ML19291B061
| ML19291B061 | |
| Person / Time | |
|---|---|
| Site: | Fort Calhoun |
| Issue date: | 06/11/1979 |
| From: | TELEDYNE ENGINEERING SERVICES |
| To: | |
| Shared Package | |
| ML19291B045 | List: |
| References | |
| NUDOCS 7908290267 | |
| Download: ML19291B061 (41) | |
Text
'
s BASE PLATE STRUCTURAL AtlALYSIS SYSTEM AflSYS PRE-AtlD POST-PROCESSORS FOR FIllITE ELEMEtiT DATA GEtlERATI0ft AfiD LOAD SUMfMRY REVISI0fi B PROJECT 3501
!%Y 2,1979 (0RIGIf1AL)
!%Y 16,1979 (REVISI0ft A)
JUtiE 11,1979 (REVISI0ft B) 2013 176
~
kW"'?> ]T
"/cTELED/NE ENG'NEERING SERVICES 303 BEAR lilLL ROAD WALTHAM, MASSACHUSETTS 0215% 9082 9 0 M 7 617 890-3350
"RTELEDYNE ENGINEERING SERVICES Project 3501 Revision B June 11, 1979 ABSTRACT A series of two computer programs have been developed to function as a preprocessor and postprocessor to the ANSYS structural analysis system.
The preprocessor performs the finite element data generation for the baseplate geometry from a minimum amount of input.
The post-processor computes and tabulates anchor bolt loads, maximum plate deflection, loads in the concrete elements and shear elements, as well as average bending stresses across the length and a ross the width of the plate.
2013 177 J13=41-82
- ii -
ke"[sio*n!I
'vPTR FnYNE 3
June 11,1979 ENGINEERING SERVICES TABLE OF C0il,TEf1TS Pm 1.0 IriTRODUCTIO!1 1
2.0 SYSTEM DESCRIPT10il 1
3.0 BASEPLATE AllSYS PREPROCESSOR-POSTPROCESSOR 3-6 3.1 IllPUT INSTRUCTI0ris FOR BASEPLATE ANALYSIS PROGRAM 7-8 3.2 BASEPLATE MODEL C011FIGURATI0ftS BOX COLUMt1 HALF MODEL 9-10 BOX COLUMll FULL MODEL 11-12 WIDE FLANGE COLUMN, HALF MODEL 13-14 WIDE FLAliGE COLUIC1, FULL MODEL 15-16 CilAtit;EL COLUMN, l{ALF MODEL
' 17-18 CHANtiEL COLUMN, Fl'LL MODEL 19-20 ANGLE COLUtst, FULL MODEL 21-22 4.0 BASEPLATE AtlSYS POSTPROCESSOR 23 5.0 SAPPI E PROBLEM 23 5.1 LISTING OF SAMPLE PROBLEM IriPUT DATA 24 5.2 TYPICAL OUTPUT
SUMMARY
OF PREPROCESSOR-P0STPROCESSOR 25-28 5.3 TYPICAL OUTPUT PLOT 29 6.0 SYSTEM JCL FOR ACCESSING THE BASEPLATE PROGRAMS ON THE CYBER-76 COMPUTER SYSTEM AT THE CDC TWIN CITIES CYBERNET 30-35 CEt4TER g%%77~
2013 178 l
"vPTF1 mYNE Project 3501 ENGINEERING SERVICES P,evision B June 11,1979 1.0 ItiTRODUCTI0li The purpose of these programs is to generate a finite element model of a typical steel base plate which is secured to a concrete slab through the use of anchor bolts.
For evaluating a particular design, it is neces-sary to know the anchor bolt tensile and shear load, the load in the concrete, the maximum plate stress and location, and the maximum plate deflec' tion. A portion of the structural attachment to the plate must also be modeled to account for its stiffening effect on the plate.
~.
2.0 SYSTEM DESCRIPTI0fl The pre-and poc t-processors are compatible with the ATISYS program and are designed to t perate in sequence with AflSYS in the same job stream.
The preprocessor con.:nicates with AliSYS through a BCD mass storage file (TAPE 14).
From a minimum amount of input, the preprocessor generates the entire Af15YS input file. The AflSYS standard input file is redefined as a file named DATA (TAPE 14 = DATA) and AftSYS procceeds with the problem solution. The postprocessor retrieves information from an At(SYS binary output file (TAPE 12) and computes and tabulates information critical to the baseplate. The following flow diagram defines the basic system currently operational in the CYBER-76 computer system at the CDC Twin Cities Cybernet Center.
2013 179 3Sy;320 '
"vPTF1 FnYNE Project 3s01 ENGINEERINGi SERVICES Revision B June 11,1979 CYBER-76 SYSTEM OVERVIEW V
NiSYS BASE PLATE PREPROCESSOR I
TAPE 14 (BCD)
I f
~
AflSYS GEllERIC BASE PLATE STRUCTURAL AftALYSES 6
Y f
TAPE 12 l
AtiSYS l
OUTPUT m
1y NISYS BASE PLATE POSTPROCESSOR 1.
NiCHOR BOLT LOADS 2.
MAX. PLATE DEFL./t?0DE 3.
LOAD Ill COI1 CRETE ELEM.
4.
LOAD Ill SHEAR ELEM.
5.
PRIlMRY MEMBRNIE/CEllDli1G
' I
,_S Q Q } -
POST PROCESSOR OUTPUT 2013 180
~
o y
2013 18 EXIT
' Project 3501
"# TELEDYNE Revision B ENGINEERING SERVICES June 11,1979 3.0 BASEPLATE Af15YS PREPROCESSOR-POSTPROCESSOR 1.
The ANSYS STIF63 element is used to modyl the baseplate.
It is also used to model the structural member attached.
Th ANSM STIF40 element is used to model the anchor bolt (hook-tension orly), the anchor bolt shear (linear), and the concrete (gap-compression only). The struc-tural member attached (box, wide flange, angle, channel) is modeled with a single layer of elements. Typical baseplate configurations are shown in Figures 3.1 through 3.7.
The preprocessor input parameters are defined in Section 3.1.
~
2.
The loading is applied to a node on the structural member's cross section located at the centroid. This cross section is modeled as a rigid body in accordance with beam theory (i.e., plane sections remain plane).
Six degree-of-freedom loading is pennitted. These loads (forces and moments) have the coordinate system orientation of the baseplate configuration.
The preprocessor will prevent execution of ANSYS if anti-symmetric loads are applied to half models.
~
3.
The preprocessor internally divides the half model loads by 2 to account for symmetry.
4.
Rotational anchor bolt stiffness generally has little influence upon baseplate anchor bolt response and may generally be neglected.
5.
If bi-linear tension-no compression properties are not desired, use the appropriate flag on the B card and enter anchor bolt stiffness K1 but not anchor bolt stiffness K2.
6.
Anchor bolts should be placed at appropriate nodes to assure that plate element dimensions are square as possible (aspect ratio's > 1/6).
Anchor bolt patterns must be synmetric with respect to the line of symmetry.
I f half models are used bolts may be located on the line of symmetry.
2013 18l J E3 - W
"#TA FnYNE Se"vNi$nY
' ENGINEERING SERVICES June ll,1979 7.
The theory outlined below is used by the preprocessor to compute concrete spring stiffness. The following equation represents the dis-placement of a half space resulting from a rectangular distribution of load.
2 AVE, mP(1-V )
y E /g--
W
= deflection ve m
= numerical factor (assumed.95) depending on the ratio of baseplate side lengths.
P
= total load V
= Poisson's ratio E
= modulus of elasticity A
= surface area of baseplate K
= stif fness The above equation is transfomed to the following form of baseplate total stiffness.
P
_E[
y' _ W
- (l'V2)
AVE This total stiffness is applied to the baseplate by individual spring stiffness at nodes.
These individual spring stiffness 2s are proportioned according to their contribution area. The postprocessor then list each spring force as well as average concrete stress.
201,3 182 35h34
"R TF1FDYNE
[c' $Io'n l I 3
' ENGINEERING SERVICES June 11, 1979 8.
Anchor bolt material laws are shown below.
Linear Tension-flo Compression F
K1 A
Bi-linear Tension-fio Compression F
K2 I
I I
I I
K1 l
-3
/
CAP Nb324 Use of the bilinear option will increase computer cost 2013 183 significantly.
Project 3501 "vPTF1FnYNE Revision B ENGINEERING SERVICES June 11, 1979 9.
Shear and moment anchor bolt stiffnesses are also used to represent anchor bolts.
Y A
X Ks Ya lN
~ C
^
^k
>Z gvvvy Km g
- y7 K1,K2 GAP O
= supported node Km = rotational stiffness Ks = shear stiffness Kl = axial stiffness (linear)
K2 = actual stiffness (bi-linear) 2013 184 JL5 71) e e _7
, - U D ') _ _
"R TF1FnYNE Project 3501 ENGINEERING SERVICES Revision B June 11,1979 3.1 INPUT INSTRUCTIONS FOR BASE PLATE ANALYSIS PROGRAM CARD COLUMN DESCRIPTION A
Title 1-76 Problem Title B
Model Key an( Loading 2
0-ANSYS output l-suppress ANSYS output 4
Model type 1 box column, half model 2 box column, full model 3 wide flange column, half model 4 wide flange column, full model 5 channel column, half model 6 channel column, full model 7 angle column, full model 6
Plot flag 0-no plot, run 1-plot, run 2-plot, stop 8
Bolt property flag 0-linear tension-no compression 1-bi-linear tension-no compression 21-30 FX load 31-40 FY load 41-50 FZ load 51-60 MX load 61-70 MY load 71-80 MZ load C
Anchor Bolt and Concrete Parameters 1-10 anchor bolt axial stiffness K1 11-20 anchor bolt axial stiffness K2 21-30 anchor bolt clastic. displacement 31-40 anchor bolt shear stiffness l
41-50 anchor bolt rotation stiffness 51-60 concrete strength (f'c)
Cl 1-3 bol t locations 4-6 (specify plate node nunbers in sequence, 7-9 snallesttolargest) 10-12, etc.
Mh b
m 7f113 185
Project 3501 "vPTF1 Frh'NE Revision B. ENGINEERING SERVICES June 11,1979 CARD COLUMN DESCRIPTION
?
C 2, C1, C4 1-3,4-6,7-9 Concrete springs to be eliminated,3 10-12, e tc.
(specify concrete node numbers in sequence, smallest to largest)
Dimensions D
l-10 A
11-20 B
21-30 C
31-40 D
41-50
'E 51-60 F
61-70 G
71-80 H
D1 1-10 I
11-20 J
21-30 K
31-40 L
E Thickness 1-10 T1, plate thickness
,11-20 T2, column thickness, web 21-30 T3, column thickness, flange 1
Code a blank or 0.0 if anchor bolt rotational stiffness is not desired.
Integers are right justified in field.
Include cards C3 and C4 even if blank.
4 Code a blank or 0.0 if dimension is not applicable for particular model type.
5 Code a blank or 0.0 if thickness is not applicable for particular model type.
-893 9 27^
2013 186
"/PF RWNE Project 3501 ENGINEERING SERVICES
$n"Pjy"$979 FIGURE 3.1.1 BOX COLUM1 IIALF MODEL Yu v
g n
2 6
b/
N \\
eM e,
k 2
e D
/
x
/
i 2013 187 -&S3e178
/y
'Proje'ct 3501 "vPTF1 FnYNE acyision a ENGINEERING SERVICES June 11, 1979 FIGURE 3.1.2 B0X COLUtd }{ALF l0 DEL l'0DE F1Ut0ERIf1G s+
e2 o,
Ay g
St Db
>g 9
M 19 39 49 59 to9 39 i
7 n
27 37 47 51 b7 77 5
is 25 3G 46 65 fos 75 3
6 23 33 43 GS 63 13 I
in 2r si 41 St G) 11
. 80 e 2D
, 80 40
, $D
, 60
, 10 60 8
, 16
, 28
. SB 46 58
. to 8
~78
~
.6
, f (o
, 2.6 SG
, (36 7/o 4
, 14
, 24 o '3 r 44 54
. 64 7+
/
.2 ot2
, 27.
32 o 42
.62 82.
72.
_12 } } ' ' i 2013 188
i i
"R TF1FDYNE i
"" N{oni I ENGINEERING SERVICES t
pey
_y_
June 11,1979 FIGURE 3.2.1 - BOX COLUMN FULL MODEL i
YA i
/
f.
/
i iy-h, O
\\
4
/,
N 7
F V
N' 20 0 189 453-130
Project 3501
"/PTF1FDYNE Revision 8 ENGINEERING SERVICES June 11, 1979 FIGURE 3.2.2 - BOX COLUMil FULL IODEL
!! ODE NU!GERiflG
/60 149 X
n 146 o e
v i49 16I
- >-Z l AW I45 i.
\\43 141 tb el l'il 135 in s'bl 12.9 12 7 125 12 3 17 1 li'l 88 7 les its i
111 109 107 105 to3 ion e
ql
\\
n 3G
'13 91
' ot S1 85 B5 88 c
79 77 75
.75 7:
69 u7 os i
L3 61 59 57 55 GL 51 49 47 45 '
43 41 39 37 36 33 I
31 19 27 25 16 2.1 19 r1
+
16
'S 11 1
7 5
3 I
o 144 o l%2-o 14 0 o' \\SS e\\%
e 134 o m.
e\\so c17.6 ol2 L ott&
o \\ ?.2.
e n.o o 11 0 e 11b
- 11 4 0111 0110 e lob etub 0104 e 102.
o 10 0 e98 1
096 e 94 092 0 90 e8B es6 o 64 est i
080 07 B elb 074 ell o 70 c68 e L6 i
o64 o62.
ec o
+53
- SL e G A-o G7.
e50 1
I 048 04b o 44 e42 e4D o33
,3(,
op 3z 30 o 2a
.zu
.2+
22
.w
.,3
.,a
.,+
o,1
.,o os oc 9955 190
.a 2
.I
,?
' project 3 sol "vPTF1 Frt(NE Revision B
_ 33 _
NERG EWW June 11,1979 FIGURE 3.3.1 - WIDE FLAfiGE ilALF MODEL
/I
/
6 N
'\\
f a
4 L
<\\
,J 1
y a
R)V b
.i i
2013 191 1
I
.I
' Pi oject 3501 "vPTF1 FnYNE Revision a
_ 14 _
ENGINEERING SERVICES June 11,1979 FIGURE 3.3.2 - WIDE FLAftGE HALF MODEL ft0DE ftUMBERit{G i
9a hX 91 95 9l 94-i 9
l'1 2.9 33 49 59 69 79 89 51 7
17 27 37 47 57 L7 17 5
15 25 36 45 55 65 75 s5 t
3 13 z3 33 43 53 63 73 83 1
)
I il 2.1 31 41 51 61 71 81 I
e lo 2o eso e 40 e so-e Lo 7o eso
+90 I
{
- O o18 o'48 039 e 48 oQ 0 6g 078 ogg i
o6
.)G a 2f, 0 3L.
046 056
- 66
- 4
- Sb
'4
- 14 e 24
- 3 4-e 44 e64 e lo4 074 e 64-e 2-
- 11 0 12.
o32 e 4f e 62.
e,62.
- 072, eB2.
2013 192
gm AfNE g(yps3on9 ct as01 ENGINEERING SERVICES
- is _
June 11, ig79 FIGURE 3.41 - WIDE FLANGE COLUfW FULL f0 DEL AY
/\\
m A
f i
r
/
R P
I V
i
/
e 2013 193
\\
Ts N
"vPTF1FnYNE Project. 3501 ENGINEERING SERVICES Revision B June 11, 1979 FIGURE 3.4.c' - WIDE FLAl1GE COLUMN FULL 10 DEL i;0DE flu'4BERIllG I69-
'I' I cc) c N
o i st.
lL3 16S
%-3 165 17 35 53 71 89 to) 12 G i43 IL) 15
- 73 5)
L9 87 los 12.3
' 141 15Cf 15 31 49 67 O c.
10 5 125 169 15 7
'l l'1 47 ts
! 33 lot it'l 131 (55
't 2.7 46 L3
- si ci9 g) lss 153 i
7 25 43 Lt li 31 its 13 3 ist 5
23 tl 59 77 cts t13 13 84'l r
(
3
'2.1 31 67 75 95 111
'129 847 i
l'1 37 SG
'l5 91 iog IE7 s4G f
o I E, o%
eG4 0 72.
o90 01C6 o 17.b o 14/r o I b2-o n t-o34-o G1 o'70 o 88 o it6 o 124-o IM.
e t i,o o 14 o 57.
o 50 068 eB6 o (b4-o 11'Z.
o14p
, l68 o t'Z.
o 3o o48 ebb o 04 o to'L o 12 0
- ISS e 156 e)D
- . 28 o 4h e c4 o 82.
e loo ello ol'36 o 15 4-e8 o lt, o44-o bl eSo e 96 0116 el'54-e 1st o6 0 24-o 42 oto o73 oq b o 11 4 e i:5'L oggo 04 0 21 0 4D o sa o76 c
ol+
o ll2.
el30 ot48 2
oto e 3g
.g'
' 74'
' 'l 2 el 0 ol28
+14 b 2013 194
"vPTELEDYNE Project 3501 ENGINEERING SERVICES Revision B June 11, 1979 g 3.5 I ~ gggm6
\\\\M T y096 4h*!N N N
t a
rN 9
/
- ~
/
YI v
8
\\
~rW
/
e e
7@3 g93 s
"#TR FrWNE Project 3501
- la _
ENGINEERING SERVCES Revision B June ll,1979 FIGUF.E 3.5.2 C11At1NEL COLO4' ilALF MODEL f!0DE tiW18tRIfiG s
EX B1 o 64-
>g AI SS cl 1 'l 2.9 3'1 44
!59 b3 3 <1 7
n z1 m
e 57 tei Ti-5 is zs 36 45 65 L.G 3
13 23 33 43 53 63 73 l
l.l I
ll 11 B) il
$l
~ G1 7
0 10 020 o 30 0 40 o 50 e (.O e '10 -
o PA ed B
- l8
- 28 o38 o 4B e65
+13
. ;S xy b elfo 026 e%
e 46
- Sb o6 t, e%
e h4 o 44 54-e 64-74 a4
- 14 e 24 et e i z.
- 22
- 3i
- 4'Z.
oS1
+ 61 e 72.
2013 196
fro.iect3501 "R TELEDYNE Revision B ENGINEERING SERVICES Jbne 11, 1979 FIGURE 3.6.1 - CHAtifiEL COLUtfi FULL lDDEL AY f [ N
/%
/
\\z v
e
/N)
,/
B
/
/
s P
i
,/
ex s
/
l RP l
/
v 2013 197
"vPTF1 FnYNE Froject 3 sol ENGINEERING SERVICES Revision B June 11, 1979 FIGUPI 3.6.2 - CitAfiftEL COLUMfl TULL liODEL i;0DE ltUm ERiflG
/47
. f 49 J,X I
/46 e/go 2
/46 7,q le 14) s 'A i31 15 5 i33 l'al 119 12.')
115 12 3 Ill inq l17 lis ing lit Ipq lb7 13 30.3 so qq
<t 7 S5 93 91
'69 67 65 63 of li 77 73 7s c9
- c. 7 cs t.3 t,i T9 57 65 53 Gi 49 4 'l 45 43 41 3'i 3'l 35 53 31 29 27 25 23 21 6
17 15 13 11
')
7 5
3 I
14 9-o 1 4 2.
e l40
- 15 6
- 13/o e 13 4 o 132 oGo o 11 6 o l'LL
- 1"Z4 o 117.
e llo e il 6 o li t, ell 4 0 112
'
- llo
- lob G lib o 10 4-o 10 2 o lo o 09/3 e 96 e 9+
+ 92 o 90 e 88 e 6G o B4 0 32 o so o76
= 76 e 14 072 e 70 e 4,8 est e t,9 e 62 e so o G-6 e5G o 5 4-e 52 o Co 0 46 e46 e 44 e 41 04o o '3 A o36 034 o31 oSo e20 0 26
- 2+
e 22 o2D 016
- 16 o;4
- \\2 al0 of e t, o4
- 1
^
2013 198
Project 3501
"/PE RVNE
- ENGINEERING SERVICES Sunii$"!979 FIGURE 3.7.1 - At{GLE COLuffi FULL MODEL f b$ ONIhIfdbm g
/
\\e' Ay
~ A'
<x 6
2 Y
a 4
~
N
~.-
- ~
p, if
..-s 5
~~
s y
h RYb 4
2013 199
proicct 3s01 "vPTF1FnYNE Revisi6e a ~ ENGINEERING SERVICES June 11,1979 FIGilRE 3.7.2 - AfiGLE COLUMN FULL 140 DEL liODE flUt3ERiflG 130 e l'57.
119 331 15 Sl 47 f,3 79 95 til 117 g3 19 45 fn 77 93 jo9 17 6
~
11 2.7 43 59 75 9:
1o7 II3 9
7.5 4-1 h
. 57 73 69 log 121 n
7 13 31 I5
~71 87 l o.$
33 9 s
21
",7 53 L'l es 101 Ill
~
3 19 ci b7 83 c9 11 5 t
11 n
49 b5 lel 47 li'5 a i t,
- 32
- 48 0 64-
- 86
- 4 t, e n2.
- IIS
- le
' 46
- 6 Z-e 7B 44 e llo
. lit, o 11 o ?b e 44 06o o 71, e 91.
e 108
. 11 4 o lo o 76
- 4 2-o 5B
'74
+90 o b6
- 111-
+8
- 24 040 o Gb
- 71
- BB
- 104
- D0
'6 t '22.
038 o GQ-020 0 84 c io'L e t t 'b
+4 o20
' 3(-
- 62.
- to o 64 01.v e ith
~
- 2 o tB o 34-
- 6o
- M e st o 48 e114 2013 200
"vPTF1FDYNE EevisNnY ENGINEERING SERVICES
- June 11, 1979 4.0 BASE PLATE AttSYS POSTPROCESSOR From the results of the last iteration in the AtiSYS solution, certain information is required.
The postprocessor reads an ANSYS output file (TAPE 12) in hinary mode and computes and tabulates anchor bolt loads, nuximum plate deflection and node it occurs 'at, the load in the concrete elements and shear elements, and the average bending stresses across the length and across the width of the plate.
The sample problem included in this document shows the postprocessor printout for a typical base plate.
G.0 SAMPLE PROBLEM Model
Description:
Channel column half model 18" x 18" base plate
' Loads: M load = 2500. in-lbs.
x 6
Stiffnesses:
K
= 0.285 x 10 #/in bolt 6
K
= 30. x 10 #/in shear F
= 4000 Psi c
Dimensions:
A = 9.0 B = 18.0 C = 2.25 D = 2.25 E = 3.0 F = 4.5 G = 2.25 H = 6.75 I = 2.25 Thickness:
T1 = 1.5 (Plate)
T2 = 0.5 (Column Web)
T3 = 1.0 (Column Flange) 2013 201
'9PTELEDYNE projec,t 3s01 -
Revision 8 ENGINEERING SERVICES June ll, 1979 5.1 Listing of Sampic Problem Input Data CHANNEL COLUMN HALF HnDEL Mr=2500, 5 1
- 285000, 2500, 13 63 3oo000
- 4000, 2 4 6 6 to 18 2.25 2,25 3,
c.S 2,2S 6.75 g
1.5 5
1, 2013 202 O
D [~
D ]" h ~ f A
"RTELEDYNE proiedi.501 ENGINEERING SERVICES Revision B June 11, 1979
'5.2 Typical Output Summary of Preprocessor - Postprocessor
......................-.,...................<<...,.......,.....te...res...<sseet<v.,<
PRE PROCESSING FOR HASE PLATE ANALYblS
.........................................---........-~..
t a
SUMMARY
OF INPUT e
CHANNEL COLUMN HALF HUOLL Mx:2500, 8
A HODEL TYPE S
CHANNEL, HALT HODEL i
e A
A m e * * * * *....... s m.. s.. e....... A........ s.. e A s....... &. A A A A. A s
- A A A i s e. s # A A A i A A 8 8 A t t a
- LOADlhG DATA **
FX 0,
FY 0
FZ 0,
HX 2500,0 HY 0
HZ 0
ANCHOR I;0L T P AR ANElrRS a.
BUL 1 511FTN[SS K1
,2 fl5 0 0 L + 0 6 BOLT 511 F F.JE S S K2 0,
BULT SHEAR SIIFfNESS 30000t+06 HOTATIONAL STIFFNESS 0
CONCRETE STRENGTH 4000,0 a.
DOLT LOCATIONS 15 63 0
0 0
0 0 0
0 0
0 0
0 0
0 0 0 0
0 0
0 0
0 0
0 ELIN!NATED CONCREll SPRING LOCATIONS s.*
2 4
6 8 to 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0
0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
- D1pENSIUh5 FOR CH A%LL Half M00ll A
9,0000 0
18.000 C
2,2500 D
2,2500 E
3,0000 F
a,5000 C
2,2500 H
6,7500 1
2,2S00 e*
THICKhESSES **
PLATL 1.5000 9013
~703 HED 50000 FLANGE 1,0000
- Project 3501 R6visi,on B -
June 11, 1979 "RTRFnYNE ENGINEERING SERVICES POST-PROCESSING FOR DASE-PLATE AhALYS!$
e SUMM ARY OF RESUL TS G
CHANNEL COLUNN HALF HDDEL HX 2500, e
- HODEL TYPE 5 CHANNEL COLUMN, HALF MUDEL o
a e
...........**....*4..................................................na*4........
DISPLACLHENT
SUMMARY
(PLATE ONLY),
- A X DIRECTION s
HAXIHUN NO.
NODE VALUE 1
37 91304E-06 2
35 55990E-06 3
33 44921E-06 4
31 41459E-06 5
23 32498E-06 HINIMUH NO.
h00E VALUE 32 71
,18878E-06 31 73
..17757E-06 30 75
. 14723E-06 29 3
.,98038E-07 28 5
.93096E-07 Y. DIRECTION HAx!NUM NO.
NODE VALUE 1
9 44359E 03 2
7
,43504E-03 3
5
,39817E-03 4
19 38611E-03 5
17 37967E-03 HININUM NO.
NODE VALUE 40 79
.,31307E-04 39 77
.,30460E-0a 38 75
,27095E-04 37 73
. 23710E-04 36 71
.22554E-04 a
2-DIRECTION HAx!NUM NO.
NODE VALUE 2013 204 1
47 47053E. 06 2
59 36075E-06 3
69 33684E-06 4
49
,$3396E-06 5
57 32516E-06 HININUM NO.
AUDE VALUE
PioJec,t 3501 "vPTELEDYNE
,' Revision B ENGINEERING SERVICES
' June 11, 1979 q A, { V st J
3 40 29
,54139E-06 39 19
.40713E-06 38 9
39779E-06 37 17
.37449E-06 36 37
.3662BE-06 ANCHOR 80LTS DOLT fiUDES AxlAL SHEAn sHLAR HO, F0HCE L
X 1
13 14 83.067
- ,4111tE.02
,31096E-01
'2-63 64 0,
4111tE-02
.ll?93E-01
- CONCRETE SPRINGS - Y DIRECTION **
ELENENT NUDES F0HCE S1HESS 5
12 11 0,
0, 7
la 13 0,
0, 12 16 15 0,
0, 14 18 17 0,
0, 16 20 19 0,
0, 17 22 21 0,
0, 19 24 23 0,
0, 21 26 25 0,
0, 23 28 27 0,
0, 25 30 29 0,
0, 26 32 31 0,
0, 28 34 33 0,
0, 30 36 35 0,
0, 32 38 37 0,
0, 37 40 39 0,
0, 38 42 41 0,
0, 40 44 43 0,
0, 42 46 05 0,
0, 44 48 47 0,
0, 46 50 49 0,
0, 47 52 51 0,
0, 49 54 53 0,
0, 51' 56 55 0,
0, 53 58 57 0,
0, 55 60 59 0
O.
56 62 61
,37149
.14676 56 64 63
+1.5c60
.20911 67 70 69
-5.SM29
-2.6357 68 72 71
-5.8833
- 4. / 's 41 72 80 79
-6,4511
-6.7024
,2 0 i 3.2 0:e) 63 66 65
-7.2621
-1,2910 65 68 67
-!!.866
-2,4859 69 74 73
-13,067
'i.0097 71 78 77
-15.190
-6.4982 70 76 75
-15,829
-5,75'i9
WTELEDYNE j,,.ojec't dal
-2a_
ENGINEERING SERVICES Revision B June 11, 1979
\\f h
0
- AVERAGE BEido!!4G THROUGH CROSS SECTIONS OF DASE PLATE *a SECTION MODULUS SXX 3,3750 Z AXIS LOCATION H0HENT A800T X UENDING SynESS 0,
0, o);.q t.o 9
{'
.151E-08
- 198, 29*3 S.82
- 592, 87,3 9.15
.go3,
,gg 3 I2*4
- 813, 120 14,7
,, q 3 9
-65 l Ta-7:
4 SECTION HDDULUS SZZ 6,7500 x AXIS LOCATION t10HE rli AHOUT Z B L t.p i tiG STRESS
-9,00 0,
0,
~7,88
-7,04
- l.04
~5,50 63,7 9, tt 3
-3,00
- 190, 28,2
,8/5
- 283, 41,9
,875
- 283, 41,9 3,00
- 190, 26,2 5,50 63,7 9,43 7,BB
-7,04
-1,04 9,00 0,
0,
- ANSYS Two DtsEtlSION AL PLOIS Anana Et40 PLOIS *.***
2013 206
'7PTELEDYNE Project 3501 ENGINEERING SERVICES Revision B June 11, 1979 5.3 Typical Output Plot
-) C')
8 3
S
?
3 2
3 38 13 35 li tt 6
23 33 35 Il 23 15 di 23 88 23 22 21 31 47.
- 39 s
27
'J 9 31 31 tl
%)
45
%1
%9 39 97
%D
%S 53 5%
%1 19 4e so 42 w
c c3 45 53 ss
%)
$y se es is in 15 13 19 f
LE0nlint p.e5Fs y
LCOMf.1Mr RNSTS 2
88 to 38 3%
s.**
Lt 3nf 1M f D*8'a f's 3
Lf d,r 1.*( y py,gg q,
2013 207
....w.,.
,,,,t.....,,....,
"vPTR FnYNE Project 3501 ENGINEERING SERVICES
_,0 -
Revision B June 11, 1979 6.0 SYSTEM JCL FOR THE CDC CYBERNEf SYSTEM 6.1 CYBER 76 Computer System at the CDC Twin Cities Cybernet Center operating under SCOPE 2.1.
JOB card ACCOUNT card MAP,0FF.
ATTACH, PRE, B AS EPL ATEPRERE VB, I D= G9, MR=1, PW=
)
PRE.
REWIND, DATA.
ATTACil,REV3, Af15YS37G,I D=APPLIC.
LIBRARY,REV3.
RFL,150000,L=200.
AtlSYS, DATA,PL=999999.
REWIllD, TAPE 12.
ATTAC H, POST, B AS E P L ATE POST RE VB, I D = G9, MR= 1, PW=
)
POST.
~
REWIf10, TAPE 21.
ATTACH, D2P LOT, D2 PL OT, I D= APP LI C, MR=1.
REQUIRED D2 PLOT.
PL TItiG
< REWIf1D,fiPFILE.
COPE K)DE ATT ACH, UllI POST, UtlI P OST, I D =AP P L I C, MR=1.
OtLY g,.iI POST, D= COPE 0CC,1.
REWIflD,PLOTF.
, DISPOSE.PLOTF,PT.
HDFILE,2.
EXIT.
NDFILE.2.
/8/ 9 2013 208
"& TF1FDYNE
$"ev. -
3' I
5sion B
_ 31 ENGINEERING SERVICES June ll, 1979
[ BASEPLATE PREPROCESSOR IriPlTT DATA]
7I8 I9 U:{IPOST PLOT I fiC R=. 005 *S CALE= 1. 0 *S CHAR = 1. 0* DRAW $
DIRECTIVES 6j 7
I8 I9
~.
6.2 CYBER 17S ECZ Computer System at the ECC in Rockville, MD.
operating under SCOPE 3.4.
JOB card USER card' PROJECT card (optional)
PAP,0FF.
ATTACH, PRE,BASEPLATEPREREVB,ID=G9,MR=1,PW=
)
PRE.
REWIllD, DATA.
AP PLI C, R3AfiSYS, R3STI F, R3ST RS, D2P LOT, U lI P0ST.
RFL,160000.
AfiSYS, DATA,PL=999999.
REWI fiD, TAPE 12.
ATTACH, POST,BASEPLATEPOSTREVB,ID=G9,MR=1,PW=
}
POST.
REWIllD, TAPE 21.
D2 PLOT.
REWIf10,fiPFILE.
q Util POST, D= COPE 0CC,I.
REWIf1D,PLOTF.
ROUTE,PLOTF,DEF,DC=PT,U?t=username.
,I 2013 209 8!9
' Pro.ibet 3501 W TELEDYNE
" ENGINEERING SERVICES
$nl.'l$"$979
[ BASEPLATE PREPROCESSOR IllPUT DATA]
7 I8 7 9 UNIPOST PLOT IttCRc.005* SCALE =1.0*SCHAR=1.0* DRAW $
DIRECTIVES 6
/ 7
!8 I 9 2013 210
9PTF1 FTT/NE
.[5vNIo'nf ENGINEERING SERVICES 3
_ 33 _
June 11, 1979 6.3 For baseplate geometries not compatible with the baseplate pre-processor which may require modifications to the AftSYS input data, other procedures are required. When processing in a batch mode, a two job step process may be used.
Job Step 1: Execute the preprocessor to obtain a card deck of the AftSYS input data for the baseplate configuration which most closely approximates the baseplate to be analyzed.
Job Step 2:
Incorporate modifications into the card deck ab-tained in Job Step 1 to meet the modeling require-ments for the baseplate to be analyzed,. and execute the ANSYS program with the modified input data.
It0TE:
Modifications to the baseplate finite element model may render it incompatible with the postprocessor, therefore the postprocessor should not be used.
The anchor bolt leads must be extracted from the AftSYS output of the last iteration.
2013 211
3 I
"/PTF1 FnYNE
[c'vsjo'n B
- ENGINEERING SERVICES June 11, 1979 6.3.1 CYER 76 JCL (Job Control Language)
Job Step 1:
Preprocessor execution with card output JOB card ACCOU!iT card
!MP(0FF)
AT TACil( P RE, B AS E PL ATE P RE RE VB, I D = G9, fir = 1, PW=
)
PRE.
REWItiD(DATA)
COPYBF(DATA,PutiCil)
REWIfiD(DATA)
COPYSBF(DATA,0UTPUT) fiDFILE(2)
E XI T.
liDFILE(2) 7
/8
/9
[ BASEPLATE PREPROCESSOR I!1PlH DATA]
6 f
- 7l8, 9
2013 212~
W TF1FDYNE fcv ro ta 9n a
- 3s -
ENGINEERING SERVICES June ll,1979 Job Step 2: ANSYS execution with modified input JOB card ACCOUNT card ATTACH ( REV3, Af15YS 37G, I D= APP L I C, MR=1 )
LIB RARY,REV3.
RFL,150000,L=200.
At15YS,PL=999999.
NDFILE(2)
EXIT.
!!DFILE(2) 7 I8
!9
~
[ MODIFIED BASEPLATE IllPUT DATA CARD 5]
FROM JOB STEP 1 6/ 7
/8I 9 NOTE: A similar procedure may be used for the CYBER 175 operating in batch mode. When operatin9 in an interactive mode, the input data to ANSYS may be edited, modified on line, and executed. This single job step negates the need for card output in a batch mode two job step operation.
2013 213
'e s
a f
ATTACHf1ErlT I CONSERVATIVE PRELIllIflARY CALCULATIONS FOR LOW LOADS Otl BASEPLATE Hand calculations to be used in lieu of finite-elenent analysis for baseplate anchor bolt laods:
gp L I
Moment Loadina r]M he-L
?
N B 4
Sc R
f1 Assunes centroid of concrete reaction
=
B L
is at plate center line.
R is total load for bolt line; if 2 bolts in bolt line, T B
B "B
etc.)
2 Tension Loading Take tensile load and divide it by the number of bolts, then multiply by 1.5 T
P x 1.5 n = number of bolts
=
B n
Shear Take total shear load S, divide by number of bolts S
b B
n 2013 214
.,:m#~/
.,. 9 q.
. :gm n w.:
?
"ph r FDYNE ENGJNEErd!G SEBACES "U '/
.c/
~
ey_
/'JC DArrf ?/-77 cM227 Ho.
3 0F T CHKD.BY 06 DATE f*3)~79
/
PftOJ. %.-
H*l
/
/2'x /?'" 8ASEfrA75
% /%'/Lt tFS SA'dP -OFT W'lX/3 COMPARIS0:10F PRElll1111ARY C0!iSERVATIVE 110 DEL TO TES CURVES FOR PULLOUT (TEllSILE) LOAD TES curves and AflSYS F. E. models were used to evaluate loads on plates of 3/8" and smaller thickness or large loads.
seco-
~
'/" ~
Conservative Model c-C o
Es
- 3m -
Do ArtSYS Pre-Processor co K
Pa 10000.
y x
2 coo -
4 Jo n -
l0\\J s
a M
W I
g e
"#1 H FnYNE ENG!Ni+PJNG SERVICES sy-
- 7C oArr f-3/-77 m m._
Y caiKD. EY_65 oarr S,'/-77 or f
rnoa. wo.
2ra/
l2x /2' S.ailuTi fit 1:u9.s JA%!-OFT M k/3 ti0liEriT LOADIllG C014 PARIS 0ll 0
Geo-
~
Sooo
~
Conservative tiodel X
'fooo ~
C a
b g$
3o* -
d AflSYS F. E. 11odel XN liX
- Soooo -
x 2000-w fo o -
e 2013 216 I
l t
i I
I 3h (1
I fu175 'nt,ce'.Ess (v..)
ATTACilitEitT II T (lension)
Tu/5 Tu = Ultimate Tensile Capacity
'/
Su = Ultimate Shear Capacity
//
> S (Shear)
Su/5 The equation for the straight enveloping line is:
T
+
S 51 (II.1)
Tu/5 Su/5 where T tensile bolt load
=
S shear bolt load
=
Every calculation which falls within the shaded area meets the requirements as specified by the bulletin (i.e., safety factor of five). All calculations for shear tension interaction are based on equation (II.1)
J13 217
..,\\..
e ATTAClli1EtlT III O
u'
)
DYiW11C PERFORIAN!CE EVALUATION OF RED HEAD #:CHORS IffiRODUCTION HISTORICALLY, PUELISHED DATA CC?!CERflING TFE PERFORl'A!:CE OF EXPNISION NICHORS HAS EEEN LIfi!TED TO THE EFFECTS OF STATIC LOADS. TIE TEST PROGRN4 REPCRTED HERE IS lHE FIRST EFFORT BY AN N!CHOR IMt!UFACTURER TO C0iPILE DYilNilC LOAD DATA FREQUENTLY SOUGHT BY DESIGilERS. THE TESTS
.WERE Co?! DUCTED FOR ITT PHILLIPS DRILL DIVISION BY f%TERIAL RESEARCH LABORATCRY, INC., GLEf&DOD, ILLINOIS,
~.
0 EJECTIVE & SCOPE THE OBJECTIVE OF THE TEST PROGP#1 FAS TO DETEPJ4It!E TFE HOLDING ABILITY OF SELECTED RED HEAD EXPMISION N!CHORS WlEtl SUPJECTED TO TENSILE LOADS APPROXII% TING SEISi4IC CONDITICflS.
THREE T/ PES OF ANCHORS Ill 1/2 It!CH AND 3/4 II.'CH SIZES WERE TESTED:
SELF-DRILLIt!G ANCHORS n
N >. m u."- $!
iT CATALOG I!UlGERS S-12 NID S-34 FrS p
a
~ _ _
SLEEVE N CHORS CATALOG t!U GERS HM-1230 F'
~ =r 2 E=='" '
q, AND HN-3440 y j.'__ ],8 3 hj s
WEDGE NICHORS CATALC f33ERS WS-1226 f]Q g
212tG.
In~7IIgg d
w V-20l32h8 D
TEST APPAF.ATUS
..,]lh. < i.:.l. ' I Ff3.% }? [3.3. 4 M
,a...
,e i
.a r.
THE TESTS WERE COMDUCTED IN A 50,000 LB.
lJ;,.].
I'J M,.}a l
i, A,s,,T-]
1j$d' %:b d/ :)-~E @Wd jr.-
t 1" L f 'l * ;
1 SERVO-HYDRAULIC TESTING iMCHINE. THE FRCi4 A filMIT'.Uti 0F 300 LES. TO THE PRO-9 v. i
- '.-,.f!
M DYiM 4IC LCADS NERE SINUSOIDAL Ill A RN GE GRA'4ED i'AXiiH4. THE filtilini TENSILE LOAD y ;,h)
) -'
GM!!
\\MS I ECESSARY TO FREVENT SERVO UNIT DN%GE
..' ' W. DL. Wil. bl
- )E7]SjG,ld[f{g3dl milch I41GhT CCCUR UNEER ZERO OR CCFPRESSIVE
-m[
Qf LOADII'G. THE iMCHIi:E HAS THE CAPABILriY a
TO CCNTIf!UOUSLY CCFPEi! SATE FOR ANCHOR DIS-
]iu K i 1 2 % qjf3 @
Jg-M PLACE 1'.EiR.
LOADS WERE READ CN NI OSCILLOSCOPE.
- -*; 9 L [,h
- .Q.";-'=
- Q_ _.st e ' q%"., % p[?f THE LOAD HAS APPLIED TO INTERNALLY THREADED d,
i.
ANCHORS BY A SHORT THREADED R0D CONNECTIi!G
- /i
,2,,7
.,j' *. I t :. o THE SPECIME!! TO A COU?LER MlICH WAS CROSS-
[g :. i
%' i D
- > -2 i,-
F PINNED TO THE HYDRAULIC CYLIllDER.
EXTERNALLY M C f... d - f } ) M;
.t
- *i$i THREADED N!CHORS WERE CCNNECTED DIRECTLY TO k.**
?
- k 7' '
THE COUPLER. THE REACTION BASE WAS A 16 INCH
![i j.d..' ' b j@l $N.'.
DIN 4ETER RING.
, _1;,,'Jii';f 'V. "N1y %:i r8C i' 1 s,-mxp; ;~ -
V a : -,-.
/ f J -mt.t.2
/
t.
TEST PAR /# TERS THE TEST PARN'ETERS WERE DEVELOPED FRCl1 THE TESTII:G STNTARD PUBLISHED BY THE EXPN! SIC:1 N CHOR PN:UFACRJRERS Ii STITUTE (E. A.il. I.).
FRECUEt:CY - - - - - - - - - - - - - - - - - - - - - - - 5 CYCLES /SECOND DUPAT I GN - - - - - - - - - - - - - - - - - - - - - - - 3 0 SECC."DS CONCRETE STREi:GTH - - -- - - - - - - - -,- - 6,00 0 P. S.1.
TYP E OF LCAD - - - - - - - - - - - - - - - - - - - - - TEi!S I LE l
2013 219
% ]i b:d [] D [-] J \\J b D
U :f; U
m TFE TEST SPECit'E:!S 'eERE li! STALLED BY PHILLl?S DR:LL PERSCi::EL IMTO 16"X 16"X 8" LI?'ESTC::E AGCREEiTE CC? CRETE ELCCKS, HAV!t n AN A.cr?.0XIl%TE CC:'?RESSIVE STRE::GTH OF 6. 000 P.S. I.
THE It!!TIAL l%XIMJ:4 DYi!A'11C LOAD APPROXIl%TED 60% CF THE ULTI ' ATE STATIC LOAD.
AFTER THE FIRST 150 CYCLES, THE f%XIt'.U:4 DY 'A111C LCAD FAS It' CREASED If:CRE"Ef TALLY AT!D TEE 150 CYCLES '<ERE REPEATED AT EACH I!!CR 1'I'lT CF LOAD U :TIL. AILU?.E CCCURRED.
TEST RESULTS A SU:'iGRY CF THE TEST RESULTS IS TAEULATED If! TAELE -
THE ILLUST?ATIC:1 EELC'el SI-D'tlS THE PEli PLCT RECCP.EED FCR A TEST SPECit'Ett SUEJECT-T; TO DYt?l41C LCADI::G AT 15 CYCLES / fill.UTE.
THE DE:! PLOT IS PICTCRIALLY TYDICAL CF ALL id'C:-ORS TESTED. THE LC'/.ER FREOUE:!CY FA3 f!ECESSARY TO PERlilT T-:E RECCRDEP. FEM TO TPACK THE LCADlis SEOUEl:CE.
s
- ...,....i.
- q
- ...,: f.:l:::
. >. [' g j :
.l.i; : ; '. ',. ;, ;. ;...
. t. ;..
.,. l :.
- i. _:....
- i.:. _
. _. 1. ' : :.;. ::... _ -
l.:
.[.._
....(
p..
- [ ';:i.:MI:..jljgjl,
'.lli;;j
.j..,
s.
- l-
- .l.-
);-
t-
- f 1.
- n '
.e-
- s. :::.
-.'nt : r'..
a'.::t.:;;J;. !l:..
a:l; '
I
\\
'Ij :{.<,.g
-li.,i ;
'.:!!!U. *
.T..~ ~ ii!'h
__.l....
..i
'li U:
- I:'
- l
' {- ]i..
e i.
.=
.:1.c nl~: ':: ::lr:-., r' {r ':l:a MI:.
- !j.:r; l: -
- ^
- :ln M-.
.../.!;"-.--
-.: t.
- !' u, t-
.:9
- t Nb I f iy I i l
. l : ],.. '>-
- .l -- h.l
- .:i:
il'
. Ih $N!L d.
Jii.h :
3H ll.
..I....l,.l. f- :g!:--
- --- - H --. ;rr: m:ty-7g. p f '!1;-
.. t-- : - :n -
..p.lh"!P[' I!....;1';::.l..m.
. :,; ; ;.l
.l.
r
- t '.;..-
i~
!f -
).h? ]!. !!/ h.;lb. '.:l
.dtd ir!.g :p. 2..j:' ' !I.li[; i:l c
i
.:s e u;..:.,
':I! d
..h.
j-
'li"-i tl!d.h.11 s-
' ( a( _r.h. ;; ; a t.. y pl:r w...g u.J:. : i.~~ -l; !.!L y.
"i J
~ '
l-t
,u o..
E. ~
! l:.J;r7.1.ff 1..
- l". l C ; s. :!.v.W..
i
.. a[
l :i.
"j.
>=-
,,, : s t:. r,t;r l., [.
.p f; >. l :.*
~
-1
- g
... r ; tt: : '1 :1..a 1.
. p.'~!j., r.. f rv t.. "I,' 1". :l t
- r.--l?...p f 4.,1,~# l t g..,
~
..l-r
- J,
- - 7ti
~
l :,1 I.
.q t..
.t..
. ~.J t a t..
I' *r n
, t:.s
-l,
.:t.
.t
&!i.itl;L..j;y...n.1,.. f:, ;;.l, s :; l -ll,. a,.. Esl:a:.,d.! %.l,.p:b,, ll!
I;
.:' e s.--
t..,:; r r,
.J
--- T.. s. qp: i :g. d. t.
iq :.
.'m ~,
- c.. :
.. r :.;i :2 f.,
s l [i i.
l
i
^
M
'l i.
'!. ; %'. ' d' d !'I'. lie'i.i ll.
i.'
p i m.. ! :M.. : ;la!'.!ii!!'t.. ti.htn':t, i r P.,,
i: i.iH % ': n. W:i!
1.;:.g.F J
.i.
-... t L l.. -
t,q.ut r b.o I(jt ';f 3;"jd,i'.ig:vn:.,:y j,jtal
.: 1. :
u 2:
pr
^
w-I
.:.:.:! r... : n "l::
?
9 g.
- I..- ' '. ', ;.u :. h.*:.llo..
183 s
ut..
-.jip.I!
j Es.
l:.
r.
1y I[t r
l7 r.c,l.5 ;>ro!.
- s. :.
I.~ :lj r
j'-
i.. ~l 3 :.f r....1.3s...ii!l1lIj ;;;p:p. "...l;le -
p i..al :
.t
.'s.. r I ::.t.':c bn, ls.I.'. ?
-u n,
- .: ;:2
.f:h:; s. t *
.j.... ?,:el.,i;g:I e. l,;.n.'t.l::l,p.l.: g:
._a n ::i;l
- 2 e,,
I,h, -.ll' :. '.. :. pi:
- l.
I.(r.tl::I' I ;.,..-t I:
2 s'.m.y:.:y,~v.t 3,. t...:.l-
-a
.:t
.y e
s It-t.-
- p.. 1 :..i
-] ' ' 9 I.L.n:]! fi.!l.n i:...
t..
~ '
c.
- .L
'<! p. ': !.,:::' : ;;: '.":.,u
.:l: :N..l:: q..
L
.(
e - : !j:!.. <,.. - Q,,, n:
.l.
. u'
_ 1:: :y m.j l M. g:}.4' POg$;,'m,. sp;r:.j:g,i.;
^
. r.' T, :*. 's.'
- m..
y..;j i g 'i.'-:,j,:1';Is. ;1 y Ivj.,I.:; d l.h.w.::.]g.}l::.p: :gVJ, ),:;.::: i il, :r n I',, j,:.~.* 3 'S.0.7.'."..8,-
. I'
..\\>,..<
i..
". : 2, - u s ' =} <
- l-
-l-
.l
,n.
l-g.
.g
- - : 1
. '. p:v.
r i.
v::1-
- - ; ! g
.. n i:
..)- ~ - -..
i rn -
- - : w v:I:.u:.: r~ll.j.:
,.. s
? r+:.
-vl:.
n.
- rF: sl.:.y ',. a.
o u
p, -
-l--
.t;.
~. -
- r::
..nj.
Hl I=
t r i.: o., n.?
.I;.:
' I;.:l,,,.h;t' o n.s; h<!.:.:j)j;y ij;/,>.
l,:l.= x:;.;Q: my). !Rl:
.:.v:
.- : :. ?. u t...:
1:
rn c
- 1.
- s.
.. r n,
e.
~.. :.:. v ;.,, ;
- : r=:...
,5;-lkn;., _4ll. ; :5l._ _ij;.i
/ -
. h i:.;;r L or yju,,gj.n, ;:n j *j
.o Jgrmt:
, m' ;~4 :; ips t.rt:;t p: r-~......
x
. rn
...,..q ;/.:..J:.
- p m,.-
y - -...
n j.
,c.
g.,
..b
[.: :{
4 c.. r.w :
o j
\\
2013 220
TABLE - 1 STATIC #ID DYNAMIC PERFORtWlCE CCM%91 SON OF 1/2" A!!D 3/4" NICHORS TYPE l
SELC-DRIU
]
hEGE SLEE\\E CATALCG I4UGER S-12 S-34
'e's-1226 WS-3454 HN-1230 HN-3440 TOTAL EleEElEin, IN.
2 3-1/4 2-1/4 4-3/4 3
4 STATIC LOAD, KIPS 10.4 14.7 6.0 14.0 5.2 12.6 No. OF TESTS 2
3 3
3 3
3 TY?ICAL FAILURE l'CDE C
S C
S T
P,T,S DYNAMIC LOAD, KIPS 7.9 16.7 6.0 16.8 5.2 10.3 i0 OF CYCLES 553 676 606 1,402 584 849 i0. OF TESTS 3
3 2
3 5
6 TYPICAL FAILURE FCDE C,T S
C, P S
T P, f DYtWi!C LOAD AS A PERCE!IT OF STATIC LCAD 76 114 100 120 100 82 KEY - TYPICAL FAILUP.E l'. ODE:
C - CC:: CRETE SPALL S - CC:' CRETE ELCCK SPLIT
(,
P - M'CHOR PULLCUT 0132hi T - At;CHOR TEilSILE
'DP 7 ]D D 19
~ Y 3
u!)Ju N.
o
.m C;
CO?!CLUSIONS THE PP.0BAELE CAUSE OF THE S-34 /JO WS-3454 At:CHORS SHOWl::G EtticR PER-FORi4Af:CE U:! DER DYtWilC CC?lDITIC:lS TPNI FOR STATIC LOADS IS THE CC:'PARATIVELY SFALL SIZE CF THE CCNCRETE SPECII' ENS.
IF llRGER ELCCKS MAD EEEi! AVAILABE THE STATIC CAPACITIES '/0ULD AU'OST CERTAli4LY HAVE BEEi! GREATER.
A CCi4?ARISC?l 0F AVEPAGE ULTI!%TE DYiWilC At!D AVEPAGE STATIC LOADS SHOWS THAT SHORT DU?ATIC:!, LON FREOUE!!CY DYt%T11C LOADif:G ONLY SLIrHTLY AFFECTS ULTIFATE CAPACITY.
THE DATA SUGGESTS TPAT A' SAFETY FACTOR OF FIVE UOULD BE APPRO?Rif.TE FOR DETEFJil!!IIG VORXII:G LOADS U:! DER DYtW41C CCiDITIO !S SUCH AS THOSE ASSOCIATED WITH A SEIS41C EXPERIENCE.
r
~
BY:
L/l tu
?'
,tc.u N t /
I!ICHOLAS G. SCHEUFR PRODUCT Ef:Gli'EER ITT PHILLIPS DRILL DIVIS10?!
{9 2013 222 y s m s aw.a m m m m$$ N$$55$${$ h h & 4 a
nn --
$,h Y f. 5 M W Nh W M N N
...g c.re w'. - ww wM@i es j
ATTACHMENT IV
$as ND i
,WFA N-fa.i# 7 y a Em"t sg E 2 12 EBERGEN-PATERSON gf W'biM 600 US HIGNWM 46 g
PIPESUPPORT CORPORA TION CUFTON. H. J. 07015 g )1
"** ig'%
(AT HA !L STJ wan 03M
-!.B&
N:fD j
May 23,1979 fg M4i4 s
35fM2 I,
-w 3, m - @d))_
b b
Ad.;
rn w
omaha Public Power District D g.
D DJ hi' d l
1623 Harney Street h~
d\\\\d
- 5'M-C=aha, Nebraska 68102
?,%
WM i
Attention:
Mr. Bud Eidem M id Manacer GSE Mechanical
$FSid LWii}
~
-r h+Jc
'Ig;jj
Subject:
0:aaha Public Power District Mi j
Fort Calhoun Station Unit i1 Pipe Support Ease Plate Design Using M.E~C;i concrete Expansion Anchor Bolts
$59 US NRC It Bulletin No. 79-02 MN Dated March 8, 1979 s
?.sydd Ref. E-PPC Job No. 4024/049 229j 5M}
Gent 3enen f?a Y.g
.g Ar, requested we have reviewed representative hanger and restraint, g.gdf desian details incorporating concrete f asteners on the subject project jg;g2 eud@
l and our design practices being used during the active design period.
The general raethod of analysis used is as follows:
({jj i
Y!N The distribution of loading on bolts was calculated on the basis
'$g'i$j
(
f' of a rigid base plate with pure tension and shear loadings dis-flyjgg i
tributed equally on the bolts and the ef fects of ::.oment loadings q-.Vy treated as follows:
g-Q eu
- 1. Moments in plane perpendicular.to plate were
@M resolved into pullout forces on bolts by g.*:Q treating the bolt rows as a couple.
gj g@MN ipy;
- 2. Mo:aents in the plane of the plate were resolved into shear forces on bolts by treating the bolt
[ghi 3
pattern as a couple.
M i$
%m$
Fi Qj The types of concrete f asteners used on the project are as Ji l
follows:
9W11
,s
$wlglj
, G MAIS STrJsM AND PEEDWATER (ALL APPLICATIONS)
ALL CTEER SYSTEv.S (OVERREAD AliD WALLS)
Mm C-4 l
)
g' I
w-Tgy l'
Page 1 of 3 we.~ly O
2.,
20I.)
L
..&3 i
v5V5.. --
Y % := 2 g % M :5,:,c u m t:---
- 7 q fa c:: w.
b N W?3E'5ED D N N EIN.5;N Y[m-e_--
pb[fdMyh
?
nn cedaw;~;;mgv/hf;kS3'.-MEhdIQm a 2:.:gQtigg, ucqwggfg -
7 l
q...sgn5,ne r &_q q-~=3
~-
- q..; g..
- 1.y; ~
- pg-
.y s
.-u-)
h a
. res e-D
.0.
d tv.20 f
\\\\U m
%?:
2d?la{
@wMw 1:on.t..Vi t rl:Rsrn: rmi.st rmnr con".
~
May 23, 1979
.h Page 2 of 3 7
WM Phillips " Red Head" self drilling shell type -(chell type as referenced
%g in IE79-02) the allowable loads woro established using available lab-g3 oratory testing reports which tabula ed average ultimate pullout and g
shear loads for the neted f asteners to which we applied an appronmate eMp->
a.t..o 1,s.a. f e ty f actor for both tension and shear. The allowable loads so Y
6 z
. w-mLa 4
cerived are:
m Phillips
$E55 i
{g l
Catalog Bolt Allopable Load
^j Nunber Dian.
Tension Shear psg d
EM l
S-3B 3/S" 990) 550)
[.$9 re9AJ y an l
g?}
s-12 1/2 1470 1090 Ens!
i l
S-58 5/S 1840 1700 MrJs*
i fin S-34 3/4 2875 2640 Mr i
G2R m-5-78 7/8 304,0 3010 XM,Eg p
i 3
All Other Sys tems (Floors Only) jf=qq M V-.i Phillips Stud Anchors (my own interpretation is that this type would be N$$
classified as a shell type as referenced in IE 79-02. I base this on
$ Mil that it utilizes the sane plug expansion principle as the Qf3!1 the fact self drilling anchor). The allowable loadswereestablishedinthesameEeEM
'E3@;
manner as for the self drilling type. The allowable loads used are:
m h
hy%gp Phillips Catalog Bolt Allowable Load 2:urber Dian.
Tension Shear Mr
$ d JS-38 3/8" 715!
B609
.E3?g w
JS-12 1/2 935 1450 1%
4T23 m%
JS-58 5/8 1540 1970 gp RME i
JS-34 3/4 2110 3000 Mf6 g[g(d
$5 I
l We did not use any foraal interaction relation formula between tension and shear allowable loadings at that time. Where applicable the designetwnm TM'@
would use good engineering judgenent in correlating the tension and M
I' shear loadings.
Ws.;g N
hp$j)
E Bercen-Pater: son's standard for mini:num spacing between f asteners was l
and'is now 10 times bole diancter f or 1001t capacity and when not 3
gg 1
specifically directed ca a job specit'1 cation use 61 as the mininu::
1 I
center-line of bolt to edge of concrete distance.
9
)qA h --
- (. 4 Iew 1
L M
s i
N A-3
- u..m
FQd'EN^f*
P[k M Df M N Waa.=-wrn.ON W fa J.7,9 N ME M"NdSE@
pc: mw. c:. gam.. MfFp'v.wwr,cy%WMM5EniMJ"'*7.WMf 1 5 E M k E*t q.d M G T E'n.-
es, 5 W TWEei n~n acy % ;::p 4.;..,w^ m*
OM r,ym d3 7
.. s,y;i~:E.q.=g
- _ gi?"> & p
. ~
. : -j, L': : yr" E : 7. *:.yJ.> ; :p~w ;.r.%.;;.. 3. *
' ;p.-;.s. c..,-:.;.,. g
.r.......y u r.
34p
-.w.q g E44%
~-
a
+~
.w.
n~
~.
r-
=
3 ww
~
{c$r lii.Et ;t.\\. I'.\\ l 1:IMt 1N l'il't.St l'{11R I e.t 1.%l' gg w1r m =-- 1..a3 May 23, 1979 F4 ra Page 3 of 3 py m&
v....
~.
..g:. -....
d Base plate design assumed a rigid plate and was checked for bending.
Bending stress due to tensile loading and eroment loading calculated yg independe.ntly and added to obtain total stress. Allowable stress
- 1tr
. ~.a y
used = 12000 PSI.
Ew l w&
T[5@
Should you require any additional information, please contact me at our Clifton Office.
WJM:s wm f,iM:
rm t
=
I Very trulv yours,
NM h2=
N.u. fr.
..s
.= y M.5543 BERGEN-PATERSON PIPESUPPORT CQ:yg Y$ib2
.'(
' g rtA.-
/m '-
W cs 333[
~
- . M EJ
. Harold Erir, son m f}
Chief Enoineer Mffi WEi1
~
~
zu:n lNN0.
IIE/jb W.-:. w id
,kD2n
- - -.m cc:
D.
Paterson w +3 r.c e-H.
Moreen w'Brw
'=
ra L.
Curcio r.e. - s -
V.
Coniglio gg WRf KieJ
%4 lG5A;
-s we WY riergi
%s CL-A-M9 s'O&+s; W25 ein'.?""U
- se
~w
- 9 =gy;a
-Juu MD N;MN 1
N: n.:. 2 i
rw skj
- e Cm q
&."D }
Qs"-*7-k i
4!
sd 2013 72-3 ee i yss esa ss p,.;
Dh5