ML19319D855
| ML19319D855 | |
| Person / Time | |
|---|---|
| Site: | Rancho Seco |
| Issue date: | 07/31/1976 |
| From: | SACRAMENTO MUNICIPAL UTILITY DISTRICT |
| To: | |
| References | |
| NUDOCS 8003260809 | |
| Download: ML19319D855 (42) | |
Text
{{#Wiki_filter:p. L r. q n SACRNM0 FMICIPAL UTILIT/ DISTRICT u RANCHoSECONUCLEARPbHERSTATION UNIT 1 a DoCKETIb. 50-3H LICENSE Ib. DPR-5I4 ( STARTUP EPORT SUPPLEMENT #5 1 l l 4 \\ Mppf-e)f Id
- ~
- 9
.. !N, ' * ~ JULYJ1976
- v..
8.003260hfC l. p
t g, s INTRODUCTION This. report has'been prepared for submi ttal to the Nuclear Regulatory Commission in accordance wi th Regulatory Guide l.16, Rev. 4, Section C. l.a. On March' 1,1975, the Startup Report for Rancho Seco Nuclear Power Station Unit I was submitted to the Nuclear Regulatory Commission. The Report has been updated by Supplement Nos. 1, 2, 3 and 4 submitted June 27, l975, ~ October 2, 1975, December 31, 1975 and April 20, 1976, respectively. ./. This report covers the tests conducted at 100% power which was initially l achieved on March 5, 1976..The Re po r t includes the reactivity coefficients, nuclear Instrumentation and core physics data obtained at the 100% power f The unit was shut down April 4, 1976 and' remained shut down through-level.. out.this report period. The biological shield survey data is in the last stages of approval and will be reported in the next supplement. The only tests that remain to complete the startup program are the transient tests at full power. l l 1 l l L l f i SS-I i k.I .a
T f -Chronological History - Rancho Seco Unit i Startup Report 7 . August 16, 1974 Operating _ License issued -August 19, 1974 Commenced Fuel Loading August :23, 1974 Complated Fuel Loading ~ September 16, 1974 - Initial' Criticality October 3, 1974~ Completed Zero."ower Physics Test October 11, 1974 Initial Turbine Roll October 13, 1974 Synchronized to Grid Novembe r.18, 1974 Completed 15% Testing January 4, 1975 Completed 40% Testing January 5, 1975 Initial Power Escalation to 70% January 9, 1975 Initial Power Escalation to 75% January 24, 1975 Initial Power Escalation to 92.6%- March 22,.1975 Shutdown for Turbine Bearing Inspection April 18, 1975 Decla' red Unit I Commercial June 29, 1975 Unit Shut Down Due To High Turbine Vibrations February 25, 1976 Unit Startuo Following Extended Outage For Turbine / Generator Repair March 5, 1976 Operating License Amended to Permit 100% Power Operation i April'4, 1976 Unit Shut Down For Modifications To Sample Specimen Holder Tubes and Generator Repairs i I 4 i 55-2 O e Li'
t -
- (;
w l.0 > CORE POWER DISTRIBUTION r, . l.1. T'JRPOSE During the power escalation. test sequence 'significant emphasis has been placed on the' measurement of. core ' parameters which relate to radial and axial power distributions'and the corresponding. thermal-hydraulic values. As such, the Core. Power Distribution. testing 'was conducted to: (a) . Measure core power' distributions at each power escalation testing plateau and= compare to design predictions and technical specification limitations. (b) Evaluate values for DNBR and Maximum Linear Haat Rate (MLHR) for comparison ~to technical specification limitations and test acceptance criteria and to extrapolate these measured values to higher power levels to insure operation at ~ the next step in the power escalation sequence. l 1.2 TEST METHOD . Prior to conducting the core power distribution test the following prerequisite reactor coolant system and core conditions were established: (a) Reactor poweb stable to within 11% FP for a period of at least one hour prior to recording data and throughout the data recording period. (b) Coolant average temperature stable, il F. (c) Coolant pressurelatabic...,150 psig. j i -(d) Three dimensional equilibrium xenon established (was not required ~ for the 15%.FP measurement). -(e) ' Axial Power Shaping Rods (APSR's) position constant ten minutes prior.to testing. Onceithe prerequisite system conditions had been established on-line computer printouts,were obtained from the incore neutron detectors which included a l - three-dimensional: power map, fuel assembly to average fuel assembly power ratios, worst case thermal conditions, core average thermal conditions, out-of-core power level detectors, power range imbalance and other data necessary 1 for computing incore. tilt and core thermal power. Thesefdata once obtained were analyzed and compared to predicted results and 'tcst acceptance criteria. The' measurements covered the following contrni rod
- pstternsf and core ' power ' levels.
Uwh SS-3L ~ w ~~
Power Level Control Rod Position (%WD)' Equilibrium (%FP) 1-5 6/7 8 Xenon 15 100 37.5 7.5 No 40 100 90 22 Yes/3-D 75 100 92 18 Yes/3-D 4 92.6 -100 89 16 Yes/3-D 100 -100 92 8 Yes/3-D 1.3 TEST RESULTS 1.3.1 General ~ Tcble 1-1, Synopsis of Core Power Distribution Testing, summarizes the salient reaults for each of the cases analyzed. The analysis was performed to verify: (a) Acceptable comparisons of Total and Radial peaking factors to design predictions and s (b) Acceptable values of measured maximum linear heat rate and minimum DNBR.
- 1. 3. 2 Total and Radial Peaking Factor Analysis Thm measured results of the core power distributions covering the various control rod patterns'and core power Icvcis are tabulated in Tables 1-3 through 1-7.
These tables give a complete eighth core power distribution which describes the entire core assuming eighth core symmetry. The total praking factor, described in the tables as P I core' "**
- "E max the full set of incore detectors as represented in the computer prepared 3-D Power Map.
From computer output data the average core segment (detector) power icvel was determined. The ratio of the maximum segment power in a fuel assembly to the average core segment power level is the total peaking fcetor.for the. fuel assembly. The radial peaking factor, designated as P/F, is the ratio of the power generated in a fuel assembly to the power g:nerated in the average fuel assembly -- the values were obtained directly from the on-line computer output of " Fuel Assembly to Average Fuel Assembly Pswer-Ratio". Thn values for thef total and radial peaking factors have been plotted on 7 eighth core maps and compared to-predicted values for similar core conditions. Ths, predicted core power-distribution cases at steady-state conditions ware d2termined using the three-dimensional PDQ-07 code with thermal feedback. Tha first four. cases have been compared in the figures tabulated below to demonstrate the degree of1 agreement between calculated and measured power dictributions' For a representative number of fuel assemblies the segment power levels have been plotted versus-the axial location in the respective fuel. assembly and are noted below as Axial Power Representations. 2 55 ~ + o. I Y' ~'si, ma ~ x 4 m~ r ~ + iPower Test: Radial Peski ' Axial: Peak' ' Axial Power , Plateau-cComparisoni Comparison Representation. (%FP) ^ t(Fig. No.) (Fig ~.- No. )_ (Fig. No.) ~ ~ .15. 1-2:
- 1-3 *1 1-4 *2-J40
.1-5 1-6 7-75 1-8 ~ 11-9 1-10 92.61 1L117 1-12 1-13 1 1100~*3: Dl-14'- 1-15' 1-16 -*1:- No predicted 1 values wer'e available1for:the 15%FP case other' ~ l than : those ' presented - in the.ixial. Power Representation. ~ c -
- 2 --Predicted? values _were available for the'15%FP ca~se'only.-
- 3 - No' predicted ' values werelavailable for 100%FP due to not
- attaining it:until'long after the initici startup, i.e.,
144'. 6 : EFPD. 1 The Core ~PowerJDistribution Test at 15%FP was performed to _ verify proper . operation and valid output from the on-line computer and incore detector system. fAs such, no specific-test acceptance criteria were specified.
- For ' the. remaining _ cases the three highest measured -radial power peaking factors were not to exceed the predicted ~ values-by more than +5% of the
~ g predicted value and = the total peaking factors were not to exceed predictions eby more-tham +7.5%. y _ Total peaking 1 comparisons yielded'results which showed good agreement between usasured and predicted-values;and which were well within'the test acceptance criteria.of-a +7.5%; deviation.. Analyzing the five highest measured'and pre-(dictedito_tal peaking._ factors -a -maximum positive deviatien of 6.5% was observed for the 40%FP case in core ' location -H-8,1.6% for the 75%FP case in core loca- ' tion II-8, 'and a^1.1% _ deviation ;for the 92.6%FP case also in core location H-8. ~ Maximum measured total power peaking factors for each case are tabulated in TEble 1-1
- =
l i j . Thetradiali peaking factor comparisons did not_ in all-cases meet-the test - scceptance feriteria-of. a +5.0% maximum deviation from predicted. A'+10.3, .+9.5Cand'af +8.0 maximum percent; deviation was ' observed for the 40%, 75% and 192.=6% cases resp ~ectively.all occurring in_ core location 11-8. ~The impact-of these.devia'tionsf rom predict'ed' values was1 analyzed prior to further power Jedcalation,:taking into5 account the good agreement of the' total peaking. factorsL and thefvalues ?for maximum linear heat rate and minimum DNBR. As a ~ ~ i rasultiofLthese' analyses,3it was determined' acceptable to escalate power 1
- sinceladequatefmargins;to design [and safety criteria were determined both
- Lthe maximum lineariheatirate andLminimum'DNBR. A detailed discussion of'the ~ f ea' idumilinearcheat rate and minimuc DNBR 'is included in 'Section. l.3.3. x (Theidesign5b'ases ffor!Section 2-1 bf the Technical Specifications ' state that 1 'since poweripeakinglis ;not a:directly observable ~ quantity, limits have been 9 ~ Jestablished on :the? basis' of. the'. reactor: power timbalance produced:by the. power Lpsak'ing.lPriorfto. escalation ~a' verification}thatthe'imbalancetripenvelope ~ t lwould protect'the corcifor. various; conditions 3f imbalance was satisfactorily e ' W d:monstrated.lhThe" minimum:DNBRtand:ma'imum linearfheat rates measured' x ~ ' edurings the[ imbalance ;tes' ting ' at 40%: and f 75%FP are tabulated: in Table f1-2.*. All ~ k ~ qk:',' 4.5], r g-s ,re- ,y
- 5.5-5.7
~ ~
27 z &^ j'*~ , j[ Y
- '~ \\
j&~# y ~~ ?,V y s . measured, adjus_tedland:. extrapolated values met 5 test' acceptance;and safety +, icriteria and provided: sufficient-margins 'to.the limiting criteria for.each f cesa.JCondi tions o.fi:: Imbalance which, when extrapolated ito the next power ACplateau,:fellioutside'of/the' power imbalance' trip envelope _were disregarded {sincerthe; unit would :tripibefore _ the cimbalance condi tion at' the escalated ~ ? Lpowar21evel;could occur. J1.3.3? . Maximum: Linear ' Heat Rate and Minimurt DNBR-t r 4 ~ ~ ~ eMinimum DNBRlvalues:were1 calculated by' the on-Iine computer -for each-of the
- cas'as) p reviously ciden ti fied.
Values of DN8R asLoutput by the computer were-liniturn! reduced:by 0.68'to account for the following:. Radial uncertainty and ih:::stnbalance error,. inlet temperature Lerror, system pressure L error, fuel. drnsification,; axial model correction and ' axial ' uncertainty and. a 4_ percent- . qu :d rantit i l t. ~These parameters represent uncertainties and'conservatisms 1. !which,Jwhen subtracted from'the measured DNBR, resultlin a. worst case DNBR E iwhich~will be conservative ~even.if all errors and uncertainties are actually - prssent.at _ the 'same ' time, at' full magnitude and in the-worst di rection at
- afspecific core locatlon.
lThe values thus obtained?for-the minimum DNBR for each case are presented in Table 1-_2 under the heading of " Adjusted Values",-and are' plotted on -Figure 1-1 in addition to values obtained for minimum DNBR as obtained .during imbalance Detector Correlation Testing. These results indicate that all-adjusted values for the 'minirr ' DNBR are greater than the. minimum allow-able value of'1.3, as calculated t/ the W-3'DNB correlation. E e in_ addit lon to comparing ~ the DNBR results to. the _1imiting condi tion at the
- power ;leveI ~ they were;obtained, each adjusted minimum DNBR value was extra-
' potated to the overpower trip setpoint. for the next' power escalation. test -power' plateau.. lThe -e'xtrapolated values are tabulated in Table 1-2 and ~ - compared to the limiting criteria for;that power level. In all cases a
- substantial DNBR margin to the 1imiting criteria of 1.3 was observed.
.A ! minimum DNBR margin of-:60.8%' was detcrmined af ter extrapolation' of:the 92.6% power resul ts to L 105.5%FP, 'the' overpower trip setpoint for 100%FP operation. ~ l Maximum linear-heat rate values were calculated by the on-line computer for
- each 'of the' cases' considered. - The values' as output by the computer were -
thrn:mult.iplied by.l.387,to account-for.the following: tJncertainty in the ~ g axialfl.ocal.measureme'nt, conversion of-average radial local peaking to-e worst l case : local f peaking, burnable poison rods, c.ontrol rods,: nuclear un-ichrtainties, power ' uncertainties,-densified fuel stack height,. four percent (quidrant tilt;and a powerfspike factor. ~ ~ ~ iThA direct measured values.and adjusted. values for maximum 1inear heat rate- ~ forstheiorst"cas'elasse'mbl ies are -tabulated - in Table ' l-2 for the-resul ts ' obtained ;fiom[ Core l Poweri Distribution'. Testing -(TP :800-11) and' Imbalance- ' ~ -Detector: Correlation; Testing l(TP. 800-18).. All adj usted ' values for maximum ~ l11nrar-heat rateiere.well!below,the test'~ acceptance eri terla of 17.8 KW/FT. iThe adjusted iva.iues of maximum-1inear-heat rate were then _ extrapolated ~ to , th'a overpoWerstrip setpoint<forsthe next power-escalation-test plateau and ~ .. ~ ', SS-6 n :- , m. ~ 44 ,g v v +.,. 4--+-., e m ,-.k , ',. 3 .m. s ~ 4
p F. . compared for acceptance to the fuel ~ mel t limit of 20.4 KW/FT. -The results of thi_s extrapolation are also presented in Table 1-2 and compared to the center- . lina fuel. melt limit. In all~ cases'a substantial margin exists,.although savaral_ cases required a -speci fic analysis of f actors af fect ing the subject peak"- loca t i on. 'Not all factors included in the 1.378 conservative factor apply uniformly to.all fual assemblies, thus some detailed analysis was rcquired. A minimum linear heat rate margin of 2.4% was determined after extrapolatlon' of the 75% imbalance power testing -results to 100%FP, the -ovsrpower' trip setpoint_for 92.6%FP testing. 1.3.4 100 Percent Full' Power Testing On March 5,1976, approval to increase power from 92.6%FP to 100%FP was received. At this time the core had operated to _a burnup of approximately 142 EFPD. After cllowing two days for establishing equilibrium xenon, data was taken and the power distribution analyzed. Maximum Linear Heat Rate and DNBR were extrapolated to the overpower trip setpoint of 105.5%FP and the results show significant margins cxisting to the limiting values. Vsndor predictions of 3D Power Distribution were not available for this time in life. Yet a significant change was observed in that the distribution is consider-ably " flatter", both with respect to the Radial and Total peaking factors, than .that-predicted and observed at 92.6%FP, 32 EFPD. This flatter power distribution results in much lower peaking factors. Behavior of this type was expected, as the power distribution had.significantly flattened during operation at 92.6%FP for more than 100 EFPD. There was no significant change attributed to the increase, et equiiibrlum conditions, from 92.6%FP to 100%FP.
- 1. 4.
Conclusions (a) Measured _ radial peaking. factors.when compared to the predicted radial peaks for.each of the standard core power distribution tests conducted at 40,.75 and 92.6 percent full power exceeded the predicted peaks by more than +5.0%,.the test acceptance criteria. Considering the good agreement of the total peaks to predicted values and the margins established for worst case DNBR and linear heat ' rate, powe,r escalation was approved. (b) Measured ' total peaking factors were in good agreement with predicted results and well within the test acceptance criteria of +7 5% deviation. The maximum deviation of the~five highest measured and predicted total peaking factors was +6.95% in Assembly H-8 at 40%FP. .. (c) The reactor protec' tion system power / imbalance / flow envelope provides sufficient protection against exceeding DNBR and linear heat ' rate limits. (d) Minimum DNBR and maximum linear heat rate analysis of the core power, distribution cases demonstrated the adequate margins which exist for each ofLthe parameters to the respective limiting criteria. j S5-7 1
- r. -
y
m_ ~)- T (d)- '(continued) (1): The minimum adjusted'DNBR-value;was 2.'20-at-92.6%FP and when extrapolated to the 105.5%. full power level provided a minimum .DNBR, margin of.60.8%. '(2) Jihe maximum adjusted ' linear. heat rate was 15.65 KW/FT measured .at 92.6%FP.and when extrapolated and compared to the central .fvel melt limiting criteria provided a 12.6% margin. ~ (o). The coretat all. times exhibited quadrant-power' symmetry. A maximum l quadrant power tilt *.of 20% was calculated f rom the power distribu-tion--data obtained at 15% full power. ~
- Quadrant Power'. Tilt = (Pwr in any Core Quad - Avg. Quad. Pwri X 100 Avg. Quad. Pwr.
~ (f) Power distributions taken at 100%FPLconfirm that significant margins exist to all limiting conditions when extrapolat-ed to. the overpower trip'setpoint-of 105.5%FP. e 55-8.
)s n 0 9 0 7 1 l 9 0 8 9 6 a t 2 2 1 1 1 m o u T m ixa 9 5 0 0 9 9 M 5 4 5 2 d 7 a R 2 1 1 1 1 1 9 0 4 0 5 R 3 l 7 4 1 8 iL 3 5 9 2 4 l 1 1 amre R 0 0 5 8 7 3 1 3 8 8 h B T ND 1 8 4 2 2 1 mu m 1 8 0 5 G xl% 2 0 0 6 t t) 1 N ai( 0 0 0 0 3 hT + + + I TS E T ) l P 4 2 5 6 N a .F 5 5 2 5 6 O I ib xm% 9 1 0 0 5 T AI( + + + U B I R ) T n .b 7 2 3 5 4 S ocm 1 2 3 9 7 I rnp 2 2 1 0 8 D oop 1 1 1 1 1 BC( R E l W O p) 6 0 6 E P uD 1 0 9 L enP 2 4 B E rrF 1 1 4 3 4 A R ouE 1 2 1 T O CB( C F D 5 O W 7 2 8 6 8 8 2 1 1 S I S 5 P n O o 7 0 2 9 2 N i 7 3 9 9 8 9 Y t S is 5 o P 6 7 0 2 9 2 3 9 9 8 9 do n R o 0 0 0 0 0 r 5 0 0 0 0 0 o B 1 1 1 1 1 1 r ) o eeF 5 0 4 6 8 rlP n wv 9 0 2 2 9 o oe% 1 4 7 9 9 n PL( e X e 0 8 9 8 8 m m 4 3 3 4 5 u i 9 5 9 0 0 ir T 0 1 0 1 1 b i l i 4 4 5 5 u e 7 7 7 7 6 q t / / / / 7 E a 5 3 3 9 / D 1 2 1 2 9 t / / / / / o 0 2 1 1 3 N 1 1
.~ ~ ,v TAl:I.R l-2 MINIMUM DNBR AND MAXIMUM LINEAR HEAT RATE ANALYSIS EPower . Power Core Measured Adjusted Escalation Level Imbalance Values' Values Extrapolated Values 1 Test Min. Max.. Min. Jhix. Power Margin l i to 20.4 Margin DNBR LHR DNBRI ' LilR ' Level DNBR ' to ' 1'. 3 LHR' % FP '% FP DIM kw/ft DIM kw/ft % FP DIM kw/ft 'TP800/111 -17.5' -9.5 '11.30 3.79' 10.62 5.26 50 3.8 192.3 14.9- ' 27.0 - TP800/11 40.0 +1.46 8.10 5.40 7.42 7.49 95 3.1 138.5 -17.8 12.7L ])1 TP800/18 41.4 +1.08
- B.00 5.40 7.32 7.49 95 3.1 138.5~
17.2 15.7 1 TP800/18 .41.3 +3.92 7.52 5.84 6.84 8.10 95 2.6 100.0 18.6' ~8.8 ' 7.29 7.30 6.04 6.62' 8.38 95 2.4 84.6 19.9 2.4 .TP800/18 40.0 + jg TP800/18 40.1 +0.68 -8.34 5.19 7.66 7.20 95 3.4 161.5 17.1 '16.2 1 1 TP800/18 40.5 -2.76 8.87 4.93 8.19 6.84 95 3.9 200.0 16.0 21.6 C. .i TP800/18 40.1 -6.82 8.92 5.16 8.24 7.~ 16 95 4.0 207.7-17.0 16.7 TF800.le 40.5 -9.23 8.28 5.46' 7.60 7.57 95 3.4 161.5-17.8 12.7 TP800/11 72.4 -0.33 4.35 9.14 3.67 12.68 100 2.6 100.0 17.5 14.2 TP800/18 76.3 -16.74 4.29 10.94 3.61 15.17 100 2.9 123.1 19.9 2.4 ?p sr TP800/18 76.6 -12.77 4.52 10.33 3.86 14.33 100 3.2 146.0 18.7 8.3 TP800/18 76.4 -6.57 4.3 9.99 3.62 13.86 100 2.9-123.1 18.1 11.3 TP800/18 75.5 -0.51 4.02 9.88 3.34 13.70 100 2.7 107.7 18.2 10.8 TP800/18 75.5 +2.71 4.02 9.88 3.34 13.70 100 2.7 107.7 18.2 10.8 TPS00/11 -92.6 +0.55 2.88 15.65* 2.20 15.65 105.5 2.09 60.8 17.83 12.6 3 .TP800/11 99.8 -5.66 3.55 10.71 2.87 14.85 105.5 2.85 119.2 15.70 23.0
- NOTE:
Derived f rom hand calculation taking into account a) cxial location of pn' pewer u ,,,,c,.-.,,,,4,,,. e., a,. i e r,. - a,. t <,, ~. c o a 4,, e,. r * <, -
- 2 i
) FIGURE 1-1 DNBR VERSUS REACTOR POWER Based on 2772 = 100% 28.0 f l i i I i i i + 3 26.0 Predicted; Curve',_ i j l l' l l i I l l ! 8 t I 1 I j i + j-i Ji i i ..J. .. J .2' 24.0 t_ ' s '.i ,. ;.) l j J.. f i -i i l -l. ,j . i l i ) i 2. J_.,_. i I i ii i -
- a u
j._ [ 1'. I I. j + i2...; d,._i, l.I l _.:.. 4.. .4
- _ jq j
22.0 . _w._ - 4._ .s i ,-4.. _. L 4. .c w.- _.E L
- 4. a ]..
j.. [.. f +a .. _ p.g... m .. l _.
- 4..W...
s ,_1.. .s. o 20.0 ..L_.....J.L. _ 4 . i l
- q; _J.
i t -.. _ 2..a ._m . _ t 2. - ' i i [-. j .~ y. i i 1~ ~ ~ I! i 18.0. ~~.' -..~ .....~'~~'l ~ _ _. ' r - "~ ~ l 5 l l I r3 .J 8 8 i i i i 1 i l 4 l Z d o .l. J.. i l I 2 .l. l t. i i 16.0 J. t .i r. I
- 3 4
i z 1 2 z 14.0 ._.t. .r a. .._I I.. 2 l .. 3 a. -J j;. i l I w 12.0 .'1 i. t i 'l? ~ ~I i - ADJUSTED i lj.'b p__ VALUES l t, ~' G 10.0 5 t i i I i i o i I', i l r i .12 i. i 8.0 i .l._.-. l
- l,.
- i. i ?..
- 2..
- ,'I j
i ,j d.o ;a.:.J., _., 6.0 [-. n._4... +_ ..i. s n, _. i ..g 4 4 3 a. .44 .,,t -,7 4.O. l,.g,... _ _ _ .2____ -_. _ _ _ _. -.t_ _ 1 2 .2 i . _ g,g n .., 3 9 , G g. l O l i 2.0 _. 1 0_ i 0 500 1000 1500 2000 2500 3000 l MEGAWATTS (THERMAL) l Adjusted Values are Worst Case Measured - 0.68 ) i s5-11 i
e ~ -MEASURED CORE.POWE ISTRIBUTION RESULTS AT 19. 5%. L POWER C'entrol Rod Group csiticna . cps'l-5 Iga ___% wd-Cp 7 h% wd ' Gp 6.~ 3E wd cp 8
- 7. 5 % wa
~ Core Power Level 19,5~% FP
- Boron Concentration 1165 PPM Core Burnup~
1.0 EFPD ' Axial Imbalance -9.6 % FP Xenon Conditions Equilibrium Conc. No Yes or No Reactivity Worth 0 % Ak/k Max' Quadrant-Tilt -0.2 % Time 0940 Date 10/15/74 1/8 Core Fuel P max / P. core P/F Fuel Assembly Local Assembly Location Tota l Radial H-08 2 95 1.28 H-09 2.51 1.19 H-10 2.18 0.99 H-11 2.25 1.23 H-12 2.42 1,14 H-13 2.37 1.34 H-14 2.79 1.21 j i H-15 2.04 0.96 K-09 2 25 1;11 ~ i K-10 1.88 1.03 I -K-11 1.93 1.10 K-12 1.95 1.16 K-13 2.18 1.21 K-14 ~ 2 ' 16 1.09 j. -15 1.93 0.93 L 2.07 1.20 i L-11 1.91 1.14 L 1.19 0.78 L-13 1.95 1.09 L-14 2.46-1.09 L-15 1.28 0.57 i M-11 1.70 0.93 M-12 -1.70-1.02 I M-13 I.63 -0.93 M 1.70 0.88 i N-12 .l.58 0.95-N 1.51 0.92 N-14 0.98 0.54 0-13 0.95 0.58 i 6 ' 2 ~.
< s' FIGURE 1-2, COMPARISON OF MEASU' RED AND CALCULATED RADI AL CORE POWER DISTRIBUTION RESULTS AT-19.5% FP CONDITIONS Measured
- Calculated Control Rod Group Positions Gps 1-4 100 100 t wd Gp 5
100 100
- . wd Gp 6
37.s 37.s is wd Gp -7 37.s 37.s % wd Gp 8 7.5 8.13
- W Core Power Level tq.s is.o
% FP Boron Concentration i16s iaso PPM Core Burnup i.o 0.0 EFPD Axial Imbalance -4.s -10.6 % FP 1 Max Quadrant Tilt -o.2 Time 0940 Date 10/15/74
- CALCULTED RESULTS ARE FOR NO XENON AND 15%FP.
8 9 10 11 12 13 14 15 H 1.41 1.34 1.05 1.28 1.13 1.30 1.32 0.98 1.28 1.19 0.99 1.23 1.14 1.34 1.21 0 96 K 1.16 1.28 1.08 1.20 1.06 1.12 0.89 l.11 1.03 1.10 1.16 1.21 1.09 0.93 L 1.07 1.09 0.81 1.05 1.06 0.68 1.20 1.14 0.78 1.09 1.09 0.57 0.80 0 96 0.85 0 90 3 0 93 1.02 0 93 0.88 0.83 0.88 0.68 N 0.95 0 92 0.54 0.64 0 0.58 P R X.XX Calculated Results X.XX Measured Results S5-13
f', FIGURE 1-3 9 COMPARISON OF MEASURED AND CALCULATED TOTAL CORE POWER DISTRIBUTION RESULTS:AT 19.5% FP CONDITIONS ' Measured Calculated Ccutrol Rod Group Positions Gps 1-4 100 100 t wd Gp' 5 100 100 t wd 2 Gp 6 37.s 37.5 % wd Gp 7 37.s 37.s % wd Gp' 8 7.s 8.33 i Wu Core Power Level 19.s 15.0 % FP Boron Concentration 1917 laso PPM Core Burnup i.n 0.0 EFPD Axial Imbalance -q An -4.713 % FP Max Quadrant Tilt _n 9n i Not Rennered Time 1006 Date 10/15/74 8 9 10 11 12 13 14 15 H 2.95 2.51 2.18 2.25 2.02 2 37 2.79 2.04 2.25 1.88 1.93 1.95 2.18 2.35 1.93 2.07 1.91 1.19 1.95 2.46 1.28 l g 1.70 1.70 1.63 1.70 ~ ~ ~ N 1.58 1.51 0.98 o 0.95 P R 6 X.XX Calculated Results Unavailable X.XX Measured Results l S5-14 l L .0,
n o FIGURE 1 4 *- COMPARISON OF flCASURED AND (ALCULATED IOTAL PEAKING FACTORS . GENERAL CONDITIONS: $TEADY STATE Ye= Ecu:L!cR!urt XENON (Calculated results are 19-S I FULL PowEn for no Xenon and no burnup) 4.0 g ,p, , ) 7},!h3
- 1 t 0;I
!g!! M.I i g floTES: t 3.0,;q.;, . ;7 ;p;; Is. ;. @ 6+4-I. ! UPPER RIGHT HAND CORliCR OF EACH GRAPH j gni tg'. i[jl
- 1. ASSEMBLY CCORDINATES ARE GIVEN IN THE li!{
,5! _lIl! 'I h.:J,(h...kv.t.$.+.Q,g_.jyj 2. Ct.LCULATED I,i h,.,; MEASURED 0 a c., .j 1.0 i,.- .4 . i -, +,. t,.. '.i,.1 h-.dt! i,TO 714.n[ 'l ;, f{ ' %+'."..s ~~ Ie Date: 10/15/74 0.0 4. 0..b _.4., 4.0 [ ft T,,.t4 ...i: m . g.y
- i. U..
I D.,,h,, It H-9 1
- :r,- 'i'i2C "i t3'" n 11-13 a r14 ul+
u. ~. ~~ ~ ' ~ ~ ~ .e, 3.0 '_._', ~ m 3.0 ;.,a ,f. g q* -'7E ~q**r. .3.,g .j 3 a tt f g1.4. f_., _2.t.+t .p. pit.,r. ,g, % C -T.~,. '4 tt 42...
- r. P+
.u,.% y u,1 4 .v 2.0 2.0 t9; 77g gg4 3 . gt.g 7,3; jto. t' n. r
- =t t
- IttE',
Mr4'cfM,13.g;_ 39 .y _ h;l i [tk N;g, p' :,_k 3 " * *.aan.ttr nt: MM MlMEitsEaf "P=^f E M 5 ~'" 0.0 0.0 4.0,,., g. ,.,_..r. _.4 7...It.*t K-12vl 4.0 . u.w:. tII. I,l. { 5 t _nM1-
- +'+
,3,, [,7"t ~' 4 tt.- K-11 *+t . F,*C' 14 I r
- t "t t
- 14 t
.s .. t g g,q ' tug,_,9377jgy,m,g_j,
- 7 yg7;;;g r
_,,;,, 7;=7,= p 3.0 3.0
- c -p "j. :~:rg
- NIL M
.t.4 - * ~ 77% ;'. tt..J.tn.dt;i.t J.I s,r c 2'O 2'O y
- r
-= 9q g ~~ .)y[ y .T+h 4:p; ++" tit: C/Wi"_
- r. _._..:li:
.g t 3 u t=
- .r;t
,7 ja y 1.0 it 1.0 x E 0.0"' h.. h"_....,w+ w_ M___~_t.r "**"~?: M'"~._ _ .y. ..j t t:t:+g 0.0 it r~' x-- u- "~ ~ ""-T U 4*0 ~ 4 'O ' r.i ; ' J [i' '.- '' Ew '. ..,+ . l-ll i : p_,+ ;t-++L-13 ;-.u-il*: t'tC i-Ctr Ci
- b.. r.I.-
~ . C. o. 3.0 3..J -. + _r 4-~ .y-. gq '7...y gh -c c i.+i.2.111,4.it' ;(,_tt; :.::: +--t-- .as tr gs..? L a J m u ., 1 -- 2.0 2.0 n;[._. x r-4, .y . rH - A_ _. +- -
- ^r:;-
+rr,r * } ic L + ytti M * ~ ~ .7 t h '.it tsit 1'0 1.0 -*n 7;-.' t1 5i: "%s:g5 ! > " : + 0.0 0.0 . u 11LM ' +"7 4r4 ftJ..I!rtit filr t-1hCM '.' n ,, y..,_ [7,,. 4.0 , ; n_3 g 4'O r ' ' t1 4jii -';jg ^n;rn Im n;y-1 gg -14 4 m, _g i -
- ik.
,n M
- tw atty--f$t ygr; j7,
j+15 3.0 3'O fr.g g7j t
- g
.t _+
- y;:nt
%;g;.,_
- Pr 2;;.;-T1Ttstij- --t--
- ,i
- :, tt
.k%e
- tt mi i ci
+m p3 M. 20 2.0 u.4II-Mr.: b_gqpg yu, .g .T:/kue ~1,Q, ,_,y =} ht:rt:-4tr
- Wt.e+-, Mt 2 7.
~ 1.0 1.0 y 4,,.._ ..N ,0 h 0.9 ' d l' o 4'0 [fff *tm :=1trrut 4*0 WDF T2N- #N5F rtt
- c;Tl.?nt7t'0-12 II
- I
..[ 't J:+i uti mpin1n. tt tf-nr2: 2 t 2.0 2*0
- tid ini.1;;l tt -
- .n ; 1;- g m*g $yt'
.g4.:" 4;.:WLv.. ipt.d'It nj7_ rni ~:t
- f.an.
J utt .n
- mt am 1
n t. 1.0 1*0 r 3.0 0.0 g- ':.} r . tf.~; : 1* p "_- 7:t;.;bs
- .!r.trt.tii:
i{ ;r :3 I '"~
- ~
O.0 20 40 60 80 100 120 140 0.0 20 40 60 80 100 120 143 AXtAL DISTANCE, INCHES 0.0 INCHES " BOTTOM OF CORE 55-15 l- -
_ TABLE l-4 g MEASURED CORE POWERL STRIBUTION RESULTS AT 40 % Fi POWER -Crntrol Rod Group Positions Cps.1-5~ 100 %'ud Gp 7 90 % wd Gp 6 90 % wd Cp 8 22 % vd Core Power Level: '40 % FP Boron Concentration 1222 PPM Core Burnup 11.9 EFFD Axial Imbalance' +1.54 % FP Xenon Conditions -Equillbrium Conc. YES Yes e No Reactivity Worth 2.021 % Ak/k Max Quadrant Tilt 0.01 - Time 1530 Date 12/23/74 1/6 Core Fuel P max / P core P/P Fuel Assembly Local Assembly Location " Total" " Radial" H-08 2.00 1.50 H-09 1.74 1.30 H-10 1.54 1.10 H-11 1.63 1.19 i H-12 1.34 1.00 i H-13 1.60 1.26 H-14 1.89 1.41 H-15 1.40 1.02 K-09 1.54 1.15 K-10 1.65 1.24 K-ll 1.44 1.06-K-12 1.51 1.10 K-13 1.39 1.16 K-14 1.56 1.09 K-15 1.31 0.94 L-10 1.56 1.12 L-11 1.56 1;10 L-12 1.30 0.84 L-13 1.48 1.10 L-14 1.64 1.16 L-15 0.76 0.56 M-11 1.39 1.00 M-12 1,38 1.06 M-13 1.17 0,86 M-14 1.22 0.89 N-12 1.21-0.89 -N-13 -1.10 0.80 N-14 0.68 0.49 13 0.69 0.50 ~ s 55-16 e
A FIGURE 1 - CO?iPARISON OF7MEASURl!D AND CALCULATED RADI AI, CORE POWER - DISTRIBUTION R!! SUI.TS.AT STEADY STATE, EQUILIBRIUM XI!NON 40__% ' FP CONDITIONS ~ Measured Calculated Coritrol ~ Rod Group: Positions -Gps'1-4 100 100 t di- ~ 'Gp 5_ 100-100 t ml ~ '. wd Gp 6-90 87.5 ~GP 7 90 i 87.5 % wd 'Gp 8 22 22 '* Wu Core. Power Level 40 40 t FP Boron-Concentration 1222 1268 P Pbl Core Burnup ~ -11.9 10.0 l!FPD Axial' Imbalance + I.54 + 0.8 % FP Max Quadrant' Tilt l Time isso Date 12/23/74 8 9 10-11 .12 13 14 15 1.36 l'.26 1.03 1.17 1.01 1.24 1.40 1.03 i 11 1.50 1.30 1.10 1.19 1.00 1.26 1.41 1.02 1.07 1.18 0.99 1.12 1.03 1.16 0.94 K~ 1.15 1.24 1.06 1.10 1.16 1.09 0.94 1.00 1.09 0.86 1.09 1.17 0.75 t 1.12 1.10 0.84 1.10 1.16; 0.56 0.90 1.01 0.86 0.94 ~ M 1.00 1.06 0.'86 0.89 0.82 0.87 0.60 i I .0.89 0.80 0.49 0.62 'O 0.50 ^ .p 'R X.XX Calculated Results X.XX . Measured Results ] O s5-17 + s
~ n. FIGURE-1-6 / -C0$fPARISONOFMEASUREDANDCALCULATED TOTAL CORE POWER DISTRIBUTION.RESULTS AT STEADY STATE, EQUILIBRIUM XENON 40% FP CONDITIONS ' Calculated Measured
- Control Rod Group Positions Gps 1-4 100 100 t wd Gp 5
100 100 S wd Gp 6 90 87.5
- wd Gp 7
90 87.5 % wd e hu Gp 8 22 22 Core Power Level 40 40 % FP Boron Concentration 1222 1268 PPM Core Burnup 11.9 10.0 EFPD Axial Imbalance + 1.54 + 0.8 % FP Max Quadrant Tilt o.01 Time 1530 Date 12/23/74 8 9 10 11 12 13 14 15 1.87 1.72 1.43 1.63 1.43 1.72 1.94 1.41 H 2.00 1.74 1.54 1.63 1.34 1.60 1.89, 1.40 1.46 1.63 1.41 1.56 1.45 1.60 1.29 E 1.54 1.65 1.44 1.51 1.39 1.56 1.31 1.40 1.60 1.36 1.57 1.64 1.'03 L 1.56 1.56 1.30 1.48 1.64 0.76 1.34 1.48 1.22 1.31 M 1.39 1.38 1.17 1.22 1.15 1.19 0.83 ~ N 1.21 1.10 0.68 l -( 0.85 0 0.69 P. R X.XX Calculated Results X.XX Measured'Results l 55-16
e 'm\\ FIGURE l-7 COMPARISON OF flEASURED AND CALCULATED TOTAL PEAKING FACTORS GENERAL CCNDITIONS: STEADY STATE Yes E0ulL!BRIUM XENON (Calculated reSults are 4 0. 0 % FutL POWER for no Xenon and no burnup) 4.0 .... b; h h E3 MOTES: ,;; ;; t. , *4 ; g.j+ b
- 1. ASSEP3LY COORDINATES ARE GIVEN IN THE 3.0 i,' ~'p'! i;s)t b.d NI!...M UPPER RIGHT HAND CORNER OF EACH GRAPH I'
2.0 RIP %f@Le.1 ah"I ;;#
- 2. CALCULATED I -f,;9[4./!t
.g hifts. Wf'*:1^ MEASURED o i Date-12/2 W 't 0.0 I t hvr.Inil-13 fr [lNd EU %- ma titt i 4 .i.i. f9.: E.n.ik1 [.i,ft h.m a
- n t
- t h h_.
3.0 p 4 % 3.0 ,. a. W.
- .,N,ig EE dki$i itNdtA M-I'[EN
,m}tIh 3
- t N
t r 2.0 % #,I,h = m u.3 2.0 gy m y m ,m dit!M)I 4L;i m4- -..N-71 TII':- iLtI pd n dt );ti 'I$3T"N. a+.+a+- MEr NN h!1NNE M $5i!!IY#N$$ 0.0 0.0 4.0 g_,5
- 4. 0
..,. b., . q,. b, d:j K-11y eh .y1
- g-12h.
{.h ! Iii $ l!1f h,h..$$ .g. K 3.0 .0 gg.f C;g7 ,T$# 77 m 3 77
- tt
- t7 L;t N
gg n., }) 1{.-'nt. M It:te~J--_+.~ at 100;
- d
- )11
- tt. ;.*
2.0
- = ~ d' Qe T 1 t t' 1;., ih g; 2.0 fryWL '* K TA. i
.:D
- ~
^ ti crn rn: d+ rd: 1ttt:=: c; + 'A'** '"3~~aYr n 1r nt+ +[.p: lv;:t C e 1' 2 '* ;, g.fm. q rws s='it::: l
- ==t + D t
& >n ctr yu &= wi:u:W~ er===I
- It
:=
u. .ca :nt un , 0.0 0.0 2: h 4.3 i .m. 40 ' ' %,., _.Ml-llh I '- I!' ! W'iN;~:, r; ;~iiti diL-13E w a.... w h.
- .p'l
't"W' Y ^ ' 3.0 ~ ~' "itt.t;r' tg 4 ]t+ y
- n.44.,i.~gm_ y
- ,_w.
.+g"3 8 3 g '3 'g:. I il l. Ctgg +
- rr 4.,.,__
4 ,,41 11I$- .+ .w 1 ~.. 2.0 it +dt t' H rm.:tn t{f it3 ((g
- =;;
i __=# 7t7 jg.. .0 10 10 3.0 [f[$N 55b5N NIEbN k$ !NNbN 0.0
- [..
- t gVitti.gg: m,J g'yg g
.0 4 "'O ! 1i T tti
- $t gI N N'
- '+ f N-8M A nr ,m +2 m --A 3.0 a 4, 2.0 +-- emi g' %lll^ EEt4H+ ..a. i;Of-M114 j.11 J._;._4.u E%; N:,ili ^ ' 5: 20 w 20 T h bA h.b I'0 E*0.Li" (*~*-'*4 :22 n 0,0 "* $ggp M ~& g y g";. ~+ W. 5'- D D
- L
~ 0.9 + + P.U UP IFf.EUM jd...M0-12 %> 4*0 4.0 ctt' l li ^-.,,.dL ^ $...IUS}6rdi.t. [ Pi+T Kli-10 i i i u. i. t J.tT t. ro ^:? 3.0
- !n' t t14 11 ! tty'.:qd.;;d itil 4
i 4 ii 3,0 tP iit+ L}1d., ; ~ lyy b, Q iji. L;ir.$:.1 ttit:} 'I ?!L.I.1: 0.: .T 1: j ti 1:t: + tit itr; un 20 377j gyfj gj 3r; tt:: 12tt *+1i frhri{K::id: uL 7;;7 t ++ L:;d:* d'li I
- i. It it; cit h:
Mnp IN {: tt Mb ttIt. t.-, t m. f
- tt n
- *
- 4 tt 4t ir
- O;j 1.0 g
n giTh ~ J.0 0.0 0.0 20 40 60 80 100 120 140 0.0 20 40 60 80 100 -120 140 AXIAL DISTANCE, INCHES 0.0 INCHES = E0TT0n or CORE 55-19
-TABLE.1 ~ ~ w. MEASURED CORE POWE[ ISTRIBUTION RESULTS AT 75 % 1.mL POWER Control Rod Group Positions
- Gps-1-5 E % wd-Cp 7 92 % wd
.Cp,6-92% wd Gp 8 18 % wd Core Power.Le. vel 72.36%~FP Boron Concentration 1133 PPM -Core Burnup M EFPD Axial Imbalance +0.22 % FP Xenon Conditions Equilibrium Conc. YES Yes or No Reactivity Worth - 2. 51 % ak/k Max Quadrant Tilt +0.08 % Time 1030 Date 1/13/75-1/8 Core Fuel P' max / P core P/P Fuel Assembly Local-Assembly Location " Total" " Radial" H-08 1.89 'l.50 H-09 1.71 1.33 H-10 1.48 1.12 ~ H-11 1.59 1.?? F-12 1.28 1.00 H-13 1.57 1.25 H-14 1.76 1.37 F-15 1.25 0.97 K 1.s1 1.18 K-10 1.61 1.25 K-ll 1.41 1.OR K-12 1.48 1.12 K-13 1.36 1.12 K 1.45 1.06 K-15 1.18 0.91 L 1.49 1.13 L-11 1.52 -lill L-12 1.28 0.87 L-13 1.40-1.11 L-14' 1.52 1.15 L-15 0.71 0.54 M-ll 1.36 1.01 M-12 1.35 1.07 M-13 1.13 0.87 -M-14 1.16 0.89 N-12 1.18 0.89 N-13 1.07 0.81 N-14 0.66 0.49 0 0.66 0.51 j ' C-9 .s5-20
n- -i T-FIGURE 1-8 L COMPAl:ISON OF Mt:ASilRl!D AND' ChLCllLATED RADI AL CORE PON1?R DISTRll;UTION-RES!!LTS ' AT.STIIADY STATli, EQUIL1 BRIllM XENON 1% FP. CONDITIONS Measured Calculated LContro] ' Rod Group Positions -Gp-5 ~__'100 [~pt{ Gps.1-4 100 t wd .100 tg t__ Gp 92 87.5 I
- Wd Gp-7-
92 L 8L3 LE~
- C
~ Gp 8 18 _l 22.5
- Core Power Level 72J6_
75 -t_ F P Boron Concentratio: 11 n, 11y0 PPrl Core Burnup 94.16 __l 3 8,25 !?FPil 0.10 __ % FP Axial Imbalance + o.22 l Max Quadrant-Tilt + o.os l t 0 .Tinc~ 1030 Date 1/13/75 8 9 10 11 12 13 14 15 1.37 1.28 1.05 1.19 1.02 1.22 1.35- 0.99 1.50 1.33 1.12 1.22 1.00 1.25 1.37 0.97 1.09 1.21 1.01 1.13 1.03 1.13 0.91 k, 1.18 1.25 1.08 1.12 1.12 1.06 0.91 1.02 1.11 0.88 1.08 1.14 0.73 L 1.13 1.11 0.87 1.11 1.15 0.54 0.91 1.02 0.86 0.93 g-1.01 1.07 0.87 0.89 0.83 0.87 0.60 0.89 0.81 0,49 0.63 0 0.51 P R I X.XX Calculated Results X.XX Measured Results (4 l SS-21
7 q_ yy FIGURE l-9 -COMPARISON OF MEASURED AND CALCULATED-TOTAL.- CORE POWER DISTRIBUTION RESULTS AT STEADY. STATE, EQUILIBRIUM XENON 75 % FP. CONDITIONS Measured Calculated Control Rod Group Positions Gps 1-4' 100 100 t wd Gp 5 ion 100 $ wd Gp 6 92 g7.s 5 wd Gp 7. 99 g7_s
- wd
- wa Gp 8
in 99.s Core Power Level 72.36 7s % FP Boron Concentration 1131 1170 PPM Core'Burnup 94.16 1R.7s EFPD Axial Imbalance + 0.92 - c.10 % FP Max Quadrant Tilt + o.os Time 1030 Date 1/13/75 j 8 9 10 11 12 13-14 15 1 1.86 1.72 1.44 1.62 1.42 1.66 1.82 1.33 H 1.89 1.71 1.48 1.59 1.28 1.57 1.76 1.25 1.47 1.63 1.40 1.61 1.41 1.52 1.22 K 1.51 1.61 1.41 1.48 1.36 1.45 1.18 1.40 1.59 1.35 1.53 1.56 0'.99 b 1.49 1.52 1.28 1.40 1.52 0.71 1.33 1.46 1.19 1.26 g 1.36 1.35 1.13 1.16 1.14 1.17 0.81 N 1.18 1.07 0.66 O 0.66 P. R X.XX Calculated Results X.XX Measured Results i S5-22 w
n ). FIGUR2 1-10 COMPARISON OF I'JEASURED AND CALCULATED TOTAL PEAKING PACTORS GENERAL CONDITIONS STEADY STATE Yes Ecu!LitRIUM XENON (Calculated reSults are M.4 % FULL POWER for no Xenon and no burnup) 4'0 , H f'eb d t t 'U'",, N
- l1 !!j!
M'Lt i;! :: ! if 1 El NOTES: 1111 l': 3.0 .g g, .;; g- g; Mi i:1 111t UPPER RIGHT HAND CORNER OF EACH GRAPH ,i ittt.il!!
- 1. ASSEMBLY COORDINATES ARE GIVEN IN THE
,4 .ti. !t n. 2'O .U ..O '
- 1'i
- 2. CALCULATED Ig h Ib-LIM q'. 4Ed MEASURED 0
.d IIN *b} J0 4,; q go y.; y +. 4.. Yd 's !y!IIli Ich L:$ Im [TFri1t! nate: 1/13/75 0.0 E*'N.,hnh'4Il bM,+E NN. N. +. -h,}. $3 H-13Ii '~ h't pit t[tl (,..h.,ISf ~ m ,m r. 3 If
- ' @ i!!MWMM4M Mi%%%MM& M 2-Is'e# g~p'"as~RH4'DHE~tt M"~~**WW'W * ' ~~a
~ "^^ ~' 0.0 0.0 4.0 4.0,HO.,,,N'!yE[.,h,m_ ~' -~+ }14 ')-N.4j-3{t'
- $ "t I'd'K-12 4'i -
-t Oll.i#-"g ,_7 t.u! i r-F- +T. t 1 . v.T. t tt.K-lik c.'M";'i L 4ty t 4 ,,,3 E 3.0 3'U t'-'1 L;3 ++ n 1:$! 7J; 4j4 -tit: ty+ ::;
- i N.
,. t itit It"N' 2 7d"btfit r;+1 EN-IJtT11t* J. C 'dT .;l! L:k, p[1' ~12" "rt _:t"*2 '.n 2.0 -.,a_ e 2 @Mh.a h .0
- a...
k M* E b M ._i_,, ...i._.ps 4
- Y l,i g......
, _'uh N 1.0 ..a a - g. . ~....;. 1 y 1.0 ..x... ^ 0.0 O.0 R 4 'h .0 3.0 l a 3.3 +i-H~ t 12 Mi!!> r+.+4-W ~ i *~ tg..+.54 47tg:.4 15 n't trr ta ttrt. rtM H!t R
- tit tid;.[p! tT_t t-t titt h4 3;
- $
s i _i - 1 2.0 2.0
- . 4 g9 h,.4g
,u " %. y;J-. M,;~qp;r+ _it arl tt 7,... i tr A ^#g gg m .;t
- j
" " ~ ^ 10 10 .kh h h hhh N $Nb hh 0.0 0.0 2'IIh....hc.4.0.- . _r.m,.... i 4.0 , y . - g 5,# h dtiYEt M~l4 h N b"_dSitih N.N-8 Q 3.0 3.0 ug:.gg dgh._ _.d .ae
- --- -+;t
- .y.g_g t g g,
- tu;g g
ij.54 j_ttr$ ku tt;@ h .Ttr un 2.0 [~ 2.0 7_,p_g.37 4 3 , +,..,g, J td.L1_tjgtt'-;. _7 77..m,...m4 ty rr, -- g..$r+.+. 1+aa ,+4 %a.+aty T.'+'r.' 1 1. 1 w. e + w v. em 1.0 1.0 );;;_; ,,r,g f 7Q 7 4 UE2 C E D W N ,0 " M, 7 M D'+1'-# i" 0.9 o 4.0 ! 1 1 :)t ' .1+, "e..... d... h, 4.0 i7 -g- ...t e .p7 q.. 3,3 30 - g'.tig ~"tt 2 p*{o jt't0-12
- d R-10 it 4
tp+4T+t *i--- Ti t l >>P
- f' N!INNMN Tif.i AdIE[Nh"N N W' [N NE N O
+E 2'0 M 2.0 9 ""~ di 3"i MjIii M"y"f, ~QMT' 12 4 {Ei$$l +;$' hi! $*$? h#. I"! - ~ ' ~
- d
+ 10 3.0 "h~ ' ' " h" k"' ** " ~i t 0.0 'JO[~"kh' h" ' "IT 9 Y"" ~ 'N. 0.0 20 40 60 80 100 120 140 0.0 20 40 60- 80 100 120 140 Ax AL DISTANCE, INCHES 0.0 INCHES = BOTTOM OF CORE, SS-23 4
~ m MEASURED CORE POWEI,ISTRIBUTION RESULTS AT 92.6 % 1 '.L POWER' Ccntrol' Rod Group Positions ( . Gps.1-5 100 % wd Cp 7 ' 89 % wd Cp 6. 89 % wd Gp 8 1% wd Core Power Level 92.6 % FP Boron Concentration 1095 PPM Core Burnup A EFPD Axial-Imbalance' +0.55% FP Xenon Conditions Equilibrium Conc. YES Yes or No Reactivity Worth 2.60 % Ak/k -Hax Quadrant Tilt -0.10 % Time 1048. Date-1/29/75 1/8 Core Fuel P max / P core P/P Fuel Assembly Local-Assembly Location- " Total" " Radial" H-08 1.90 1.49 H-09 1.74 1.35 H-10 1.49 1.12 H-11 -1.61 1.24 H-12 1.27 1.01 H-13 1.61 1.25 H-14 1.64 1.29 H-15 1.19 0.93 j K-09 1.53 1.20 'J K-10 1.63 1.26 K-11 1.41 1.10 K-12 1.47 1.15 K-13 1.30 1.10 K-14 1.40 1.03 K-15 1.13 0.87 L-10 1.49 1.14 L-ll 1.51 1J12 ^ L-12 1.24 0.89 t 'L-13 1.35 1.11 { L-14 1.49 1.12 -l L-15 -0.69 0.53 i M-ll 1.36 1.02 M-12 1.32 1.08 j M-13 1.11 0.87 1 M-14 1.14 0.88 N-12 1.16 0.90 N-13 1.07 0.82 N-14 0.65 0.50 0-13 0.66 0.52 9 j i 1 l SS-24 l
^; FIGURE 1-11 CONPARISON OF MEASURED AND CALCULATED RADIAL CORE POWER DISTRIBUTION.RESULTS /Cr STEADY STATE, EQUILIBRIUM XENON' 92.6%~FP CONDITIONS Measured Calculated Control-Rod Group Positions Gps 1-4 100 100 % wd ~Gp 5 100 100 1 wd i Gp 6 89 87.5 4 wd Gp 7 89 87.5 % wd -Gp 8 16 18.3 , wu Core Power Level 92.6 92.6~ t FP Boron Concentration ~~1095 1135 PPM Core Burnup' 32 23.2 EFPD Axial Imbalance +0.55 +0.40 % FP Max Quadrant Tilt -0.10 Time 1048 Date 1/29/75 8 9 10 11 12 13 14 15 1.38 1.29 1.06 1.19 1.02 1.22 1.33 0.98 .H 1,49 1.35 1.12 1.24 1.01 1.25 1.29 0.93 1.10 1.22 1.02 1.14 1.02 1.12 0.90 E 1.20 1.26 1.10 1.15 1.10 1.03 0.87 1.03 1.12 0.88 1.08 1.13 0.72 L 1.14 1.12 0.89 1.11 1.12 0.53 O.92 1.02 0.86 0.92 M 1.02 1.08 0.87 0.88 0.84 0.87 0.60 N 0.90 0.32 0.50 0.63 0 0.52 P R X.XX Calculated Results X.XX Measured Results 55-25 ~
e ,.3 FIGURE 1-12 COMPARISON.-OF MEASURED AND CALCULATED TOTAL CORE POWER DISTRIBUTION RESULTS AT' STEADY STATE, EQUILIBRIUM XENON 92.6 % FP CONDITIONS Measured ' Calculated Control Rod' Group Positions . Gps 1-4 100 100 % wd Gp. 5 -100 100~ $ wd Gp .6 89 87.5 $ ud 89 87.5 % Wd Gp 7 Gp 8 16 18.3 '6 WG Core Power Level 92.6 92.6 % FP Boron Concentration 1095 1135 PPM Core Burnup 32-23.2 EFPD Axial. Imbalance + 0.55 + 0.40 % FP Max Quadrant Tilt - 0.10 Time 1048 Date 1/?4/75 8 9 10 11 12 13 14 15 1.88 1.75 1.47 1.66 1.45 1.68 1.82 1.32 f 1.90 1.74 1.49 1.61 1.27 1.61 1.64 1.19 1.50 1.67 1.44 1.64 1.43 1.53 1.22 1.53 1.63 1.41 1.47 1.30 1.40 1.13 s 1.44 1.64 1.39 1.55 1.57 0'99 L 1.49 1.51 1.24 1.35 1.49 0.69 1.38 1.50 1.22 1.27 1.36 1.32 1.11 1.14 1.17 1.16 0.82 N 1.1.6 1.07 0.65 0.85 0 0.66 P. R X.XX Calculated Results X.XX Measured Results s -26 g
r - 3 r FIGURE 1-13 ConrAnison or t'.casunto ANo CALCutATtt, ToTat PEAKING FACTORS GENcaat ConorTrons: STcAov STATE Yes Ecutusprun Xtnen (Calculated results are 4'0 92.6 % Futt Powta for no Xenon and no burnup) i @; '-! it.l d[{ .g3' '([U, p t u 'it it.! 'N' t g r, si Noits: 3.0,.jg p, , ; ;. ;3 jg[ IIt: it!; ll;L
- 1. Asstmaty Coonornarcs arc crYEN IN THE
~ p.p gg;g'y'i di (*!: .;ll.i.Jf : TTR ! 'l.! UPI'ER RIGHT HAND CORNER oF EACH CRAPH li'l 2.0 iaj 8 7;E
- 2. CAtcutATcs 7fg,-DkT L!p*
ith iib,! f;.,f tit t ftp :m MEASURED o r-1.0 o..g ..y .. n e e L
- f. ' f Date:
1/29/75 0.0 ... o q 4. 0 4.0 .p, j.... _.dM M. t; SIE II Ibk fiIl ildN,N b,i i t H.,9.LE . + '54 3.0 3.0 - h k>~h..g $ %$12.ii$r5N Mdgh. iId p ,, p - -ih t .nt ^ i$iESDE E5MMED El liji in@@.. 1 1.0 w -, +. - + 1.0 Trf A r. .. r.w... w N,>..--4 .,.sr+ Et.h,,.+.g. tet:: E.
- -,- 2= :u:
5 ~
- 0.0.. r.n. tp
...2 n. . u. 0.0 l 91 7 M_w.I. M,.K-11$,. N.4ENSUN% N;t12 Et ll.I [J)t-fi L I;d t +., _;7. ;;7; r i, 3 3.0 3# 77 ya _ r:t 24t1 ginT4 rt 17 ; ;;;7 7 =13 :ltz.r.e.2 'ii "ii+ ?! 1P {., t1}$t u71p ' fl C r2 4
- g r21
%IM ~2 d,'-g - ! T $1 .I .0 g; 2.0 jy.+;_77; g
- d I nIur;;M7...
7 77fg.
- a7
. m gg 1r g 7
- rrb :1,.:n g
af.
- y_' _ =7,m7;,g r@
IA 1.0 M h P " M ri n G: F"'T " n 5;;-. - n. 4 W 0.0 r.rnWb M' O0 $4.3 4.0.._ _ W,.. _. S.! 7[!!Jg ,ith 7, 't N.'1jd:tr}L-11::. nn r'L-13$ 2 2:: 3.0 s' 3.3
- r r-
g;T r.t
- .;ng; P [ t p+
. t ! d..i. n. M.2ir;'tti
- t,t M
ul R g ;} 22 .+ g*g n
- 2.:11 :
t~tt t t'* WQ
- Ur :;c rn; a++ 4,-
- =
g k 1.0 l W ~* 1.0 '3-4.ttrg._ p.$..q. 4> q p ,I.N y
- tv-i2.2I u*# ~lt 1^
'.2._.-g7..u. 0.0 'u -._ _ - _ u. a,; dU._-'I. 't [1 11 0.0 a M 4.0 17'g_'g ~~1 zii tri
- 4. ;.,$tg 4p{ p;y4Qgg gj,.
ptiag npy:55g p,;. +a. g+.f . _ua .u. .s.o
- .4.u. w 4,..
.t 3.0 .,.,2 .ttg., e# .4_+ 3.0 q4gg ; i.J 1,. t::.titt2 it
- t?ittiJ. 14.,.i l+.?
3 _q ., ft ;.aA nLI p_..li.t..a. f?:: 2.0 24 T. v itit21 litt:$+, F; 4 W g e g 477 .m R!NE=;. TittMprNIfi aid M 277j.Fr an 't id :r g2 b rntq:r%= gg Id rm 1 pttrtql1I3p= g m t t m r.n 7L-tt I UU ~ OM 0.0 ~ T r 012 :: 4'0
- b:
4'0 e 2 t nrn:.1 :1. -t 3 d u : Mirft i iu$aqth.M;;I t t-Q :I
- P+.- 3" l[t
't 'I 2r }.' 14 ! ft1 LN ft I U 5d 54 timtp 4-4tgi tin m: 1:enum:
- ca.cte im g. -pr.
- 2.0 ,.. '. '.. *. ~ 2.0 _g. ,1 ay t"ty r"t - p. .+ c P:1 1 1..t; ~qtu..in L.g..!. d. t 4_-.
- .. t. i.
p.rr.
- t. :_:::.u;r. I..n j
-. t' ~ 1, 1,, 3.0 *hh" ~13h*Ik h"k*~ 0.0 "hM"h" "5 Yr%'
- * * "(
II ~
- ~
~ ~ 0.0 20 40 60 80 100 120 140 0.0 20 40 60 80 100 120 143 AKIAL DISTANCE, INCHES 0.0 InCncs = BoTTon or CORE SS-27.
3 .n TABLE.1-7 ' MEASURED CORE POWER DISTRIBUTION RESULTS AT'l00% FULL POWER Control Rod Group Positions I . 100two Gp 7 92twd Gpstl. Gp 6' ,92twd Gp 8 -8%wd Core Power Level 99.8tFP Boron Concentration '874 PPM ' Core Burnup 144.6EFPD-Axial Imbalance .5.66%FP Xenon Conditions Equilibrium Conc. -Yes (Yes or No) Reactivity Worth 2.45-%Ak/k ' Max - Quad ran t: Tilt +3.65% Time 1058' Date 3/9/76 I/8 Core ~ Fuel P max /P core P/F Fuel ' Assembly Local -Assembly Location. Total Radial H-08~ 1.67 1.191 -H-09 1.55' l.224 H-10. 1.33 1.089 H-ll 1.56 1.296 ~ H-12 1.34 1.069-H-13 1.42 1.171 H.14 1.63 1.286. H-15 1.04 0.845 K-09 1.42 1.123 K-10 l.48 1.234 K-Il 'l.36 1.120 K-12 1.51 1.225 K-13 1.24 1.011 ' K-14'. 1.32 -1.031 i K-15. 0.97 0.786 L-10 .l.33 1.098 L-11 1.43 1.157 -L-12 1.29 0.862-L-13 - l '. 3 8 1.135 .L-14 ~1.37 1.096 -L-15 0.71 0.556 -H-il I.'26 1.020-M 1.40 1.148 -H-13 '1.07 0.880 M-14 1.03 .0.856 JN-12 1.12-0 901 =N-13L 1.14 0 930 --N-14 0.60 0.487 0-13: 0.66 0.523 ~ .55-28!
r ~' ' FIGURE ~1-14' iCOMPkRISONOFMEASURED'ANDCALCULATEDRADIALCOREPOWER
- DISTRIBUTION RESULTS AT STEADY _ STATE, EQUILIBRIUM XENON
'l00% FP CONDITIONS Measured ~ . Control _ Rod Group Positions Gps.1-4 100 % wd GP 5 100 % wd Gp 6f 92 % wd Gp_'7 92 % wd Gp 8: 8 % wd ' Core Power Level 99.8 % FP Boron Concentration-874 PPM Core _Burnup 144.6 EFPD Axial Imbalance -5.66 % FP Max quadrant Tilt +3.65 Time
- 105_8, Date 3/9/76 r
8 9 10 Il 12 13 14 15-H l'.-191 1.224 1.089 1.296 1.069 1.171 1.286 0.845 K 1.123 1.234-1.120 1.225 1.011 1.031 0.786 f l.098 1.157 0.862 1.135 1.096 0.556 M 1.020 ~l.148 0.880' O.856 1. -N 0.901 0 930 0.487 I -0 0.523 P 7 ,R
- XJOC Calculated:Results (Not'Available)-
X.XX
- Measured ~Results li
__SS-29,
- ({}
T. FIGURE 1-15 ECOMPARISON OF' MEASURED AND CALCULATED TOTAL CORE POWER DISTRIBUTION RESULTS? AT STEADY STATE, EQUILIBRIUM XENON-100% FP~ CONDITIONS i 4 Measured Contro1~ Rod Group Positions Gps'1-4 100 % wd GP 5 100 % wd I Gp 6 92 % wd Gp 7 92 % wd Gp 8 8 % wd Core Power Level 99.8 % FP Boron Concentration 874 PPM Core Burnup 144.6 EFPD Axial imbalance -5.66 % FP Max quadrant Tilt +3.65 Time 1058 Date 3/9/76 8-9 _to 11 12 13 14 15 H 1.67 1.55 1.33 1.56 1.34 1.42 1.63 1.04 w 1.42 1.48 1.36 1.51 1.24 1.32 0.97 K j L 1.33 i.43 i.29 i.38 i.37 0.7i .M 1.26 1.40 1.07 1.03 e i N. 1.12-1.14 0.60 1 0 0.66 .P R X.XX Calculated - Results.-(Not; Available) I[ X.XX- . Me'asu red ' Resul ts' 55-30
(]. G FIGURE l-16 HEASURED TOTAL PEAKING FACTORS GENERAL CONDIT!oNS: STEADY STATE .Yes Ecuttlantun XENON 100 % FULL power .0
- i. U M t-I,t { l g1 @
l: ' g7 , [,. . ht
- oTES:
!l ,., i t t, i +, 3.0
- 3 n
- g kqt igg. titt ijj1 t
1, 333cs,ty coe,o,,37g3 gag c,yg,,,3,g .:t.*; i!!r '- 1 I r41 I t'., 4. UPPER RIGHT HAND CORNER OF EACH CRAPH 2.0 is gg 2, bg. 14R P.EASURED e O I; g:,: g g ;p fl g. , N_i ],q t f 1.0 ^tt 141t MyCUtt W Date: 3/9/76 ,1 3 Hh i.tgf t Ith L 0.0 hi hl hh l!h:kh k bhbN! kb b"lh ta T$ ft MtM M iEM RWMieME MM 2.0 2.0 g&. gig 4goy); 49tg4+ ggt ,gggggg~ g#g'4 ti m. 4+ r $2m 10 " --
- 0 $ YY Y Y 0.0 0.0 4.0 4.0 e....
1 77 n,
- 3. g.K-12h.
y. jf} YIt .I I ME-13 t; y;1 J t 3.0 3.0 p,_t m;;; 177, ;;;; 77;; =7 _7. Itmtit. ;.n1 :. q- ++77 7 ..p p
- i. " g,5.fidu tid _LT#
titI id u.a.n: t$tT Itirml#4 'iu 1; r...c 2.0 m .0
- t j;. ;p; j
- 7 19 3-77_
itFT [t rp!r 1pi " !? ;;# tru a It!.n., 17tf eth :pd.% Itd C4,.u, ut; + t1 fttt 77t t!r a 10 =t il: 1'O
- ~ w nrr t.r++
t:1: m a warm- ;v
==.,n q7 p tygg ait::tfi t: r H: tat:1rn nn-turm:tra
- t 8t:
rr !in :Pi .e = 0.0 0.0 U 4 b i'h h f@ 'n f"hhh-Ik .0 h $[" hh-133 1 u s 33 e d,- lb i*t#m n:ou d.u a. m= t y w.in; 3Ji;.+ 1 1.Eu.5 2.di gTxn
- t
[Q 2*0 titr+^ E S
- 1ti 2.0
. "-+ Min %} gpLt1 14;.t ng-g 3 i- ,h'M 4t: E3 *,L. "F
- . i -tm~rnt
{c': fi t 1Tn .1 h~lkth.hk$g*Ik^h'O.0+^'*b >.;;I;!.[' h M""h'. E ^ ' ~ ~ 0.0
- h....
. h .0 h 4 4.0,,,hbE:t; h E]
- - M-14 y]N-8y 3.0 u..
3.0 g g 3,. 3 ,1 h_g.g.n jy g .g i t.Ittt k 441 ntN.d:,il4 11 WASMil ~.E.:: e: : g# 2.0 2.0 .n g
- r.. 4w gr%.,
Firri-EE ,TJM :titt4td .<w,lli. _ g .ry 94_N +.#. f3fk4 ea+ tuti? tit t 4 4 ~+ u u se += g im 4 0.') M y y' pre:m n gp'~e '+"~ l' W 0.0 !![! M $} lliiTih$h1jk !!E MMi@MM IEN1hi tr = hd :!!V w mr ny p,i_' 1ft:.31 = n
- r. ewt., tap s... 4 rf= tit ttt a.n ~Tik hit is 14 4:t
!ilj- !!!ijEMN [@MN $5N @lMM IIO$l 1-u pm t$1.= t wm m-a 3.0 .;2!.m;t5tptt.. ntiy::ntsfi,.; 0.0 n a t,ltt ':cM = ~ th; w L2
- rf ha 0.0 -20 240 60- 80 100 120 140 0.0.20 40 60 80 100.120 140 Ax!AL DISTANCE, INCHES 0.0 INCHES = BoTTon or C0RE S5-31
(i^ '~\\ ~ l f 2.0' ' REACTIVITY COEFFICIENTS AT~ POWER 2.1 PURPOSE. 'The purpose of this test'was'to measure reactivity coefficients during power ~ cperation at 40, 75, 92.6 and 100 percent full pcwcr. The following coef ficients were either measured lor_ calculated from the data obtained: (a) Effective power coefficient - defined as that amount of reactivity feedback _resulting from a change in the reactor power of one percent at an average power le. vel and a constant average moderator temperature. (b) Moderator coefficient of reactivity - defined as that amount of reactivity feedback resulting _f rom changing the average reactor coolant moderator temperature one degree at constant power level. (c) Temperature coef ficient of reactivity - defin_d as the f ractional change in the reactivity of the core per unit fractional change in fuel and moderator temperature. 2.2 TEST METHOD Measurements of'the effective power and temperature coefficients were made at each of the major test plateaus (40, 75, 92.6 and.100 percent full power) during the power escalation test program. Rod worth measurements at power were executed prior to reactivity coefficient measurements to. determine rod worth data for the existing power level, burnup cnd power distribution of the core at the time of the measurement. For.the determination of the' effective power coefficient of reactivity, reactor power was increased or decreased approximately five percent of full power while ~ maintaining reactor coolant system average temperature constant. The effective power coefficient was then calculated by computing the change in reactivity due to rod movement', xenon and any changes in moderator temperature. The_ temperature coefficient of reactivity was determined by increasing or decreasing the average primary ~ coolant temperature by five degrees while maintaining core thermal power constant. A value.for the temperature coefficient wts calculated by computing the change in reactivi'ty due to rod movement, xenon and any noted change In' core power level. 'Once'a value for the temperature coefficient was~ determined a value for the moderator coefficient was' calculated by subtracting out the-reactivity contribution due to'the change in fuel temperature. M:asured values for 'the ef fective power coefficient and temperature coef ficient of reactivity were then compared to technical specification and test acceptance criteria and ~cxtrapolated to the next power Ltesting plateau to veri fy acceptable core performance prior to actual escalation. S5-32
- 3 s;
-23 TEST RESULTS 'The results of'the measurements-for determination of the moderator and of fective power coef ficients as determined during the power escalation test program.are tabulated in Table 2-1. i Examination of the' measured temperature and moderator coef ficients plotted in Figures 2-1 and 2-2 indicates that the technical specificati'n limit of o a_non-positive value for the moderator coefficient at or above 95 percent full' power will not be exceeded unless the soluble boron concentration is cpproximately 1185 ppmB. At 92.6 percent full power, equilibrium xenon, all rods out and a core burnup of 32 EFPD the measured boron concentration was-1095 ppmB. At 100 percent full power, equilibrium xenon, nominal rod ,ositions and a' core burnup of 162 EFPD, the measured boron concentration was 836 ppmB. These.results confirm that during power operation at or cbove 95 percent full power the moderator coefficient shall be negative. The results of the measured and calculated effective power coefficients of reactivity are plotted in Figure 2-3 Examination of the measured power coefficient indicates a lower measured value than predicted which results in a reactivity deficit versus power less than originally calculated. Figure 2-3 shows that all measured coef ficients are more negative than the maximum allowable Doppl
- coefficient value of -0.60x10 4 Ac/r/% FP.
Note that the 130 EFFD dif ference between the 92.6% FP and 100% FP test data is.due to the Technical Specification requirement to show " satisfactory performance" at the 92.6% FP level before final escalation to the design power.
2.4 CONCLUSION
S The measured results indicate that' the nederator coefficient will be negative during operation at or above 95 percent full power. A maximum measured power' coefficient of -0.789x10-4 Ac/w/% FP was determined at 100 percent full power which provides sufficient margin t the test acceptance criterion of a maximum coefficient value of -0.60x10-g Ae/x/% FP. 9 55-331
s TABLE 2-1
SUMMARY
OF MEASURED COEFFICIENTS OF REACTIVITY BORON AVG. DIFF. COEFF,gFREACTIVITY AVERAGE ROD POSITION (% h'D) CONC. ROD WORTil (X10 Ak/k) POWER LEVEL MODERA-(% FP) 1-5 6 7 8 (ppmB) (%Ak/k/% TEMP. POWER TOR WD) 38.4 100 84.4 84.4 9 1203 0.0107 -1.140 4 39.5 100 88.8 88.8 16 1241 0.0088 +0. 00133 -0.150 ' O 68.4 100' 79.2 79.2 11 1146 0.0098 -0.909 71.5 100 78.1 78.1 11 1162 0.0120 +0.01060 -0.110 73.1 100 90.0 90.0 12 1123 0.0089 -0.870 75.5 100 87.5 87.5 12 1123 0.0061 -0.0745 -0.190 .) 90.3 100 85.3 86.9 22 1095 0.0078 -0.780 91.4 100 87.0 88.3 22 1095 0.0077 -0.1065 -0.210 -0.789 s 96.9 100 88.9 88.9 8 836 0.0076 ji 99 5 100 90.2 90.2 8 836 0.0061 -0.290 -0.390 ~
r3 f,) I FIGURE 3-1 AT POWER TEMPERATURE COEFFICIENT OF REACTIVITY VS. BORON CONCENTRATION AT 582F, 2155 PSI, +0.6 [. i i f .I +0.4 .1. 5 ,= . * -. =. 7 u. w. . L L... . _ a. _.L._. - _._._u__....._-...--. 1 _{ _.___ _ _. _ _ ~ _.. _ _... _. _ _ ____.._. . _ _... { +0.2 1~._ ::. .- g MEASURED 0 39. 5 %FP '..__. : '. Z J . ~ - - - -. g /A MEASURED 0 71 5% FP - - - - _ _ N .. - _~~11Z_?!.~~Z7J~ 7_. MEASURED 0 75.5% FP--- -..-. ~ ~~~ u O 0.0 - ~ - - ' ~ MEASURED 0 91. 4 % FP Z~ ~ ~ " 1. .h~ b. ~ ~ T_ _ b, . --- - - 16 2._E FP D _._ -.. . + -.,.,. -0.2 ._...._...........--.-Q. ~ ~~ ~ ~ ~ ~ ~ ~2E'T _u _7 ; 7. -- -,,-,- r_,-,: ;; - _ 7,_, -- yg0% 'FP 7~ g g 50% FP-o y -0.4 ~ - - - ~ ~. 15% FP ~ ....._.a Predicted Curves .0.6 ...x. .~ _....-.t_ .m.. -0,8 ~ CURVES._SHOW.O..EEPD_PRED!CT10NS__ I. q 600 800 1000 1200 1400 1600. BORON CONCENTRATION, ppmB s5-35 /
fl Q FIGURE 2-2 AT POWER MODERATOR COEFFICIENT OF REACTIVITY VS. BORON-CONCENTRATION AT 582F, 2155 PSI, +0.6 l t 1 4 +0.4 4 ~ _. ...a_..._-- . x. _-.- i. ..y.. . _..J l._ _ _._.;.a _.p'_.__ 1 .-+. L.; ...>..__u y 0.2 ~~ i i -~~~ ~ -- ~~~~-~ l'"~ ~ - - - - - - -. _-...... _.P..re di = te d C. urve s...- _ ~_-. -__. __ -.~ ~ _ _ ~. _. om .;. 7 _ :100 % FULL POWER _ - --~ ~ ~ ' 1_._. s ....... _ 50% FULL POWER N 0.0 -~ Q .,. 15% FULL POWER ~~~~T-v t .. _. _.. _ _ _.. _ _*l e O r-4 _._....__'.._.._~_i_ ~ T__... _ 1. :. -0.2 __ _ _.. 12._ - - ~ ~ . _. _ __. l E-* Z 43 >-4 E ~ ~. ~ ~-~~2.. - ~ _ ~ ~. ~ - @ MEASURED @ 39.5% FP m _..SMEASU.R.ED.0 71.5% FP -0.4 l Z T W M E A S U R E D 0 7 5. 5 % F P ~ ~7. .. MEASURED 0 91.4% FP _{ QMEASURED @ 99.5% FP M 162 EFPD -0.6 _...l_-^. ~ ~ -~CbRVES,SHOWbEFPDPREDICTIONS ...I.. _ _I. -0.8 l~ 600 800 1000 1200 1400 1600 BORON CONCENTRATION, ppmB SS-36
p FIGURE ' 2-3 EFFECTIVE POWER REACTIVITY COEFFICIENT VS. POWER LEVEL 1 i t l ..l. , l,1 g,.. l,.ie3;,l -0.1 i 2 i a. r,, - "-r-- ACCEPTANCE CRITERIA 0F 7- ' b 4 -4 .-0.60 x 10 ak/k/%FP lj_l;.i 1. i i n V -y Fri L H4 -.._1. _L,,.,.$..., ;-,,,- a
- t.,
& l _._{r". ~,
- - p,r
!I i >e + H -i 4 3 -et + , -pl' 7 m M+i. g r-i-@t.-g;} . }_p4 ..u +,...; L. g pj .,j j, r,.- - m1. wJ. _ 4 d. .. } p, ..j. i ; t. g au .L +, 4.- ' -l t-b --M. ~4 -4 _ __ _.t_j ..,r y' 1-4- ~__J_-{ - f,t _H_._d .F 4
- - t--p l
.t;; l a o .p..'L p. i i ;'t ihr .or A
- 4. gl 1
_r _.y_.{, g+_i y _;_p.,J p :.-p r j.l.'.....
- 7.,s 1.g j
.p p _p_ p{ _.y..,..+. g j m q i,.e .r 7 r.-.3. 7,_ .,_r, g p_m,...s. .~,9. p.r, m.,. .. + ;_. p.,, _..p.p s ,.a.4 7 p.p,_. _ a.1,. ,4 r N-a .j_.p _r._..q _g. m. 7 p [ --H3 -,..; t 4 -+ + - - -r r .n.t.M. s -0.5 H.._,J1 . i.. 1 Y 'T_ g r_- - _L. _- HC-
- 3.. g.
.j N m m. .cw , -JJ.j! ._ q. l 2 - .l 4 .u_. 4 y a.s i l.,4 4 ,.l., .o j.,. . 4.i 4 _.j_, _. a . L,. 4 _ c 4_ ___e ,a w ._ - a y s._ 2 ..l,.. !..;_ b 1. .i ; _, l .l... i -._ L.j -.e.; a. ' !' b*J{. o J.l1 _t -*l' M 4. i g j .w p _;.__ o.. _..,. _... c. _. 4 2
- ;? J_
r . _...p. 4.. ...g.. _,.a .1_r. ,s .. _[/ z 2 .s y p._ .i_q-y. a.._.., a;m. A _ _q ~ -'2-2- - m ~ U 4 -_;,.r..__. .b . 4 _a 2_ 3-7 s ... f. - _b J. -.,. .m . p. _e=.-j:._- 1.. ... __ Me a s u r e d. q ____.,_...- .i _ ; _a_ i. m 4 -t ^ - - ' + - -- R.e s u l t s. -*++ --.- l-t- ,. 9,7.
- _ L.
..-.--.;,- - -. rH m . y.~. o r. - _J- .:., d... { u 4_u 3 -. 7..g- _....a__ .4- ~ l-.- 1_ _4._j _; pls.a,t -t.. {- 7_
- o. n..
-. L e. 9._. p p d +r m W _.. 4 '. _ _.. -. q.-.. _s. - 4.. .4 J h.:f. J-"- .u - Qa -1.0 .a 3-h ...e. 7m s, l .1 4 7_.4 .w.--y 7.. ..d, Q n . _t p_.l, r.. _.7,._- 3. ; _... _j...L ,,_ 2 3_p ... a Q _3. . _. q _;,. ....,,a ,..q 7 ,_,a [.4q 4.,,;,
- 2..
.i s.J. _.p.... ,a J. q g
- n 4.-p.. a 4}_ J_ 4.g.
___p't- .i_i_ -,.4.j ;
- s m
s ~,_ -H'd ,t-F I- - M- -*- b J I ;y .w. 47.. - _;._; 2, t-- 9- -rp-e. 1 ~t-P -t-4-'-t - --~..+l i h! 1 + Mq p 7.-pp. - { --- + I,. LA o P _, __ _ _ _ _., _ m_~ A 4 -l-j-* t-M - -l 4 -t J- * ' ' -h;O ' d -}.4 i - _. 9.t1 - PREDICTED +9 1 -{ y7.,_-i,- + 4u H-p+y.. +-f.r. i. ~, r - 1 q-t r*-t. T :, :." u- + .,...nw n-c Fr 4 __ ' y
- a pt
. -a. ...Li L _u. w 4.. p_. a. 1_; .,... e t 4 4.1 1. la .t . 4 : q.4 .tw. . J., _; J. a l -a i .,.i i l .z.p,;,p,. . a
- u. >
m.4 i , H, p.l a. .., p _g _. -..~4-,_ .!, q .. ~... y .. 7,_ _m. m -. c;_-ja,. ;u a e r -1 ,,3... -.;,j, -j j ..j r,1_ L .H y i I 6 $r ,.L4 J. 6 -,. f.+a 0 10 20 30 40 50 60 70 80 90 100 1 POWER LEVEL, % FULL POWER l s5-37
- 1 A e) T 30 -NUCLEAR INSTRUMENTATION CALIBRATI0tt AT POWER '3.1 PURPOSE The purpose:of the nuclear instrumentation calibration at power was to calibrate the power range nuclear. Instrumentation indication to within + 2 percent full power of the-reactor thermal power as determined by a heat balance as specified in. RANCHO SECO Technical Speci ficat ion Table 4.1-1. Additional purposes for conducting the test during the power escalation program were as follows: (a) To calibrate the power range nuclear instrumentation when the out-of-core imbalance differs from the incore/out-of-core imbalance calibration line by an amount equal to or greater than the amount as specified in Figure 3-1 (when power is greater than 30 percent). (b).To adjust the high power level trip bistabic setpoint as directed by the shutdown bypass requirement or the test program. (c) To adjust the scaled output of the total flow buf fer amplifier to the function generator for the Technical Specification setpoint limit at 100 percent full power. 32 TEST METHOD As requi red during power escalat ion, the top and bottom linear amplifier gains were adjusted in order that the power range nuclear instrumentation channels would indicate the power calculated by heat balance which in turn was scaled to a." required" summing amplifier output voltage. The measured summing ampli-fler voltage was then calibrated to the " required" voltage +.16 VDC. When above 30 percent full power if the imbalance measured by the out-of-core detectors differed from the imbalance as measured by the incore detectors by more than the. maximum allowable as defined in Figure 3-1 the top and bottom linear amplifier gains were adjusted. When directed by the power escalation procedure and/or the shutdown bypass requirement, the high flux trip' bistable was adjusted. The major settings during power escalation are tabulated below: TEST PLATEAU BISTABLE SETPOINT -(% FP) Shutdown Bypass 5% FP -0.390 VDC
- 15 50% FP 3 990 VDC 40 50% FP 3.990 VDC 75 85% FP 6.790 VDC 92.6 100% FP 7.990 VDC 100
-105.5 FP 8.430 VDC .The scaled output of the total flow buffer amplifier to the function generator. w:s adjusted at- 0 percent full power to insure that the input to the function g:nerator never exceeded 8.385 VDC or was within 8 percent full power of the existing power level.. The total flow buffer amplifier output was checked at SS-38
~ 4 g ..~ j. 2 !15, ;40,75 5100 ' percent full power: and readjusted at 92.6 percentafull power. ! Values obtained ~ for..the scaled. output voltages:of Ethe; total 1 flow buf fer 4 ~ ' cmplifierslwere extrapolated.to the next power plateau and readjusted if the -extrapolated valueiwas greater th'an 8.385 VDC or was wi thin 8. percent- ~ L ~ full powerioflthe next power plateau. ~3 3 [ TEST RESULTS- }- ' Table-3-l? pre'sents a summaryLof-the data taken during calibration of the Lout-of-core power range nuclear.. instrumentation.at dif ferent power levels ~ in all. cases the nuclear instrumentation t during power. escalation testing. wisladjusted to within +2_.0 percentLfull power of.the heat balance and to within the maximum,allowableLimbalance error as specified by Figure 3-1.
- The high' flux level trip bistable was adjusted to' the overpower trip set-points for'each respective ' power escalation te'st plateau.as previously s
dafined._ Adjustment of 'the high power level trip bistable 'to the specified .sntpoint within +0.0625 percent full power (+0.005 VDC) was accomplished ror each power test plateau'without dif ficulty satisfying test accept'ance criteria. ~ ' The calibration,; adjustment.and ' checking of.the scaled output voltage of. the total. flow. buffer amplifier.was performed at the 0,-15, 40, 75, 92.6 and 100 ~ percentifull power" test" plateaus. In all cases the output _ voltage never exceeded'the maximum-allowable voltage of. 8.385 VDC and-the extrapolated valuei lo< the next pc:.-ier plateau-were at alI times less than the maximum ~ allowable voltage of 8.385 VDC.; -3.4L JCONCLUSIONS~ The calibration procedure.has been thoroughly tested and has proven to be satisfactory.. Acceptance-criteria for nuclear instrumentation calibration at~ power,were met in all instances. 3 e 4 h a 4 s 4 4 r } -'Q'a' c-4 155-391- + "+ ':rF ' t J v w c s e n- 'r r 1P- 'w '=W-9 T y T-M-Y-T Y
- 3
TABLE 3-1
SUMMARY
OF' NUCLEAR INSTRUMENTATION CALIBRATION AS POWER REQUIRED BY POWER ESCALATION PROGRAM AND TABLE 4.1-10F s IMBALANCE BEFORE/AFTER CALIB. (% FP) HEAT POWER BEFORE/AFTER CALIB. (% FP) ORE POWER NI-5 NI-6 NI-7 NI-8 NI-5 NI-6 NI-7 NI-8 IMBALANCE (g pp)' gg pp) 7.6 -4.6 12.6/7.5 12.9/7.6 13.1/7.5 13.0/7.5 -6.1/-4. 2 -6.4/-4.2 -6.7/-4.3 -6.3/-4.2 INDICATED 2% llIGil -0.4 NA/14.1 NA/14.1 NA/14.1 NA/14.1 NA/-0.3 NA/-0.4 NA/-0.4 NA/-0.4 '14.2 44.2 -1.6 40.6/44.1 40.4/43.9 40.2/42.6 40.5/42.5 +1.6/-l.3 -0.6/-0.4 -0.5/-0.3 -0.5/-0.4 9 41.8 -3.3 42.2/42.2 41.5/41.6 40.2/42.0 41.0/41.0 -1.9/-1.9 -0.4/-3.0 -0.8/-3.4 -3.4/-3.4 38.1 -10.32 40.3/38.7 40.1/38.0 40.3/38.0 40.0/38.1 -12.4/-9.4-11.6 /-10 6 -115/-1Q 4 -lL4/-lG 3 75.9 0.0 73.4/76.6 74.1/77.1 75.6/75.2 72.8/74.4 -1.6/+0.5 -1.4/+0.5 -2.8/-0.4 -1.9/-0.6 3 75.8 -9.8 69.3/75.6 71.1/75.6 69.3/76.1 67.9/75.2 +1.0/-9.4 +0.7/-9.4 +0.2/-10.1 -0.7/-10.4 90.4 -1.9 87.8/90.1 87.6/90.2 88.1/90.0 87.6/90.1 -1.6/-l.9 -1.1/-l.6 -1.8/-l.2 -0.6/-2.0 99 3 2.5 99 0/99.3 98.6/99.6 97 9/99 3 98.2/99 1 3.6/4.3 1.8/3.3 1.9/2.6 1.4/3.0 j 4
n a FIGURE 3-1 INCORE/0UT-OF-CORE IMBALANCE CALIBRATION NOTE: CROSS HATCHED AREA REQUIRES CALIBRATION __1 p_;.a_! t '.. ! > + !_.4 rr~ r ~ m ._p.4 _u. i 2 u.3 ,a.u.. t2 > . t..!.4_. 2_j. L'-.J,_.; H; H.]+1 .J... wi. L _}.4.}_. 4_b4 4__ g-._. i 1T. a'.. .. p! L.. L, 4...}. + a.4 ~ k i t.q i .1]_ Ja..i.. L ..,i ii. 1 i. 4.;,.L.M q i i t J t ,. j_. g.{.., 4 i i, g, p .p., _i_. 77 J_,3..., ._7.._. ..J_.a+ _ : -..,.y_ g. w -,9 4,. .,.y. ., _ a_m .,.4_. g r. .. +.m p4...
- _..,.r_
, u. 5.0 _pa_ .+ L, _...L u..y \\.. : :., ; _... a a_ ..a.. m.. . 2.2.. _ n.. ..J.- -.L,.. ...! J. 4._.,-, _ l. L .4 L L_ Li.. . _.. L- ) 4 g _...4 .. j... i .L .L.. ...+. .4 ..,..t c n_.L...-
- 4..
.. } __o,. l._. .;. LL
- ..a.]
.4 g 4. _ _. {.. . _.x{[ _ -_ _j.._..,... _.. _ 4... r _ _ ;..p.. .u..., g 4.0 . y.u, m .~.. -. k. d_E.- } . _.... q] w e_
- g
.p _ 4 L.- w 4. _ a z _._. En.; ; ., n _,. p.uw.. l. __ u;... _...._. 2. 3.. :.._.g. _. 7 ..>. p .. 7
- t..'.
.._. q .~,_..[._, . J._... m-3.0 ~ .. _g. _ _ 2 J_.. ..a.. ..; wa. N, \\ J.+4. _ L.. 4. f 4.._ 4_. g _,.i-.. _ .. :.. _ _y ..,_.f_.. a. p 4 - 4... - ....-j 7 4_.... ,~ -a ~. y - + + _- J --'. " a' U u__._ ; -.__ a _ y _'g._.. r-----+- p; g 7.. m, 9_.. .y__... r m,. _, _ _._ e. q
- r. g -
m ,y ...a_.,
- 7.,_7 7,A
__._J.. d. +_.. N,. J r L}, _j. L q. a.. _,_,. 4..L l., - -_. 4. I..
- U
.sf. 4 4_L 4
- 4.. ' a_
' - 2.I ! i ! 114.2 .,.4.. _;_LL. Lu ~i. J._Lj.4 J' I3. ' .1 LJ_._.! \\ -- ' ' d..L J .Li.1'.L' J .f. Ll L. C .J.4 a_L.4 .2+ _p 2.L 4q. a :,; 2.F p_ _g2_i ,l. y ._.uj.. d _.p.q.g_
- H..
l+4l- +..q. a W. _H H r W,.t,.,t r-- +i+"_. +Y +i..
- t. g, :
. _.i
- 4..+
4 u.. 4 .,_ a... t_ _i g y.,' ' t. J.. ... L LL .a,. L J.i. p'.. _ 4.].4 - . + +.4, +_ _,.4.- .p &.h -.- 44 1.0 ,_L;..L4
- .J..
LL_a .4 . ~ ..,r...'..g: + ~ p..'.n ; t a. L w_a_.+ _ L r, 4._. ; _..a 9.. .3-_.,.._L.a...+. ..[. .- m .l. A,. .11.... iJ.7_.&.. q. l... L.. L.j ?, 4.
- 1.. a_
6 7.. 4 ,i... g- .r 20 40 60 80 100 PERCENT FULL POWER s5-41 O}}