ML19323D342

From kanterella
Jump to navigation Jump to search
Requests Renewal of Certificate of Compliance 5942 for Model 700 Shipping Container.Forwards Drawings & Package Description.Consolidated Application for Certification & Renewal Fee Encl.Drawings Available in Central Files Only
ML19323D342
Person / Time
Site: 07105942
Issue date: 03/18/1980
From: Cunningham G
GENERAL ELECTRIC CO.
To: Macdonald C
NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS)
Shared Package
ML19323D343 List:
References
15827, NUDOCS 8005210456
Download: ML19323D342 (56)


Text

,

Ob@.,

71-SW o

y s

NUCLEAR ENERGY Q 3 ].! l. }. {. g u K P "J,] ] O 7i r

}

ENGINEERING GENERAL ELECTRIC COMPANY, P.O BOX 460, PLEAsANTON, CALIFCANIA 94566 D1VlSION March 18, 1980 Mr. Charles E. MacDonald, Chief Transportation Branch Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Comission Washington, D.C. 20555 Ref:

Certificate of Compliance No. 5942

Dear Mr. MacDonald:

General Electric has for several years shipped large quantities of radio-active materials in the G.E. Model 700 shipping container.

General Electric hereby requests that Certificate of Compliance No. 5942 for that container be renewed.

In support of this request a consolidated application for certification is enclosed with this letter.

Some minor changes, e.g. editorial or reflecting current cask drawings, have been made and are designated by vertical lines.

A check for the $150.00 renewal fee is enclosed.

As this application is being submitted at least thirty days prior to the expiration date of the certificate, it is our understanding that the extension provisions of 10CFR2.109 are applicable.

Sincerely, Y {.

G. E. Cunningham Sr. Licensing Engineer

/11 enclosures THIS DOCUMENT CONTAINS POOR QUAUTY PAGES m g -,

8005210 W '"

VS6

ys.n Etam%

UNITED STATES f

[..

NUCLEAR REGULATORY COMMISSION f

i.k1f) j WASHINGTON, 0. C. 20555

^

  • ...=

MEMORK.'DUM FOR:

TERA Corp.

FROM:

US NRC/TIDC/ Distribution Services Branch

SUBJECT:

Special Document Handling Requirements 1.

Please use the following special distribution list for the attached document.

than

/

2.

The attached docu=ent requires the follcwing special considerations:

Do not send oversise enclosure to the NRC PDR.

Only one oversize enclosure was received - please return e.

+o PCg M aceo fil'/rfort O Proprietary inzor= ti=n - se=d aeriaavit cal.

the NRC PDR Other: (specify) t

~

l /> 3

/

NOM V

{\\

cc: DSB Files TIDC/DS3Authorizedbignadre

\\

l

GENERAL ELECTRIC SHIELDED CONTAINER - MODEL 700 l.0 Package Description - Packaging (a) General All containers of this model, for purposes of constructing additional containers of this model, will have dimensions of plus or minus 5% of the container dimensions specified in this application, and all lifting and/or tie-down devices for additional containers of this model if different from the lifting and/or tiedown devices described in this application will satisfy the requirements of 10CFR71.31(c)(d).

This container will be used with and without the extension. The same protective jacket is used for both situations.

This container is detailed in G.E. Drawings 289E642, Rev. 2, 289E646, Rev. 3,195F127, Rev. O, 237E325, Rev. 2, 129D4059,Rev.1,106D4150, Rev. O,10604331, Rev. O and 289E647, Rav. 1, attached.

S' ape An upright circular cylinder shielded cask and an upright ciruclar cylinder protective jacket with a rectangular base which bolts to the jacket.

Size The shielded cask is 36-13/16 inches diameter by 64-3/4 inches high. With the extension, the cask is 78-7/8 inches high.

The protective jacket is 81 inches high by 66-1/2 inches across the box section.

Construction The cask is a lead-filled carbon and stainless steel weldment.

The protective jacket is a double walled structure of 5/8 inch carbon steel plate and surrounds the cask during transport.

l 1.0 (continued)

(a)

(continued Weight The cask weights 23,000 pounds.

The cask with extension weights 27,900 pounds.

The protec-tive jacket and base weigh 6000 pounds.

(b) Cask Body-Outer Shell 3/8 inch steel plate, 63-1/2 inches high by 36-13/16 inches diameter with 3/4 inch top and bottom plates.

The extension is 1/2 inch thick steel plate 36-13/16 inches diameter and 14-1/8 inches high in the exposed portion, 21 inches diameter and 10-1/4 inches high for the portion which extends into the cask.

The top plate is 1/2 inch thick and the bottom plate is 1/4 inch thick.

Cavity 1/4 inch stainless steel wall and bottom plate, 15 inches diameter by 40-1/4 inches deep.

With the extension, the cavity is 15 inches diameter by 54-1/4 inches deep.

Shielding Thickness 10-9/32 inches of lead on sides, 9-29/32 1

inches of lead beneath cavity and 9-7/8 inches of lead above cavity, both with and without the extension.

Penetrations (1) A 1/2 inch, schedule-40 stainless steel siphon drain from the cask cavity bottom terminating in a valve on the upper surface of the cask. The valve is guarded by steel channel attached to the adjacent lifting structure.

(2) A 1/2 inch, schedule-40 stain -

less steel liquid fill line from the side of the cavity to the side of the outer cask shell terminating in a valve guarded by a surrounding pipe sleeve and covered by the protective jacket during transport.

1.0 (continued)

(b)

(continued)

Filters None.

Lifting Devices Two diametrically opposed, vertical 12 inch structural tees, 3-1/2 feet long welded to the cask shell with reinforced lifting slots located in the web.

Covered by protective jacket during transport.

Pressure Rating Tested to 100 psig; normally unpressurized.

Primary Coolant Water or air.

Means for Sampling Vent and drain lines; both closed by valves and covered by protective jacket during transport.

Closure Seal A minimum 1/4 inch thick flat silicone rubber or equivalent gasket between extension and cask body when extension is used.

(c)

Lid-Shape Flat plates and a cylindrical plug.

Size Top plate is 30-1/2 inches diameter by 3/4 inch thick, thickened to 1 i-ch at the flange.

The bottom plate is 21 inches diameter by 1/4 inch thick.

The right cylinder is 10-1/4 inches high.

Construction Steel weldment, lead filled.

Closure Eight 3/4 inch UNC-2A by 2-1/4 inches long stainless steel bolts equally spaced 45 apart on a 28 inch bolt circle.

The bolts are 14-3/4 inches long when the extension is used.

(

1.0 (co'ntinued)

(c)

(continued)

Closure Seal A minimum 1/4 inch thick flat gasket between body and lid.

Penetrations A 1/2 inch schedule-40 stainless steel pressure-vent line through the lid, termin-ating in a relief valve assembly guarded by a surrounding pipe sleeve and covered by the protective jacket during transport.

Pressure Relief Device 100 psi rating Shielding Expansion None.

Void Lifting Device 3/4 inch thick by 8 inch high by 13 inch long vertical plate welded to the lid with a 1-1/2 inch diameter hole centered 2-1/2 inches from the top edge to accommodate lifting hook or cable.

Covered by protective jacket during transport.

(d)

Protective Jacket Body Basically a right circular cylinder with open Shape bottom and with a protruding box section diametrically across top and vertically down sides with a smaller box section extending 1

from only one portion of the cylinder.

Size 81 inches high by 66-1/2 inches across the j

main box section.

Outer cylindrical diamcter is 51-1/4 inches.

Inner diameter is 46 inches.

i Construction Carbon steel throughout.

Double walled con-struction.

The walls are 5/8 inches thick with a 4-1/2 inch air gap between outer cask l

wall and inner jacket wall and 1-1/2 inch air gap between inner and outer jacket walls.

1.0 (continued)

(d)

(continued)

Attachments Eight 2-inch hex head bolts connecting the jacket to the cask base at the bottom edge of the jacket.

Lifting and Tiedown Two 10 by 7 by 6 inch steel blocks located Devices on the sides of the main box section. A 4 inch diameter hole is cut through each block to accept cables or clevis.

Eight 1-1/4 inch diameter by 1-3/8 inch steel studs welded to the main box section at the level of the center of gravity of the assembly. These are designed to allow the use of a basket hitch tiedown for the assembly.

Penetrations Air passage through a 4 inch diameter hole in the top of the inner protective jacket and out through two 1 inch by 6 inch hori-zontal slots on top of box section of outer protective jacket.

(e) Cask Base - Shape 3/4-inch top and bottom plates separated by 1/2-inch steel ribs with center well for cask.

Four hollow rectangular members under-neath to provide strength and guides for lift forks.

Size The base is 66-1/2 inches by 51-1/2 inches by 18-1/2 inches.

Construction Carbon steel weldment.

Attachment Eight 2-inch hex head bolts connecting the base to the jacket at the bottom edge of the jacket.

-S-

2.0 Package Description - Contents (a) General By-product material, source material and special nuclear material, with or without cask extension.

(b)

Form Cladding, encapsulated or contained in a metal encasement of such material as to withstand the combined effects of the internal heat 0

load and the 1475 fire with the closure pre-tested for leak tightness; or in special form.

(c)

Fissile Content (i) 740 grams U-235, provided that the maximum U-235 enrichment does not exceed 6 weight percent; or (ii) 1200 grams U-235, provided that the fuel material is in the fonn of MTR-type fuel elements with a minimum active fuel length of 23 inches; or (iii) 220 grams fissile; or (iv) 1650 grams U-235, provided that the maximum 235 enrichment does not exceed 3.5 weight percent; the fuel material is in the form of 88 rods loaded with 0.376 inch diameter pellets; and the fuel column length is at least 37 inches; or (v)

Not to exceed thosa values as presented in Figure 1, U0 weight limits for the 2

model 700 shipping container, Exhibit A to this application; or (vi)

Not more than 10 ETR type fuel elements (GETR fuel) containing not more than 510 grams U-235 per element; loaded and spaced in the stainless steel shipping basket as described in Drawing No.

10604150, Rev. O.

2.0 (continued)

(d) Radioactivity That quantity of any radioactive material which daes not spontaneously generate more than 6500 thermal watts by radioactive decay with the package contents dry; or 1500 thermal watts, provided that the cavity shall contain at least a 1000 cubic-inch air void (at STP) at the time of delivery to a carrier for transport.

(e) Heat Total maximum internally generated heat load not to exceed 6500 watts. An analytical determination, described in Exhibit B to this application, of the container temperature profile and heat load resulted in the following:

Cask Surface 300 F Inner Shield 101 F Outer Shield 87 F Ambient 80 F Heat Load 6566 Watts General Electric will analyze by test or other assessment each container heat loading prior to shipment to verify that the requirements of iOCFR71.35 will be satisfied.

Reference is made to GE-Model 100 Application, Exhibit 8, for' a method of internal heat load analysis and heat dissipation.

3.0 Package Evaluation (a) General There are no components of the packaging or its contents which are subject to chemical or galvanic reaction; no coolant is used during transport.

The protective jacket is bolted closed during transport. A lock wire and seas of a type that must be broken if the package I

f.

3.0 (continued)

(a)

Genera! (continued) is opened is affixed to the cask closure device.

If that portion of the protective jacket which is used in the tie-down system or that portion which constitutes the prin-cipal lifting device failed in such a manner to allow the protective jacket to separate from the tiedown and/or lifting devices, the basic protective features of the protective jacket and the enclosed cask would be retained.

The package (contents, cask and protective jacket) regarded as a simple beam supported at its ends along its major axis, is capable of withstanding a static load, nonnal to and distributed along its entire length equal to five times its fully loaded weight, without generating stress in any material of the packaging in excess of its y1 eld strength.

The packaging is adequate to retain all contents when subjected to an external pressure of 25 pounds per square inch gauge.

Reference is made to the GE -

Model 100 Application. Exhibit C, for a method of determining static loads.

l The calculative methods employed in the l

design of the protective jacket are based on strain rate studies and calculations and on a literature search

  • of the effects on materials under impact conditions. The intent was to design a protective jacket that would not only satisfy the requirements of the U.S. Nuclear Regulatory Commission and the Department of Transportation prescribing the procedures and standards of packaging and shipping and the requirements governing such
  • TID-7651, SE-RR-65-98

\\

3.0 (continued) j (a)

General (continued) packaging and shipping but would protect the shielded cask from significant deforma-tion in the event of an accident.

In the event that the package was involved in an accident, a new protective jacket could be readily supplied and the shipment continued with minimal time delay.

The effectiveness of the strain rate calcu-lations and engineering intuitiveness in the design and construction of protective jackets was demonstrated with the General Electric Shielded Container - Model 100 (Ref: Section 3.0).

The protective jacket design for the General Electric Shielded Container - Model 700 will be scaled from the design of the Model 100 in accordance with the cask weight and dimensions, maintaining static load safety factors greater than or equal to unity, and in accordance with the intent to protect the shielded cask from any deformation in the event of an accident.

(b)

Normal Transport Conditions Thermal:

Packaging components, i.e., steel shells and lead, uranium and/or tungsten shielding, are U

unaffected by temperature extremes of -40 F and 130 F.

Package contents, at least singly-encapsulated or contained in inner containers, but not limited to special form, will not be affected by these temperature extremes.

Pressure:

The package will withstand an external pres-sure of 0.5 times standard atmospheric pressure.

_g_

3.0 (continued)

(b)

(continued)

Vibration:

Inspection of the Model 700 casks used since 1958 reveals no evidence of damage of significance to transport safety.

Water Spray u..d Since the container is constructed of metal, Free Drop:

there is no damage to containment resulting from dropping the container through the standard drop heights after being subjected to water spray.

Penetration:

There is no effect on containment or over-all spacing from dropping a thirteen pound by 1-1/4 inch diameter bar from four feet onto the most vulnerable exposed surface of the packaging.

Compression:

The loaded container is capable of with-standing a compressive load equal to five times its weight with no change in spacing.

Summary and The tests or assessments set forth above onclusions:

provide assurance that the product contents are contained in the Shielded Container -

Model 700 during transport and there is no reduction in effectiveness of the package.

(c) Hypothetical Accident Conditions General:

The effectiveness of the strain rate calcu-lations and engineering intuitiveness in the design and construction of protective jackets was demonstrated with the GE Shielded Con-tainer - Model 100 (Ref.: Section 3.0 of the _. _.

3.0 (continued)

(c)

(continued)

General (continued)

Model 100 Application).

Extrapolations of the Model 100 data were used in the design and construction of the GE Model 700 protec-tive jacket.

The increased weight and dim-ensions of the Model 700 container over the Model 100 container necessitated a protec-tive jacket wall of 5/8 inch steel compared to a 1/4 inch wall for the Model 100.

Drop Test The design and construction of the CE Model 700 protective jacket was based on an extrapolation of the proven data generated during the design and construction of the GE Model 100 and on the results of cask drop experiments by( )(2) and H. G. Clarke, J C. B. Clifford The laws of similitude were used in an analytical evaluation (3)(4) to determine the protective jacket wall thickness that would withstand the test conditions of 49CFR173.398(c) and 10CFR71.36 without breaching the integrity of the Model 700 cask.

The evaluation, described (1) C.B. Clifford, The Design, Fabrication and Testing of a Quarter Scale of the Demonstration Uranium Fuel Element Shipping Cask, KY-546(June 10, 1968).

(2) C.B. Clifford, Demonstration Fuel Element Shipping Cask from Laminated Uranium Metal-Testing Program, Proceedings of the Second International Symposium on Packaging and Transportation of Radioactive Materials, Oct. 14-18, 1968, pp. 521-556.

(3) H.G. Clarke, Jr., Some Studies of Structural Response of Casks to Impact, Proceedings of the Second International Symposium of Packaging and Trar:. -

portation of Radioactive Materials, Oct. 14-18, 1968, pp. 373-398.

(4) J.K. Vennard, Elementary Fluid Mechanics, Wiley and Sons, New York,1962, pp. 256-259.. -

3.0 (continued)

(c)

(continued)

DropTest(continued) in GE-Model 1000 Application, Exhibit A, indicated a protective jacket wall thickness of 5/8 inch.

The intent of the design for the GE Model 700 is, during accident condi-tions, to sustain damage to the packaging not greater than the damage sustained by the GE Model 100 during its accident condi-tion tests (Ref.: Section 3.0 of the Model 100 Application).

It is expected that damage not exceeding that suffered by the GE Model 100 will result if the GE Model 700 is sub-jected to the 30 foot drop test.

Puncture Test The intent of the design for the GE Model 700 is to sustain less or equal damage to the packaging during accident conditions than the deformation suffered by the GE Model 100.

It is expected that deformation not greater than that sustained by the GE Model 100 will be received by the GE Model 700 in the event that the package is subjected to the puncture test.

Thermal Test Since it is expected that the GE Model 700 cask will sustain negligible damage and only minor damage will occur to the protec-tive jacket in the drop and puncture tests, it is reasonable to consider the resultant package, for purposes of thermal resistance, as essentially undamaged.

Accordingly, the package was assessed using the General Electric Transient Heat Transfer Computer Program, Version D (THTD), which allows the 3.0 (continued)

(d)

(continued) h Thermal Test (continued) analysis of the general transient problems involving conduction, convection and radiation.

The program allows the thermal properties of the materials to be entered as a function of temperature and the boundary conditions to be entered as a function of time.

The significant assumptions, approximations, and boundary conditions used for the analysis are listed below:

1.

Fire temperature 1472 F 2.

Effective fire Emissivity 0.9 3.

Fire shield surface Emissivity 0.8 and constant with temperature 4.

Emissivity of other Surfaces 0.8 and constant with temperature.

5.

There is intimate contact between the lead shielding and the stainless steel shell of the cask.

6.

There is negligible heat transfer by conduction through the pipes used as spacers between the cask and the first shield and between the two shields of t:

protective jacket.

a 7.

There is negligible heat transfer by convection between the two shields of the protective jacket and between the cask and first shield of the protective I

jacket.

3.0 (continued)

(c)

(continued)

Thermal Test (cont.)

8.

There is an internal heat load of 6500 watts with assessed temperatures as out-lined in Section 2.0 of this application.

The computer program calculations were run for a 30 minute fire.

The calculations indicate a maximum temperature rise to less than 473 F for tne lead after 30 minutes and no lead melting could be expected. A coast up analysis (Ref. the Model 100 Application)

U indicated that a temperature of 464 F could be expected at the innermost lead node after 34 minutes.

The Model 100 Application further describes the computer code THTD.

Water Immersion Since optimum moderation of product material is assumed in evaluations of criticality -

safety under accident conditions, the water immersion test was not necessary.

Summary and The accident tests or assessments described Conclusions above demonstrated that the package is adequate to retain che product contents and that there is no change in spacing.

There-fore, it is concluded that the General Electric Shielded Container - Model 700 is adequate as packaging for the contents specified in 2.0 of this section.

4.0 Procedural Controls Vallecitos Site Safety Standards have been established and impelemented to assure that shipments leaving the Vallecitos Nuclear Center (VNC) 1

4.0 Procedural Controls (continued) comply with the certificates issued for the various shipping container models utilized by the VNC in the normal conduct of its business.

Each cask is inspected and radiographed prior to first use to ascertain that there are no cracks, pinholes, uncontrolled voids or other defects which could significantly reduce the effectiveness of the packaging.

1 After appropriate U.S. Nuclear Regulatory Commission approval, each package will be identified with a welded on steel plate in accordance with the labeling requirements of 10CFR71 and any other information as re-quired by the Department of Transportation.

5.0 Fissile Class - Class III The Density Analog Method as described in the SNM-960 License Application for VNC, Docket 70-754, was used for calculations. Although this method is normally used to calculate the number of units for transport under Fissile Class II, it was used in this case to demonstrate that one ship-ment of two casks would be subcritical.

No credit was taken in the calculations for Pu-240 or other poisons present.

The cask cavity was filled with water, and the fuel was homo-genized with the water in the volume of the 5.0 inch liner. This water filling was done to represent the accident case and to allow for cask wet loading. The calculations were based on the cavity volume without the extension resulting in the greatest homogenized concentration.

The full results of the calculations are shown below:

Fissile Material Quantity Safe Number Pu-239 2.0 Kg 11 U-233 2.0 Kg 8

U-235 2.0 Kg 63 In all cases, at least two containers each containing 2.0 Kg of fissile material were subcritical.

EXHIBIT A Supportive Information for Fissile Loadings

i APPLICATION AMENDMENT FOR GENERAL ELECTRIC SHIELDED CONTAINER --

MODEL 700 DATED FEBRUARY 25, 1970 SUPPORTIVE INFORMATION License No.

SNM 060 Docket No.70-754 Sect. No.

Page 7

Amend. No.

Date Februarv 25. 1970 Amends Sect.(s) NEW

Byproduct Material and special nuclear material in solid metal or metal oxide form:

A.

Maximum amount of fissile material prior to irradiation:

(5)

Not to exceed those values as presented in Figure 1, g2 Weight Limits for the Model 700 Shipping Container. of Gene ral Electric Company's application dated February 25, 1970; Figure I, calculated with the use of GERM and GETHRM codes, gives fully moderated and reflected UO weight limits for shipment of fuel segments in 2

the Model 700 container.

These values are based on 45% of the minimum critical UO Pellet mas s for 2

pellet diameters greater than 0. 400 inch. The weight limit selected for a given container is based i

on the maximum unirradiated enrichment to be s hippe d.

(6)

Not more than 10 ETR-type elements (GETR Fuel) containing not more than 510 grams of U-235 per element loaded a.nd spaced in the stainless steel fuel shipping basket as described in General Electric Company's application dated February 25, 1970 and GE Drawing No. 106D4150.

Fuel Flement Description The fuel elements are ETR-type, flat-plate,

uranium-aluminum assemblies.

The nominal

]

net overall dimensions of each complete fuel l

element are 3. 00 inches by 3. 00 inches by 54,3 5 inches. This length is reduced to approximately 40 inches for shipment.

License No. SNM 060 Docket No.

70 754 Sect. No.

Page Amend. No.

Date Februarv 25. 1470 Amends Sect.(s)

NEW 1

1900 Firure 1

__4

^

-m._____;_

2 :qt. = f _____ __ __. id: _ r_a i y- _.----

m' m._ j-p1

-Q"=. -- n.r-m :_:::_

9

_ =___ ::-

.____._3_.._._._

.= ______5_ _ _ - _ _ ___._.:__.:..... _ _ _ __ _ -. _ -

u u __

_.3_ 3__; _ _ _ -..

_ _ _ _. = =.. _

.- _. ~. _ ~ _

.+.

g

--- g -,_,

, m.L,_4.,._,,

u__L_._

f,_.,

7

.-_.e y_,

e..m. u i = *e u

--r -w w#

g 6

~

k~w ~--

w a._.b.a-.' w -

-w-__

I I

1 rT I

m q

-mygup ww h.u.

l.

f b

bb-D b lAi[.h bL

irsH 0-- pelluu ss-)

.c a

g,_._..

j.

.Aan u u '

_..Ar%.-A--

f*

A-ne w.a-s 1.nch4 Nft Y

14 5$$T

. W e

a. _

o

-_ ~ ~ __ _ _ _

_mw.mm m % u'-

- u.mu m ~

_w-m_x.

o 3

M M2Mi~mbin--W2-- WeiRMNCT5WCD *W---

~ c' :

i

~+'~-'-l

6riehment i54@

  • ~

E 2

R 1

i i 1

-iri 110.

~I

.h I

i i 1 i t !

N 1-

~* M. ! " )

e'a

_ F'4 8

r

, i >,

6 l j i

e i i

Q;;

6 i

a 6

6. I i

6 i i..

  • i

'+v :

.L. J

  • i
s. i i.,

, i ;.

., i i ! ' 8

! I f

JOP I

i i i kt ! i

!iI !

Ii'!

! 8 ! I

! i I

,MN r.

' i I

! l ! I

' l i ii

\\l ! j i * '

'5 I ! i i I I 8 i I

_ _5 ' I II I '

130i I It t i

6 i i It iIi' ii.)

I i i !

l 1 i 1 i i I i lO'i

! j I

j i e ipo

(,i; i K i-ii, i

Ii i i i i i.

i ei i,i 11. 7 i i i

! i i t ii 116ii

' t Ii

=-==-

==

='=7= nN - -A =%-

- + - = = =8 P 6~

r--

-iM = =r=t= N- =t=r=i=* P-N ud-~ #

9

~~~~ ~~~

~

- ~ ~ ~ ~

U 8

i

'-~-

f E.__ _

. - _~. _

C.E s

-.. _..,s;_.. ;ggg

.__.-__n 2n.

--p

.,S. M z.--__.-_-

6

-7

~

-U w-A

>M

+I

-O:

j.2

-34.i!

q-(._4_g

. i

___'i f; w,,,s

-.r,9,-.

w _._

^

  1. '~~

' ~ <-

26-4 4

- - ~

_ _.., ~ - :..-_ =~~;.2(&

__ k_;G-d y**v-

p.r-g~g =r_

. _:.a _u

- - - =:--._.__.

3D._._

~ K-'

g4

~Q3

_.=. u a-;

3

. W

,)

^'

-

_.-d+

'M W}

1.he

+_

5;5

'+-

4-1 2

h- 0

' i~ 3. O

- ~ ^

1 O=

(

x i

i iz-_n i

N,yb) i ll<

i1 ea 2

i

.r.

NCL' +

na i

i i

k.

)

!!i,

ii i t N-q l,.

i i 1 i i

i i '

i i

~~.i_

. { !

i i -il l l ii 6 i r 6 i e i i i i l,.O i

i ie i i,

I,

, i,

i i

i,,

i

! i t 1 4

r i

i r

i i o

+_

I

) ;' -

t.

A J a.. _ + _. 4 1 i l l l {

[ t. l t I i. !

5 ) l l l

< i i - :

z, t

t.

l l I.

) ! i

) l l

l l l l

[ e jl 4

1 g 0_

4

# a 1
r ' '

I.

l

.l I,I"l-It Ii i i i i i lii i e i i

! i i i i

_z-.

go 1ii

, i i Ii iIii i l i

i i e

i et i li! t j

f3*

++pn :l 7 : ch: - +r_:_ =H. > "...-_1r =rr-i:

7:= =. _..__=.-.-{_...-_._= :__-_.._. _. _ =.. - - _ _ _

oa

- = ;i==t - " ". W..

l

- - ;r ::r= n

- "=-

==:1~

9 j-

. :-.=.. :.........

1=: r. r_-

t.z.: :.::.-.

o,.-

g 3

a3*

7

.-_a._

-.._.._a oa

]U w

6 en n N

5

_f, 4

_ _. _ -.L-~-*-'*-"_

~

+

3 n

l

+5 9

1

+

i l !

i I

, i.

i !

t ii e

i a ! * !

i i i i

_.. _i_

i i

s a i i i

e i

l e !e i

e !

! l l r 4 i i I

, Iw u & L Le vw Lcu, i i (

. 1 i. f I !'!

Enric hment, L. i i-i !

i '

I Ii 1- !

  • '6 i

i i

14 I

f 1

z 4

a o

o

Each fuel element consists of 19 fuel plates each

0. 050 inch thick, 2. 80 inches wide and 37. 25 inches long. The fuel plates are roll-swaged into 6061-T6 aluminum alloy side pieces which hold.and space the fuel plates 0. I10 inch apart. An aluminum

" comb" s pacer plate, inserted at the upper end of the assembly, maintains the nominal 110-mil spacing between th: fuel plates.

Each fuel plate is composed of a 20-mil-thick uranium-aluminum central core sandwiched between two layers of 15-mil aluminum cladding.

The central core region or " meat" is 36 inches long and starts 0. 625 inch from each end of the plate. A 1060 a.11oy. al.uminum " picture frame" surrounds the meat in each plate with 15-mil 1060 aluminum cladding covering the meat and picture frame. Nominal finished net dimensions of each fuel plate are 0. 050 inch by 2. 80 inches by 37,25 inches.

The fuel meat alloy is a uranium-aluminum alloy cont.tning 30. 5 wt% uranium, 2% silicon, and the balance aluminum. Fully enriched (93. 5% U-235) uranium and pure aluminum are melted together to form the fuel alloy billets. Up to 2% silicon is added to promote homogeneity in the alloy. Afte r rolling the alloy billet to shape, individual fuel plate cores are cut. These cores, inside aluminum picture frames, are then metallurgically bonded to the cladding by hot-rolling in a series of passes followed by cold-rolling. Between hot and cold-rolling, the plates are heated to 1000 F for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> and inspected to ensure freedom from blisters or laminations. After cold-rolling, the plates are assembled and swaged into finished fuel elements.

License No.

SNM 060 Docket No.

70 754 sect. No.

Page 7

Amend. No.

Date February 25. 1970 Amends sect.(s)

NEW 2

o Each plate contains 26. 911. O gm U-235, and each fuel element assembly contains 510 i 6. O gm U-235.

Fuel Element Summary Fuel type ETR flat plate U-235 concentration in me at, wt%

30.5 Meat thickness, inch 0.020 Cladding thickness, inch 0.015 Fuel plate thickne s s, inch 0.050 Plates per element 19 Uranium enrichment, %

93.5 U-235 per element, gm 510 Element length, taches 54.35 Element cross section, inches

3. 00 x 3. 00 Number of elements per shipment No rmal 10 Maximum 10 Active element length, inches 36 Poison Basket Description

~'he shipping container Model 700 poison basket is comparable to the boral fuel magazine shown in the' Irradiated Fuel Shipping Cask Design Guide", L. B. Shappe rt, O R NL-TM-2410, (cask BMI-1, issued AEC License SNM-807, Amendment No. 4, dated March 31, 1967 and DOT Special Permit No. 5957, dated April 23, 1969). For the Model 700 basket, 304 stainless steel is used in place of boral, resulting in the advantages of improved material properties at room and elevated temperature and permitting the use of conventional fabrication techniques.

License No. SNM 060 Docket No.

-'0 754 Sect. No.

Page 7

Amend. No.

Date February 25. 1470 Amends Sect.(s)

NEW 3

The Model 700 poison basket is fully described in General Electric Drawing No. 106D4150.

attached hereto.

Nuclear Considerations A criticality analysis was performed for the loading and shipment of 10 GETR fuel elements in a Model 700 container. The elements are contained in a stainless steel basket (GE Dwg. No.

106D4150) with 0. 25 inch of steel between each element forming a stainless steel cell around each element. No burnup was as sumed.

Two basic conditions were evaluated: (1) fuel in the steel basket contained in the 10. 5 inches thick lead cask with all void spaces in and around the cask filled with water and (2) fuel in the steel basket surrounded with water.

The second case will be encountered during loading of the basket. No dry case was considered as the assembled fuel elements in the poison basket are already undermoderated in the flooded case, and the further removal of water would only reduce the keff. of the system.

In each of the above cases, cross-sections were calculated using the GERM and GETHRM compu-ter codes. GERM and GETHRM are Gene ral Electric Company proprietary versions of THERMOS - a Thermalization Transport Theory Code for Reactor Lattice Calculations, H. C. Honeck, Brookhaven National Laboratory.

1 The calculated cross-sections were in turn input to the TWOD code.

License No.

SNM 960 Docket No.

70 754 s,et. No Page Amend. No.

7 Date F h *" n " * :

' o ~' 0 Amends Sect.(s)

NEW 4

TWOD is a General Electric Company proprietary version of PDQ, reported in W APD-TM-2 3 0.

The following results were I

obtained:

Case K e ff.

(1) Flooded fuel array in Pb cask 0.81 (2) Flooded fuel array

~

in water 0.75 In evaluating case (1) against the accident criteria of 10CFR71, reference is made to TID-7028, Critical Dimensions of Systems Containing U-23 5, Pu-239, and U-233, Figure 8, page 14. As the H/U-235 ratio is approximately 225 and the amount of U-235 per element is fixed, any accident which increases fuel density will make the system less reactive.

The only credible accident in the Model 700 container would involve the fuel breaking into pieces (itself highly suspect, as tests on the irradiated fuel indicate little or no embrittlement) and settling, resulting in a more dense and consequently less reactive system.

B.

Maximum amount of radioactive decay heat:

(2)

Package contents wet - 1500 thermal watts, provided that the cavity shall contain at least a 1000-cubic-inch air void (at standard-temperature-pressure) at the time of delivery to a carrier for trans port.

The calculations for the 1500 watt load in the Model 700 container with or w ithout the extension were performed in the same manner as the calculations for the 500 watt License No.

SNM 960 Docket No.70-754 s.ct, No, pose Amend. No.

7 Date Februarv 2 5.

1970 Amends Sect.(s)

NEW 5

Load, submitted as Exhibit C to the Model 700 application dated August 4, 1969 and resulting in License Amendment 71-43, dated August 19, 1969.

The results of the calculations including the FRECON and THTD computer code runs indicate that a 100 psi wet load will not be exceeded under either normal or accident conditions provided that 700 cubic-inches of water are removed from the cavity, without the extension, and 940 cubic-inches of water are removed from the cavtty when the extension is used. In pe rforming the calculations, the volume of the payload was assumed to be zero which makes the results a bit conservative but allows for an unlimited number of payload configurations up to 1500 watts.

Licen s. No.

SNM-960 Docket No.70-754 Sect. No.

Page Amend. No.

7 Date Februnre 24 1o70 Amends Sect.(s)

E ""

6

1 4

i i

EXHIBIT B i

4 An Analytical Method for Determining Container

{

Temperature Profiles and Heat Loads.

3 3

i j

1 1

1 l

l 4

1 I

i I

4 4

3 i

i i

4 I

e i'

)

1 i

k a

s t

f f

rw-~

--~---w--

--.-,,n-. - -

,,-n

.n.

,,w,-.,,,,,,s.

,.,n,-

e

,ww-.

-..w

-m

EXHIBIT B I

An analytical method for the determination of container temperature profile and heat load when the geometry and cask surface temperature conditions are known.

1. Scoce The analytical method described in Exhibit B provides a means for determining the container heat load and temperature profile used in evaluating the package when subjected to the conditions normally incident to transport and for obtaining information necessary to the application of THTD in the evaluation of the container f

when subjected to the 1475

  • F fire for 30 minutes, including a coast-up analysis.

2.

Assumptions, Aporoximations,

and Boundary Conditions 2.1 Emissivities of all surfaces are constant with temperature, all surfaces painted white.

2.2 Intimate contact between the lead shielding and the cask shell.

2.3 Negligible heat transfer by conduction through the pipes used as spacers between the cask and the first shield and between the two shields.

2.4 Maximum cask surface temperature allowed under normal transport conditions, 300* F.

2.5 Convective surface film coefficients obtained by using correlations found in "GE Heat Transfer and Design Data", Section G504. 3, page 5, figures 8B and 9B.

2.6 Surface film coefficient for outside of outer fire shield obtained from

" Heat Transmission", page 172, Equation 7 4A, McGraw-Hill.

License No.

SNM 960 Docket No.

70 754 Sect. No.

Exhibit B p,,

Appendix D Amend. No.

3 Date Da camha e '1 '"8 Amends Sect.(s)

New

2.7 Turbuisnt flow only.

2.8 Uniform heat flux.

2.9 Forced flow and drafts negligible.

2.10 All surfaces of cask and fire shields, except bottom, are available for heat transfer.

3 Des cription FRECON A BASIC language time sharing program to calculate container fire shield tem-peratures and heat load knowing the container geometry and cask surface tempera-ture was developed. Using data obtained from the thermal testing of the GE Models 100 and 1500 shipping containers, an analytical correlation was developed to calculate a temperature distribution from the cask surface to the ambient air.

This method also permits calculation of the container maximum allowable heat load.. A BASIC language computer program was written for the GE 235 computer employing the aforementioned analytical correlation. Specifically, the program was written to calculate the equilibrium temperatures and heat load for containers employing a GE double wall steel protective jacket. It could, however, be modified to calculate temperatures and heat load for other fire shield configurations.

The program user specifies 6he outside surface areas for the cask and fire shields and their emissivities. He also inputs an arbitrarily selected cask surface tem- #j perature, T, an ambient air temperature, T, and a first guess for outer shield 1

4 tempe rature, T. For the given T and T, the program will iterate to explicit 3

i 4

values for T, inner fire shield temperature, T, and the container heat load.

3 2

The temperatures between the cask surface and the cavity surface are then hand calculated using the equatic,n for heat conduction through a composite cylinder wall:

O (BTU-HR 1) =

12 b I"1 ~ *2) 2n K in (r /#1) 2 License No.

SNM 960 Docket No.

70 754 Sect. No.

Exhibit B p,

Appendix D bd. No.

3 Decembe r 23,1968 New 25 Date g,,,g, 3,,,,g,)

whara:

Thermal conductivity in BTU /Hr-Ft.* F K

=

12 Length of cylinder in feet L

=

Inside radius r

=

g Outside radius r

e 2

The standard fire transient is then run using the THTD computer code and t.ie total temperature distribution just obtained. If the post fire temperatures are too high (lead melting occurs) a new value for T is selected and the entire y

process is repeated.

Data comparing the measured values with computed values for the GE Models 100 and 1500 containers are indicative of the success of the program.

Heat Load, Measured Heat Load, Calculated Container Model 100 1310 BTU Hr-I 1101 BTU-Hr-I 1500 10317 BTU Hr-I 8190 BTU-Hr-License No.

SNM 960 Docket No.

70 754 Sect, No, Exhibit B

,:3,

9 AppendLx D Amend. No.

3 December 23,1968 New 26 Date Amends Sect.(s)

1 EXHIBIT C Lifting Devices

\\.

e

& As3UE falU YSI$

=....

'1Oa

's!R\\c.C

/

t d

'os e

g;v i

u t

u j

&T /.:

i i

~

/-

A f-l g

/,

x

<.. - y

.. g.-.

99 i

Ft6 1

E t_e.veJ'~i i l vieM Pt s'r d. p-CQ TR is E 'ED f

c

.f Q),/,

/

~

~~

[

\\

/

,/

t v. x w.

j

/

(--

5/. 3 5

\\,

M cT13 4 g

z~.,.

z s.,

j

{

l 1

N_f...

l

/

i j

. L..

[

s l

s t _. --....-

iw ~

a>

.J s

s'

/

_. y; N p.. uy _-_.

>j R6 2 PLA4 Vi e v ih A. r.. E GstTMXd 55D t-e

a ci.

47 a.733 s,.i if - 0 242.

cu 4]

,. 4,3 a t4 .- o. '; ; i i

c3 n.a 14 '

c. ;E m 41

=

l I,

tes->

c.

/

a

/

\\g

/

isq r..-

A i

ine m r'e:u c mm M

e i

..~;

r

_s-fe

(

(.

^P t-Ft 6 W=

s LorcisaG Dil.u,

m Tue pac <t65 is M x1 Lo Ar.+- r) wiTH 10 6, 5 6, 5 2 55 i:3CEUE5 AGTl bi6 N

'1 W -

C.. c4

  1. TVtE PICK A:-d., Ti \\E

/Emod5 WD RCAct LE.

Aes /M S & Al idd F i.+ 3 THE tog Fee.O Acr5 Isl TI-E DieECT 2.1 ci=

M o T io W o.

THC M

Dci 15 A66dHr'u TO Acr TD 1 11i~

5:2t6\\ ti-640 wouu.)

Re3uct iet

~il:2 5AHc: 5 otu ril ES20LE66 CC 1T5 Dl2 Jt 3.),

THE-2G PJ U.

16 A--dusi is ic Act u P w t.t.p s eh6

..g ag Gew6 6 MW O

e i

e e

-ee e

e em e-

i'H E C N :_.L E LOADikl66 DOE To THE 106 Loan A;2E DisT2trsJTED As FoLLowl&

(see5 i-i6.2) 14 CABLES 3 54 THEGE'E i5 A

dom P E 6 $d6 i:c.RGE.

VJNCM Mot'E6 THE CABLE 6 As-5UME A

'5 lac.<. Tb:5tTloLL THEREFoRE TME w/F(OLE lo6 Lono ls TAKEkJ ist THE CAB E6

\\ *J-2.

TJUE TO 5'fMME t C^[ EACt4. C6,BLE vJu Tace ss's tu n4E Du:ee crioM OF T)(E,

\\06 \\.,o Ab.

3 TRE CA6LE LOAD'J66 DUE TD THE 56 LOAD Air E

.T.>tGTFitsuTSD As FO LL o w/ 5.,

(-a ns.7)

I2 CA3LES

( f4 THERE is A

CoMPG2EsilVE 1:62/_E W9tc d MAKE6 THE CASLES Assume A

stAcW P M nokl.___

GA6LE 1

55 UiJDt R SoME TEdStOd T)uE TO _ \\ c 5 LoliDisl.4, t(. evec as is RecucED 6Y THE '.TC, Lono. 5 C 'T_5 3' TAKE W E.

ss L.;.scse. WE FULL 66 LCAO C/El COM SEEJA7 NELy'._

SE PJT cdCN:sE 1 &/ AsuMf4 nhT.. CABLE

~5 ts'..

s n tt. s t A ct<.

SECAUGE TME LA?4,EGT FotacE hoc-d

. _. i cum \\ 6u W7-40'/ TEt4610k!

Due io 66 LohD 7

TEuos To AMD KEEP u AELE S

6Lc4<.

FULL 56 LOAD A

CABLE 2 16 A66dHEi.; To 56 WX5f CASE COklDtTtGNb THf?

CASLE LoAOls!6 DUE To WE M LOAD arf tr LLow/s (sa 5-w ?- )

Dis mteuTep As a

GAete 4 is -stac<

s0 ir cad vs:c woue or rHe l

NEemdAL Lo AD.,

CA'5LF' 6 l

AdC

'3 cad TAgT ScME OF TriE LOAD HvM VE.id stMiB E A Q -1 N A s AT

.EA6T 3

I co M PR66.iN e Fo2cE THE G FF6dT OF THE.'4 4 For?GE 3

wiu HAVE THE WORST EFFf:.Ci ost CASLE

2., W E A66Li HE' ALL 2.6 'S of2(E T6W'E83 3'/ GABLE r

.Fe12... __

.. W0125T. CA66 C'oNiDiTioW.6

w.

r A7.

s l

h l

s I

(~

  • b s

Gs*

i

~

_..... l..;.. /,.

y p

i er e....

.,*--- 6 0 ' - -a f n G.

A ChvLt.

GFct-:L T t' FROM.FL6. -I.Trki AMLE THt.T TM. CA5U.E NA KE5 WI TH...

3 O='6PECT Tb THE TidjM EED C A+J 39 Dt:f6EHi> ETA _ _._.

9 2

tw p - a_.

g7,*ls z 4 7_ -

6C. =

t,04 8

-- - -~

(.

.i h8 TN l Okd

$- %4' I

I i

l I

1 l

,.__y

. i.

- si,ec e C A,f i e 2 ls NN/CRsr CN5r vdE WtLL ruvESTidM THE LOM) iT T/b<iL0 I

i 1

I 4

k 1

s FOE: rte N CC.Ti'~ % M d I

I i

/-

wuc.e is T DAEiFM RED 5.-

e 43 ]~

j m

CCtd,D.)

O.'. aK l '..T.,

, 'Jtill

/'

no77 aa..

t

/

i

( /23 t-OQ 16 t (

t;'

k 4.

J 1

/

.. jl.

$Q

(,.*

y

.A._.,...,

1 I

A C,

~

C /. d'. ~ '

A:

i_ f4> C. ;ph ilE/

_g

  • e e s g

M 8

Fot ND To GF F9 5 *+ 5

  • t [ 4
  • 7344 T R A d 4 P 5 21kj6r MiTO YEE CA.3tE 16 CDME 7$f &

D G 50MEM INI i: 3LLO W ikt6 H I N d ER. '.

S4 p(q--.

~

9 ' Arc'i>>i

' g..

2 _ _ _ '_

(

+ - 4s i s'_

2

~'

~

9:-l5,8

\\

l I

l l

4W g

/

l l

I

\\

lg/

u 4

,._p, r

.s

. _.. _ ~,

\\

5 --...r.

l, 'AS ii Ae

  • L.

Yhd'

'~C L.

.t tj FjGQ,C Ja i H i',

P Q '.?> 3 F 7 "r d i )

U@L T

l d It. 2 6t"- G 3 7 AJ5 l, 2., 3. 4.

IT 3 t t: Al6,Td Is

'Td t.;

VL/'. d E - Z.' t u t

L' lCo1A 5 ([oS\\$.?~)

? ? n'

-. - ~.

g

(

wow.

L;..a

... t e r

8 -f_ /..i tt w

..:.,o. y tu i~- L L

W Ci M.. II.

TRth t-A, E:. _'.

t.

2/

&l

' G'l 2*d $sa \\5.g = S cy

/

i

./

A 3

60- 2z (S4c-) - 44.4

.I Idi. 7 rMe LOV-ml QF 'F LTCC 6 ~2 15

(

(o 514 ((o 3 47)

= 8#)l mde, l

. Go t

klaw) ir )R. \\ * ?t /bd(sl. O O A'2.

Nl i.

HA'JE t:(6. 6, U$lkjG ME LAW Gi:

C'. 6 n l T;

c' 9. r.

6 a

/

/

1

~738 8 9f l

5 i

t:-

q,1

... I i

o Ft6 8

I t

...7

__ g

_ g-j

(

i

%w

)

s 4

.1 i

1, 1

l 2

-a:

s

=

)

(J6. 9 ') *

(91 [ '- ( 2" ) - 2 q i XJ' ):.< '

O) s F

544 6 " 3 2.Bl + 4 FA - 400 4 c s c-5 4 4 6 - 8%5 = - 4 o u 4 <

-: 0 cose F4M O. 3'2.9A r

II< A 4 i

4 9, 34. "

J 1

1 r a N v c La a d.

iW Fm.J ro O'W U G9. E WE. tl' rat c.s -

y t t t r.

r, (sitc.

e

~

!( -

T 736 g, %

z.-

cn N -

1 l

i f

4 I

I.

n

.O G&

j i

\\

f; l

4

.e

.**.=,.e a.

m oe

  1. 8'E p > e-M 6

h6

.i

- ~

.. ~. -.., -. -...

9

-4 e

e 44 b

o l i._ -

D :s.. '

.,.:4 F, '...i L 3r, h

4

  • .= e 5

i

'/

WI

/

I

./

_4..

/

s 49 y

14 ") - 3. n,cq

=

8.4(c s 4e F.'('

y

. F. f -

8 0( <

h.. -i ) ( ?. a 4,1 l. eH, L

.M.

=

%Q(><>d.6_

(o 4 'i> &

Y _2 m

-e a

.e

..m.

se g.-.

,e G

6e l

"8 m se g..

e

-e. e e g g e.

e.

e D e m *.6g e.

a.

e 4

g

\\

l

. ~. 1 43 6 -

M

  • .M H

M mm

.Tf')C', Q,; p p.,.e

.. l W,.

. r.., s.ls - ' q. J.:o;.( M,-

.W

,.,,r 4.. :

. w.* i

n...;i v W;.,1,

.4..A,jf. -

o, 1

r 0.,..

}.

9.f. p..

t;'td

+

.i..

.,.s

.,. 4

.w

+.

.+

i... % q.... <.s. :.

. p,.w.

v..,s u.

i

%p,,

. e.

i e

i f

\\

. g

. p,

....h..

e

,g i

(

~e i

s.

. I

.e i

i

._L D Q_.M G M S 3

.6G.E 257W. M/Al_f5/$j

' d.d$.

L T,.

I i

.l s..c i

x i

l i

d

)..)._.__.,.,_

6 _.

..,-y 9

1

...p

.. _ _... 1,..... L..

c,.r.

_ _..l_._.._ ]

c

.,. _ _ i N_

y, +> x

. 3). __. -

__ I 7._._

1 w

.4_

t

,7

- p....,

i

.4

.,. r...

o, 4

m

.o.7 ~ y.

L, a.

3.

i i

."> s., j m

y.

e, '"

' 9 s -

I. %..., < '

. " T-U

~~ 7 7 p.

._ t. _.,

JQ n,

.}-

I_.

...,..c u

l g 9;/, dM j

j.m

/.

.....a s

s,

... q.

.s e;.

C,. +. n, g....

J...

x e

g,;,

. '. n.. > v..

.F 2 y

~

,a.

,:.v W;. s ~e.,

.~.

y c' a l. i..

.8

@/.'4 f J,.}.ff. '

.,. y. v.

r,

. s.

g, n.

. c.',

..6 y

n wh*

y.*

/P

,,,o".,,,

i L

fr}j..',g.,..

q, J l',..,. 8..

l a(,

s.

g

' "'O

  • a(l l.

f

  • /*
2..,.q y+

e.k..w..

.s 1

Y, kI N.

e

,' T.

e. 0..
  • I p

...'*I.

3 4, Q.

p3 L

a m.n ',.. e g.'.,...s.

.y

. 'jg s. >,

., f l

a.

u-e j

d'.

.lW'.a V.'h

';..k..:sk.l_ Q,. ?

...,. s.s..r.

..~

,,,. -p,'

--4, L

, F.

~~'~'4$. : 1

.w ;d '.,...o

^

  • 1

- r '-

-l 1

  • ~u<

_,,, i,..

^,

.y.,:m,.

- _..% w=.a.

.m.,. : !., :~

. L,-

.-...a..

.=

-..Js,.

.yLggg=gm

. r,..,.

l

,.c.,4..,..

p<:.?

i - /~4v(5. v, l...

-- m _-..

.c._._.

. _...,9 r

i.

i 7

m..

.....\\

.]

_ l

- w

..g

._..l

~...

~. :-

0'.Nb..$$

00$ /0/.!S.C. &$ h$

.'.n.h T + - 1..

7$-RM/ vCGl#M &MX.M6~ !. git)VA27dd ON3 N5 acc.a G r & 6 c.c c u. s... w.. &.. a &E__cs. v. &......2

.6 a.

q.;

, r m.... g. z w., g 9..3 (ge cg a e,,. g y

.we.. g..w_._.;.;

p

.. a._.._

l & 2.' '

h k u &dli $1 W.. ?!(.~ $ E2V SV/2 W /.'. b h '/if.O_.$.'

NIJ... =. W!bM. h 'Q'k'E.12/uk/G.Q W f..

b

. l R.

D l

1 i

t...

a.._.u..

a..

a

.v.

.w.

.. a.

==._..

,4v W.': '. :.,o

. [

e.....

.t l_._

a 4

a

,J, C, p"

[

i -i. M 'j.

L:

+

f; ::-

y.

. g. f j.(,,.

. c_

1

-. r;,...

.m..

_y-

. W:

'. \\...

.(,...

.+s

..c....

.ck.

c..

z

_6..

....T p.. e_ ' te.,..%, ;h **[,

N '.,l. y,. '

'b t

m? j ",. g.,,

. L. -

t

},,y,p. y y g, _.,.

2.

l. _...

.i I

~.4 g

.r.,

~

L.

t.

3

=4..

c.f.:.

n ?,. y,, m

? Q..y,v... g/

y y ye. y6,' y.

c.y-+g..:'

.t ;..' n.v.. Q g. //y g 4 g. g.

g.g....y.g,, r.yg g pjgg;g 2

19... c i, c-

,, h:...>.

,v:

s,

,e

. r.

..J...t...,.*.

A e

,.F,...,.

.l.

J. j.

4..

4 r

8.l,

'..j.. -

r. ~ '

<

  • a.,,. t.P I

<g,

~

4

.l,. t 1..

+.

..,...,p, T.-

u.,

e

  • **.7='+

s..

,- g*

p.*****".

. 4.......,

i. ",

. /. 4

u...

..,~

l l

.u.;f,.

I

,s.

i 4

m e

i I

i

-l t

i i

9

{L &}CE./.s /7j.sL:!2.*. 'ELi V:, //55!J/d". 2

/;% AthIC/f/Mi RXNCL

).

7b M tkf 2,(t%d,E. b;).C.. _.l

~

.:  %' : CSAOnLQ C0//p'7/GN. l l

i

l. 1-us.s

\\

I

. 1..... _

l

}

i f.

l u i d t. G ; s 7 a.s RE yu t.ck6/7& EMU.0 rQte.

,i i

6 v

L.

~j"..

.4

% = 4.M AL l kEfit To f(6.Za.

b-1..A V/093$(bAb)Il @ d X f c.f i k s'/ d V S / f. z I

.rer/&V h5 t/d-)

l-

.;~

l r

1 2

i i

l f '.~:

i i

i

?" 5.f50N 3.(2TOl =

Zd &$..b

-

  • s.;

c 7

(_. ? 3.5./A /

h

\\.

M

/. 6 t,

r

[

/,> '

l i

o..

i

.J.

=

v

~ - - - '

r I

,O i

,1

  • l p

t..

(

3

.>.. +.

t i

,d',r

/d,6 ///

i

~.'

~

r, -

i I

if l

s I

i 7

h.[O[f6".

3.k f

.(

f l

l

\\

l

'[0 h U f/O]ffo7'*/.) ) l.

l I

l I...

f I.

i l

l.

..)

}

.i ) :/.ib'/d_&. ~'.b._ES$ '/El6 7_0 sol /W/t.jh///AC, &g x,.

7 l

P.

gz;qg 7.5 pp.

,z l

i

.. q i

I

=

s,

. r - ' -- - - '

2//,6 q

r i

l l

l i

I I

\\

)'*

= 7$ (-),.g,r

. [

l i

J..

. T...+ ; =

ay2. z yj i

< ~,

l l

l (I_.-

.I i

t

.o i

.t-(/)(,//s),l l

l

-i i

t j

i t

.s e, I

{

p a

hb

[$)/W i

I.

i

.x t

J.

y'

,, =

l f e a

s l

1-l L-I I

l l.

' * $M{?

aw

F l

g i

j 3

a i

s

. I t

i G

/

S

//

0 I

l i

W

.i.... l..

n

,sj'l

/7

. '/

/

/

./. A V

(l f

I.

I R

Y V

\\

\\-

4 N

g\\

\\

/

/

\\

/;

v) s c.

I I

i I

\\

I I

,/,

/

./

i

/~'XL / /

.i' i

/

,/

k, i

,1

=-

y 4e i

\\'

/ y-h

,)

s

\\

,f'

/

s 6,

/' a'G C.

[

c.

4 t.

I f

j

.L. '

r.1 t.

i.

i i-1 i.

... r r w,

i 1

1 1,. _. f.

.i. _ _ _v

..,i.

.i

. +,

i.

i w...

I-c

.., 1

.,. c

-.I.

J i

3 i

l

.. 2.

I.

4 l

I i

I i

2 i

1 e

_i

.,i 1

3 4'/ 9 7 q Q '/ [ '_ R :

t

~ ;

.y 2

i i

i~

.M.// -/ CW/6 T

I

. 1.

i J, C -

S. E)(@O'922.1['~'.;6 i

l

_,I

[

t

_.3

)

i I

!V.. ('.

i

' )

~

~

j

//R))y : 7

..]. ~

jp7 qvC9d? 2 TCM Y.9.J/.1

=d, 7

i l

... I' 1

i I

1 i

4 (W7)?F%9 0 i

kN;#.

l.._..

Y l

+

l 3

9.2%h7' 9/0//798' 9',.5R7 SS9,7.ZC., "Mf0h.5V pl m

7

w. j.

1 i

i I..

l

..p T-

' ' - - ~ - ~ '

j Y.. ~..'

'j l

\\ g, '

, /W ??

0,02'E

,h. j.

=

i i

1 i

s..

g (9/)(/),

i p..

i n

f, ch:c 'i'S) LC7/. W

.=:l.S 4:....

....i 4

..e i.

....i.'

a lu...

.i

.f l

,t I.,..

i I

t 2

w.

C, l.'

@ 022,2.7 0%S, i' $. jy/.9). c/,

9fp:/ =. >

t 1

s _...

[..

.i i,

f

.s a-

.l g

l

,e 4

I l

l

,l 4,.. b.

i".

,1 1

1

{ ////

j j.

d...

i

. '92,&H l 0.L/ D.9 7 i & L 9/ 'O, = 1.

..l

~ ~.

1 i

i i

,. s.-

t.

_l~

2 I

i i

i I

'ce'

.9~?Ml Md3' A&'/ifd! Q.l.iG7 CG31/C 9 7/ C N 2_ ] (.'.7 l

~~~

i i

i i

I l

i t

i i.

i r.,

i i

I i

i

.. )

l 34

,,c.,

i I

I i

l i

L...:..

3s.

i cq,i n.,.

i...,._

y.

.'l L;

Qw ;.wts, 9,..,.q.

.',.D.,.

n... ;-

..: mJ.

.
S

.,.. :r.~. f j;.}

.c 1-.

j

.. 4 e

.c.

r. -

I

l l.

l l

l l

l s

I l

a i

I i

e l

./*

'/81 c.

2. %.:

7t?:S_ Dx.3 va wit Av.ccc f

g ee a

f

=*

5 9

/ e.,r.l.

I i

9 6

/6 //

/ =

../

-(

.e >))

J_;

Eh)-(/$)

I l

S*

o

~ '

jp'

)f,)

t. fi/.

(

\\

i l

s I

t 8

s e

i t

e e

e I

e

=.

cx e

4 0

1 9

j

wl l.

i-i l

?.i i

i l

,b R...

v

.. //

N.i:

th!-

/C3 /C XcA' 4W4'/&f.Cf Th'E //L &DJW

/

St.'. s//T.'

. L.,, ?/ i

'Cl&k :%'d

' '.'si C"2 C p...

c c-

, e'.

.m l $ p

/

7ac e r. E O

/

.k,.\\l' B 4 500 @}g,'.

~

l'f d'.00 lb)N. '..

\\

n, E

T (5.) 3 Y H '/O Gdd$.

3 i',$ d M /M sl

/ ~% s

& % Cmctdu

  • 9, /(q.

/m.

i

[/

('

i u.

f/d;jc6,.

Al di,/ CV86*

sk'.

n;' //,.7A cl~.%7.7c*=.'#6MGf que c2 S

. r.. ~.

,.1.-

.;Mc

2 x ::.e.C

..t w *.',/ M LyltYj. MMS.

J. Dl i

+

d*"4)(

N

/.

x N

/

s / N,j /

~

e i-

~

..'b.

M'//dMTO /,d i l' [

j a

..j,.

e.'

l

.. o

>,. ~.

,;..a I

2,..

,l

.. go i

c i

i I.

l

. _..i 7p

._ m

. H/q GZce JC,Ri%f H&c'ch-4..y L

...; =

i

.. _ L I

p i,.. G.e= 2 f 560 L4 y:'

I

. 7

-..v.__.

2,'dfd U//u '

. _.i

.a

.g.

.!:a

.3

=

~

I I

.... L l

l s

t i

Se=J.+3 A4.

/2,'760 /-2*sa

/ H EVQ I.

.l i

i

.l. _.

.I

. 4

4. _.

i t.

SE ~

6/d LB }y.

/

I t

i i

1-i

..I..

I I

1 WW._.am C. wwsc cwp/ b p;dac

71. - Aw A \\._

... _. u.J/ dad 4G 3,t8

. KCNE EGwe Sw A T&,z M_:2 SV t

P p.

l l

y l

. _ y

_l._._...:..._..

, _.... _ g t

i.

k, g s. yc. Q, j h,,v.~.

w... l

..l.

- < /.M.. :.,

s,

54 i.,_.

_J...

__3.

~

i,

. / y/..

=.

. cry,p)./k;;wG.tLpt.z...

1-

. \\

i

.Y l

_. 3.......;.......

j..._.

..i

}

t i

I

.. p... -..

2.

i i

.r

.[

.l.-_.F]E. A 2.

..'Jin.idn~ Op-Jign k.] JferGS.

K.. i.

I.. _.. i....

i _ _.

l

. -..-. _._. V..-.;... ;5y +. 5y; ~- /:S, 5l'O j.bA/,.f..

L, _' -_.,_;

}

.s i

l._-

g..

.._.l

.. _._I..

i e

i 8

... 3 I

l l

.._..).

.l t.

i

.h.. _

. *f 1_

i.

j I

7 i

j e

.i l

.. l..

. _...j.....

l 7

I e

g j

t l

l 4

..l i

....I

.'s j

~

. f, i

I g,

a..... 11 J., _

. T-

. _ r.

I, _

.~

._.r'.._...

y i

'.p** w.,....

I '_....

N g

4 I

l l

.l 1

..._.. t.

._. d..

  • ~

...?,..

f

'. i..

, [.

r3 *

(.

6

._...l.

.j_ g,

.p.

3.

's,.*

  • e 1

l

  • h.~ d. i e#

y 8.,,,-

.p er.' Y2. d -

l

..if.

's t

8 s

r N

}

..k

,l.?._

l

  • 6*.

r.

(

oc I

l i

I i

i

.J l

l l

t'

l..

i e

I O

I l

l l

l i

i

's h

t i

I t

f ft

  • 0

. /'l f.

J

/

/

ta e

~ '.

er !

  • .r.

I

. d.

t i S ;" Se f ('.Srl.3 i9 Wl, t B C l M M Q 'A % 7i i

'AS'S//,,. M f/6)

l 2

L l

l g

h#

M O (U, f/

l

!.[

l 7, -

/, 5~/o c'C//4/~

I

_ //

i 7

.?

i g

j, l- /l JEO Sj !/.i
)EO) s'ilP 'U i

l l

L..

i

//c 3 I

l

/tal'O l 4j[l/l4 2.!/O -! /M5,r /4

t.

l ft

/

-4 6 -

[

=

I i

i i

i l '/ l = /3,626. + j; ff20 I.

\\

/

g

.f.

s a.

e l

i I

I j

l 4

I e

);

'/ e 0

7 f

i i

i i

i

{

I l

~~ I l

J g

,9

  • ='"e p

C,-.

l t

i 3

p I..

e

' g

""" E,

.7M T.'_.

/

g l _.

l f,

l

/ (', _. /

4 a

/

4

/

I g

t t

I t,

I g.,

i 7 d,7 8 d ic.'7[ /../. /

2 i

l I

___m..._.

I i

l f'.

f

~

I t

p

._ l.

i i

' h//l,

/kl.j 3,f.'

(A.

.. //

U

  • i !.'C.** '. )

i

~

[

N I

.g f.

j,e l

l i

r

.,'/,,... '..r :< )

I

{

t 4

g i

t t

j i

i

. I h.,^ * //XW ' }M'[ ii?/O'OJG' l.

l.:

1 j..

l r

.4

. I j

I t,

.y

f.

t /

...n; e

?

a

... ;. '.. y

~*<<

l SQLT A blAL'/-51.5

.7CK) 5GWCS

.c 4 _

~l-

/

1 4

/

4.pg g.

f J

y Ol i,.,.,

s

'k-

? I

!(

..y

~

~~~~

.g ly 7,,,,g 1

\\

.. m 6.25oco1.s+.

T o. A>J AL'(M. Tt \\tf LoADINM :

CNI Tt tI C G. OF:

i1(E PAC 4/M C; T}4E....

26 F02f tE I6 Lt. FT OtT EECAUG f.

rr w/outQ b.ig C M iSJIEi_..

Tb TY\\t:

Hot-tPb U. Tr\\is Of..St ICINT s/E/_ TOR )5 11,'7. (, T}.tQ,

i) A scTlad 16

%.+ N Tb nlE ZM.T B E C. A u s L=

a:.THi.6 DiFE(' Okl 1-

'+)tLL i.'.' E-n'tE H /d \\ MUM COUt#_ C-

'rd -tEd CassosO VJf ni L o A r.;n b M 2,i, o F# v.cer CASE CD td Din..'.> \\

l, ' OW G. E f -i. :M.W D Ti-\\ A.T TH C RECul~T/bJT C.3 G F02C EO Ord D i B G u:...C Ar_TS PAJ %Lt d.L TO

11. 'd 6 _..

F32r.E2..TA15 NW n-- (f%

TtlF Mis'! t ML1H CauPLE, THis.

. q L a c D i> 4 ci rc== Ci, hl

/sLSo EL\\ M uJATTES 2.

E OLT 5.....

F Ro H.

.5U'iiS6 BJUE0Ji.35

- U

_. q

. 1 o

==-

p, t.

e

(

Fr i%u. ! ~1 16 P t YJC.D TNist.J 4._

OF '

CCE

%)\\LL SE! _.

~~

T T 2 6 d c.i-tt T r E D E ' / T H E-T I_' o. "

R\\E W.-iUCnW6 i ' A-t r sI'c Ci4.tfd:D 3y'1MI6 F f,d' &

CoOPte Cn.d Ee J ALCULA7 rT>

f=Raet T. O F DI uTA_.

iW F16i.

p.jz5 g.

. c e u..

v

11. e.c LET X

SE TrW DLSTLWGi=

T -Et.1 t i. z.G D: 2 To

.Cs ed t s.R. OF H eti.o.R-)THEd Dl 6T7.adC.F f:fa. g 3

/.s.77.L.6 froECE TO CElsrW6d 13 16 -X y'-50 J.iLS

- t l. 2.

(,._s.

h 4-X').

Y t l 7 v = I W)- A y l.8x =l00 y,

G.o 3 s,1

.H o u s.s.P-.Chu<i.50 Ry' Tr4i5..JJI " L 16 ~1wicE 04E.

FCCCE Ti t.A E S I T'S D'STA C,

?W ]K C.f NFTE-C

.- ~._.

._.~.

N

. H =. 2 \\l. t. ;,os~ 6 = /M. 46 7 _.

I.

.. J.

. c..

D hk

'.,*9 f

a

+.

=.g

_-Wo_.

..._..___...._.....w.

. i, 4

'. Meger:0Y

,v-w m a..u.

i w." or is t 3 s.46,

~,

su s ntuG H., i-m Fr_ cc tai 5ee=

/ c=

4-bu ma Q 4-

2. Mf 13s.4 6 - E(i)r(v 4 z(z)($j F (n) +-3(g)F (Zd..

(35 4 6, = F4 F+

I: 3 R H F 6=3Coou

. __. J

..h # l 4).DO b '

[5 7

I4 ber.6)

/ h /

^" '.I g"3 f

. TE Ll9 L Ei STTd'P ;'~

~

M C 0~.0 b I P

S " y _'~. /9, 5'a s- =. 3 2, ) 007&

.....-___f g

[s g

s8 e mai=aecg_

cn>r Nor 92 T.E :.Tt-E PH L ' - D... _

U.5Nc,$F c

y o

.._._l

\\ \\. 2 -6. n = 4 38G \\'-s

<n <^.

. v. _. _t

/32 F:k

$C @%J65

$-j( A'p.'

FUE

\\-$

h -

\\ \\ (. 6 ::- ). L,. cd., na p

.f. 38 (, '.%.; _. 4. I 23,80o p.su.

5,

=

h G%

+ see vue zi-A 3

u l -_....-........

wi r-j l

l F,

i i

f l

?

l i

I 4

l t

4 l

i 1

i l

[

I i

. H e t 'E H- - C 4i ' t_ t ; /.D J.' $.

i.'s p [ = 15 5 4 6 3. 2 % F ' 2J2iN,F.%-3yP(b^)

l i

td 'D-;li fd7.:jNI., #N F f": ' "'?_3 W.D#Q P!'.5 hZr:

ll t

i i

r-i i

oo e

t r- - -

I

[

l 1

t i

t

~

t i

i I

~

I t

g l

oe i

i l

on i

9 1

1 g

! =16 41M I

J.

i i

i

%. g..q i

p -.

fA l

Ft N/r g R.yl W4F(zi)

I I

l ABC ;

I i

t Cl FCEC I c r -l dui~ 'I30C hr Zl Y

[

.}.,

D:

11 =

1.. sT/b.P.5I. Tu ~ TBot.C Wn F4 t~ 6 (2 C E i '

l E

p o.

ec F t J 2.1 m. a s A-l s

0F sh.e.. dXrH

~6. Wo. '.12ptT5 O. ist, p1

/J i

i 2.(2.)(g)F(zt) 2

-sc Q t.> 1. r M An c

p 6

4 A-3 rs,

A-vi QJA l

l j

.m t.

8

.:, r.eq:

?.;.,

.a Q'. W.

\\

b E.'))?. ~f*

i' [ ',' '

E.')

d; I:.2

/d 7 3 [t

,j 8

F~

r= F: m...o d...a '.

.'~.T.. ! isd

~

E' voHie rih f-A P o c c c3 ihj A B dD l

i I

i 3

'l b1f,.;. \\:::G't.I S'i.- k~-

L l

g' --

i i

I

.i i

,i I

I

}

.1.,

l l

f f-l r

4 I

j.

- 6...

l 4

p 3

I i

.4

( T6c.

m: c=s 3 i t. t

' p;e-

22.. Ji tu oiPRCiu31 id um-cu_.r_.J. frx Si.x... i ai S;He:

c 5.MED.:EsstVE.=

!= ora s I.i T M.>i

?.'/ T % e r-I../w.idir; sVed le

_. TWE VJor.fst ch.--ic.i OpG7 ud THt.=

-irr 2 ct G s w i u 36 L10. 6R.I'!/llT ~.M T4 AG. TE ~

Tt-(0-5L I d

~O'# kl llQ N TtlL/

H MIifJH

( s M Fn.i s.' t..

,

  • 1.

1, C/.\\. l

.'LJ L A I 1. O _,

i 66 f '.RL.0 AJ5 s

6x4-53 ~+~-

b ".- }' z., 4. %,.t

-Q c.6 P. :. 33J v.

b tw '

2

'5 M '< & H..CF_.

H m T. Jr'i L.s D. c 'f. -. --.

\\

~ '

(r

. _.... S = **> % +- )1_

. - c a, osc: 1. n :; J z

~5 =

l(o I o f:.; I

? %~7e u 5*

N 76l-f5l t / /'e.

'5T12 i-iG 4

.14 4c.t.O..Dw

'~

Tsocro w o s r R, e s.... _

e e

g e.

.e 4

e.

.e 9

_ e

'.,q

.. -._ _ c:

J2 '5&C} C.}

9trLLCT LD4Ol>J 6

__ 'i

.A A

g _

g f-i W,

[fD

_ Ice,

. /-

as'n a

T x,

I I

i 1

p o

y e/4 eg

.-.m y

_.... gs (, _.

j z.

THE Foi3CES ad THE PAGGL,E

/^h.' E A6 f.~Hoy kl. TifE CAELE Tmdo.d GE\\aoJ ts 3

Di t ' r? sii. t JNic L+. O is TdE A%LE ~I' t-lei NtTH THE F\\ JL.i ?__Od i /_.L PL/3! F No v is shn Tcos G M ud+.

\\.b TH X - Ay ( >

l%

5Ho i h.1 E'E LJ.V.

4 i

i i

k'

  • [

i r*r s.-

1 v7 f66. P/XsG S, (A'3tE

/

AL'/$H 6

a

u o.

,,.o p r

.. v s

...e..f

...... :. 8 L.

h _- k-] >

Q.2.lko

..-----.e=

.. $ F o f

n.fD F*('T$ta0-2-)p.

Q FR.0 ti 3 D L H E F O I O M />.'

IAtd Ai V >l s. GF F W l' Z.

~

i

. T= (u.m-r)g'

/

g G ge, q T*

I I 15 '~ (T 5 8 d S ~ 29 g, 9 c. a 3 q,..

l _

T-( lI. '2 3 + I. 486, - o74(at)T)

Q. (ol. %

.(

i.,

224e.6 a.5es T

. v s.

o.e. e d 17 9 T = i9 6 i -

/0.u q suasnTuri4 mT-) eau. (D F:

(to 6 6 5e 4 7

'26,)O.74 0

r- =

6. T16 - l 4 4, F = 4 7-9 6 - 194Jo lke

.;13

^,.

,1

'1 l

. i,

_J I.

tF T$r C A M.-

3ew,C CP

'sTCUTCHis-s A

6 2E AT-m DE AL TNE PM d.6e'.

VJlLL. Tl Po TD Fi t. I U TdC P

3 Fef2ce_

wi-\\\\c.6 vill 3EE AL n FJ5.

OJ CALC

.E C G E USE. IH D

\\l 26 CL,)- F-( b5 /4 h ~ P(2S.5) 'O

/5',cou)+ZS.sF l 7 c) 6 = 65. Y ~

c

/ ~M6 =

9 Scc,CD o + r. 'Ti' 6

  • 3 500o Lt/L..

.. _.? =

/.3 7, 0 % %S

  • DwwwEG' M S L y b M.S..~,

EksfE. OF l I-3:7Dr1, O4d.LyMi@,_

LicT' _ '(IEto d E. I-BGAt. _ f_

.(

Mll LL 4

6 E @. PACM f3

,s..

....._.s..

_~ _. - -.. -.

.,.I*.

i; l.

l 5

.m _4

- w y.

t.

.e r - S T dcr CAEU-32LiWL CR s T W.T G.ri &.-s A

6 BBA. i DEAL 3 TAE P A d x '/ n E.

VJiLL n Po T3 rIdC Td5

~

F-09/CE

'AM\\Gd WILL SEE.

A.C.Tl U6.

CW OME EDC,E USE f_.H = D l1. c.G G L-) - F ( 65 /4 ) - P('z (. :) - n 1 % 6.= 65 2 5

/Sc, ooo + 2.5. 'I P

' '196 ^

$ 8Cc, Cr.> 0 F ES P

& 7-5000 LE.% _. _

P = /37: ON S6

" DsmE@-N WEWLy' A @S_S i3A4EE. of l I-S5 cr1. TRi6.LOAO!t 4_

I M itt L kitT YLELo..d 6 I.-BEAM.15 1

....._.__...J M.

6 E 9. 9_ 44 #

f'5

..____.o l

.__.. _._q i

.... a

..)

m

..y 3y..._5 i

Q

,-