ML19310F781

From kanterella
Jump to navigation Jump to search
Nonproprietary Version of Response to NUREG-0737,Item II.F.2, Instrumentation for Detection of Inadequate Core Cooling
ML19310F781
Person / Time
Site: Salem  PSEG icon.png
Issue date: 02/06/1981
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML18085A846 List:
References
RTR-NUREG-0737, RTR-NUREG-737, TASK-2.F.2, TASK-TM NUDOCS 8102200856
Download: ML19310F781 (81)


Text

..;

n.

.. w..'

1. ?. -

'?.

f,4 g;.g,w;,;, 9 9. r: ~ -- p;!;..., y y,,':;t.; w 1 y 9 ;,,3 n.p 3.,p n-"y 7 :'r 39 T..

.y-

.:,.a,.

n x w+.J.r j ;; g g g g. g y; p, a

gn r, n g o,n,iyn a n r!.

d m[, o ca!!.

!: I

-It

7 i '.

g jj I

i:j-

_J'e:@: 'iI b' '; u u AJ u' u"O l dn iwm u

f 1.

_...-..Tg,_;_y A

  • C'. a.i U.*'.

f' )

a

- i t' ;

6h g, b jd 1(3)

. r E i g *- D e s c r i p t 10 r.

Of EU3CtOr Ve550. L e l'.

}by i n u r = c n t a t. O r. sym -

m 5

i n----

,n,-,

_h b._._#

.%w hb weEI.I J #

.p 4

l h

5 n

a E1 T'I 1

T' re 5 C* C:

05 Eel 10Je. I F R t r J T O ". t a *.1 C " Syste~

4 d

E k 's -

N' J E *f 5 d.*.

'.'re'.113l

,O r t 3 C r *~

(J< L/ EN3$Cr.I d k

^

cr; i

a.. Ces i eas;re cecE0. leJe_ Or r e i s t '. Je JO "

C O *. t e " *.

tr-C i r C 13

  • 1 ". g p r : ~ S r '.

'; 3. 3 T.

  • E, E t +_

l r e d ; n d 3.".i n'i i r. C i J d e 2 n;to-1 E;-t -.:

- W i

~d *_. C C S ~ p O " '

.2 *

'T PCte~t s.

teEEEritur4 '/ 3: T 1 -

[

A m ne

+

~~:' c -~ y, e *...,

.e.-.v-~

v.'

..e.__

&.. s.e.,_.

q

's.

]

1"

~3;'

C'

.tr.

rtO~

3 fOr~ d i r e C *.1 4' c' N

r, tr C;

.5t_.

i T

1_^

t

-tr;Or~-J T.

t r. E ". !6 3r-f I

4 4

a s

. =

=#

um e 4e b#

4 0

l 5

Or

.J.]

1"-

t!.s l '; 3 C L O T

.eI5u..

j g.

i i

c. ?

. t in O '; t +; C

  • 1 ~. g t r. e apprCaCr 10 IL.,

j

(

h i

11 i

ll

{

e f

a P. N 1 2 3 t

  • t I.
  • O r 7 3 t 1 O I' Cf a /O1 in t..e ECS i

')

{

dgrana f O r C e 'i f 10 a' COndit1005.

I t

I

,I 1

hi l

M Ps1 3;rl 1 m

2 c/02200Sh6 l

1 a=*a'a=-

.ramme==mawasemansas.annsanneemmunes mmaansnmanssummen=.e.

g

n c -. n a z, a,.,

D, r n s e r D. 315 2.r u.

7n u.c 1.2.1 HARDWARE DESCRIPTION 1.2.1.1

.Dif:erential Pressure Measu erents

..s. e r...id

(.r,

...e

,_,)

u *. ' ' i a_ s *wo < t

  • e,

^ '. * ". a_ a_

dm,'-

,,,, v-m y

cells.

These cells measure tne pressure drcp f r o.T n.c c

. u. p

.>t,,...o.

o.

n o.

,a. a m-

. e_ n c,..,

..n c

.e vessel, and from t r.e hot legs to t'a top of the

_eeo..

...., s a :.-.,_. a s..,,. -

.e.. s _ -..,, 1,,_, e - u_.., e.

., c o

e.

y..

..... u a.,. < u.

a.

..y,--

..).

g y,.- a.,. c.. y,- o -,-

  • l w.

. -,.. O e...,

e v

..s

.Ae L

u W

w_.

w. g.~ e c.> ~- a h,,_.v*..

a.

a.

s

..+- g...a.

w.,......

y...,.s v w n,,,,g.,-.-

,s vy_.

..v w

.C, c_ 1. ~ +. w r-

._.c._.3.

l'n - p r.

Q S... g _.

\\'

\\

_yy-g i

2. n.

,... -, _..i., 6 p.,-

.r. e -. e.

v,.,., z g ~ ~- -

a..

s.

e a reasureren Of reactor vessel level atove

.. c_

r. o.

.l e - p2 a.

wne. * ". a_

- a a ~ *. ^. c o o.' a ".. *.

"y.'.. y 3

y

t.. c 3-g w,..

.c

p. g.

.o, (p

p>

-...o_,.,-.

..v.

.v,

.e_

ns.

o g,_., c-., n,3 2.

Reactor Vessel - Narrcw Range (f P.)

a The measurement provides an indication of reactor vessel level fro-the bottor of tne M Pal 33/1 2

EACTOR VE5SEL HE AD VENT PIPE W

N OUTLET OUTLET,

ej x

w i

C;P OP NARROW 3

RANGE OP OP g

CCRE YCVEABLE DETECTOR CONDUlT TRAIN A TRAIN B Figure /-/

Reactor vessel Level Instrument System

reactor vessel to tne top of the reactor during natural circulation conditions.

3.

Reac*.or Vessel - Wide Range (d P,)

This ins'rumen* provides an indication of re-actor core and internals pressure drop for any comoination of operating RCPs.

Comparison of the measured pressure drop with the normal, singlephase pressure drop will provide an approximate indication of the relative void content or dens?.ty of tne circulating fluid.

T.is instrument w;il rmnitor coolant condi-tions on a continuing basis during forced flcw conditions.

To provide tne required accuracy for le 'r el measure-ment, temperature measurements of the impulse lines are provided.

Tnese measurements, together witn tne existing reactor coolant tempe r a t u re neasurements and wide range RCS pressure, are employed to compensate the d/p transmitter outputs for differences in syster density and reference leg density, particularly dar-ing the chanc,e in th e environnent inside the contain-ment structure following an accident.

M PSI 33/1 3

The d/p cells are located outside of tne containment (aet roximately 15 to ellr.inate tha large reduction o

.ercent) of measurerent accuracy associated witn the p

  • b. a.

- o..

  • a.' n... n_. *. e.". ' ^...e..*

(*.a.,or.a*e.e,

... a n. e..

pressure, radiation) during an accident.

Tne cells are al-o located outside of containment so that sys-ter operation includ calicration, cell replace-ment, reference leg checks, and filling is made easier.

g.. s-. m_ _

r, y.,

owyg..

v.

c.-.,..2 c.

  • .. > s ", s *. a...

.avo".

  • . a.

R. '.. ? c

  • '^-

'c sncan ir Figure 1-2.

Tnere are four RC5 penetra-tions one connectior in tne reactor vessel head vent clue, one connection to an incore instrament cond.it at the seal tacle, and connections into the side of the two RCS not leg pipes.

Tne >ressure sensing lines extending from tne RCS t

penetrations will De a combination of 3/4 inen Senedule 160 piping and 3/8 inch tuoing and will include a 3/4 inch manual trolation valve as de-scriced in Section 2.2.

These lines connect to six M PS2 33/1 4

P

- HYOR AULIC ISOLATOR (TYPICAL)

INSTRUMENT T

M,[-[, T R AIN B RA;g

-9 g_________,

DD j

i i

JC-- g)

TR AIN B i

I l

AP h P,

=

b Y

Y lW3

. gfX i

6 -"

TRAIN B

',j

__J e

SEAL TABLE 4

CONTA!NVENT W ALL A

\\O Figure /-2 Process Connecticn Schematic, Train A

sealed capillari 1= pulse lines (two at t r. e reactor rcad, two at the seal table and one at each hot leg) whlen transmit the pressure measurements to the d/p transmitters located outside the containment build-ing.

The capillary Impulse lines are sealed at the RCS end witn a sensor bellows which serves as a hydraulic coupling for the pressure measurement.

The impulse lines extend frcm the sensor cellows througn the containment wall to hydraulic isolators, whicr also provide hydraulic coupling as well as a sea; and isolation of t h +: lines.

The capillarv tubing extends from tne hydraulic isolators to the d/p transmitters, where instrurent valves are provided for isolation enf ofpass.

Figure 1-3 is an elevation plan of a typical plan-snowing the routing of the 1= pulse linet.

Tne ir-pulse lines from the vessel vent connection must be routed upward out of the refueling canal to the operating decr., then radlally toward the seal table and then to the containment penetration.

The con-nectic: to the bottom of the reactor vessel is made through an incore detector conduit which is tapped with a T connection at the seal table.

The impulse M PB1 33/1 5

v.

m b

w (dAll 13 S'53 A W Ol'"V3 W + *

>- ~

t 2

C "2 L

w e-2

~

06

'.'s wr i

W 4

4 C

r I

l wI L.

.J J

>1 A

k.

a a

n y

D3 I

f, c:

  1. w l

T L

o

(*$.*b$ h'.~'b k"$ 0 Y?!.W'oW.* **5."C *?'5C?$, *kY' *. -

A

~

.c.,&..,,

I w

co

,1 ne o

. ~ < -

cn e

-... r~;.5.'~f~ l no m

L 6

.... r

.b,, :

u

-, : ?.. -;; e.

.o r t~.

1 ld 5,i s

\\

  • b,,

Y y

, e.'s.

c r

2.gc c.

L * ~5,)

.n FW

$, lC m

C 2

C C. o... 7. ;.. s.. 4 v ' Q..*,'n. O

' b. ".3.]

y. O.s. ^ m 5

t R

I \\

..s.

g,.3,

.o l

f N

S.Y n

=.:

z w

C

?=u N

(

  • Jt 2

u

_z e

l

.._.3.,

L 6.m o c...r %..c. W,c...r.o:

=

e E.EG:

.J.

~o

=n O

IO w

ka.

O V

m. '..

C lGCC

... \\

c,

. n.

v.,,

,c :

c. w

-.o...,

9 c :

line from this connection is routed axially and radially to Join with the head connection line in routing to the penetrations.

Similarly, the hot leg connection impulse lines are routed toward the seal table /penettation routing of the other two connections.

The impulse lines located inside the containment building will be exposed to the containment te mpe r a-ture increase during a LOCA or HELB.

Since tne certical runs of impulse lines form the reference leg for the d/p measu er.ent, tne change in density due to tne accident temperature change must be taken into account in tne vessel level determination.

There-fore, a strap-on RTD is located on each vertical run of separateli routed impulse lines to determine tne impulse line temperature and correct the reference leg densitf contribution to the d/p measurement.

Temperature measurements are not required where all three impulse lines of an instrument train are routed together.

Eased on the studies of a nur.ber of repre-sentation plant arrangements, a maximum of 7 inde-pendent vertical runs must be measured to adequately compensate for density changes.

M P81 33/1 6

2.

Following is the design a r. a l y s i s inclu ing t!. e d

eva'uation of various instruments employed in monitoring water level.

n n. r-

n. ;- - s t' -

( W-._a.

_1%r g, e. n., s r

.r u. n.e... -., :- r\\sw.,-

L s

u-i

.r v -. u. -. 9 6,e-

<= ~.. ;

av.

acu s..

2. v. s.

..e.,._

c o. c., g +. g... L.

. c. y...

.2

,r

. w. u.

a w.

n.. v. d a n.

.a...3,,es.o v..a,.

a t u..-.,_

a..,,,.

a

~,

1... ~.

s

..c.r.,.._...

2., --.,c

,..c., a.

c.,.. a.,

s. m,. c.,,, a.

r., 3 3 n. a.

n..

s a....,-

e.~n.-..,,

a. ~a 2 c. _ a -., v _.. c, o., -

. a

c.,,. a, n.. u n.. ve

. m n.

o. m

~.

.a.

a.'.'

u..-.

ce<

... n. a.

.p..

c.

-.a. s. r n.

n. a 3

r. u... p a,.

-.. e.

..a 1

-o..,-...

.e., $.,. -

....c.

., S c a.

....c......~... -..

1,s.-

w u..

se..c.

w a

a3s-,.

2 e_d w '. *. * * ". ".

u.

.2..-. c,. m.-..

c.a.3.-

c o

3

..m.

t...,-...-..

tg.

.,._a-....,

c

a..,i...

-m ; c o.

,c 3. o. g.i.>,.

n... 2 a.c,. 4 3.-

+

a.

r. u..

m.-. -

u.,

-.e v o n s.' s. 1..- o' da"

--.'.'; s a a. r.. - s.. ar^.-.

-s L. x. c. >c. o s C a u.> n. a a

w+

+n.,........a-g, c

Incicated in Ficare 2-1.

Tne sensitive port 2cn ci tne device is mounted in a removacle adapter a s s e.- ^..

s h i c r.

Is designed to conforr to tne surface of tr.

.,c s,,3

...o n,, 0 e sa.

...n.

.. 3. e. 1 3.'.e.

-.m, n,-

...u1...

y s y 1 s g~

n-u all selected to be compatible with the normal an

  • post-accident environment.

Randomly selected saroles M. P81 33/1 7

vY

=

N b

  • t m.

w M"

w m

e e

M m

GP' W

h o

A h

so-W P"m.

e

-eur w

W eaums usuum a_

-W he e

M

?

he m

we h

M.

b

&bsp W

L p"

h M

i 9

M

< r. o..

50 e,..

0,.i. n_a

(.3.,..,3.,

.a.<3-..,..3, e.

. )

product:On lot will be cualif:ed by type testing.

Qualification testing will consist of thermal aging, irradiation, selsr:c testing ana testing u nd.-r s-lation hign energy line break env:ronrenta' cond:-

r u_.,..-.. u.,u.

.e

.s -..

s,r _ -, <.., - c, g.,.,,.,,.., o --

.,,..c--

u..

s.

c

r.. -. c-

._ as <.,,,s c.

.n.,.

r.

-,..n., -. -.c

._c.

y,..s

... e-

.......m.,

e e.

s.

u.

we

.ye

.Ap.en.

yc p.

V..,

. p..r p

  • a- *. s e. g p..,r..p.... _...

-+

.m y.

,, o.r c,.

a.,;

ao..e...

om..

e...

s.,.,., m.

5 e,..g.

,as

,..m.,..c.....

s.c....,.,-.

s_, s... o..f. -. c_

._-y

.-==

z.-....

.. c_.

m e.. _ -., r.e.

_y.. o... m_

,,,, a., s-. m_ a

.o a.,.

a. _..

, ^2

- m e r_.

1.. '

,8 m.c.. n.

y

.v

.a-e

. = -.

1... u,: < o-.,..

m ma-s

..v o

C 60 s o.,, c n.

a..

a--...,...,....

a..-..

.oa,a..-..

s.,n3 a v

of t.C x 106 rads /nours and a r.a x i m u r rate of 2.5 x

l a '" rads / hour.

Any externally exposed organ:c materials snall be evaluated or testra t:

9 x 10 0 raos "1D octa radiaticn.

The energy of g

f-.

33 d-

ine be t a particle shall > 6 MEV for the first 10 Mrad, 3 MEV for 340 Mrad, and 1 MEV for 150 Mrad.

3.

Selsric T r. e detectors will be tested using a claxlal selsr.c sima13 tion.

The detectors shall

  • (

maanted to simulate a plant ir.stallation and will De enet'1:ed tnroughoJt the test.

4.

Higr Energ3 Line Break Sitalation

'. e detectors s!.c I l be tested in a saturated stear environment using the temperature / press;re cur.e shown in Figure 2-2.

Ca;ctic spre;, consisting of 250U ppr Doric a:13 disscleed in water a r.d admusted to a pH 10.7 at 25L: t; s o c. l a r hydroxide, snall be a--lied d a r 1 r. g re tnt first 24 nours.

Tne test units will Le energ1:ed tnrc;ghout the test.

The RTD cevice is designed to operate ove.

a t e m p c r o t u r <. range of -580 to 4000F (the normal to 1300F).

temperature range is 500 M Psl 33/1 9

CAllSTIC SPil AY

+-

12 PSI A

> 4-S ATIJFI ATL D -*

72 i SI A

~c l

l 1

l I

i I

g l

340 I

c 305 t

y ar

  • (

crw g 20s m

b i

l I

l 11 I

I I

I I

~

O 10 3

6 0 10 3

b 20 24 18 SEC MIN MIN SLC MIN MIN MIN llOUll DAY TIME

  • TIME IIETWI EN TEMPill ATulTE Til ANSIENT S MilST lit AT l.E AST ONE HOllF1 Oil IJNTIL T[ST tlNITS flETUllN A ST L ADY ST AIL OllT Plji. T IME AllOVE 340l' MUST HL IIVE MINU T LS Oil LL!>S.

F.,ar e I'- I 111 1 11 simulation Prof ile

2.2 REACTOR 'JESSEL LEVEL I N E T R';M E NT AT : t,*,

S y s T u-s,,,72 -

n.

b-T*D types of valves are used for t r.e R'J LI S.

T r.e 3/4" root valves are A5ME Class 1,

sta:nless steel, g l o t <-

n.r

. s. o_

k, o.,..,.

u% s 4 -.

4.J n w-.

,c

.v

..a43. t. s.

..i t.

d v

w.

w

.4.

.,., _. o..,

...s.r t.,,.o.1 r

.ro.

, s.> a...

. h t, v

r.

ca..t; 3 f " " A n a t-r s on -G r e e n.c o od ), are a r.

I n s t r : r <;. t a -

a.

_.3.,Ja'

.....=.a,

'.t"*<-

a.,.

4.

s.

,e g ~.

<.,,. c l m e r_..

--.;...J_,1 s v. a. 1 v,, ;.....

.o_

. s._.... _. _.

e.

n. c.

e..

z :... n r :

-.. =.

y-4=O..n.,

e.

H....,..,.-

...n...s....~.=,

n.wn=

.snn.a.

.. _w... :

r.

a...e

.,.._ g

.<r v..,. c s..

o_

..c.y..

,c.

4.

~...

s.

c a,

o.

a en..,.e..,.=....,

v

.. r.,.. e. 1..._ < e.

y a.i..,..

.,.e.

.o. o. r,

1

--m.,

a rz

...ra-n.. c.' " ". a *..' o r'. =...-a*_-

.= --^* -.-

e..

.-,.. u 3 _.... i,., t. a.. c...' + +. e.r =

. 3 rate" for 4u to 1300F and 10 rad TI.;.

s,...,...

r.,..,, r. u... o... e,

.co - +..'. e.e. a.

- a, g _..., +. + C. ;,

,i.

a T' dt

  • r.j ; 1 o. 5,

M PB1 33/1 lu

u... s *.. *..'. e. a.. ' lon-
  • <>r--

-.t..'

adc

.' a

^ >

2.

o v

r to 300 percent witn ~.ini al effect on 3

C 3.., w. b.. O...

Hi..

r e.

o_ a r. d " '

d i - o. - *.' n. ;.

-...*.s.

. u_ -

s v.

y y..

s., r.

,.., r. p A P..

u, p a v,

. u. J s.

r p g... e.

e u.

w

. r...

J. t 1.,.. p c rs

.s s..

.1.

u.,,.e.

.A., S y.1 cp

-m v

.s

e.. e r... a.T
3.. A C, e r v. a n,- p er_ea.,e,

...-pc.

p s

..m v

. e 3 -. e n...

. e. d a r u.

rc,z.aA

~.,.

..re.

.-.m

+,..

.a.

p.

en

..c

-v "r ' '. n s O '. '

.'e'.*..'

.g r. a.~ *.... _... m C'

. n. e. m... p r m

-. c o s,.

. m... c

3.. a.

.s.

,a.

. e.,3

r. o...o...

3,

,,..yg 2

.o

.4.

,3

r. n.., a *. a "

r.o. c o_ -., v,...

. s. _

.A

  • ".a_

. s.. e

  • ~

.v

.r

....g-g,,....,,.-

a., _c. r_., c_ m.

c_.....

v.

2

..,.A.,..

4 -

u.

w y.

-, - - n_ e _c

. n.

e,,

o-.-..-.

.c..

-. o_ g n_,..,..,..=.,:.,..3 e.

a..*

  • .n_

.o.'

ex r.= n.c. ~ o c.

n. ' ' n. - *. c.

.'. *.+.

-m C...a

.a

. r o.r.e ~.' *

  • o.. 3 a.r o_

. a *. e-d 1000

-c.-

a<.'

r-s

... t.

.. ' c.'.1

.+..**.g

3. p

. p e. c.,.4

^

, v y,.,s.,

r_

a er. pec

,v.t, 7,.c..2s.

-a...,..,

a.i c a r - ~. c t.

,_t:.

.r c

s e

cverrange ratina to full orking pressart M PEI 33/1 11

  • O a.Y (,, _,..

m, Et e-4 M

e g

.p J

- e =

O.

-- e i,

19 m., = *

  • a f.

6 w

O

meiW' Wh W

m v

W

-emus supo W

mes m

b w

e h

m W

e M

r 64 M

w W

asa d e

W e

e Sum emme w

N, wa M

ene h

e y

M

-er A

emme P

w

=v-l k hp m

M

-4 eM

C

-4 g -

N l

c l.

I i

t l

e l

J V,,f f,,p s.,*W g

w,'

ea o.

r-e e

O

La p.a O

i l

i

}

1 45 9

e e 6

b A

f,4 9W S b I

i i

_ t

.c

.u......

c......r.

..,..e

.s

..r.

3.

The following is a description of the test prograr-to be and being conduci for evaluataon, q u :21 i f : -

cation, and calibratior. of the RVLIS.

3.1 TEST PPOCPA"5 A variety of test progrars ar+ in progress cr will be carried out to study the static and dynaric per-formance of the RVLIS at two test facilities, and to calltrate tne syster over a range of normal operating conditions at each r e a c t t,- plart where the syster is insta] led.

Tnese progrars will pro-vide the appropriate verification of the syste-response to accident conditions as well as tr-appropriate precedures for proper cpe: ation, al -

tenance and calloration of the eq u i pr e r.t.

A de-scription of tnese progrars is presented in tho following section!

3.1.1

_ Forest Hillr Test Facility A breadboard Installation consisting of one t: 31n of a RVLIS was installed and tested at the Westing-house Forest Hills, PA. Test Facility.

The syster M PB1 EB 01/1

consisted of a full single train of RVL:e hydraulic components (sensor asserolies, hydraulic isolators, isolation and bypass valves and d/p transmitters) connected to a sirulated reactor vessel.

Process connections were made to simulate the reactor head, hot leg and seal table connect: ens.

Capillary tub-ing which in one sensing line simulated the raxirer expected lengtn (400 feet) was used to connect tre sensor asserolles to the hydraulic isolators and all Joints were weldea.

Connections t-tween the hydra 1:c isolators, valves and transmitters ut -

11:ed corpression fittings in rost cases.

Pesist-ance terperature detectors, spec:a1 large volure sensor cellows ar.d volure displacers inside the ydracl2c isolator assertlies wh:en are norrall; part of a E'/ L : 5 nstallat:cn were not includei in the installat:on since elevated terperature testing was not included in the prograr.

T r.e hydraulic isolato: arserolies a nd trans itters were rounted a.

an elevation slichtly below the s:rulated seal taole elevation.

The co3ect:ves of t r' e test were as follcws:

M PE1 88 01/2

1.

Obtain installation, filling, and maintenance experience.

2.

Prove and establish filling procedures for initial f i l l '. n g and syster maintenance.

3.

Establish calibration and fluid inventory raintenance procedures for shutdown and normal operation co n d i t. i o n s.

4.

Prove lcng term integrity of hydraulic corponents.

5.

Verify and quantify il_:S transfer and rakeup requirements associated witn instru ent valve operations.

6.

Verify leak test procedures for field use.

3.1.1.1 Feactor vessel Si ulato:

T r.e reactor vessel sirulator consisted of a 40 foot Icng 2-inct diareter stainless steel pipe with taps M PB1 88 01/3

at the top, side and bottom to simulate the reactor head, hot leg. and incore detector thimble conduit pe n e t r a t ion at the bottom of the vessel.

Tubing (0.375 i r. ch diameter) was used to connect this lower tap to the sensor at the simula tei seal tahle elevation and the hot leg sensor to the head connection was simulated by 1-inch tobing wn:ct connected the sensor to the vessel.

The reactor vessel simulator was designed for a pressure rating of 1400 psig to comply with Iccal stored energy and safety code considerations.

3.1.1.2 Installation Tne system was installed in the high bay test area of tne Westinghouse Forest Hills Test Facility b Westinghouse personnel under the supervit on of Forest Hills Test Engineering.

All local safety codes were considered in the construction.

M PB1 88 01/4

_ ',, *, 7,~

_ec..*+..~.

?.m q -

  • 9 1

i I

f i

l 1

i i

i f

1 l

i 1

t I

L f

+

i l

4 r

t I/

['*,-.

_ _ U

[7 a b

^9 9

h l

i l

i 1

I l+

t t

i t

l i

l I

i l

i i

6 6

)

4 i

6 I

4 1

i l

I C

of O

's.

4.

a, 9a

~

9

3.1.2 SEMISCALE TESTS In order to study the transient response of the RVLIS during a small-break LOCA and other accident conditions, the hydraulic components of the RVLIS have been installed at the Semiscale Test Facility in Idaho.

Vessel level measurerents will be ob-tained during the current semiscale test prograr series which runs from December 1980 to March 1982.

The tests scheduled to be corpleted by July 1961 are expected to provide the desired transient response verification; additional data will be ob-tained from the tests scheduled f or con ple tion by Noverbe r 19 E l.

Tr.e Ser.iscale Test Facility is a model of a 4-Loop press'rized water reactor coolant system witr ele-vation dimensions essentially equal to the diren-slons of a full-size system.

The reactor vessel contains an electrically heated fuel assembly con-sisting of 25 fuel rods with a heated lengtn of 12 feet.

T.' o reactor coolant loops are provided, ;c-5 having a p;mp and a steam generator with a full M PB1 88 01/7

height tube bundle.

One loop models the loop con-taining the pi p2 break, wiiich can be located at any po in t in the loop.

The other loop models the three intact loops.

A blowdown tank collec ts and cools the fluid discharged from the pipe b r e ?.k during tne sirolated accident.

Over 300 pressure, terpera-ture, flow, level and fluid density instrurents aro in.?talled in the reactor vessel and loops to reccrd the fluid conditions throughout the te st run.

Test results are compared with predictions for verifica-tion of computer code models of the transient performance.

T:e WestinghoJse level reasurerents obtained during a test run will te compared w i t.h data obtained fror existing instranentation installed rn the semiscale reactor vessel.

The semiscale f acility has two ret;,ods of reasuring the level or fluid density:

d/p reasurements are obtained over 11 vertical spans on the reactor Jessel to determine level within each span, and garma densitometers are in-stalled at 12 elevations or. the reactor vesse? to determine the fluid density at each elevation.

M P81 88 01/8

This data establishes a fluid density profile within the vesse) under any operating condition, and this information will be compared with the data obtained from the Westinghouse level instrumenta-tion.

Other semiscale facility instruments (loop flows and fluid densities when pumps are operating, and pressure and temperatures for all cases) will provide supplemental information for interpretation of t ', e test facility fluid conditions and tne level meas _ ement.

Specific ests included in the serir ale test pro-grar during which Westinghouse RVLIS measurements will be obtained are as follows:

1.

v. a s c e ll a n e o u s steady state and transient tests with pumps on and off, to caliorate test facility heat losses.

2.

Small-creak LOCA test with equivalent of a 4-inch pi pe break.

M PSI 88 01/9

3.

Repeat of small-break LO CA test with test facility modified to simulate a plant with upper head in]ection (UHI).

4.

Several natural convection tests covering sub-cooled and saturated coolant conditions and various void contents.

5.

Tests to simulate a station bl a c'.o u t with dis-cnarge througt relief valves.

6.

5: alation of the St. Lucie cooldown incident.

3.1.3 P LANT START'J P CA LI E F.ATI ON D; r i r. g the plant sts. tup, subsequent to installina t r. e R',' L I S, a test prograr will be carried out to confirr tne system calibration.

The prograr will cover nor a1 operating cenditions and will provide a reference for comparison with a potential acci-dent condition.

The eierents of the prograr are described below:

M PSI 88 01/10

1.

During refilling and vent ir,9 of th e reactor vessel, measurements of all 6 d/p transmitters vould be compared to con f i rm identical level indications.

2.

During plant heatup with all reactor coolant pumps running, measurements would be obtained from the wide range d/p transmitters to confirr or correct the temperature compen s a tion pro-vided in the system electronics.

The terpera-ture compensation, based on a be s t estimate of the flow and pressure drop variation durin:

startup, corrects the transritter output so tnat the control panel indicat.on is maintainei at 100 percent over the entire operating ter-perature ranae.

3.

At hot standoy, measurements would be obtained from all transmitters with different et tina-tions of reactor coolant pumps operating, to provide the reference data for comparison with accident conditions.

For any pump operating condition, the reference data, tepresents the M PSI 88 01/11

norr21 condition, i.e.,

with a water-solid sys-ter.

A reduced d/p during an accident would be an indication of voids in the reactor vessel.

4.

At hot standby, reasurerents would be obtained from the reference leg RTDs, to con f i r-or cor-rect ref._rence leg temperature compensation provided in the syster electronics.

M P81 88 01/12

_),

2

l.

k' l^

j r

I I L" O h$3J!$h](!jk 4.

The following is an evaluation on the conformance cf the RVLIS to NOREG-iJ7

.1 OPERATING PERFORMANCi Eacn train of the RVLIS is capable of monitor 2ng coolant mass in the lessel fr a normal operation to a condition of complete uncovery of the reactor core.

This capac111t'/ 15 i n r.. ' U.'p transritters, each trcr Er it ter pro.-ided c) tt, C o V e r l.1 g a Spec 111; r c. n g e of operating ConditionC.

I r. e tnree instrurent ranges pro /1de overlap so tnat tne measure-ment c a r-t.e cotained fror v o r.

t r. a n one d:. splay u - he r r o :, i accide.t ond1:1-'

.n=:.1112 <

af eac: of in.

c a t.

r-ec.ts a r._ cescrite.

s..

1.

Reactor Vessel -

L pise r kan1 T r. e transmitter s p a r.

covers t r.e distance fror the hot leg piping connection to ine top of the reactor vessel.

With the r e a c t <,r coolant pu::p shut doen in the loci witn tne hot leg connec*lon, the t r a n s r. i t t e r output is an indication of the level in the upper plenor or upper M P81 88 03/1

r nmn

.r

,o, I, m n, o. #l },, #

a

..,e o

i m

L~

l I

I l [ ' ' p-l i ' *,

y ivet Q; a

, ' r

!. j, !~

t

+.p h u t s;J a j

head of the reactor vessel.

The measurement will also prov:.de a confirmation that the level is above the hot leg no z z l e s..

h'h e n the P J I;> In t i. e loop With the hot leg CG r. '.e r t 1 G :

2 operating, tne d/p would be greater than tne trans itte:

s,c a n, and t r. e trans.itter output wo u '.a te deleted f r o-the digita' panel.

An invalid status staterent wo id te 1 n..u..-. a_

2.

Eeartcr Y 0 ~ 9 ': 1 -

  • 'a r r D ' Ean;_

.v. g...3....

nc

e. n.

+ r ;. e..

~..

n.r c.

... - n,

. z < =

e..s m...

e-en m

c.v.

+ d a g e.,

e..v..

e.r g.. e e c. z.-...r p-...

v g.r

.,f.

C ^s.'.'c^-

s a.'."

^

C4" 1_'...,

6

..7..

c.. c.

...,..a.r.,-..

s y

i.e.,

at 1*

L T. ' stear OsOLles ha'i been separate _. frc-the water volume.

The actual water level is slignt!)

nigner than the indicated water level since there w112 te sore quantity of stear batoles in the water vol e..

Tr.e r e f or e, tr e EV 15 provides a conservative i n d i c a t i o -'

of the level effective for a.4 e q u a t e core cooling.

M PSI 88 03/.1

a ;o h%w j

1.

'; i.

.!a

u. cya:

--a v

When reactor coolant pumps are operating, the d/p wo;1a be greater than the transmitter span, and tne transmit-ter output would be deleted from the digital displaf panel.

An invalid ntatus staterent w o; 16 be ind ica v.

3.

Reactor Vessel - Wide Range Tne trans itter span covers the entire range cf inter-est, fror all pa ps operating watr-a water-ns..

s,tt -

to a completely empty reactor vessel and, therefore, covers tnt measurement spant of the otner to ar.str -

ments.

An redaction in c./ o compared to tnt nor o.

operating co- :tio-in a'

i n u i c e t t or-c'

..- in i re i z t D: ;Dolant pJPr%

wl.a Circ-.si t '. r.

vesse..

water and stear as an essent.all, no oge:es;s 1xt;r<,

so tnere wo;l3 ou no distinct water le In tne t

sel.

Wnen pumps are not operating, the transmitter o;t-p;; 1s an additional indication of tne lecel in tne ces-sel, supple <-nting the indications from tne other instruments.

M. PE1 Be 03/3

)!$

Il$ 5ilh@i,Ih!d\\!) \\[] lh I 1:n f _! ', l

  • l-u ca\\ u ya um a fi,'

-u-The output of each transmitter is cor.pensated for the den-sity difference between the fluld in the reactor vessel and the fluid in th-reference leg at the initial a" L i e '. i t *.

erature.

T!ie Co~pensation 15 based on a w l d..

r a re.g h ", i temperature me a s u r e :"1.t or a wide range syste" presr.;re reasurement, whichever results in the highest valut o' water density, and, therefore, tt;e lowest value of Ind1Cated level.

Compensstion based on terperature is applled wnen t.-

s3 ster is suocooled, ano co.T pe n s a t i v. cased o r.-

press.:

(CatJratei Conditiont) 15 applled if superheat existe at the "3i l e- ] te-'+ratJre T.e 3 s u r * ~ e " i p ;nt.

~ '

O !

,1 o; tbC L: a"7~

..t*'

is a l s 's CoFOenE9t O v " ~.1, 0. ' f e r e ". C '_

betWr

LT.'

' 1 0 1 ". In t h '. re f e re" C.

I 3 ; r l ". g a*

a C C 1'j+ n

  • W'!T
  • / l e s a t e 3 t e " b e r.2 t u r
  • In L T.. C O r. t..

" e

".1 i", tr-flu.d in tM r e f e r e n C r.

1 *: j bt t!c Initis.

a~~..-

ent te~p0rdtJ"e.

Tne Compensation is based on te.perators

" edSJre".ents o!.

the Vert 1 Cal SOCtlons of the referenC. le Tne co r r + O t e.! t r o n e," i t t e.r outouts are shown on a digital display ;nstalled i t, t n.: euntrul r o o r.,

onn staterent for each tear,urement in each train.

A three-pen recorder at M Pal 88 03/4

f... ' \\

- ' e' r,t.--

g_

j..s q,

s 1r i.- w 3

t. _

_w v._

also provided in the control r o o.- to record the level cr relative d/p and to d:splaf trends in the reasurerents.

T:-

c.

, a C e, s w.,a.,

b. O,. v 3. > v-,

4

.n

-.9

= =..,.. f t 3,.., e wvv.-

.v.,..

c.,,

wa.

w.

,j kd W

  • k 8

a F. *-.

89."...I.D'%

f,

  • t'" e.

P.

d

C, o a, 7h. P.. [, M...O. Q a r. [.,

, r. %.'.'$

C F, [gy..P

1.., S'%.7'9 Mf 4

.4..

e..,p.

y.*

."2+.

e T.'r e. r <sem

- sJ.

..e, +

w a

  • rt e.iawy wy
e..n..

s ee>-

m e..

w..

y a a e..*.

s k g., a..o

- Cy

.soe Y..

s ace

.e y

ce g, s

s a

ee c*

say me g se

+ v. g, y. A ;.

r s e. e t.,.

.A*.fr A.< -.. '.

e.

enm '

s w.

ww sa w, e. s.

n.n. ~.ne v 7

e..z e. s.

m.a v g. Q s *. ~ r y

ya p

s.s sm.

y

,a

.-g_.,.,_.

,e e v g_.

A s; p

, s

.'.a,

e.. A..e.. s.

.. V

  • +

.z. e..

, e..

4 y.w.

s..

wa y4 6

4 s 4 d.1 1 y

~a e c

-r w...e.

s y..

=.

.s : g 3 +. p r, c, 1.s A.

T4 1 cc-

+ > ne

e.,. y.,

a..-

++:+.

+

  • e.,: *g -

w

.. - v.

w 4

.44w.-

1m.

?ag+gc

.o *. b 9

  • .
  • 4 1 -

s.

4.a A. e. we 3,'e

.-Jwsw

...,.p

.n.

  • w*c,.

a m,,

w.a -

..o

.a

-. < r t a....

+w P

D. Q. w{ $

f

  1. % 4e.j M /

&.9".

  • ,, O.

W.

d.*.

11 P". d' 9 e

[,,

e-w e.A.e 6e&.

QO ed9"

'd'".',.

e o"m

.Lo e 7. *w e

hdb

    • .g.Ph.

b

.i.

. e r1

-e.

t e.s' b

4 4,,

c... e, e. g., -

f.,

e,

- e

.... s... ;,. s-v...

g.+.gc er + 4 s-w O.r.

. s.ng a.~ c ey.' - ;.

ze r

-e

-..c gn-,.

e. ;

.r a e.i., -. -,

.,,y.--

*. w

...r.r.,.,

e..-.d a

. +

e(.(

Dw=i 4,--

3 -

=/.

e

+

h

.e

  • e c,

y. p 3ry

.c..e.

s..

u.e m..o g e.-

, e., + p e..n e, r A *

,rp

+ n. y

e. z w e.nve n.

g.

w.;

.. 7 s m.en - o a.

  • 6

'IE s '5..M.a 4 w 3 * (,

g w, e p."' w* '..e.

M ' r y*s' * *.c b *..A.

4e

  • g, e r-i.
  • a Q..m' e.

w w '.* sa

e. g s...y
  • r y-.

sa y. - -

s

, e e v.<. ~.;. e 4 ee. e
e..v.w3 e.
e..v s.

y g, c,.c., (

e.c.

a.4

  • A e 4a g a. Ac.

f,,3 i

      • ,6 4

r.z e y.

mp o

e p

2 e..

a w.

e w

r.w

, t " A.

^*.

  • .t.

, c

, e. a s. so.c c.n.i.

3 s*

"y.*r~_'"".'.

^'

.e. ".1 ".

s.y.

.;.= < a.-.

v.

y v.

I A - + p r er.. a n o.d4 A.. r., e.. y.

e. v.,.

1 r3, e g.e a' d y, a

.*.4 w.

W v s 4 4e

.e./p

  • L.

e.3 4

.e.

., ce gwc'm... s

., (.

.J se.e

. i..

we 6 V C S 5 " s' W l '. ".'

sUll "y'" ' *. y" 5 5 a"s ' '.

y r" O ~g " a "- } C ^a r " o c " " ".. a".' ". '.

'~O a

t e c. *.

ag b o d 's.

M PEl EE 03/5

, 7 'h. %

, - wp ar:s

l,-

ii ;,, L,I pI' J "I j i<ai,

I: U n la u ;u m,il'i,n_ n

!, u! i '

iq l-nj 4

o, U %j,,

In the event of a LOCA where coolant pressure has decreasei to a predetermined setpoint, existing emergency procedures would require s h a t d o.c n of all reactor coolant p;rps.

I.

these cases, a level will eventually be established i r.

t r '.

reactor vessel and indicated on all of tne displayn.

'I t -

plant operator woald monitor the displays a r. : tre recorder to deterr.ine the trend in flaid mass or level i t.

tr.e vesp.1, and confir-that the ECCS is adequately en :: ens a tin, for t*e acclic ! c o r.c i t i o n s to prezent ICC.

Fat;re proced;res mai require operation of one or rore p;-. e ic. recovery fran certain typer of accidents.

W r. e n p; p-

.ir ar-d e. '.: l o p 1 "

1".

t !. +.

cr c ' t r a t 1 ". ' 4:.l' i

.s pJ~h" W.

circJ13t tT' Wat*

an2 Etea a0 a-e { S */ "11a...

4.

ho ogeneout 1x;;re.

In these cas<s, t r: e r t will tre no d.:-

Cern1 LAC le Jel I r.

the rebctor / esc 01.

A decreat. In t r..

c..easured d/p compared to tne normal operating value will t-;

a-Indication of volds in the syste., and a continacas!-

d_-

crea Ing d/p will indicate that the vold content is increas-Ing, that mass is being lost from the syste.

An increasing d/p will indicate tnat the mass content is increasing, that the ECCS is effectively restoring the system mass content.

M PB1 86 03/6

p l-'. *t'I;;.

',c./ L,

'a.A.,' u, d,u,. - 'o I

i 4 4

f.

I

( ' ;r.

, i,'

i i

J 4.2 P'.'L _I S ANALYSIS U-In order to evaluate t m; ese'Jiness of t r. e F.

I S d ar r'; t:

approach to li.,

it was decided to deter.1no the respons'

'.i u ri c.;. i. +.. r...

  • .e<.

v.'

.?

s

.. n.

r....e.

...4,..

=,r'*.*..

v.

.... a

.e response was a n a l,. * ' c.a ' ! y d e t e r r. i n e'3 for a nurner o' s S!'

a.' m

. c...

.ea.

7 3.. s, n... =-.

.e. r

, e e,p a n.. e n 3c m,..u..

+

s, v

4

.. u.

. o. n.. u.

..-o.,.

.s c a.a.

.n.

a, 2

.=..

-. 6 s.., e... - c a,

.o.

.,. css

.c

.o

.~

ye e.

y.

.o....

...e

.s g...,-,.,.,,c,.

...c.e.,..

ra.

feet.

(Note t r. a t R '.' L I S : nilcations will actaall, b.-

renre-a..

c. -

.c....e.,n..

a n....c.,..

..v......

.. c. c- _. 3 e, n... m. a.

a e...

-e

--u.c..a.a a,-..

v,

.,.v.....

mc-u c,.

,w...c..

u a y

ary..

a...,...

....,.,x....

4

. c..,

v.

k..

a..,...,

c..

...c

...a.-,...,.

o u_ c.......

c.

a s...:

w o y..r s ".=.. '..

1.. a, -
  • 1 v' r.

c.'

+2o

. o.- n s,

1, 13... c.

y i..

o

.4.c.

2 y

i t v.ss r.c3a)

..e.

..s..

... v, a c g

.s.

m a

.., ca

.u.. a -..c.c e,-

yn a-,

s When :ne reactor coc. ant purps are not operating, t t'.e E.L'S readin3 will t>e

na:cated on t r. e narro ronge scale ra.ging fror zero to the height of the vessel.

A fu;l scale reading (100 percent of span) is indicated wnen the vessel is' tall M PE1 68 03/7

1

,p

. r a.,,o f

., -.. nilii U

.' J O L ;;au d U ( TJo a

u.

of water.

This reading represents the egalvalent collapsed liquid level in the vessel wnich is a conservative indica-tion of the approach to IL-.

'I r. e H VL I :> Ind: cation can alert the o,0erator tnat a cond: tion of I C' is be:ng a p p r o _ c t.e.

a-tne existance of ICL can D..

verliled be c r. e c <. i n g ce c 's r.

exit thermocouples.

Wnen t h *. reactor coolant p; t'a are operating, the narros rance RVLIS meter wil. De pegged at c1

(,,1 1

s w J. g, s w at wr c - t r,e reertcr cc^la-t *. ;- m aro operet:na. tre F/LI:

read:.: s.;

. n. r s t-O ine si.

ranm scalc s!. c -

perce.t.

T*t luc perce-*

rea"-

read: tro-U t-

.us e.

,._c,

~._..

..e

u..

--e-0;"rLi.

W.t.

tr. p r p-r u r-n : r.

, t r. t F J !E read r:g is ar : n ~. : ; t. _.

cf t r.e sold fraction of tne vessel mixture.

As the /o:1 content of t r.c vessel t:xture increases, the densit, decreases and the kVLId read 2ng w:ll decrease due to tr t recact:on in static nead and frict:onal pressur.- drop.

Tno latter effect s;11 de enhanced by degradation in reactor coolant pump performance.

When this reading drops to z

approximately 33 percent, there will also be an indication M PEl 88 03/B

)j[l)!hIhl fi'lU7 E)[ f\\ f i, P

b

'g i I U

on the narrow range scale.

This fraction approximately corresponds to a vessel mass which would J o e. t cover the cor.

If the parps were tripped.

A snoll break transient (1 Inen cold leg br eak - no h.g.

head safety in'ection; NOTRUMP) for a 4 loop, non-CHI, 34.1 MWT plant is discussed in the next section.

In2s ccse ws_

obtained fror the ICC analvsis using NOTRUMP.

A descript. -

of '..>. n.  ; can ne found in R e f e r e_ n c e s a thro;gt f; in E <. : :.

9<.

A d. s c u s s i c -- of this trancient lo pro.1ded in the next E'

. r; -

F ; _; ; r.f 3 4.

tnro;gh 4-4 DrDVide plots of V - 5. ' '

r'

./tJr.

l e.* t., RVLIS ndrrow range readir',

l e. t., !

t-j.

r 2",

-: 1 -.. 401; ficct10n.

The t.' o-p n a c. <- "1xture level plotted is that wh1Ch wa'

o. r e d i c t < 'l b,

t r. e Codes for the mixture he1gni nelos t :e upper sJpport p'. ate.

Water in the upper head is not r<flected in t h i c.

p20t.

The P.V L I S reading that would be seen is plotted oa the sar' figure for ease of comparison.

M PB1 88 03/9

4 c

r

-I v#

lr e

o b

e -

W e

=

W

=

h L

p.*

C >

~ 1 w

L'.

c.-

L' E l

L e

m O

w emma-l 5

w 1

L -

2 a ~

s"*

1 i m

b

-T

- Z

- ~

E ~ ~

-T C

e 0 O

. A C >

LZ r

i bem

L e

e

?

OOm m

es+

6 h-me r

w+

c'""

W O

+

w

%mpe W

W' O

E T

w h

e W

m em w.

O

[

e=+

L W

W w

h"e bg y

Om o

b t'.

>c r.-

e eh-h 5

h 4

e,

VESSEL VOID FRACTION (CORE AND UPPER PLENUM) c

^o e

o o

o o

.o

.o o

-=

4 L1 a

i;n o

w co e

o o

I I

I I

1 I

I I

I

\\

s k

=

1 2

  1. J 4.

\\

l r-b m

w

/

l g

l m

z e

s E. e.

w I

X

\\

w >

- r-

~

E

/

3<

)

E m O

/

C

/

=I w -

O f

w m >

l mO 1

-C w

j y

O

)

w O,

-m g

2 x

(

Z s

\\

~-

Z r

(

~

2

=

1 n

I m

\\

I x

l x

I 5

=

\\

s

\\

b p _ _e N b*

9 m

G

" EME h e m.

--___--py,-.-

auS e

3 N

"'"~===.g%

)

1 X

s.a.

((([@.l?')id I h

\\

Q E ub.UDJ

'J M Tne vold fraction plots are for the core and upper plenur fluid volures.

Tne r.1xture void fraction includes the volume below the two phase 1xture level wt.i<-

tv-t 's t void fracture also includes the s t e a.-

sp a c..

a:.sco t r...

.1xt:re leve..

4.2.1 Investigated Transient

,.-n

--sw.s_ w p..,

o 3 *1.1 q,e.

p..,.C..

.s.--..

~ -...

a....-

..a c o.-

(M

.1 J

..s w

brea<.-no nicn head safet in,ection) is one of tne trans-

.,. n. s...e.

n e.,

.n

.. c..- s...a.

u.c.

1,

.... n. a.. g a...a 1e..c

. s.

a e. 3. g. a. can e.

wg_

" _n.n4

.e p,

A

.q

_ w., m e.. oC

.+.e-

+ r.

A ;.,. -

3 _A

.s _

u_

a.s m i.. v E.:.-.;- _

Tm :.. re a "1.a

.s below t r. e vessel 1xt.:.

r"c+.

c '.

._ +. o n e.._.. *.

a..

. c, m

+*

++

s

.s conservative indication.

The RVLIS reading follows the sare t r e.; as the vecsel c.1xture level, except for eerl, in tnt transient snen t r..- rixture.old fraction is fauct:ating.

M Ps1 BB U3/10

$,. :,,' /N1 --

fyP[ 9 npq [ l1 j,'-

J: ':il:i U b l'

u

,.., a l a 'n

u. ' ~

.-m

. yea 4.2.2 Observations Of The Study Tne RVLIS will provide useful information for breaks in t r. e syster ranging fror srall leaks to breaks in the limiting small-break range.

For creaks in this rance, the syste-.

conditiens will changr-at a slow enough rate that the operator will be able to use the RVLIS inforration as a basis f ci sore action.

For larger creats, the response of the FVLIS w be

r --

erratic, da to rapid press;re chan:es in the cesse., ir t r e.

ear], portion of tne clos;os.

Tne R.' L I 5 reading sal. te usef. for en.tctin: e. 2 d e r. : recovery, w r.e n :.

cor roccr a t.... inc. cations o; ICC coal: als' ce oM _ :

.ery fea i n s t a r.c e s nave ce(n identified where tne R.

1: Ja; give an artiguous indication.

These include a brea? In the upper nead, accur.ulatcr injection into a highly volded downcorer, periods of time when the upper head be h a v e s like a press;r.zer, and periods of void redistribation.

A break in the upper hea? may cause a much lower pressure to ex126 in the upper head co:rpa r e d to the rest of the RCS.

M Pal 88 03/11

m, 1a.. w.

e.. rn D R, i' -

NM;.,q, j$sh$U Lb.io\\

le t

z Because of this, the pressare difference between the lower plenor and the upper head is m u e r, larger t r. a n is seen for a r.

eculvalent vessel level wr.e n the break is located elsewhere In the Syste".

T'ie reading, in fact, af never react t r. o narrow rdnge scale.

If the narrow range "eading re 31nn at full scale and the widt range reading is greater t h a r.

that reading wn1Ch WCuld Ind1Cate a fall Vessel witT tr.e r e c C t o r' C O 316 ". t '; J ~ : E t r ip; t a b rC 3-1 ".

t)*

J,.. i'. T hea' 1

l' w d..,_

.r

_e, 4 m1..

.c.6.,_.,.'..

m.r-.-

s +,

c,..

...c.,_

,a' a: r_ - 1 *..

u yv u..'. *. _ * -

i s e -

4' s s s

  • 3.-.1.?., '.. t i

...Qa u c,.

r3>.

J y a, v,, s-.

+6 La.

-2 s.

s v s. b,.

a s.1 @. s.a * '

r -

4

. re s

.s s

iT-p r O C +-- ( i !

11 the hi,

!d i n d 1 C i t 2 0 7.

a5 ertvnt

.4..

a a - +,

~, w sgeen

,, r.s. q-pd

.r t....

w.

6 w _ s.

u, Nu*'

6

-4

.O.

.s.%

4

/.,., ',

i 1 -

,t

.8'y m.,'b, m

4 e

ba4 h

d% %

4 4

e.e 4 4 e W+

5 *. 1 * :

t-

.' s' eK t t: e r

  • DC D J.il e F YUS?

1'vr .

T T.1 E &ltuat1Cn O n l '. 9X15ts, hCWeJer, when the brea.

C ; s C T. a r O *. IT lbrCe en O J g t.

to JaJSe a large d. p thrOJg' tT t flow p a t !. E.

C C n n e c t i n

,4 L T.e Upper hea.

LO the rest Of t!m eye,te:

TheEr

10* Db t.'

be C O:: + tat 11~.1 ting *dCtCI 1;

tr.

C e,L i e E E J r 1 2 b t l. Q *

"ut-The t1:.e, wnen er.;1guous indications cue to accumulator inJec-1100 and UpLer M Phi Eb C3/12

. l a.'.

    • a.

s 1 *. ". a *. '. o r.

c ^ r - a. - * <.

..e a - ^

  • a. e s "s. *. ' 2 a. r.

ba. h a v ' o "" '. e-d r.

itself and t n e R '*" I S resures g:'Ing a good indication of the

..n. a c. 1, l e s. c..

es.

e

..,a.,

nc

.e..s.

i.,.

a..

,,e.a v

n r.

..u 1.

.s..e

'... ~ -

...c-*.

c

c. c,,

le.e.t.. >..

,e

.s.

em.a*..-

c*

r s

a-.

r

..,, t.. gr,.., s a.<

e.,. 7,.-.

n' '. l.a

' n s'.'

c- * ' e '.

-..o,.

c-.'.

w.. o '.

sc....

.e a., c.,,..,,a.,.

a c...., a.,,,. a c.

i.

e-.

,c es

.g r.....,

.v..-

" a. w-c. l a. v e.'..a- -y

o. r. e z s

.'~.r.

a. ~-. a... *...o.-

a-a r.

    • i.=.. *. o.

a

^.-

'.s.

L'..' ' 'r. a.

e - 'a.

.a*-.

2n'e

  • .s c ' ~- ' ' s* *. -

.i.

r

.'. ; e - *.. "v "

1

.a

.a,--.e.

'.e..

e.. e.. w g:

.,. c o.- -v.

2:g. s:.

.c

r. e. = -. ~......
e. n-.

g

.. = -

-..o.

v e

.a

n. o. e., s.,., o. -
n.. o....,.,

n.

c,.. e..-. o. = ~:.

.c.

r s.

n. o. a

,e e

. e w

.-.r.

n s.

3.. -.......

..4.,

r--u..

.c..

u.. a..

r..

.ec_

y,.i.,

c.s.3.

.m.34 cm.

.-_,. e.s....

y

... =.. -....

.a, s.,

m. c c..

a

,-a _.

c

. o..

r...

-c.,.

..,a..,._

m.

u.... <, sa m.

s

...m.

r.-

.. ". e..... y. '..

  • ^ '

,., x... m.

,.e.

.... A a.

c.. a. - a.

'.t

.. =.c e.

.y

- v.3 a... p-r a

..a.,..

...o.

. e a -. -..

. er..

..c c c o..

...,c

+ r 3 -. u. -, y.,. s -_

.vn

..., y... et:'

.s e. -. n. o.

v. u e s a ' *
e..v..-.-

(.:. r.:.. :,s vs.c y..

py 1 -

a. u s o.

. u.

~., x. o r. o.

2eyg1. m.

u.,..a. -r 0-4 a

3a m -.

s tne hot leg elevation to below tne to of the core.

Tne ex^ect t r. s to nappen cased on the fact that operetor wo;1d e

the R'..1 5 read:nc. was s:tnin the narro ranc.e I n c. c a t io n.

.. f.F Ov vJ/.,

The operator snould know in general that, for e brief pe r i r.3 of time af.er tripping the RCPs, transient RVLIS response will occur.

Flos blockage is not expected to decrease the usefulness of the RVLIS indication.

The increased d/p due to the flo-clockage will be small during natural c i r c u l a t i o r..

T r.e RVLIS will continue to follow the trend in vessel level.

W r.e n the reactor coolant paq s are operating, ficw clockage is not expected to occur unless the pumps had previousl-;

bec-tripped and are be i n g restarted after an ICC situation already exists.

If flow blockage were preser.t when the purps were running, the RVLI Indication would st222 :

usef;l a r. d, a l t r.o u g r. t h e incication would be screwrat n i g t.e r, would continue to follow the trend in vess.:

invent;r;.

4.1.3 Conclusions 1.

With the RCPs tripped, ti.e Westinghouse RVLIS will result in an underpredicted indication of vessel level while providing an unambiguous indication of the mass in M PEI 88 03/14

the vessel. The Westinghouse RVLIS will also measure t r, e vessel level trend leasonably well.

2.

With th' RCPs tripped, it is feasible to deterrin.

a setpoint for the RVLIS to warn the operator that the syster is approaching an uncovered core.

3.

Tne RVLIS should be used a l,ong w i t.'

the core exit thermocouples to detect ICC.

4.

Witn the RCPs running, the RVLIE is an indicatior of the mass in the vess-1.

5.

W r.e n t r.e EPs are r a r'. 2 n c, and the R'v o I S reailng drops to the narroe range sca.-

there is significant voldin:

In the vessel and the core would Just be covered if trA pumps were tripped.

6.

A break of sufficient sire in the upper head could cause the RVLIS to give an a:Liguous Indication of vessel mass.

The core exit thermoccuplos, however, will provide an Indication of ICC if appropriate.

M PB1 88 03/15

R,[

a P,9 0,, Tp, p [T)'i@j o,.,

]

i

p.,.

.. i n

(

i 3,t\\j

. lI I

, o o

_.w.

7.

A.C^"***.^*

4 ". 4 * ^

  • d...C'.-

V.6. f.' '..., s, e

.CW"..'C>"..'.*.*

..s,d y.'..,,

V D ". '..

d w.

b L4 4

w... - -< -..,... a

4..

4,-

p.. n, r.

4 1 p

,n*

44 e

s.

r'..'

2.

,c-...'

+

n, 4

+

w e a

.. 9 a e s e f., ;. - o 6N9.,e. e O 8

F.. O 7

' O P

9 O

s

(.*,

es s *- FW

,[,

>9g,

$.F g

a y * -

We S.,.

y b... 7 g...

4

4. e..

eev e

+

C7ea.e..'e..,.

(*

.b. g

,w y f; 4 v.

g,..-

4

b. e. p. g.

.e g v.

c_.

+

,,a e 4 w

%n n, ;_

py**e4+

+b** p v e.= = -e

' 1 1

g. n 1., A g.

P

+ Vp r

, g, w *+.,r.

V e

=.

w.

-y

- r.

~ w e.-

y-eee e,

,6 pe w e

.O e

e O

wg' e.*-

e d.

w d 4 V hd

.,, + r

+

i r*

4,.,c d e. +...,. a w.r. u

.Lw

,2, D e p -. - -.

8

~

6

,; >.+ -

.. =

s.

e ;., n.

  • =

,,...e.

e d J. e e..-.*

6 We

m~RiiDE >\\ it

{:pm,:', d %) (6 i d jdh nl3 y ;1 :, :t i I

, s -li'li l'

.j si

![Q',

5.

Following is a description of tne corputer functions associated with R'*' L 15.

5.1 MICROFFOCESSOF FOR R '.' L I S The microprocessor R '.' L I S 1 r,d c a

  • l o n-
n-clude ecu: valent reactor vessel l e v <- - on redundant flai. panels witt-alphanJ er:0 displays prov:ded for control roor instal-lation in addition to hav:ng t ~. s infor a-tion availaole for displa, at t n e_
: r ;-

processar enass:s.

R.' I 5 15 co.i.gare3 a:

.--.2._

sc-... - -

m..

s

.- s u-.

.s.

....... _,. sm 3

of a sincle instra.ent rack.

e r '. e i c ;

~'

of ar instr; ent rack oc c ep t.

s; ar-at 4, C tne case of 4...

a_4Av.P crar of the R'.' L i s u s nc. alcroprocesso:

ec.J:D ent is shown in Fugare 5-1.

Tn: S diagrar shoss t r. a t :n addit:on to the reac-tor vessel level ( d,' p ) transmitter inpat, there are also terperature compenr.ating signals, reactor pamp running status in-puts, and RCS parameter inpats to each

v. PSI 44 03/1

m,,ni,. m q W W,' qiN..,t @.[l m %'I p

i

.I...+ \\ ; ' I, i ',,

J'] 3 3,2 I, I i. n,u(

, 'r (..y--

j

, _t t-~-

t i

I i

I l

I i

i i

f I.

I t

I i

l 1

I i

l 4

i 1

i t

t N

e 4

g

)

A &

L,,

u I

b **

h i

a ag dr c ' wc F<dundant F or ot r Phtyn)

Tr

+

chassis of tne two redundant sets.

The output of each set will be to displays and to a recorder, as well as an output for a serial data link. A genersi displa) arrangement is shown i-Figart 5-2.

Conformance with Regulatorf Galde 1.97 f;r the processor display syster is given in Table 5.1.

5.1.1 RVLIS Inpatq Tne microprocessor syster inp a

  • r are as folloes:

i.. 1.1 D i f f e r e n_t_. c l _P_r_e_s_s e r +

T_r_a_n_s

. t t e r -

The t t.r ee d/p transmitters par set ere used to measure the d/ps beteeen tne three pres-sure tap points on the primary system, as discussed Delow:

4,C 4.

M PB1 44 03/2

9


W-Y

-W-l 1

l l

g l

r l

l

  • i i

I e

I l

l 1

g I

C l

c 1

i I

2

~

i

~

1 e

j c

c g

g z

5 l

=

I z

=

1 7

l a

I l

w r

U e

9 W

~

1 2

=

l 1

1 i

i 1

f I

e I

tQ 1

I i

\\,^,

~

I 1

I i

I b

I I

E I

I 8

m t

l Y

e c

L_-----------------J v

s z

g 2

o j

2 e

i 5

' II

$1f

!Dji;iI1p'it9tr igjoEn 'La/m(Ch

\\;,=l 7 Th 9 A (D I;9 j

! o!

u t >

a, c.

Ttle diree: tion Of this t r a n c. c : t t <. r ' '

OJtpJt is fg11 Sc3;g (79 mg). t,,,

t,,

V t? 'i S '

  • 1 fJIl ani Zero seg]-

(4 ;.,, g,._

e. p t ; e :-)

to tn,.

gg, y97 tfi'>

V'.! S S e 1 m

M P81 44 03/3

h;I5N.h4S (f$f 'h,n T)'f J/

i l

4 i

J

'#,..JJ U., _. u 'l uuJ a TABLE 5.1 CONFORMANCE WITH REGUL ATORY GL'I DE 1.97, DRAFT 2 R E '.'. 2 (6/4/60) FOR TriE MICRCPROCESSOR DI S PL AY SY F T t v.

S e 1 S'* 1 C qua11fICation YO' single fallJre cr'terla Ye; Environre.tal qualification Yer

'(IEEE-323-1971 applicability]

Power Source Vitai 0;ality Assurance Yes 2 0CF.50 Appendix B applicability Displa. type and me t r.od Vertical s c a l-voltag+_ processc:

in adi1 tion to a TeCordL Y YO5 JraqJe ide".11[1Catit Period.:

T_.t.'

In s o.i e cases I E t t.- 3 2 3 - 19 7 4 is applicable.

M PB1 44 03/4

Tnese endpoints are nominal and are for low coolant temperaturer.

If no pampc are operating,4P giva an Indicettor g

of level in t !.e r e g i on a t;ov+-

tr<

r.

t lea..

1: the PJmp 1s running in the loop wl '

the hot leg connection, this 2 n d i c a t i c r-will be invalid and nost 11kele of'-

s c a l <.

Tne reading wcald be flagged c "invalld" under these conditions.

T r.e effect on trc I n d i c a t i c.n fror tn.

p;-

not renning in tnis laop, out rcnn.-

1-n u,

- losps, is less t r. a n 10 pere.--

of t r. t-rdng..

$Y 3

t M PSI 44 03/5

aP3 gives an indication of reactor vessel level when no pumps are rur-ning.

If one or no r e p;rps a r <<

running,4Pn will *... 0: '-ecale orl the reaJing inval:!.

The sense of the aP. O c t.o ; t 2~

SJct u

that a 20 ma signal is a noninall, call vessel and a 4 ma signa

= for a no.-

nally erpt,. vessel.

Ci., C 3.

The s e r. S *. Of the di-OJEC. /t Ic m

+het 20 na represents el. purps rar.1-and 4 ma is empty vessel.

With all

~;>s ranning and no void fraction, t AP should read 100 p.reent at zero c

power. The reading at full power is sligntly higher.

Y. FBI 44 03/6

5.1.1.2 Reference Leo Temperature RTD The reference leg temperature RTDs are used to measure the temperature of the coolant in the capillary tube reference legs.

This is used to compute the density of the reference leg fluid.

The arrangement of the reference leg temp rature RTDs is shoen'in Figure 5-3.

The conversion of RTD resistance ta tem-perature shall cover tne temperature rang..

c: 32 to 450 F.

T RTDs are 100 or-platinJi foJr Wirt RTJs as shown in Figure 2-1.

L.1.1.3 Hot Leg Temperature Existing.lo t leg temperature sensors are used to measure the coolant temperature.

Tnese sensors are be i n g replaced yearly.

This te perature is used to calculate coulant density.

M PS1 44 03/7

O

?

O

. = =

6 k

M M

b W

b

~_

e

^^

=-

v u.

L

=

m

5.1.1.4 Wide Range Reactor _ Coolant Pressure Existing or new wide range pressure sersors will be used to measure reactor coolon:

pressure.

The pressure is used to cale late reactor coolant density.

T h._

block diagra.c of the compensation func-tions is sho-n in F'.gure 5-4.

5.1.1.5 Digital Inputs The reactor coolant puro status sign In in-dicate whetrer or net puros a r t.

runnan.

Recognizing that nydraulic isolators a:

provided on ea c t.

Impulse line for cont 2.

c -nt isolation parposes, eacr. hydra;11c isolator has l i r. i t

.c

tchen to indicat.

they have reached *he 11 it of travel.

5.1.1.E Density Corpensation Syste-To provide the required accuracy for vessel level measurement, temperature reasurerents of tne impJlse line are provided.

Tnese M PB1 44 03/8

e b

A

-99 9%

i l

l l

i 4

I i

I I

i i

l t

t, I

I l

l i

I i.

I I

i 4

1 l

i l

J

{

t l

: cure 5L : cek ;.scrar of Ccerentstice tun-4.

la gj o.

j t.

uaa

+-,

m measurements, together with the existing reactor coolant temperature measurerents and wide range RCS pressure, are e ploy 1 to Co"pensate the d/p tranSdJcer OatyJt' tot differences in system density an, reference leg density, particularly durin3 tne enange in tne environment in s i d-t*>

containment structure fol]owing an acc:-

dent.

A simplified schematic of ::

N' sit;. corpensation syster is shown i r.

Figart 5-5.

Tr.e d.'p cells are located ca t s l a ::

Contaln"_.t.

reterenc. leg :1;1d d e n s i t;. ca c 151.-

~ :

cover- - r a r.D of 32' to 45)*r.

Tne f2a..

is assar i t'

os compressed lig;1d water at 12Ou ps:3.

E a c t, of ti - three d/p measurements w112 have density corrections from certain ten-pe r a t u r. - measurerents.

Some of these will have a prsitive correction and some nega-tive depending on the orientation c, the Y PB1 4 03'Y

oN

'i O. son"th! IPA-E fl S

@r (.fe,.i s aw!

(o..i _,: n-y L,0 I

i t

I i

I l

t I

i h

1 t

l l

I l

l

}

t l

l e

t i

f a__

W O

g y

+.

R,

y e

?

If,'. Wy3,7),'.~': a 1 -3

,~ '

q I ~' < f { l g.. f

)' ;4

, o..! ' ;,1. p(

l,,. !,

I'*,..

lI\\

I

+

~m I a' Y'

t e

.z.

..s..,-..s_-....,.

..,.,- 1._

.y - - -..

.-a

s. 4-
e..ese.

- As e au

.pg 6

[ ( f M

h,

.w. - es. s u g,y..wp. -

4 A_

g, p

gg, n.

'I

- e a

a s s a

-m---

m e

d 4 -

1 f

f I

i i

4 i

^

i I

p I

~

.f f

p 4

-Of Y

.. g f.

f P. f.

s.

P,

( - -

. '. & M h

f A 9 m.

s m

- " c ^

T l

1 i.

I i

f I

l I

f i

i

-'8

, b gb ~

  • s

h0If t l)

[5) d'dhi]

U bdlU^d Wl'b"OdlliSIi).]h)11 0l i

i

_, " 9 -

I I

I e

l t

.N f,'.

..[,

.. a,g-4 O

M9T r.

p e. e a e I

q.

f i

e

. 1. '_. 1 0 Pu r

.cw 5'r Calcu'.a:

-r_

l i

t f

i I

t l

l l

t i

i l

i i

i i

I i

l

-u, 8

n~

i,a e i'

  • A MM

. [

I,,/,, f, t ' h l Lp }'5't [iD Il O {l D,~ g a v, fI '

qP I

i1+,s<l:

q

,- ( > f,--c_'",-

': f:

'g; i

n' 1,, i ilA;

?.

Vw a

u O

4,C loo:r of the ts: calculate; d /p ccrrur-Tnce 1 10 n.4 15 divided into tI e " e a s.: T r ; u '..

I' re5Jit 15 tr_ percent of C X pe c te-d-

a.a s c

'd read 100 percent

.;14 al. c; :

...2.

c..a 1_.3...., -.

1..1 i

.. a.1,.y.,

e n.,e

.c y t..a i.

w_.

e v

q2 wa s.

v.

a Eact of tne t r. r e e dfp measurements a : t...

tne preceding calcalations snall t-;

scale:!

to reai in percent.

With the vessel fall of wator and no pc.mps rann;ng, the catpats

t. : 41'3 a r.d d i' t, s r.c a l d read 100 percent.

M P81 44 03/12

!~m n f lI l hl \\

.f-G r-t r-j It lig 3f h-] f - } 71 e S

l

[

LL Q. ' a i ; e. m, j

"~ W so wb dB e G b

n s, n.

r.., a,. e + - e,.

T r + c. e r 6

A w

-m a ' - -- e e..-

4 &'

s-a v b-e 4=

a.

v e e,,.

vnaa=4 4-y

---e***6'm

  • e b^>

s 4

P.

8 '....-..

F.

-NE. -FV T

+

W 9.* 8i * * -

r.

r.

4 b.. g-

- y

.s.P T-. - P

['*

vi

  • 9*

g

=-b; 7'O m'e %e-e.a-e+% g~ e. A.a p-u

+g. r

k. c 2

6 6 m e b s

4 g

en e e ** ea -a m

$..d-ha 6r

  • r e. w k. J w

.c r e 4

eY o". a e hw h/ +. h

=

f" w

f W e wp ke 7f-yw wr(A7'1k6 * (*

4-4

  1. 4 ei. + 6 6+ ec.

T'%f 9

  • P

..4e 4 r,

.: ev. 5. +. r-v.

.e f e

~. ',

4 ~

..e 4,;

v,

.v+

.c C-v.

+

y v.w

. w

. y

v. c. ;,Je-Aneo y -

n e.v r. e, *u.. e '

~

e yerw Aa+ n w '.t.-

v sr -

  • V:

e w s

'a

=.'

e f e e O*

V'

$&O f e

%rm.,eyWd8 W k -

fh f-

@9 e 4 e 4e 4 J

4 e

e 9 -

u l

I 0

1 i

8 J

l t

I

+

j t

I.

p 0

i I

t e

1 4

I i

e i

F f

h i

I L

i t

I I

i h

a 4

)

I I

l f

Y-m I

w O,

) **

1

i

,I

}

to t gy,t..

C., G 3.

All signals are inpJi to a microprocessor-Dase:3 deta analysis syster.

Tne contr;.

TO3" darDia, f O r i". h t J t. 1 1 Z 5:5 8"

alp'. -

r+'*.

disp 1a; 1ocdto rO~ Ot ;3 ; iTO i

CorDJtatlon32 S y 3 t+; '.

Redundant displays are pro.1ded for tn. t; sets.

Level information based on all th r e..

d/p measurements is presented.

Correction for reference leg densities is automatic.

Any errcgr conditions such as out-of-range sensors or hydraulic isolators are auto-matically displayed on the affected measurements.

M Phl 44 03/14

.q n YD]llf[1

'li b! 6b

~

There are two d2 splay formats for reactor vessel level:

the fi.rst is a summary for-mat, an' the second is a trending of t r. e three vesse.' level indications.

t1., C.

5.1.3 Display Functions for Remote Control'L:.

The prime display unit for the vess<cl leeel monitor is the 8 line, 32 character per line alphanumeric displa,. snich is locate

  • in the control roo,.

5.1.3.1 Vessel Level Monitor Summary Display Figures 5-2, 5-6, and 5-7 give exa ple dis-plays.

General arrangement is shown on Figure 5-2.

The vessel level summary dis-play is snown on Fijure 5-6.

The following is a description of the display.

M P81 44 03/15

m O

O U

m 2

D g

J m

J H

Z O

e

.J Y

Y Y

2 s

e o

e

}

o o

2 g

e c.

e g

C Z

L.

"m e

E_

c>

w 4

L o

W' O

Y Y

Y

=

.J O

a m

n w

A w

5 g

e 7

<s w

i w

h 6 M

L C

N a

C b

e w

U e

I w

w 1

C M

C a

Z g

W a

W w

Z O

C g

e-O w

g J

a J

w w

4

e O

C C

C Y

Y Y

C Y

a w

o e

m m

m W

Z e=

A c

z cv W

5 C

J m

W V

Y Y

Y Y

Y

]

y m

s e

N e

m W

w w

c m

W J

y I

W c

a c.

v..

gi n

W

)

C O

E a

E O

w Y

Y Y

Y Y

_~

O 2

n e

e n

s W

8 8

8 e

e w

W

.J a

C L

1.

The first line gives the title of the displa; as shown.

The use of the underbar feature delineates this 31ne from the rest of the display.

2.

The second line gives column headings as shown.

Again, the use af the underbar clarlfles the display.

3.

The third 11 e gives the measure.] and normally expected values fror the di 3 measJrement.

Tne first fiele gives t r.e title, the second gives the measure-a level, the third gives the normal vala.

for the current status, and the last fiela gl ee the validity status and is b l a n k.

under normal "ondition:..

4.

Tne lourth line gives the f P.

measure-g ment results using tne same format as in line 3.

5.

The 'Ifth line gives the 6 P measure-e ment results using the same format as M Pbl 44 03/16

in line 3.

The use of underbar in line 5 delineates this line from the next.

6.

Tne sixth line gives the status of t r. e

^ umps as seen by the unit.

Tne rann:-,

Y par.ps are ident:fiel.

7-6.

The seventn line and e i g t.

lan. u r o.

normally left blank and are reserved for nydraalic i s o l a t o:.

t se: ct indicators, out of range sensors an; operator d:saoled sensors.

5.1.3.2 Trend D spie; I r. t t r

  • n; disp.a, for tr

/ esse:

D-

- on: tor s: a.. use t r. e for at shes- :.-

FigJre 5-7 5.1.3.3 Disclavs on Ma:n Prcce_ss nc U;.i t The one-line forty character alpnanumer:r display or. tne front panel of the main process:ng unit is used to display indi-M P81 44 03/17

vidual sensor inputs.

The sensor is selected with a two digit thumDwhee}

switch.

The following information is given for each sensor:

1.

Sensor identification 2.

Input signal level 3.

Input signal converted to engineering units 4.

Status of sensor input 5..

4 Disatled Inputs Any inputs can be disabled by the oper-ator.

Th2s actior. is under the control of a keyswitch on the front panel of the main computational unit and causes the processor to disregard the analog input for that uerlable.

M PSI 44 03/18

6.

~he current schedule for installina, testing, and cali-Dratina tne

'LIS is during the first refuelina outaae for this unit.

v DB1 55 04/1

7 Guidelines for the use of the RVLISA and analyses used to develop these procedures.

7.1 Reference Owners Groao Procedures Based on the analyses defined in Section 7.1.1 below and Sect'on 4.2 of this report, Westinghouse Owners Group have developed a Reference Energency Operating I n s t ru c t i c': :;o address recovery fron ICC conditions caused by a smal] break LOCA without hich head safe!" in]ection.

This instruction haF been transmitted to the !;RC via Westinchoose Owners Group letter OG-44, dated 11/10/80.

~.1.1 Conditions or Events which Describe the Antroach to ICC Tne most covious failure that would lead to ICC during a small break LOCA, although hiyhly un-realistic since multiple failures are required is the loss of all high pressure safety in3c_ tion.

The e.Sproach to ICC conditions and the analyses of this event sequence are provided in Section A,

References 1 and 2.

M P81 55 04/2

2 Ear.ple Transient The respor.se of the vessel level indications a r.d system response during these ICC events and recovery actions are described in Ferticr A,

References I and 2.

M PEl 55 04/3

A.

REFERENCES 1.

Thompson, C. M., et al., " Inadequate Core Cooling Studies of Scenarios with Feedwater Available, Using the NOTRUFF Ccrnputer Coce," KAP-9753 (Proprietary) and WCAP-9754 (Non-Proprietary), July 1950.

2.

Ma*t, R.

H., et al., " Inadequate Core Cooling Stuctes of Scenarics with Feed ater Available f or UHI Plants, Using the NOTRUP Computer Code," WAP-9762 (Proprietary) and 4AP-9763 (Non-Proprietary), June 1950.

3.

" Report on Small Break Accidents f or Westingnouse Nuclear Stea-Su; ply System," WCAP-9633 (Proprietry) and WCAP-9601 (Non-Pro-prie:ary), Jure 1979.

4.

Es:csito, V.

J., K es av an, K., and M aul, B. A., " hW5ci - A 7.TRAN-IV Computer Program f or Simulation of Transients in a Mul ti-Loop PWR," 4AP-32DO, Revision 2 (Proprietary) anc W: AT-E2E;,

Revision 1 (Non-Pro;rietry), July 1974 5.

Sr w ar ei, R., Jonns on, W., and Merr, P., "Westingnouse Emergen:j Cc e Cooling System Small Break October 1975 Model," WCAP-8973 (Pro-prietary) and WCAP-8971 (Non-Proprietary), April 1977.

6.

" Analysis of Delayed Reactor Coolant Pump Trip During Small Loss c' Coolant Accio..t f or Westinghouse N555," KAP-9524 (Proprietary) an:

WCAP-9555 (Non Proprietary), August 1979.