.m.h m-
_a
- AhA, 4,gib
,, un.4
,%p 4e 5*.ne._
=L-AA c
+MJ me d h--+
g--pdb.
M-p
,e--
r l
I l*
i 1
I I
Ih, I
t 1
5 E
he. W MAVVrags4MFJtrMWMmkhvki I
i,
i Y,, AArevM-.
m 1
Y
' I i
i a
a i
a g
t 6 '
I E
a f
1 Eg 4
i t 3
i I 3 gi a
lui3 r
x.
,1
!d g
3 i
11,i
,al i.
Illi r
3 L
I E
I I
I i
h 4
i I
?
-- }
- ci hh ed.
H%
Q i
I I
- g B
I I
i l
l r
1 O
o N
M 8
a4 uA r
0 F
S s
SG o
e I N N
M i
AA os1 S
6 t
Y I tc8 D
e8 a
L c
N E rP o
AR 08 s
YR
/@.
M
/
s a TE4 5l 2
Ani I
/
fo ILTD r
7 E
sh B
R A M W
a
. e d
e ta e C.
ton e
l SZa Do cto M
nA EE 2
~
o DI -
FR 0,
~
c S
8
~
S DO e
/
N Y M
0l 2
h AL R 72
/
t 7
A 2
J r
R a
TM
/~8 E
EM G U yb y
n ia S
b d
d e r
e v k o c r 0
e p 8
d
~
/
e h p 5l s
I cA s
!I 1
e l
M
/
r
+
7 p
mo c
E T
h A
i t
w n
D re 0,
te u
8 m
/0l o
1 z
/
ip u
e 7
n de h
s o
l
!I u
F n
0 8/l 5
!7 m
v 08 m_
/l 1
/7 m
2 Ux D
R U.
m m_
4 D
5 R
m_
0 0
0 0
0 2
8 0
1 tE a
y
-r a
li1
DATE 7/5/80 7/10/80 7/15/80 7/20/80 7/25/80 0
o 50 -
100 -
I Flushed piezometer with compressed air 150 -
e 1
/
200 -
I I
i t,
!I u
250 -
300 -
1 350 -
I 400 -
I Earth Sciences Associates Paw Mto. Cahtorma l
e l
GETR LANDSLIDE STABILITY ANALYSIS I
SUMMARY
OF PIEZOMETER READINGS R D-3 l
~
Checked by.N & Date $/* /db Project No. Figure No.
Approved by Nd* AbM_ Date8 e 8#
1886 A-5
/
EARTH SCIEN CES ASSOCl ATES DRILLING AND SAMPLING LOG PCOJECT I68/s MM-b~w,oe L-..e ae~dD ATE DRILLED Ja 4
, MM HOLE NO.
' O-I
(
-o Gr')UND SURFACE ELEV. "" ~ M
- ba'*)'
LO C ATI O N 'lo<' & 7a ' a)<.d DRILLING CONTR ACTO R97'J' c_ Op. t t. o, LOGGED BY @
DEPTH TO GROUND WATER NA r
TYPE OF RIG'b om l^OCHOLE DIAMETER 3 " FS H AMMER WEIGHT AND FALL NA f
SURFACE CONDITIONS Ta o G t' / W e > J o,
. M WEATHER Wa e * (e e ea d
c' ? ? ;/
f DEPTH CLASS.
F I E'L D DESCRIPTION SAMPLE MODE REMARKS l
o.
- o m.
4......
- c...
4....: w. 4....: st-1.
P o~ sme / ;",i
,-c
(
. ', )f
."a': a>-
?
a a wa ( io v,s.
1/4); ab9,/*4 o, < a of-.
I.0 P.. 41 v 6.nese 2
r...y,,.-........f;..,..,,,..,
M,-
o'- 2 s '
.:yr - cu
^~'....n.
,04. *.--
~>,~#
.. n. 2.
P
- v. ~ o ~~, et
. <.......... ~,
i+ ;,;
-.a....:....,....,
,,.......a_;.
pj,,, '
f E
( w.<o :. e,a.,-,.,,.
a.,,...o...
f
- . - " o s o i.
L
. :. n a c..,, - n,..,. s..,, s. n ;,..>. i.-c p
==u v...>,
s..e c
. f go.3, s.....
1,
.. o.......... -. ?e-i
-/: e
- uw.,.,
- ga}
,, j 4,......<,..
,u..,,_
[
S::.,-
~.,...:...,,,,...,,,o,..,,,....
c.
- g..,, a m o.ma cL p
>>.,,,,....y...,,-..,.,-
.g.,
.,,,,. 3. y
.c,.........
,,/, 3 y/
r-
,,,g,,
,,m
,.....,,,..,,.,v.,.
r
,,,,. w.,
c..,
L
,3 2
e
,.-...,e.u-..<...,:
1,,,,,,..,,,,;.
u/,, ~:
c"
^'
- c " **'
1z
,, ~ ~
c w +in, v 1,,1..
~.
...o-n.,
- A,,
yL L**4t/
- 5. e e 9,,
- co-4 7
c r..., m.n --.u.
p,,,,,,
,,,,,, e a y -
p
,.....i,.,ov.i..,.., j m.
_N
...,.. s....,,.
g.
" "+-'6o
..qA
..-?.
w,
~
4, q,,..
p,.,,
p c,,, ~ o no u
- c _
- a,e-.:
c.
o,..
g',_::
,,,,... m..
- <',4 3 -"; m,,, 4., n. s..,,,,,,, ::
- M-
- ~,-
o o.,.., m...,,.
og
-Q.
s-...,....1, ec.u 9
.- < < r, ~..,,. a c.
..e a ' a,.. e.
.'p,i
$***.s t,s sr
-/..
r,, a '. ~.. s
[
c,,,,, i s.
<, e, a..
n.
p c. i,,, o, ~....:
.,y 20
.. a u. m..,,,. < - ~ ~....
m. :,.
P c.
- r. ~,
,s.. u.
, /',,l
' * - ' ^*
e.~ ~ ; ::
g,,
- , _ q (y, s 7 z.-
m"/:.9
.. n o n...,,
..,g
(-
- /,,1 "a'~"*.,
r a.,,.
2.~J.',*,J. '.~. r ;. -
.u
."J
- ve,- a
- < /,..
. ~ w" a-e u na :.w
- 1....
' - " ~.
-1+.o-
{ ;,w. -
.4
,..,.,...,..,il,,,,,,",'C::,3, :
.u-~<.c,a.i.
5.' >*sh+
.m-9 2,P-7.... %. 3,,,,., u
.,,u,
-,...s..,,, f,, ) -
.,m...,
, y.
4.
,,...<~s, 2,,.,,.,,,,,
-... o
. W. ;
,a.,
s,..,,
- 7. 3 __g
- ..,a u m e.,...m
.,,,, m _
,.g e --;_
4l.,
,..,r,
,' 3;;. :'n ~'**".7.nr m y y s L
. al. '.
. ' ' 4 s =. 3 a n L.
-t,.-,
.:..... u.
jjj
i,4...
" ~'
n + - no.o '
[
a a = so. o,
- m;' n:ux'
.: p. u
.m. m -,..
r,--
t,
~
so. m m, a <.
- r.,. r. -
[
mm a
r, s. s e:.
....63, "E
D
[
e jhe
.m em e4 g
h
.D 33 Jo
. SHEET
/
'O F.
l q
E ARTH SCIEN CES ASSOCl ATES DRILLING AND SAMPLING LOG P R O J E C T lS% 6/ 7 A - /.a.m >i.or 7",u g. <. o r.o d D ATE DRILLED Is a' E DW HOLE NO. R D - 2.
l LOC ATIO N A/V 9' 0 F o'
de' 7 4 "I~. r > <-
GROUND SURFACE ELEV. ^"' b M ' IT*
DRILLING CONTR ACTO R 7 le R h t'o$ LOGGED BY CTP DEPTH TO GROUND WATER d I
I TYPE OF RIG Eeu a '.1%O HOLE DIAMETER fI*" H AMMER WEIGHT AND FALL NA l
SURFACE CONDITIONS b < < t c '/
t' a
/ G S r/= * /' WEATHER Grna w'n < s 4-v o /
i 1
DEPTH CLASS.
FI E LD DESCRIPTION SAMPLE MODE REMARKS
- / l t' L Q ' -
2.* +s s / lss /
O Se j fl g.
hO QU A*TL O r1 (D / 4/4) 70 li e,e r c 6 i s t.
h at
' "' '" 5 9 / ## # #
ff
( 41 4/;, )j f,e n To $r o re, iv &rt f rt&>r
$ MT o
.T 4
ce s
. ec :
~/
$ (,,,,
2.*i fisl(ss\\t'l $na % sac-j f:s t ).?"
L * *
- 4 (*)
- I' S'**'.
~
9 * ' > d ', ~/ 'u ~ ' - ~ ' e
/
( 4 y c,j ); ~ n. g i.s - e.o 7. >ra.
f.nes; c,o. u,% t.e.t saao;'n.*mt,ssn. q'
' ' ' ' E s - T * ** o ** M ' 0
-Q,J.
t o;'r 'sr. i
(,
. c.+ -, e e. a c, 9. a,,i
-il.1 66T '/ $^ool GAAvtt, g,
p o c - o s '1. s.,,- c.. r,
...,. _'. rf....,:-
) S, l
8--;.*
>> m,
- 4. u
, of qp i e y s..>.v. e 4 -
6 l
, a - o *,1
- v. feat s a a C.
90 - $c],
a l
.~. !
(#^ "
- 8 D#^#*L5'"S'
/0 ~
nag it a o. t o n a w o - *3 a * " a ' )
y
~
C.n ~' P. s c 4 3 C-o n < < e,
c:a s.s i or G s a 1, CateT, 4 ' / ~~ t
- t, ;
q,.y 10 o ' - 12. $ '
'~
) 2. _,,,*]
h21:.: as n a cas e s a t. $ t U t a-
'l o A pa t a, a g
,, w..,
$ ti.
L'* 15 at sj fa.a o s t,
.,c i s 4 at e o.
T C.
- 1. 2. '
f 9 ' o i RD fp 5 ' ' T 'l s e a O : O.,,ej I
$6-U"*"(6Y 64),p.,, c.,,, (,, y.ff ::
- C 4a.ti.s f c.., e..,.c,..a..
i
, c.,
3,,, g,i, o. gy u N '~~ ~,,
PS -.
n,. 3..
,3. 3,
l
- 4 o' - 413 ' - c,, 4.p ia /
..s / fa ao ; --
w i.i.. ~ <..w. > ;
,,,,.s...:
,As :: ni.
7...
l
~,.
~
^ *
- F ~" s: za1. eama,,,,ao; i3 -
a l.
c-,
a., m u.,,,,,,,l N_
,'. 9
'O'la**to saa Q; eo*),;,ar. y a9;
'387 F*Nf gun va s
.y. 4 g q "
'= ' j
- a. -
70 S " <> - 84 c so c o c i a 3 r., g 20 ~
*s G T l, coj a e j,s e c s..s, f u. m L L; *<
- f. l. S,
- 9'8
. 2. --;8.
'* C 6 "8 d13 Q.
o'9 o - Ta c 4,. 4.. q cg., e,, --
- e.s I
24 UO ~ tes i / $a 4 0 w/ aJ o t,,,,*.:
PS b7 P d'8 da a d
- 6L s s M*a<eL. o c. c 4.s y
OC 1 v a, a g y,g, g g g,,3,
MO U,. 6 l
~ - * ~"" #
5,~~
% Recaeea f zq,ns.
doce
.)
os a.a q s c 3,
, ',, g 1 M ' %daors
.uro c 3.,
[
- 3.,,
~~re..
.i.,
- ' Ce*Coaav( w o n 6 t 3,'
2.*)
c 4 s% T r t 32.,
30 -~t C anset s ~ 2 a *),
y bod i
gg n--,.
wo l
'.), s.
W * * * ' * ~ 60 *1,, d a v,., e p " :
Q.4 b
O 1D 3+.
N o/sa :
C-r 7,1 e a e.: S e c 4 4.
- .r Q ^ 0 t ') 'T o ]c uw.s d ca y
~
>0-wo
[6y7/g)To Lier #r Os.,c
't D A l
""~
N :,,,,,,,
M o<e<y,,,;
- ),,
g y (37 gj,).
No I
e
- A00 rka o To go,' O.
'j 33 f,
.:,9
- 1
. SHEET /
'O F. b lI l
bu,s ei.o PROJECT I896 @ M
'"' ' ' '~^c""> o AT E ORMED 4, *. 2, sW HOLE NO.
R O - 2.
DEPTH CLASS.
FIELD DESCRI P T I O N SAMPLE MODE REM A R K $
[
,,,' #p qP
/ f.o ' - 130%da d s a / i,6, */ 6*4D;,.
4o
'9, 0 ""
g, *t)
((
(1. 6 fL
- ,.4,1 n ' - + 3 ' 5,,,, 3 f
@( a d i-sto*44 ' a3 5
- l a;tA ~
a n o -doe w/;;;
-: i,' a C;,<,. 4 6 L e
.. ~ :' ^- 3 o'7s
<a 73
'h L & *
'i SL s
.~
or.:,,,
r.u e,,,,. e u c 44
-~
To
,y a s e or. a g ave s. e y,,,,,., 4,,,.J.a.
/
.,d
/t,,3 y, c,,
- ' c,,,.
P, y c,ue,b.t.c e 8.
- PO - 2.
N m.
.s/g,9..
t +. o * - 4.2 S
- ,s e v u> ~
-,0 Ro ;
u
~
bE 43,o '. g o'
.s, e H n + 'l : g&,- -
pg ). w p,ua u. m.as u cu vi
<*)'* '/ ( 6 'l
- E 0'
'"f_
n,,,
s-s,. u. y v, a u s;,..-
lb/;,3 -1
- - f',e<~ Sl',O' b
, sao y,
72s6,aTa Jtf,et,a r,.t,.****sA, a
s o '), ar Less s s,as s.a O,
i pO
--/
naj ea st ceo, (a e a.a _ s
~.
~
- te se u4.<3
,.,,,, e,,,
- s. s
'.; P3 - 4 20 ;.
...t
..a......-
_ c,, y p, y.,
3, e e e i,.
tv. r 5 a "
- c..
,,,.... m...a
/
o. ~., r,4,
.,/
pne.
S" > 4
, ( ma, *.-..,,.
go
,,n in n A,
- ,,.'.,',',s.
'.,,,,,._ f '.
6'..o, - tal.o' se..
~
,,l c g g.
{
~a v t *. ~ a er d'
,)s so. r :
i P;
ct L* 0 o - e + -/ (
I eI. ); ;,2'),
2:.
' [-
L. s n-,.r-6 s; $,,,,,,,,,,,,m.,,
53 --
b '7
.I
/,~
.a o ;
.o d = o;,$ o.s r.
eo,l.,
,,s.uo; c,
p,,,,, c g,.
2 3. >-
i'l la t.0 - 9 4.o ' g,we y nuway cyg,g;-"
- / a..
so..~..,
c t, 4 :- --
sc, it. a... e.. -.a.:
, p /4 3 3 $ T, '.
}',; g, ;,, '
n no
/:
=c.
,v o,...,,.
f c,+
~
M c.
csao; sac.
r, u.w
.s n -
c w
a<
u a n.f. c n j c.s c,. r
- g; o.n',.,.
p3 ;;
- _ 1.,
5 s
e,/7. 3 :: F r-a,, c o / 3aa o 5,: cr.
,, a o, f. - 5 M;, r -
-~
} t* t c F. *, o >,
--')
? L
. ~u t l'., A v. - a ~ h <-
c c'
$ 3 "",
~.\\
~.
~
'.:.vitj gi ; ;,. + t
'***=,+;
I ll
..o
-q.
,,,,,n.
~
- J sc
[
{ N '
p3.. m ;,, ae c. % e c., t.,
n:/,
i.
,/
-,. ma - N. 5
.p, ;_,3
.~-
'L
.r,.
.og 5,.ao / e d a 5-t p.c - -
e
'it - M :
4
'i.
r, si.n 1, a o 467 3
la., p,, ss. r, c y / s 67 v.a+s,.
$(,
sco,
u :.:/l.. -
M 3't d
- c. 5,. r e at /, c ), 5A M C f
}[
P3 ^*
-a n,a c,un u;e.aa;., '. v n ~~ -
^ ^ *,
"e
- "/
'R o,. 3 r.
- .s o ~."~ v v u n '
- '"n '
- 9. o ' 5, t y./ 3.... ml $.a o :
3.,..,.
3.
.Is -
- .. e s ; y y,z m); 53 7, y-h n r'. c Ga a. sea sc u,a
?,.,
~
s,,,,,,. r 6"o. 30 0, c u s o,c.,. n,,,n.,,,,,.
or u.:
~,/ < i s v
,~a
~.3, 3 a..m r.
+.
J, or o,..
>,,,.,m,,,c--
f..
m.,
nue+,,t>,
H.s e,t rerr e te n,.., ::
3 z..
o.
1.
..,,... < a
- n., a.,.
- 3 o ',, e r..o ' $.a oy uaanas / Sid
- l 4
..g.
,,o a s.. +
I-snis,- v 3t.....rj g_
sa 7. a o -
,w, - a(,o y a +/.f.
- * * $ * ' ' V 8. a ' $,
e-(*r,.,, a g._
d4~.: L 3-S 93 -:
" o.
- 3.....
j,
not M/r 5 :: % (,
.o..-
-a - s c. s v,.s ~. m,
.s Ao
- 5 a. e.as v.
i s ;,
- r. a.c o c
$*=0; Ad 6 -s a a.
,u a -
g.t f
r.
e.-~=
o
\\
.dJd c.. c ; w,
...<.a.^+..
60.
S.If$
)
w vr.',..
- n
. s s. J *,, 6,
/2" O r * *.
Nd'* C..
. SHEET OF
~
Jia ", ?a " .
L POOJECT- @l' C'N'be**""5a'-
10 ATE ORILLED d"L'
' * /W HOLE NO.
D ~'-
[
OEPTH CLASS.
FIELD DE SC RI P T I O N SAMPLE MODE REM A R K S
(
's0
. '.l }
l '. L-3 2> o' for.,c' 9 wo/ w aat.c/:.
- .r P.rc.i r e =,:,: n.
- e a
e-e
,m..)
.g m
, a o..,. v., m
.r c
no r
pa __
av u a./
[
m.c
. P t3 - S
?. s -. s a a. u
..e I,/. '
- o. o * -.
3-a
..o.
%: enar u, m f.'.
a
,4 3D.
.L
.o
- 'c P3 t - r a 4au-
' -~
0
. I 3 c)
'*/~..
=~=,6
.n <-
~
v
.: a.
3
.. co - p ca,c. c,c,c dl
. f-3. r o s - saa o
. ".,, l i00
. c.,
..jj
. w,
.I 1 o 2.
--j
.ll
- l.
,0
.,f.,,i
. ;os ' i s - o c J. - + s c.-
I 4
to; -:'. $
QF
'06 o '- 3 :o o 'Svo/ Wm.
a
--T!"of903 o
/03-.,*
Sawov f 4,t.,eg,f L a y ( 4 4,,
w/ 39,q
$*L
/c L a./ s,,,o.s..
o s c a,a.,g f u %. w. r%
.. jod, Low o claT*Ecc
.-... O 4*ao had
- e w i
Ito.. 9' sa,**"
w,,,,, L w s
- s e,,+ p
)
itxt..,
-.; y c.> o at s r_
o~~
,,. a
.o,a
~ ~ ",
,,m
- ,
- e a
- a,,.,e,,,,.,.
f,,
~~~
uaa,,'
",^$
='
- j ra rcr, ; y, -.tc.
j-.. '! s
- I. - '. b
?
,,S,' S :. i t '. 0, - 8 8 3. 6, N L ad" e 6 3,,,,"_ >n. ' l pa (
3
e,t L.(
~
~
- /
,,,,,u, t r +-
, * *, m,,,
f4,,,,,
- 8 *
- F a t /
go.
S * *4 9.
'I " "
- d
. p.
p,9 9
(,a y. +,>,()10 ya s/,):
c' ad -
,^, 6 m c a "
5,,,,-
...a
.. )
Mon-atasv.- 5, 6,./.we <..
4o,,, 3 4 o n
-,,,,,s a e L t. :,,,, o, -
./
r
' a*
s m aa o e
3.,, *,' a,,,,
- u 6, ':, --
e a no s.,, e
..9
^ s ' '. >* wr aa s ~,apnee,,,, _.
D3..
" ' ' ': **'- O*C : E 6.
~
f.,.,.,
-: j,*'
- s v a <.. c., < -, <t +,,t, > o.,,,,,, c, m -,,'y_',-
i 3/
i 9f *J a i J A,9 r). Wain 6.,
) 4. S t *,4
'*O,,.
ag,; ', j 7 3 at Ac = t 7 n.s e =..
Tygf, g, - 7.,, a a.,.
.d. H.
120.O '
?* -ee.~.
'J " " ' c ' '. T
' " '
- Co -
Ta.u s a i: :.-
..-taw s
.rr
. ^g/'>uac tows M.
oc s ea.
! s,.., gs r.
i ;.. '
,L L- /0 5/ s o Tu s
.4 u 3 9 psc s
.w
,12,~
5
- to t 3s ' l 6> '
w>, a s.
' M ~'-
pa rv e r..- r - a. :,
f. 3 ~..
wn
~
- m.. ;,
j,, o - -
T
- . _w
=.u u.u a.1
,7,*.' __ m,_ u.7 -. >
~
- 1 --= z.-m _,
- e, p
/24 --
sq 2.u 19 L
.. SHEET 2 OF
~
z
E ARTH SCIEN CES ASSOCl ATES DRILLING AND SAMPLING LOG P R O J E C T IM bf * !a d* " I"'"'" ^'""> D A T E D RI L L E D b f f -
M 3 ')
HOLE NO.
D~
ELEV.~ @ [O##*)
(
LO C ATI O N / 6 0 ' Fro.4 4ett Atoac., Rio E GROUND SURFACE DRILLING CONTR ACTOR R "
- 8 D""
LOGGED BY G DEPTH TO GROUN') WATER M
f TYPE OF RIG a a.o r l'M HOLE DlAMETER 4 '/" "
H AMMER WElGHT AND FALL
'4')'b' 30
(/d '[']
SURFACE CONDITIONS M PA ') d G # a n/ 5 t o "3 5 E ' E WEATHER N# 4
" add DEPTH CLASS.
FI E'L D DESCRIPTION SAMPLE MODE REM A R K S O
~/
J,,
e,c, o - z t. c ' c.a a s e nr y cr wit 1 s m a r> '
b r>
(+ac ** ~~ "'*'- **"
s
~
0=- Va u..s. 3 a on.ogt(,oy4 <./, );
m.,
1a.nea-
,,,v.
,,,,,,,,,,, 3y
~.'y
o 7e - 40 'I. s.s s s t s..; s or a s. ~~
~7 T' ' y 7 a s s, 5o 7, F.o a sa a o ;
- 3. w, 4,,
j,,,,, y,.
,o-
/(
' o - t o ?.
c, e, e 6,,
,,, o s, 3,. a, es
't
-/.,
.i s, s,,>
+.d-s.~.,
o<><t c...,,
.,..o.
- 3.,
s n.
-o
..//
tea. j a n s n g,.
srs.v s.' e a r J -
F e n e9 - O m n p '- you.
i of 6 j s.';'
j'c"o*...' ".* a, s, a t v e a.
~
' */' s
- /S / e g
r, o i
8-
_".j. #,
ea.n i. y u - n, f,,.. m,,,,,,-
c.n. m
'?
s
- r. o. (
- L a.* - s * ~
- s t e.
'/, 3-
- /.t 4 e =
a - - m.
': /.,/.
- / $ a a o y 6 r. a.,.
/3 - :
2 J/. 4 D/g o o/. 5 m
Io
- ./^..
,7
.j/
- v. o.4 a.
c a. s...,
.4?
t z.
- y..
f.,
~
l+
-..V. -
r-3.,
e
- a a - n.m 2 4.,,.,...,.
lG y a j,,.,_
Va.
- sr* s s u.
~
e 9 /. e : s/.,
I '/. o Rg l
m
_,.y.
c -,- - r a c 4
2o.:
g,.
- .- c 4 e n a
- u
-- -.,,, g_
n
- zno-2: >> h4 s-o.
g.
/
/
C(,
.').s-mos.
s e, s a
- ',e,
ti :
t/. e es/, : */,'.r
- 21. 0 - I s.o; C6a9 s f $n T Go h s '4_
4
../
'n n..,
c,*a a (e v,y, n );,00 7, o.. c - q 2...,. v....,. mr y
- s. o u >, s.
....,. o a. $ ; s.,,
F9 - I
,3
.:so.22.e j,-,. g.
~
3 4,u 6
- 9. a r.
.,/,,
.+.o
- c,6 coac,s, T.>
c's o. 1.... o no - u (,o y,. +/.) _; 3 -5
,.j
_ p,;. : 3,,,-
,,s
-r-3 5, -, c,,, %
(?
% :e/ e 4 3/.o ^ >/ +
3*
~~
. ',,1 -
- 19. o'
- n. o ':3 4v >.sf s e i o. s.4 T*
"*9
'3'~~
Gu1 (32 a./ r./.), - 40 7, w s~.as.,,"
[
31 O*Ti a..c.
o.s.e.ac/; 307. s. s. a o
. ~. ',
- o, s.
- 4.. o, o e,
aI -
ce a o o t>
- P S*uo/
( ' ' * "'- )
P '3 y"'
- y,. g, -
-.,y.
c,,
3.,
't y eseane s cs*t**C.~
~ aaa a 4
~
' r' '
M L~
- -l26[
2,f.33,e'no,e c:
2-
~.
f P
c4.
%. o
- 4 6 0, G a 1 < -/
$'6?.
3 13 o
54
$.'3 0 d-t+a v,6 s o e,,4 e a.. a e 4. f s r*o o. / >$ -..~.IO~E
~~
ht, 3=*- * (so'ra e/.);.co ?. t, -
A...
D p
[
s t * /. S ' O /. O
(
.u
.,M i i t av.r+20.a...
3...,a.n <f
,3HEET /
'O F. O
%t v. ~. a.> ; a a n <* ; enssarca-..
L N' M
- b d'"o n < 7,ived O AT E DRILLED M u) e ' ' - t
- 4 ")
HOLE NO.
IOO PROJECT DEPTH CLASS.
FIELD DESCRIPTION SAMPLE MODE REMARKS 40
,-l,l H L. ") f,. O '- t $. O '
(6 A '/ f / *> ' ' T~ I bO [-
cc (co t )
4L
- "J t.
~.:
g C a m o e *> 4 A.J C. G t'-
y
-1/
y
. L.
)
44j. o - *tL6 C - 7" btM
. /
4 no,, o s e. 4 a s* e / s es T : tr os,<th.p(3 3
[13
, (,
.7 [j G)a. f (s y F/s ) J 7o - S o */, Pa s oo*'
g "a,
=
.. 6 * *
- L a-
-kl 25--
se.# - e.
3,. 6 s.s v r..e r 3 ; c,
4..
v.,,,,, o. o....., r j Hato ;
,4... r,
63.5
.g
.'"l
~ 9.o s y c L r P. e.-s<
L/
96-+
P3..n....
\\
- 1,A
~~
21
-"~
> ~TI l
_,,./,
t'.:
n u - u. o c.... -,
l c - 2., *.-
Ao
~ (,
9.e a o s.,, o
.: 9 a 6 e e. w/ # +o f Ja e'a '
't-
/
y so ol. $ % A * *
- 1" M' ' '.
,oo.
y g-
'lj
~ 6o o - Sf. $,
g e t a 9 e.1 3 n. r. rbo :,
5~
' lit s * * 's A O u
- a (no fc. s/+
- r l,f to - Ptast.c.tf 7a a n.o.,)y;
~,$,y --
rg.
- l,1 09o ; c
.t -
- o.,,..m. f, c. 6 e.,,,, y,.
eA
.a Hano; l'assr.
--l
,,.j."
4,, o - cs. 5 peo. e c a 6 *
- Gc --
c-3,
,o
- g. o
..- saase<
s/ soo*da-en j
. 3 -roa dan o r., ca.,e
.. '(,(
9_
n o, ! c. 4,...c., e to..u 9 6.
ta r.a e s - r s a.
--J '
- O k
17
".7
..e
/
2,-. '.T\\V
~~
7 l w/l u :
-\\
'I '. :-
v a s ;o,.,c.-
+a,.* s t Lua te^ t senni s.s T : L,<,r ? L' ' T
--., s se
- 'M o 7 $. 5 D e + <s C 't ' -
.i 4
~""*
C' ' ' '
G d e' / ( $ y + /:); WL 4,.s g3
- *a/. 5 i
- ".ljl A**t,40 a..
- o ; n....~ e.. o. s.,.,, j n:
y'
-~
<o..,
3, _
'1 hon..
~ r, ~,.,_ _
-l/
'a 's.: s /. )
j
,,,,,,,,,y
=
9.~ 1 Hatc<.
t * ~ r < i,, j
~
C
-g'
<aa a...
7 1
r*> o - y e s.,, 4,.,y ' , a r v.,,. ' e
.: Ar e: s o, 9 5. ' o s.. T FJ A
- c. a w s /.
t..,,,,
t,
~
.;C
>H
.. u j i. j e,o su dt.
/,,,
,,og p
- c.s, r.
0 %" 6's.o -66 5 ?,aat (sti k e.a s., s 9 2 a <1 rv, C. a v r,.a.a t t ra t.
F
)',
&, e, 3 7. s
$i c F1 S MO.
~
z rd sEn~.
Go.S
'e
.. SHEET OF 6
..-a,..,,
-o.,
ur au,.. au m; 'a ", < a,
- a ?. r,~c ::
g-)
~ ~ o,,s a e.>. ~
.< r s as e o; t),,,p; P
l l
L PROJECT
/005 N W
'#U 'tv
[
/9T DATE DRILLED NM 7 /> I ") D HOLE NO. b~3 DEPTH CLASS.
f'I E L D DESCRIPTION SAMPLE MODE REMARKS
((
ss e
su - ~ ~ i n - ~.~
" = u- ~ ~ ~
..p Q8 90 h,,, t., A.as t. c.
e. u v / e.,*t 5,.
5328 C ae.af. 4ia & * *J 9
..l.
~
[
s o-4*9 des F,askcaness s~~o; u. n.7, F. a 4 = rM o t, e * < e L,
9*,
s i
[
M
.'J ' '
i
's
~~
y 90
-s' s C *
- o t
- Lo s t M < l He ts a t s s, e c i
m,s:
.i h8EI[ SAseOY 4,*m,pg,'
[
~
- s g
4g
- w
.~/
y Q44 4 g.*
E 1 m, 7
4 e,,4 g ?
e.
83 #. */ J, e.J # $j
/oo r,
- ' o % u.> o ; %. w), s. e s.,
[
mo 9-n u o,.,,.., 3.., s,,,
ff
""t.'+e-w a
,.: j a,j. _
a*r..
10,. - / ';
4.***- i af
~N g(,,,S
,p
[
v:. ti, -
~~
~ f
/04 -
s.
[
- /
A eo o t oF f
- a o, +. a ) g e. o (
i
"--- ' 5' O
, ~>
.. i.f
<. A > u - L u., t s p, u t, c,3 e o.,
... /.
- b. O r.i'
, a c.,.
I.33
...s
/ '.2 ~-).
ye a. n c +.n s e n e m, n,. uu a.,..
.. p j,,
.. s c,a n.as t.
- t. s.. a. A ce. g., os Q,q ",
I ceu
,c
.,.t<4, e te.
i o,t.
(f a A C A *> 3 w ci E c
,V li6 -
9,,,,,, 3. y j,, g.j yq. g,.. g. :;
p.,..w aat.W u 6
-,g; n.
.., v ri a. a e t e n.
u o,,4
]
go s
r40,1 is 6. o - i n k. n
- wt (o f ew ) t o 0.su ou.- 4 gf' ll@
.- p t, o.., o n., -, 0 / v. ) # u n...t ::
ut..ww ret s. A I**"*
( i s t e 6/f, ) i "as.4
.... ~
paa. f o Se eror e6
~~
- ~#
NO NI'### C llQ -
nh a - A e. s.* e.>, L e t o e s o e,/
, a n.'. <,
f P't o f a.a o /3tt
,a no._ c ;'
./!
g-t a 18 8 b -/ wf a ' a f t i s
(,4,,n.6I t.fccs
.}
%,,,,,.s
<"3 7,, c a t c..>. c <t : L
/J ;
"7i, g g,,,
(6**'S,r.**.',i,eet
[4") -- p_$
,i gne w f.
oc %e e 81 1 Il h i v.,,..
- u. 4 5,. ;.
4
-*40 1l k
-,- y re. s t.
/1 AD
"'o
/,f
.e=8 6
_ 7 12I - lh *>
C6* /t / s. t -r 8,,1 /cg.,.
t 0*.*d f,
0 * * * *4 (t o 9 A ';/4 ) ; 40 /, res o.
.L
...y
/2(.
d G..c. n. i,..,
.q, f 3.t,,
.e s,
3,,, 5,.,
I h
- s' c..!
twess, s. oo,
.s m, s. s.., e
)
f29
./,
S * * *> ; v was 2, c3 a,
g,,,,,
gm,
.-j' k
B
- m. -
g
/
/.1.,
/ '
~""
y{(
\\
in a.,,,.
.n.s
.. \\}'
m
- '/
nc. c n.
ung a ~n SHEET 3 OF D l
PROJECT MOS M M !'"O
- 0'./W D ATE DRILLED 1w 2 7 /930 HOLE NO.
RD-3 DEPTH CLASS.
Fl LD DESCRIPTlON Sas4PLE MODE REM A R K S
-g-
/3c nL-sti - su r c6ME / e, c r ; (co n. 4 )h RD ::
cc fyy
-y,,y cot = n. c d a a c, e,. r o c.6, r, M'
(% A U M
- s "..,c g e.) (*> q gj ) 4t* i
'-~g n
l e.a. n.
,9, j In $ - o?G $
s.u,1 saa n.j sa..sc._L e q I
,j As a....
- w
-.u-
..m, oa w. - s ar p. -,,.. a s > e.n,, n c.
e _>,
Ii1
-L)
~
- p.
1++ -../
gaa e s v 34en, com c.it A z.-
".g
- 7.,., a 4 -
sNA66 3 7 4 4 4d A. *> ge 14 Ar 4-o/..c.
y,. o e4,,, s r --
I
- j /
,u>s-r..,
a, r.
1+3 L./.
A3' o
k
~~
.., /
I6a --j,
}.
..,,y 16L m/
- 7
~"-
.p.
i
./
l
/$+
-L I
..s,.
i v
na.=i, z-c,Isi, s t.
..j.
w
- v..
Its :'p
~
_F 15 0
../.,
It, :..'.- ;
..)
l l6 t _
f
- /
/6(,
I
"/j
-- 3',4 2
- 0 3 "-
cAra p 6 C : g, sf c. a a n a wf s e c o ta t o. --
s,,"
10*6 7-b >* W a l ( g r3 */,) ; e,9,,2,,e.~
V*--
(" " M - "' *; 6,
-[
00,4. T ite t ga a. 46, r> S a ca o~
KQ ".
S#'"
' J 'A b[E">$>
1
/ Q' )
w 9 u e; ra.- na t ; a,.s.s.;
- .p
, - - ~... ~. y,.,
...p.
g 3 >.
a"p.
s
- /
aa,oc : av t
4,.
fa.
I
--T /,-
174 :M I
..../.
\\
.., f
/ f *'..
~
l,'. , - 101
-=
,,./ ;,, -
=
i i
.-//
rA L-
- e - ( ' ~!, ;,
-./
n., ~,, g,,, *
~:
I
/93 -y',,(
ct
' o.'. n. c,,
-f.. ~ r.,
-- ( g,...,,, a a,.-,
1 (l/j
- um. o
\\
- - s - 1 ( g a y, ) -
l 73 0
- q I.
~.-
- % ~-
!s t - 2, 3 c,, a., e e r./ s e(1,
- ^' I S 3 ^'
L'l i
~ So 9. c, a. e t -
A M
i
!a.:
or-ea ~,s e>
g e
'j.r
- 4 noo s e.
t e.s.
.. Ie
" SHEET OF PO I
i
PROJECT I O'O > b L D ATE DRILLED J
30 3J HOLE NO.
O-DEPTH CLASS.
FIELD DE SCRI P T I O N SAMPLE MODE REMARKS 10f Mt d / St. O - 2 t:*. o
- 6,r*<<1t /
s.1.
8O.".
." f (t.. s )
- hv r u.a 5 sT. r 3 IN ~~
J h. 6'- 191 '
e4a os s vo,
. oa 4
,a,49. Id s d - '47 cer f.vc n t fe"#68-fdano-/s.cr. r4 e o,g,,,,,':
3^***S' -E Ha'tC-M t-
.~.-
00 : 160
?.' J ' s s' 'I Ido
.L he
- y ( s, a gj,) _,.
3,.7, p,,,,,,
f'e s s 3 s c e. t 40 e~c t
- 4.,, 'l "*s,
< 1 s *),
- s. o. - t
.l I$"
- ~' o,
- v. sh o <. D* /' <*'<"**~~
~-'
~ ~ Icno - c dos,,t eurJ
,l
- .a o to,,, c,.. c.-
9
" " ^ -
I m,7
.- i.
a n. -.,' *Ib / A % ).
I
' 4 i3 i
t 9 t, McML a,c 4 LAe c a c a s es,3-
.e;
\\
r.3 --.
i
-,i j
I i
-au
,e 2,.
l I
.s,,
., i L
.L3
..,, g I
.ou
-.. p e
,i
~ t o. ' s r a. a y,t c
a,1,. a 4
- ....a gg 4 - 10. => cm, $ 5 o :..am3 ;r,is.,,%..,.-*
-" 6 Moot 4,.A.*. 4.
a e F) A. 6 6, a' y a..a s, a.,
.,z a c s.
- o..a n.,.
s,t ) )
r> r
,,,o, m,-. a,.. < -
- os--,;e, o c.c..... g m o'.y.
8<,a*.,>a r
- > v. a. c o.
2.a 7
Do' I
- 1 ;..1
,L
\\/
-:~l?j cc Cas:
- o n,. a.2 t+1w ev n:n c
.i+
r1 u
. i t, --.. g,.
}
....f. e
. l.' 9
.-2 3 is,. r a r c)anse-u zi3.
7, i
.j
@M u 3 0 - 38 $
sea /. t f c,. m..,, e t
.i
- l 'i.
' 3 o ?. ' n e o. a. c, o.. s v,, y,, o / --
I
-=)lf
.a
.- i
.' S t s ; ~ t $ 1,,<.., e
- 3. a o. ~e-
- 22.o,
a s
is
-3. so f* * *
- L-C o e'J s e s t.** as ok LA L egfrj c.,r, a m
.., u o
/.
-A c
a.*, cr>
c,.f-.c 3
w, a.), s 60 - on. ut. u a 2:t -
- ',l n.. a.
caisr.v 2-rs,
. to o c ),.,, c c.-
e a.i. '
- co u v. a vr3
.,4
..f.
.i
_r,., -
. /
..jl
.3
. lp I
. c.
u
-,, 4
,/
Os
/
3i'
~.j/
7
'.Des : SHEET 9 OF IO I
a l
PROJECT
/005 bfTA D ATE DRILLED 3O I98o HOLE NO.
~3
~
DEPTH CLASS.
FIELD DESCRIPTION SAMPLE MODE REMARKS 233-
.; /l Qti 21870 - 316 ' %T/
c-.4 a < r t :(cd.
23&
-e/
.~.
l i
- p
..:bb Q+. r fa t
' so go LE**
un g so 13G -- l, L
I-
_ A n n.= e s ss sa j J a
.a s n(,,, n
.'. *
- l'I bo 2.30
- e
. je 2+o
-fi 553;6o 2+! 6' EI
- .w 2, z.
-,'fe I.
,./
l 24t
-.h l /
,l 24G -bl,lj r
l
- r'
.: -l 243
_g' a s
r el r>
'.'c've c _
4, 2 70
~ ~ JI l'.
.sr a.., y,n s,
l
. I' y
. J./
e io n e t
i e z. --
~
=.= 10!fo--., dS,. o
..:o l
2e4. L
- p a uaw c-
..d f' a
20G
~-)j
-L
...,l 2es --.
go-se c.
"'* o e s 7. u t c
'"' # --,0; L
r Ju
-L 'l
.;o.e.., e I
s..
l
- Gs _
-., s' t
..., l Zs
--l
..s I
,',L
'*O
. /l 4
l 1
,I
- / '
/
c,.. - c..
s..m
'7
--/
-F 9f,o, ";";* a s ~ x /
m.
<.ue,, m, m,,,
I
. r3.r-,',-
- >-d a." / (e c, s, )
~
- * " > ' ' -/
z y.
_:./
-: s
') e t i,
.. f
,,b
e,cos
.f i haQ OEL. o n o
,*A-v-g,~*
m s,
'"'*0 22 s.~
p
. ~. ~.
~ ~
273'
-l/
3;o o
- l
, ' S 'a - E ta.cc,u c E4$
.=
a# j 2=3
-;g' l 2m
.b l
'i SHEET b
~
OF i
i
L p 'OJECT $80 - bT - I/"W "M Irr ~ D ATE ORILLED Sbo!'o - 9!*
HOLE NO. 'D ~ 3 DEPTH CLASS.
FIELD DE SC RIP T I O N SAMPLE MODE REMARKS 28J I
Gje1 2.i s ' - 3 e ' es cT / c,a A vr L i
. :- 9 (coar)
- ." frio a
~y l
I a.e,~
- f 20 zg.p -[.4/
. jl \\
28 0,
.. as. e r ar z&G ~~ '.!
g, c,, g,, 7,
a-rv e e ar 2dt,
- ) 'I l
g33 -
- ll
- h -.sj
{
o '. c., 3 s. s a '/. la p..< r a e :,e,a sso*his
- d~ j' *'r
~
.s g.,.4 9 n. : 3 a. e.n j, tau L z7~' -
/
~ 2 *> 2.
Leas or c s e f t -l 6ph J E L -
--sono ~'**s**% o-t * * " '
fl
~~
.m e.,a,M b?.
3.. c a n n e-s
.~....,%,
294 -,,/
..- s. a = 5, o
., e, - +
.r-
,a ty 4a-.
.s.
~.g-.' /,
~ 2% gaa r t t
,s F,a e s,
4" ^ '* ' a
>T
'dase.
-y' Denu. a S.s
.2
. a re <t.,
. s
~
Zo]..~.s n t
3o -.
's V
V. 3 to s o4 6L 9
@M0f 5 (ca<f.Sr r,
..fi
.. /-
.Z
, I.,. - 30 2. e.
s p
.. i, ; y-d..
- ,/
- C. s
-~
" /
.?33..
-/
- Ar 3UM 3.ua c 3 '
'ra
.. caen r aa -sae j urt a
-: e
': ' r-seu.,, a 3 5-. u s c
to
,-I
, -"
- v r. 3. -
..e,
..St w.. a.,, osa.
s.~ a 20
.7/L M,
- wm s -v a va m.c a. 4r si o.
i'~
..4 m.s '
M 5
b5 7/k,f,.thdkA A>IL. Y'N
- ;.,e -
~
y 3 / f - M.,.2 A rr ettt /4 7)* Z A ^)O
'~
4 y.Jo '. M Mn.
da'I!
4, hit,,,y$,. a:s %
- .} \\.'.
psic J/c.rl' s/At/Cf 2,f d :
-";b' w,kgH) 7omgGr ytyg) up 7on,,**!*
- i o
on de t.%1 h!!;-
~~ r C>
~"'
~""
"'~
hr:
_ y,,,,.- ue.,,,,4 m, e sym/ :.
- 4e <w.+ cow / ew".
sarts. m A,4p$rrGr,h % ;.
.:3
..&.. {.,4,,4L.ciny mu, <~J l' Ac. '~
abt.ws,f r M l
.: e =
~
,re,;.r ea's y.:, ve/ a2r,;.d4 n,m
=",d
~ ce:.in n e d2 &
\\
i
.tsor o,iog f
.Contt s{nse/9/,' foW, )' W
. w
,.g;,y,
"",{,.
p *s6. e,o)'. >"<do %,,yr::taref *' /j. ~
a
.t.
723 y:f
')
~~
t 4ze paw s-z
-. * \\, \\,
r,e,,,s-i, curw acf;-dente~t< *"r "?'g
,",,,.y _
~, t_,p, 7n s ' 6,was -pert:.r ** oodr -
nz -.
t,,it n/ ea,as,,worso.on k H /e1frto y
- Ao c.agion-i, ray; A'ge,Je
- d..b
?-.! -
7 t-z ' A /-z'w co n d p w = <<s.
. J2', i~ %'3, *,T, o
u
,z c -_.
cY i
(W'
- U3r2 4ocr$9/ *414*t 9eCitJ4(jW'
.:6s/> p os. ;>fa '%n.<
oat ::
w/
\\
' M3 F
Tn i,
~.3:. :: : -e mod. &or,y(Q'::~
~
~ pga':ja'l,'l7
'l'
'l L
1.N
. i3% / earJ'8 s/L.*ri
- IfiEET d
.,,fw/sf n aarwa h.
m
.. e.
OF
I PROJECT O'16'-5~.-Tr# 4M/4!/- 2ow.rd D ATE DOILLED MJs!/1 HOLE NO. 'M I DEPTH CLASS.
FIELD DE SC RI P T I O N SAMPLE MODE REMARKS
- il-U q.(
.7,y -.
_rersea.ar)'200 con
...r.*nf4r: avis se drillin M
- . :3. Ea A
.srcrf' s,cswc air r.
AO ::
a nty4,.in /tols
' ufo cc.'.:da.nr~
r.
's.
- 3 '~-
. ' rd.'n leist o0.a.2na '{
- I?t'-so : ;y
?v'I
~3..'4Vl
"' N '",'
I:N' moe
-~-
~>33tYe '7 a us/ A>nt n = -1 4
-:, i
.:j. 21 we8
- *:3 -to n7-ta::s
=
cmd dry /im v 7 3 - 7 76 cic 77'.rs9 No i
-:3:,
,.,a; 4) l nroJ 7rn.yev ssrf 1
f' ered sadd(as/sc)i);.e4
/f-'"odcr.de :?S;$ '
.el
-" -w
- yo uel T
~
- ' Q. '
spf
- 7 '-n.,9 Q
~ 3:eyo,dv suo=e 7p///
atti
/QingWr *r./ f <>-
.}.A'D ai/~zoopri Ay/12Jr:,4
- A,
~ ;.
~7:7Kh,a uel ferrt 7-4
- 7 ' to : "/ cha m.
- -c Mtw ?,
i a cc. i e-
~ ~-0
.. '?
, y:9-344 sfry/ ** d. ci tfy __
-T h is : 5 7 y
r* 7.~0.
tuard bal u.'
- *e 7 ** a l.
& c}dfr-3n '
n.' * :
~-
N a**
P* u lY M-i
.. K'/a:iz.y:~,~,
l garR. Ylin,
,r.; '
- M --,.
- i
~J-6T-?93. 7 7 n des lest y ~ ve l
~
- M~'-/t::/, Jmr%j>Dr.
i
-r.
s.,, -
'W z.' l. 9.
n:. ult' M1;n coaon geel _
~~
/ t!!.T
':347, pt::7A W. o
- p,=
6P-Spauet : e-,n g.
eag/,
- ;_,7Q ,.2J A$,r/-JC"'f:
.-l-74a 7-3rz. C. :A.uoy ricry -
s
- 9
,yr 6M sir &c ws Y aya <aaay; ;.:
9lf^'y'h ino
-~
r.,
<tasfi p Ad 9an-4/<+. Arm - ':
- Ict "N. -->
w4th. t)esivr- <4,rkud. t<een, -:
' *1 vo(c 73Z. : : 9 'r.
,,. aa e uno,/t d.'
a*
f uitl </ott/ti,le T
- yT~SM'
,,.;2 "J
/*/7 ! / U
'"4. ;.'
O i
-r-
- u $n)
- ll cirrtt*.wn,d.t&,.-1:4,
.i 'rr-ir::: V bnr.'4 /
, g _?.,.f s' A wti'-
....)
..p
- 'L-9 -
- . :
.vys7-:(,a '<y ne.,uef /vou
~~ '2, i:-:
l 7
b., '"iSE$ cla$r ::1-D '
yy
., & -/f l) l
,1
-.=
I, no s. y o c:.,: /> fer.
- K.. > *,
. ::s:' i:,z,.:,..,
j
~ x:- ne 'y.a +,r ge.n dy
.* m. yin ut ify suf'nf44d.
-,: -r- ':. ' '
.rit/,i youtif,g.w et asd --
R.~
s sJ. /r N c.J r % e a
- ?.
.'_* a..
.riy// you ut7 /en'*'
~t /.../
f.'. i'
. -u.
-gg.
t bner,,smcl. A pp,. x i e',
~za-rah powerherzeunc i&:
' ' * ~ /';I 343 h :-
<:ta:f:' h coorst c'ars d af
~Y.'.
3c'T Yz emM., $2jv co%//gr
- 'd 7.~n.3 , - ) !
N 348-77z ' /r7We 7oo v* /
i 0,ve-f, dsrt/i>) !. eJA, f
e
.70
~.
.sr. rs a::. xn l
77I -
'g".,
r4ord b*,,f* W
. 37Z '- f: ;-5,',,,, f, &
ry,.
,- ~
l
?
. :7z !-t. n.r. : :. g carst
?7 ~*, -e.i. s n's L'la. en M,r-
~4.;
7 pMin ea2rie. rand A f':-
--37s '- :::7
-,.l'.
o774
' ' ' ' "; y*.0 yout/
/eir,/
- S H F.E T J OF /d i
PROJECT d'M O'M /M //NJ3od D ATE ORlLLED '7
{
HOLE NO. M-3 DEPTH CLASS.
FIELD DESCRIPTION SAMPLE MODE REMARKS 3 76
..; *.g gf3 9.ftyy0 'Zt//'fMD ~rMfY Q :. ;m& w pp7;n l
273
?l'l,.:s9ND AA/D.:tt 7-1' fxn VE/_ * --
-- 373'-z :79 V
i Un,d)
,e
?O3~~h.
V
^'27f-:3tlf.: -thst 9m ts*l cal /a .
'~
"S'~',3'
'~ N) '
~
- Y*
fius Hon c san {, l'frs vr/ lente::
ez. :: > -
~;2p ' Min yraue//est nuaJ. c hnu cn
.c m,'
- sth
- ,?
~29tV2' cm/4 'aosudf
- 347 _7;,4_y:37 i
s
-g.;_L* "
~ :3 l ' Hrin 9 r.t A l fen t Ontlimi.-hI.Ch2N*r <
- j3h
{
bb
/- ll $.th'tr 19;'} h l
3;
-- 7&s '- : :z 4 737'
-(~.,. ' '
/ g;,, g n uel ltra t
-. i37'-:%2 b"Y IS-Cb^Y'
.v 9 7
- b9 -
s
~Za9' Min pn,.e/ /eN(/-Z") ~~
~.~
.'5 M 3:40, b$ 01 ArdW'5 3~~ ' '. "..
4d, cj>llWG'7p ',)
T W
I*. '
l 5 brhf/[ cik'Ar(77:}f' t
i
- ?
s]??.E: ?in coel itsr/ (~C ")
--- /?.4:09.::33 g
., i
- M &.*
~~
~:
l l
-: n:' 4:n l
-~pg _
i i
a c. //.~tr:7l. c}>ikr-
??3 ~~ ', '
~ 293 V:i
~ T?9,~4'da Mr.;"/9 h Y
~
t 7m uti f rt (~~,c")
i!d
-yyp 7nder co/.ramt af.pr:>
h r.)oo --
'/Y
. Gn,-J:4y, v. ] :/.W,r QN,'$?,d S'" J ll A-
- .rs,-f cleas,,'a,, a ufba6 e
- ='.*
. :L* * *.
'*/
7': 70, r% <, h '.nm &
AJ,-
-:e e.
~42 t ' r'fl)n pr2 ut/ lent
'~
-: ht:a4;<3 ry* c<u644 @k
}
34.u@, HUrr f*o wif IM/
.muy en4y a ve i ams l
&(
y R.>nt ~th. n '
i
- /?fkrl /> tae:ph xg' G r.is W, y,/* ] VA E
^'40:.f2r!? ?
.-e couf(,, 'A
>q pad.o dal' ff;* ;as,,pjor
. 454n' *, % cla p y, / sed
<!of.';'e
~
~
(:re h /g-l
- :'. '?e, WaJ 'a, rned. ft. f<>v(iv4) ~:
~:
'*?/
- d? I V' 'P ett ta w ks,j o t arWso n de Q ut/
4:
- .h *.
~43f,7r t ut/ Ia t/(.7.;c") -
403 -'
, j ->:-:' 9.di:.
'4:SEco yrv..!/ c.*/arAt
.5
)5 bf.5lp't),,)',$
- abadn* arkn'st h a,%,. $
.;, o -
s'. s w,a y /.,
x.. rs?fictHf
/nc1.: w 4r. 0,t '
r"
.J,..
.:4,,i,
./r z -~. -
Y27 -f r2 v2Ilf L
ll 'DINr4*4?S 55. * *
- '407W Wiln 9n v9/ lm/ (Wh5
- 5 4,,s.,.,_
"$'t)
~~'
.m i
~mWww m,, a g
- n. -a. m',.
9
=
E
. toms t pwe/
- 4/s.! z si:
au -
.'t 5 L..
~qua ' f ca ut//y
~;
Cet ///4 s
4%? h '
- W.
s
-;>p
- 4ft: f X.:r.. w i ~~. /n a l
..417 -?.. i f
f
. ~.,99 3,, ;
}t) -
+ 4/7 '.:ca t: % j f.vr..l o.ft-'h *' Min.pa vt { /+rrj(t-? 'h :
- 447'.;:.,-
- r.,
b.
"h,, jf$ Qt 5 jb y,
y
- ht sliptriu etap mor{-M cha &v qz,.&-..
v4srV:-az, ' car'tcotj
/** j ".
--423'- y:c3
.i r 42?-
/p' 4:~
ay.f.bY'? h
+422-4 b fra vell'j ii SHEET ? OF
l J
C'/ 30 (;/ 133HS ' -
'[
j J
1 J
(T :i- & E -Q<y
- Cs s
T+qtus N. n v.p :9 u ev.ra z;; f' ac.e; yr
?/ **J #' / Clf s.:
7 fe<q, x
,c>: j,,cp Jh ?pw 2 us ey'
~
J..
.- sW
.u a
yp.
er py l,,p9 i.4 :
,wyu e
z u u 1; c,..;.y c /c.;. p q -
k,y.
.3,
~.
Cf.fA i**
',J: y'/C,t
=
,'lW EWNl,t'a
'g,,ij.
'L
~~
~
~
.Jvroc/parvy ?,,' s, mvrT6t4,e,h(4~cy..
' 'hHy,/;f/h,?,?)['C I, ',',,'
-yese' up
~~
r'l'r' 1 k 1 's?
,h%'(*)eq..
W'!
t
-~
~
.o
.c
'/
. nq yapr..
me A,e o.
c;q c
- e Ag n i
g.
p g,,
Clj& J:ycvs e></ y 'tws/r.,f
~
c.
' h'W&P !';.:;lc')
?
W * * -- J f" cgt
... Vi
- pyr; t y
!s'rfV69k/////
' JP P';J.*C: +]/,b';s.:..
b
% .'c'*o l
b /
{
s gol eC (ct:?' r.w/w'ficw).
W oo oo, y,sw
,e <
?q C/#
ice W r-
- ,,,p e,, j,o',,
x gy
- y-p uco !cc u c._,2/re; 4
,e x
C' '.;9l 99, ?
l?
? Vrid tpfS.r'l
'k tyf r.Ltc )t,L c
7tff y.9zy F"r lMr+av.-
',\\se't
}
0 s
c s c
~'~
r r
x--
tj ey i
c.e-ucc tt.s L.t p rp i
/.!!?'- C/f. rv Q f klyx y 7-tl Jf pr.ser.t d.< pits--.
~
Eysy !
/
'fbW/ R / * / "' Y 5 7:<p e,ip?p./c.: u ::-
?Illl/L W $ ? h VI~:
jllLLg o.ff y/ ffC//49 ds* r: f4.Cfrbf..
fW (f A~l/5 v -
up ' CPe 00,r
- C fr-J
/
ts?/.c; ":
- r.y../ a
- cc ;( s, w ry y.
~~ '-
sc.c t-vc,s sego -f n '
~
t<<.sv:f*f.>ryJj,?!qlytnoatt.
p
,]/t*/r;4:tts*y
'E n Cl p *:
y f
- a.. ir; eb *:+- rfl9 -
je.. r:- i vywe r. s.-> - C C s o
@ v,2 G</ se rv,9.i.',=
f/P/t
- i.:t-Erz' ::
G r.s ydwei Jcw+ubt::
cb:2--Esf.'
, C2P @ y-/ TJ
. :. ; e :
,5 n',*J -- 2:.,.,
? }r: l' ' W
- P 1 Y
(,,s. g > jee, /en ca 6, z:6 rw
- ]:
y
}pnut?Mf/C.u,*2th-%92b~
'I,h*Y s
app!? ///: dihv/p QS,1,,V,j,;. ( f--
~~
,.;' w - Q P2t> ii/d//inG'd#'Y WIN-N
- HS l}'.h.
] s m vy: o ew-W ';**
- .(y,voo>
7;ig n o:f. f.i,:a w :,.?th:.
- 2Pnt/i/.D </.4 ?i.7 Pvr gwc 45' ':
sc::,w:: 00 q.' 9 79 J l g.2,,.c w.w.z; c:c.cp o pi,c pg S M H VW38 300W 3'idWVS NOlldlHOS30 0 '131 d 'SSV73 Hid30 8" e, t [e [ h
~ E ARTH SCIEN CES ASSOCl ATES DRILLING AND SAMPLING LOG PROJECT MM d'TR -[avas t 'H Emd D ATE DRILLED It '/ 9 /9M HOLE NO. DI LO C ATIO N ~7 ' 5 3o* E os RO -2 3'/ we r/ A T A W-GROUND SURFACE ELEV. 6 M b " ) 'l DRILLING CONTRACTOR 7'TcdtA DR't t ' 0( LOGGED BY N DEPTH TO GROUND WATER ~ 31 ' 55 TYPE OF RIG /'est ne /40 HOLE DI AMETER 4%" H AMMER WEIGHT AND FALLle Ik M " '!a r - %" 3 SURFACE CONDITIONS. Caevers / 6,a a s s -/ L e o 5 J,,,<,,c,t WEATHER 0 'a d W e d e-1 { DEPTH CLASS. F I E'L D DESCRIPTION SAMPLE MODE REM A R K S j o
- urr m.
c'-z c-ye,o % v Ao
- o" o'"
"a7 'Y 'jg tt o ws ( 6 '/ ;, / 4 ) To LT OLiv L
- ) #"
Y /*) lO O - 2-f- - ---,Sao *# 4 [ 610 / ' ) v' /
- df C A '(-
~~ ~~ SWh8 4 6 O MM I,f I d 'p; N-St a t a s s ; v. si m A o, r'n4 ]. "" $ET o G st A e t S ea40J & c AaseLL / 44 3.a g a/ ;3 tot o o.r. '2. .. ga,, g,,, 5), /,4 g,,,, _
- '.p } 'l
'.s' Io (,' - I t' ^ 6 7_f_G ft A f_1.1, '. 17 0 6 < t. i, vsw4 1 S /t. h ~ to '1,, Mo w - P6 ast.c-- I 6' ,*j-q? Ss11
- 0ta, 4 to"),F.ut. To a a o.
- C *in rt f s-
,= r Sm o : F,w socoanni cas t S cow +. 3, so -,o 9, vostaa cs,t'c..jr.43; cam ; ..a c, os ca.c r. :a,.,,,n.i,rw _ 'I ,[I d.st fd 9 L f CAsCmAtou*. l m to ,1 ?- Da g., ost sT o set. r e,ba d ,p y , /gg 1o O'- Il.b' iI ,y _j F,as s mance ese n.c PL a s T
- L,'
l,,,,,,,, %/. c "'/', e ' */ 9 coava,a3 o -,6 7, cud '/. DR. v. a c., noem, a sJ,,,e. ,p# t&.o - 1s.o' 4 t.7 1 $ 9 B : LC. ff ( 6 16/' ) ; N Mca # a"'(-: ,, '. 5H-Nf" d sc, s, v r. o i s ;.o n. f.o e u w a j f /, _, " ',, ' 3o", F.eto m o c.,,t a < s 6. ; F. A ri tioi $ T ; _I l0 S ~** ..,. s 1 ).',- 4pa v i L. -( d 0 1 8 20 -. s., lI "',o To is-2c7,i$A40 9 di t 0 ? -l r3 - 2. KQ ll y,,,,,,, g,g w/ f f g4 h,g t C,
- 15. 5, a re ct
,' h, O-QAav1c (outtJT D 3 t"l atit'l //"
- , ' ' ' " Ono si H a c i sr i 0 Ca t' f
7" inca t as6 % wo 'o -tA7.. ' ' " ~ f',', ' w a<si.,, u ne<.,. ay 5.wec.. C/' 3 c oj' :. I no w a c-i,,i t,weao 24 C. : ' i.i s d os. ,I 2G -- i .g 2S 23' - H ' 6.t, l G cwt t : b e *. I., d' ! @ 'It tt os ( $ 'l c./ + ') ; Ao ., Woo - Vo' ' c.:;
- I
- /
cu,c. s.f c 6 a a u-e.63 1 Fears. 3 ~~l j 4 to 7, r,a t s a n o ; a;o - (20 7, F.91 ; 3-3 D g, 'dav! s?c s pg e r wo g yo con a.e e v < r s., eon e
- v. t a n a.
o-.. :a.o - n s ~I 3 ;,,,, Co 30st $; rh t.i 0 6 ov/ Co 4 alt S Out " g3-3*/g +4h c.ejr5 l To saco 5r ca. v a 's i c q. a < r 6. 'j c..,;3; ri v a, <, s 3+ a e... e 6 z ;, o..,r.;; .I s ,;l u-
- > I
/ I
- ' (
33 -'. l 3 so ..g : l 'O F e . SHEET
PROJECT jgg g (,,, f r R.. /c,s em.o f D AT E O RI LL E D R b> ~ -s f ) l '> d o HOLE NO-DEPTH CLASS. FIEk D DESCRIPTION SAMPLE MODE REM A R K S gg
- .,, pp gg.o '- W o I h t L T f W P A L ' han _
,,g_y y "zpa,sa :10 s e s c r ** ta.* " 2 6lg, 6 40.o0 - 4 t, f
- jl
$ ara e sma o y s.a r / 6a***b. .. ~ RO 42 i 0 4 3. y -uda ~ / C4. f /. )( y n u...f u..., g/. 4 y' /. 9 g.3 . l .. s,3 a ; 7 - ", ee. s - .9 p...v.s,. t s, - e s ; s o 9, F a' 8 L 4-4 $s.o; 607,reansa j-j ,to,,,,,,. s.,,, s. o
- a '*st$ **
wa
- ME
(* * *
- H -'
..,#j ,,,,.f.,,,.. p <es e a s' w's O fi / 4(, cc-4 9.o - 93, c t a D l es o -F k= / .--f,// d L. 93 _:-// ( e f,/,y, ~ ioo 7, s. r # Aa/, a** A*S * } yn.,,o (s f Wo) naa tr os ** J'* * " ~~ is / s >s e v f, noo. a. c e 3. s e a s * * * / I ' " ' *< -- c,, 7.,,,, w :-m u "d - - :./ ,o M3 b
- >na o o n. c,et a < a s, at a,e o, Ot* s t
?O - t y,3 e.) ***'s M M ' k %), g ' "J'*T. { $2 f_)f 6-f 5.,.n z : (p o s) t..of**f: t r C...s - + - 5 c i-Caan r*,o c %., w c s c. he y (s y 91s); soo *) L ~ !s *
- s >< 'h D.y:: 9t.
Y "a'. **/ o '(/. 3,, p 4,. y^ str /S N- /, ,,.., o..,.. y,..,. 6, s. - tw -- O -x c,e - m>>.c.e, e-nec c,,n., s t .33, s c, e e a a o ',a a ia -
- x,
.Yf+3' ( r 40* J+a a 8 '-) o.f ... s..., u. - c, <. o. n <. r c: R o,.. $ 2/..e .f,, ej, ((, = S M A. 84 ydJg. I 63 - /
- ' s o w (s 6.,J 9
-/ 3 s,,r.) a ($, o. (31. 6 [f a6.s t .. c-t - <n u g .'il rii.- $n oo / $ sL Y-. I o,... o.m, -)j..7.s+t i a-y s 1 cc,, G a a f ( *) 1 $12 f.o I ($* / "'S*: P S - L. pg. - c -
- p., c.; e c. 0,.u.u fo
)..,.o., e o. ... l '.
- e.,,.. o. e, e - r.,-
r e e o.,.. a 3 a, e l,,.,,..,,, g, ; i 3 1 l.. .. 4n m g,e ,,,.,3 (, z .-..M -- C 3, C - t p y,,, 3 **l r' a n. v. s.
- s a ~e a e-M st.S - () o u lu.s.- el $
at 2' -f so.;' ha.***. g Y ":b c 6 = r e t > n. f ; go i '/ 6 ' t/. o ' */ '> rAaos s.
- t
!s s s.c.. <s. s (o, v.,.a c t v. a s s ;< t. ), $ $ K one~~ s -t es -~' i o s y. v.a e c.,o as c j son e s n u o; "Yz. L -. , a'. (,, g g. -~ s to-
- Ps-p PO p-e,.s a r a.
2~, a,, 5 4 (, /
- ~
e4 a o, ru a o a f c a.., y.1, e..st, c-m 3 ....".,~..:,N'....., // Co u v.. o s c ati.eso s 5i,44 3 p p,47 # '- L.. L - ;9 :. c. c.,,. c,.,.. i bEO* I. 0 n Ms ss. g,,, a c, /,3 ( Na' J. n.) k rf,a s, a v g <3 e.,,s eJ - 80 -l ?), +s ,w. ~,,,,/., d 'L f - ^ 'oc '?. 5.u r y, ; ,c ' ous' pg m m+.ar us ta m e on. ,s,
- 0. 0 -
1t.em.
- s a>r.3a...,-.,j,'
1 u, .j, ..<.tj e g
- 1.,e s.v 1
1 %2
- csntsi s,sr- - As
-- ? 3 *-
- s-P. e ; - e c.
12- ".= !
- l 5*"'
Sear s g uj' ' 'l- ,r_,. --/ ('
- a s T *>.
'f'*-- p,_s f c a.< A c.4 A a ci d va 04 I e > ?ees r s '/8 u* -. s s i u ?.' ,j - u. age (,, y 4, f. ) 4; H-3D ./ 7.- . 4< 1
- I/. -
h3 U
- I P),o - ojo. o cia.sett / +a o o f os.T*.
~ t 3 a.,,, -4/ HL I,o 7, t.., r, a,s. it a >1. c. C ^ ' ' ' ' ' " d D" pca.;T.wes To 8.;"o e 5471 h-#$,- s
- p; so - 2.> 9, v. a s se a o, u - s o ?. :.< <o r :.
, g I -,y c'- *ss s*8er*CLA ST $ .s ! 1.6 3 3 ewc o s, $ f 96 4* (,, .) sa n si t gn.a.ea.y 3 ofsour; gi-3 p.g-0 4,, n sv o se f 4r's *J p& -- Man L > o as jn s,. s.s ca. ~ s s ) R s'> T $3 7 ru,v '35.0 / d*u y n -,.s .s c s, (.. 4 c ots), M, gI ,l no " -,* s - w e s.a ; ,o.z s r.** 0"s f A-I ,P .p; ; sau o, u - *o 7. r, e-
- h*o-
- ~ ~ c,,,,; e.e,<,3:. SHEET 2-O F I ~ c+.aer s,.,,
- p:.
r*,. s i - 3..,..
L PROJECT /886 Cn/vp. fmost.of 7cd/ OATE DRILLED D /0dC ~ HOLE N@. DEPTH CLASS. FlELD DESCRIPTION SAMPLE MODE REMARKS 68
- l'.]
ML 9*).o. 90 o Awa L t y 5^*JOysiL1"l RD :: 30 hod 'T ) _[ S 3, g. g .} l ' d ' cat I D - GLE AT $ 2. .. So. o .- 5#fF.c. tar oata f I
- ^ m s8ta s o 3 7., s aa a 0, aA
.. y+ .,Vc. e>, t ro n a s c ,4 "I QST a66 a o w/ g gg _ Po.o r os.o. .. acar. o, y l saan sr m,e3 _. S o. $ 4.. 100 ~ 'Pa r g oesreL pt r *
- u s l
~~ C ' n Anaa wans O/j ,) p o s ,o s, 0 /' ! c' c .. i 0 ( / uant .i p fDd.,,.e. ,,i s e \\ 3 ,a,i v 3 __,/ /' s e e s, .e r. o r sea w a ,., J _,o s ] 4_' y. ._ N, : ?. 4,, c,l ), o '. ? a 20 0 O 0
- 0 0, gM.,,, o,'//
), c, y,,,, o O ,J v Oy I }c 00 x'N., J . o 00 .x g o \\ p Praro m is o .-i o N p < c, .-s 0 0 0 '\\. ., a l/ p.,, u ooopda0 pac.. n y .2 O o ', -3+> 1 o o 0 wran ar s oo o o v
- > o,
S d
- So. o '
N u r W lu. l O"'9 [ SHEET D OF F l l
L, { APPENDIX B LABORATORY INVESTIGATION [ Introduction The purpose of the laboratory testing program was to evaluate the static strength characteristics of the various subsurface soils found in the vicinity of the GETR facility. To fulfill this objective, various laboratory tests were performed ( on selected samples of the subsurface materials obtained during the field investi-gation conducted as part of this study (see Appendix A). Moisture and density { tests, grain size analyses and Atterberg limits tests were conducted to aid in the identification and correlation of the various soil types. Static shear strengths of the various materials were evaluated by performing consolidated-undrained triaxial tests with pore pressure measurements and conco11 dated-quick direct shear tests ora relatively undisturbed Pitcher samples. In addition to the static shear strength tests on undisturbed Pitcher samples noted above, a series of consolidated-quick direct shear tests were performed on remolded test samples. To expedite the { laboratory testing program, three triaxial tests and the direct shear tests were performed at Dames and Moore, San Francisco. It should be noted that as part of previous investigations (Dames and Moore, 1960; Shannon and Wilson,1973) a series of consolidated-undrained triaxial tests were performed. The previous triaxial tests were conducted using very low consolidation stresses which are not, in general, within the range of stress appropriate for the analyses conducted during this investigation. In addition, previous triaxial tests were performed to evaluate the total shear strength characteristics of the materials and therefore the test results could not be used to { evaluate effective shear strengths. Although the previous triaxial test results are limited, they were used to the fullest extent possible to supplement the test results { ' obtained during this investigation. Material Types As discussed in a previous section of this report, four material types were I selected for testing. The description of each of these material types is summar-( ized as follows: { Material Type 1 - Dark yellowish brown (10 YR 4/2) to light olive gray (5 Y 5/2); SANDY SILT to SILTY CLAY / CLAYEY SILT (ML to CL/ML); low IL B-1
[ { plastic fines, some fine sand; pervasive carbonate with some hard cemented zones; very dense to hard; moist. [ Material Type 2-Moderate yellowish brown (10 YR 5/4); CLAYEY SILT / SILTY CLAY (ML/CL); slight to low plastic fines, some fine sand; very stiff to hard, moist. Material Type 3 - Moderatc brown (S YR 4/4); SANDY CLAY TO GRAVELY CLAY (CL); medium to high plesticit;p fine to coarse sand; fine to coarse gravel; very stiff to hard; moist. Material Type 4 - Moderate yellowish brown (10 YR 5/4); CLAYEY GRAVELY SAND (SC) low to medium plastic fines; fine to coarse sand; fine to coarse gravel; very dense; moist. Material types 1, 2 and 3 characteristically contained some randomly ( oriented slickensided fissures. Static triaxial tests performed on these materials generally failed along these pre-existing fissures. { Atterberg limits test results obtained for selected samples are plotted on Figure B-1 and indicate that the materials have a relatively wide range of [ plasticity. Gradation curves for selected samples are shown on Figures B-2 thru B-5 for material types 1 thru 4, respectively. Gradation tests were performed on most of the triaxial test samples in addition to a few samples which were not ( triaxially tested. Gradation and Atterberg limits test results obtained from triaxial test samples performed by other investigators (Dames and Moore,1960; ( Shannon and Wilson,1973) which were considered appropriate for the analyses performed for this investigation are shown for comparative purposes. Sample Preparation [ Samples designated for static triaxial testing were extruded with care from the sampling tubes to minimize sample disturbance. Sample tubes were cut to a length of approximately 6 inches using a slow speed motor driven horizontal ( bandsaw. The cut portion was then vertically extruded into a thin rubber membrane using a motor driven hydraulic extruder. Samples were then trimmed, { weighed, and measured prior to placing them into the triaxial testing apparatus. [ Earth Sciences Associates 3_,
b [ { Tne soil samples that were triaxially tested were generally extruded with considerable case. Some difficulty was encountered, however, when trying to ( extrude testable samples of material type 4. Because of its high gravel content, sampling of this material during the field exploration program was extremely difficult. Extruded samples were often disturbed or contained large voids or pieces of coarse gravel. It is for these reasons that only one testable sample was obtained for this material type. ( Only one sampie (RD-3/PB-3, material type 1) designed for triaxial testing was unintentionally disturbed during sample preparation. During trimming, the { sample split down a pre-existing fracture plane and the sample had to be discarded. Direct shear test samples of relatively undisturbed materials were extruded using the same procedures as the triaxial test samples. Samples were trimmed to a diameter of approximately 2.4 inches in order to fit into the direct shear testing f Some samples had to be slightly patched since some small voids were apparatus. created along the sides of the sample during the trimming process. Remolded direct shear samples were prepared by compacting the selected { materials into 2 one-half inch direct shear testing rings to an estimated in-situ density and fully saturated moisture content. After the compaction process, the two direct shear testing rings were put together and placed into the direct shear testing apparatus. This procedure resulted in an artifical planar discontinuity within the sample along which shear displacement occurred during the test. Static Triaxial Tests f A series of static triaxial tests were conducted on relatively undisturbed Pitcher samples (3-inch OD) of the various material types selected for testing. A l total of 11 samples were tested. A summary of the static triaxial tests performed during this investigation along with pertinent testing and sample information is presented in Table B-1. Prior to testing, all samplu were fully saturated and consolidated iso-tropically to a range of effective stress conditions representative of those existing at considerable depth. It should be noted that in most cases the samples that were tested were obtained from relatively shallow depths (45.0 to 62.0 feet) and that the effective stresses to which the samples were consolidated are considerably higher than the stresses the samples had experienced in-situ. This procedure was used to determine the material strength characteristics over a range of stresses considered appropriate for the stability analyses. B-3
( [ Tests were run at strain rates ranging from 3 to 10 peremnt per hour to ensure reasonable pore pressure equilization throughout the sample. This procedure was i followed to allow for the evaluation of effective strength parameters of the various materials even though the main objective cf the testing program was to evaluate total strength parameters. L Most tests were continued until axial strains of approximately 20 percent had developed, however, some of the tests could only be continued to approximately 10 ( to 15 percent due to the mode of failure of the samples. Stress-strain relationships corresponding to each test are plotted on Figures B-6 through B-13. Photographs ( of the failed triaxial test soil samples are shown in Figures B-14 through B-17. As can be seen by the stress versus axial strain relationships and the photographs of the test specimens, the various materials exhibit two distinct modes of bahavior during axial loadings. The first mode of behavior shows that the deviator stress ( o -. a3 ) reaches a distinct peak at relatively low axial strain i (approximately 3 percent, at which point the deviator stress starts to drop off. This type of behavior was most prevalent in those materials which tended to fail [ along a pre-existing fracture planes (material types 1 and 2). The triaxial test perforn:ed on material type 1 at a confining stress of 7200 psf (Figure B-6) was the { only exception even though a fracture plane was present in this sample. For this test the deviator stress increased with increasing strain, however, the soil strength as defined by the ratio of the effective vertical stress to the effective confining stress was essentially ecnstant for axial strains greater than 9 percent. Dramatic drops in the deviator stress were recorded in the triaxial tests shown in Figures B-7 ( and B-9. These tests show a drop-off in the deviator stress of 20 to 25 percent over an axial strain increase of approximately 2 to 3 percent. This drop off in ( strength may be the result of breaking of cementation bonds between the pre-existing fracture planes. The triaxial test results shown in Figures B-8 and B-10 { show a less dramatic drop-off in the deviator stress with a reduction of approx-imately 8 to 14 percent over the axial strain range of 3 to 12 percent. It should be noted that once the peak strength of these materials was reached, the strength measured at higher strains probably represents the residual sliding frictional strength along the failed fracture plane. ( The second mode of behavior exhibited by the remaining triaxial test specimens was a general increase in deviator stress recorded during the entire test. [ This behavior was prevalent in material types 3 and 4 which tended to bulge during failure versus those that failed along a pre-existing fracture plane. The triaxial Earth Sciences Associates g,4 t
[ { test results shown in Figure B-12 shows a decrease in deviator stress for strains ) greater than 4 percent, however, the photograph of this sample shown in Figure B-16, shows that this sample tilted and bulged to one side which may explain this 1 sampit.'s strength behavior. i 1 ( Direct Shear Tests A series of consolidated-quick direct shear tests were performed on both { relatively undisturbed and remolded soil specimens of material types 1 and 2. Samples of material types 3 and 4 could not be tested in direct shear since they contained a large percentage of fine to coarse gravel. Undisturbed and remcided soll samples of material types 1 and 2 were prepared for testing as previously described in the section titled Sample Preparation. Each sample was submerged in water and consolidated to a specified normal pressure by applying incremental staged loadings. After consolidation, the samples were stressed to failure by (. applying a shearih6 load to the top ring of the direct shear testing apparatus. The direct shear tests vrere performed at strain rates which would complete { the test in approximately 10 to 20 minutes. The shear strengths derived from these tests represent the soil's total strength since the shearing rates were too fast to allow drainage of the developed excess pore pressures. Therefore, these direct shear test results can only be used to develop total strength parameters for this materials tested. A summary of the direct shear tests performed during this investigation along with pertinent tating and sample information is presented in Table B-2. Applied ( shear force ver _us shear deflection for each test are plotted on Figures B-18 and B-19 along with axial deflection versus shear deflection. It should be noted that the { area of the failure plane in a direct shear sample decreases as the deflection of the sample is increased. Therefore, the normal and shear stresses applied during the [ direct shear tests must be corrected to account for the changes in the area of the { failure planes, particularly at higher sample deflections. A summary of the i uncorrected and corrected direct shear test results is given in Table B-3 for both I the peak shear force measured during the test and at a deflection corresponding to 10 percent shear strain. ( The direct shear test results for material type 1 indicate that the strength of the undisturbed soil samples have a strength behavior which appears to be { independent of the applied normal stress. This may be the result of the varying amounts of cementation found in this material type which may tend to mask any [ Earth Sciences Associates B-5 (\\.
ll lI strength increase trends. The remolded test samples, on the other hand, show an I increase in shear strength with increasing applied normal stress. The direct shear test results summarized in Table B-4 for material type 2 indicate that there is an increase in shear strength with increasing applied normal stress for both the undisturbed and remolded test samples. The remolded samples, { however, have a chear strength at 10 percent shear strain which is approximately 30 to 40 percent less than the strengths of the undisturbed samples. l l l Supplementary Test Data Results of consolidated undrained triaxial tests performed by previous I investigators (Dames and Moore,1960; Shannon and Wilson,1973) were reviewed and used to supplement the test data obtained during this investigation. Resuds I from six consolidated undrained triaxial tests performed on materials similar to material types 3 and 4 were obtained from the previous investigations. A summdy I of pertinent sample and testir.g information is presented in Table B-4. As previously discussed, these tests were conducted at relatively llow l consolidation stresses and therefore help define the soil strength at low to moderate consolidation stress levels. However, results of these tests can only be used to supplement the total strength of the materials since the pore water pressures developed during testing were not recorded. I l 1 Interpretation of Test Results Effective Strength Parameters Results of the consolidated-undrained triaxial tests with pore pressure measurements were used to develop effective strength envelopes for the materials tested. Effective strength envelopes are shown at the top of Figures B-20 through B-23 for material types 1 through 4, respectively, and correspond to an axial strain of 10 percent. This value of strain was chosen since the strength of the various materials, as defined by the ratio of the effective vertical stress to the effective confining stress ( of / of ), was always found to be less than the recorded peak strength. The Mohr circles used in the development of the effective strength envelopes are also drawn in Figures B-20 through B-23. The Mohr circles corresponding to the highest effective confining stress for material types 1, 2, and 3 (Figures B-20, { B-21, and B-22) seem to indicate that the strength of these materials were not greatly influenced by the effective confining pressure, that is the effective Fu B-6
strength envelope at high principal stresses is extremely flat. IIowever, it is our judgement that the results from triaxial tests performed at the relatively high confining pressures (test results shown in Figures B-8, B-10, and B-12) are probably not representative of the true strength of these materials. Published effective strength paramaters derived from tests performed on similar material types such as London Clay (Bishop et al.,1965) support this conclusion. Published data do indicate that the effective strength envelope should " flatten out" at relatively high confining pressures. IIowever, the published strength envelopes do not flatten out to the same degree as is suggested by the limited number of triaxial tch performed for this investigation. As was previously discussed, the triaxial tests performed on material types 1 and 2 all failed along an apparent pre-existing fracture plane. The peak strengths recorded for each of these tests probably represents the strength of these pre-existing fracture surfaces. In addition, photographs of the samples taken after each test show that the top cap of the triaxial test apparatus underwent an extreme rotation during testing. This would, in effect, reduce the normal stress acting on the failure plane of the sample which would result in a lower shearing force required to strain the sample. These observaticns help explain the unusually low effective strength envelopes derived from the triaxial tests performed for this invcagation. I The effective strength envelope for material type 4 is shown in the top of Figure B-23. As was previously discussed, only one sample of this material type was found to be testable. The high percentage of gravel and cobbles present in this material made sampling extremely difficult. The strength envelope was developed using the results of the one triaxial test and published strength parameters for similar materials. It should be noted that the strength envelope has been flattened at high effective principal stresses. The rate at which the strength envelope was flattened was determined by findings presentea by Leps (1970). It is our judgement I that the effective strength envelope shown in Figure B-23 for material type 4 represents a conservative estimate of this material's strength. Pitcher tube samples from the same geologie unit from which the one testable sample of material type 4 was obtained generally contained a higher percentage of gravel. Doring logs obtained during the field exploration program indicate that the unit also contains scattered cobbles. Strengths of these materials should be sig-nificantly stronger than that of the tested triaxial test sample. 1 Earth Sciences Associates B-7
Total Strength Parameters Total strength parameters were developed using triaxial test results obtained during this and previous investigations as well a the direct shear test results obtained from undisturbed and remolded test specimens. Total strength envelopes Lee shown at the bottom of Figures B-20 through B-23 for material types 1 through 4, respectively. The total strength envelopes were developed by plotting the undrained shear strength versus the normal stress on the failure plane at the end of consolidation 7,f vs. a'. ). r I Total strength envelopes for material types 1 and 2 were developed for both undisturbed and remolded soil samples. The total strength envelopes developed for remolded soil samples have slopes 12 to 13 degrees less than the undisturbeid
- I samples '- mrmal consolidation stresses generally less than 20 ksf. For normal consolidat 1 stresses greater than approximately 20 ksf, the remolded total strength envelope was drawn parallel to the undisturbed total strength envelope.
Total strength envelopes of material types 3 and 4 were developed for undisturbed soil samples only. As previously discussed, direct shear tests were not performed on these materials and therefore, remolded soil strengths were not obtained. I Triaxial test results obtained from previous investigators were used where applicable. The strength envelope for material type 4, Figure B-23 was flattened at high normal consolidation stresses in a similar fashion as the effective strength envelope shown in the top of the figure. As in the case of the effective strength parameters, previously discussed, it is our judgement that the total strength parameters shown in the bottom of Figures B-20 through B-23 probably underestimate the true strength of these materials. The actual total strengths of the materials are probably much greater than those measured during testing since the total strength of the materials are subject to the same limitations as the derived effective strength. 1I I I 1 I 1 Earth Sciences Associates B-8 1
y v rm. . rm. rm.. .m rm r rm. .rm. rm rm. rm n .rm rm v e TABLE B-1
SUMMARY
OF TRIAXIAL 9'EST DATA l Dep*h of Before After Sample Consolidation Consolidation Material Boring / Tested 4 W/C y% W /C y% Type Sample (Feet) (PSF) (%) (PCF) (%) (PCF) Descriptio_n 1 RD-2/PB-4 53.0-55.5-7200 20.7 109.2 20.1 109.7 Dark Yellowish Brown (10 YR 4/2) SILTY CLAY / CLAYEY SIlil'(CL-ML) 1 itD-3/tf-3 45.0-47.5 15840 16.8 116.9 14.5 117.4 Light Olive Gray (5 Y 5/2) SANDY SILT (ML) 1 RD-2/PB-3 48.5-51.0 50400 21.1 106.2 19.3 117.5 Light Olive Gray (5 Y 5/2) CLAYEY SILT TO SILTY CLAY (MIrCL) 2 RD-3/PB-4 55.0-57.5 15840 14.9 116.3 19.2 116.8 Moderate Yellowish Brown (10 YR 5/4) rii CLAYEY SILT / SILTY CLAY (MIeCL) 3-2 R D-3/PB-4 55.0-57.5 50400 19.2 110.9 17.5 119.8 Moderate Yellowish Brown (10 YR 5/4) tn CLAYEY SILT / SILTY CLAY (MIeCL) 9. G 3 3 RD-2/PB-5 60.0-62.5 10800 11.7 119.9 15.6 120.4 Moderate Brown (5 YR 4/4) SANDY CLAY WITII GRAVEL (CL) m y 3 RD-2/PB-5 60.0-62.5 34560 18.6 111.0 17.3 117.3 Moderate Brown (5 YR 4/4) m GRAVELY CLAY (CII) k 4 RD-2/PB-11 112.0-113.5 1650t 16.8 118.8 10.7 139.5 Modcrate Yellowish Brown (10 YR 5/4) E GRAVELY CLAYEY SAND (SC) E m
-a rm rm m rm rm. rm rm m rm m rm rm rm rm rm _m rt m r-TABLE B-2
SUMMARY
OF DIRECT SIIEAR TEST DATA Depth of Before After Sample Consolidation Consolidation Material Boring / Tested ol, W/C Fw W /C rw Type Sample (Feet) (PSF) (%) (PCF) (%) (PCF) Description 1 RD-2/PB-4 '53.0-55.5 5760 28.1 94.5 29.3 99.7 Dark Yellowish Brown (10 YR 4/2) SILTY CLAY / CLAYEY SILT (CL-ML) 1 8640 26.5 98.1 78.7 101.9 1 11520 27.1 98.1 27.1 102.6 1* 5760 24.5 100.1 26.7 102.2 1* 8640 24.1 100.2 26.0 102.4 1* 11520 24.0 100.4 25.8 103.9 2 RD-3/PB-4 55.0-57.5 5760 17.9 111.6 24.4 113.3 Moderate Yellowish Brown (10 YR 5/4) rn CLAYEY SILT / SILTY CLAY (ML-CL) m 2 8640 17.8 110.8 24.3 114.4 2 11520 17.6 111.6 22.1 114.8 8 2* 5760 20.5 107.8 22.6 110.8 n rp 2* 8640 20.4 108.8 21.4 112.4 m 2* 11520 20.0 108.0 21.5 111.5
- mo 0,
- Test on remolded sample a
m
t n n n n n n n n n n n_ _n n_ n n n n n F f TABLE B-3
SUMMARY
OF DIRECT SIIEAR TEST RESULTS M ATERIAL TYPE 1 1 Boring #/ 4 oncorr. 7 7 corr. oncorr. 7 Teorr. Sample # 6,in.(E,%) psf psf psi psf d,in. (6, %) psf psf psf i R D-2/PB-4 0.11 (4.5) 5760 6077 1920 2026 0.06 (2.5) 5914 2362 2425 0.24 (10.' ) 5760 6624 1920 2208 0.24 (10.0) 6624 21d5 2490 0 { R D-2/PB-4 0.08 (3.1) 8640 8992 5052 5258 0.05 (2.1) 8871 3355 3445 0.24 (10.0) 8640 9936 4380 5037 0.24 (10.0) 9936 2875 3306 R D-2/PB-4 0.09 (3.5) 11520 12071 3540 3709 0.07 (2.7) 11866 3816 3930 4 i 0.24 (10.0) 11520 13248 3240 3726 0.24 (10.0) 13248 3446 3963 m A MATERIAL TYPE 2 RD-3/PB-4 .(4.5) 5760 6077 5028 5305 0.07 (2.9) 5979 2597 2696 l O. 0.24 (10.0) 5760 6624 3636 4181 0.24 (10.0) 6624 2491 2865 m ] RD-3/PB-4 0.14 (5.8) 8640 9331 4740 5119 0.05 (2.1) 8871 3534 3598 l (D m 0.24 (10.0) 8640 9936 4440 5160 0.24 (10.0) 9936 3182 3659 1 j m R D-3/PB-4 0.12 (4.8) 11520 12211 7248 7683 0.16 (6.6) 12498 4066 4648 i o ] g, 0.24 (10.0) 11520 13248 6876 7907 0.24 (10.0) 13243 4042 4648 i m O m ,3
TABLE B-4
SUMMARY
OF MISCELLANEOUS TEST DATA Depth of Before After Sample Consolidation Consolidation Material Boring / Tested 4 W/C by W /C Pary Type Sample (Feet) (PSF) (%) (PCF) (%) (PCF) Description 1 R D-2/PB-4 53.0-55.0 21.4 103.5 Dark Yellowish Brown (10 YR 4/2) SILTY CLAY / CLAYEY SILT (CIeML) I 3 B-1 A/S-1 Top 20.0-22.5 2100 15.2 118.0 14.6 Brown Fine to Coarse SANDY CLAY (CL) With Trace GRAVEL 3 B-1 A/S-1 Bottom 20.0-22.5 700 15.2 116.0 17.1 Brown Fine to Coarse SANDY CLAY (CL) With Trace GRAVEL 2 4 B-2/S-11 50.0 6200 10.8 127.0 Brown SANDY CLAY With GRAVEL (CL) 1 B-2/S-5 21.5-24.0 2800 12.3 128.0 10.6 Brown Claycy Fine to Coarse SAND 1 A AND GRAVEL to Fine to Coarse SANDY 3-GRAVELLY CLAY (SC-CL) 1 0, 4 B-1/S-7 24.0-26.0 4220 12.0 126.0 11.8 Brown Clayey Fine to Coarse SAND (D AND GRAVEL (SC) 3 4 B-1/S-8 27.0-20.5 4220 14.5 118.0 15.0 Brown Clayey Fine to Coarse SAND m AND GRAVEL (SC) m 4 RD-2/PB-8 00.0-02.5 12.2 125.7 Moderate Yellowish Brown (10 YR 5/4) CLAYEY SAND-GR AVEL (SC/GC) O _W 1 g Data from Shannon and Wilson,1973. 2 Data from Dames and Moore,1960.
L eo so o + x 40 / so e w OH to E or CL MH to CL g OL lbkl 78/88/ 4 ML / ML j o to go so 4o so so 70 so so too l LIQUID LIMIT, (*/o) 1 MATERIAL I LlOUID PLASTICITY USC TYPE SYMBOL BORING NO. DEPTH, FT. LIMIT, */o INDEX, */o SYMBOL { 1 RD-2/PB4 50 -55 5 31 5 8.6 CL/ML 1 8 RD.3/PB4 45-47.5 32.0 8.1 CL/ML 2 RD4/PB4 55 -57.5 41.0 14.4 ML l 3 R D-2/PB4 60 -62.5 48 5 26.5 CL 3 g R D-2/PB4 60 62.5 57.0 34.3 CH RD-2/PB.12 118 120 25.0 9.0 CL 4 gl B.1 A/S-1 20-22.5 32.0 20.0 CL 4 I l l l
- 1. Data from Shannon and Wason,1973.
I Earth Sciences Associates e m uto.c.w.n GETR LANDSLlDE STABILITY ANALYSIS
SUMMARY
OF ATTERBERG LIMITS ^ ~ Ap ed by Date ff 10 88 1
\\ m r-~\\ m m m rm r-~t m rm rm rm. m..v tm. rm v e i 5, , j. HYDROMETER ANALYSIS SIEVE ANALYSIS TjME READINGS z y y 3 j g g U.S. STANDA RD SE m t 5 Ct. EAR SQUARE OPENINGS 0 l 8 0 I = 200 ioa so 40 30 se soa 4 3/a-3 1.a n" 3-5 6" s~ 100 0 l _. _.. _. J- .__g_.._ __..__.g_ ~. _ _ _ _ g ___ _ L _ RD-2/PB4 ( O'm = 7200 psf) -~ ~ ~ so ~~ ~-~ ~ .T __. f --~' _. ~~_. h -~ ~ ~ - - - - - " ~ ' - - ~ ~ h - /b--. ~ _ ZZ ~ ~ _ ~ Z.~J~.!?: iZ '._ J.--Y :_ 80 / I I T~ ~ Z_T ~ ~_ -- Z __. I ~ ~;~ I 20 .7 l-_ ..-_.-.g. _- l _ l1 / _' ._l f _ Z.~.: ZZZ T-~_ l z Z.~_~ Z Z l: _ - - ~ ~ ~-~-~~ 2 _--- ~~~- ZZE Z / ._ y -_g_ _ _ _.g. g_ . _. _f________ ___ I _ _ ._ t _ __ _f g. g_ g L9 1~/__ -~~~1___ ___ t _ 11Z w 3 60 w _._,/ '~ '~. RD-3/P8-3 ( 0,m = 15,840 psf) gZ -___l_ '-~-~ 7 4 so E Q -~ ~~~/ .~ -. ~ Z-' ~ Q: H a, .__/ W I__ I I 50 / SO H _.,f__ __ -. g__ ___.___g_ _ __._ g _ g -_-___.7 o ~~~~~~L---- _ :-~~ ~~ -. - -~~~~ ~ ~_~ gZ -g: Z. w E do / T ~~~ 0 _/ 60 a. -___ f
- f. _ _ __..
_ _l. l_ C w ___g__ __ _ g. ___ g _ w T ~/Z 1Z_~ ~~- -- L _T-'- T'_
- JT ~~~ '
- - ~ - ~ ~ ~ 1._. _ _ ZI I _ __ _. E Z 30 -f~ZT ~ 7o /_ i-~ -~Z ~.~Z ~ J ~..J _ _ ~_ ~; Z.~.__~ ____ ] ~~ -~ ~ l --~~' E LZ: / _ _ _ ___ _ _g__ _____l. ._ l 2a g g_ g.. ._ _ J. so p_ ~ ~ ~ - _'___..Z_^-~.~ _ __-.T ~:T'_~ ~ 2^~~~ -~; LT
- -'~ l:
___.1 - Z 1~ 10 ____g__ _ _ _ g. ____g 90 ___.I___ ____l.. .___g. ____[_ .____....____.g______.____ _..__l i j i 1 e i t i i f I f IfI I f i 'l ~h I i f I e _t t 1 3 g e l I e p 1__1 g 6 9 ll 100 g Y O O O O O O O G ~
- ~
O 9 9 9 9 999W .O l d .0 3 / ' '.0 / 4' ' ' .349 .297 420.590 3.19 2.02.38 4.76 9.b 2 19.1 J 8.1 76.2 ~ 127152
- 002
.00'2 000 DI AMI TF' R OF PAHTICLF IN MILL.tMF T EHS CLAY (plastic) TO SILT (non. plastic) SAND GR4/EL COBBLES I'I N E l MEDauM l COAHSE 6-I N L i CO A ME EXPLANATION Palo Alto. Cdfornea Boring number / sample number ( Ok = mean offactive confining stress used in static triaxial test) GETR LANDSLIDE STABILITY ANALYSIS GR ADATIONS - MATERIAL TYPE 1 m Checked by _ ) b[7 . Date & E(dD Pro) (t No. Figure No. _-. Dateh8/M#
- 86 B-2 Approved by
m rm rm rm r-- \\ rm rm r t _. .r m r-r- r-w v v r-' z HYDROMETER ANALYSIS SIEVE ANALYSIS TIME READINGS 9 Z Z j G 2. 2. ~ Z U.S. STANDAR D SE HIES CLEAR SQUARE OPErdlNGS b E 2 o e N o a 9 a 200 100 50 40 30 16 108 4 3/8 3/4 " 11/2" 3" $" 6" 8" 100 0 _, g r __,l j_ ~ - ~ _ ' -~~ 1.Z _._ l l I_ = _ -- g . -, = c= Z_.____.____ "ZZ ~~Z RD.3/PB4 ( O'm = 50.4Cb psfl Z__~ E~.~~ ~ --~~~~~~ - ~ ~ ~ ~ .._ _ _ Z Z ._ _ g __ ._ _ __ g _ __-g- - - ~ ~ _ - -~ ~_ T _ ~ .Z.Z ~ ~Z l ~_ - ZL !___.E Z - ~ ~ ~ ~ - _ g _. p. g_ _ _.. [ ,l _._ g. l l_ g_ a C Z~ L_ L ---~-.E Z w 2; 6o z ,o m _ l __-. L. 1_ _ _ _. 4 m y. g__ b 7 g .. f_._ -- l -- l- ~ ~ ~ ~ ~~~~~~ E ~~ Z l-r w f ZZ _lZ 1. ~ ) __g_ g. g -. w ___1__ __.__t. t _.. cc o., _ _g__ ___ _ g g_ w 30 ~~ ~~ ~ ' ' ' - ~ ~ ~ RD4/PB4 ( Om = 15.840 psf) ' - ~ ~ ' - - - - ~ ~ ~ ~ q _ __ ~~ yo _.T._Z_I ~~ _Z_Z ZIZ ~ ~ ~IT C.Z - _} T T :.' - ~~ ~~~ D 20 EG g._ g _. g_ I_ 10 __g_ '.___~_.-_.T ~ ~ ~ ~ ' - -.____._ l - Z ... _ g.. __g_ 90 __1_ . _._.l. g_ t_ ____.g__ l_ g__ g g ~_~_~_~ ' l oo J 'F' 8 u 2 E 2 3 8 8 E8$2 3 2 388E $$2 9 1 S. i "1 -1 N *.9 '/ ".76 ^***' 2 2 $ 3 8 M 2S8 l 8 9 9 9 9 9Rr W .old '.o a i ' '.o id * * .349 .297 42o.590 1.19 2.02,38 4 0.52 19.1 3 d.1 76.2 ~ 12 7152
- 002
.005 .009 Ol AMFTE R OF PARTICLE If1 MILT IMF T t NS CLAY (plastic) TO SILT (non-plastic) SAND GRAVEL COBBLES FINE l MEOsUM l COARSE F stat l CO A RSL EXPLANATION Earth Sciences Associates Palo Aho. California Boring number / sample number ( G, = mean effective confining m stress used in static triaxial test) GETR LANDSLIDE STABILITY ANALYSIS GR ADATIONS - MATERIAL TYPE 2 Chetked by M, __ Date d g## Project No. Figure No. Approved bybMf_he Date8 2d 1886 B-3
m c3 rw m rm. n n mm rm rm v rm r L_Jn r L__m r-z HYDROMETER ANALYSIS SIEVE ANALYSIS Z g g TIME RE ADINC.$ o z g y 3 3 g g U.S. STAf dOARD SE Rit.S CLE AR SQUARE OPErdlNGS k 3 200 100 to 40 30 16 10 8 4 3/a" 3/4 " 1 1/2" 3" $" 6" 8" ar 2 o lZZ ~ ~_T.~~_ '. Z_T - -- Z ~.^~=="*_D 7~__ _~ I-. _a -_L .d - _i -n ~~- 2.Z~ - 2 i f,*,_ _ _ !. ,A. _.._ B.1 A/S-1 bottom ( 0 = 700 psf) -_ _____ 5, _ ._,,,,.,... g. l-m _g. . _ __. y _ _ _, _. _ _ __ 2/PB.6 ( O'm ".MM Ps0 ~ ~ _-g_ RD ~~l~ ~ , f_. _ _ W 20 [_ z u _g.
- d
~'
- ==
=- -- Z==
- ==
. _ _./.T _. _. _ _ _::Z ~Z = __g_ t- ~ _ _f _ _j, __ gj ______.g_ _ _ _ _ _ _ _. _ /_ g. [____ g __ _ __.___l l. g_ g ~ ~ ~ ~ ~ , ' ~ -'~ y _ __ y _ 7 p a ~__ m k RD-2/PB.5 ( O'm = 10,800 psf)-~~ ~ ' ~ ~ f_ g{_ 4g g E 60 ~~ B-1 A/S-1 top ( C'm = 2100 ps0 ( w 4 ' - - ~ ~Z _._____ p g-Z. a, p_ 7- [ g > 50 _ g __ __ _____-_g_ g t0 z w _l___ L_ I_ d.- o _g_ ---_ g _ --F_ W _.__l..._ -.. _ _j-l. o,. ___g.-._ --~g. g_ _ _. 2 I' _ ZZ '_E~_~ ' '. ' _. ' ' ~ _ ZC _ '_. d 7 30 ZEI l ____l~_ _E 70 - - - - ~ - ' ! _. Z ~ ~ ~ ' I'__-'__ T - ZZ - ' ~ _ _.. _. Z._Tl 1.- II Z ~ _.__g_._ g_ ____-[. ____.l.___ .___._g_ __g_ _-- ZZ ZZ ZZ Z~Z ~_ T J -- 1_ _.. ~_-~ E _..-~--'Z . Z l~ ~J.---- - ' - - ' _ . ___ _T. Z~ l: __-)- __-.g.. ____g_ _____l__ _ __ g _- . ___ g _ .l l_ _____g__ i n e ie t' I t i t i e fee ~ ~ ~ - - ~ i ~ t' a ieeen _t i e a e e s a a i a T 's~e 119
- ~
~~ ggg t g S S S $ $ $ $ $bN N 1 N S Y9 "g* O N $ $$NN l o o ooc 9 9 9 9 999W .019 03/ ' .0 74 ' ' .149 .?9 7 4?O 590 1.19 2.0 2.J 8 4.76 9.52 19.1 3 d.1 76.2 ~ 12 7152 #* .002 00$ .009 DI AMETE'H r)F PARTICI F If 4 MILI IMI T E HS CLA v' (pimics 10 SILT (non+1atic) SAND GRAVEL COBBLES F t r4 E l M E O4UM lCOAHSE F I N E. l COARSE EXPLANATION Earth Sciences Associates Boring number / sample number ( a = mean effective confining Palo Alto. Caworna m stress used in static triamial test) GETR LANDSLIDE STABILITY ANALYSIS NOTE GR ADATIONS - MATERIAL TYPE 3 Gradations B.1 A/S.1 top and B.1 A/S.1 bottom replotted from ^ Figure 7, respectively, Shannon and Wilson,1973. Checked by _ Date Project No. figure No. Approved by ns It . Date 1886 B4
z HYDROMETER ANALYSIS SIEVE ANALYSIS TIME RE ADINGS 9 z z 5. } } j j f U.S. STAR 4DARD SE Rit.S CLEAR SQUARE OPErilNGS 0 1 S E b 200 soo so 40 ao as aos 4 afs-3/4 -
- 2. i/2 -
3" s 6" a~ 100 0 y .._i_ _. _ 4((j .[ _._1 ___ p /./, .C 90 __} ./ }l 10 ..___}: -. [h 7 ;/_ z L _.-. g. . _..._ g .._. _._ g RD.2/PB-12 _ / .__. g _ _ _ ___ g _ ,= = ___._g__ . _____g.._._ _j j,, ___g_ _ L _. l_ N I .____.g_ p p._ / a 94 _ g_ g g _/ _ B-2/S-5 ( O'm = 2800 psf) _ l__. Q m _._l.___ _ _4 /_ _f g [ a . Z).-~~ p f_j@d(____B-1/S.7 ( a'm = 4220 psf) . ____ h:Z y Y bo / p SO H _4 _ ..p _ ___ _ g. /p. _ _ _. l _ _. _ _. _ _....__g_ g
- ia l _.. __._.
W' m _..,s* o / m _._ _ RD-2/PB.11 ( O,'m = 16,560 psfl-/ ___ q _ _ _ _. _ _.. _ g_ . _. _ _ "N $ 40 . f,,, _ _ _ _1, _g m _L_ l_ ,g, RD-2/PBE /.' p . l.. _ l- __ _ L
- j. h 70
^~~ ~~~ ~ ~ ' - ~- .~. r z _.~~_^ _ _.. _ l _ ___ l _ Z ._ __.l' i_ / ~:. - X -~_ _. _ f_^: ^:.~_~ l : ~ ~ - ~ ~ ~ ~ - - ' T:r . /. ^ l .'~ 20 80 _-.. l.._ --_-__g_- _ _ _.g _ g _. -._ g. _._ _. g ____g.. 10 90 _ __. l _ - __ g _. _..l. _.___l._ ___.g. _.._ g.. ___ 3 - ~~- i ~~M ~ ' I ' i -~ '.*l*'. o y' 100 8 8 8 3 8 8 8 8$3 3 8 3$8E $3 9 1 4W9 3 t.
- S S R 383 l 8
9 9 9 9 9o.99 9 .oi9 '.03 / ' '.o ri ' ' .249 ..y3 7.42u.s90 "1.19 2.0 2.3 a 4.76 9.52 19.1 a a.1 7o.2 " 127252 * .002 .005 .009 DI AMt TE R OF PANTU s 6 tre Meu.6MF TrHs SAND GRAVEL CLAY (plastic) TO SILT (nonplastic) COBBLES r arw l ML DIUM l COARSE F 1 ret. I COAHSE EXPLANATION Earth Sciences Associates Boring number / sample number ( & m = mean effective confining % A% Caldonna stress used in static triaxial test) i GETR LANDSLIDE STABILITY ANALYSIS 4 NOTE Gradations B-2/S-5 and 81/5 7 replotted from Figures 4 GRADATIONS - MATERIAL TYPE 4 and 5, respectively, Shannon and Wilson,1973. ^ I Checked by... f4fbat 1886 B-5 Date Project No. Figure No. Approved by.
CONSG.! DATED tmTRIM231RIRXIft.1tST ( hlTH FORC PRCSSUE NESSUREFUK MATERIAL TYPE 1 o e SIRTIC TX TEST =1 KC-1.0 3-(. 1886 21.ALY 80 80R!NC:fD-2,SartrLCIPS-1 Ct.AYEY SILT 10f u 2 e a d. d-N o {H= N' v1
- l;
[ t.3 rri s3 M"" Mo N d-1.J~ LD L Y '-8 9 ( n g. [ q-d- o = 8.8 S. O 12.0 IS.E 0.4 10
- 8. 0 S.O 12.0 15.0
= 0.0 3.0 STRAIN IN PERCDg STRAIN IN PERCD K [ 'h3 a ad a "E - ISOTROPIC CONSOLIDATED UNDRAINED TRIAtlAL TEST WITN PORE PRES $URE MEASUREMENTS 1986L DETR LANOSLI(K INWSTIGATION TESTED 7/23/80 REDUCED BY Ind 90RIWRD-2.SAMPLEeP8 4 DEPTMs33-55.5 [ o .J. CLAVEY $!L7 10v4/2 AT END OF CONSOLIDATION B SAMPLE HEIGHT, ............ = 6.044 INCHES SAMPLE AREA................ e 4 539 S0. INCHES o EFFECTIVE CONFINING STRESS. e 7200. PSF d. EFFECTIVE MAJOR PRIN. STRESS
- 7200. PSF PRINCIPAL STRESS RATIO.....
- 1.00
' STRAIN $10M43E SIGMAlt RATIO PPRESS PBAR PTOT 0 PCT PSF PSF SIOtE/SIO3E P$F PSF PSF psp
== o .0 7200. 7200. 1.0 C. 7200. 7200 O. [ M d. .0 7056. 7221. 8.0 144 7139 7283. 83 n_ " .3 69*5. 7891. 1.3 245. 7423. ~7&&8. 468. .2 6696. 8674 3.3 504 7685. 8109
- 989, an
.3 6451. 8954 1.4 749 7702.
- 8453, 1231.
g .5 6264 9047 3.4 936. 7655. 8591 3393 7 6820. 9127 1.5 8080 7624
- 8751, 1504 N.
[ g. 8.0 5875. 9253. 1.6 1325. 7564 8889 3689 eA 3.2 5774 9353. 1.6 1426. 7563. 8989
- 1789, n,
t.4 5674 v430 1.7 1526. 7552. 9078 tR78. O 1.6 5573. 9507 1.7 1627. 7540. 9147 3967 g 2.5 5198. 9869 3.9 2002. 7534 9535. 2335.
- 3. 4 4997 10231.
2.0 2203. 76I4 9817 2617 l g g. 4.3 4925. 30637 2.2 2275. 7781. 10056. 2856 j g 5.2 4954 1106t. 2.2 2246. 8007 10254 3054 1 6.1 50:1. 11527. 2.3 2189 8269 10458. 3258. I 6.9 5098. 12004 2.4 2302. 8531. 10653.
- 3453, 7.8 5384 32420.
2.4 2016. 8802.
- 10818, 34te; 8.7 5270.
12851. 2.4 !?30. 9040. 10990. 3790. g. 9.4 5378.
- 33258, 2.5 1829.
9315. 11344 3944 { 80.4 5472.
- 13639, 2.5 3728.
9556. 33294 4084 II.3 5573. 13984 2.5 1627. 9778. 18404. 4206. 32.8 5688.
- 34259,
- 2. 5 1512.
9974 31486.
- 4286, 13.0 5818.
14506. 2.5 1382. 10162. 31544 4344 33.8 5947 14797 2.5 1253. 10372. 18625. 4425. g-84.7 6098. 15307. 2.5 1809 30599 31708 4508. 15.6 6221. 15379 2.5 979. 10000. 11779 4579 16.4 6336. 15636. 2.5 864 30976. 31840. 4640. 17.2 6451. 15843.
- 2. 5 749 31847 31896.
4696 17.9 6538. 16070. 2.5 662. 31304 18966 4764; o 38.6 4638. 36266. 2.5 562. 11452. 32014 48 4 o 12.0 15.0 0.8 3.0 8.0 S.O 19.0 6739 17679 2.6 443. 32209. 12670. 5470 STRAIN IN PERCDK Figure B-6 I t I
I l l C0? COL'067Q UN0mitCD TRIMXtfL TE57 MATERIAL TYPE 1 64tTtt P0tt FPCntT t1CSURCt'Otr I %o n - f. STATIC TX 7tSTe1 EC-l.0 a IQQS 30.AA.Y 80 "Qft!M: RD-3,5 Af:fLIS PD-3 I SILTY ?AN3 515/2 x o i n- = \\ I o 1 em 4 .4-j i l { 2-b 2: I a.,3 r u 4= ci: I @ 3-h 3 s n. -m e',.J. I C2,._ ~. - a_ a I a-a- o e a-I
- ?
? 8.o so 33.o is.a " c.o so 12.o 55.a I o.o 3.o 3.o a.o . STRAIN IN PCRCCNT STRR!N lit PCRCDC 'h3 o d "X = - ISOTROPIC CONT,a ! DATED UNDRAINED TRIARIAL TEST I WITH PORE PRESSURE PEASUREMENTS 1884L CETR LANDSLICE INVESTIGATION TESTED 7/30/60 RELUCED SV Ind BOR INo t RD-3. SAMPLt s P8-3 DEPTHa 45-4 7. 5 og. SILTV SAND SYS/2 I AT END OF CONSOLIDAff0N B SAMPLE HEIGHT............ = 6.066 INCHES SAMPLE AREA................ 6.537 S0. INCHES = og. ~ EFFECTIVE cot #1NING STRESS. = 15840. PSF EFFECTIVE MAJOR PRIN. STRESS = 15840. PSF I PRINCIPAL STRESS RATIO.... = 1.00 STRAIN SIGMA 3E $1GMAIE RATIO PPRESS PSAR PTOT g PCT PSF Psr $101E/$1G3E PSF PSF PSF PSF -La o .0 15840. 15840. 10 0 15840 15840. O. g g- .0 15378. 16444 3.1 642. 15811. 16473. 633. a_ .I 13234 19643 1.5 2606 16237 19043. 3203. 'I .5
- 10757, 22494 2.3 5083.
S u.% 21709 5869 m .3 8064 27180 3.4 7776 17622. 25398. 9558 4 6926. 31592 4.6 8914 19259. 28173. 12333,' o .5 5731.* 34417 6.P 10109 20074 30183. 14343. k g. .8 6091. 43422 7.1 '#49 24756. 34505 18665. 4ft 1.0 6624 44494 6.7 9216
- 23559, 34775.
19935.' 1.4 7243. 46759 6.5 8597 27001. 35598 19753 C3 1.4 7344 47011
- 6. 4 8496 27177 35673.
79833 A 2.5 9130. 48961. 3.4 6710. 29045. 35756. 19916.- .C a 3.6 10915. 46433 4.3 4925. 28674. 33599
- 17759,
> g. 4.7 11218. 44662. 4.0 4422. 27940. 32562. 16722. g-
- 5. 7 ii320 438,2.
3.8 320 m 06. s m 6. 16 u. 6.8 12182. 43956 3.6 3658 20069 31727 15887 7.8 Il9M. 43680. 3.7 3874 27823. 31697. 15857
- 8. 8 12326.
43775 3.6 3584 20051. 3t564 15724.- o 11.2 13298. 43829 3.3 2549 28560. 34309 15269 g_ R 2.1 13709 442.32.
- 3. 2 2131 28970.
31301. 15241. = 13.~ 1 13954 44460 3.2 1886. 29207 31093. 15253. 14.0 14227. 44947
- 3. 2 1613.
29587 31200. 15360. I 17.3 15437 45017 2.9 403 30227 30630 14790. 14.9 14645. 45458 3.1 1895
- 30055, 31246.
15406. 15.8 14933. 45610 3.1 907 30272. 3tT79 15339 16.6 15149 45543
- 3. 0 693 30346.
31037 15197 19.0 15739 42775. 2.7 101. 29257 29338. 13518. 19.8 15494 42928 2.8 346 29211. 29557 13717 20.7 15458. 43297
- 2. 8 389 29374.
29763. 13923." ,I ".0 8.0 50 12.0 15.0 0 3.0 STRAIN IN PCRClfR Figure B.7
I t co~sel:Omt0 uN0aalNto talarlal sest MATERIAL TYPE 1 o MlfM PORE PRES $UPt ut45UPtatNT J N. a oO o I 1 R0-2/PS-3 e g-RT 49.5-51 FT oo o d. a N' o El$ a b;S-a.r I r I ~ .O E,o.. ~. "I o ~ us e .I un uJ [ C A r 0 us.. 0% ce y,,;- O I L E f- = E d' d-I = = %.00 3'00 8'.00 9.00 l'.00 I 00 %. 00 3'.00 8'.00 9'00 2 k l'.00 l'5. CD 2 . STRAIN IN PERCENT STRAIN IN PERCENT I o I CONSOLIDaffD UNosalhFD Tolastat itsi h wlTM PORE P8E55Upf sat '5vals.tNY tastn SCl. a550. 4755-907 03. au6 13 19me. 90 7/Pm.3. Ogptn 6a.5 51 f t.. sarrN15n spar CLaytv SILT 70 SILT 7 CLav ,I h SamPLt priont e 5.93 IN d Sa=PLE AREA e 6.05 50 IN CON 50L lca t t 0N PPf %5U'. e 50.60 u%r 1411. Ma s, pef *. 5" 455 e 50.6e p5F O INIflat 90at F AF e 49.A PSI d N REF08f CON 90 Lit t 10M car OtNglyr e 106 2 PCF uafts CONTf'.4110N e 28 18 Pf8 CENT AFTER CON 50L' .,,,o CRT DENlt? e 117.5 PCF L_ 68 waftp CON' NT e 19.34 PEDCFNT vi o. BEAM L0a0 F TOR e 19 62 L85/PtectNT 'I .E " g antal P08f ntvlafoe Sf4=a3 StGmal 51stt5 gi o StaalN Pett5 at STsE55 EFFFCtivt patto asas pass Gnat uj '.d PCT s5 55F F %F 85F K SF NLF m .37 11.4% 69.99 AI.64 8.23 .04 59.Al 5.41 .35
- 1..
18.49 69.36 A7.89 1.37 .04 54.61 9.24 g. 64
- 1. ' 6 23.34 64.66 71.82 1 4a
.0A 40 33 11.49 t3. u 3.It 3. I 26.56 67.17 73.71 1.56 .17 44.66 13.27 a k 1.3a 3.t. 27.49 6A.53 76.Al 1.59 .14 64 27 13.74 E N. 1.69 4.53 29.67 65.89 73.94 3.61 .36 59.93 14.83 y" 2.03 5.14 24.62 45.26 73.A9 3.43 .14 99.47 16.21 I gj 2.44 5.89 24.77 46.53 73 28 1.4% .20 98.90 16 34 C3 2.99 6.A? 24.97 43.73 77.78 3 46 .23 98 77 14.** 3.51 7.62 29.9a 62.gn 71.a* 1.A7 .26 97.64 14.6% 8 4.26 f.31 24.69 47.09 74.74 1.6p .29 58.63 16.36 e.96 9.07 2A.34 41.33 A9.7a 1.69 .37 %5.57 16 19 5.72 9.78 28.63 ea.62 Aa.A4 3.A9 .35 56.A4 16.01 A.5A la.41 27.67 39.99 67.64 1 69 .38 93.A8 13.83 I 7.27 10.92 77.33 39.6A 66.81 1,69 66 93.15 13.AA 8.P8 11 62 26.91 34.94 AS.a9 3.49 42 Sp.66 13,65 8-9 28 11 96 26.3A 3P.46 A4.A4 l.A9 6% si.A5 13.19 10.01 12.75 26.06 39.15 66.23 1.64 67 51.14 13.03 10.63 12.61 25.86 37.99 63.83 1.6A 4A 59.91 12.92 11.38 12 59 25.64 37.41 63.42 1 6a 69 90.62 12.se ' I ll.81 12.47 25.62 37.73 63.1% 1.67 .56 94.64 12.71 12.51 12.40 26.46 37.60 AP.6A l.AA .51 50.03 12.63 8 13.29 12.43 24.04 37.57 Al.Al 1.A4 .53 69.59 12.62 13.60 12 99 23 92 37.61 A l. 34 1.64 .56 69.37 11.96 %. 00 3'.00 8'00 9'00 l'.00 l'5.00 2 STRAIN IN PERCENT Figure B-8 1 1
CCNSI.Ica7ED unamtrCD TRI AZIR., TE57 klTrt PCRC PRCSSWE f1EfCu8CtD E MATERI AL TYPE 2 I g. SIRTIC TX 7C5T=5 tC-l.0 o 1886 i ruGtJST 80 60RINGIRD3,SRr1PLD PS4 BAN 0f CLRT 10rR5/4 h o o I 4-o g I u IXi a-n T. ua: o q d' u !I h G n. E ( l;! = ~g. o 4-ll \\ o o g. a-I ~ 9 ".L g l 9 9 c.o io s' o so 15.o ti.o n.e io e'o s' o tio 15.0 . STRAIN ]N PERCCid STRAIN ]N PERCDC
- bo e *
!$0 TROPIC CONSOLIDATED UNDRAINED TRIAIIAL TEST E eI'. I WYTM PORE PRESSURE MEASUREMENTS 1986L OETR LANDSLIDE [NVESTIOPTION TESTED 8/8/90 REDUCED BY BW BOR ING I RD-3. SAP 9'LE t P9-4. CEPTHI SS-S 7. 5 O SANCY CLAY 10VRS/4 f I AT END OF CONSOLIDATION 8 SAMPLE HE!ONT..... ....... o 6.069 INCHES SAMPLE AREA................ = 6.335 SQ. INCNES EFFECTIVE CONFININO STRESS. = 15840. PSF O EFFECTIVE MAJOR PRIN. STPESS = 15840. PSF g-PRINCIPAL STRESS RAT!o..... = 1.00 I STRAIN SIGMA 3C SIGMA 1E RATIO PPRESS PBAR PTOT Q PCT PSF PSF 'SIGIE/SIG3E PSF PSF PSF pef .0 15840 15840 8.0 0. 15840 15840. O. [o 0 15768. 16023. 8.0 72. 15895 13967 327 R7 as) .0 8S496. 17044 l.3 144 86770 86984 1074 .8 1533 1.3 302. 18212 18315. 2675. is27.8. 20907. i.. s&2. 20073 20635. .795. I \\ .2 24 6 gr) .3 14962. 29220. 2.0 079. 22098 22949 7129 ]o .5 14256. 3e150. 2.7 1584 26203 27707 11947 4 14630. 33669
- 2. 3' 4210.
24150 23359 9919 %,4 .6 13910. 423ss. 3.0 1930. 23 40 20077 14237 1/3 ** 7 13600. 43928. 3.4 2 32. 29764 31996. 16156. y 9 13248. 49397 3.7 2392. 31322 33914. 18074 I c3 f.1 12960. 33180. 4.1 2880. 33070
- 33950, 20180.
b I.3 12707 34899 4.3 3033. 339,43, 36896. 21056. 5. s.S 82614 sS26e. 4.4 3226. 23 41 37:67 23327 g a. l.8 12329. 32720. 4.2 3312. 32624 3S936. 20096. J g
- 2. 8 12528.
46666. 3.7 3312. 29597 32909 17069 3.7 12600. 44429 3.S 3240. 2sel4 31854 16014 4.6 52686. 43694 3.4 3154 28890 38344 15504 S.6 12738. 4330s. 3.4 3092. 28133 31213. 15373. o 6.5 12943. 42966. 3.3 2995. 27906 30901. 15061. g.
- 7. 3 12960.
42234 3.3 2990 27597 30477. 54637 ~ S.2 13073. 41997
- 3. 2 2765.
27531 30296. 34456 9.5 13190 48747 3.2 2650 27469 30838. 14279 9.9 13?34 48463. 3.1 2506. 27399 29904 14064 I 80.0 13464 41210. 3.8 2376. 27337 29713. 13873 II.6 13394
- 40005, 3.0 2246.
27200 29446. 13606 12.5 13738 40423. 2.9 2102. 27080 29193. 13343 13.3 13096. 40063. 2.9 1944 26979 29923. 13083 14.8 14026 39757 2.8 1914 26891 28706. 82966 14.9 14104 39304
- 2. 0 8656.
26744 20400. 12360 I 13.7 14414 39632. 2.7 1426. 26523 27949 12109 o 16.5 84558 3e404 2.6 $282. 26481 27763 11923 c5 17.2 34717 37976.
- 2. 6 1823.
26347 2747o. 11630. 0.0 50 e'.o 50 tio 15.0 STRAIN IN PCRCDK Figure B-9
y conselicarro unonarnro inrariat test MATERIAL TYPE 2 [ o g N!TN PORE PRES $URE MER$UREMECT ~ w or 3 o a ~ no-siPe-< ~ RT 55-57.5 FT Es o i ~ .c E wa m8 [ ma a c 5 I .o "c3 "o D. N o m w C C 9 E4 wa_ x-m- O Q 8 2 er o 8 3 e o' 1 1 8 8 't.co
- i. co s'. co s'. co th. co t's. co
'U.~ce ien s' co s' co l'2. co { l'.cc STRAIN IN PERCENT STR9fN IN PERCENT s [ o 9 Co450LipalfD Umppatkan tef antat 1r57 eI?M'P9EF Puf55ueF mfaguaFutN7 I ta9fM SCI. ASSO.. 4755*00?*43 auG 5 19ae mL.1#pm*6 0(F1m 44 5 7.4 F7.. >00 vtLL0=15m noowN SILfy Clay w/ te. Geavgt o 9 Samp(f tecl6MT e 6.60 14 et Samatt saga e 6.14 50 IN COM50LI0aTION PDf55uSE o 50.60 ESF 3%AT. mas. PS14. STEfS% e 50.46 air IN!TlaL POOF Pe(55uef e AA.) P53 o 9 Sff0Rf CON 50L10aTION Car OEN5tiv e 114.9 PCF wafta CONTENT e 19 2p PgaCENT artfA CON 50LinaitCN DeY DENSITT e 119.a PCF .o waffe Comffhi 17.5n praCENT E *. Stan L0a0 FACT 0e e 19 87 LRS/PipCENT m en. ~r" anlat Poet otvlaT04 516ma3 516=al 5feF55 m Staatu Pet 55ust St#E55 EFFECTlvt aaT30 agan Pase ceas no PCT usf N5F RSF R$r uSF ESF WY a: et .en 75 5.66 49.65 $$.37 1 18 .l3 42.66 2.03 6'*** .35 1.56 9.52
- 6.84 58.37 1.19
.36 $3.41 4.76 i 74 2.6A 13.Ae =?.72 Al.37 1.79 .20 54.5? 6.40 g 44 4.48 lA.23 4).97 6e.15 1 66 .25 55.n6 g.Il On 7s 6.56 21 94 43.86 AS.84 t.5a. .3n 54.85 14.99 t= " 99 8.31 26 59 42.09 66.A4 1.5A .34 54.39 12 24 E ve. . 74 9.53 26.06 40.47 AA.90 1.66 .37 53.a4 13.02 19-10 6 27 16 39.77
- i. 2 i i.6.3 A6.93 6t.
1.68 .39. 53.35 13.5 it. 8 2a.04 3a.76 i.n .ti s2.7 2 o 7.17 12 26 28.53 38.16 68.A9 1 7% 63 47.63 14 27 7.39 17.72 2m.A5 37.64 A6.53 1.77 64 52.11 16.67 g 2.73 n.20 29.0: 37.20 A6.7 i.7a 4A Si.70 it.5i 3 03 13.58 29 23 3A.a2 6A.n5 8 79 46 51.43 14.Al 3 49 16.04 29.64 3A.36 69.F3 1.Al 48 St.es 14.72 3.94 14.37 29 52 34.03 65.94 3 42 49 40.79 16.74 4.34 14.66 29.64 35.76 65.36 3.83 50 %0.56 14.A0 4.03 14.90 29.Sa 35.50 AS.an 8.n3 .50 50.79 14.79 r* 5.44 15.15 29.54 35.25 66.79 1.84 53 54.07 14.77 Y 5.93 15 32 29.46 35.08 64.54 1.84 .57 49.51 14.73 6.52 15.48 29.31 36.92 64.73 1.46 .53 49.5* 14.66 7.27 15.62 29.6% 36.74 63.m3 3.86 54 49.38 14.51 7.AA 15.72 2A.44 34.6A 63.48 f.31 .55 e4.04 16.48 8.69 15.81 24.57 34.59 67.IA 1.83 .55 4A.A7 14.29 o 9.25 15.90 28 27 34.50 62.74 1.A7 .5A 48.A6 14.16 It.ee 16.03 28.02 34.37 A2.39 1.87 .57 68.38 16.sl 'b. co
- i. co s' co s' co ii co l'5.co H.5n p' * "9 n"
1 'e' ' * "a
- F '*
5* r .1 27.53
- 3. 21 l
STRAIN IN PERCENT 3* Ai.7+ i.a .59 +7.9 13 76 it.56 i6 27 27 22 .3 6i.35 a.a0 .Ae .7.76 11.61 L Figure B.10 t t
L CON 51.!DftTG UMt.murCD TRIRXIfL TEST HITH PON' PRCSLRC tT.RSURCtD K MATERIAL TYPE 3 o g. STRTIC TX TC5I 3 KCm1.0 7-1888 25 JULY 8C BGRitG:PC-2, S AMPLCs PS-5 SANQY CUlf SYR1/t =s-og l-d- l 1 -6 i D EJ nas o Sfl "" s g-(J E Q. ers N* ik d-o A. e. f o { h l o e d o LS $0 8'. o ajo 15.0 15.0 8.8 IO 8'.0 $0 85.0 15.0 STMIN lit PCRCD6 .STMIN IN PCRCDC '%o "I ~- ISOTROPIC CONSOLIDATED LesDRADED TRIAII AL TEST ~ WITH PORE PRESSLNE MEAStJtEMENTS 1886L CETR LANDSLIDE INVEST!0ATION TESTED 7/23/80 REDUCED SY BW 80 RING RO-2 SAMPLE PS-3 IEPTM 60-42.3 o f-SAM 3Y CLAY SYR4/4 AT END OF CONSOLIDATION 8 SAMPLE HEIGHT............ m 6.086 INC>ES SAMPLE AREA................ e 6.534 $0. INCFES O EFFECT!W CONFINING STRES$. e 10800. PSF d-EFFECT!vE MAJOR PRIN. STRESS e 10800. PSF PRINCIPAL. STRESS RATIO.... e 3.00 STRAIN SIGNA 3E S!0 Matt RATIO PPRESS P9AR PTOT O PCT PSF PSF SIG1E/SIO3C PSF PSF PSF PSF a .0 10000.. 10800. 5.0 0. 10800. 10800 O. 8-g. .0 10742. 10963. 1.0 S8. 10833. 10910. 150. (= .0 10312. 31867 1.1 288. 11190. 18478. 678. .8 99%. 12819 1.3 864 11378. 12242. 1442. g .3
- 9058, 13234.
1.5 1742. Batte. 12888 2088. n .4 8309 13346. 1.4 2491. 10828. 13319 2519 LJ .6 7502. 133S4 1.8 3298. 10428. 13726. 2926. % ). .7 6826.
- 13324, 2.0 3974 80075.
14049
- 3249, to 9
6264 13286. 2.1 4536. 9775. 14311. 3511. g 8.2 3S87. 13256. 2.4 5213. 9422. 14634 3834 O 8.4 4810 13237
- 2. 8 5990.
9023. 15014 4214 8.7 4608 13260. 2.9 6892. 8934 15126. 4326 b. 2.4 4018. 13476. 3.4 6782. 8747 15529 4729 g. 3.4 3845. 13807
- 3. 6 6955.
8826. 15788. 4981. g ". 4.3 3830.
- 14139,
- 3. 7 6970.
8985. 15954 5154 5.1 3960. 14503.
- 3. 7 6840.
9232. 16072. S272. S.9 4090.
- 14809,
- 3. 6 6710.
9450. 16160. 5360 6.7 4277. 15t19
- 3. 5 6323.
9698. 16228. 5423. 1 J 7.6 4444. IS405.
- 3. S 6336.
9934 16270. 5470.
- 0. 4 4537 15672.
3.4 6163. 10:35. 16318.
- $18.
- 9. 2
- 4795, 13933.
- 3. 3 6001.
10354 163S9 5559 10.0 4939 16117 3.3 S863. 10528. 16389 3589 30.8 Sil2. 16333. 3.2 5688. 10723. 86413. 5613. I St.6 5242. 86523.
- 3. 2 S*S8.
80883. 16441. Se4t. 82.4 5378. 16697 3.1 5429 18034 16463. 5663. 43.2 5472. 16830. 3.1 3328 18158. 16479 5679 $4.0 3387 16994 3.0 5233. 31293. 16:03 5703. 14.5 5688. 17106. 3.0 5112. 31397 14:09 3709 83.3 3774
- 87220, 3.0 3026.
- 18497, 16523.
3723. te.1
- 861.
17332.
- 3. 0 4939 88596.
16536. 3736. a 36.8 3947 17432. 2.9 4833. 18690 86542. 3742. 17.6 6062. 17*S2. 2.9 4738. It007 46S43. 5745. e.s i0 8'.0 3'.0 12'.0 85'.0 88 3 6134 87'*4-29 555-8755-g 3,.8 6228. 17749
- 2. 9 457'.
88985. S64 S764 l STMIN IN PERCDR 89.8 17799
- 2. 8 4536.
12032. 568. 3768. 626,4 L 20.1 62 i. 17824 2.8 4507 12059 . 36 6. 3766. Figure B.11 P 1
consoucalco umCanines vor:ilat test MATERIAL TYPE 3 I g CllM Pom! PRf33ung ntC5UntatC) ( A sb I o l o o l J. RD-2/P8 5 RT $0-62.5 FT .I oo o d N iI o ~9 ME I IL o. ma gN I -E E S s' N' n LaJ E c 'o yo I taJ ". Eo u). Oa. E E I 4 s E E I E E I %.CD 4'. CD e' CD
- 12. C0 l'.CD 2'O. CD
%.CO 4'. CO 8' C0 l'.CD l'.CD 2'O. C0 6 2 s STRRIN IN PERCENT STRRIN IN PERCENT CM0Lleaf f 0 U%neal%Fn telas tat 7f51 I vifw P0er Pets 5upt pratusrut=T EsofM SCI. a550. 4795 0e7.n3. auG 5. I9se O pn.7/pt.o. DTPtn 6a.A2.g rr.. P00geaff Penwm GeavrLLv CLav 'i; I SauPLF pffG47 e 4.29 IM tametr asia e 6.37 50 IN CONSOLIDaflow Peg 55uer e 34.56 #5r O INIT. man. 88lN. Sfer55 a 34.%A FSF 9 14118st P0ef P9f 55ueE o 49.4 P58 n' BrF0ef C0450L10afl088 I Dev OENSITV a 131.s PCF waTre Coutthf a 18.69 PEPCthf o arife CowsnL10afl04 9 Dev OE95fty e 117 3 PCF
- g waf ts CONTras7 e
17.18 PEsCFNT 8 tan loa 0 raCTo# e 15.33 L85/ PERCENT I _o asfal Poet DEvlafce $ 1 r.m a ) SIGmal STef55 La 9 Stes,!4 pee.55uer S.T#E 55 ErrtCTIVE Refl0 amas pese 04ae vi c2. C 5r 5r 5r Sr n s, ,5r 3C " w .la .20 1 35 34.36 37.71 1 10 .04 36.93 1.67 I g 19 67 5 33 36.le 39.47 1 16 0a 34.81 2.67 u1 o 29 .68 7.le 33.44 48.99 3.?! .IR 37.43 3.55 u taj 48 3.7% 9.63 31.31 47.91 1 29 .33 3a.jp 6 ag E d. .A7 1.R9 11.65 ??.67 46 19 I.35 .16 34.60 5.77 P" 91 2.?? 13 15 a..#4
- .99 1.41
.21 38.61 6 57 O 1.In 3 77 16.53 30.b. 45.37 1 67 .26 34.11 7.pn I g 1.51 4.91 15.4A 29.65 69.50 9.53 .31 37.5m 7.93 co 1.at g.99 16.78 78.57 69.77 1 5a .36 36.97 a.35 >= O 7.1% 7.10 17.39 77.6A 64.74 1 63 41 34.16 A.70 C ri 2.56 p.31 17.93 FA.29 44.19 l.68 6A 35.pp a.97 2.92 9 36 18 31 F5.28 63 51 1 73 .51 34.35 9.15 3.37 10.32 18.57 26.26 62.80 1.77 56 33.52 9.24 C3 3.77 II*17 18.69 23.39 62.88 1 96 .6A 32.73 9.35 I ~ 4.64 13.51 19.64 21.0% 39.** 3 49 .77 38.37 9.32 4.37 17.21 18.76 F2.35 61.09 3.d4 .65 31.77 9.37 8 4.94 IF.93 18.72 21.A3 6a.35 1.87 69 3n.99 g.34 6.84 13.98 10.49 20.58 39.07 l.90 7A 29.82 9.76 6.51 14.79 18 33 20.28 34.60 1.98 74 29.64 9.16 7.37 14.69 19.15 19.87 30.02 1.91 98 78.94 9.07 e.91 15 11 17.69 19.45 37.10 1 91 84 PA.?m R.sp 8 9.71 15.77 17.64 19.36 34.78 1.9a 47 pe.pa p.72
- ~
18.96 15 2R 17.14 19.28 34.64 1.99 89 77.A7 8.59 11.74 15.31 16.94 19.F5 36.73 1.BA 98 77.76 8.69 17.84 15.38 16.67 19.F5 35.93 l.97 9F 77.99 e.36 17.87 15 31 16.63 19.25 35.68 1 05 93 27.47 S.21 8 13.60 15 29 16.19 19.27 35.45 5 86 94 77.34 S.09 14.61 15.25 15.91 19.38 35.76 1.82 94 27.74 7.94 is.r? is.i1 15.7 i9. I 35.tr I.83 96 77.r7 7.ca %.CO 4' CD e'. CO l'.c0 l's. CO 2'. CD 16.07 15.o9 15.51 19.67 36.9s 1 8e 97 77.23
- 7. 7-2 O
STRRIN IN PERCENT la 15 15 33 l' 5* 3'*87 i.'77 l" 7' 21 76* 17.56
- 1. 90 15.it i9.66
- 3. 77 99 77.25 7.s6 la.39 i.s2 is.sr 19.74 34.56 l.75 l.oo 77.is 7.4i -
I it.ls 16.73
- l. 62 19.e3 34.6s 1 76 1 09 r?.l.
7.3: Figure B.12
CON $0L.!DR7G UNDP.MIMD 7R[MXIft. TC57 MTri PORC PRCS2JRC f1CMSUREtO# MATERI AL TYPE 4- "h3 a - d. STRTIC TX 7ESTs2 r.C-1.0 5.. z. [ 1886 22, JULY 80 BCR!?C:fT2 SAMPLCiPBl! CP.AVELLY CLarCr Sac o d-o d' [ o
- d o..
f. Y b [ EJ n go sw d-d- R E Q. = t.3 Eo Y d-g. d- [ o e p o a d-d- 9 a o 0.0 50 i0 i0 tio gig 0.0 i0 de do Rio g{a STRRIM IN PERCDR STRRIN IN PERCDC %o yk it0 TROPIC CON 00LIDATED UNDRAINED TRIAII AL TEST NITH POLE PRESSURE MEASUREMENTS 36944. GETR LANDSLIDE INVESTIGATION TESTED 7/22/80 #EDtKED 87 8W l 60RINCaRD-2 SArPLEIPD-It DEPTH 382-333.3 l o 1 GRAVELLY CLAVEY SAND IOVR5/4 i AT END OF CONSOLIDATION 8 $ APPL E HE IGHT.............. = 6.346 INDES SAPPLE ARE A................ = 6.534 $0. IPOES "[ EFFECTIW CONFINING STRESS. = 36*40. PSF EFFECTIVE MAJOR PRIN. STRESS = 16560. PSF { PRINCIPAL STRESS RATIO..... = 3.00 j STRAIN SIGMA 3E SIGMA &E RATIO PPRESS P8mm PTOT O PCT PSF PSF $1GIE/SIO3E PSF psf PSF PSF "" O 0 36360 16560. 3.0 0. 16560. 3 560 O. i an %- 3 15948. 24243. 3.5 619 20092. 20731 4158. I Q. 5 33306. 23333. 1.8 3254. 38409 23444 5:04 ~ .7 18362. 22684 2.0 5898. 17023. 22228 Soot. j m 9 9720. 28976. 2.3 6840 IS848 22688 4128. ]o 1.1 8410. 21379 2.5 8350. 14894 23045 6485. g I.3 7402. 20994 2.8 9858. 34398. 23356 6796. h*M ~- 1.5 6593. 20721. 3.5 9965.
- 13658, 23623 7063.
t i 3.7 5990. 205?C. 3.4 10570.
- 33255, 23825. '
7265. E C3
- 2. 8 4788.
209:2. 4.4 18779 12846. 24625 8065. 22206,. 13,:34 90,73. l
- 4. 7 -
4061. S.5 12499 25633 c S.7 4s36. 2332. 5.1 12024 13 32. 2s9ss. 93 6. 1 o ,~h
- 7. 6 Sles.
23041. 4.8 18362. IS120 26488. 9921. C 10.0 7301. 27895. 3.8 9259 17598. 26857 30297 ] C2 14.2 8280. 29899 3.6 8290 19090. 27370 30810. j 15.0 8770. 30527 3.3 7790.
- 39648, 27438 10878.
t 35.7 8827. 30693. 3.S 7733. 39760. 27493 30933. I 9.0 8928. 31149. 3.5 7632. 2u038 27670 11110. o 20.0 9387. 3:562. 3.4 7243. 20439 27682. 18122. ( J-20.3 9691. 31905
- 3. 3 6869 20798.
27667 18107 l 1 I i t 1 L = a F O.0 50 40 i0 Rio tiO i STRAIN ]N PERCDR L Figure B.13 I ~ =
MATERIAL TYPE 1 ( ( 1 .a fir j 'l, ~ [I 1 Q' ^ l [ .a ++ {f _ 'A l 4._ [ 'W % [ [ RD 2/PB-4 ( d' = 7200 psf) ~ RD-3hB4 ( am = 15,840 ps5f [ [ l [ [ [ pi@ u m [ Q c I f, b RD-2/PB4 ( O'm = 50,400 psf) E Figure B 14 l
L [ MATERI AL TYPE 2 [ n s N \\ [ x N [ } RD-3/PB4 ( O' = 15,840 psf) [ [ ~ JI [ r' s _ f.i C ,a E "y,,n.,,. 1 2 4 f ~' " -~ E RD-3/PB4 ( G'm = 50,400 psf) [ E Figure B-15
[ MATERIAL TYPE 3
- pe, j i
- s. j,
, ?. [ - : 9,- 7 3g ] ~ e., . ?A g. u_ m,q ; l RD-2/PB-5 ( O' = 10,800 pst) RD-2/PB-5 (2 = 34,560 psf) r rn L r L [ [ [ E [ r L I Figure B-16
[ 1 l [ l MATERIAL TYPE 4 r" u l$u : [ t ( ~ e 9-p : .] ?. ?ll ~ E RD-2/PB 11 ( a', = 16,560 psf) E E F u r l% I L ~ r Figure B-17
UNDISTURBED REMOLDED E n=== * **== Ob = 5760 psf On = 5760 psf I T
- m " *" "' ME-
.R93a. u.,a n 6"'"" p 1:.t; ~ p a d it t t. I @+I-T ~ .IV "*~ -l LL a f l Ji .:.69.9% i Qt tit:4 ^ t= ff ~] - ll:l' .' l {f g =' 8 1 i 3 l y . + ~~4 t"- -4 7 I . g $: '-U - li. I, a kr 1:xti: i: oft2 m "" b4" T 4'l ll' d i i
- !,i l
ti tit .4;i_ 15 i . hl f_ ? i, l h. d t I t L ti 1;1_l. .1.1-111 1. 1 ,1 _.i-w i W '. 'g 7~ fl itil lid i .jjjt 'o' h{j Im;;;fgmm p ~~ 16.0% [ l l g y tri [! ;!i il- . 'b i T
- b. is 1*
. ri .i.*[. n 4'.- z
- .;'il l ji-j[
1 ~ n:. 11h!. l I FT 1 1f , +, L e., c., e _ _ ~. > ~ ~ . >. " -. ~ ~ .I O D== * . rr "a Oh = 8640 psf D., $ o., n Oh = 8640 psf m .==. us, n m E
- f
- J l
i, t ..1 1II l I I I .}
- !r i
i i i a - f ~- l -y !L r 1 L1 I'1 i j l
- 4 u
2'.. L j t
- Y
{T~- !;1 ll y h g u _ jj 7 .r: 2 ' I j
- i. f I
i
- I' Tf5 j E r
32 iy [:{[:{' !:i ll ph 4i l .. M l h-- fitrttd itttNitikit.,n d ~ i di !1 i ii n ~ -- i 3 49.2%Fl lh l l .si 3 d 1
- :p --
tmv F ITW T 1 :. s [ ' f 142.1% iiii. j 1 'tTh . ~.,$ . tit " 1 na a m .i ..= l u " 1 3 1%. 7 f til q g 1 1 11 1 j} II I I k I ll = i --ift" ~ t-
- i
]
- -.. t.
lI l !. i = I _'I 2. 1 = rt-- 1 1 1 i ~ 4-t' I L c fl.. r r i 4 ri r s-I es i -t+ p+,n, ce } - j -y.-p p = .;;-t++y H j-
- h:.]; g[.
. [ .[*.
- ,;,,,;;;, 7 *"
1 1 3 n: o i .:o
- ui l
4,.4. 1 ..h ~ I- -4}44444 !I 3:' , ;Q;,;.]llI 97 U n=== = h=== Ob = 11,520 psf E ov-eu.== Oh = 11,520 psf .I
- =-.
.-=. ':a'c . fra. u., n us, n ' }if [ ii 1. 1 }.[ l ,ft fI .^I 1: g,g g,g i i E 79.5% r i ..II
- I
- i 8
g .'4+- 4- --4 ~-4 .4, l 1 ~ -htb nit !. g -g -i-1,1 I! ti rr:i tr .1- ~ ^^
- j jl!
h 2 n.jidj,3===i f yth i n h = 3 tr - a I-i:. ii. - l 1.h I " b.f hf5 5 I!: !i !!i! R 4 l -l",Q +si F [ 4 5; j;;',j!
- ni
,7 ,,;gg; -g,,:..+- w <.d hj- . 1.!..r :
- +
- -_:1
,-1 12 rr
- a. pt id
. L J..1 -+t ---~ l 5 4 p - 51,:
- m t u.g.4
- 1 1
, A.j 29.5% --1 -.l t:;tg jf l~- E -...tp 1 LI 1
- I{
-j- +t-- S.m amm;;~t'."( 11 4 1 i t L:: p4x I Ei it:::4 1 5 . 1
- i rj
--t-- a .i I a. ,,y,,;;;,ir y ,,e m CU Direct Shear Test Results - Boring RD-2, Sample PB-4 Material Type 1 I Figure B.18 4 I
L 1 1 1 UNDISTURBED REMOLDED U w e===.s O' = 5760 psf - s -.= 4'8'co"." tum o O' = 5760 psf 'd "
- w..
s 18gg n u.,., n n. !)", f-nt t-1 !. l L l.. [ p J--..I.}r}4 ~ 'f I j l i t:
- a. --- ] y
-y .--f l I a. } . L _I.. I 3 M; t -.J., 1 S,..p . -jg gl , g-q 4p-,, [ [._ t .}. / untus p, 154.1%+ +- g ,s .,J [.f-d up*- r +t-- "t ;p q 2 [ 7(.y!"i
- si Q4gf JdQ/4_
. {E y t- - 7 99 - h- ,,,8 -,,,1 d 1 L_+ gi,,, l,n," i i ..-f.. ev,,, 1 . i . l. tg.- i [ 3 f-i -t .] .r..:... e } f w,
== = unn <.s ma anu = = = = = -- p = 8640 N m,. o
- . ~
m"'" * * ., Gka 8640 psf v... o u.,.,, .I 1[_ 7 8'8 4 - f-e - -+- i f I H t H H Un%"I-I I } i1 t 3 frI*y .,k d;: m }.j jy g ..,J - Qyjap,4t f i b -- -g}7 .,a @39.5% IIIIIlINSD,'gl J .ii M=- P f j [ .wNgga31 .4 .,.g.,, ~ q m .....r, 1 l-q m 2. 1 { j .. ( I = i: 2 11 'f, krh [ [ ' ~ I. .d llt ~ .= J i ~ l j : . l,Q aa - = -7 s l o .= = i a a,, t.= 4,- ,c ..nn, 3,g= o 3 e --nue ,O. &", = 11,520 psf o==* w m.e o. = = 11,520 psf 7 ' * = =* a-ar '2"* v s. .f Sco u., n u'm a -j! [-. 'g. ' 4: f[ I h[! hll. b I W's t84.7% = t l-
- IlJ, rMH
{ gyppt fi E M;) mi .u-# 7 ~ ~ t j yhi { i + .4% m u., l m
- 12
[ (( M ~ l ,o .,4 oE d;}t r= i ? i j j >j $m;:$:o$::.
- ,$i a %.fHgy-
_. 1 1 ' '"u jf~f J[g: Un l .. g-li t - U b; 5 Lei n 5 gl. 33 g I j j -t-p4h;i;s lu @cM--' ,o, d[t: -E E3 r i .4 t[ i
- nu g
w}p}g:p=a. i - t alli j
- .u 1 II!
+;1 ..b}{.! ilLi !!+1 ns w.4, e 4 -:T 2 4. 1 11 : !!!! lili @1-6 = ((T L ti!! Hi! 3 i - j .F = w r=re q i I ti+il*f-I l": e Hp ni if nu sm.
- iII:lllll llilitliitis,.t+ -M..?.--
L .ae m. w ~ w,.= ..m --.m... r L CU Direct Shear Test Results Boring RD-3, Sample PB 4 Material Type 2 Figure B-19 ?
I 4o - I so - C I N g 20 - I h p'-s-E to - .a p'= 31' o o io ao ao 4o 50 so 70 so EFFECTIVE PRINCIPAL STRESS, 6-ksf I 4o - I so - I 1 20 - l' undi.turtl.d b ) y ^ to - @, E,_ _ _. - y"- "- _ m __p_,. 4-s c, - o.7s kaf p, - 1s' B 5 3 5 5 5 3 3 o lo 20 3o do So 6o 7o 8o Ofc ' k'I EXPLANATION ,d Cu triaxi.i t.sts. cu dir.et sh, t t.-undisturb.d mpi cu dir.ct sh r t t:4.moid d mpi I Earth Sciences Associates Palo Alto. California GETR LANDSLIDE STABILITY ANALYSIS I STRENGTH ENVELOPES AT 10% STRAIN MATERIAL 1 Checked by Date Project No. Figure No. Approved by(( Mate 1886 B-20 I
I l I 40 - i 30 - b I E e 20 - se ' F ~5' l g e g 10 - p'= 31' o 0 10 20 30 40 50 60 70 80 I EFFECTIVE PRINCIPAL STRESS, 6 ksf 1 I 30 - I i i M-E Undisturt>.d 4 b / s d.r S ,A 10-y = 30' _ _.- -- - - 4, 2* = 17' R. mold.d C = 1.0 ksi r N 0 f 0 10 20 30 40 50 60 70 80 aj,- kne J EXPLANATION ,b Cu tri.mi.I t ts. Cu dir.et sh, t t.4=disturt>.a mpi. i Cu dir.et sh, t t.-r.moid.d mpi. 4 !I Earth Sciences Associates Palo Alto, Califorma l GETR LANDSLIDE STABILITY ANALYSIS STRENGTH ENVELOPES AT 10% STRAIN { MATERIAL 2 Checked by . 'W/- _._ Date F/s2P/ct Project No Figure No. Approved by - Dateh/28/fD 1886 B 21 ~,
H= lI 3 30 - b b y 20 - ijg E l3 j 9'- w 10 p' ) 0 0 10 20 30 40 50 60 70 80 E FFECTIVE PRINCIPAL STRESS, 6-ksf i l !I k !I 3 .g 3 t 20 - h ""~~~ 10 - + - v. 7-4, C = 3.5 ksf j j 1 i 0 O to 20 30 40' 50 60 70 80 Gk ksi i EXPLANATION b, bj CU triamiel tests; subscript 1 indicates tests i by Shannon and Wilson,1973. 1 !I Earth Sciences Associates % Ana, c.wora GETR LANDSLIDE STABILITY ANALYSIS
- l STRENGTH ENVELOPES AT 10% STRAIN m
MATERIAL 3 l Approved by 3(d. Date8 Ed/p/0 Checked by [ Project No. Figure No. Date $/ 1886 B-22 i
'I 40 - / = 30' y / .m 30 - p' ,/ \\ / g m-r. / / i z 10-f.= 36' ' W 0 O 10 20 30 40 50 60 70 80 EFFECTIVE PRINCIPAL STRESS, 6 kst il J 40 - il a 30 - Ig lu V'# 3. 20 - s' l / /', 1 10 - h = 26' y C = 0.6 ksf 1' 2 0' 0 to 20 30 40 ' 50 60 70 80 6,#,. ksf 5 a EXPLANATION , b,bg,b CU triaxial test; subscript 1 indicates tests , I 2 by Shannon and Wilson,1973; subscript 2 indicates test by Dames and Moore,1960. 4 I Earth Sciences Associates Palo Alto, Califorma GETR LANDSLIDE STABILITY ANALYSIS I STRENGTH ENVELOPES AT 10% STRAIN MATERIAL 4 Checked byJ _ 1_. Datey46 Project No. Figure No. Mer Mate r/Zk'db &S 1886 B-23 Approved by
~ ~ APPENDIX C STABILITY ANALYSIS ~ Introduction The procedures uscd to analyze the stability of the landslide complex in the hills north of the GETR are presented in this appendix. The results of these analyses are presented here and are also summarized in Section IV.C. of the main report. The analyses described were aimed primarily at assessing the behavior of the landslide complex under earthquake loadings compatible with the design seismic event required for structural analysis of the GETR (Newmark and I Hall,1980). Landslide Model The landslide complex in the hills north of GETR was modelled on a two-dimensional transverse section in which plane strain conditions apply. The section chosen for analysis is shown on Figures 1 and 2 as section X-X'. This particular section was selected for two main reasons. First, the geologie units and structure, as exposed near the ground surface, are well documented along almost the entire length of the hillslope portion of this section (see Section III.A.) and second, this I section is representative of the major portion of the landslide complex as shown on Figure 1. The generalized distribution and character of the geologie units and the daylight locations and near-surface attitudes of shears along this section were described previously (see Section III.A.; Figure 2). Because of adverse drilling conditions, the coarse-grained nature of much of the section, and the great depths involved, it proved infeasible to determine the location of failure surfaces at depth by means of subsutface exploration. However, the extensive near surface data and geologic interpretation provided a rational basis on which the geometrical models I of the inferred existing failure surfaces shown on Figures C-1 and C-2 were developed. The toes of both of the modelled failure surfaces daylight at the location of the B-1/B-3 shear shown on Figure 2. From this point the surfaces dip back under the hills witn an initial inclination of 15 degrees to the horizontal, the average observed near surface dip of the B-1/B-3 shear. The two failure surfaces then project down dip so that they stay within a weaker fine grained unit for as far as possible. The heads of the failure surfaces daylight upslope at the two locations l Earth Sciences Associates C-1
~ where evidence of tensional, high angle shearing was found in Trenches G-6 and G-0 (see Figure 2). From these points the shear surfaces project downslope with an intial inclination of 60 degrees to the horizontal, the observed near surface dip of the shears. The het d and toe portions of the failure surfaces thus defined are I connected by a smos th curve to complete the modelled shear surfaces. The resulting model of the landslide complex thus consists of one block which involves nearly the full height of the existing slope and a second block which involves the lower half to two thirds of the slope, both toeing out along the same basal shear surface. This model of the landslide complex was analyzed as described in the following sections. I Seismic Stability The stability of the modelled landslide complex was analyzed for earthquake loading conditions. The analytical procedure followed is based on the approach recommended by Makdisi and Seed (1978) for estimating earthquake-induced deformations in dams and embankments. The work by Makdisi and Seed represents, in turn, modifications of, and improvements on, earlier work by Newmark (1965), Ambraseys and Sarma (1967), Sarma (1975), and Franklin et al. (1977). Although the case at hand involves a natural slope rather than an engineered embankment, I the basic physical and conceptual similarities in the two cases are judged s'afficient to justify use of the Makdisi and Seed appt )ach. The analytical approach utilized in this investigation consisted of the following steps: 1. A value of yield seismic coefficient (k ) was established for each I failure surface; this value is an index of the resistance of the failure surface to deformation. I 2. An appropriate value of maximum seismic coefficient ocmax) acting on I a given landslide mass as a respit of the design seismic event was established; this value represents the driving force tending to cause deformation. 3. Permanent displacement (u) was then estimated based on a relationship between u and the ratio k y/kmax" I l Earth Sciences Associates c-2
I E Step 1 I The first step in the analysis was accomplished by performing pseudo-static total stress analyses on the landslide model described previously using total strength parameters appropriate to the inferred existing failure surfaces. This method of analysis is generally considered applicable for materials which do not suffer signficant loss of strength due to cyclic loading (Seed,1979; Makdisi and Seed,1978), as is judged to be the case for the materials tested during this investigation. The total strength values appropriate to various portions of the failure surfaces were selected from the envelopes of normal effective stress on the failure plane at consolidation (c' ) versus undrained shear strengths on the failure plane I g (7 ) shown on Figures B-20 to B-23. For purposes of the analysis, the failure planes fg were modelled as discrete segments to account for differences in average consolidation stress and material type along the surfaces. The in-situ consolidation stress on a given segment of the failure plane was taken as bemg equal to the average effective vertical overburden pressure. Effective overburden pressures were calculated based on average values of the total unit weights summarized on I Tables B-1 through B-3 and the piezometric surface shown on Figure 2. The choice of the strength envelope to use for any given segment of the failure plane was based on the geologie units (as shown on Figure 2) within which that segment occurred. Remolded total strengths were used in the units characterized by fine grained material types 1 and 2. These lower strength values were used to account for effects such as pre-existing slickensided failure surfaces, lack of cementation, and remolding due to large shear displacements which one might postulate as applicable to a pre-existing landslide failure plane in fine grained materials. Where the failure planes pass through the unit characterized by material types 1 and 3 I (see Figure 2) the remolded total strength of material type 1 was used unless the total undisturbed strength of material type 3 was lower at the given confining stress, in which case the lower of the two values was used. In the units containing material types 3 and 4, the lower total strengths of material type 3 were used throughout. This value is judged to be quite conservative because much of those sections are known to be predominantly coarse-grained from the trench exposures. The total undisturbed strength was used where the failure planes pass through sections characterized by material type 4. These gravelly to cobbly coarse-grained soils would not be expected to show any significant strength reduction within the failure zone. I l Earth Sciences Associates c-3
The pseudo-static total stress analyses were performed utilizing a general purpose slope stability program, STABL, developed at Purdue University (Siegel, 1975; Boutrup,1977). The program has been written for the general solution of slope stability problems using a two-dimensional limit equilibrNm method. Cal-culation of the factor of safety against instability of the slope is performed by a method of slices based on Janbu's simplified method of slices for shear surfaces of general shape. This method satisfies overall moment and vertical force equil-ibrium, and assumes horizontal interslice forces. The horizontal seismic coefficient (k ) used in the anclyses was varied in a h trial and error procedure to converge on the value of k which resulted in a factor h of safety of unity (FS = 1.0) for the given failure surface. This value is termed the I yield seismic coefficient (k ). The results of these analyses to establish k for the y two failure surfaces considered are shown graphically on Figure C-3. Step 2 The next step in the analysis requires that an appropriate value of maximum seismic coefficient (kmax) f r the failure masses be established. The maximum seismic coefficient is the earthquake-induced simultaneous seismic coefficient I acting on a mass bounded by a given failure surface and is a function of the peak crest acceleration for an embankment configuration. For the purposes of this analysis, the maximum effective peak acceleration of 0.75 g specified for structural analysis of the site (Newmark and Hall,1980) is taken as the maximum ground acceleration (limax) at the crest of the hills north of the GETR. The appropriate value of the maximum seismic coefficient corresponding to this maximum crest acceleration is estimated from the relationship of " maximum acceleration ratio"(k I0 max) to the normalized depth of the sliding mass max (y/h) as shown on Figure C-4. For the two failure surfaces under consideration the I ratio y/h is equal to one. Thus, a conservative estimate of k rom Figure C-4 max is given by: k = 0.45 U I max max = 0.45 (0.75) = 0.3 4 It is in fact doubtful whether such a seismic coefficient would act simultaneously over the full lateral extent or the slide which is on the order of a mile, or at least several wavelengths, long. The so-called " tau" reduction effect would probably reduce the 0.34 to a lower value. I l Earth Sciences Associates C-4
I Step 3 I The final step in the analysis procedure is to estimate the amount of permanent deformation (u) that might be expected to occur as a result of the design seismic event. The amount of parmanent deformation on failure surfaces subjected to seismic loadings from various magnitude earthquakes have been calculated for a wide range of yield and maximum seismic coefficients (Makdisi and Seed,1978). For a design earthquake of M 7.5 the relationship of u to k /k y max is as shown on Figure C-5. The ranges of permanent deformation for the two failure surfaces analyzed, as estimated from Figure C-5, are summarized on Table C-1. Static Stability In normal practice an effective stress analysis would be used to evaluate the long term stability of a natural slope. Ilowever, for this investigation a total stress analysis was used to estimate the static stability of the landslide complex at the GETR site. This approach was chosen in order to utilize the results of the reduced shear strength envelopes developed from the consolidated-quick direct shear tests performed on the remolded samples. These strengths were used to represent strength that might be applicable to pre-existing failure planes in the fine grained units. g Effective strength parameters for these materials were not established l5 during the laboratory testing program due to the emphasis placed on the seismic loading case analyzed in this investigation. The static total stress analysis was performed using the same computer model and total shear strengths as used in the seismic stability analysis previously described. The only difference was that a horizontal seismic coefficient was not applied. The factors of safety calculated for the two failure surfaces analyzed are i shown on Table C-1 along with the results of the seismic stability analyses. I For purposes of comparison, two additional analyses were performed using lg the failure surfaces previously described and effective and total strength param-5 eters developed for the undisturbed soil samples. The factors of safety calculated for these two analyses differed by only 20 percent, with the effective stress analyses yielding higher factors of safety. Based on these findings, the use of total strength parameters yields factors of safety which are conservative. Therefore the use of the remolded total strength parameters in a total stres analyses to evaluate the static stability Of the landslide complex is justified and probably conservative. I l Earth Sciences Associates
TABLE C-1 RESULTS OF SEISMIC STABILITY ANALYSIS Range of Yield to Yield Seismic Maximum Seismic Range of Estimated Static Factor Coefficient, k Coefficient Ratio Permanent Displacerr.- t, u Failure Surface of Safety (g) Y g gmax y Full-slope 2.9 0.18 0.53 3 - 18 Mid-slope 44 0.22 0.65 1-D rn W rvr m O. m 3 Om m m m O O. i ,o m
L in r0 $ Eh l.9. k,1) / i I!'I $u$$$ $ [ \\ 1 hl / Be.jg e [ rei .!! su.a i i a/ / i EUE a ( c to x v 2 l @- I4 I a se I / // 2 r ri;f e [ n 'o [ n 9 T i [ ld* 8S [ c4, ,i> [ I i/ i t i/!/ s.ci [ ll1 I I !x tp y, ,~ C M l f 8 5 [ t i / } 1 E it i 5 i u !c ^ I Od I!d [ iI hI i!N E b e $$$ !8 s~~ [ "6s @ ste oo.og, oo.e otu sixg-, co st r E
l co C3.. 07 C3 C3 e .* sn C:)ca.. Cd q -s a / r -~ m w~xx
- g
~ - = = = = >. 6 = : - ~ ~, ^ ' ~~ ~~ n- +~
- a. -
i rano,e s.n-. N 'N C3 ~ C? %.,.N to. ~~ r-NN N C3 c3 D.00 ?!5 0 0 il5000 2h5.00 lb0 00 ' MS.0C 450.00 Sh5.00 lb0 C X-RXIS .m 10 NOTES 2: ***0Sx'*s'a ' d".*.'t. Earth Sciences Associates 'P " ' " " ' ' * - s in
- 3. No scale exaggerat on.
Palo Aho, Cal.#orn.a
- 4. Lixation of scale origins is arbitrary.
GETR LANDSLIDE STABILITY ANALYSIS COMPUTER MODEL EXISTING FULL SLOPE FAILURE SURFACE . _ abemoei.(j$[N Detecgf #@ Prosect No Figure No Checked oy 1886 C-2 Appresed by
[ l [ l [ I 3- [ [ N 2-ua [ 3 8 5 [ s
- u. 1 --
[ [ 0-1 I I I I I O 0.06 0.10 0.15 020 0.25 0.30 HORIZONTAL SEISMIC COEFFICIENT, Kh*8 e Existing midelope failure surface [ X Esisting fullelope failure surface Ky Yield seismic coefficient [ [ [ Earth Sciences Associates f Palo Alto, Cahforma GETR LANDSLIDE STABILITY ANALYSIS VARIATION OF FACTOR OF SAFETY WITH HORIZONTAL SEISMIC COEFFICIENT L Checked by M 14 dsu._ Dat Project No. Figure No. t Approved by NM Date 1886 C-3 n
L l [ [ O s [ O E E. Method 0.2 " Shear Shee" (ronge for dl dato) ( O.4 y/h [ O.6 [ Average of D.8 didato \\ 1.0 I O O.2 0.4 0.6 0.8 1.0 k U mox/ rnoz [ (from Makdisi and Seed,1978) [ [ [ [ [ Earth Sciences Associates Pab Aho. Cahforma GETR LANDSLIDE STABILITY ANALYSIS VARIATION OF " MAXIMUM ACCELERATION RATIO" WITH DEPTH OF SLIDING MASS 57,$"je", I "I8as "'N' ""~ ,i f l
[ l l l 1000 i o 0 1 g M ~7 /2 8 0 { 100 g g D g 9 5 g
- 5. 10 o
o 6 [ s e I A O e e a e I ~ g 0 o 9 [ B C D I 9 L O.1 e 0.01 1 I I i ( 0 0.2 0.4 0.6 0.8 iO k [k y mox I (from Makdisi and Seed,1978) L b l [ l Earth Sciences Associates Pab Ako, CaMornia GETR LANDSLIDE STABILITY ANALYSIS VAR: ATION OF PERMANENT DISPLACEMENT WITH ) YlELD ACCELERATION-MAGNITUDE 7.5 EARTHQUAKE Checked by M Date Project No. Figure No. Approved by[/ Dat 1886 C-5 I t 1}}