ML19331C141
| ML19331C141 | |
| Person / Time | |
|---|---|
| Site: | Indian Point, Zion |
| Issue date: | 06/18/1980 |
| From: | Henry R AFFILIATION NOT ASSIGNED |
| To: | |
| Shared Package | |
| ML19331C132 | List: |
| References | |
| NUDOCS 8008140210 | |
| Download: ML19331C141 (20) | |
Text
)
O t e
'..e 18, 1_1.0
~
3 '. n.
I.
_ry R-. 2rks A.
.s C B.
- tilities
'5 a..n.
II.
Ar ci.iant Sequance Salection - Utility Ir.'e.tatian A.
Ovarview B.
cci.' ant Sec. nce F.
at Ticcs & 'rt Lility rs1i 2:'s 1.
S i., ce F nt L s.~ce Z/IP
....,'i:. s )
2.
% ta Scucc s
('.' iM. f) f.
~
3.
i n i t 1 a,c. n g i..oc.,
-;1 i. rs m,,.
4.
Mitigating S st 5,
S ;t.
ss Crit ia & Irr' Oility i
of Fail'n a cn 'c ad C.
Contai:.c. ant Fa ilure ",.d:s md r i-.
.n "i 'xtRainse Ic,en li1ce tion or aces
. d s i s c...,i ci:ur e c
1.
Probability Estimates 2.
0.erall Accid:nt Sequance rioL:Lilities 3.
Sasis for *ssign. ant of Overall Failure Sr_quances to Reicase Cate;ciies 4
C.n l l
.~.ca
- n t Se',. v.ce L i s ting by Rel c a se Ca t pry D.
-:i c k
's t '
- t s 1.
5:1 rt
- s k 7 'ml-t cn by Relcase Ca tejory 2.
L t.. g. T r.1 2.ick ulatkn by r lease Category e
F.
N ults 1.
t,ar'.n of lion, I.d:an ?vint &. 'SM-1400 P'.!R Risk F 3 '. - - 'es 2
F..,ai,
- .1 v f "
.:s
'.o
- E M i. ') i..'R a.
S:
.:.es And end Eli: h.S t ed ce.MM -liOO b.
Frincipal Cesign 1._. ;n Dif fes ences re Dc:ainant Seqt,ences Fs ti.=f S of Eisk E ducticn tsuiting I D1 InLGrim 3.
t
"_e. 's 4.
..c'*.nt c....a
' ing ~:' li.e :.o Ris k F
F.
C.: r.cl u s i e n s 1.
"ethcdology for Sequence Selection 2.
Acci.'2nt S p r ce Eanu ng 3.
ce '<iti.itien i
e.-
u.
s -:. c
., re,r.3,iysis 12:15 p.m.
1. ',CH 1:15 p.m.
III.
! vng. er.a utility Pre' Bilistic Risk Assess: 2nt - Utility Pi.-:uaticn A.
% :.e of Study B.
St[tus C.
Schedule for Ccmpletico; Type of Ecsults & Their Significance n ',5 p.m.
IV
- RC Cc ents and Discussicn of Icminant *cci '3nt Sequence Selection
- 00 p.m.
V.
idjeurn. ant soce1402 \\0
3 I.
hs vma.t y
s.% $
. L u, s p V rC
- A N :: CA' J:: S?ERS::ON r
oy CORE M K, 7 T.~. A ;-
=
J G
t l
c
- STEAM, ilYDR0GEil,
/
3 fl O L
_j pl ETC. (1200 FT )
~~
I T
.Y I
I
.o J
,A p "-
CORE MATERIAL
=
i:
r' pgi iN-CoaE
~J1
- REACTOR CAVITY INSTRUMENT TUNNEL REACTOR DUILDING e...
?
VENT PATil FOR STEAM AND ypg j-- g CORE DEBRIS
-l
\\
~
VESSEL BREACil l
I JhS,o,$>
f N 4 5
~
," D 1
\\dj(6 IN-CORE f~ I n
_, Mp.
INSTRUMENT TUNNEL REACTOR CAVITY CORE DEBRIS REACTOR BUILDING LA s-
't 3
e e
e-DISPERaAL CALCULATI0tlS
'j GTEA M,
'f U
e
,'s HYD M N,
//
//'
' > / / / / / / / /,' /
ETC.
/ % / //
/
/
/
's
/
xw w
/ un /$
' JgyQs,
,/
//
U
/
/
/
/
~
/
/
/
's/ / / / / / / / / / / // ///
El Wff "fa)
U=
w = pg 7AU c.
~
G G=gPo//RT A
= W/G y
F=1[G D
8 ggG l
- Y
=l 69=?'P W
n o
O O
Are se l
1
3 O
TMLB' ns - m i
/
/
/
/
/
/
/
DISPERSAL 10 d
oF h
CORE MATERIAL ut x
o m
D
+
g p
5 l
/,
1 L
/
I I
I I
I I
o o.1 o.a o.3 0.4 0.5 0.6 TIA,rn DISPERSAL POTENTIAL VERSE VESSEL 3R EACH DIAMETER
fl A L J-il l
~
VESSEL BREACll ACCUMULATED x kJ fh
/
1 l
't M-CORE DEBRIS t
17
~_,'%ff.
'l IN-CORE 2
INSTRUMENT TUNNEL
.. _ -- lj N R$ ACTOR CAVITY REACTOR BUILDING
-W
.c e
3
j I
1 33ISPER S ED CO NDITIONS A VAIL ABLE SURFACE AREA ~ BOOvnz A MOUhlT OF CORE DEBRIS ~ 100,000 kg BED T>oRo SIT Y e ~ O.5 BEp DEPTH ~ 3 crn m
_--_+_-,__-.___...,,%.
_,_,__,m_.
y_, _,
e;-
CONC _USION'S I
- WAT ER IS AVAILABLE ON A CONTINUOUS BASIS ON ALL SURFAC E S WHERE SIGNI FIC A NT FUEL ACCO M UL ATION
~
CAN OCCUR
- I)ISP ERS EI)
COR E IS COOLABLE AND NO SIGNIFICANT ATTACK OF THE CONCRETE occurs
.~
4
_s Q \\ ',' A n y. e w.sb e.\\ 'n -
eekd.'kVt!<
'^ " \\0 '
'd APPDOIX B: SYleO[IXTl
)
Syste Identification System Failure Symbol Syste Symbol CSRS Contairment Soray Recirculation System F
ECI(S)
Dnergency Coolant Injection (System)
D ECR(S)
Bnergency Coolant Recirculation (System)
H ANS Auxiliary Peedwater System L
LPRS Iow Pressure Recirculation System HPIS High Pressure Injection System LPIS Iow Pressure Injection Syster ACCS Accr.J1ator Syste-RCS Reactor Coolant Syste.-
PJF Residual Heat Rerreal System HPRS High press.re recirculation system RWI Refuelinc water storage tank
e.
1 SYMCUJGY
~
Initiating Pants Sv:nbol Large pipe break ( 6")
A Small pipe break (2"-6")
Sy Small pipe break (1/2*-2*)
S2 Interfacirg check valve failure (To ISIS /LPtS) with blev3cwn outside contairnent V
Transient (Ioss of offsite AC power)
T Ioss of AC Power Events Si--bel Non-recovery of off-site power for about I hr M
Loss cf Onsite AC power for aMut I hr.
B Non-recovery of any AC power for aMut 3 hrs.
B' SJccessful recovery of Kr e AC pcwer within 3 hrs.
B Containment Failure W +s S3-cci Ster explosion in Reactor Vessel y
Isolation leakace Overpressure frar Hyirocen bur-ing y
Overpressure - mmrally (less hydrocer' h
Contaircent melt-througn 6
VG-1 t
Sil0RT-TERM CORE MELT STUDY PROCESS OVERVIEW IDENTIFY SAFETY SEQUENCE SEQUENCES SYSTEMS
>- PROCABILITIES STUDIES V
V FISSION PRODUCT RISK RELEASE +
> CALCULATION CONSEQUENCES 4
h IDENTIFY C0llTAINTIENT CONTAINMENT CONTAI:: MENT m
m FAILURE STUDIES FAILURE i
PROCESSES PROBABILITIES La a
g 5
(
PRESE:iTATIO?i OUTLIt.E
- IDENTIFICATICN OF SEQUE: ICES
- FROEASILITY ESTIP/,TES e FISSICN PRODUCT RELEASES Arid CO.;SEqtzg5 c;tgyL;73(? g
- RESL1TS
5~
ACCIDENT SEQUENCE IDENTIFICATION e
STARTING POINT WASH-1400, APPENDIX 5, TABLE 3-14 CUTOFF PROBABILITY OF 1 X 10-6 / YEAR e
SEQUENCES ADDED AHF S HF 1
S HF 2
e SEQUENCES DELETED SgC TML TKQ TKQM
ACCIDENT SEQUENCE
SUMMARY
SEQUENCE INITIATING EVENT FAILED FUNCTIONS AD LARGE LOCA (A)
ECCS INJtc (10N (D)
All LARGE LOCA (A)
ECCS RECIRCULATION (H)
Alif LARGE LOCA (A)
ECCS RECIRCULATION (ii) + SPRAY RECIRCULATION (F)
St INTERMEDIATE LOCA (Sj)
ECCS INJECTION (D) j Sjil INTERMEDIATE LOCA (Sj)
ECCS RECIRCULATION (H)
SjllF INTERMEDIATE LOCA (S )
ECCS RECIRCULATION (H) + SPRAY RECIRCULATION (F) 1 SD SMALL LOCA (S )
ECCS INJECTION (D) 2 2
5 11 Si4ALL LOCA (S )
ECCS RECIRCULATION (H) 2 2
S HF SMALL LOCA (S )
ECCS RECIRCULATION (H) + SPRAY RECIRCULATION (F) 2 2
V INTERFACING CllECK VALVE FAILURE (V)
TMLBB' TRANSIENT LOSS OF 0FFSITE POWER (T)
ONSITE AC POWER + AUXILIARY FEEDWATER + LONG-TERM NON REC 0VERY OF POWER TMLBB" TRANSIENT LOSS OF 0FFSITE POWER (T)
ONSITE AC POWER + AUXILIARY FEEDWATER +
REC 0VERY OF SOME POWER c;~.
.y,a y
PROBABILITY TOPICS e
KEY DIFFERENCES FROM WASH-1400 e
INITIATING EVENT PROBABILITIES e
COMPONENT FAILURE DATA 4
SYSTEM FAILURE CALCULATION D
SUMMARY
OF WASH-1400 Dil'ERENCES 1.
C0flTAINMErlT FAILURE FROM STEAM EXPLOSION e REDilCED BY 10 FOR "A" SEQUEtlCES REDtlCED BY 100 FOR "S ", "Sp", "TMLB" SEQUENCES e
g 2.
OPERATOR ERROR PROBABILITIES e ELIMINATE FAILURE TO SIIIFT TO HOT LEG RECIRCULATI0fl e REDUCE INJECTION-TO-RECIRCULATION ERROR PROBABILITY BY 10 FOR S llf AND S llf i
2 3.
INTERFACING CllECK VALVE CALCULATION 4.
LOSS OF OffSITE POWER PROBABILITY (ZION) 5.
CONTAINMENT OVERPRESSURE FAlLllRE PROBABILITY e USED 0.1 FOR ALL SEQUENCES EXCEPT TMLB 6.
DIESEL-GENERATOR COMMON MODE FAllllRE REDtlCED PROB, ABILITY BY 100 e
ch '
- 2v o
?
INITIATING EVENT SUM %RY INITIATING EVENT PROBABILITY LARGELOCA(A) 1 X 10-4/ YEAR INTERMEDIATE LOCA (S )
3 X 10-4/ YEAR I
SMALL LOCA (5 )
1 X 10-3/ YEAR 2
LOSS OF 0FFSITE POWER (T) 0.04/ YEAR (IP-2) 0.2/ YEAR (ZION)
INTERFACING CHECK 2.8 X 10-10/ YEAR (IP-2) i VALVE FAILURE (V) 7.2 X 10-8/ YEAR (ZION) 5.2 X 10-8/YEAF. (IP-3) t s
9 l
i 1
1 k
_,m.-___..-_._.
4
=..
(c SOURCES OF COMPONENT FAILURE RATE DATA e
WASH-1400 GENERALLY e
EXCEPTIONS DIESEL GENERATORS GAS TURBINES (IP ONLY)
AUX FEEDWATER TURBINE (ZION) e DETAILED DERIVATIONS IN APPENDIX A
~%'
((
MITIGATING SYSTEMS AND RELATED SEQUENCES SYSTEM SEQUENCES LPIS AD ACCUMULATORS AD, S D I
HPIS S D, 5 0 I
2 LPRS AH, AHF HPRS 5 H, 5 HF, S H, S HF 1
1 2
2 CHECK VALVES V
4 r1 FLUID SYSTEM UNAVAILABILITY ANALYSIS PROCEDURE e
PRODUCE SIMPLIFIED FLOW DIAGRAM e
ARRANGE COMPONENTS INTO GROUPS OR " BLOCKS" e
CONVERT FLOW DIAGRAM INTO A BLOCK OIAGRAM e
COMPUTE FAILURE PROBASILITY WITHIN EACH ELOCK e
DETERMINE THE COMBINATIONS CF BLOCK FAILURES WHICH RESULT IN SYSTEM FAILURE e
COMBINE BLOCK FAILURE PROBASILITIES TO ARRIVE AT SYSTEM FAILURE PR03 ABILITY s
i CNMT CSRS i u i
SUMP j g il
- @4= rh V7 Niix'-
TO g
V5 V7 V9 Vil VT3 VI P1 i
i i
TO i
mi2
- (--
RCS V4 V6 V8 V10 V12 y14 yp'-
LPRS FLOW DIAGRAM i
1 Yh 4
---w
=--:-----o-
--v--
. - - - ~ = - - - - - -
e
--ne-e
-~'
- ll CSRS
$N CSRS TO RCS
@~
4 P@=P@=3.6X10-2 HX 3.21-21 3.5t-31 d
P @ =P @ =2.8XIO-3 1.3t-31 I.3t-31 21-41 4
RESULT y
CONBINATION OF PROBABILITY CSRS CSRS DOES BLOCKS FORMULAilON ALSO FMILS NOT FAIL 1
@AND@
3.6I-21X3.6I-21 1.3X10-3
@AND@
3.6t-21X2.8(-3)
IX10-4
@AND@
2.81-31X3.6I-21 1 XI O -4 HAND @
2.8I-31X2.8I-31 7.8X10-6 PILPRS AND CSRSt=
1.3X 10 -3 P;LPRSt=
2X10-4 LPRS DLOCK DIAGRAM A FAILURE COMBINATIONS 3.B
.Y
.+
II EXAMPLE SEQUENCE PROBABILITY CALCULATIONS SEQUENCE AH 2 X 10-4 p(
LURE) = p(EVE.'lT H)
=
1 X 10-4 p(LARGE) = p(EVENT A)
=
LOCA 2 X 10-8 p(SEQUENCE AH)
=
SEQUENCE AHF 1.3 X 10-3 p(LPRS'+ CSRS FAILURE)
=
-3 p(OPERATORERROR) 3 X 10
=
4.3 X 10-3 p(EVENT HF)
=
p(
E) = p(EVENT A) 1 X 10-4
=
4.3 X 10-7 p(SEQUENCE AHF)
=
I i
I l.
c nnlR' Ib COMPARISON OF CHECK VALVE FEATURES PLANT FEATURE ZION IP-2 IP-3 WASH-1400 CHECK VALVE TEST CONNECTIONS PROVIDED?
YES YES YES NO PERIODIC TEST INTERVAL NOT 15 MOS.
9 M05.
DONE(*)
(*)
(*)
LOW PRESSURE SYSTEM PIPING INSIDE CONTAINMENT?
N0 YES YES NO CHECK VALVES ISOLATED BY NORMALLY CLOSED VALVE?
NO YES NO N0 l
l NUMBER OF PATHS TO LOW DRESSURE PIPING ISOLATED BY CHECK VALVES 4
4 4
3
{
(
NUMBER OF CHECK VALVES IN EACH PATH 3
2 2
2 l
l l
(*) TESTING IS PRESENTLY PERFORMED AT EACH RCS PRESSURIZATION.
l l
l l
[
I i
i RCS:
' N_ _.
ix l
N___.
I
= LOOP 1
=
I I
I I
I W;N 3
> LOOP 2 I
LIPS /LPRS I
I lh I
I y
N
-N
} N
> LOOP 4
{
HX i
TC TC I
OUTSIDE I
INSIDE
=
CONTRINMENTl CONTAINMENT I
DIAGRAM OF INTERFACING CHECK VALVES
g~*
I!CERFACI1G CHKK VAI.VE FAILURE PROBABILI7Y CAICWCN 2e followirg calculatien is based en de :cdel a,d failure rates given in h7Eri-14CC, Apperx!!x V, Section 4.4, pp, V-43 ard V-44.
hg 4[
O, = Failure cf cce de:k valve pir,
=
cne ordered double gk[
Qy = Failure cf cne deck valve pir, = 20, =
two ordered doubles
= fM hf Q = Failure of any cce of fcur check
=C 3 valve pairs V = Failure of any cce of four check = 0.10,; C, p valve pairs vid bic de'c. Outside ecc: air. ent 7
A L = Failure rate free gress leakage = 2.6 x 10 hT m
_t A R = failure rate free internal rupture = 3.S x 10 ~4r t = test interval = c 9cs =.75 yr.
p r.') = C.4 (2.6 x 10- )(S.S x 10-0) (.75 )
= 5.2 x 10
- 41
}.
=.(
CONTAINMENT FAILURE MODES f
FAILURE MODE THIS STUDY WASH-1400
~
IN-VESSEL STEAM 10 LARGE HREAKS 10-2
-4 EXPLOSION (ALPHA) 10 SMALL BREAKS & TRANSIENTS FAILURE CF CONTAINMENT 2 x 10-3 2 x 10-3 j
ISOLATION (BETA) j OVERPRESSURE FAILURE 0.1 0.1 TO 0.2 FOR NO SPRAY CASES (GAMMA + DELTA) 0.8 FOR TMLB
-2 4
< 10 OTHER CASES MELT THRU (LPSILON)
CASE 1: RESIDUAL ASSUMING RESIDUAL ASSUMING TDTAL FAILURE TOTAL FAILURE PROBABILITY OF 1.0 PROBABILITY OF 1.0
-2 CASE 2: 10
V g
M 1
)
N Y
O UA I
RR Z
l P l
7 iS D
0 l
i
(
l l
i l
D l
I 7
j p
'l Ti A
A S
5 5
S 1
l 1
LT l
1 1
i EI L
L MW M
M I
1
)
P U
I RY
(
liA f
f TR i
l l
1 i
6
- P l
i i2 1
l 1
1 S
TS A
S S
t E
L M
I LO I
R MN OG E
T
)
A N
C E
0 R
1 l
E iY 7
S SA
(
A SR l
D D
l 1
j p
i 2
l "11 l
i
'l I
5 LP D
l 5
S S
5 i
1L L
RS A
A l
1 P l R
Rl M
M Ei 1
i o
Vl i
OW N
I
)
N S
O eO I
LY I
C PA
/
N XR
(
l D
D i
"ll U
3 S
D l
j p
g ii I
LP l
p l
Q M
A A
S S
S S
l f
l l.
i E
Ai L
L S
l l M
M ii T
i f
SW O
N0 i
l t
)
l l
U P
A S
I
/
SY
(
iI i
f A
f t
i t f
li ip l
t l
lt
?
o P
I' lt i
l G
l L A
5 S
V L
t M
t i
l VO 1
A ON C
Y E
)
A k
P t
l I
Pi S
f f
(
i l
l l
S S.
I]
y l
l l
I o
R S
S l
i l
N P
l l
M Gi T
l l
l t
i 0
I
=
S O
L L
R P
U X.
S S
1 a
L t
R l
l P
A l
i W
il S
O l
L A
.4 0
p
- 2. i COMPARISON OF ACCIDENT SEQUENCE PROBABILITIES PROBABILITY (PER YEAR)
SEQUENCE ZION IP-2 IP-3 WASH-1400 AD 5 X 10-7 6 X 10-7 5 X 10-7 2 X 10-6 AH 2 X 10-8 1 X 10-7 2 X 10~9 1 X 10-6 AHF 4 X 10-7 3 X 10-7 3 X 10-7 1 X 10-10 SD 5 X 10-7 2 X 10-6 1 X 10-6 3 X 10-6 1
~
1 X 10-6 1 X 10-6 1 X 10-6 3 X 10-6 5H 1
S HF 5 X 10-7 1 X 10-7 1 X 10-7 4 X 10-10 1
SD 5 X 10' 5 X 10-6 4 X 10 9 X 10-6
-6 2
SH 4 X 10-6 4 X 10-6 4 X 10-6 6 X 10-6 2
S HF 2 X 10-6 z
37 4 X 10~7 1 X 10-9 7
2
.w _. _.-
S2C N/A 4
N/A 2 X 10-6 V
7 X 10-8 3 X 10'10 5 X 10-8 4 X 10-6 TMLBB' 1 X 10-8 8 X 10-9 8 X 10-9 3 X 10-6 u
TMLBB" 1 X 10-8 8 X 10-9 8 X 10-9 3 X 10-6
- g..
TABLE 3-1 31 CONTAIM ENT FAILURE MODE PROBABILITIES AND RELEASE CATEGORIES FOR THE DOMINANT ACCIDENT SEQUENCES CONTAI M ENT FAILURE PROBABILITY AND (RELEASE CATEGORY) 6 (NOTE 1)
SEQUENCE c(
f g
f CASE I CASE 2 AD 10-3(3) 2x10~3(5) 0.1(5) 0 0.9(7)
.01(7)
AH 10-3(3) 3x10-3(5) 0.1(5) 0 0.9(7)
.01(7)
AHF 10-3(1) 3x10-3(5) 0.1(2) 0 0.9(6)
.01(6)
SD 10-4(3) 2x10-3(5) 0.1(5) 0 0.9(7)
.01(7) 1 10-4(3) 1.67x10~3(5, 0.1(5) 0 0.9(7)
.01(7)
SH 1
l C HF 10'4(1) 1.67x10-3(5 0.1(2) 0 0.9(6)
.01(6) l 5 C-10~4(3)
- 2. 2x10-3(5 ) 0.1(5) 0 0.9(7)
.01(7) 2 5F 10-4(3)
- 1. 67x10-3( 5 )0.1(5) 0 0.9(7)
.01(7) 2 l
5 HF 10'#(1)
- 1. 67x 10-3(5)0.1(2) 0 0.9(6)
.01(6) 7 l
v l
TM.EE 10~#(3)
.24(5) 0
.76(7)
.76(7)
TM_3E' 10~4(3)
.24(5)
.56(5)
.2 (7)
.2 (7)
(Zion)
TMLBE' 10~4(1)
.24(2)
.56(2)
.2 (6)
.2 (6)
(I. Point) iiote (1)
P(6)=1-h(Others)
Case 1-Case 2:
P(6) =.01, except for TMLB sequences.
For TMLS sequences, P(E) is the same as in Case 1.
~
- _y 2.5
SUMMARY
OF PROBABILITY ESTIMATES:
INDIAN POINT - 3 l
Release 6
7 5;quence AD 5.4(-10)X 4,9(. 7)e AH 1.6(-12)M 48(*I2)h 1.4(- 9)&
1.6(-10)6 F-AHF 3.0(-10):( 3.0(- 8) 9.0(-10)f 2.7(-7)e{
l1.3(- 6)e 2.
S0 1.4 (-10) X g
3 5)H k.2(-10).y 2.0(- 9 f
{1.1f-6)6' 1.2(- 7 i
5 HT 1.1 (-11 )D( l.1(- 8)Y 1.8(-10)f 1.0(- 7)e 3
V- -- -
3.6(-10)Xl 3.2 (- 6 ) e-l C
3 2
.r_
39 4.0(-10)g 6.7(- 9) j i
i 2
4.0(- 7) ;
l 3. 6 (- 6) 6j i
S HF 3.6(-11 M 3.6(- 8)T' 6.0(-10)f 3.2(- 7)e 2
V 5.2(- 8)
TMLEE' 8.0(-13)X 1.9(- 9)T 16.1(-9)M I
l TM;EE'
- 8. 0(-13 h 1.9(- 9)T:
1.6(- 9)d 4.5(- 9)A!
l f yl l9.7(-6)
U 3.5(-10) 1.4(- 7) 1.6(- 9) 1.1(- 6) 6.9(- 7) i k
SUMMARY
OF RELEASE CATEGORY PROBABILITY ESTIMATES (FOR CASE 1)
RELEASE CATEGORY l
2 3
4 5
6 7
PLANT INDIAN POINT - 2 3.5(-10) 8.5(-8) 1.9(-9) 1.3(-6) 7.0(-7) 1.l(-5)
INDIAN P0lHT - 3 3.5(-10) 1.4(-7) 1.6(-9) 1.l(-6) 6.9(-7) 9.7(-6)
Il0N 6.4(-10) 3.2(-7) 1.2(-9) 6.8(-7) 2.2(-6) 6.l(-6)
WASH-1400 PWR 2.8(-8) 4.6(-6) 2.3(-6) 3.8(-8) 1.4(-7) 2.9(-5) to 4 -
_y 2S PRINCIPAL DESIGN DIFFERENCES IMPORTANT IN THE DOMINANT SEQUENCES PLANT APPLICABILITY DESIGN WASH-1400 FEATURE ZION IP-2 IP-3 pyp DIESEL SPRAY PUMP X
CONTAINMENT FAN COOLERS X
X X
PARALLEL LOW PRESSURE RECIRC. SUBSYSTEMS X
X THREE VS TWO DIESELS X
X X
GAS TURBINES X
X CHECK VALVE TEST CONNECTIONS X
X X
CTMT. SPRAY RECIRC.
SEPARATE FROM ECCS RECIRC.
X
,sb II e-.
y ()
/
I kr[
til 91E WA94 14 t N)
Al ZION 'Jil #.
-7
<C 10 -
ta e
N ZION 4 INDIAN PolNI a
PLANT Al DiFIR (MN O
SITES MSL Pi ANIS t-Wi1H t O CHANGES e NO
[ WASli-1400 u
cut LAI FOR STEAM E x110S10N TECHNOLOGY) tr I
>=
,/
/
$'".8~'// ///
/
s w
/
O
/
10 g
l l
l 1.0 10 l' M 3 CONSEQUENCE
6
SUMMARY
OF MAN-REM CONSEQUENCE AND RISK RESULTS BY RELEASE CATEGORY
(_
T la Ib 2
3 5
6 7
Consequence Per Event 4.8(7) 2.l(7) 2.9(7) 3.0(7) 2.9(6) 2.7(5) 4.4(3)
E g
Risk Per Year 1.4(-2) 1.l(-3) 2.5 5.7(-2) 3.8 1.9(-1) 4.8(-2)
Consequence Per Event 4.8(7) 2.l(7) 2.9(7) 3.0(7) 2.9(6) 2.7(5) 4.4(3) 5 Risk Per Year 1.4(-2) 1.0(-3) 4.1 4.8(-2) 3.2 1.9(-1) 4.3(-2)
Consequence Per Event 1.8(7) 1.2(7) 1.6(7) 1.9(7) 2.6(6) 3.2(5) 5.9(3) 5 Risk Per Year 7.7(-3) 2.5(-3) 5.1 2.3(-2) 1.8 0.7 3.6(-2) g Consequence Per Event 2.8(6) 3.l(6) 1.4(6) 7.0(4) 7.5(3) 1.3(2)
[
h Risk Per Year 7.8(2) 1.4(1) 3.2 2.7(-3) 1.l(-3) 3.8(-3) r
\\'3
~J
SUNARY IMPORTANT CONTRIBUTORS TO RISK FOR INDIAN POINT & ZION TYPE OF SEQUENCE - CONTAINMENT REPRESENTATIVE FAILURE MODE CONTRIBUTION SEQUENCES MAJOR CONTAINMENT OVERPRESSURE FAILURE WITHOUT SPRAYS. FAILURE AHF-GAMMA RESULTING FROM PRESSURE SPIKES (llYDR0 GEN BURN OR RAPID SjHF-GAMMA STEAM GENERATION)
INTERMEDIATE CONTAINMENT OVERPESSURE FAILURES WITH SPRAYS AH-GAMMA INTERFACING CllECK VALUE FAILURES (PERHAPS)
AD-GAMMA TMLB' WITH OVERPRESSURE FAILURE (PERilAPS)
S1D-GAMMA S D-GAMMA 2
V(?)
TMLB(?)
MINOR IllTERFACING CilECK VALVE FAILURES (PERHAPS)
V(?)
TMLB' WITH OVERPRESSURE FAILURE (PERilAPS)
TMLB(?)
ALL STEAM EXPLOSION SEQUENCES ALPHA MODE ALL CONTAlt! MENT ISOLATION FAILURE ALPHA MODE 13 f
3 9
a
t w>
NRC SEQUENCES FOR Z/IP MITIGATING SYSTEMS DESIGN AB-BURN LARGE BREAK, LOSS OF AC POWER EARLY o LOW PROBABILITY AND RAPID llYDR0 GEN BURN o UNNECESSARILY HIGH AMBIENT PRESSURE AT TIME OF BURN o UNNESSARILY CONSERVATIVE DESIGN CONDITIONS SpD-BURN SMALL BREAK, LOSS OF INJECTION, RAPID o REALISTIC SEQUENCE HYDR 0 GEN BURN o
S HF SHOULD ALSO BE CONSIDERED 2
SC SMALL BREAK, LOSS OF CONTAINMENT SPRAY o NOT AN APPRPROPRIATE SEQUENCE FOR 2
INJECTION IP AND ZION A-VENT LARGE BREAK, LOSS OF CONTAINMENT INTEGRITY o NOT A CORE MELT SEQUENCE TMLB' LOSS OF AC POWER, LOSS OF HEAT SINK, LONG-0 INTERMEDIATE - LOW RIf K CONTRIBUTION TMLB" TERM POWER LOSS (B')'OR SOME POWER REC 0VERY o BOTH PROBABILITY AND HITIGATION SHOULD (B)
BE CONSIDERED.
o UTILIZED IN PRESENT SYSTEM EFFECTIVENESS 4
i EVALUATIONS 5
e t
<9
y o~
F F
30 J
SUGGESTED SEQUENCES
]
FOR DESIGN 7
r i
j LARGE BREAK AD OR AHF S D OR S2D SMALL BREAK j
S H OR S HF j
1 i
TRANSIENTS DO NOT UTILIZE AS PART OF DESIGN BASIS BECAUSE OF St%LL RISK C0fiTRIBUTION 4
I I
J l
I i
l 4
i 0
i l
l l
i Meeting 5 Dist ribittion :
Docket Files S. Varga RSB Rdg. Files H. Polk D. Ross TERA L. Rubenstein NSICA l
P. Check NRR Rdg. File T. Novak ORB-1 R/F T. Speis G. Quittschreiber, ACRS J. Meyer P. Williams J. Long W. Kastenberg, ACRS l
J. Carter F. Schauer E. Fenstermarcher D. Jeng A. Marchese P. Kuo S. Soffer R. DiSalvo H. Denton E. Case D. Eisenhut R. Mattson S. Hanauer W. Russell J. Olshinski G. Zech T. Murley R. Budnitz L. Olshan E. Reeves C. Kelber M. Silberberg l
S. Acharya R. Sherry F. Powsome M. Picklesimer W. Butler R. Benero W. Houston Local PDR NRC PDR (2) l
-