ML19319D968
| ML19319D968 | |
| Person / Time | |
|---|---|
| Site: | Rancho Seco |
| Issue date: | 03/01/1975 |
| From: | SACRAMENTO MUNICIPAL UTILITY DISTRICT |
| To: | |
| References | |
| NUDOCS 8003270665 | |
| Download: ML19319D968 (63) | |
Text
{{#Wiki_filter:I I ~ s II, llI!l d ( n n i i 1 RANCHO SECO nuclear generating station UNIT ONE CLAY STATION, CALIFORNI A Lt N I I jl: l N ~ THE ATTACHED FILES ARE OFFICIAL RECORDS 3 OF THE OFFICE OF REGULATION. THEY HAVE '~ ~~ BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD ANS MUST BE RETURNED TO THE CENTRAL RECORDS STATION 008. ANY PAGE(S) REMOVED FOR REPRODUCTION MUST BE RETURNED TO ITS/THEIR ORIGINAL ORDER. DEADLINE RETURN DATE "' 3 [ 2_ g b- _ O (5) d MARCH 1975 8% dw//h [ Q E I & 12"78 8003270 MARY JINKS, CHIEF CENTRAL RECORDS STATION MUD a.wm. re -~- g 4AMENTO MUNICIPAL UTILITY' DISTRICT ' [
- t'
,'NI.-). ' LU$ EI;((N ' $ISNN3 ,r = - .__........a _ a :. -- m -+~~ h *h- ~ ~- ~ ~-~- ,g, 3, j; 7pgg - ~ ~.... -* " '_~'"__~'* ","
tjrg j i j l-t 1pi r l j l i l j {l i l l RANCHO SECO nuclear generating station UNIT'ONE i I l l CLAY STATION, CALIFORNI A i l p' l l i i I i e 3 7:07VANC: TDO7 l (I lll{ ) l 11 l l 'g j MARCH 1975 l l i 4. ~ esuun .f l SACRAMENTO MUNICIPAL UTILITY DISTRICT l
6
- 4..:
7 4. PERFORMANCE REPORT J t i Rancho Seco Unit'I ' Docket No. 50-312 1 Operating License'DPR-54 l i i a SACRAMENTO MUNIClPAL UTILITY-DISTRICT I ..l' j ~ March 1, 1975 3 L '- .. l^~ e $O-'. .'h-- -?t m *. -_. r_ 4,q gg, . _.e.-i ygf._, ,_,.,_.,,4_; .J
PERFORMANCE REPORT DISTRIBUTION LIST. COPIES Nuclear' Regulatory Commission (Washington) c/o Tim Dillion 40 Nuclear Regulatory Commission (Region V) 1 E. K. Davis 1 J. J. Mattimoe 1 D. G. Raasch 6 R. J. Rodriguez 1 I R. W. Colombo 4 R..P. Oubre' I J. V. McColligan I - D. C. Browning 1 G. Mitchel1-(B&W)' 1 D. B. Tulodieski (B&W) 1 Document Control Center 1 Rancho Seco Library 1 SMUD Main Library, 6201 S Street 1 a I i-w m-M -t e-T = w -1 F -- T ' 4'-** ~
I POWER MANUVERING WITH BLEED AND FEED l-0 0 ,,n..w -_s- -w.m s N-
- neme, se.
v
5 lit. To' confirm.the accuracy of the bleed and feed maneuvers, Section ill j :- has'been added which.shows the actual changes have been better than predicted. IV. The data obtained during.the bleed and feed operations were included in Section IV to show the initial calibration of the instrumentation to obtain accurate.results. V. Section V includes the power history up to the submittal date of this report. 1 k. f~ O 4 t J M Md 11 d E-
INTRODUCTION This report is to satisfy the requirement in Section 3.12, " Maximum Power Restriction", of the Rancho Seco Nuclear Station Technical Specifi-cations. The content of this report i s described in Section 3.12 of the Technical Specifications. Specific requirements have been discussed with Mr. Bart Buckley of NRC on October 29, 1974 and Mr. Buckley and-Dr. Vern Rooney on February 6, 1975 This report consists of five sections: 1. To meet the requirements of performing power transients with bleed and feed operations, a test program was conducted to verify:
- 1) The system can perform power ramps up and down within the requirements of the " nominal" curve.
- 2) Boration from the " nominal" control rod position to "all rods out" can be performed without power changes.
- 3) The power can be increased by deboration wi thout significant control rod position changes.
'4) The system can recover to power at peak xenon using bleed and feed operations. The above four requirements were satisfied by a special test procedure and are discussed in Section I of this report. 11. To meet the requirement of sufficient experience of the operating personnel to perform bleed and feed operations, Section 11 shows the boron changes during power transients for the month of December,1974 and the months of January, February, and March, 1975. These require- .ments were also imposed on the demonstration to satisfy Section I above. i t 9 +.--m4 .v 4:= m.= se.. -o,ummem,*,...=->
TABLE OF CONTENTS ' Section Page I Lintroduction 1-0 1. Power Manuvering with Bleed and Feed 2- 0 11. Bleed and Feed Operations III. Bleed and Feed Accuracy _ 3-0 IV. . Bleed and Feed Calibrations 4-0 V. Power History 5-0 Conclusions 1 i ) .n*- r-m. m. so,w e +
reduced as the CRA's were borated cut. The operating shif ts each demonstrated the dilution feature which allows increasing reactor power while the CRA's are withdrawn to the "long term operating region". While this method of maneuvering is relatively slow, approximately 0.5%FP/ minute at 80 gpm letdown flow, it does minimize reactor power imbalance and fuel peaking ~ factors. This technique for operation is allowed since the " Enable" permissive from the ICS is "in" due to the CRA's being outside their " nominal" schedule. The boron change necessary for a specific power increase is easily calculated; while the resulting rate of power increase is determined simply by the letdown / makeup. flow rate at which the demineralized water is added to the Reactor Coolant System. As a result of these tests, this technique has shown to be the preferred method for normal power increases and operations. ~ ) M w bd a 1-2 m t
POWER MANEUVERING WITH FEED AND BLEED A. Operating Experience Commencing with power operation at levels greater than 1800 MWt, a special test program was initiated to demonstrate the soluable boron control capabilities of Rancho Seco Unit !. The scope of the program not only demonstrated the capability designed into the equipment, but also that licensed operations personnel are familiar with, and proficient in, controlling the plant during such maneuvers. All of the operating shifts successfully demonstrated control of the plant during power ramps. Typical ramps all involved changes exceeding 10%FP and were done nominally at 5%FP/ minute. Many of these tralisients were done with the Integrated Control System, ICS, in i ts various modes, e.g., Integrated -Auto, Turbine Following and/or Reactor Following. In each of these modes the operation was smooth and response as predicted. All of the operating shifts successfully demonstrated that they could reduce power on CRA's, then borate the rods out to the long term operating band Both while holding constant power during the subsequent Xenon transient. " Feed and Bleed" and " Batch" deboration techniques were used to accomplish this maneuver, which proved to be acceptable methods for timely accomplishment of the desired transient. Typically an hour was required to move the rods 1 following a 15%FP power reduction. As expected, the relatively large nega- -tive power imbalances caused by the initial rod insertion were quickly 1-1 h -e,_ .m cp, . aa v.,r..
==-
the low worth of the segulating control rods when in their " nominal" 3 position for long term operation. As the core exposure increases. ~ i so does' this " apparent bite" of the rods thereby improving the 7 maneuvering capability on rods, while decreasing the dependence } on boron concentration changes to " provide" the necessary rod worth -) ~for the recovery to full power. ?, During the power escalation program there have been numerous in opportunities to' observe the effects of large ramp control rod P a insertions on reactor core imbalance during Load Rejections Testing, ICS Tuning, Load Follow Demonstrations, etc. 'This-experience can be summarized as follows: The Axial Power 8 Shaping Rods (APSR's) will " fine tune" imbalance when the regu-lating group is in its " nominal long term band", i.e., 85% WD to 95% WD, Fig. 1-4. Starting from any given initial imbalance, a power decrease resulting from the reguldting group being inserted causes the imbalance to go negative. This negative imbalance peaks "[ st just as the regulating group over. laps with the top of the APSR's, then it decreases slightly as the regulating group is further inserted. A return to power shows a similar response, although I t the length of time the regulating group is maintained at this s maximim insertion affects the subsequent recovery imbalance. This is due to Xenon building in the top of the core faster than in the bottom; as such it'is this effect which determines tne technique for performing ~ such neneuvers. i i w 8 l-4 ) .J 2 ,e
B. Pseudo Design Transient The plant was designed to' be capable of operation at 100% FP, ramp down to 50% FP and maintain that power level until peak Xenon is established eight hours later. At peak Xenon then recover at ramp rate to 100% FP ~ ~ and' continue steady state operation. Since the plant is not yet licensed to operate at.100% FP, and technical specifications require a two-hour hold at approximately 7% below that value to allow Xenon to redistribute, it was not feasible to denenstrate-a true design transient. Therefore, a " Pseudo Design Transient" was defined to demonstrate the desired capa-hitity and at the same time stay within all licensed restrictions. Test Method: The Pseudo Design Transient was to start at some equilibrium ' power _ level greater than 1800 MWt (65% FP), followed by a reduc-tion of 50% FP (1386 MWt), hold at reduced level for eight hours and, ramp back to the original power level. This power level was then to be maintained through maximum Xenon burnout. This transient is identical to the " Design" in that it requires extensive deboration, boration, deboration evolutions to position the regulating control rod group such that core imbalance is properly managed, along with providing the necessary-rod worth to allow the. plant to maneuver at~ ramp rates exceeding 3% FP per minute. From a reactor' physics standpoint the most restrictive point in i core life to perform this transient is between forty and seventy-five Effective Full Power Days,.EFPD, of operation. This is due t.o 1-3
- Le
~
J power level is regained. This will not be accomplished if.the regu-lating group is deborated into the core too far, i.e., if too large l a negative imbalance is established prior to the recovery, see Figure t 1-3 d Eight hours.after the initial power reduction the return at 5% FP per minute was begun. Power increased smoothly untl1 fully recovered 3 at the point where the regulating group just reached 100% withdrawn, Figure 1-1. Imbalance followed the withdrawal of rods until it peaked at near +10% as the rods were at their maximum, see Figure 1-2. Since the increase in power caused a near uniform increase in core power, a corresponding uniform burnout of the distributed Xenon was now in progress. To compensate for this effect the plant integrated C.atrol System, ICS, began to insert rods to hold power level. This had a significant effect on Imbalance due to the now more than doubled local (50%FP increase) power density; as the regulating aroup comes in, Imbalance rapidly approaches the RPS limit which can end in a Power / h. Imbalance / Flow trip. For this reason it is essential to " match" the 1 ) Xenon reactivity burnout rate with the addition of boron. To accomp-lish this and at the same time compensate for the dynamic response of i boron concentration changes in the Makeup and Reactor Coolant Systems, a small boration was begun moments prior to the power increase. Over the following two and one-half hours, additional small batches of F . concentrated boric acid were injected to the Makeup Tank. The ability to match the Xenon burnout rate is shown by the ability to control regulating group position during this period of time. 1-6 3
Test Results: Starting from 3-D equilibrium Xenon, the regulating group in thei r " nominal long term band" and the APSR's maintaining -4% imbalance, power was reduced at 5% FP per minute for a total of 50% of Full Power. Once the lower power level was established, the APSR's were inserted so as to minimize the negative imbalance, Figure 1-1. Within 30 minutes after the power decrease, Xenon buildup caused the regulating group to withdraw in order to main-3 tain power. As the regulating group withdrew the imbalance reduced i such that once the 'ilong term" band was reached, imbalance was near zero, Figure 1-2. Dilution of the RCS was necessary, both to main-tain power and to maintain the desired near zero imbalance resulting from the regulating group being in the Along term" band. \\ Two hours prior to the desired time of recovery, a deboration was calculated and initiated. This caused insertion of the regulating group'to a position which would provide enough' reactivity to allow returning to the original power level at the desired ramp rate of 5% FP per minute.- As a result of this insertion the imbalance again 1 went negative, as expected, but it is interesting to note that it did not exceed the operator's operational imbalance envelope, Figure 1-3 This is quite important since a successful recovery depends upon not tripping the reactor due to the Power / imbalance / Flow function of the Reactor Protection System (RPS). The goal in. regulating ~ group management, at this point, is to have the rods well into the "long term band" at the time the original 1-5 ~
-~. .l 1 CcnclusIons: Rancho Seco Unit One does possess the capability to maneuver, at any time during the nominal core cycle, at design rates. As a result of these maneuvers operational and technical specification limits will not be exceeded, thereby guaranteeing LOCA limit margins on kw/ft and n DNBP. will be preserved; see Table 1-1 for worse case comparison with predicted values. Simple calculational techniques are available and have been demon-d I~ strated to provide the operators with the ability to control imbalance, rod position and transient Xenon effects, by simply adjusting the boron concentration of the RCS. I J Since a relatively uniform Xenon distribution is assured by con-trolling to near zero imbalance, a rapid increase in power, as in this test, does not initiate an axial Xenon oscillation. Peaking factors within the core were maintained at completely acceptable Icvels throughout the transient. Figure 1-6 shows typical fuel assemblies and their axial power distributions as compared to predictions for similar times'into the transient. 7 This " Pseudo Design Transient" demonstrated and exercised all of tha features of-the " feed and bleed" operating scheme. All were successful and the results are applicable to any such further ~ .a \\ -op3 rations as might be desired or required, independent of the initial i core power level. w' I-8 t\\ =$ e 1
Optimum operation requires a near zero imbalance at all times, and to this end the APSR's were effectively utilized during the Xenon burnout period to reduce the small positive imbalance. This was done by inserting them in increments until they were zero percent withdrawn, see Figures 1-1 and 1-2. Maximum Xenon undershoot was attained approximately five hours after power recovery. This point is significant in that now deboration was required to control regulating group position, and at the same time hold the desired power level. Xenon is now asymptotically approaching its final equilibrium value for the power level at which the core is operating. Figure 1-5 shows relative Xenon worth through-out the transient. The actual Xenon transient run was larger in worth than to 100-50-100 prediction since the power change was actually 80-30-80, i.e. greater than 50% of the initial power level. This then exaggerated the Xenon peak and undershoot. At the point of maximum Xenon undershoot the transient demonstration was effectively over. During the period of the test one main feed-water pump which had been down for repair, thereby limiting plant power to 80% FP, was returned to service. Therefore, a return to full power was begun, which involved a two-hour hold at 83%, followed by returning to 92.6% FP. These two power increases did not materially affect the test results of. interest and so all data attached is shown over the full 24 hour period following the initial power reduction. 1-7
Figura 1-2 DESIGN TRANSIENT +20 l j l j j 4 4 J; i j i j t t t i !I i t i i I' i { l t i 4 .i - + ' ' Y. A 'a- -r. - 4 6 j 9 t -i e +15 -- - " ----+ H +
- ~
4 l { 4 g 4 .-j _ 7 l t-p .--.p.--' t - + - g j j i 4 4 4 4 1 j 4 i 9 _ I t + J { I } 3-4 l t 4 p-.-- j + +10 - " + - 4 i 1 6 } .- }9 { i_.
- i. ]
l $+, 9 . _ + _- a p t 3 { i 6 4 4 4 4-I .t l 1 e t -4 ._4_ 4 - p 1 . -4_~ 4 - 4 +5 4 - ....+ L - e_ i I~-- - 2 < r, "! 1 + - -tq,'- . - -{ 4 4-.- } i j A ( /j )Ij [* hd i 1
- }
} a t t - t-a a t t o m o g s. i 4 g. g
- s. :Mr e
+ - *f, -t_ 4 4 j --4 -t + l 1 g { i i ...[.. - t + _-. 4._9. p ._9_ _f g 9 -5 -+ +- t-r.
- t.. -
i g 9 j g e 4 h~ 4 -L .4_ 1 ,j y i 4 l I [. 6 n i [ { ~i. p_ i--t _ i 6 d I u t 4 i i f-ti 2 t i 4 t --t t 1 -1 * ~ - = g + 'o
- -10 n
o i ). 4 i 4: 4 j p 4 ..y $3 j t { l j t i } t -t + M ,e e ~}- } } f l -Ti i_} }- i o, g e -15 + '~~---+- -~ ~^- -*-- - t-.: ,o i g } g 4 g ,t -~4 . _4 _ ._ t 7 t e +
- t..
{ - +y.-.-._._{9..__ -- F. - a t +- l-l 3 -20 .t 4 7 I t-1 4 y p t. e. I i _4 ._4.. __u.L._ 4 1 + i 4 + 4 i i..._4. - __ } _ . 4-...I - l _.4 9 l _ [__ 3 l l.. j- . _.. g 4 . +j._ .t _4,.._j j. 1 t' -f.___ a _,. i t. r-- I i 4 _f. + 4 4._ .,4 _--- _<_ _ - -. 7 j + 4 + t --i i i-1 i j 100 ^ i f -~--- f-t t t -- 3 + j 9 } t _.. _._.L__4 s i 1 i l 4 . _4_ . j 9_.._ 4 _.. _.._4, LT -..__ 4 y-4Tp. 1._p[4 ,...a___. 4 _4_. j -{ f j-- t j i }- .__. -p d-- ;, 3 i
- a g
90 ~ ~, ", ^ +- Ij 4' -}__ 9..._.'p. _.- l . _. _._.J l i i a ,], + C, { l { i 1 I 7 g_. 80' I A*^" g, 1 i j .I I t- } ' {4 I i i i 4--- {- I,..' l .t } j ~..t - -} _.4.- ,e i ___-_- p j i 1 6 g3 _}_ i .. _ __i _1.-,,.j .~{ _ .J. i o - ), 7 7 t-',- -b 70 i--- - ---- - t ", r-gg i ,i i 4 j-._ + 7 4 -.. l-p[> 4 4 i }. 1 t + j q .a y f l i l --y+.._. 4_ 4 I i j t t 6-60 f j ._y_.---~ '_ -p _ u ,,, y i i i y. 9 ..4.. j ,i 1 t-_ _.a___4_.. -p ,o s 9 1 g y..-_4._.% _. O p i g j }, 4 +_ i n 50 r, ,i - - - +.
- r. - --
. t -- i p d + 4 - f_ _4 1.. 4 p_ J ._.F_.. 1_.. z q i i s._ k j j f! -.-{.-}-- 4 1 L.. S 40 _j -+ j ._4 .i _4 .._4 j i F { . -4 _... + i l .e 1, -. .g 4 7
- 4. -
.L t i 3 g 4__.___ j . y y j _ -r-fA m t u i I l { t o 30 _- ~} 1-r- ~" 7_. - - --+---~- . ~-- } { t e 1 f t .--- W-- t -h - -- i y t- ~+ -t t I i t--+-- e t i +- -' +- - t-1- i i h- -t t -t~-I-l W f ? f t-4 4, --i - -t-a: 20 f . -J.. a....4 4 ___...4' 4 t I I 1 .a_w J 1 i i 4 4 1 { . 4 j.-_p._.4 a_. ..._I. __ _ p. ( j p.._p_._.4..._p 10 j i i i 6 _ j. q ]t i 4 4_.._.. _. j _...... n l
- 1..
%._ 4 _4 __ p._. ._9 9 } 1- - j_ p._ -_i_. 0 t F t f t i 1 2 3 4 5 6 7 8 9 IO 11 12 1 2 3 4 5 6 7 8 9 to 11 12 Elapsed Hours, 12 hour clock 1-10
Figura 1-1 DESIGN TRANSIENT 100 + I [, ,i. 6 l;l l. l -_f. )- p i [. ,t i i i . i. .t-s s l l 1 i .t + -+ -e-t 90 - ../,}j ~.. 4 td b. 4 I
- _. a_..
3 _..a 1 4 o l,.,i.i + C 3 j - .t "-f f i t }t i j t i
- t e
+ 3 80 I i 4 t 6_ -4 i C 4 I.; 4 Gp-6/7 Reg. { 4 I; i t-w i i ] t t ji i <i I - f+ r 4 f t t 6 t a r t-t, -b. + l 70 - t* i ii 4 i.t ii 3 i 4 i + - - + lt i.e i i t-1 I. e i i t, t -t e i I tf r t i t t -F 60 /, t i e w. t i . t-I 4 6 O t '4-4 t ,t t i - t. +- A--'. ~ + - - w j i 6 4- - i- ' 1 -- t u ' '- +l 4-i - t + + -t-4- - +, + m- ~ ';; 50 ' .,l i... r. *. t... _f.... _ 4_. _, l. _a. i, - 1, - .r - t. i g t 4 i g } n 4 i
- t.. t _-..+p.-p i
6 1 i g i j f +- 7 g4 g } 6 i ? l L-t t ! t a n O 40 co og i i t i r.i & c.. -p_ .i i t 4- - - + ---t - y i _L.
- 1.... i, ---t, _.. t.-
t, ! t - }. .. _. _ + F. 9 ao i I + i .}. ,r i i J e 30 - l--. .-2 -4 %w .- t- .i "" t -- +. i {. J[ 4 . -_;._.a +.__ t t_ 4 o i t. gj g, i i i 4 - 4 J
- t
.,b. - .7_;- y M
- i Gp-8 APSR's 4-L----+ - i e } ! f,_.
t s i i e t w 20 g } 1 I ( i.,. 4 i 1 . -4 .4 _t _9,_.. p. i . t_..__ i 1 i l J.j; ..I. i 4 i i i
- -.. -.; __+
.-t. J. _p ._n. -I 4. 10 m. -t -+- 4- -+ t [4( L- + l i i p. 1 4 i -9. 4 4-l 9.'.{ i. t 4 _u ,J. .A i 2 -4 +.. p.- .s i i 7.- 7 0 - } } t. i t i i ,. --... g. t. i 4 i_- .t l1. # I t t + + t-- ..t 1_ .t 4_-- { g; 4 3 .p .p g..
- L
~ ~'- '.-~4." n; 1190-- ', T _9._ 6 -9
- t t
i. I,. a I } g. l -4 t . I _. _L i ., - i r 1170 J_- 4 4 u a j. .i t i t. . j-- i 41) -[ -i t- -i t t i r e t e O 3 i I } l l [e e i i t t' i t .t I 1150- } e o i +- -t e i t v q -4 4 -+-+-
- --L a
} j j ( 4 1 a. t f ,i i + i + i i i t. [ t i t}t .i -t t + t to} g i t t l t t t f a t i r e t + I- + t m. a, 1130 x 4 i j r f t w.4.. -+ -j 1 - { -- f - +t --- , g, l 1 p Q + - _ + - t (s l, i { [ i e 5 o a t 4 t 4_ g. 4.p.i, A S'1110" a' - 4 + ~ 4 -+ t, -i t. ~ t-- 6 l t i i
- t. d.._
_.7_ o -} 3 i g j j
- p{
.4 Z I e a { } } _4 ..J 4 4_. I- .O 1090 f ' if f i l - '.+ I t t + - + - .l I i.!. ! .e. I u 4 4 + 4 .i .. _.i.. m .l .. j { i t w t 6 i, . i } i 4 4 u i .J t c 1070 .i i ..t ..i-4 .. +. _ _ gi,, e i., i .. i } j l !. t 3 i i g p ,.l. t i ie 1050 o l t 4 1._ - t. _, .,.9-, a c -{ .! -_f.. 4 .. j. }.. i L. _6 j. 4 . i O I l. _.I- _a.9._L' I. I tI t 4-t t t- - + - 4 4 i w i t p o -j j t e .y t. 4.. g. j.... _y ..f. m 1030-t--- 1- _,. a. p i t 4 ,. 4 a. _a_ 4 4 t 6 i i l l 9 L 4 i 9 1 .[ 4 e . t 1 } ._.4_ .l { _1'. L.. + f t 8-i 6 i 6--- i f3 f- 'E 4-- i 6 i i t i I t 1010 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 e e to 11 12 Elapsed Hours, 12 hour clock 1-9
m r ; a l,. .T. .m - .f. - r -l- . w --. .J. i,. I g...1 ..1 -i i,.; g},.. .;.I i g .'. il. :t4. r: .. g g
- n.. t- -, y _..{
9 ...r".,. t, .!: t, .c
- ;. :'- :ttr
, 3. g 7 3, 7 7 'i.! 1 j .I*-l afagurQ l-4. - l .. +. q: 4 g { upp L., 1: 3 + %y,.. e ...t... .t J u.
- 3..
5 G ] }Up-g: 3 ; 9. 4. - Opetratiing, arid RestfridteOMdi l f
- Gi yn n_
~L - M,ition-Limitis - @Oh/ -l A-M - - '-, ~ : ' F.I -l l. a p lJ i.... :-- m 9.' ~ I:. Ti 'p t., p-tt ---
- h. i -- - - 7. l:. ii.; T' !
.' [i-6 - -- n-- 4; 4, u1= p j i-p-m .t. m r hi: . _ n. 4, i : .: : -,..a..a.= i .t ,4:.' 4...=.~ 1 L ...1 M ':- i a i i.l a _ a O}.. 'i.. _1.. -... _ - l. \\ .. p; j ,n. Q-n:.. - + r. a - -. 4. .l - 1 .:n m =,, ,. a. i i ,p.,.. l 3 , 2.. ' d -l J '- iiJE-e .L.100-.._ A, _;.. J _1.ns..,mp.h... h x ; %. be;. _ ' '. =.c itlidrdwaM. :usiit 6 qi i.! +
- M,;.L k
.h --l _._sN._. " m.k.5 E. u -+ 9
- l. Pl "1
A-i~ w i X .... +,' l - u ts.'s,.. 1. t.ong.Tqrs.topqratjin m., < :,.m ., r.r.21:.. ,w sand m ,p l... w,_1_ i v....r. 7 ,}n r-h
- L; : i j - -4
- ggg-- Q t'
.,. 'U;.~TA11 "t., l. j ,t ~ ' o 3, ' r. O, 4 r 4. _. p' '. i l 1 Lartag- > w -~ 4eb...qrat. si .u je.. Negf.on.'.. - -
M.,,e.v.;. Hro_ y,
.. t.. p. .I g.. 1.. : L". + 1: r: ps.u.- n u +- .t.,. r,. .2 . A..: },;; m O i
- 1. *- g'
,i
- l
'. y: i [, .%o -., - ~ '. '.i.,. .."-l.,. * {',:... :. ; .k. u,. ..t +-Koj0:.'waw. g. m r .m. 7 g-
- .. J y,
J.: ,d %** as 5t.vjen, -..y g g, " c , ~ '.*~* -~ s J.L.d... "I i A, - n ,' - *;r a T,i kdt '. {' o 3
- 5
.' : -".nu:7.I;. q.M l3' ..I 4 .l o 4*3
- l:m..
M:: r; I ~;
- ~~~~
fp a %,.I
- --}
T - ' 1 -*"t I -[ h' - 1 7 i i-0- try - t.:+4:: 7 r.
- f.. p gl - st v m - 1' =i
- I j
P m i. *.4 g;m = ...HomiJp.1.. Pos(itionj _. t
- 1... p.
2 ~L,.h w-t i rm [5.. 7...,... a' - l '.; - l ~ t *r,.t:'
- . g l.- C
.. I, t-0* i - 3 .% m , 'It"I '. - p 4 ). : g... .7 p f 4o l,.H irwertic.n binNt ! I .p,i..II:.. P
- d
.-.{ .T-~~~~ ~~ L. ..- i - j * --~ '"F '- .i-l i t:. "1:1-r 3 n-- . i . 1':
- 1M.'
c y g----.-t--- r - r - $tyrgw % ^ ' or - j I 4.. t-- 3 -. .i ,.1:
- n.
t
- 7. i.
r-~7 -- j , g. -. .l. l.. _ _.. _.._..n ...x.. Ip.,r. " .,g Ud M l... .p' g r7l.
- __..g....p'- lr.$t r
7 get ted' F"~ rd G 3
- ,...g._ ; _ _,.4 g _.
- ., 7
. ' 1.I m. 1 i r krtt! I
- "t
'. t: ..edc~a^:. _..,. g .I; 8 3_ . u..: .:2. =. j .o, e, . _._.g b... I NIE I 3 - -. J.....[... i l 2 7 M._g. i .5, x t _ ; a. r "-l- ,! =,,
- p 4 rt:
i I ' g. .. 'f. r - 4- -. f. _. ,( ,el 1 ) . J f*;.1;~..,,_ .] 'j. d t ...A l. 1:1: .i.. i 1. qI 4.. 7g g~l }. .;M '. I 1. t ! i.., j',~. i ' q - '*.'Itl h; l. l (,_ =; at. j. .., t. L - i 2 u e t 4 .i t I e r, :n j'y:;- l ,n o, T. t j l. 1.! [ I -l i
- n
. 1. m
- c
- ..
. 20 '..y.t?. __.,.8.0. g,~ _. -. : ';.1b0 m,,,* g....,. j f . i. 6. 0..
- '. T
, y 4 F .l. , _p.. I.". ,_of Initial Poder.,. h ' 27.72 IEt Le.yey:' '.,- ~ ~ l' p'n Lu.. . ? l i' V t 7' %._'.I 1: E I:
- i. <
m'. . p..,,4,. . i. b p : '. -l...q i r: . _., a '.. j i I .l .,K. '.l i I l m .l e .g l i-g . 2.,. , "j,,T1.n. : ,r.- ..e... 7 .I J.. 7 * -. 4... ..l1.. +
- .2s.,
.h. g4-Pee a-ip 'Iranside'- 4. .g.. J., 7 ....i ...L ? ---p%
- r. i e
p=. p g. .I 4 p.y, 3 .m i r r.# ,..g, y- = 3, p;; i
- ...,....,. _ H.t.. - 4.
a w; r i n,- .g. ,.u. r 7 -.+1. a i t i__, - I; { l; C '2 I. 3 I' a J4. g
- ;1.
' L' '.l._._' g...E f. . [ art - "M -n' a } $U e . l... '.:. I er g:n:, I7 . t r m.: 2:.,. ' .tt +. r. 9. - ~ ~ - -. - ...9--- -( y . rg,,y Q. , i a'- .k.. .. _. l
- !!a* _.
, _. __ j. ug _. L:. f._ 1--.. _J.'l J. J . isI. ~- a 1'. i M(4 ..s l1 .:.-f.. d* :.I.'.~J..M. b; i m.s_..- _ - - .u_t%z' t' i i 'n i4 e i m.
Figure 1-3 ':l. i .=. .-l-..-.-..:~.. bM ?.b(.d. U[DYn7355 2M. bNO - i ~1-v i-1 .i . w y: = /00 Ib .,i-El-F- _,_,l 6 ,,_. h j [.. il I t -..j i-) .z =
- L..
- -f K(
- 1
- MP U=E i
15' [ g t - /.- i:.. xa. n
- .=
t
- p.
Mp! ip - i ')o 7c !j./. %/.. 3 t .t..,. - . !1 1:. r-. _ 11. .11 .E-. i= . i. .r. -g [: l.\\ - ....z .r .n. f" -f:. t .t 4 NMfA{@ Y/ToEP)
- .i.
3:i. l:!jy ji ::
- !3
- ll.Qlp; i
j;:. l r ", :.:. ! [} F
- !I. 3 d;+-r;;j \\~pi"
.ip l Ni.:
- 4:
, p. ...p. q 1 y;.,j' - .t f .n\\. .g_ i:; r / _-. m x i. a-r +
- a u u yg 3
O
- != \\t I-
- f. --'.;/}
.: L _ -..,. g... pg .. p. ..3.. g. .. g, 3 9 ..p.: -. I 1> g i:!.:. =4:r ._;t. :- ._. y/.'..p Jof+
- . p:.
-1 . j. i a si3. = i gi. h 4 o 1
- ta
- 1...
1.- F 17 i: g.h _.J... ;.L_. ;ij' '..;. 4. # .mp..
- 9.9 2.x, rrtrh Qg non g
i i IU -. M I.. .i -b 7 r ~ k l l.' Kh! l ' IC I g d 1. . -...%.J Q l W,./f: N' w*g m - 4 oes-o ss ? 'f ! 9" W Y L - ss-E].. i wA r:1 i t t
- t i,=!
g;h 7i .-~ pp. /!. -p i: e: . y. p .:i + p go I-l [:'..!.. f/E S O. - li 7~f: i, Eli; -1 iiF i. i,g i!!- i Eiili-D *, H. b ..[i. . u -q-.- Q: l
- g. -
/e i e p: an + z y- .i y' y - y-I E i l f li. i
- j' T.
si: ,-f=. IA k II~* .g is i Y A, is + n 4 k .. ~, ^.. 2 u. + a X-N Q Id i. 9 y"l ~ '. [. O5.i?{- 1 p .h j . t.: 4 m t. h. I.. i af '[ .f 3" l E z6 - I.1 OpBN-f I~pM \\. LM F1 !.0 20 I 459: Tetk'hsc((3,SJ.4 R: 1 iii' ii -i + .p .l xq : nga j. q.:. i ,g. l' 1::-. q.i j.: H. I lx 5:m g l 1 .i .i i. l i.i.t.:. . =-1. i9
- q.
i:i : g g i .I Wii
- r x;g 1
.:in
- r-
- g.. =? E e5 5 n!= =l 4: E!s=.;i+: p i. P @i ciii:, =iiis isi!! = gne O O -35 x -zs .za -us -se -5 O a mo suc,zo ras no er Tmb a.l<.2 1C e 1-11 1
Figuro 1-6 - q.! Is.,yethde. Design Trar;ient. ! r_. ..:_ 7. j.. y!.;.."ql. T.,,,, i.
- .. g,g pg gg :..j. ;
l. .t. i m.- ygg,g d-[ y ..y. :.L j d{,4.l f, I. '. p.u{ L.. d. ; y' $ ]* g l :,, . _... a _ l-i ..$,.+p' Measured.,! Da. t. a Val,nes U _.h9.+1.I' l .i g..,4 l s. 9 ,,,,,p.. . %.m . t. l n.,, i c-I.5 ' T -" l "*' ~ + Phys'le's' TepEMEilial: Predict 19srf.1 Location, d. 1-. 7., q) ? i- .q. -y-g j-l l l l J 3 t H,.. 6 .9 E S;. 4.. L-1;0 Yr f-- - I".-- g i S]-'
- i '.L i. [ i g e _ 'j a.. '.
j. , y,4 y.,. a 3 .,....q l , b, }i,.,1.* :., 0: 5 - o i S- ~ i, -S N. 9 I 1 4 l i - t; e _ l.;. 3 .g ..,.J 9 3 i 1 1 4 6 7 i Segment iNos.. [ 3 4. l M~ " A l.. . 20 ' ~ ' i#- - U 1 - ' -.j. - .i .7 .9 .i,., O
- .;. Group 6/7 4 6.T. W.
9 {
- i. 4
' Z -'- - M. Group. 8 r15 j t I t -- O* 7f14 i 4 3 e .._. _: m.;. b ., 3_. ,., g_g . 1;., .j '_.'...,.2 !.Imbala..nc.e..$_tQ. E t fO - 7 l$,
- l..,
4 ,g Physfos2TM Ptd,d,icts i, -- 4 -y--,-- -. NM M 'I.'I~de f 1-D' 0[5 -4, .i s I im g, 4 ...~u 2,, ly , f.... _ yi l 1 ) L i Group 8'jg 9.'.3%WD ..o wI I 1 8 4 ~5" 6 7- ~ ?'
- }}
g, y. .. :Igbazanc. -e.A-.Q6 e o! I i g.
- i. :
i I t I t 1
- a. l. :_ ;.M. i,, 2iO-
.- 1 A -. , NOTE., A.li Y.k..lue
- i..f.tjr
? 'Jl. i
- j
. l _L. f.. l e .L, i. ._l'Just Rgt$d" io k .. ' Origi;nal Ptped.!favel, p. ,. <i,. 1! 5 a .e g - t. I T,.
- -- --. l -1. e. 3 utgh m,Ma, 1
o ' h- + " 4 " t 'L : l_17tto.the anaient. o l .B. r r-3 ---[I. 7 -&.d g-4 .t 1 4 l --i1;0 +f, ) ,. 7 F,. . ' -.t .. 7. p._ I'i.u.- ....j s. .... ; _.r-b-- -j- - ---- 1 i--O - 2 '-$-- k gb ' h. i. . s.y; i,.... t ...: '. g t. _M.,. _p. 7 .5 i p _.:. t i 0-
- 4 4., j i
1 2 3 4 h. 6 7 [ l b 1 l
- l..;
+ 1 2.0 - l' j -- - - -- -j - 1 l' l 1 2 -i t
- --i
[':n , 1.5-i Jj-l '. 2 sq 7 + 4 i L o . _. i .e.J I' 'l'l L. -R-10. t.e.-1:0 - 4; r- --t------. i 9; .i i .+ l.6 t- -: 0 ..t ! - - [t. - r.-- 1 't l ,.. 0.-5 @ h; e- - r -b H e .:u. l s
- i-j
.F t-i.. . _ L. o. 1 2 3 4 5 6 7 a-a I
I Figure 1-5 Physics Test Manual Core Average Xenon Concentration Vs Time for 100-53-100% FP, Four-Day Transient 135 =- i:=. i. _. : =in=u =. i:=- =a r j u _. ru - ruq=- E=:t enz =a cuup: ui._.y:g :.;;8 =..:_.jn=nnn3=r -.a ut... j=u cb: ~=:*r= o re - - + ~ =- b a -e =rr , -:= = turf 0% FP"N UN-* M'100% FP ~~ .= r::.
- ::x.
~~ T =. -=f =un, r. n:=. -5
- M
" ~ * " ~ 2 I
- ..u._ '= t~n *n :: nn 2:n=:p.nt= ga r.: t.:_ ::.uP::t= tun. a un=& -}=-c:nt=t=
i 130 c. m.: t an." n:5 g.:f -r
- =tr -
r= .. -,. : l=. _..... n,g".:..nn j.=[. =. t=:=!a. T. :: rn. : =.. m-n n r. n : = :. t =~ -vx- -n r= ut..112. n. ..=.. c:r :: 1..
- .n = r r
- ~ * .'n = p. 3x:.n: :-
- - : =t:r :: : -
~" "- ~ :2. a=:n.q~ ~na rr= *: nl:=.....g. -; = 7". = r= ~nr ":= . ~... n .n;nn =i .n 4%.
- - r :.
- = ="~~; j ":".:r==
- ~: i..
~. ~ ' ~F ~ ' ~ ~ ~ ~-3 ~ ~- r ... a..- S... 125 o ..' 't n.. ~ - 2 :. l =.. ,. : ". : 1 - ,1 " "... i...... .. :. :.1 n a,=.n. :.: i=. :. a: 1. " ..:. i n. ...{. ./a :.. u: j:.nl r,. -...f :j. 2:= [..;: n c: n o, n...ur:: c. 5r :n ---st r. .. =......
t
c-nr ............. E -... - Tj.;.: ".; c.n. y' = ::r " + j:..: r [...4'..-f r-.r. .t......=.tn:jny =~. [". q " " =-t.. .. n "j ":q =-" 't :;.j e .2= .. t:-
- r-:.
3
- =nn-
- ar. : -. ~ s. p':.
22 2 - - ' ~ - " "T'. "g.:. ar *. ""... g ~ ~~ .,' 3.,; p 7, g. _7.: A- ' 1.. = d 120 =L,; =;.= g,., " - g,y ! ' l.- "...:.. :.
- .... = : * ".ru :..
u-
- n. s". ":} m.. 2..::: h.. n-l=... :.I r==:.. u :f =n:-
c...... 1. -. -.g
- n. :n r=
- n..:. n.L.:.. t..n.t.*.n h.n.d. :. I.: j r. :
r: n.. w in q : r- ... :p j{::.. : ...r-
- -n :....I:-"--
.. a a.,... :
==.*.:7-~3r. s.u. a, ..t.. n:- n.}t =...=.. :.: a..r..;.- _....n....--*= j. "m
- =
- t. r.-t
- u..t". =. t. n. :1' =.. n. =....
r:.. .t... ...t.{.n : ..n. 4 g ... n. g" ::..~ m n"t..nl -. n= i:;u;;;g 4 q:.;";I=;.-;',=;.nn;gg .a r -*-Pjizn'nn = :;n n:.*:r:s. + -n +- e m a-. .m; n m:I=r.: u k =.
==-Ml',.4. =..-..._, % d
- r
- =5 - r..
-.. n - . :{p.e Design Transient Data ,...p.. "1 *: n 4[..,;~ E : di:-- j e e--:r--{- 6
- l...::
..x =- t 80%FP-30%FP-80%FP Ei2 '
- . u r rn
- ?.
u - - = w
- ~
'id Rr? n" ,$ g
- r;
-i ..:rnn,un m.1..vn :t.1 -
- 4 t::: : =tur un :a.tn - nap -+=u t m.
..; r W: l We =:= ut r - s,- 3,h:. .x:f.:.r= n-Shown through Maximum =.:nu qu!n.- r
- q o
ga : - =n
- n, 2 = - 3. -
, 105 ....=.. n.
- n. t. :.n. x.1 y..:a. n :.:21 m.a'n.r--..X..e..n. o n.. Un.d..e.r.s..h.o...o. t
... 7: g r..:r..t: 4=- r.... 8.... - ::. u.t.. :.... a. r. u
- t n r.. :
.u..c n .un, : n:. :...: .:._... r-- : :.n 2 w .. K. - =q::.. " . :. n : - e ..=.=7
- 7. :.,. ;; _., : ;" : gur.
nya.. . I* 2 t- . 2U. -'j:.' = t !U jE ~:: 6:.I r" . ! =J C
- t:15M n. ! '. ~'
I r- :- +=: =!:2M:.n J ::" U 77 * -
- t tv r m --
- _jn:lR':
= r n- :---= j =T. . ! :r N I ..i... rr---
- n..
". q.a.....- =.... t' t ; h.=...
- t.j
.:n. ':.{r : r..{m... .. [~... = . n* r,. :. t,. : w .. u .N.. n.:. 1
- ::f.,..
I~:n%a n ...:.,;;=--
- n:: n...*:.;
- c 's;'n 4.-
..r :-.m. ag 4 a
- ts...
.u kl.. "jn
- np:
inn :.;:n. =g n f;';" ~?!" :t lW **t! .:. i: :, *:
- p.
t=t ::r -M' "n.r:: 8".- a t ::.. :qt
- ni(.Ig r j y:.r.
- =
- .' gn ~.*;
12 : - . h? x.nn 'p=d!I" t}$' f;'- r
- ".::.*.ii.i.t --T =
" d.. l-"* i t' i; ~ ~ ijn.:.:p i.n .:: an .M. -. :- .it -"8 S". 8 n!= t l:". T.h " c"' r. :,. [n r"*':,=::L; . : "r n' "- * "] "".: j : "="n - ~=:".. 2-
t
- n'im: :4 =.r:: -::Nn-n.. : :tr-
~ r-} M u o
- L:
~ n . : - {.. ...p.. " " q" : ~ y; g..:t r :
- ?j
- .
at:nn = n n :; :
- t 42
'.. l u
- in.. 'n:
i=t,nN: 95
- S P P a
- ti k "Q*;.in flu :.u.
- =
= .S $ij# E$-NSE2Mk.. 9 5 "t'i.q:fi]E S E f.7 5 34 N E E j irl H S ;- i 0 ~-q{'" 3 90 ".=:;="" =""h^;n,.i r :r nur= : L"h :~:: g n 2 n n.:. n. :. rri . I m rl".. ;=:""=".- 4.. u ' : r.:, ~.. _ ~;";j " . T n n = ~ ~~ "- d g.1 cr ""{j ::: ...: =nn
- "; E nr. '....
~ "- n t =. .j.::; x>:f r
- ttjar
- h.=.....:n;.. ;.g---
._.t. .. n n- .: :p: h: j an.:c /..:p=:n 7 tn = un ... : ';r u: u. 13 .itnin. . e
- ..:n
.....p:f==: ::g:nn.{. tr.1 in lj:r . i.. J..a. t =
- t
- n--t r q:
'.. j, -r.,n c = r nr tr..ru --nn= -m m
- =+l.'a.=..
=. u..:...:4 C
- nm...._.=.=g.=.. =.
,...:.n. u.. u_n j=.. =..,n.. t,a. a. .2 .n. 2
- n..:..1..n..:.n.:
. =. .n..,.n. ~.:.n..;.. w..;n.. .n.. o
- a. n =;. =... -
r c ' nI;=.n; ' =. n;j:n: :.; ;:n.. h' ;...= n'.= t :=.n.: N = t:::- ::ng:- . n!;.n =:- T:. l 3n =*. ':.ga n. =i}'g ar a _+ . _ ---- *E'_4=.u:r =.=.=. J:- =anter-p,nj"n-'*:;n j =- ep,:,3...=..=i2 nt-n W - =
- - ".n
.. = nr .... -. =.
- r
...n = >4 .::;= : n; - :
- * =
..... ? :- n - - q.. u .o =., {:. ;- n r. f-:+2..n,.3t ".. 2.. n..r.n. 1 n.n. : 3n.....pt'n... P. =. * -. y. p.r. t :.=. aq. p.:.n... :."... !..T.
- n.. =..=. :. t.. -
n ~~~;t;.n. :. u.n.=. ;;.... ..4.... 2 -t-- 0 5 10 ',1) 20 25 30 35 40 45 Time After Start of Transient, hours 4
Table 1-1 Pseudo Design Transient Typical Core Physics / Thermal Hydraulics Parameters G-6/7 G-8 Imbalance DNB Fuel Melt Max..kw/ft Total %WD %WD Margin Margin. @ 100% FP_ Peaking Factor At 10 hours, just af ter Power _ Recovery. Predicted 100.0. 33.3' +0.251 27.09 43.1 11.61 1.65 Measured in H 85.2 7.7 -0.09 59.3 35.1 13.24 1.97 'At 15 hours, Maximum Xenon Undershoot ~ Predicted' 87.5 29.2 +1.217 23.35 38.0 12.65 1.78 os Measured in H-8 87.4 1.2 +1.09 56.7 33.4 13.58 2.03 T .om** wo_a w m_n m a e
- _s-
f 6 o I sn e osr i eu t i g al i cbF om L en P so A gs M nAd i e E wl t R oes Oh ui C SFL i' 5 1 w a 4 1 l 3 y 1 g 2 ,c h 1 1 1 0 / 0 1 1 -R 7 9_ 9 I g, J ,i E g R 8 U g G g I %F 7 6 5 4 3 2 I 1 i A a C D E p G H x L M N O P R -1 v. j]t
li FEED AND BLEED OPERATloris 4 2-0 - -- ~. - _.,. .,~,
3 ..I i5 . DECEMBER, 1974 h FEED AND BLEED OPERATIONS DURING POWER CHANGES 4 POWER CHANGE DAY TIME BORIC ACID D.I. WATER FROM TO 6 0521 109 510 0% 38% i. 7 1237 0 500 0% 38% 1400 0 1000 0% 38% 1740' o 500 0% 38% 'l 2035 0 600 0% 38% 11 0031 104 516 9% 40% 0350 200 0 9% 40% 0446 200 0 9% 40% 0111 139 671 9% 40% 17 0706 100 0 0% 42% 1205 0 550 0% 42% 1208 125 0 0% 42% 1923 115 505 0% 42% 19 0100 0 500 0% 42% 0250 0 500 0% 42% j-0425 0 500 42% 20% 1024 0 500 20% 40% 1119 0 500 20% 40% 20 0440 146 654 40% 20% 1117 110 510 20% 40% 1648 124 475 20% 40% j 21 0100 124 516 40% 20% 0523 0 100 40% 20% i 0553 0 100 40% 20% - 1 0825 124 576 20% 40% F 1115 0 100 20% 40% 1134 0 100 20% 40% ,L 1144 0 300 20% 40% 2201 90 1000 20% 40% .-26 1530 0 1000 0% 40% 1630 0 1000 0% 40% 1748 0 1000 0% 40% 27 0103 100 0 0% 40% 28 1230 190 0 0% 40% .o 1250 0 810 0% 40% l ~ 2-2 w m,.
11 FEED AND BLEED OPERATIONS The operating' shifts at Rancho Seco Unit I have performed over 1104 individual feed and bleed operations including 52 during power changes. The data contained herein are for December, 1974 through March, 1975 l shutdown. Many more operations were performed prior to this period, in addition to feed and/or bleed operations that were performed on a daily basis. The experience gained during this period has proven that feed and bleed operations can be performed safely and predictably. 4 1 i i i a r 2-1 -f 'W q}y g
- W-ww me-
O M" %{3 p
b4 JANUARY, 1975 FEED AND BLEED OPERATIONS DURING POWER CHANGES POWER CHANGE I DAY TIME BORIC ACID D.I. WATER FROM TO 2 0214 85 415 40% 30% l 0507 0 500 40% 30% 1200 68 332 40% 30% 2000 122 578 30% 40% 4 1731 0 925 40% 50% 2154 25 0 40% 50%- 2350 68 498 40% 50% 5 0530 0 1000 50% 72% 1314 73 428 50% 72% 1422 0 225 50% 72% ll 1720 0 100 72% 59% 1730 0 100 72% 59% 1740 0 100 72% 59% 1755 0 150 72% 59% 1900 0 100 72% 59% 1925 0 100 72% 59% 1945 0 100 72% 59% 2000 0 200 72% 59% 2120 50 600 72% 59% 6 0035 .0 400 59% 70% 1124 82 918 59% 70% 1335 50 0 59% 70% 1905 75 583 59% 70% 2155 0 75 59% 70% 2309 0 75 59% 70% 2335 0 100 59% 70% 9 0005 128 672 65% 76% 0538 96 504 65% 76% 1235 145 .745 65% 76% 2020 79 421 65% 76% 11. 1035 110 590 75% 48% lI 1415 0 500-75% 48% 2000 79 421 75% 48% 16 ~0058 150 0 14% 40% '[ ~0115 150 0 14% 40% 0200 250 0 14% 40% i: 0233 300 0 14% 40% 1 .0254 150 0 14% 40% ~l! J: 2-4 j! .J ~
DECEMBER, 1974 FEED AND BLEED OPERATIONS DURit1G POWER CHAT 1GES (Cont.) POWER CHANGE DAY TIME BORIC ACID D.I. WATER FROM TO 29 1155 0 700 0% 40% 1438 0 100 0% 40% 1500 0 900 0% 40% 31 0451 115 ~ 505 0% 40% 0638 0 3700 0% 40% 1643 100 0 0% 40% 1710 100 0 0% 40% 1731 100 0 0% 40% 2012 50 0 0% 40% 2038 138 0 0% 40% 2145 50 0 0% 40% 4 h '2. g -,,y = -~ -= -e--
~ JANUARY, 1975 ' i FEED AND BLEED OPERATIONS DURING POWER CHANGES (Cont.) POWER CHANGE ~ DAY -TIME BORIC ACID D.I. WATER FROM TO 24 0103 0 100 76% 92.5% ~}- 0124 0 200 76% 92.5% 1902 72 428 92.5% 45% 2235 100 0 92.5% 65% l: 2249 100 0 92.5% 45% l 2339 0' 500 92.5% 45% 2340 0 500 92.5% 45% 25 0058 0 500 92.5% 45% 0153 0 750 92.5% 45% 0357 0 250 92.5% 45% 0615 60 0 92.5% 45% 0844 100 0 92.5% 45% 1100 100 0 92.5% 45% 1230 84 525 92.5% 45% 1328 100 0 92.5% 45% 1450 0 100 92.5% 45% i 1459 0 100 92.5% 45% l 1530 0 100 92.5% 45% 1600 0 500 92.5% 45% 1625 0 200 92.5% 45% 1645 0 200 92.5% 45% 1905 75 0 92.5% 45% 27' 0257 70 423 45% 88% { i 0547 70 423 45% 88% 0813 .0 400 45% 88% 0833 0 400 45% 88% 1020 50 0 45% 88% 1035 50 0 45% 88% 1319 0 200 45% 88% l 1511 92 508 45% 88% ,j 1725 0 200 45% 88% 1757 0 200 45% 88% 1830 0 200 45% 88%- i 1906 0 500 45% 88% l 2147 0 200 45% 83% 2229 0 400 45% 88% ) ~j J 2-6
JANUARY, 1975 FEED AND BLEED OPERATIONS DURING POWER CHANGES (Cont.) POWER CHANGE DAY TIME BORIC ACID 0.l. WATER FROM TO 17 1534 80 420 40% 76% 1743 0 400 40% 76% ~ 18 0407 108 592 40% 76% 0640 0 200 40% 76% 0915 0 1000 40% 76% 1155 0 500 40% 76% 1235 0 500 40% 76% 1525 70 430 40% 76% 20 1109 68 432 18% 76% 1124 68 432 18% 76% 1130 0-500 18% 76% 1210 0 500 18% 76% 1220 0 500 18% 76% 1245 0 500 18% 76% 1349 0 500 18% 76% 1722 50 0 18% 76%. 1804 50 0 18% 76% 1828 50 0 18% 76% 1845 100 0 18% 76% 1904 100 0 18% 76% 2000 100 0 18% 76% 2025 300 0 18% 76% 21 0017 100 0 18% 76% 0215 98 - 602 18% 76% 0940 70 430 18% 76% 1310 77 423 18% 76% 1625 70 395 18% 76% 2024 107 606 18% 76% 23 0837 0 200 76% 92.5% 0920 0 200 76% 92.5% 1024 0 200 76% 92.5% 1124 0 200 76% 92.5% 1635 0 200 76% 91.5% 1827 92 508 76% 92.5% 2255. 123 677~ 76% 92.5% 2320 0 200 76% 92.5% 2-5 1 "=e-* -e 'N 4 , - y 9.; --.e e: we-
I ~1' FEBRUARY, 1975 7: FEED AND BLEED OPERATION'S DURING POWER CHANGES (cont.) POWER CHANGES DAY ' TIME BORIC ACID D.I. WATER FROM TO i 7' 1411 0 500 31% 85% ~ 1529' O 500 31% 85% 1 1657 0 200 31% 85% 1714 0 300 31% 85% I755 0 500 31% 85% 1918 0 500 31% 85% r 2116 0 500 31% 85% 2245 0 500 31% 85% 2337 0 500 31% 85% 8 0808 0 500 85% 70% ') 1151 0 200 85% 70% 1356 0 200 85% 70% 1555 0 500 85% 70% 1759 0 200 70% 85% j. 2005 0 200 70% 85% ~ 9-0714 0 200 85% 70% .0942 0 200 85% 70% 1122 0 400 85% 70%- ~ 1249 0 200 85% 70% 1257 0 200 85% 70% 1445 0 200 70% 92% ~1647 75 425 70% 92% 1732 25 0 70% 92% i 1755 25 0 70% .92% ~*- 2134 100 400 70% 92% 13 0040 200 0 39% 83% 0104 200 0 39% 83% 0226 100 0 39% 83% o ~0413 100 0 39% 83% 0445 200 0 39% 83% 0610 0 300 39% 83% 0650 0. 200 39% 83% 0815-0 200 39% 83% -0932 50 250 39% 83% 1120 119 581 39% 83% 1316 0 200 39% 83% 1355 0 200 39% 83% 1449 0 200 39% 83% 1519 0 300 39% 83% 4 1625. 0 300 39% 83% ~ 1819- -0 300 39% 83% y 1838' o 300 39% 83% l-2-8 i!
FEBRUARY, 1975 FEED AND BLEED OPERATIONS DURING POWER CHANGES POWER CHANGES DAY TIME BORIC ACID D.I. t/ATER FROM TO 2 0656 58 342 92.5% 40% 0201 50 0 92.5% 40% 1330 80 512 92.5% 40% 1444 0 300 92.5% 40% 1521 0 300 92.5% 40% 1558 0 300 92.5% 40% 1627-0 300 92.5% 40% 1801 0 300 92.5% 40% 1940 0 300 92.5% 40% 2015 0 300 92.5% 40% 2030 0 300 92.5% 40% 2216 50 0 92.5% 40% 2223-25 0 92.5% 40% 2235 '25 0 92.5% 40% 2242 25 0 92.5% 40% 2316 25 0 92.5% 40% 2335 25 0 92.5% 40% 3 0106 100 0 92.5% 40% 0222 100 0 92.5% 40% 0254-100 0 92.5% 40% 0340 100 0 92.5% 40% 0441 100 0 92.5% 40% 0533 100 0 92.5% 40% 0840 100 0 92.5% 40% 6 0010 250 0 0% 31% 0454 72 328 0% 31% 1337 100 0 0% 31% 1456 106 494 0% 31% 7 0244 0 500 31% 85% 0541. 0 400 31% 85% 0601 0 400 31% 85% 0645 0' 500 31% 85% 0653 0 500 31% 85% 0737 0 500 31% 85% ) 0750 0 200 31% 85% 0804 .0 300 31% 85% 0910 0 300 31% 85% 0946 .0 300 31% u3t 1052 0 .500' 31% 85% 1214 0 300 31% 85% i 1254-0 300 31% 85% 1340' 0 300 '31% 85% 2-7
+ ![ FEBRUARY, 1975 FEED AND BLEED OPERATIONS DURING POWER CHANGES (Cont.) POWER CHANGES DAY TIME BORIC ACID D.I. WATER FROM TO i: 21 1315 0 100 92.5% 76% -1522 49 251 92.5% 76% i 1656 0 300 92.5% 76% 1711 100 0 92.5% 76% 1729 50 0 92.5% 76% 1802 0 900 92.5% 76% 1908 200 0 92.5% 76% 2005 0' 1000 76% 92.5% 2336 '50 0 76% 92.5% 24 0023 0 200 19% 92.5% 0123 0 200 19% 92.5% i 0215 200 0 19% 92.5% 0229 200 0 19% 92.5% 0310 200 0 19% 92.5% 0320 100 0 19% 92.5% F 0327 200 0 19% 92.5% 4 0341 200 0 19% 92.5% 0411 200 0 19% 92.5% 0449 100 0 19% 92.5% 0510 100 0 19% 92.5% -c 0608 200 0 19% 92.5% l~ 0828 0 200 19% 92.5% ^ 0854 0 200 19% 92.5% 0948 0 200 19% 92.5% I 1224 0 200 19% 92.5% s 1233 0 200 19% 92.5% 1343 0 200 19% 92.5% 1400 0 200 19% 92.5% 1415-0 400 19% 92.5% 1630 0 200 19% 92.5%- .1653 0 400 19% 92.5% '1706 0 200 19% 92.5% 1804 0 200 19% 92.5% 1935 0 200 19% 92.5% 2100 0 300 19% 92.5% -2221 0 200 19% 92.5% 2300 0 200 19% 92.5% 2359-0 200 19% 92.5% b 28 0516 100-0 51% 86% 1402 50 .0 51% 86% =1432-33 167 51% 86% 1607 83 417 51% 86% 1939 '150 500 51% 86% 2102 50 o 51% 86% ,j
- l 2-10 i1 U
FEBRUARY, 1975 FEED AND BLEED OPERATIONS DURING POWER CHANGES (Cont.) POWER CHANGES DAY TIME BORIC ACID D.I. WATER FROM TO 13 1900 0 300 39% 83% 1935 0 300 39% 83% 2135 0 300 39% 83% 2258 116 84 39% 83% 14 0032 0 500 83% 72% 0110 0 300 83% 72% 0235 0 200 83% 72% 0312 0 200 83% 72% 0400 0 400 83% 72% 0410 0 300 83% 72% 0415 0 300 83% 72% c' 30 0 400 83% 72% 4 0440 0 200 83% 72% 0534 0 1500 83% 72% . 0550 50 0 83% 72% 0620 100 0 72% 92.5% 0648 50 0 72% 92.5% 0658 50 0 72% 92.5% 0709 92 508 72% 92.5% 0845 78 422 72% 92.5% 1039 78 422 72% 92.5% 20 0023 0 200 92.5% 22% 0046 0 200 92.5% 22% 0123 0 200 92.5% 22% 0226 0 300 92.5% 22% 0335 0 300 92.5% 22% 20 0350 0 300 92.5% 22% 0400 0 600 92.5% 22% 0600 0 300 92.5% 22% 0650 0 300 92.5% 22% - 0733 0 200 92.5% 22% 0800 0 300 92.5% 22% 0958 0. 200 92.5% 22% 1021 0 200 92.5% 22% 1222 79 421 92.5% 22% 1745 0 500 22% 92.5% -2023 46 254-22% 92.5% 2027_ 100 0-22% 92.5% 2052 100 0 22% 92.5% 2240 0 300 22% 92.5% i 2-9 .-aw. _ pw - --* w p< m---- ,. _- =
) .L 1: MARCH, 1975 FEED AND BLEED OPERATIONS DURING POWER CHANGES (Cont.) POWER CHANGES -DAY -TIME . BORIC ACID D.I. WATER FROM TO 1 4 8 0015 200 1000 0.4% 72% 0140 0 3000 0.4% 72% L i 0343 0 .1000 0.4% 72% 0500 100 500 0.4% 72% 0933 200 0 0.4% 72% ~ 0941 200 0 0.4% 72% 1054 300' O 0.4% 72% 1142' 200 0 0.4% 72% 1305. 400 0. 0.4%- 72% 1335 400 0 0.4% 72% 1430 0 100 0.4% 72% 1444 0 600 0.4% 72% 4 1451 0 600 0.4% 72% 1457 0 600 0.4% 72% 1 I 1459 0 600 0.4% 72% s 1522 83 517 0.4% 72% 83 517 0.4% 72% i 1527 83 517 0.4% 72% 1530 1646 0 1000 0.1% 56.6%. 2231 200 0 0.1% 56.6%- 2241-200 0 0.1% .56.6% i 2252 200 0 0.1% 56.6% 2319 200 0 0.1% 56.6% 1 9. 0014 100 0 56.6% 92.5% L' .0031 150 0 56.6%- 92.5% 0045 50 0 56.6% 92.5% .L 0055 200 0 56.6% 92.5% i 0150 0 400 56.6% 92.5% 0215 0 200 56.6% 92.5% 0614 0 150 56.6%- 92.5% 0639 0 500 56.6% 92.5% 0700 0 500 56.6% 92.5% 1 14' 0130- -100 0 9.4% 92.5% 0225 200 0 9.4% 92.5% 0327-200 0 9.4% 92.5% 0610 200 0 9.4% 92.5% 0636 200 0 9.4%' 92.5% 0722 100 0 9.~ 4% ~ 92.5% 0755' 100 0 9.4% 92.5%~ 0838 100 0 9.4% 92.5% ( 1126 56 344 9.4% 92.5% y i: 2-12~ { J
'T MARCH, 1975 FEED AND BLEED OPERATIONS DURING POWER CHANGES . POWER CHANGES DAY TIME BORIC ACID D.I. WATER FROM TO 5 0003 0 200 90% 18% 0333 100 500 90% 18% .0524 0 500 90% 18% - t 0600 0 400 90% !8% 4. 0637 0 500 90% 18% 0717 0 500 90% 18% 0800 0 500 90% 18% 0845 0 3000 18% 90% 0942 0 1500 18% 90% 1013 1000 0 18% 90% 1111 50 0 18% 90% 1134 0 0 18% 90% 1206 0 200 18% 90% 1224 150 0 18% 90% 1447' 100 0 18% 90% 1628 50 0 18% 90% 1638 50 250 18% 90% '1915 0 250 18% 90% 2014 50 250 18% 90% 2131 50 250 18% 90% 2233 0 100' .I8% 90% 2256 0 100 18% 90% 6 0009 0 300 90% 18% 0116 0 500 90% 18% 0225 33 167 90%' '182 0510L 0 800 90% 18% 0528 0 1000 90% 18% 0607. 0 500 90% 18% 0810 0 1000 18% 90% 0901 0 '500 18t 90% 0925 0 500 18% 90% 1003 100 0 18% 90% 1015 100 0 18% 90% 1023 300 0 18%- 90% 1039 150 0 18% 90% 1109 100 0 -18% 90% 1125 100.- 0 18% 90% 1158 150 0 18% 90% 1228 200 0 18% 90% 1258- .1000 0. 18% 90% -1345 100 0 -I8% 90% 1445. 50 0 18% 90% 1604 50 0 18% 90% 17.J 50 250-18% 90% 1845 0.. 250 18% 90% 2-11
U .? MARCH, 1975 FEED AND BLEED OPERATIONS DUIRNG POWER CHANGES (Cont.) POWER CHANGES DAY-TIME BORIC ACID D.I. VATER FROM TO 20 1501 0 200 29% 92.5% I' 1535 0 300 29% 9? 5% 1635 0 500 29% 92.5% ^ 1658 0-200 29% 92 5% l 1 I, 4 i. 9' 1 P. b 2-14 .3-l'
i MARCH, 1975 ) FEED AND BLEED OPERATIONS DURING POWER CHANGES (Cont.) POWER CHANGES DAY TIME BORIC ACID D.I. WATER FROM TO j 14 1132 50 0 9.4% 92.5% 1610 0 200 9.4% 92.5% 1750 0 200 9.4% 92.5% 1839 0 200 9.4% 92.5% 1900 0 500 9.4% 92.5% 1942 0 500 9.4% 92.5% 2053 0 300 9.4% 92.5% 2111 0 300 9.4% 92.5% 15 0031 0 300 9.4% 92.5% 0300 0 300 9.4% 92.5% 17 0745 40 260 92.5% 16.0% 0823 40 260 92.5% 16.0% 1022 40 260 92.5% 16.0% 1157 40 260 92.5% 16.0% 1305 40 260 92.5% 16.0% 1329 40 260 92.5% 16.0% 1343 0 200 16.0% 92.5% 1400 0 400 16.0% 92.5% 1438. 0 2470 16.0% 92.5% 1526 0 400 16.0% 92.5% 1755 0 500 16.0% 92.5% 1904 0 1500 16.0% 92.5% 2007 100 0 16.0% 92.5% 2106 100 0 16.0% 92.5% 19 1559 0 2729 79% 29% 1900 90 510 79% 29% 1940 0 100 79% 29% 2310 0 600
- 79%
79% 2351 0 600 79% 29% 20 0024 0 600 29% 92.5% 0300 0 2746 29% 92.5% 0503 225 0 29% .92.5% 0524 225 0 29% 92.5% -0605 200 0 29% 92.5% 0633 200 0 29% 92.5% 0705 200 0 29% 92.5% 0736 200 0 29% 92.5% 0945 0 600 29% 92.5% i121 0 600 29% 92.5% 2-13
mA-i-4 = m-m4mwme+emw, hurmm.-hAemehW--ea ae+- 6-ah-e-- .saha.- 4Amaim43 4 .h am-m.-l M. 4-- m AmA4wem-- -Amawmm-er----4-M = -<a sa a-es-.-A4m-----mm'm-w M_ i 4f I ., 1, g i ^ [ I i y I -' >r i i I ) l 4 k J I l l 6 se I .'e ( 1 r i i 3-I i a i ; i I j i h 4 i-4 d t 1 i k , i I 4 ) i - ? 4 4 1: I: -J o f I t > 1 1 I i I- ?- d 1-
- i a
s.2 i e i i 4 k, l. - 2 I ai 2 4 e e 4 I' 8 rhv g-- y r -vm w -u r vw w-a v-y-
- rw-v
,r-r -- t
- --< t w w e t er -sr' w*
s'w v* w n - =---rw7---m w + - --*r m-e-=~
m e r-e v~-~~---<-***
- = - - - -* * -- - - * -
- '-="'*
a. s' u-e a -M3 -u*
- ~ - -
l~ III BLEED AND FEED ACCURACY 1 [ r u 4 1 J 3-0 t 4 ,m o_,%.7
- gm--.-7 %.
ERROR ANALYSIS The equation used to calculate the boric acid solution or demineralized reactor coolant makeup volume required to borate or deborate the reactor cool-ant system utilizing continuous feed and bleed is as follows: ('C f-C r i ) Mr = MT in Cf-Crf where: Mr = Mass of feed solution required MT = Total mass of reactor coolant / makeup systems Cf = Boron concentration of feed solution Cri = Initial RCS boron concentration Crf - Desired RCS boron concentration For a deboration, assume Cf is known to be 0.0. Then the equation reduces to: in ( which is of the type y = In x. Mf=MT In order to determine the accuracy of "y", we must calculate (d,,y.100%. We know: y = In x, so dy = g x l Dividing by y yields: 8 d,,y,, d x 3 y x in x In applying this to in ( ), the accuracy with which boron concentration is determined must be found. Using data obtained from the chemistry department, s it was found that boron samples can be determined to + 0.75% accuracy. Therefore, substituting x = (Cri +.76%) Crf +.76% dx = + (.76% +.76%). (CriCrf) Cri and d_y. 1.52%. (r) I h) 10b n (h) or dy,, 100%, 1.52 Y Crf In Cri Therefore, we know that: Mr = (MT+M) In '(Cri) + 1.52/in (Cri) E Crf Crf where ME = % error in the Total RCS Mass assumed = 0.0 here. Mf " MT in ( ) + (ME=1.52/in({}} The error 1.52/In ( is plotted vs. (C ). 3-2
l .3.-0 Bleed and Feed Accuracy The accuracy of boron control in the RCS has been found to be better than would be expected for a boron concentration measure-ment accuracy of + 0.76%. (The chemistry department has denon- ~ routine boron concentrations can be measured to strated that within + 0 76%). An error analysis was performed to determine the effect of a boron inaccuracy of + 0.76% on the feed and bleed volume calculated to deborate the RCS and the results are given in Figure 3-1 as represented by the solid line. The errors are Ini tial Boron Concentration in percent of volume versus the ratio (Desired Boron Concentration) are plotted as X on the Figure. The actual data points fall below the above mentioned calculated line, which indicates that boron control has been accurate as can be expected when considering the inaccuracies in boron concentration measurement. Attached are: (1) The math for the error analysis; (2) The boron data; and (3) A graph showing the results of the analysis. The data indi-cates that the actual accuracy is approximately + 0.42% or almost a factor of two better than predicted. 3-1 hw e
i . j i .l..j' _ _.j, i. Q _. .. j_J.j Ig lJ.L.L q ,.. j__ g*j ..: a... l _1_jJ .._J _1 __L i 'iI j l' I a. .,.{-.j-.k. _q_[. 1 _. _ .jy,y ,-{_ ]l' ljp -j [-j-l'! l, l. l l, r I. d -t ,f g 4... L_J.: ! a.
- .p
__ 2 u. _4._ ; q Jq_ ._.p.q l __; ; - i _t q; q. 7% _ r.... _ p: .pq
- ~i
._3. _7-. L _._ _. i ._2_. . r T -' i--- ' i a i a- ~- .. q _. p.1. ) _ _ '.L,J.... _.._ L Lj _1._ L ~- __t_., q..{..j I 1L ..[ { . J .-j.; &{', j i .r +- 4- + H r-r, y; y i : it _ _. _ :.a.. . -;g i4 in iii e i l 3 - l4 - i j
- ; -l--t-p-i !
i m i ,. j.3 y 7 ;. q. .. F,'jj ._ j_t_ u e-kb --._lr.~ ~. i 4.<
- 1..,
a _.,.... .t_.. ,4 ___ 1 i,i, _.u _7 3 7 ' ] } f 1-S '~
- J~
J-l t
- y-Li r,
J-wlll l lll. _.. H .ii1 .- t..h.. -'. _.r-i;r..n. 1 --di i n r-- th++tn ll i, -i- ; - i M' -8
- l-i i ;
i i t l ij- - - "7 ' ' -4 ,1-j
- --1 U
i.' >' 1 I l _.L_7_ . 2 rl --L - f'i i.i 4. m _ . Jn' L d~ . LL - i L ! _. L ' :. [.I : _L1 j _ ..j_ j;_H.. _! J J.J._L,. l 1:lll oj q. i _u,t _.._t .i ';i ,i..t _i__ i,. t - 1 g l b_j I h I l.d _ '..q;. j '. } ~l.d ' j.; !i !.;p,_ 4 m. M
- 9. _..:,
a 4_. : _ ...q.4, _ y._ ~ m l l ',, _1. . L }' ! .2 M _;. [i ts y y l 'i 5
- j. _ J.:._
i v j o O m, ,+ ! j %p y 1 .I
- J. M,.
.3.L. I y 3 !._i}_ .j g -4 _.h, I !. e* { O. EE C 5, : g f.i ...t_r -i-4. 2 - r g i t. s : 1 =_a t iT. .., L, l. g.; .i -j t__,, .H v). _ _i 1 ii j _ _i i_ ) !. q,e .4 9 ..j.... m _+ m __ !,i. r F i ,1,. 'p_ __.j___. 7 . ;_.;..q O, .y L _ _. g 9 7, {. _ !.. j._g
- ,i i
7 N jJ.! j /l' q;. gl l [J_-.j'_. __L;.y q f {. ; ,i . y .. x 3 .,.2 q. _v. __r-- j3_ y P 4
- }
4_ q7 ~ 7-...; ,3 . r-m-- i,m-i - + - I ,' i{ j
- 7 3-j mm _...
,.L. .._L j. . q..L.!p _f. i i tr, 4_-.4. : - +q_,._.4 y _7_i_ . 8. +---4 g .Mq..l j =4-t- rr i. ,ii, i- + r - - r,- i w a. 4 o n O l
- - [ ]-
m o m o .m m m N N v-I- I- -+ ht M MN i i .J i a _j J i . J.j _ 4..j_._.Ha y.g lml L% q_ l _' j .J. t t H r.;_ rr H. 3-4
BORON DATA initial FsB Feed Final Actual A TIME RCS or Volume Feed Boron Final Boron Error DATE Start /Stop ppMB Batch Gallons ppmB ppmB ppmB ppmB Flow 5/16 S2pt 2307/0036 1810 FsB 15,754 0 1501 1513 12 3.6 6 S:pt 0329/0358 1513 FsB 1,709 0 1483 1478 -5 -13.9 8 SIpt 1005/1356 1515 FSB 16,869 0 1195 I204 9 3.05 '2 Szpt 1353/1545 1499 Fss 14,369 0 1224 1234 10 4.0 ,6 Oct 1300 1450 Batch 2,640 0 1394 1407 13 23.0 9 Oct 1222 1403 Fss 2,536 1 1350 1358 8 15.3 10 Oct 2200 1401 FSB 5,199 1 1299 1315 16 16.1 3 oct 2315 1256 Batch 1,995 0 1215 1222 7 17.0 15 Nov 0034 1504 9,476 0 10274 1347 7.76 gal IS Nov 2310 1347 2,321 0 2738 1308 15 7-1 17 Nov 1645 1308 1,900 0 C; h, 1284 9.2 gal 20 Nov 0135 1256 400 0 372 1251 7.0 gal 21 Nov 1340 1268 1,700 0 1856 1243 8.41 gal 3-3 F F F-
IV BLEED AND FEED CALIBRATIONS 4-0 B menar-M m We* * % o *e9 met be, e ow
\\ ~ . of.the. solution through the flow meter. The difference between intended and actual " final" boron concentrations was used to calculate the flow error during injection. The additional 1. solution needed after the boron change to obtain the intended boron concentration was plotted on Figure 4-1. f 3 i I i b i 4 i w I 4-2 4 g ,4. a -r--
4.0 BLEED AND FEED CAllBRATIONS The accuracy of. boron control in the reactor coolant system has been investigated using data obtained during and subsequent to the Zero Power Physics Testing. Analysis of the data has shown that the calculated quantity of water to be added to the RCS in order to obtain a given boron concentration results in boron errors as great as 16 ppm 8 in the final solution. The calibration of the flow integrating meter was checked and an error analysis performed on the data, it was found i that the flow neter was originally calibrated by a factor which resulted in an indicated flow 6% greater than actual flow. The data shows this same general trend of actual flow falling shcrt of the indicated flow; however, the inaccur-acies fell between 14% too great a flow and 23% too Icw on flow. Error analysis has shown that errors associt ted with boron inaccuracies v.ould more than shadow the 6% inaccuracy I due to the flow meter which explains the wide span above. The flow did tend to fall short.of indicated (see Figure 4-1) and the neter has been recalibrated. Subsequent boron data was analyz2d to determine whether an improvement in boron control has been achieved and the results are in excellent agreement. Enclosures I through 6 show some calculations used to obtain the intended boron concentration which was '\\.. compared with the actual boron concentration af ter injection a 9\\ '~\\s 4-1 N ?xx 4
9 ENCLOSURE 1 .1 Calculation of boric acid solution or demineralized reactor coolant makeup volume required to borate or deborate the reactor coolcnt system utilizing continuous feed and bleed: Date 9/18/74 Time 100s Calculated by Man (1) C init al RCS boron concentration, 1815 ppmB a ri (2) C = Goron concentration of feed solution, 0 ppmB l f 1 (3) M = M ss of reactor coolant system, 538000 lbm r (4) H,= Mass of Makeup System, 49700 lbm (5) My = Total mass of reactor coolant / makeup systems, 587700 lbm i: (6) Crf = Desired RCS boron concentration, 1195 ppmB (Calculated) ' I (7) =M in (C -Cri) .f T f (C -C 7 rf) (8) M = Mass of feed solution required. 140065 lbm 7 3 (9) vf = Specific volume of feco solution, 0.016099 ft /lbm (10) F=M v 7 7 3. (11) F = Volume of feed solution required 2255 ft el (12) F* 7.481 gal = Gallons of feed solution required, 16869 gal 3 ft 4-4 l' eg.
, i ._.. a,. 'j11.
- * *1--,,,,j 7-T i j i q.
t,. y_.i. .i,, i . h, ;j. '. r i q 3.l 4 i ..i I l ,r a ,e _e a. l 6 i, I,i._ '... ' _.,._ .,I I. l $ t I I i l I A _I.. I t 4 i i .i. i, ..'t ,,i! FIGURE 4-1 l'J ',~ T- ~ i J. J.l_ im a i-O_ i eJ INITIAL BLEED and FEED CALIBRATION H'. w_.! : _. A i m_ _
- 1 i
_ _i i I i. 4 l ]. g t lw a - l j s l l .I j. j i 8 _.4 i i ... _... 7-i p ..{ .L t w .. i.u _._ u; L , i i i ,.i_. t.,.,.t. i. j i i _.__ q p } 4_.. 4_,... - - g ;- i p ^ 11a.. ..---+-;-- d-L - 4-a .,i 6 i
- i
.i. 4 +_4'- I l .i
- y e
a__! _. ' J ~ J 4 _L J,.
- _..' qj t-
- f....,. t -h J ' 'ff.f-f -i d
- k. e[ p,.{
l{. y. ..1 .4., ..}, _1.- !,!'l l_1 4.%, ~ J t I l y g_.. . q... _ j.l._pp. l 1._t q ' l...!. 3- ~ 5-j.5 b-. e -(,.-- N 5-3l ~ _.-l g I y i [ ii i .. + _.*L:
- , i d
i i i , 4~ .' '1 'f ;,; Q l...,,.., - I-' '
- f T*-**
i j g g ,g i i i 4. I e e. 4.- f _,. 4 i i a i i i e i i i e i i e L_j _.. I ! }. d 1 d i.. A - _. - -..I s b l.. 'i.. . l' &.y. I _. + I. .i i I e A.j. [_ L. 1_J 1.- , i i .-4 .I 6 } .4 -' I 3 ' I i .]. l j q._T'.,.., _j._ -_3. 4.._ i. q.,.. - ; i i i . _,i .7 .p. p. 3 ....., 6 a i 1 i_ i I t I i i 7
- l. 4
, i ~ !j T- ' I T ~ ~h F... ', l l .. l i - i ...4 .i. l b9 f 4 a i. 4, 4j.. _ . _j,,! e.k,..d 1 i. t h. .. l I. y1 '. I . 4 l , [ .i. ....i. .....i l i. ,_.i._, e. - j 4' { - -.l.. ,tj 1 .i. i i e 4
- . t i
g 4 l ; i i i i ....,,.l 4_ . t,- }-.I q. ul.._. r i i / ..I I _._e .4 l N a,
- 3 _.
1 tr) N -J, ._,.7 g .':M. 4 ;_ 4 l...J _ .c t'
- l "" g '-~~f i
+ l .z L.. ---N ! i > i i < 4 p-- ~ - l' M 7j-' 3+y __L l e. ~ u.- g y1 ;1 ,l .- g - L . H _i- - j o j j 2 y -- - -t 3- }t i a: , - p 7 qj -j e 3-1 m: .:4
- x..
_,i _m I_ m. i 1. . i. o a.3:
- m. --c:r 4
i, L:.:.:. :... .- _., i i .i m,~ t
- gg h8R
.'d ? I I j.L I ' i R:1:::. t 1
- ' l _
y g ys ,i i w+.. t. r .: ek.-n ..u. t, o-p 6 l'. y c.a m e u.. ..a b b,i H J 6 -600 -400 -200 0 200 400 600 800 i e .. ; p q-- = - - - - EXTRA GALIDNS NEEDED AFTER A BORON CHANGE ,'r e_. -7 7.i ..)_I .4. 'i L. a t tI i i 3_ i e._ .,.. -._ + _.. 4 .4._.. $- n M- -i bI H -' I il i h_ d - -lrb Nb t -- i i :. s.. +..q 7._ g.a g_p q.g 4l ,y g pl . _H.p_g _p ,j -.,, a 7. q. g. .j.. _g. _..q. _ i y 3,.. j. {.[_ ; 7_._p .7 7; ' j.. l ; q. j_.2_ p ;_, l' ..g l
- j
, l.a '. ' i i w i i .. j
- i..7.. ; u,
_ t, ., n, u i e . I ._ii ..i 1 i. i - i i i, i e.j i i. i .i .s. 4i i i , i l I i ) l.{ j ---u- .4 L e W _ 4-r, 4 ) l
- a. 4. 1 -
_a l I.i - _ + _.a n.- t , J; i i ] I l f i I I t i i .,i e-. y 1 4-3 t
ENCLOSURE 3 .I Calculation of boric acid solution or demineralized reactor coolant makeup volume required to borate or deborate the reactor coolant system utilizing continuous feed and biced: 1; Date 9/20/74 Time (Continued Ol21) Calculated by MBO (1) Crl= Initial RCS boron concentration, 1182 ppmB (2) C = Boron concentration of feed solution, 5966 ppmB { f (3) M= ss of reactor coolant system, 538000 mm { r (4) M,= Mass of Makeup System, 49700 lbm (5) MT = Total mass of reactor. coolant / makeup syn,tems, 587700 lbm (6) Crf = Desired RCS boron concentration, 1196 ppmB (Calculated) (7) M =M I"-(C -Cri) f T 7 (C -C f g) (8) Mg = Mass of feed solution required, 1661 lbm 3 (9) v7 = Specific volume of feed solution, 0.016099 ft /1bm (10) F=M v 7 7 J -(11) F = Volume of feed solution required 26.7 ft (12) F* 7.481 g = Gallons of feed solution required, 200 gal 3 ft 4-6 i J .f
~ ENCLOSURE' 2 Calculation of bar:c acid solution or domineralized reactor coolant .1 makeup volume required to borate or deborate the reactor coolant system utilizing continuous feed and biced: Date 9/20/74 Time 0121 Calculated by Meo 1216 PPmB rl= Initial RCS boron concentration, (1) C '(2) C = Boron concentration of feed solution. O ppm 8 g (3) M = Mass f reactor coolant system, J 38000 lbm r h9700 lbm (4) H = Mass of Makeup System, 587700 lbm T = T :al mass of reactor coolant / makeup systems, (5) M 1182 ppmB rf =_ Desired RCS boron concentration, (6) C (Calculated) (7) M =M in (C -Cri) g T g (f rf) ~ 16606 lbm (8) rig = Mass of feed solution required, 3 Specific volune of feed solution, 0.016099 ft /lbm '(9) vf a i , (10) _F = M v g 7 3 (11) 'F = Volume of feed solution required 267 ft (12) FA 7.481 gal-= Gallons of feed solution required, 2000 gal 3 ft 4-5 i
o i~ ENCLOSURE - 5 .I lCalculation of boric acid solution or demineralized reactor coolant makeup volume required to borate or deborate the reactor coolant system utilizing continuous feed and bleed. 3 Date 9/22/74_ Time 0545(Continued) Calculated by MBO (1) C = lnitial RCS boron concentration, 1509 ppmB ri (2) Cu Boron concentration of feed solution, 0 ppmB f (3) M = Mass f reactor coolant system, 538000 lbm ~' r (4) M, = Mass of Makeup System, 49700 lbm (5) MT = Total mass of reactor coolant / makeup systems, 587700 lbm (6) Crf = Desired RCS boron concentration, 1501 ppmB (Calcula ted) I (7) M =H in (C -Cri) y T f (C -C f rf) (8) P.7 = Mass of feed solution required, 3321' lbm 'I' 3 (9) vf = Specific volume of feed solution, 0.016099 ft /lbm (10) F=M vf f J: 3 (11) F = Volume of feed solution required 53.5 ft (12) F* 7.481 gal = Gallons of feed solution required, 400 gal 3 ft 4-8 1 i n. 4
l ENCLOSURE 4 q l .1 Calculation of boric acid solution or dcmineralized reactor coolant makeup volume required to borate or deborate the reactor coolant system utilizing continuous feed and. bleed: Date 9/22/74 Time 0545 Calculated by Mao (1) Crl= Initial RCS boron concentration, 1187 PPmB (2) C = Boron concentration of feed solution, 6684 ppmB f (3) M = Mass of reactor coolant system, 538000 lbm r .i (4) H,= Mass of Makeup System, 49700 lbm (5) H = Total mass of reactor coolant / makeup systems, 587700 lbm T (6) Crf = Desired RCS boron concentration, 1509 ppm 8 (Calculated) (7) P.7 =H in (C -Cri) T f f" rf) (8) M = Mass of feed solution required, 35496,1bm ~ y 3 f = Specific volume of feed solution, g016099 ft /lbm (9) v (10) F=M v7 7 3 (11) F = Volume of feed solution required 571 ft. (12) F* 7.481 gal = Gallons of feed solution required, 4275 .ga l 3 ft 4-7 e f ma ** A., _ w. =+1* - ' xet ta._. .o .N*r""*"" 7
ENCLOSilRE 6 .l. Calculation of boric acid solution or demineralized reactor coolant makeup volu.s.c required to borate or deborate the reactor coolant system utilieing continuous feed and bleed: Date 9/22/74 Time 1353 Calculated by 8B0 ~ (1) C ;= lnitial RCS boron concentration, 1499 ppmB (2) C = Uoron concentration of feed solution, 0 ppmB f (3) M = Hass f reactor coolant system, 538000 lbm r (4) H = Mass of Makeup System, 49700 lbm (5) H = Total mass of reactor coolant / makeup systems, 587700 lbm T (6)- Crf = Desired RCS boron concentration, 1224 ppmB (Calculatac? ri) (7) M ~ "T I ".( C..f -C f f ~ rf) (8) H = Hass of feed solution required, 119308 lbm f 3 f = Specific volume of feed solution, 0.016099 _ft /lbm (9) v ii (10) F=M vf f -(11) F = Volume of feed solution required 1921 ft (12) F* 7.481 gal = Gallons of feed solution required, 14369 gal 3 ft 4-9 I
V POWER HISTORY i 5-0
- MER-M*N s-M"*M
, $hr ,M y-M e a y aS4-Am a o e
q. '} 391 2 1 4 6 ? P a 10 Il 12 11 It 1% 16 17 la 19 M 71 77 23 24 2S 26 27 78 M 30 31 g3g i 30% 105 ~ ~ y IP' 100 J _ _ _ p_ l 95 l - l .1 .7 90 9
- 1-6 6
E' m. 85 I I 89 80 iS 75 l 70 70 l i 41 LS 3 65 Qw e a ss r 'd ~ 50 0 I {- 45 45 N_ Ne M '*i 40 4 40 ( s p{ 3S 35 a7= ,9 e 33
- - 0
/ O $ w' _~ 7- ~ ~~ 25 M 20 20 k It IS to 10 5 9 3 2 3 4 5 6 7 > 9 10 II I2 13 14 IS it il la 19 20 21 22 23 24 25 26 27 24 29 30 31 J Month f OS8E .19 5-2
p V POWER HISTORY The following power history graphs contain data up to March 27, 1975.; ~The reactor has operated at sufficiently high power levels including more than 1175 ho' rs over the power level of 75%.and more than 744 hours i u 'at power ' levels of 92%. At tne time of this report, the plant is at a scheduled shutdown condition to perform routine inspections and minor maintenance. _ The operations have been safe and have operated as predicted within the limits described in the Final Safety Analysis Report and the Technical. Specifications. 1 i i s-4 4 5-1 _ -. _ -,, _. ~., +..
b,.a 1:01 2 3 4 5 e / E 4 10 11 12 11 14 e5 Ir 17 18 19 20 21 ?? 21 24 ?$ 26 27 iS 29 30 31 110 IDS 105 ~ 'l 100 100 s _e_ ___ ..j es l .) e i x ' i l i 3 8s I 80 I t Ib -,1,_ .. -l Ib Its 70 f 9 v. es 3 l l Q ro so i J ss q ss -] S0 50 OhD l l O. 45 45 Y, P-RC-40 I y$; a u ,s yl; g; o E w w -o 3 OS s .e 2b ~ E ~ ~ _~__ 2 s r ~~ ~ ~ h N V 20 Pi 9- .p e ee l i + N m e.p .~ is m e h. m am w .w = m 6 6 e N w f ~' m i 2 3 4 5 t> '7 8 9 10 la 12 13 14 lb 10 I/ 18 IS 20 21 22 23 24 25 26 27 28 29 30 31 {< Month EMMM2_19 5-4
3 / 3 4 s. ., in 33 12 11 1 I *. i. + 7 19 1 20 21 ?? 21 ?4 75 16 27 ft 29 10 31110 160 105 l' S 100 100 __ l 95,_. -~.- - 4- - h 36 l l w l,! l 85 Yb _,__..,, _. 30 d _ l l 75 1%._._-. L. 10 I to I i k 65 N Q 65 ) lb 6b a - -_j k 50
- C 85 4S O.
O. N: 40 i @E gg a 4; 8 35 u. N 9
- O 3s L
- n g 3r -
l ~ 30 ~ 3a '- {' r> d
- b "$
- s_ __ _ __.
{ l ^ 2s l 82 E =; W ~ 20 i 8 ^ X yo ~ 15 45 _ 7 10 to - ~. ~ S = = l~ ~ ~ 2 3 4 5 6 7 8 9 10 11 12 13 le is 66 Il 18 19 20 ll 22 23 24 25 26 21 28 29 30 31 L. ddMSd.19 Month 5-3 j
m L 8101 2 3 4 (- 7 E 9 10 11 ?? 13 14 It ir 17 18 19 20 21 77 23 24 '5 26 ?? P2 29 30 31110 l ~ i 105 105 7 100 _ 100 3 g$ -== pu m. 90 I / 90 3 + as 85 ,{ 80 80 7S 75 /u ~ 70 .5 l 3 N N g d ss 55 o O. 4 '. 45 te - ft. '1 80 43 U 3 35 o * ,e. s ee > e-o { I3 3:' 30 3 ha 2 'j 25 25 ps M M 15 .l 15 10 ~ 10 h 3 5 '6 M m 1 2 3 4 h h 1 P y tu 31 12 13 14 l 's 16 17 18 19 20 ?! 22 23 24 25 26 27 28 29 30 31 dl EA8U4ff._.19[ M0 nth _ ~5-6
I 2 3 4 5 7 6 9 10 11 17 11 M M M t' 4 M M M M H H M M U M M P310 110 __ Z 105 IM. 100 f 95 l 4; ~ ~. i I i j 9l / i i .c a,. i .__. e5 I 75 ____ _. __ _.._.. __ 8'3 80 4._ - is ,s ._ _p, 1 r i It',. _ 65 m y 3 1,
- i. i 4
55 d t,'. i a 50 1,0 i - 45 M --- -~~ 1 d'> _- - O. l f o. r4 40 e. 4a "I r" i 4. o 35 7;* l } n a t I 0 30 0 30 ~. Z 1 -53 ~ ~5 2 [O, 2s 20 NI sT pg ~ 15 f l's._,.... ~ 10 10 g Z5 5 0 I / 3 4 L 1 8 4. 10 11 12 13 14
- t li 13 IS
.O 24 22 23 24 25 26 27 28 29 JG 31 O Month. 19 5-5 yyqa -u--*
i ? 1 4 s 7 a 's to Il 17 11 It ' 1: A ti 70 ?! ?? 71 24 M 26 27 23 79 in 31 110 gg i 1DS . ___ { p_. 105 g l i I 100 1 l'A 0 I j f .6 l l i l I l f l t l l. ._j -p [ H._.. _95 }. .l f S l l l l m .mmt g 9C t)O hl ~ = i = i i I3 65 i I i j l f I I l l l 80 e I i 80 _y_ l t i g l i t i i i I 75 n._.. .} .g_ I i i 4 I I ! 70 /t, l i .5!' Y ! i Q O _ 60 g (4 I 60 l Q I s5 f __...~. .g I l 50 M. l IO. 45 4$ ta, a 40 j ${ l 40 o t-3S 35 ) e g pg i "8
- i
- l >- ,0 UU ' 30 g3 g >0 3 T I f$I ~ 25 h 75 ^ ItJ - 23 ~l
- .n 15 15 10 in
~'. 5 g 0 J t t l ? 3 4 5 t-7 b 9 10 11 il It L4 l'. It 11 18 19 20 21 22 23 24 25 26 27 23 29 3' 31 N/dd h _ _ 19 Month 5-7
CONCLUSION Rancho Seco Unit I has performed satisfactorily during startup and power escalation tests. The unit has not significant deviation in plant per-formance from that predicted by design and required for safety. This report, in conjunction with the Rancho Seco Unit 1 Startup Report, con-firms the ability of the plant to follow feed and bleed operations and sufficient operating experience has been obtained to lift. the temporary restriction imposed by Section 3.12 of the Technical Specifications. I " = ** ' 7*
- J esep eww e 2-
.e PT " *.*Srt-P'.
- %#w*-
.}}