ML19274C852
ML19274C852 | |
Person / Time | |
---|---|
Site: | Duane Arnold |
Issue date: | 07/26/1978 |
From: | Leslie Liu IES UTILITIES INC., (FORMERLY IOWA ELECTRIC LIGHT |
To: | James Keppler NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION III) |
References | |
NUDOCS 7811280036 | |
Download: ML19274C852 (133) | |
Text
' #
IOWA Etscraic LIGHT AND POWER COMPAhT General Qfft'ce Cznan hvins. IOWA July 26, 1978 f LEI: Lm S3\
cmoavictr~ on-csca.ua:sc IE-78-ll37 Mr. J. G. Keppler U.S. NRC Directorate of Regulatory Operations Region III 799 Roosevelt Road Glen Ellyn, IL 60137
Dear Mr. Keppler:
Your letter of July 3,1978 requested responses to five questions concerning the Duane Arnold Energy Center Recirculation Inlet Nozzle Analysis. Enclosed is our response.
Very truly yours, Qtt/bwI . -
Lee Liu /g Senior Vice President, Engineering LL/KAM/nmf Attachments cc: K. Meyer w/a D. Arnold R. Lowenstein THIS DOCUMENT CONTAINS hrauer
[10 POOR QUAllTY PAGES S
rg8112800N
t Ouestion 1 Provide cetails of the dynamic analysis performed on the piping, including any flow-induced vibrations considered in the analysis.
Response
The dynamic analysis that was performed on DAEC recirculation piping systems was the inertia effects of seismic loading. The primary objective of this analysis was to demonstrate that the recirculation piping loop A and loop B and their RER piping meet the rules for the design as set in the ANSI B31.1.0 - 1967 Code.
Since dynamic effects due to flow induced vibration are insigni-ficant, analysis of this type was not performed for DAEC. Water hammer effects analysis in the recirculation piping system was also considered and found to be negligible.
The seismic analyses were performed by us.ing the method of response spectrum superpositio.' In this method, the maximum acceleration response of each mass of the mathematical model was computed for each significant mode utilizing an appropriate acceleration re-sponse spectrum corresponding to the Reactor Building motion cri-teria. The computation for the acceleration response spectrum of each mass, which is the function of the maximum acceleration parameter vs. period of vibration, was based on a single degree of freedom system subjected to the appropriate force vibration for an assumed critical damping ratio. All the significant mode shapes with frequencies less than 33 E: were included in determi-ning the seismic responses. Each seismic response parameter (inertia forces, displacements, member forces, reactions, etc.)
were calculated for each of the sum of squares method to determine the resultant value of the respective response parameters.
The seisrde (inertia loads) cases were as follows:
- 1. NCASE 1 and 2 OBE cases for vertical accelerations (Y direction) acting concurrently with horizontal N-S accelerations (X direction) and for the same vertical accelerations acting concurrently with the horizontal E-W accelerations (X direction), respec-tively. The OBE cases assume an 0.5% damped acceleration response spectrum.
- 2. NCASE 3 and 4 DSE cases for the same combined accelerations as OSE NCASE 1 and 2, respectively, except that the acceleration response spectrums are for DBE which are two times OBE 'at the damping coefficient of 1.0% of critical damping.
The seismic anchor movement load case was based on the Operational Basis Earthquake (OBE) and is considered in the analyses to determine the effects of relative earth-quake displacements on the piping and supports.
The horizontal displacements for the reactor pressure vessel nozzles and the anchors located just outside the drywell penetrations were based on the maximum value at the corresponding elevation. There were no relative vertical displacements.
The loading conditions for thermal, weight / pressure, external forces, and seismic loadings for various normal and upset loadings, and loadings having a very low proba-bility of occurrence, are individually considered and subsequently combined as to satisfy the rules of ANSI 331.1.0-1967 Code, and the following stress criteria.
Stress Criteria A. Stress for all normal and A. Effects from the followi.
upset loadings must not loading combinations are exceed the limits of determined in accordance ANSI B31.1.0. with rules of B31.1.0.
- 1. The sum of the longi-tudinal stress due to pressure and dead weight must be less
~.han the hot allowabl stress, S b'
- 2. The sum of the thermal exoansion stress inte.
sity range plus ancho.
^
displacement stresses caused by an Operatio Basis Earthquake (QBE) must be less than the allowable stress range for expansion stresses S .
- 3. The sum of the longitu dinal stresses due to pressure, deadweight, inertial effects of OB and external loads mus be less than 1.2 times the hot. allowable stre C
- 4. The sum of the longitu dinal stresses due to sure and deadweight pl the thermal expansion stress intensity range must be less than the of the allowable stres range for expansion s' plus the het allowable stress, (S,n + 5h).
B. Primary stress for all load B. Effects from the followin combinations that have a loading combinations are very low probability of oc- termined in accordance wi currence must not exceed 1.5 rules of 331.1.0:
times the limits of ANSI 331.1.0. 1. The sum of the longitu stresses due to press deadweight, inertial e of Design Basis Eartli, (DBE) , and external fo must be less than 1.8 the hot allowable stre S
h*
- 2. The sum of the longitu stresses due to maxim' pressure, deadweight, tial effects of DBE, a external forces must b less than 1.8 times th hot allowable stress, Question 2 Frovide piping isometric drawing of the recirculation line showing a restraints.
Resconse The following drawings are included:
Drawing No. Revision C-518 5 ,
M-ll6 10 M-332 7 M-332-3 0 M-333 7 M-333-E , O M-338 13 M-339 11 M-340 12 M-341 9 (Continued
Drawing No. Revision-M-352 5 M-353 4 M-357 3 APED-Bil-2655-97-3 APED-B31-9 (ll-6 APED-B31-9 (2)-6 APED-B31-15(1)-5 APED-B31-15 (21 - 5 APED-B31-23 (11 -5 Ouestion 3 Previde summary of nozzle loads for each nozzle (thermal, weight and dynamic loads).
Response
See attachment A and drawing APED-Bil-001(8)-7 Question 4 Provide a list or design transients used for the stress analysis (fc example: startup, shutdown, reactor trip, etc.). Also provide a lis of the actual transients seen by the plant to date.
Response
The vessel thermal cycles are provided in drawing APED-A41-003-NI an the nozzle thermal cycles are provided by draw' .g APED-B11-003 (2)-NI The actual transients seen 'y r the plant to date are in attachment B.
Question 5 Provide the stress analysis of the inconel safe-end; include load combinations and details of the thermal tra:.sient analysis.
Response
A copy of the stress analysis report prepared by CB&I is attached.
LOADING ON DUANE ARNOLD RECIRCULATION N0ZZLES Vessel Desion Conditions
- 1. Design Pressure - 1250 psig,@ vessel elevation 0.0
- 2. Design temperature - 575 F
- 3. Norma 1 operating pressure - 1005 psig @ top of vessel
- 4. Nonnal operating temperature - Saturation temp @ 1005 psig Nozzle Reaction Loads (Recirculation inlet) 4{
, !+My KIPS l IN-KIPS l*Lin.
Fx Fy Fz Mx My Mz N
3.9 3.9 l 8.2 l 271 271 102 118.5
- ^
Y' #.
- .5 1.7 l 3.2 l 94 l 40 25l f '( C.
NOTES: 1. *L is length from vessel d to loads "
Fx and Fy
- 2. ** total thermal, weight, and seismic VESSEL N0ZZLE reactions
- 3. *** external mechanical loads only (weight and seismic)
- 4. All values to be applied at design temperature and pressure
- 5. Loads may be in either direction for values shown Nozzle Thennal Sleeve Reactions (Recirculation Inlet)
I KIPS IN-KIPS Fx Fy Fz Mx My Mz Remarks 0 4.3 13.0 -44.0 0 0 Hydraulic loads at design ter press. Secondary loads present I
elsewhere THERMAL SLEEVE g, *Mx
+ 'g
. ~. a .n
SCRAM LIST OF TRANSIENT OCCURRENCES
. 1 3-3-74 Reactor scram, at a low power level from scram discharge volume hi hi level. Due to a fuse in the circuitry being removed.
5-19-74 Reactor scram, RFP tripped upon startup. The feedwater regulation valve opened and resulted on a cold water injection and APRM Hi Hi Flux scram.
5-20-74 Reactor. scram, ni hi IRM . flux, due to placing RFP in service.
5-22-74 Reactor scram, low water level due to instrumentation work 5 ?i.
done.
5-23-74 Scram Group I isolation, (<880 psig in run). At 6-7% thermal ;
5-24-74 Reactor s: ram due to low vacuum Group I isolation, MSIV closur IRM hi hi flux. Low power.
6-5-74 Reactor scram, Group I isolation curing relief valve testing.
Scram occurred as the first SRV lifted. MSIV closure. At
-25% thermal power.
6-8-74 Reactor scram due to loss of power testing. At 107 MWe.
. 6-25-74 Reactor scram, high level resulted in turbine trip (MSIV closu.
At 42% thennal po ier.
6-30-74 Turbine trip due to high reactor water level when feedwater regulation valve oscilliating in single element control. Group I isolation, MSIV closure. At 47% thermal power. Began oscili 7-5-74 Turbine trip testing, Group I MSIV closed. Recirculation pumps at 85% speed. At 70% thermal power.
7-14-74 Reactor scram due to test engineer error in EHC cabinet, due tc MSIV <90%. At 50% thermal power. Recirc flow at approximately 52 to 100%.
7-16-74 Reactor scram, scram discharge volume hi hi level.
7-18-74 Reactor scram, turbine trip on high level, due to RFP trip, Group I isolation, MSIV closure.
7-31-74 Manual Scram. ,
7-31 -74 Loss of all instrument air. At approximately 82 power took turbine of f line. Went to s artup mode and then manually scrammed.
8-4-74 Manual scram due to high conductivity. Recire. pump at minimum speed at 100 MWe. -
4
9-6-74 [ea'ctor scram on low gevel per testing of RFP's per STI !23.
At 428 MWe at 49 x 10 !/hr recirc flow. .
9-11-74 Manually initiated a Group I isolation for testing purposes a 1494 MWt. RFP's running.
10-2-70 Reactor scram due to instrument tech error at -approximately 616 MWt.
10-9-74 Reactor scram due to Lo reactor water level, Group I, MSIV closure. Recirc pumps tripped, HPCI and RCIC automatically initiated on Lo Lo level. Cause of Lo level was RFP trip low suction pressure, loss of instrument air system, feedwater reg valves locked out at 65 psig. Scram from 1569 MWt.
10-19-74 Reactor scram c'ue to generator load reject - TB/ Gen control valve fast closure. Scram from 1204 MWt.
1-30-75 During CV testing, High Flux Scram due to pressure conducted a approximately 1161 MWt.
2-8-75 Manual scram - planned.
~
4-19-75 Manual scram - planned.
5-5-75 Manual scram - planned.
8-2-75 Lo water level due to RFP trip (Low suction) Gicup I isolatic MSIV fast closure.
8-14-75 Reactor scram Group I isolation.
9-29-75 Scram Hi Hi Flux -
5-28-76 Reactor scram from APRM Hi Hi Flux. After resetting a scoop t resulting in a recirculation flow increase. Group I isolation MSIV closure. At approximately 689 MWt.
S-12-76 Reactor scram on high flux, feedwater pumps tripped on high water level .
8-14-76 Reactor to water level scram during startup.
8-28-76 IRM high flux channel A, E & F.
9-11-76 Hi flux scram, due to a recirc pump. flow increase when " Scoop Tube" was unlocked. Peak pressure 1045 psic for approximatel, 60 seconds. ,
11-23-76 Uncorrec.t performance of STP (Reactor water level) Group I isolau en, HPCI and RCIC started.
8-3-77 Hi pressure due to incorrect performance of STP. Scram only.
9-2-77 Manual scram for seq. A scram t ating (lo).
T 9-22-77 Reactor scram due to generator lockout relay. At 1441 MWt.
10-14-77 . ' ' Turbine Hi Hi vibration Group I tiSIV cicsure , peak pressure 1090 psig, opened one SRV set at 1090 psig. At 1586 MWt.
11-1-77 Incorrect performance of STP (reactor water level 42F001) caused turb*ine trip, Group I isolation, MSIV closure, peak pressure 1100 psig, opened four (4) SRV's at 159,3 l-tut.
11-21-77 t1SIV #2 closed causing scram and turbine trip. A feedwater regulation valve failed. closed causing scram caused by low water level . ,
1-9-78 Manual scram, feedwater regulation valves locked up on low air pressure. Group I isolation, MSIV closure at 86% thermal powe l ~-10-78 A feedwater regulation valve failed to open. Trubine trip Gro isolation. At 39% thermal power.
1-12-78 Reactor scram. Hi Hi flux during turbine / generator controi va testing, peak pressure 975 psig.
5-5-78 Improper performance of STP 423005 (reactor low wat' e r level).
Reactor scram, turbine trip at 673 MWt.
6-17-78 Back up scram valves energized during weekly CV surveillance t es', ug . At 1263 MWt.
O S
9 0
e a
6 0
e
2 PLANT STARTUP DATA NOTE:
- Normal Startup activities increase at a maximum of < 100 F/hr as Technical Specification limits. _
5-1-74 4-25-75 5-19-74 5-3-75 5-21 -74 5-8-75 5-22-74 8-3-75 5-23-74 8-14-75 5-25-74 4-75 6-4-74 9-30-75 6-5-74 11-6-75 6-10-74 12-13-75 6-14-74 5-28-76 6-14-74 5-28-76 6-29-74 8-15-76
'8130-74 8-29-76 7-8-74 9-10-76 7-14-74 11-23-76 7-17-74 3-14-77 7-19-74 8-14-77 7-22-74 9-6-77 ,
7- 31 -74 9-11-77 8-5-74 9-22-77 8-26-74 10-16-77 9-7-74 11-1-77 9-26-74 11-21-77 -
10-3-74 1-9-78 .
10-10-74 1-10-78 10-20-74 1-12-78 10-26-74 4-25-78 11-16-74 ,
5-5-78 -
1-2-75 1-10-75 Other Info 1-30-75 9-5-74 Inadvertent !!PCI start 9 PM approxima:-
2-17-7 96% power. No scram occurred durina 5 testing of Lo Lo Lo water level. Tes:
4-16-75 conducted at approximately 1520 K.'t.
HOT STANDBY Time in Hot Stan 4-30-74 Condensate Pump Repair 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> 6-12-74 High D/W Floor Leakage 52 hours6.018519e-4 days <br />0.0144 hours <br />8.597884e-5 weeks <br />1.9786e-5 months <br /> 1-1-75 Turbine Generatcr and Control Rod Problems .O hours and Repairs 1-10-75 Recirculation Pump Repair 17.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> 3-3-75 Plant Valve Leakage repairs 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 11-4-75 Condensate Pump Repair 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> 4-25-78 Recirculation MG set trouble shooting 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br /> ,
/
O 9
O 4
6 g G
. . , . .......---m...
- W ,
RECIRCULATION SYSTEM START IN A COLD RECIRC. LOOP OR INADVERTENT START OF RECIRCULATION PUMP A. We have not experienced any recirculation gump s. arts in a cold locp as per the Technical Specificgtion 50 F differential temperature between operating loops or the 145 F Technical Specification limit t:a on lower vessel head temperatures.
B. There have been no sudden starts of a recirculation pump.
O v
8 e
9 O
0 o
O 9
LOSS OF FEEDWATER (F/W) HEATERS 9-1-74 Startup Testing (STI-23), Temperature reduction 25 F, Flux increase 5%. Thermal hydraulic limits normally started at 90~ thermal power to 108% lead line or approximately 100 thermal power One other occurrence - Loss of extraction to the #5 feedwater heater.
Mcximum water temperature reduction per design is 50UF.
e e
E
=
9 e
G 9
8 e
9 e
e
- . +.
WEEKLY OPERATIONAL TESTING TO 55% POWER LEVEL 3/17/78 8/2/75 3/3/78 5/17/75 2/18/78 4/17/75 10/28/77 4/12/75 ,
9/2/77 3/28/75 6/4/77 3/29/75 5/21/77 . 3/ 21/7 5 Skip April 3/15/75 3/11/77 2/28/75 2/25/77 2/7/75 1/4/77 1/31/75 12/31/76 1/11/75 12/18/76 12/27/74 (2) 11/26/76 12/28/74 11/19/76 12/21/74 11/5/76 11/9/74 10/30/76 10/2/76 9/24/76 8/7/76 6/25/76 6/18/76
~
5/7/76 2/11/76 1/10/76 10/11/75 10/10/75 9/25/75 9/6/75 '
8/30/75 8/29/75 ' .
8/23/75 8/16/75 8/9/75 .
8/8/75 .
- REDUCTION TO 0% POWER 5-30-74 Turbine / Generator High exhaust hood temperature, controlled shutdown 7-21-74 Feedwater check valve leakage, controlled shutdown 11-14-74 Back flow preventive leakage, controlled shutdown 6-6-73 Incore vibration investigation, controlled shutdown 11-4-75 Reactor Feed Pump (RFP) seal leakage, controlled shutdown 12-11-75 Drywell (d/W) Radiation Monitor High, controlled shutdown 2-14-76 Refuel Outage, controlled shutdown g-9-76 HPCI steam leaks caused reactor building vent shaft 'high radia controlled shutdown 11-20-76 Planned outage, controlled shutdown '
3-1 2-77 Turbine testing, controlled shutdown for refueling outage 11-18-77 Snubber outage, controlled shutdown 3-18-78 Refueling outage, controlled shutdown 9
e 9
I 4
e 9
e
>%dm1
>-+seemps
~ .
R0D WORTH TEST Our records show there have been no rod movements to provide rod worth test data or reactor period data.
t e
6 o
e ,
e i e
7.-< . . . . . .
OTHER CONSIDERATIONS A. Reactor vessel head bolting operations have been conducted, since operating license issue, 5 times with flange temperature maritor-ing and levels as specified in Technical Specifications which is
- -100 F at the head flange.
B. Two design hydrostatic tests have been conducted on the reactor vessel. Both tests were prior to initial fuel loading.
C. Six reactor vessel operational hydrostatic tests have been conducted, and one hydrostatic test in accordance with Section 1WB-5222 of the ASME Code Section X1,1974 Edition, Summer 1975 Addenda. -
D. Reactor vessel flood-up operations have been conducted 6-7 times since initial startup operations.
i
SUMMARY
OF REVISIONS Page Rev.No. Pace Rev.No. Page Rev.No.
TS-1 0 S8-16 0 F8-23 1 TS-2 0 SE-17 0 FS-24 0 TS-3 1 S8-18 0 F8-25 1 TB-4 1 S8-19 0 F8-26 0 T8-5 0 SS-20 1 F8-27 0 TS-6 1 58-21 % 1 F8-28 0 TB-7 1 58-22 0 F8-29 0 TS-8 1 S8-23 0 FS-30 1 TS-9 0 S8-24 0 F8-31 0 08-10 ~
1 S8-25 0 F8-32 16 TS-11 2 S8-26 0 F8-33 0' TS-12 0 S8-27 0 F8-34 0' T8-13 0 S8-28 0 F8-35 0+
T8-14 0 S8-29 0 F8-36 0" T8-15 0 S8-30 0 TS-16 0 SS-3' 1/
T8-17 0 S8-32 le TS-18 0 S8-33 1 T8-19 0 S8-34 0 TS-20 0 %53-%oA W"2c m o i' TB-21 O TB-22 1 F8-1 0 T8-23 1 F8-2 0 TS-24 , F8-3 0 T8-25 1 F8-4 1 TB-26 0 F8-5 0 .
FS-6 0 FB-7 0 SS-1 1 F8-8 0 S8-2 0 FB-9 0 S8-3 0 F8-10 0 SB-4 0 F8-ll 0 S8-5 0 F8-12 0 S8-6 0 F8-13 0 S8-7 0 F8-14 0 S0-8 0 F8-15 1
. S8-9 0 F8-16 14 SS-10 0 F8-17 0 S8-11 0 F8-18 0 SS-12 0 FS-19 0 SS-13 0 F8-20 0 58-14 0 F8-2' '
SS-15 ^ 0 PS-22 0
(.
e . . I C .*3 " . EIR..ME.C C EIn- - - - - - - - . ---------P-- "-*-
- I'# 4-- - "*
(
- I 7 SECTION T8 THERMAL ANALYSIS NOZZLE N2 RECIRCULATION INLET NO2ZLE L _j
'}
b, .
( -
SECTION T8 THERMAL ANALYSIS NOZZLE N2 - RECIRCULATION INLET NOZZLE TABLE OF CONTENTS A. MODEL USED AND ASSUMPTIONS 2RDE 1 B. DT3CRIPTION OF TRANSIENTS CONSIDEFID 4 C. CALCULATION OF HEAT TRANSFER COEFFICIENTS 6 .
D. TEMPERATURE RESULTS 10 E. EQUIVALENT TEMPERATURES 11
( APPENDIX A ERRATA
( -
~
. . .18 3 " ..BWR . VESSEL .r--. _. .#-...... . . . = . .YST. .. n . _
c s A = c.
( SECTION T8
. TFERMAL ANAL'1 SIS NOZZLE N2 - RECIRCULATION INLET NOZZLE A. MODEL USED AND ASSUMPTIONS MADE The temperature distribution analyses were performed with the TGRV computer program. The thermal model used for the thermal analyses are shown on pages T8-12 and T8-13.
Nozzle and vessel wall portion of the thermal model was as-sumed to be made of carbon steel. The 3/16" stainless steel clad had been included in the model dimensionwise, however, the properties of the stainless steel had been neglected.
No::le safe end and sleeve portion of the thermal m,odel was assumed to be made of CE-166 Inconel. The recirculation pip ing was assumed to be made of Type 304 stainless steel. The space between the sleeve and the no::le was assumed filled
[
with saturated water. The material properties used in the thermal analyses taken from References 5 and 23 are tabulate as follows, c p k p
Inconel .109 .309 9.0 Carbon steel .11 .282 25.0 Stainless steel .11 .282 10.0 Water (@ 300*F) 1.026 .0332 .395 .
where c = specific heat capacity, ETU/lb *F p
p = density, lb/in'
,k = thermal conductivity, ETU/hr-ft *F
\
, +
l The recirculation inlet no::le is located far below the lowest possible water level, therefore the no :le and its vicinity vessel wall.is.immarsed in the water in all occa-sions. The ef fect of the vapor bubbles which might be trap ped in the recirculating water was assumed to be negligible in the thermal analysis.
The type of heat transfer for the vessel shell anc7 no::le inside surface varies with the rate of recirculating water flow. Heat transfer mode was censidered to be natural con-vection whenever the recirculating water flow was zero.
When the recirculation pump is cperating, the water flows at a considerably high speed through the annular space between shell and core shroud as well as through the no::le.
The type of heat transfer was therefore considered to be forced convection in the thermal analyses whenever recircu-
~
1ating water flow was not 'ero. The convection effect through the water between sleeve and no :le had also been taken into account in the thermal analysis by modifying the water thermal conductivity.
The properties of the saturated water at 100*, 300* and 500 as tabulated below, taken from Ref. 23, were used to evalua the surface heat transfer coefficients for the vessel insid surface.
T c p o k p S 100* .997 61.99 .364 1.65 .00020 300* 1.026 57.31 .395 .45 .00058 500* 1.130 49.02 .356 .26 .00118
(
'S3" 3WR VrSc"7 ivi '
R where T = temperature, *F c BTU /lb *F p = specific heat capacity, p = density, lb/ft' k = thermal conductivity, BTU /hr-ft *F p = viscosity, lb/ft-hr S = coefficient of volumetric expansion, 1/*F The reactor system is housed inside the containment vessel and is exposed to the still air. The type of the heat trans fer for the entire outside surface was therefore considered be natural convection. Air temperature outside the reactor vessel insulation was assumed to be constant at 120*F.
The distance between surface nodes 63 and 104, and between
(- surface nodes 64 and'105 was assumed to be 1/64" and the gap was also assumed full of water during all transients conside ed. The convection effect of the water through this tiny ga was neglected.
f i
a - er - *
(
- 2. Loss of feedwater pumps and isolation valves closed Time (min) 0. 3.
Inside shell (*F) 500. 300.
Inside no::le (*F) 500. 300.
Outside (*F) 120. 120.
Water flow (gpm) O. O.
In scram condition for warmap transient, it was conservative assumed that the shell and the no::le was at the uniform tem perature of 300*F whe.7 the transient start d. For the coold transient, the transient started from the steady state condi tion. The steady state convergence criteria was assumed to be 0.00l*F.
(
( .
3 3- w, 5 S s 1. - - .,v - - x
CHICAGO BRIDGE & IRON COMP ANY OAK BROOK ENGlHEE
(
- 3. DESCRIPTION OF TRId:SIE"TS CONSIDERED In accordance with the GE Drawings 729E762, 13539990-1 and 135B9990-2, the following transients were selected to determine the most critical war =up transient tem-perature distribution and the most critical cooldown transient temperature distribution.
Warmup Transient - loss of feedwater pumps and isolation valves closed.
Time (min) O. 33.
Inside shell ('F) 300. 500.
Inside no::le ('F) 300. 500.
Outside (*F) 120. 120.
Water flow (gpm) 0. O.
(
Cooldown Tranoient
- 1. Sudden Startup Time (min) O. .01 .57 .58 Inside shell (*F) 522. 522. 522. 522.
Inside nozzle (*F) 522. 130. 130. 522.
Outside (*F) 120. 120. 120. 120.
Flow in shell (gpm) 52100. 52100. 52100. 52100. 5 Flow in no::le (gpm) 6510. O. 4006. 4078.
8
- o r. :
(
C. CALCULATION OF HEAT TRANSFER COEFFICIENTS To evaluate the natural convection heat transfer coefficient h, for the vessel inside surface when the recirculating wate flow was zero, the following equation taken from Ref. 6,p.l' used.
p2 Bgc 1/3 ,
h = 0.13 k k ,
[a 3- BTU /hr-ft 2 _.7
-k' p 2 Bgc 1/3 ,
= 0.13 u (AT) /3 BTU /hr-ft 2
_.7 where g is acceleration of gravity (417 x 10 ' ft/hr ) and A.
is the temperature difference between water temperature and vessel inside surface temperature. Using the water proper:'
shown in page 2 of T9, heat transfer coefficients for natur convection, h, were obtained as follows:
(
T (*F) h (BTU /hr-ft 2 _.7) 100 38.4 (AT)-/3 300* 85.2 (AT]1/3 500* 113.0 (AT)1/'
In sudden startup at time 0.01 min, the recirculating wat flow through the nor:le was zero and natural convection hea transfer occured at this instance. To evaluate the heat tr fer coefficient, the no:rle inside wall temperature was ass to be 521*F, i.e. 1*F below the t'eady state recirculating water temperature. Using the previous equation, heat trans coefficient for nor=le inside surface was h = 38.4 (521 - 130)1/3
(
= 281. BTU /hr-ft2_.7 183" BWR VESSEL JYL -
( ,
For-the case of the forced convection heat transfer for the shell and sleeve inside surface, the heat transfer coeffi-cient, h, were calculated from the follcwing ecuation taken from References 6 and 14.
0.4
- 0. 8 'c p '
h = 0.023 hD DVo p u . .
h.
l.20 STU/hr-ft* *F where D = hydraulic diameter, ft V = fluid velocity, ft/hr The facter 1.20 was used here to take into account the in-crease of the surface heat transfer coefficient due to un-smooth internal surface and small pipe length-diameter ratio (L/D).
(.
Using the water properties tabulated on page 2 of T8 and letting D = .835 ft for no :le and D = 3.58 ft for shell, the h can be calculated for varicus water velocity which is function of the recirculating water flow rate.. The correspc ing h values,are tabulated below for the various water flow rates spe.cified in the various transients censidered.
For no:rle:
Flow rate (gpm) T ("F) NRe (DVp/p ) h (BTU /hr-f t2 _.7) 4,006. 100 2,193,600. 2,182.
4,078 300* 11,198,000. 3,972.
6,510. 500* 17,875,000. 5,755.
(
183" BWR VESSEL v7 7
LMiL AW D KPJU -
(
For,shall:
Flow rate (gpm) T (*F) NRe (DVp/p ) h(ETU/hr-ft2_.7) 52,100 500* 3,724,000 455.
Tor the forced convection heat transfer en the outside sur-face of the sleeve, uhe heat transfer coefficient , h, was calculated from the following ecuation taken from Ref. 14, F
- 3'*
n C_p -
h = 1.1 C 'k' Dvo "
p ' 20 D, , , ,x, ,
where C= .0239 n= .805 D = sleeve outside diameter, ft V = fluid velocity, ft/hr Using the water properties tabulated en page 2 of TS and let D= .896 ft, the h was cbtained, Flow rate (gpm) T (*F) NRe (DVp/p )
- h (ETU/hr-f t* *F) 52,100 500* 932,200. 703.
To take the convection effect through the water between the sleeve and no::le into account, the thermal conductivity of c the water between the sleeve and nc::le was modified in accordance with the Ref. 7,
'k 2 3 3 p2 SgC AT 1/3 s 074 k'=C 9 C" u
'v .
k V = O/A = 52100 gpm [-(1832 -140 2)jz)1n: = 5518 ft/hr t__._. De - s- n,E
CHl',AGO BRIDGE & IRON COMPANY OAK BROOK ENGINE
(
where k' = modified thermal conductivity, STU/hr-f: *F C = constant, . 06 L = water gap, .01041 ft Using the water properties a.t temperature 300*F and assuming the temperature difference between the sleeve surface and no::le surface, AT, being 200*F, k' = [ . 0 6 ) [ 63,8 8 0) ~/3 [1.17] ' 07 4 = 2.4 BTU /hr-ft *F The constant surface heat transfer coefficient for surface nodes 63, 64, 104 and 105 was obtained as follows: -
(. h=k - t
- 395
.001302
= 304, BTU /hr-ft 2_c7 where k thermal conductivity of water, ETU/hr-ft *F 1 water gap distance, ft t
iA M ANY OAK BROOK ENGlHE
(
D. TEMPERATURE RESULTS The temperature distributions at varicas times during varic transients are summarized as follows:
- 1. Steady state condition T8-14
- 2. Warmup transient T8-15 and T8-16
- 3. Cooldown transient
- a. Sudden startup TB-17 thru TS-19
- b. Scram condition TS-20 and T8-21 The maximum temperature difference in the component during steady state condition is 2*F. The maximum tenperature difference during warmup transient is 110 F at 33 minutes during the scram condition. The maximum temperature differ ence during cooldown transient is 287'F at .57 minute durin
( sudden start of cold shutdown recirculation loop.
k 183" BWR VESSEL '7 '
.A o. M ANY OAK SROOK ENGINEE
( -
E. EOUIVALENT TEMPERATURE The KALNINS computer program used for the stress analysis is based on the thin shell theory, therefore, only accept-ing the linear temperature change in the radial direction through the shcIl thickness. To reduce the actual tempera-ture distribution to equivalent linear gradient at the points of interest, the TEMAPR computer program had been used.
Observing the temperature distributions shown en pages T8-15 and TS-16, for warmup transient, it was obvious that the temperature distribution at the end of the tran-sient (33 minutes) during scram condition is the mos severe one. For cooldown transient, the most critical temperature distribution in both. longitudinal directicn and radial di-(, rection occurred at .57 minutes as shown on page TS-18 dur-ing sudden startup, and during scram condition, the most critical temperature distribution occurred at 3. minutes as shown on page T8-21. Between the two cooldown transients the temperature distribution at .57 minutes during sudden startup was far more severe than that at 3. minutes during scram condition. Therefore, the temperature distributions shown on pages T8-22 for warmup transient, and T8-23 and T8-24, for cooldown transient, were used for the stress analysis and the fatigue analysis.
AT shown on pages T8-22, 23 and 24 are the temperature diffe ence between the actual temperature a.nd the linearized tempe ature.
--. ___ - _. .s - _-
, 4.7 2 5'E .M5"
, s.s
( bd 'n.d 1 iw ce w E.L
' 5. ,
_ , S_. ..
g d.
tn rv
. , t
- e
, g
. tn
- 4 l 's v!
\ i l
c-c-
s
< ( -
c N L%
- m y I k' C o rd EL.
3 i, C.S.
ITI tn N
o.
v L
.3 P/ t :
( T
~
i-5.o t"E _
I t a
ta :
S Ta on
=
- g. P 2Y R 9 e
- i. c_-
22 E "
Ln n
(
THER AL MCDEL Dl Meld Sloid g ,,, N C 2 Z L E N 2 FCR IS3" EW e,,,;r.:9 m o o,,,r:/./i.< 3, YsL ss,12
- . . - . . . . ~ . . . !. C . u- .; : ::.
e .
z, *
?% t 4.ie s
. e.e b'
a.. i* 9 .e e-i .
.. .= ... .
I
~
! j .A l
- a. .. u. ..' 668
- l 3
- - ....w.....+.- e 6 = $ 0 2
- 1 I
,t A a.%
80 d =
y 3 .,_ g*g p 7
. 2 w w I M G F
. . .u. g .y t}
a l .,
t $d e-
-. N i e
~
i ..
f2
... .. s-- ~ .a - ..
Y l -
L .a. .. ..a .
g .g s .3 l
l .
= ..t .4 -. . ...... .
~.. l ..
.. .._ = __
. ge .-e. g* h E J2 g I ..
~
- t. . u ..
S.
- i. j ... . 2 .. _-
.m i
,2 i
- e. .i gg P.; -.! .. ..
. J .. .. . .e i i.I -
.u.
.=~
Il a
- a. sit s ggg
~ ~ . . .,
g
. M.., -- . I~~l. .\...\ \ W-- ;-l n.
3 -g i . . . . -
s s
~
.5EE'.....ft..n.;w;
.m.
. v ..,. . e=.
- e
! . . .l .. =.. . s i .. ,
0
.1 . . .) .I.. i .. , .,.
W
_, .a--. .
.!J, w .s i c ,
.e 4..J-_ - . .
a
)
..--. c"7 wa .
- L 3 *
%.d l 4
. ~= . a A
.. a
. . L. .
1 4 . 4 " :;a
- s. ,
. i . a a . < ., .
.. - .. - .. i , , , , ,,3,s ,,,,,6 j ; .
. , ,. s o.
, e t
~
. . d . ~
. .I . :. : . . -
3 -3 3 3 a a
~ k~a 3 A
... m ....... ..i- ;
. .!a, 9 . -
. 1 3 1... . .~.
A e , a e @ M . .a A ,
J
.. . ., ... c. .. . . . . .. l. ,f.,
.r .
, .n
~
- . = a = . *
- = j g..
.. y. .
.. ., . 1. .. .. .y
+ .
2- ;; a,; , e . = .....
e 6
.... .. - y O .
F. .s ,..
.,n..
g e ,
, * .e
. eI l La. . . .a .
Ag.8 v
- mA
- 3 o - ld q ;s. a e ", a e m e
- 7 c. . o ..
y .
t e .e O e :
< ^ a .- . ,l., ,- ae 4
a e n + ,,
4 e v .
..s i.
.. -. u u w a.
- * . a .
- a
.a
~ . .I. -- nm l .
o e
. .. l.
- u
- 3 .*e
_w e
- l:
.= .- su
..l. t .
e ; in . m
.. . . . . . 4g =
l e, . e l
.l.
- g = .
4 3 ...re .g
~
e .
. ==
= ee
. .l .. .
i.
.. .9 .3. -
- l- .
- . .ej .
.J .. ..
.t.
.: .a .S.aR. ..
s .. .w *
= B i.i :*
- .i.lil
..c.: o 1 : ".!'""%6 .
I.'....: * *e .2) -
**** J :."i
- 1 = " .. . . ft ._*1.
1"j
=. :-.g =:..I a: .: +i .: u. :::f . ,t
- ) =..A: I :..l ** :l * ..'"..,,,,,,,,,35,=
, fI,y e
"..a.
.- =. ..j = -... :
- s.m . ,.
d 2J - ..I 1
- .ti
- ; * / -
. a\g. . . :*
M \...
_ j .6.. is**
- 15!5i . . . .
.l 1 ..
W%. @ @
. a -. t .
$ O . @
..l .. : i g *'
- e. .d N O l .* .
y/APMtiP le A*15 TENT AT t o ".** ,,, is. y, 4., u, os (al) = toc,*r (* 41i- %D fi ! ! I- I
,,, ei s 4.s ass. L L L ';;!, , '
- na is 4s 44 455 as i_ L ,t- 8: ! ! 8 i
4 c L 4i. 4
]
- s. _L-
.i.11
}-.* u, w * * L. i n'* ,
",,4
) 1 l
i
... o. .m I
i 4 . a en m_
- 4.s i_I ut j 1._1
. 4 .. ii . '. ..
IIIIII I "1 l i.) is in ist i
ris 4i' "*
g__ i 45' .
3 a i I I sn/ in ni no us a r t.
4.a 4aa 445 4" I
I
/rses ;._.
. 1
. I
. t
- I 44 s .*d 8 "8 -
. su . igj 184- Its ses *% . 4.s dal 8
!_*.*.a.l_t'a i_11Lt .d*L k,*52 2 I I -
,q o- e
. a a i ! on ,
- ,R),_.ff!! !18.1 1.11*_ l.!da. i 4 8' I d8' I 4
- 8 i 4*' 1 3 i 81* 1 "* - 1 s,e i 44 x 4.s t4n r 4 8* * " r.. L g g.I -
- r4i. ;44s 3 4.s 2 4 4 : 4en : us s4e s ei, s an. : 4.s > 4.s c- 4.s 44. 4a - 4st i i11 # :
Ai * , is !_ fat. f_ t -
.il!_ Lf1L ! 412.
Gitii liMT. sj.t tt (.iii g- g- g
!!1 - g 4si 446
- --- g 44+ au j
os g
da*
g d'$ ( ** * *** ' 4*' 3 d
.i
' d* ' 4'5 g4. :
en eis 24s it!'.
an !!!* g , jj ; .. en a n est cs .i. us 3,, 4 . a , ,, ; : .u. -
- 48. ( tt: :i
- I ;
ig d
d _"88*I dI, t'"_J _;4 5' r 45*
- til r 465 t 48% ,434_ p 4l4 7 43G & 46 i 444 3 455 L 4*)
'Otj!{'M4$$ljil'!!88 i 1;_s e I **' If _< <<3_ Ig j _i- I1._si,t 411] (__4.'
f4 p lj'!! j',. ., l o, 4i 4,. . ei jailo,g. sit.1;.ss'_1; e' o. e*>i ... ui sii__l> 445 l[i_4,i oi g
44 4,. . os o* ". ei >
i 4si ,
g;;g33; norna ur ten !:
It 2*Ihrt.2111113.
stevaaniene susts.outi =4 8
.o ves sit we IS .e is sh/q g.g
- . i
-" J g,
WAL*eduP 'TRAsastENT AT 31 Me*4 4H
. )l, til 45 4:1 4st (AT),g.-Ilo*f D 4'll- n i,) , ; , ,
I
. . . , l_
ou 4:s 4 sa ,*" . {,. ] A Ib 4sj 893 Lit 43 .no 450 *l6 us 488 L '- I- 'f: '
I #
I J 1 u,
I-- *"
as} g g j'8 ,
"1
[ n4 4et 4:e Ass 455 g__ 8_,,,,t * '" 8 ,
8 "* i. ass i
5 5__,, ! ( (_ 1 t__
- 45. as. !#I, t _h'
, JI!!!!
r 3.. .
ist ses 3:3 s i(.
4ia 4sa 451 eu 49 c : : 1 i s._. i. _.
,, , / .., i, r 2
,,, ,,, , , , 4., si 4..
i lit .:- ,,,
e
- 3 i_ i I 43/ **'
os 4,,
d L't -d8 d'1 -- s dia
'---- l-451 ;---
4st{ 4 4 5 /T i s i; I {* j "1 1 d*'
I 4"
I d'*
[ "" -, 4,3
- 1,, Ed!* i*ii L*'t 4
! 8'* L *.' 8 i*" L**5 I d i *'8 1d'* 1 * *1 7 l d i *** ! '5'- La s_
- " '" 4 p *s r, 2
- --1 g 4s I t I-W [81:
h Ei, *'s i44: !<'4 4 44:
( I I e 44:
f $4._ ' 4 54 i die f us g4 6 a (se f 5 4. 3 ass r das t 4:s 5
a 1
- 43. g 4:e
- 4sa g_iss ,,_
g den i[4'8
{l.d4eI l1_. _! d'1 s 4:!all i"8 lbis 4 l
- p. : e rs es*
1 s die 441 4s4 das ' 4 s3 4:1 45 4a. 41 ,
s +4s :44 3 ese c as. s4.3 P'. .
Iw**'
- 4ts a ats 1,g *,g. j4se
- 4ts l! 4.y ,
I 144 ( .
i
- I
- ! *n ,"' t,4 " 4" g4 " 41s s 4i. r ea: 4.. , 4, un w ,, a s s : 4:s ; 4. uit vai ! g .ir d'i lj " a * ".
jlj'.15l{*8th.iU 4*'
j *4 . Ig..
- d's lj .4" l.a 4 6 tdk I) .4 .. "
j_191_}s*Si
., ... .. .., Elg* [ 48*...I}.311.lj.4!!_lj.3 .s.
4i. 4.. .. ... 4,, ,
4., ... 4,4 4.. 4,,
- worate ni lilli'i 1afcert_y11111_
newe manuma ansseiouvau.4
' -. si6 s 1(, .e is stk w S . e y p e .o . e se e
m 9
W-g
- ca)LoowN Tec^eistEHT A] .30 Mie4 3., su su su u. u*
N )!!^*= 20 3*F (. 5 3 2*- 58'l*)! !
! 5 4-- 1 444 4 '8.' ,,,L 4 t_ t- 7,", L ,,,
3
- n. s., u. s.. in u.
.., oi ;_ '_. i- 8i ! I !. _ i J-
' , ',, g.'" l" ,*) ,,.
i- i s., s., sn ... u-Lr, . ;-)to : "us "'s 5,. r u. t '- g . , .
t- 3 "I/
t ni in __}t_U_ IIIII s. s.. ui su su 5:6 5" "*
!l"._ :i '
.. .. V "- n : s .
i i u. i
- s. l ss s.. so s.. su su s>> 5'= '"
5 g
8 "* ; ; : : I : : : i I s.. su su ' su su no 8,,
. s,s d "i
- I.! L8'l I ' i_fL t 8'8 /.Sa
/
. ' '
- i s"* I s..
I I I I I I 1 u.
.n au gii - , . , , I12 !21 12L t2L i_et i_EL i 7 - 1 8 ._ 1 or ; 5'r "8 5'8 -
' ' i s't i i s - 5' 8 8
8 8 i'*f ! 5*1 5 '
Ass en Les. L"- I" L[% ) *i $ E8 i s.J_ *: s.7 s f "L f 5*7 ? 5*1 1 5-1 "7 5*8 5 5*8 iS'
- 5* * .
8 L i i f ie n '+t. ' r i. s. f 5 8 1 -
l 8**' #L'11 LiSL 111' 12si i" 41. '4s.
a a s
. s sie sin sfEg-.- [i; u 4:s 4:s 4:e 1 s 41 41. 41- dia 41* 41* dia ' die de .
3_1M_l L it ns *nt 1,,1,i l '1 "' :I :::4u jus
- I .
. q ,sse. surgnws yns , ns a sp r su r_ _ in q_us_ r us e us t un s us ; su is s - u. 1 na g n- g s94 91 l) sur a i 8"
eS+ 64 n. 'it4 n4 n4 M4 [61 4 tie ' 41+ ' n' M4 4 H+ E li' I i*l E H4 L9 + a s+s 13;1315 wesitt n in2*nyt.rtsui u.we. tai . : sw ouvia.4 eeswa Jtb s=,ll se le
. >I l., m
%d h4 g D W e e
~4 9
% V .
e *
('ooLOowsta 16pa*,io6[ t 5 5 551 sai ses *si
/ AT .5 l edi.4 (til),g = 28 7 *F ( 5 22*- 2 a s*) l i 5 1 {
igg ese .4'8 L.)
LL bI.h us L 5 88 sai San as ai saa sia
,,, 4,.
L. L 81 ! I !_ _ i
! L * <1 f*-
* 5" "'
.si . I t, ,7, l,,, *I 3.. sai su 5" I
,- r__ L_' I 5 [ 510 1 1 ! ! L. I
- * , set u sq888s_ I.
, _j ii!!!! , ,,, sie sa sai 521 5" 588 888
..i.
n_ I : i i ,_ i ss. !
53 sa. sao sai ne sai sai saa saa g a sa.
. J I !_ I I I I ;__ a. 1 5" i.,
!sa ! ses l_s..i su { s.s T ses 11 5'1 i "8
I I "8
i ' I 8'8 ; I i
su
,,, p g i h ,,, 3g ;i."5'8 8 1 5. I * *' i '#* L 8 **_ i **8 3 "5 i 5 I 5* 5 1 5*5 1 5*f n f*' ! 5*' .
5"'
i ,5
- Ls i e-- s sn r ass -~ ;
~
ist :i'! *88 ! *8' *8* ! * '1 1311 488 f 4H F 4H ! 488 a 4n a 4:e .
f 4s4 if _4 ! en f 4 's ,9, ,
I_II ' I.1 1 I3 E l) I. [ 4't ui t"8 *"
- '.e5 i 'i
- 42. 4at (se 4:3 dog I a 464 i f1_
i dst t+ 415 a 451 t 455 455 s
415 i 4s4 8 4t& e 486 a r eis ntsuesms3E*
- g 8 7 '8 8I,-l;
- 8 '> 6 " 156
- stl g l ts) j53*
- h tti ( :;
- l.
= 1 3 8 4 *B la l 4 1 y l *l p lin g 1:1 - ie p isl til y le) y liv Isl p Ian g lig sie a 14 3 age !; 4 4 ene ase ass lYg)f'atso
{ n[ a ne
- "' *ltc n' H nn y na - us lgg us j as s k tot j,pg_j(gJg_)
. . < , .u .. ns ns g a,e4
- m. )at ' nt a' a iu " "' = ut 1 iis 5 ist a6 5 as 8 84 : " s 1;;1315 wasaie or 181*Ih E_ti.11L L uewescasene snstase. eses =a e sse A tt. ** g 18 w to em. - se m 9
e
- S - . J e
(OOL D0%)e4 7 RA>35tE 6JT I AT .G o M4 sai s ai sai s.: ses i'*
(atL,- 2 53 r(.s a z - 2a3-) ,
u.
~ '
L L_ I
,Lpm; *" "Um su I:
,,, s., s..
' _ . .1-is . 4* 5 L L 4=a 4 6e
" su "*
"'! V"" n sii s .. sii m+=s Pass ...V.*8 , :_ i i
s.. r s... __
. ,, ._t_t_
f ,.. s,. ,.6
- i. IIIi!! ... ,.. ...
i 4h
.I es i
s sa si- sa- sa. s. su 5.. si. si. g I 58* :
. I .
2
- g a g i.e ses s 5*1 . 5'l . S'1 . Sol ses s*4 , sit sit I e. L.41g_ . l.*1.!_,1.fil.. I I
,, ; t.11 f t_ *18. - "*88 a - 1
.e a
! sia
' !,1, ihk,S*! !!'l ! !'* !.fli Ld".1 4" .fil I f*8 i 5*' l__5 'l _ i 8"' 1 5*
- I s.4 ; sa* : 5-4 L saf_j ni 383 4 tis s insr an./" "b,h: Igi Ed's siis ; 4rc ;fL j 4:s ! ers j eir g 4:s
- 41
- ; 4:e a4s g ans g ang ij[,,' ,
Jt {lil es 4 3!id i*i!!?i'l
}
I 455 8 d55 r 4455 rg__8 843 4sa ' 4 s: *4u I 4si ist 8 458 L.$11_ L115 tait i!9 l i i i 8 I .Idi. 4 5 45s
- dis 8 454
- see eng_ s ne i sg*EW I L : :
4e: 4n *44. h , *,,, 4. ** ' ; jset
,% 351 ( :i s ,E Sb k 5IO l h 04 40. OI h k I e I __
'jljljMtIp8 g thy!!j!'1lpftlp.11.ljR1_lp..itfp..! .
!UJj *,H 4.
I)_H1_lg n. _sfu n_Jg at lytt_l{f$4_lj.*,.g.,n__ .
lj._e,tl.hu.,n
, , . . . . . . , , ... . .. . .,. ... 4, . . . . , .
13;jjjj naaste H2 taftWILkt3111 itewascaluna aus seio.s taa=4
- w. . sus e li .e se M+ 6 . 4
- en 9
Q g %
9
CooLOorJtJ "TPA.JsionT 2 AT T**ie. 2 a 4 44 tf 414r 43g 45a 468 4"
oh. so r
! i ! 1 [._ l og 4de ,4'8 ** 8 44a 44?' - 4Si ca 445 4:6 43 pt *; g . k 8: ! E L i
, u, o4 L L I-
.!- ' ' , * "a ,
4y dit 446 466 4sa 4e1 a s4 gas 4saj g- 4,, r et g , ;_ t
- '" : 41i r 3 isr.,.**.,
- 1' 4 "'I 4'll 411 418 *18 *i'
- 4. . . -
"a IIIIII ,
,, j n : s i _ _.
i o 44s 4
4is 4e+ 44: g 441 ci 431 oi c3 : i I * H I ! : I ; : I
. 43s 410 41* 414 415 415 .- 411 . 41 4 '3 I g 414 4II III 4Il . 434 7 ,qg . s .a 41& .
g
. g a a g
4,, L f ,_ b . gi _ .. I .4 8 5_ I 48) f a g ni (Vi 4
4:1 4:s 4:s 1 4st Id,g .,53 1 it' ,
- c. 4 *' 1 48' f4_U 1 888 i *85 ___ I f_ ' 8
- 1 485 L4'8 14 ,
1 451
""%, g {l !ai- iimiie i s t ie 't " i S L i r L i * = '
,1 "' 1 "2 ' '" 14" ,! 414 !m "s'
o >> > = in I "3, :
- 4 16
,eis
- 4ia U 4ts" e= "til c i 44 44 14 t4 als ing c.-i g 4** s j : ;4l ;f ,y ass .ss 4ss 44s 4i3 41 4 416 , ,
I '4t
.ll : 4.s eis a..
- se.a.!g- {& jsie
- 4.s 4+: *43 , , 4.: 43 [
i 4as :t i
!"' 445 3 44s ; 44a -
- sol sel
- 468 g418 ;4 BS , 44 a f asa - 44L r det f 44s y 44 7 44, p 445 y 448 g 3
g;!jdilgl.438j'id".'3l15**ilj151_}} 4at _inL_}; 4eCg _ii.t_lgs.g 4 T l) j
'.'.1 EL j _ i.'.lsEh..i',L_}j 44.,1 lj *8 4 *1 .., .s ., i .. . ... .. ... ... , .. ... . , 4., 4. .., .. . .ae n a .4 u 1;;nu ... $$ d.Ib &.
latwsmaivas ausgetanules=4
.ghg e ags .el 2 8 et 16 e
se se S e
- W 9 v.
coot powN tea *1sie*lT 2 AT li+10 3 M'4 41, 41L die dit (ie Isl (a i ),.... - t 4 l'f: i_____ L_ l et
- 800 jif y k," "'
L- , , , .n a as I. ,. al L i-tu .s. .. ...
,,, t_ 81 ! l !_ i l' ." "#
it&M f.!,1 is, en 414 41 **e 44 864 L*,,, ,,,8 4 ,1_ e4 so34r _t_ t_. i N6 i 441 '
! ! 1. I f I III!!!
4th (11 411 dia 491 481 4* 88 4 84 s $46 8 16 ) i I j s j j j_ j 49 I ag 415 415 415 es, 494 444 45 { I '" i: I ! ! ! ! ! ;_ i I 4 18 446 48 g 4I 46* 48] 4,j . 4it " 4 3g . 485 . 48I 4II 48] afI - 48b 45E 434 44, g, i _1 : ..__g ._ . I i s. __3 8. a g t g 8 i I 1
,p in 888 g,j I,g 3.ss d' I ' I "8 i
- I 1 3 1 i d" i * i d'* 8 4 '5 1 *16 1 d I d ! "' <
in i ll !iji 15 j'" ji" i "' _ i 4" F"' *'S *5 3iS i d" :,_418_
!_*5' i%,,C * **[i ,,, 8 imno ae.t_11.__
i.2, i ("' ib.i..,
'IM. t., ,,, ..
ji" 4,. (e,*" '.., i '" 4., 455 j.4'%
'! 4, ... ' 4, . g .,, ? - - a4 ,'. i s n6 21p su.s3t;3, .e&
4,. 4, , 4,. i 4y : t_t3t_ S us s iis a est ;,g *u, ,4. 84. !
- :: 45 j8 4 g us ::
i..,us,n..ui
)8 1 4u ,n.,iu . . , _ iu . , 4., ,.., 4., , .., , 4., gm , n, p.
2,.. , ... i- : hiji_lgEll%- i !!!4 us fi@ti~fj.n,((~4.. ljiiil sit tti. ". pa j ui I,p ni 1 u-
' 15 i 1; n- 1:5 85i ~iiOg_nt._];[iiDeau_h_!" I na . ni ui in n$ i41 241 ss. ni 8'i tu '" s's na 88'5
- b+
lijjj(( Not#Lt est la1*.2TILhL1111 ites ematves an i.souuu.4 ss . Jw .ns at er is
4 P'T AcTu A L LINEAR AT l ( 1 474 4 63. l -
-q . 3c, i i 2 3 5. G . 1 3S7 . 2r--- 2s 3 es2 tu.I ~
__ 2s ..x +i m. I se. I
~
5 c2c. 416. 23 , 24 6 382. 375. 21 .
.q is ' #j[~' 22 ic ~1 443. 4c 5. o. ~
is ,q\,.... il
,2 S i
Lt5. l t. . 4 . l -t. 9 i LG . l cG 6. l 1. Io 459. c 59. o.
*si -" s it c 16 c i 5. 1.
12 A-t o . 4 ic. l o. 15 a?2 l c 8 2. l O. 3 L4 c 19 419.l C. (
*7 S' 15 425. l 4 8 t, . l C.
16 490. 490. le. l 5 6 l'1 451. l cS t . O. IS LES. ASS.l I ?. . 19 467. 461. l o. 2o ce2. cE2. (S.
,3.........._..
4, 11 c et o . 479 11 2 2 2a cgt. 42o. I. 23 Ac st . ' 4ct l . 9 2L cgt. L86 O.
'i I' 25 495. cq1 S.
TEl'IPER.AruRES ir4 *F 26 cst. cf1 I. 71 cq s. l 49 5. l 7 2B L?2 cEE . l o. WARN 1U P TRAN.lSIEt4T 29 cq s. l 49 2. l S. ( W A"I C Q "T E,H P = 5 0 C' p 30 d$ f) . 4 [ $. ], g;,,, M07ZLE N'2 NR IS3" 6M c.ai. M . E o o,,, n./ i/: I g , JYL ss,1 i
'. * = ............f.. .....--
P'T Ac.TuAt
- - ugEAR AT
( ll 522 522. 29 ' ' 2' _ 2l 321 52i. 27 2S
' 3 456. M ~i .
25 - 26 4 521. 532. 5 4 55. 4-16. 23, 24 6 320. 53c. 2 . s; p ts '(( ; 22 I4 'l LSL. 464 -lo-IS
- n"\.... 12 6 5 o 8. l 515 -1.
it i i 9 418. l 4ES. -lo. I lo 506. Et9. -13.
'q' "g y ct 2. t SS.
It - 2.1. 12 M6 l 512.. -16. 13 37 6. SSS. - 12 .
, g:,, V- L C'l . L6 i . - 1 .'- . 'l S'
(. 15 296 t t. -t5. , i 4 16 Is i. l 172. . '. .: .
+5 6 Il ici. 3 il . -9 l8 iss. 16 4 -14 vi 3i3. 322. I-a.
2o 156. I G S. - 3 5. 3 4, ti 158. 2o3. -7 3. 2 2 3 22 cii. L6 o. - ?9. 25 158. 19 3. -61 , 24 377 Liq. -42.
.I t.
25 157 ISS. -55 TEI'IPERATURES IN *i: 26 n l. ISL. -31
~
77 l 15 i . l 1SS. l-59 4 28 155. 192. -31 ( CooLDowlt4 Ti?.ANSIEN i I 29 156. 184. l-54 7 WA ..i ,e_ s i G.M P. = 1 t o; :-- So 'B 3 . 36 l. -34
$whie ct W O72 LE h!? Fo R 183" S'J R - c...J c.MM u 3,,, nAiA isy J 't L 3,23 ,
P'T Ac.TuAL LisiEAR AT
,s. .,_
i I s 6 c. , cos. I
' '~-
2 c4 6. I Si9
; 27 "~ 29 3 4.52. 41o.
2:; - 26 4- 496.l 505. l 5 453. 47 0. 13 . 24 b 69 5. 304. 2i . l l
'q l 16 ,'5 [ 2 142 7 4-4~I. l 449 ~
- 2. . ,1
~'
se
, ,- it\. . ... \, 2 S L 1c. l t i t. ~ \.
9 431.I 441. l - 6. 10 a64 669 - 5. W"is 11 4. 7.1. 4 ~1 S . -
~} .
12 4 49. l 4 5 5. - 6. is ac t . cc c . l - 3 .
,, . i s. it cis . I 4 2 2. -s.
7 s-( isl 321 I 3e s. -4 _ 16 545. 349 49. t ~l 34 c. 392. -
- 2. _
15 u s. scs. - s e, . 19 599. 4 o t. -2. 3 2o 349 3 51. - 5 1.
,3 .............
4, 11 l 343 l 3 5') . -57 2 2 22 l del . 419 -12.
;5 543. 352. -V2. ,
24 393 ce2. -9
,1 1, 25 339 3 47 - 41.
TEPIPERATuRES is *F 26 31l. s99 - E. 77 359 3 4~1 l-47 l3 22 380 3?E. - E. c.coLDOWi4 TRAMSIENI 2 29 335 B 45. l -45 ( 3 NATE R ~i c.H P. = : c c ' F 10 94* S 151 ~
~
l ~1 ' sai.c, WozzLE 812 FoR. IB3' SUR c.,,.n -967 o 3,,fo/.iA 3, J Yt- sh 2 '
.F / ' .'.~/..- I ~
n.. * * / S / :o s . .. . n . o- r a
( SECTION T8 APPENDIX A I. TGRV INPUTS AND PRINTOUTS .
- 1. Warmup - Scram Condition T8-A037
- 2. Cooldown - Sudden Startup TS-A083
- 3. Cooldown - Scram Condition T8-A083 II. TEMAPR INPUTS AND PRINTOUTS
( l. Warmup Transient 78-A126
- 2. Cooldown Transient - Sudden Startup T8-A141
- 3. Cooldown Transient - Scram Condition T8-A156 b
;. , 18 3" BWR VESSEL -
c .. . . Deve b shd e
a . c , . .:
. =.
( IRRATA The thermal model geometry is slightly different from the actual geome cy in the sleeve - safe end junction, as shown in the following sketch. However, the difference of geonetry is small and will not alter the actual temperature distribution.
+ - --- - - - THER H A L Ho ACTU A L GEo s SS SS .j ,qcoggt ,
14co4EL ( 1 I i i t
\ \ , , ) -1" Le}
i g t s e
-lv I \ .t !- . % 5-5.o t* R b
(..
-= tm uecert e... n... . . . ver. u. . -
( e 7 SECTION SS STRESS JJG. LYSIS NOZZLE N2- RECIRCULATION INLET NOZZLE i L __ I e
l SECTION SS STRESS ANALYSIS NOZZLE N2 - RECIRCULATION INLET NOZZLE TABLE OF CONTENTS r A. SUF/_ARY OF RESULTS , 1 S. MODEL USED AND ASSUMPTIONS MADE 3 C. PRIMARY STRESS INTENSITIES 8 D. PRIMARY PLUS SECONDARY STRESS INTENSITIES 21 E. PRESSURE DIFFERENCE EFFECTS 28 F. SECONDARY LOADS ON THERMAL SLEEVE 31 APPENDIX A
/
( __ . ...u. .. .1 Rt? .. nto U M RT.T. <
.-. . . . . ..n-........ ...a.. .YC T . .. u. . . . .
(. SECTION 58 STRESS ANALYSIS NOZZLE N2 - RECIRCULATION INLET NOZZLE A.
SUMMARY
OF RESULTS . The recirculation inlet norrle design was found ade-quate in accordance with the requirements of the ASME Code, Section III, Nuclear Vessels, and of the GE Specification 21A1100AS. i The recuirements for area of cc=censation were satis-fied for the no :le opening and it had also been shown that the analysis for cyclic operation was not required for the netire no::le as well as nozzle sleeve. Thus in the immediate vicinity of the no::le opening, the ( general primary membrane stress intensity, P , the local primary membrane stress intensity, P3, primary membrane plus primary bending stress intensity, P + P b, and primary plus secondary stress intensity, P3+ Pb + 0, are all within the allowable stress intensity limits. In the nozzle beyond the immediate vicinity of the opening, the maximum primary membrane stress intensity, P m, is 7,628 psi in the cross-section 7-8 comparing with the allowable stress intensity of S = 26,700 osi, m - The maximum primary local membrane stress intensity, P , is 13,142 psi in the cross-section 7-8 comparing with the allowable stress intensity of 1.5 S ,= 40,050
... u . ~ pr xsyt stt, .
x- _
, . . _ ,, vm s..
.- =
- s
( psi. The maximum range of the primary plus secondary stress intensity range, Pg+Pb + 0, is 23,483 psi at point 7 comparing with the allowable limit of 3 S_
=
80,100 psi. In the nozzle safe end and sleeve, the maximum primary membrane stress intensity is 13,473 psi in the cross-section 23-24 comparine with the allowable Sm = 23,300 opsi. The maximum primary local membrane stress inten-sity is 21,167 psi in the cross-section 23-24 comparing with the allowable 1.5 S = 34,950 psi. The maximum range of the primary plus secondary stress intensity range is 68,626 psi at point 13, between zero stress state and cooldown transient 1, comparing with the allowable limit of 3 S = 69,900 psi. (. In accordance with the plastic fatigue analysis, the maximum cumulative usage factor in the component beyond the immediate vicinity of the opening is .515 which is less than unity. F a um rec: er - YgL s, 9
CHICAGO BRIDGE & lRON COMP ANY OAK BROOK ENGINEE (
- 3. MODEL USED AND ASSUMPTIONS MADE The recirculation inlet nozzle detail drawing is shown on page 6 of 58. Ecwever, the stress model used for the stress analysis was conserv'atively simplified as shown on page 7 of S8.
The stress model was assum'ed to consist of seven parts. Part 1, cylindrical shell of tb reactor vessel was assumed to be made of A-508 lass 2 low-alloy steel. Part 2, nozzle main body was assumed to consist of two layers: 3/16" A-240 Type 304L stainless steel cladding for inner layer and A-508 Class 2 low-alloy steel forging for the outer layer. Parts 3, 4 and 6, nozzle safe end, and Part 5, sleeve, were all assumed to be made of S3-166 inconel. Part 7, recirculation piping, was assumed to be made of A-240 Type 304L stainless steel. The presence of the clad-ding on Part 1 was neglected since the nominal thick-ness of the cladding was less than 10% of the total nominal thickness of the component. The presence of the stainless steel cladding on Part 2 was considered in the calculation of the thermal stresses only. In calculation of the stresses due to internal pressure, nozzle reactions and sleeve reactions, Part 2 was assumed to be single layer made of low-alloy steel forging. The 1/32" corrosion allowance on the outside surface of _ae low-alloy forging was excluded in the stress model. I s
a . t M A OAK BROOK ENGlHEE I In' calculation of the stresses due to internal pressure and operating temperature, the stress analyses were performed with the Kalnins computer program. The stresses in the no :le, no::le safe end and sleeve due to end reactions were evaluated based on the simple beam theory. In calculation of the stresses due to end reactions , it was further assumed that the sleeve was too flexible to take any nor:le reaction loadings and the recirculation a pipe was also too flexible to take any sleeve re-action loadings. The local stresses in the vessel cylindrical shell due to no::le reactions were cal-culated in accordance with the Bijlaard's work. In thermal stress analysis, the reference tempera-ture was assumed to be 70*F for all cases. ( In using the Kalnins program, Part 1, the cylindri-cal shell of the reactor vessel, was assumed to be a spherical shell of the radius ecual to one and one half times of the actual cylindrical shell radius. The no :le reaction loads, specified in the GE Drawing 921D217-7, were assumed applied at the end of the in-conel nozzle safe end. The sleeve reaction loadings were assumed applied at the Point 5" inside the cylindrical shell inside surface. I (
.. ,. . -- . . u ,. . .. .
CHICAGO BRIDGE & IRON COMPANY OAK BROOK ENGINEE 4 I Ma'terial properties, E and c, at various corresponding . temperatu.es were used in the stress analysis. ( l
. _ ve.
.. 4, 4.7253 R - - . (A4I> -
m e ta o m
, eM i ,
i _L_o if 9 i k .I tu
= T . s 2 -lN " - j@+( , -lq ~ F b ' lN f ~ !$e 2 ~~ ' tu
NI"< 4.S 5*i' re s, 1 7
- 5. ~5 7 5" Et e-
, C. " N 5.5c R I Tl5_ g -
t i 4 1
.365- i t" , g-2 C.A. ,
c dD I ' ' v
, 2 " R- ' N s f .:1 ** \
J. V
\, - ~
N 8 -JN (D o g 9 m 10..SCH 4.0 3 ~ 9
" N PIPE I INjCO N E.L ',
t 1" P. i, I g se g 5g l . i
+
- s. 4 H9y
\
44 l
= \ / -C-32 's i-N ' - -- - - - - - -
y y 3 EQUALLY SPACED PADS 1 y /.L
+ . / g % -in N i, 1
9 s 1 <
~
tn ' gCLAD ,._ q , sai.., tsj0ZZLE N 2 FOR 163" BN R c. ,.6f-2167 u 3 ,,,n 4/a ,, ys t_ 3,,_4
5753" (
- .649r - - .o/-s
- 1 p53[' Y
\ \
1.1562
\ } b~* 0 , @l \ *? $ 'd l V ;;- a .3 c . ! i-5 .737 c,'
s t t )
- " 4 7
3o $
@ v @- ,w - ~ ; ; W L*
- , s .
.3(,5
- t.0312" 5.37 5" m
6 s
- 5. 5 " R IS I5' a E.
O 5.osi2" 'm r-
+
e a L q) eI V W
,4 r- 4 N -l , if N
k STRESS MoDEL ( kALWINS) MozztE bd2 FCR 183" BNPs sobi.c, e,,,,g.296 j u o,,,eM; 3, vst 3.,, _ 7
o.. OAK B O K .H IN-. C. PRIMARY STRESS INTENSITIES The area replacement calculations for the opening are shown on pages S8-10 through SS-16. To evaluate the primary stresses in the recircula-tion inlet no::le beyond the immediate vicinity of the opening, the following' loadings, in accordance with the GE Drawings 921D217-1 and 921D217-7, were used.
- 1. Design pressures P = 1,565 psig and 1,250 psig
- 2. Design temperature, T = 575"F
- 3. End reactions Norrie reactions, F = 3,900 lbs a.
x =F 1 F = 8,200 lbs M x
=M = 271,000 in-lbs Mg = 102,000 in-lbs
- b. Sleeve reactions, F =
0. F = 4,300 lbs y F = 13,000 lbs M = -44,000 in-lbs x M = 0. y M. = 0. The stresses at various points under design loadings are tabulated on pages SS-17 through SS-20. The
( following listing will summarize the results covered in this section.
- 1. Stresses due to design pressures S8-17
- 2. Membrane stresses due to design pressure S8-18
- 3. Stress intensities due to end reactions S8-19
- 4. Primary stress intensities SS 3 i
In calculation of the stresses due to the sleeve reac-tions, the effect of the three equally spaced centering and supporting pads were considered and the sleeve was assumed to be a statically indeterminate beam. The primary local membrane stress intensities shown on page S8-20 were arrived at conservatively by superim-posing the stress intensities due to the design pres-(- sure and the stress. intensities due to the end reactions. l, VESSEL 14 SIDE SURi: ACE i 5"
/ r- / (SLEEVE ; / / / /
3
/
A 9' l t {-, ivbieci I R '8 " "NE- W CC " - Co.ii. Deir Er C L Sh t., C
, VESSEL 5 PEN 1'.G REINFORCING PRSGRAM GENSZZ .( .. . . . . . - - . _ . . .- . . . - . - _ . . . . . . _ . . . . . . . _ . . . . . - - - - _ . . . _ _
PR000AM !s S . 711 ; CATE CREv] 6-6-68 ; DATA SHEET DATE [REV) 6-6-68 CONTR. NS. 65-2967L RECIRCULAT10N INLET N0ZZLE N2 ' INPUT DATA - GEINERAL DEEION PRESSURE CPSI) P = 1565 DESi3N TEM:ERATURE CDE3REES F) TEMP = 575
" A T E R L A ' ..C ".._r ' ].r. I C A T 1 *. N = F A. :# V _r S t...r. ' . S.W. r. L k . ,*
c A c: : A o us "I. t,..- C c.. s. ,. .C R A O- r~_ c
~r--- - . . . __
A - '. ^_.c.A..r.L. Ca C r S 1 3 N STRCSS INTrNC?TY AT T r v wo I.,F A T U R r
- -- SS = --2670*G -
FSR VESSEL S.-ELL CPSI) P A..T E.R. I. A_L. m.S.P r C 1 F I C A T !j N ISR N 9 2JJ,,E : p; v e , e kA.=c c_.p
. .._ A L L O M ail E .J. Ell.S N S T RE Sd_LHE!!S LI Y AT TEMPERATURr,__. SN = 2.670.0 FSR NSZZLE (CSI)
MAT.r71AL u S rCir!C/TISs_F p S_A__rr r. N D : TYP( 304L ALLD5AELE DESIGN STRESS INTENSITY AT 1EMPERATURE SSE = 13150 FSR SAFE END (PSI) M_A..T s .- r 91_A L SPECIFICATION FOR THERVAL SLEFvE S..A_- 3. J' 2,1 Y P E 3 0 4 L SIFi. ErsD CALCULAT3Sys ce9E : 1-gE09. ; 2-NOT RECD. SEC = 1
-= _. ,. . . .S H. T ._6.
SUEJECT CSN1 DATE .,//f t:.t 3 Y M
. ._ C H E. C.'< E D S Y. M M D A_T Ee ; d R E V . t!O. p _. . .E. .Y.m. ...s._ O..A T E..gpg,,... -w.e.n 6-Mmes ------@ ee m M M .O - - . . .6 ..g .. g.m p g
CSNTR. NO. 65-2967U RECIRCULATISN INLET NSz2LE N2 INPUT DATA - GENERAL CSRRSSISN ALLOWANCE INSIDE SF S *r,E L L [lN) CRis = . 00000 CbRRaSISN AL L S'.! ANC E INSIOE SF N0ZZLE CIN) CRIN = 0000~ CSRROSISN ALLS'."sNCE SUTS IDE OF SHELL CIM CROS = .C312 CSRROSION AL L S' ' ANCE OUTSIDE OF N.9ZZLE CIN) CRON = eC3*2 _ CL A0 TH1CKNESS INSIDE NOZZLE AND/04 VE.S S E L CL = e1575
..e}a.r__ti_ . L I .N. .J . ._. . _ .. ._ __ _ . . . . _ _ _ . . - - - - . _ _ _ .
C.-i A *u.. .a..n. v.r .p .i A.
- - Y ..C.sc. '. _r _ .- 1. " a. n ._N -r . 2. " M r>_
L ' . "aN. L.Y.._. .. - - C >a C.. .-
. __ C. .
3-CLisO EXIEh DS AR0ND INSIDE CSR$ER SF NSZZLE f x.m. --- u -ri 2, r,v ir o n cla w i ryri nr .itTqln- . SURFACE SF SWELL ; S-CLAD EXTENDS ALL THE
- v. n.v.. _T a _ S /. r~._7__ri N '. .
. _ _ _ . _ !.N P UI..D A.T A._. _.S AE E E N D... _
- c. e r r c '. D t. i r 4 i t L c a 7 r.a- 3 rr=r - -- L.'.r rs >_.r.a.c.fi rhTTir. ~
e v,
.a.r. .
c . SAFE .El.D 1 N 1. S.1.D.E C 1 A . AT n i p I n u ._r :0.._t t. N. 's... t t N.T E3 e,.e a.0. . ...
. c= 9... _2. p. nv.
. Ir siCii IS T O S E C ':. 0UTED PER GE 0'!G. 107C5305). ( .F O.R.._r..r _ A- i r cc.<r.i m cr. _r s:a* r R_.I r . _ .q r_..c: a Cs .r i e s:n . - .- A.C.T..u r. L._S u T S 's.?..F A ' t.T r ' Or S ,. r - FND Al P ! c . .N. G r_N D.--
-- . D= LC._. c.4. p2. ^
CIN). ENTER 2ERS IF TFIS IS TO CE CS".PUTED NOMINAL OUTSICF. DIAv.ETER OF MATING olPE [I V) . A= 0000 (NTES ZERS IF ' ' c ' ' A..N. O D _ A.r(r - B e T u .S._p r ( I F ] r D . NOMIsAL HALL T5.!C'c ESS Gr MATING PIDE t l N) . TPN = 0000 ENTL7 ZEPS IF C IS SPECIFIED. DEPTH Sr SSC<ET FSR FEM. ALE SSC'<CT CSNNECTION SOC = 0000 ( B.)._. . ~cN..T E.R ..Z n r R O f r N '* S 9 C <_E T Ugre. = OUTSID DIA~ETER OF SLrrVE [1NJ. 17 NS Si crVE w SDS = 10 75Q;, RL'GUIRED ENTER ZER". I SHT S
... SUBJECT. _ _ . . . . 'CSNT. D A T C T/n[se d. Y bp CH.E.C..<.E_C._R.y.__ d D A T E .? kLS F.EV.NC. ; B Y gy.. D. .A. T..E. f o/2 . -- fc y - .( .__ m._. .. ..s....h_.M.B .hB'_ .e .g.. ...me. - . a . e m .e . ....,ww
CONTR. NO. 68-21?67U RECIRCULAT10N INLET NSZZLE N2 I INPUT DATA - N07.ZLE NSZZLE TYFE CSDE : 1-BARREL ; 2-CSUBLE TAPER CT = 1 NSZZLE MATERIAL C00E : 1 -F ERR ! T I C '.'I TH NS CLA DING C N ". = 2
.A j _ S A r."L . E.ND__JU.N C.U. .S m N ,._ 2_. A. l L "s.Y. s a.l . F ' 'L L .Y.. C .i ,'. D .T.. r R R ] T lu" . . _ _ _ . _ _ . . . _ _ _ _ _ _
U.41.DI_ D.I AM.E_T E'R O F NS Z2LE_j T__JUNC Ii I_3 N_ .I_S...S AF.E _ E ND C1N) D N 1,, =. _ _.1 1.? O O C O C NSZZLE WAL.L__THICWTSS AT JU.1 U 9N TS SAFE rNC CM. T = 1.0 0.09.C ENTER ZERO IF "IN. CaMPUTED THIC< NESS .15 TS E'E USEO. Nb22L!.. TH]C< NESS AT REINESRCING C IN) . ENTER TSTAL IN = 0000C THIC,<N"SS INCLUO!.'M CLAD sND/SR CSRRSSISN A L L E <! A NC E F6R ANALYSIS. ENTER ZERO IF N3ZZLE THICKNESS !S TO cr w_ n.e_T r._:m.Lu r_ .- av n_r_.e..t_ ._._o. en: n oL._: __r _._1,. n r e :. n 7 7.i re ... -- I'TNi' ]S PEASUREO PER?ENCICULAR TS N0ZZLE AXIS. ___ _._INSIDE DIAPETER SI C'2VSLE TADERED N0ZZLE "EASURED DND = 0000C T S_ ..T u,y, O g g,T ;.C,f. t 90,1sT 07 _1_NIEES.ECTION SF._UiS1CE SURFACE OF *SZZLE AND INSIDE SURFACE Sr VEESEL ~ r l on . r .a n a r 'rL '> '- 7 '~ t I__ L~ h _~ G_._.4' _~- .7 ^ .
~
6_w r Li a t a.%. . A. N. D.a,. T S I D r S L " r E F O R D S...U S. L_ E...T._A.. _" R. E : I .N..S_ u _N_S. 7 7.L._E_ ..PH1 = ...O. .O. O. .O [DEG%ES) . 79R E'6 EEL TYPE NSZZLE ENTER 7.ERS. --I' INS I DE R ACi t;S OF VCESEL [lN). R= 92.$000C ACTUAL SHELL THICc ESS INCLUDING CL AC ANO/"R TS = S.21875 C&RRSSICN ALLOWANCE C l .N ) . R E.C_ U._!_R..E D DE S 13 s T H I C'< N_.', S__S_ S. F. S..H.r L L E X C L U0 l vG C L A D TSR = 4 44000 AND/0R CGRR?S!ON ALLDWANCE CIN). N9ZZLE INSIDE CMRNER 4 RACIUS ( I N) . ENTER ZERS IF R1 = 00000 THIS IS TS FF CS PUTED PER ASMr CODE SECTIEN 3 _ N.0_7~ 2 L .F. _O__U_T. .S._I..C..E C O R ':ER R A 01.0. S. _L]._N.) . ENTER
. Z.t. R_.S.._.1 F R2_.= 00000 THIS IS TS BE CSMPUTED PER ASME CCCE SECTlf.N 5 TRANGIT]GN RAC!US EET' FEN 65 DEG. SLUPE AND TOP .
R3 = .C000C S_ r,C.T..1.S N O F N S Z Z L.E._._( 1 M) . E..N__TR E . 7. E.R_ O_ ..I f T H 1 S 15 _ T O EE CN.PUTEC PER AS"E CDDE SECTION 3 ANGLE FROM V ATICAL VESSEL AXIS Te AX]S OF VERTICAL BElA = 00000 NS Z Z Q__l N VFSSrL HrAD [yr,,3f'((,p , IF .NOT A p p L ,lf ,A, g, _E ENTER ZERO. SHT S SUBJECT . CONT. D AT E #;//r/g BY y _ .C_ H_ E C..O. O E Y g As _ DA.T_EM,a;.i.__R..Ed'_.':0._.?._ _ . . .3 Y v.,u.; D A_T.C.._ /.c/.:3/g.r_. . . ( 6.m . e.m e .a_ ap e g.__ _ m w _ e . m.--- ----N N .. ... .. . . . _ . .
,CONTR. t,0 6E-2967U RECIRCULATISN INLET N0ZZLE N2 INPUT OATA -
N0ZZLE LENGTH OF NOZZLE BAR7EL DARALLEL TO NSZZLE AX]S []N . ) HT] = 0000 t_e _- --- v o t e te ve .c c c - n i. w-
- _.e..v : _; _.i r_.res.n...
SEE ' ' HT IN OUTPUT FOR ACTUAL DIMENSISN USED. x t SU3 JECT . . CONT. D A T Ecf D$//c/. Y ay' -t
.__.C .H. E C.'<.E. D. . .E_ . . .W _Y .I'.LD A _T E.w' _,f
_ RE..V_.S.O O B_Y__ a;t D A T E f c/;,./ <. V
'( .
e ._ . N-- .. eem e e 6 e .-
. CHICAGS SR]DGE AND I R O.N CbMPANY CON 1R. rC. 65-2 67U REClRCULATION INLET N0ZZLE N2 i , SUTPUT - SAFE END
' ~ RE;UIRED THjCKNESS 8k Sdi'E END AT P! PING END TP = 5956 e m .~i i s =c. 1 s. t c ,. . n n . i y e , .. t ~w . c_un- O n c t o s. ALL54AfCE IF ANY- CIN) ACTUAL MINIt'UP TFICKNESS AT PIPI'IG END 0F ATPM = 6895 _ _ -. e n, r. E - .. :. . D _.. C 1. m. .,
"_J _N.~t w U . R M . _N a. a Z_ . lL.r !t L'_ T" I CEfL~SS > I NIL 8 'O bD TMIN = 1*0.E. F .
CLAD OR CCRR2S!SN ALL8VlANCE i AS CO.".PUTED PER
.G E..D3 'b_ LC.7C5.30E._{3 1) + . . . _ _ _ . . _ _ _ . - ~
R_ E 'A' il.K r_ D ..C A r r rND Tw-].C.g:re...qm .T_
- A .c..A r t .EN..'...I." s - T2r* ... - - .' 6 "~:.c..
NSZZLe CSNNrCTI'N INCLUDING INSIDE AND SUTSIDE
.C.3 n r. c,; e v att,a.ANcr 1r 4vy. t i v3 t - ,s..
e: ___. N c . r.s-t.... ciapr_- --e.._ .T_'.,. . .^.a =avr m T_u r : '.e.t__S
-. L r e v "t. . . .t I N.3,- U I C._. .. 1. 6 e'.'. a.. ,_n_ ., n-----
tr a A. v c. a .::. t. - e L m. :.]
- = . -- ]NSIDE SLCPE LENGTL' SELd'l THER"AL SLEEVE. [! N) Bl S :. 7CSC 2- ner.Orr cl .in r 3 .r _r .a..r -- .. -
0 U T SJ.D.E_c L 9 0 "._L :~;.1'1T3 r 1.'i.] e S L._.= 4 57.0.C. ( t r - y .-- y-tu c r p L:._4- . n o .c- - r. . . e-
.a.LC -- r eioer .s_.c _I I e 3_ .. . r...vr n . - -_1 . v.4 3. .z.
i-ar Nr: % r. r r t , T ., r.:.t .s ., nut;r3ng_gtour. r I..N,1-t - - Cre -
. 1._..ww%o --
Li-N q..i_w O r. r i A. T A.E. S.y r J N S I.ps' S..t_e p r . r ].N) r- .F.} _ =- . _ _ 5 .. 0.4... _7 R r .s
~ !.1. 0_c D ! N ] FU *..L r.._N *2.T..W. - a # 7. .. $..A r -r _ T N D
_ A.S. CSMPUTED PER G~ D.G.. 107C5305. []N) US.E T ur L/M.G's T VALUr er - - B1 = 30E 52 = 7'E.0.5. B3 = 2.t.0 D.D.C -
. _ _ . .._ _ ...S.H.T S SU5 JECT C S NT . D A TE Wnd.-t . BY d
( . C.H E. C_< [_O._._C .. t D Al E .2 ~J,_kR E V . NO . ? Y.l' p DY gg DATE f c p/g. . --.. - LI
C ICA30 RIDaE A.! .N v.
*CfNT4. F:D- 6*-2967U RECIRCULATIO?? INLET N0ZZLE N2 7
SUTPUT - NCZZLE NSZZLE DESIGN ,
.REOUIREO N0ZZLE 'ALL THICO.ESS CUE TC INTERNAL TNT = e56215 f R e_ c e. w> .r_...A T. J U N C T '. ^. .N. T ". z" A r c . E . . n., . r. '> N] .. I N .. C' U r e INSIDi AND SUTSIDE CORRSSION ALL%t NCE OR CLAD.
AC TU t.L NC Z ZL E a' ALL THICKNESS AT JUNCTIDN TO SAFE T = 1 06250 c.3..3
- .- n o r . 4 3. nc- no:.
o
- y. t. O. , ! .. u - (. e v'.4 g. . .. r.. s..%.n .7. d,_ T. ./s., w .* s P g _r e _ ewwr .w - [1y) -
COMPUTED PER GE D*r. 107C5305. ._ _Ucr_ - '2 .u. ~c . a. c r..t.. T..C '. . . V A L 'v' _c. . s. .F
^ -
4 , - r a ,t *1 ] . . - T.7.97.a'6 e_p. c
- 1._ . A._.A..p5v .n
. - - N S 12L E..l NS IDE .C 0 R_ER_3 AD.J U S . .LI N) _.:.E.R . A S$C_S E C.. _'. R1_= 2r.5000 N S Z Z.i.mr G U 1 S .i D E_C.O. .R_.' . E; R A 0.1 U S. ( Pm._. _ Er.. R. ._A..S M r . . S.r.c._.3 . R2 = 2_.50.0^s p, P,..e.7.S.C.. T R._A..r._r.i.._T'c J : an t e: .
" r T v e r s i. e _ n _r . a. .~ r r.. _ e. i %e. e_ r_. _f. N O T.n-- n _ - - -
S E C T I 'P. O F NSZZLE CIN). PER ASvE SEC. 3 N0ZZLE T'ilC< NESS AT ~t E I Nr C R C I NCs INCLUDING CLAO TN = 5 0625
\' . . A.N D /.'.* R._ C .0.9. .R .".S.l._.N. _ .A ' L.9.'e.: t.'.<..C._r . _.I.
_. .. w. n R. .D. .S.U..~. :. <L r T a p r R NbZZLi S s i T .N ' ' 1S S'EASURED PER2ENCICULAR TO NCZZLE AX15 g4ni.,,; in c. e r. . .: ,. n. r_ c-
.r .N n. 7. g.t. n. ..u. g , 3 ,3 . tj.m.,. X -. .. .^,6c^ - . . . . .T"iAL REINF0%CIN3 /.REA RECD. UN ONE SIDE ESO. ! N.]
AA AB AC AT
-c.c.G_E.r.0 ca ._ + 1__._! c 7 6 9 4 00000 = P A . c O..O_1_9 . . .t'a. .nn ll Cua ut i rw.., i. .v _. i.T .o r._.g.r.1.N__e u o. Ea r v r e T r ly.) .
USE THE LARGER SF .: XS1 = 11 3750 XS2 = 15 5312 VERTIC/.L LIMIT Cr iEl'FD'< CEMENT CIN2 XN = 4 3826 T5TAL REINrTtCING ^REA AVAILABLE SN ONE SIDE (SO.IN.] . A1 A2 A3 AR* 5.S.i.250 .
- 19.727S6 + 1 37500 = P(. 615s.5 SHTS CONT.
SUEJ"C7 D ATE 5/ gen SY y'
" o c- w- r Cs.P. _ F. . Y... P. M - .A..T E _l..2. c' J .R.. r.V.N. w _ s .. . E..Y.. .. %e k....D.A..i. r ~ ..tc/. ./t..t ... . . _ . _
o z _
* * * ********8" * * * * * " * * * * * * * * * * * * * * * * .m,w.. .e..m...._-
Cli1 C AGO SRI D3E A.'iD IR9N CSMPANY
' C '.; t!T ' . NO. 6 A-E f-7U SEC I'CUL AT I ON INLET N0ZZLE N2
( ..._. SUTPUT - NSZZLE
. ..n2. t. ,,., .. .i. f ,- . L1.,,I..i n-w- .. . 1 s.-. ,, .. s u :.M :. ,i.c
- s. r A c/3 n.1N...sCIN,. : r.t o X c -., = 16.3 c ::e - ,.
g .t .r.
.. .-.:* n- i t O .r.
- s t._-. . *r rT_.3a
- w. ._ ., .,. c,
. _,. , t . s n -i.... _ . c .. .. w . . .1 s . ..a r. _ .s . a. s. r c. n r e . e. . .N. ,,_enA ,.
c /.a. n, n:_ n. _ . _ _ . _ _ . . . . _ _ _ . . _ . _ _ . R E P L A C E E '.T EXCEEDS H'.01 ZSNT AL L !
- II 0F REIN-
_ . . _ _ r.a. .-n C . :. >. i . . .n .s r ., ,.- , L a R :. e... _ n: I. 9Re1.,e. 2/,... .r .o R u- a . _ _ . _ _ _ _ _ _ _ _ . _ . _ . . _ _ _ _ . _ _ . . . . . . _ . . CUlRE.eENTS :.RE TWECEFS:.E SATISFIED 1r FULL o w.r : s.r._o - ._ ::r m _.: e e2.r. _r .c,.f.- t - __ A s....u n ..L : .x. .. 2..a... .n, .r. .,. .=. Z Z i_ c.._.r., n. q i, _r i .
.o r_ .fm y.r. e n_ m_a A,n. n. L: r: F: i_ _ . s .,. E,5 c 4 --
TS N0ZZLE A>.1S CI NJ . (_ .-- - . _ n' _ - _ . . . . . . . . . _ _ ._. .. . ___.S.KT 5.5 . SUBJCCT , CONT. D AT E Vn%r BY W U
..C H C.<.. f D.. E...Y../.j.T'_
g .D_A..' E $ _. .'
. 7,4./ E. Y N O . "-- .3.Y. u, ks D. A. .T. E. M. w. /s._r t . . __ __ . = - . .
I
. k.
eu -
. . . . . . , . . _ . . . . _ - _ . -- - - - - - - -- .. - _ ... _ .~.-. -- .
~ % Cr 25, 2g. PT Ge 23 24 l l 2tp 22 2 3 9,2 6 5 2,551 l-1,250 4 -35o -343 l \
s
\
6 m, _ ,___.20 16 is i3 i4 7 4 ,q c g 7, i c 1 -1,250 Is ' ri g 3,q g s l 6.6 5 S 9l2,2.E6 l 6,'i c~l l - 1,2 5 0 ii 12 10 4,8 C ] ~l,4 6 3 11 3,o96 l i,375 l-1,,25c 12 2. ,7_ 9 t 5,66\ 13 \5.37o I t ,2. t o - 1,2 5 C 14 l - 1,4 t G 5,%96 5 $1 8's 15 379 6,565 - 1,2 5c 6 16 - 3 19 6,n 6 l - 1. 5 6 5 17 l - l, 5 62. L,5 S 4 - ( ,2 5 0 18 1,5 6 2. 5,521 -I,565-I'l l 9\\ 6,123 l - 1, 5 6 5 2o 5, f 6 G V 2. o 9 Il l.1 3 % l 1,2.10 l - 1,5 6 5 22 q ,5 12. I g,6 t o i "-3 4' 23 d.,5 3 2. 12,450 - l,5 6 5 2 24 6,I18 12,9so 2 5 l 4,s.3 3 g i, c 3 0 l -(,5 65
~ i 26 6,1 1 ~l I t,51 o I ' ' STRESSES iW Pc
( DESIG.N1 PeassuPsES h!o22LE N2 FoR 183" StVR c,,,,gt-8.v; u 3,,,wh4t s, y t 3o , D,_ a,,,
25 26, P'Tf G, Te 7r 23 2i 3 4,467 i'o9'2. -62 4 Ill 25 q I 4.,46'i -l, o c y -62 8 C1 Io 3,5 47 ],c f. 5 - 61 19 Zo gi 16# irf'[i' ' ','i 5, t 9 4 6,523 -52 12 16 ri IS
'I t 12 6,127 S,5 55 - 62 19 C. 6?50 -140 16 ' '
ni c. 5,053 IB - I ' d. o (. 3 t o.
'7 6' 19 l 1,3 3 9 1,466 -13" 2o aq,
- 2. l 3,323 11,4 l o -l2 25 5.n 5 12,690 18-25 2e, 5,325 I t,270 - 17-STRESS ES IN PSI
( DE.stGed PREssu RE MEM SR AtdE STRESSES sai.., NO72LE ,foR 185 W coi.6 :m o o ,,,nAihr ,7 m ss, B
g r,ESS PT AVG ( iWTeustTY 3 5,547
= ,% o b -
n . 24 4 6,269 2i . 22 'I 5,\33 5' 5 t 4. - s 5,845 ci 4.130 4,413 to 4,Elb
$ I5 'th i 11 6,5 b $ 'S I gggg- \'t i iz 12 6,254 l 13 T ,416 , g 4_ g .
s o. 9,214 15 l,%04 s~ 1,755.
+ is \ ,'t 6 ) &$
is 2.,3 8 \ 3 4- M 4' c' 6 4-' 4,9 S'l - to 5,4-1 0 il 1,250- ~
-l, 6 9 4 12 %,192.
15 7,215 696 24 3,112 ( gg gpus er.io7 cut ( AFP: gyp etAcTioNS WO2ZLE N2 FOR gg " $WR coni.*,,. g n e 3,,,i4/i.g M sh' sai.e _
v ( F'T Pn., Pt AtLow. Liu
.' . 3l 1 oo'qq 13 24 4 5'092 '
Sm: 26, 22
- ~/ I' 3 5" = 4 0 '
ft 1,613 13,l42 9 g, 7,il c 11,1S3 11 go il
" " ~ ~ ~ ~ '
16* 15to l a' 12 l'I 4b I1
' '.bbO , , , I%
g 9,I l 8 l 3.023 *
, a l'
12 15 l 1.2 53 c1,6 I 3 cm _ - 22, 16 6,46 l 7,S39' I'S S*
- b 4'
(, 18 9 to *
". l#1 3,143 I O 112'? b 10 ' , 7]
I 1,l 93 ' 2 0,87 ] 23 15,473 21,167' 2r
- 0 4' 1
Pe: MARY sTeess NTENstn (Ps0 3 7, , , ,, MczztE. N 2 i:o R l $3" Sw c.,,,E-29 n ue,,, suli/d s, JYt 3s, 2 e
' ecirculatien riv'1 . . _ l 5E C A_,P. . = c Li_7 N u .N '
( _ 6' D f -
' Scte:
Di.mensions shown J }
- p ,, rg m ,
m s g- are Ec: analysis
- - : trecc p:,
'l I I cniv.
p . .,. , l --. . ; - e, :;1er'e, p.,i h 5.?C/67f **
~l ~j i d%i f.2 6 7f 16<- C. y q A: rn :. : F:i g!
u sj ce /g 6 ' 2L s : 2 '.2 cic, P / e< c' n
~ ~ ,. . a.m.-ro {9 y 'I. _ ' U"5 ;.. }1> ~h,
- c. ,
^N.- ' -- , .c, c -, .;- L. I l ] Dw, Se a .I S A S C E C L- 2 > klN s % ~ nce p:1 ] - = , M' S rc. F ,
4v
/ 'N 1, ISDI y Y , 'M i l __ 5.J62 . / / .r. .c o . -, . -
( - c.u.s ' 3 fil uen >-- ' coR R s , 3, y, ,a ,. > ,
/
I . 4 (
'{b y.j A TiEACTOR VESSEL 3',"l'??(" - " i I 0 5~^'2'M < , oATE , c a: E , $ C-*: l I .
Co ll? % ,s Il #, 7* is-? 8' r
Cbl C,A_G_0 B R } D_G,E _ A tj D _1_ fly N C_C M,P A N Y Q N r 7 7.LE,,_A!jj,Ly,S.1$ POGWLM-Akt_L_ CADS MECHANI t. L - NAPALM P > c s i, A M N:. 9 4. t 0A1L 2-2P-71 D A 1 t. SHLET 2-P2-71 eg e s v - _t-,* s :. t - ' . 77Lr n o, y . ? q r, T V I .a: I rw ul 0Ala - be :JEH AL oct ec os ece1 i o= 12 JtcT. r u .a .- u, s.j r e t' r LLC t. T I S ? ' UI L f' t. D S TC StFE_fjy iIt.) 79= -3.31? D'ST. r00M OA FE END Cr Aley,,2,Lg T S OT. C F.'_ Ajj A L Y S I S IIN) 7= .009-O'cr, r u P. H e3Fr rND OF N 62 2 L1 16 T HE R!i/. L SLEEV( (IN) R= ( 1R7 TNetsr =tnTUC FIN) _ RI= L.730 a U i 9 ' P,7 C t. D_lES ffN1 RC= 5 42_0_ F. *O, f 'J e i b l. 8 tJ' Y ( i f. ) CL= .OQO C %' R 0 9 ? " N__11 L C W A N c r INSIDE ( I '! ) CAI= 000 C d r R 0 9 7 " NJ. L L C_W AM C SUTSIDE (1N1 ___ C_A,,0 = .000 L '5 N c. , p e r s: clic E STRESS a : T T,5' N ; _
} . A N A,Lj i- w1TH AND LPS= 3 W I T H UI.; T : 2-ANALYZL WITHOUT: 3- A:J AL YZE WITH SPECIAL L t'. A D I N G UPilDN: 1 NS SPCCJFIL LOADING TO BE S L[5 = 1
( cr es t rpra: P - t. rJ 4.LI Z.dP_R_1]f 0 T L P t. D E Q O N L y_ s v otir O: t.. r e r t, rIN.up) SA= 21 c r u c t u u ta TNEETIA IINs=41 SI= 2R'. c/1T t 9 / i N = ,. 2 1 Of_J T_= . T H E R t'. A L SLELVE LCt.DS APPLIED 'wuEN (Z) IS GREATFR T H A t' OR EDUAL TO TFX= 0 LBS TFY= 4300 LBS TrZ= -13000 LG T at y a ee,s41i . IN-LES TMY= 0 IN-LBS TMZ= 0 IN. TruMg Ugen T u r' T A ? A N c: L 6 t. T W;* I C H TWC t. Y I M U M STRESS INTENr.!TY SCCURS S.. ep, 33 o p t N q,y u,A,L c T o r S S_r y !. T THE _LCCAT1f:N OF THE MAXIMUM STRESS INTENSITY 10 W.A REACTOR VESSEL 68.29s-SUGJECT CONT. DATEl?/i>!il SY 7 carcgt n rt y h d O t. T e li I ) d94ry.NS. 4Y DA_Tr Sy; k 5 9 -. A o F,
c w 1.C AB e E if J C,qE_/._N.D_.J IftE C23,A_!iY m
~
I -I 5 " P r c i c c tit i v i n t: t e, L T NO22,Lr N 2 ,f3J,,=,R S G , FI:JAL
, MEMSRANE M A x I riur S T RE.S S INTENSI1Y = 1245.. PSI TurTA = 3 ; b _ QE,irJJ.J S t ear oc . o r. i t;- er A p o_L }_C A T I O N Z= ' O C_0_Q RQ_I t; P=
1250 PSI ry. -29er._,L.3S FY= 3 9.o r) . Liii F2= 8.?,0.0._L_RA Mx= 271000. IN-LBG MY= -E7100C. IN-L35 M2= 102000. IN LSS STPESSCG LeNG. STRESS - DUE TC RESSURI =- 30S7 PS1 L et;G . S.I_o_ES S - DUC TQ_r.tiAL_,LCAD = 3 7 3 . P S,_I L c;4 G . STRESS - DUF TO RENDING = 6845 PSI SHEAR STHESS - DUE TO F"RCES A tJ D TURSION = -1405 PSI ripc. c - c r c c: - DJr ie DRE_cSURE = E 6 ,'d . DEI c2 = 1iset. DS! S?= 80,0.;_. PS.1_ S3= -675 PCI ( . _ 10 IYA REACTOR VESSEL 68-2967 _ ( SUGJECT CONT. D A T E D iwl71 OY 7 a"Ah'DAT'"'5" REV'NU' C";C<r0 E' Y U #' T L S"I 5_E'- 2 0 C.
CH1CAGU BRIDGE AN0_ IRON CSPrANY ( k %__ _ J NO22LL ANALYSIS P R Si3 4 A M- A L L LSADS MLCHANICAL - NAPALM PRa;iHAM NO. 9sE DATE 2-22-71; DATA SHEFT 2-22-71 REC 1RLutA 15. INLET NO22LE N2 M.-2967 F 1__y ,'g,, INPUT DATA - GENERAL o w ; S c 't :E (Pc)) P= 12 C'St. r:aM Fi. OF APPLICATIEN CF LSADS IS SAFE END (IN1 2*= -3.312 DIST. RBM SAFC END $F NS22LE TO PT. OF ASALYSIS (IN) 2= 3 000 DIST. rRe~ SAFE ErJD CF NS22LF TS THERMAL GLEEvC _ (IN) R= 6 187 INSIDE RA3!US !!N) El= 4 730 a010!CE Ranics (1N) RS= 5 620 CLAD, I4 SIDE UNLY (IN) CL= .307 C0:4CS'*N AL10WANCE It.STLC .N) CAI= .000 C O A R O S I ". N _di L O W A N C E CLTSIDE (INI CAa= .000 LaNG. P040VuE STRESS QDTION: _j . t. N I L Y 2 h WITw AND LPC= 3 WITHSLT: 2-ANALYZE WITWOUT 3-ANALY2C WITH SPECIAL LSADING SPTISN: !=NO SPECIFIC LCA01NG TO BE SLe= 1 ( ""N91Cr'ro- p.ANALv2E "CP INrUT L S A D_[lj u PNLy S vuC* URAL 2 EA t I f, = = P ) SA= E1. , c-pUC U: AL 't<E RT IA (INx*4) SI= 284._ 0/?1 f * / I h a a 21 0/IT= . It4 CHM AL SLEEVE LCADS APPLIED WHEN (2) IS GREATER THAN 04 EQUAL TM TFX= 0* LBS TFY= 4300 LGS TFZ: -13000 LB Tex = *A9111. IN-Lb5 TMY= 0. IN-LSS T"7= 0 IN. Tro-S Ucer TwcTA- ANGLr AT w w 1.C u TWr MAXJMUM STRESS IN?rNFITY SCCURS S., e, co- natNCinAL cTRecSES AT 'WE tr,CA?!ch 0~ 'we M A X.LtpM STRESS INT [NSITY 10 UtA REACTnE V' e e. r 68-2967 SUBJECT CMNT. D A T E W ! 1 -l~) I EY li c .n ev-n u v.2 $ d nyldik orv . yr , nv nATr e?- k SJ- 2 o D
CulCAGC B R I D r;E t. fi D I,RCN C"MPANY h h..~ I_O'> D
<RECIRCULAT!SN I t.L E T NSZZLE N2 6E-2967 FISAL MEMSRANE M A X I M U r". STRESS INTENSITY = 12'S2 PSI TH TA = 45 DEGRFES L -3 A D S - POINT 0" A P P L I C A T I '? N Z= 3 000000 IN P= 1250. PSI Cx= 3V.QO. L3S FY: 3900 _LES F 'i = 8200. LSR MX= 271000. I;4-TBS MY= 271000 IN-LBS MZ= -102000. IN uRS STRESSES L2NG. STREGS -
DUt TO PRESSURE = 3997 psi LeNG. S T O LS S - DUt 10 AXIAL LCAD = 373 PSI LONG. STRESS - DUE TO SENDING = 6E37 F31 SMEAR STRESS - DUE TC FORCES AND TSR$10N = 1410 PSI C!ut. c?:rSC - DUr ie Ac~GcUPF = S61E. DSI ct= 9 l u '> 7 Ps? 92= 7 9 9 Q_. *SI-S3- -6F5 DSI ( 10 P.iA REACTOR VES_SIL 6S-3gg_ ( SUSJECT CONI. OLIE T '-! b n - By-[;
~
r ,.; :. , v t , e v .1 N n 3 y - h 6, n; e . y , s. a . = y_ _ __p j,1r e s, 37 2 0 LT
r " ' ' 1 G.C 333.3L th D LR C1.t._C C'.iELN v $.(C- / ' N .' 2 h e ut.t v un o c a :iR c_-3 L L__LIAD.S . "I.C. H A N I C ri - '9. P r L F. P 4 C:ih A M t:1. y 4 8 Dale P-27-71; CATA SHF. T 2-22-71 wcrw<,,1-. .. . . $ N ' ? T M77' r N 2J.A - 2 r) 8 7 _ r la mi , _ INPUT DAla - GENERAL escee.or ,ueri on 525, nt<'. r ** " o?. or e,I_C A T_J,p,*z e r t, aj L'S *O S t.f_L_r,N D f ? t.1 2 . = -3_.31P5 n'c7 r,,,n_0fi_S.!J.E._E iD.___C F NSZ71E TO DT. CF A N A L Y,S J S I Il 1 7 6 0,:E, nieT. r n <w e r se rN3 er N e 7_7 L u e_ T s.,r,,_Re u t g L cm L v r. IINI := 6 1875C t s c. t e r cfelyg <13, ,_ RI. 5.3g75L,,_ a.<- e *QE _p m e .L;,fg i RS= 5_.,3_0127
- c. .n, 1 _.e v r e nr. v v,Ni C +_ . . nonne P a r O s* L: t 'N t t i ** w / r , F r TNe?Dr t i ig L CA1 . QQ ;a ng r ar:'%2 m_ r.! a g/d*J r
- L'_T,.2.J Of __,LJ,'s ) CA"= .onn00 i ., - e 3 c e. .:r e ? :: . <: e s' e nt J.3 9 .jg, A L,yJ .,y - p;[0 ( p a. 3 W!1mCU1: 2-Ar.ALY2C W11 MU1 : 3-ANALYZE WIT
- SPLC].L LSACING UPi!ON: 1-NC $PECJhlC LSAOING TO SE SLO 1
( C .= ',9 i C T_EE.p L. P - t. N t i Y 2 L F n q_ JJ.LD U._i_.(f,A_C_ EG_pM y C ? r O C 10 - 'L' ipFA rTN==P) _ SAs 1R 24 ST4.QCl('1L;t ik ERTIA ( I N *
- 4_) SIz put p3 O/!T f*/tNy=21 .._ ,C/IT= 10 THERKAL SLEEVE LUADS APPLICD 5 HEN (Z) IS GkEATER THAN BR EOUAL TO (R TFX= O' LBS TFY= 4300 LOS TFZ: .13000 LES Tur= 1t769 1. IN M S T t,1 Yp 0. I N- Q 3 TM7= C. I N - L r.
TrRMS 3)cen TwoTt: r, N r, ' r A? w y lf,M, J_M7,_M A Y ! "')f_ S,lR_LS_5 1h.1_E_Ne7Tv _ g OCCUDS
- g. c ., , ee. o wIgt; e,.Aj,,_3,T ? E g g_r e_31_iHF LLCjitCN *F iHr MAyIwUM STHCSS INTENSITY 10 P.J A REACTOR VESSEL 68-29n7 SUSJECT , CONT. D A T E W p *j'U. By TT-.
c..r cp a u v i f ',7 Dj.lr h i $- M19Eyg . nY p r. r eL-k nxa_o =- w e-e
Q **;-)I~ \; ti n r e_ I n __R F.: r G E _ ;. N O I49 CCfTANY c . _ ,.9*." n ,- . ,- ,,,et
.. ws- .e n. .l. sL-( . .w.e w e .r._'l2. ' P - 2 9s' 7 F I'J A L . M E M S H l. N E . t. X I M U t* STRESS IhTENS:TY = 15S21 PSI T -T ' L = 31L_?5EQ?_E.iS , .. . n e -
o w y w.eL i c ti Tchs 7 s_._00.c_qq.q_Lu p= 1?cp. uct r.x = -3MCL. d DS FY= 3 9 '.' O.: ..L E S 7 7. = 8200 L F_4 Mx= 27:0C0. IN-LDS MY= -271000 1N-LDS tZ= 1C2000. Ih-LRS STRLSSLS L :: .'e G . STRESS - DUt 10 P R E S S 'J 5c[ = 62;.8 PS3 i<:s. evrer N r__i.0, ja' iAL._L E_jf = 9 PS.l_ _
=
LONG. STRESS - DUE TO EENDING = 7434 PSI SmEtR STRESS - DUL Tc FORCES t. *e 0 i tf R S I L"1 = -1592 PSI E t : E.. c-:rE5 - QUr T q _rio E 3 slig,[ , __
=
__111E:. ASI e*=
- 523f. . oGI -675 PSI S2.= _1.1.9_S.t . PSI S_3=._
( 10 P:A RE ^rTn:? VrSS'EL 68-2967 - ('- c. ., ru.
. . '.r. L . C :' N T - D /. I f I '- l V !" I BY .. I. , ., e e n n vlu n at ivi .h 1 u rg.Sc . nv " ele SW' CN '" ' .? .J q_a .',.
C u l."aA
- gL_ 6.
- o. R..T O_G.F~ A N D sI4"N C 0 t' P A N Y
= %
.__[ 0 01' ' ' 5' G n.YS*e D W '_G R A P_- A L L ..L.t' :. C.S ttE.CHANIC_AL - fp P A L ,M I,d d l PROCFA- N L* . ,9 4. E caiE 2-22-71, DATA SHEET 2-22-7;
; r "
- w C ti_ A - i a N INLET N C Z.Z L E_N 2.. _6 E _ 2.9.6.7_ _ ._ f. I..IJ A L INPUT DATA -
GENERAL oorecu=r toeit p. 125 S'ei. rugM o r . _ _O r A P P L_J C A T ! h N CF LCADS TS SAFE END !!N) 20= -3.3125 n5eT. r tM__S;F_E_Er,D pf__NO,22t,g Te PT. 0r A J A L Y S I,s TIN) 2 10 2500 9te . r ur_ e c r ENp_gF Na gty.,TC T w ? R'j a_L S L E E v C (IN) R= 6 . If_7 5 e at e i Da e 'tu) R_I = 5 500n a r - e * *: r un. Ins ttN) R"= 6 5626 10, - esre eNi v 'TN) CL= 000n eaccacte' J ! ! C h. 1 N [ C IN$1DE FIN) CAI= .0000 e * : 0
- S * E ALLL _A_L42__CL'_T_C I_D_E__ f I N 1 CAS= 000o
' arec., c er csg,rer ST:4 t.S S m ecT_J0N' 1-ANALy Q i!TH AND LDS= 3 -I T f.tu T : 2- A N A' Y 2C WITHOUT: 3-ANALYZE WITn SPECIAL LOAO!NG CpilaN: 1-NO S ECIFIC LOADING TO BE SL"= 1
( CaNSIOCRrD' 2 - A N A W1 F 0_4_' I _N_D U T (CADING ONLY c-DU"7 tic.e fDC. #1Nus21 S_4 = 40.2 S T R U E T !'D Q'E M T I A f I Nas a ) SI= 737 9_ C/_!. T r a / I 6; _ = 2 $ ___ Q /_I_T = .fL T H E R r". A L SLEEVE LUADS APPLIED WHEN (Z) IS GREATER THAN OR ECUAL T" ( TFx= 0 Les TFY= 4300 LBS TFZ= -13000. LBS Tur= ietsa. Ilt LSS . TMv= 0 I N.- L D..S TMZ= 0 JN1 T.r._a_we J w-ici n TurTA- A,N r. r /. ? WWI,pW TWE MAy!MU" S,*di d j,g NSITY SCCURS S., eu, 90; oWIN;1 PAL S T R_E_S_G.E S AT T_HL,L.*, CATION OF THE MAXIMUM STRESS INTENSITY 10 p A REACTOR VrSS~EL 68'2967 GUBJECT CONT. D A T E ' ' ' ~3 ' # ' BY 7 T' 8 re- a s. a_ n v .! 44 D A T r\'"U N "O._R_ e w- - L. " V__. N CB..Y DATE SHT
% ? ._ > ry u %__L ='
~ CHICAGa, BRIDGE AND IR"N .C S M P A N Y ,h
/ t!C_l q L A N c L v S I_S OdCGRAM-ALL LCADS M E C H /. N I C t. L - Nr. PALM PkeGkAM NO. ,968 Dale 2-2P-71; DATA SnCCT 2-22-71
- _ RE C ! P CUL A T I ti. IN(ET NCJ_ZLE N2 68-2967 FINAL INUT D A T t. -
GENE 4AL u;ecet.or
. 'oe;$ p=
13 CIS1. FWO" PT. U~ APPLICATICN CF LUACS TS SAFE END ( 13 ) 20= -3.3125 DIST. rWCM SAFE END OF N f",Z Z_L E T " PT. OF ANALYSIS (IN) Ze 10 2500 CicT. Coa" SAFT END SF N0ZZLt TO THERMAL S L r QE ITN) R= _6 1875 INCIDr DACTUc (IN) Ri= 5.r>6?5
*UTS!DE R ACTUS (IMS _
RS= 6 5625 EttE, TNetar PNLv dINI CL= 1250 CSERCOI*N AL_LC ANCr I N S,LQE. (IN) CAJ= .0000 c ? G W e S I N t. L t C,.aNcr eyTJ,Iog _ ({N) , CASm 0312 LeNG. DorscurE STRISS e c T,I t' M : 1-ANALYZE _y_I,Tj AND LD$= 3 WITHCUT; 2 AfsALYZE WITHOUT: 3-ant. LYZE WITH SPECIAL LSAOING OPTI5N: 1-NB SPECIFIC LOADING TC SE SLO = 1 [ E9NS1Dr27D- E - A N A L v / E _ r r).R_._I. N P U T _L Q /3D I N e. _ 63',L,y S T RUCT t'9 A L AM 'IN=*?) SA= 3.2 *g. 9 T R g i U E A L 11 EE I I.A f I.N a,4, L ) g}= _ gO7.g O/f7 (9/TNa=11 C.IT= .O T H E R l:AL SLEEVE LCADS APPLICO WHEN (2) IS GRF_t.TER THl.N OR E C U t.L TM ( TFX= 0 LS$ TFY= 4300 LBS TFZ= -13000 LBS T ** y e 9 ( ~J 4 9 9 T N . t T. C T ** Y = 0. TN-({$ TMZ= 1N. Q. T r R MS__QS e n Twc1A; ANG' r AT WwICH THr MAYIMUM S T R E,_S S._ j N T E N 9 ! T Y CCCURS Sa . S2 cc- PRTNC1DAL_ SIR.EJ_SrS__A? T W E_ mL r'.; IJ,,lS N OF TWe M A X I a.U M STRESS INTENGITY 10 p.1 A FE^CTn9 V~ SC' L 68-n9g7 - SUBJECT g , CON 1 DATE @ :5' BY .1 \ e ,q c n r- e v- G v' n g T r v. l b 3 I o r g.y;;. . =v c ,. ; ;
. gs;
( Sf-2ca-
- i.. ~ '.' . "It i C d i t' A G O P.RIOGE aND IRC'; COMPANY -
/ R E C I C U' g G .' i t. LJ T NS72LE N? 66-2967 I I 'J A L , MCitSRANE MAXIMUM STRCSS INTENSITY = 10'8-. PSI TWETA = l e g. DEGRrES LeaOS - ue!N- U A P P L I,C A T T P.N 7= 10 250000 IN o= 1250 PSI rr= -3ir a LBs rY= 39.Q0_.,LSS, FZ= _ =8200 LM rd x a 271000 IN-LSS MY= -271000 IN-LES M2= -;00000 IN-LSS STRESSES L o t.G . G T .R E S S - DUE TO PRESSURE = 3752 PS1 L,1; t G . S 3EJJ - pU_E T e A_xif.L. L, S_A D = -655. PC.I LONG. STRESS - DUE TU BENDING = 5379 PG1 SHEAR STRESS -
DUE Tc FORCES AND T*RSIbi = 726 PSI C7WC. 9 T C
'-)f_. C - 007 Tc PRIs.5,UM = g01. Aci Sie wi5'. DS! 9?= - 0,5_e_ ? . PS! S .3.= -625 p51
( __ IO NA RE/CTnR \C_S~S l- -2967 ( SUBJECT , CONT. D AT El-: b!1I By TPp e e rgt - e: v a 5 '! n t T r W. .h ' p r v . 6 e . ev p r.;r ew-S F-2a K m mo
C "_ l. AG.F.t_ B _2.1.Q.Q E _J N.D j R f' N C0MPt.NY , _h_,, ( __s 7, r c:.f.u - e - = r za g_^ - ta t,_t.e t. e s r.i c i a r._: c t._- ut=Atr P R O G R t. r". N S . ,,c ' E D t. i E R-22-71; DAl^ S H E c. i c c2-71 gec,er., -. - , . . v .;i r ; y ",.T . . .r.r n. a._s .= s_- g o u..f. r .t . A i . _ _. I t.P U I DATA - GENERAL o c r e et_ : c ,oct- p= 1g necT. ro-- =T. ts- :g icATIMre
- t. e r L_e_A D_S t e S A.r ;. . ... E N. _D ( I t: 1 Z a. = - 3. ~312 5 nisT. rocu gjgg ,,,5gg c r N e z,2,L, g,,Ie r i . cF ANALYSIS (IN) Z= ic.8750 nie?. e c * ** c, a 7 : O_c_tr__ N.fl7.7d. E i e T wE RK .L . S '_E E.y r,, _ t r e- ) R= 6.t875 t ye t ne e , wn t i .c
-- r t. n > RI= 5.5625
- 8. U
- C * *' r O rfl.L;S (IN) R0= 6 5615 c t t , t!ctet , L y _
f f I4 i CL= 1290 c"eRes!a, A '_ ' O A_rJ.Cr I N C I D.E fTN) CAI= 0000 ceworc'a, zLt gj Nc r a v,i_q LD,t _ ( Td .L. _ ._. __ _ C40= . 0 3. E e
- t. N r.; , O! E e , t r: r $TI QW A W T I,P,['j 1-ANALY/r .4 I T H 3ND L P t'. = 3 WITe.Cl;T: 2. ANALYZE WITHOUT* 3-At:ALYZE WITH SPCCIAL LCADING OPT 1"N: 1-ND SPECIFIC LOADIt:0 T* DE SL5n 1
(. c r n ten e- s.:._r w . p . A _N a w.r.v7 _r a R . S. tip ti L t ADINcm N L v. - OTRUCTUri- A: E '!Naa?1 SA= 32 3 C T R U C i l !:(1.,._lff E R T I A (lNasu) SI= 607 3 c/tT ta/t*!. 91 . _, C/IT,= .O THERMAL SLEEVE LUADS APPLIED WHEN (Z) IS GREATER THAf4 CR E C U t. L 10 t TFX= 0 LBS TFY' '300 LES T~I= -13000 LBS Turm i e. 2 A 1 5 . I N-L alC TMY= .__0 I N - L.S.S TMZ= 0 IN-L __LEDMS U.SI.D a TurTer ANG' r t.
- ww1Cw TWE Maxi"UM S,T R r S S _I N T E N c I T Y CQ_ CURS si. 97, so o R.t . ri; 1 p A L STRESSr5 Ai THcs LCC_A_T_:.c.N CF TH:_.M A x ! v U ".
STRESS INTENSITY 10 v' A RE/-CTOR V SSEL 68 M6-SUBJECT CONT. DATE WibMl BY 7\ twrcer0 cv I N D A T r"b: , . i R.F V . N! . .. B.Y DATr - SWT Ss-ZcL __mm
CHICAGO ER!DGE & IRON COMP ANY OAK SROOK ENGlHEER (
~
SECTION F8 NOZZLE N2 - RECIRCULATION IKLET NOZILE TABLE OF CONTENTS FATIGUE ANALYSIS PER AS!!E CODE SECTION III, NUCLEAR VESSELS A. PRESSURE CYCLES 1 E. PRESSUPI FLUC~UATIONS 2 C. TEMPERATURE DIFFERENCES 4 D. TEMPERATURE DI??ERENCE FLUCTUATIONS 6 E. TEMPERATURE FLUCTUATION RANGE 9 F. MECHANICAL LOADS 12 PLASTIC FATIGUE ANALYSIS Analysis in accordance with " Plastic Fatigue Analysis of Pressure Components", by S. W. Tagart, Jr., September, 1960. A. THEORETICAL STRESS CONCENTRATION FACTOR 14 B. PEAK STRESSES 15 C. ALTERNATING STRESS INTENSITIES 27 D. CUMULATIVE USAGE FACTOR 30 E. PRESSURE DIFFERENCE EFFECTS 31 APPEhTIX F. SKIN STRESS EFFECTS 32 ( -
,, 6 , , , iei" BtG VES9EL c .i . e . o=,e sy Y SI. 58,
- *- * ' k' # '; ""
C"iCIfd)_.BB1._.G.E__/.NDC IRnN C C M.P_& N Y *
/ : # "
- 5 C ',1A_LIfd U11.E..T_ tJ 01 Z L C 1J 2._ 6 F - 2.9.6 7 F.I !ia.L _ . _
_ MEMPRAN[ MAXIMUM STHESS INTENSITY = 10571 PSI
=
T4E.IA 21,5_3 _QE,.Liy E,R_S L "C5 -
"'J.I.*iT__0f__Af P.J.J.E A I.!I N 2 2 ) u . 8 7_5J ,0 0 IN P _= _ 125Q,2SI e x- 3S on.,__L R S FY= -39QC. LBS FZ= -8?00 LDS Mx= 271000. IN-Lb5 MYu 271000 IN-LB3 NZ= 102000 IN-LBS S T R t.S S E S L::NG. STH:.SS -
CUE TC ARESSURE = 3752 PS1 t "'.di_. _S.2.P.f SE_ _D Ur T 'J__L x.) A L_._L Cf. O._ = -655 DSI LcNG. STRESS - DUC TO SCNOING = -5467 PSI Sr. rah GTRCSS - DUE TO F9RCES AtiE TSRSION = -72 . PSI C' C . STR'~S.5 - R V.T i tL P.3 E.S !LUli.__ _ _ = 8.1 0 1 PSI c3 c 15 3 . _asa
. n= - 2 3.2.o . P S I s3= _ _ .6.25 =st
( _ 10 P.!A. REACTOR VESSZL C8-29e7 ( SuhJECT hbV
, , CONT. Dt.T E ISn s pi EY Ti ru- .r : n ov D A T t- l':').M : .', p r v .yg . nv D_ t :- gw*
C-' [ ~/
*~ C (A .(. . e
CHICAGO BRIDGE & IRON COMP ANY OAK BROOK ENGINEER ( D. PE1HARY PLUS SECONDARY STRESS INTINSITIES To calculate the primary plus secondary stresses in the recirculation inlet nozzle beycnd the immediate vicinity of the opening, the stress analyses had been performed for the follouing loadings in accordance with the GE Drawings 729E762-1 and 921D217-7 and the thermal analysis results contained in Section T8. Steady State Operating Condition -
- 1. Uniform temperature at 546'F
- 2. Pressure, P = 1,000 psig
- 3. End reactions, page 8 of S8 Warmup Transient - scram condition at 33 minutes
( l. Thermal load (average temperature) , page T8-22
- 2. Pressure, P = 1,125 psig
- 3. End reactions, page S8-8 Cooldown Transient - sudden startup at 0.57 minutes
- 1. Thermal load (average temperature) , page T8-23
- 2. Pressure, P = 1,000 psig
- 3. End reactions, page SS-8 The stresses at points of interest under each specified condition are tabulated on pages 58-23 through SS-25 The primary plus secondary stress intensity ranges due to pressure and temperature only as shown on page SS-26
( sai.e, 1c3" HG VEFSEL c... . . coi. sy v c-shi li_
.;- . . . . . . n. . .::v
CHICAGO BRIDGE & IRON COMPANY CAK BROOK ENGINEERI ( were arrived at frcm the stresses shown on pages S8-23, S8-24 and 58-25 To arrive at the everall stress intensities, a simplified conservative pro-cedure was used by superimposing the stress intensity ranges shown on page SS-19, due to end reactions, and the stress intensity ranges shown en page S8-26 due
. to pressure and temperature. The everall primary plus secondary stress intensity ranges, Pg+Pb + 0' are tabulated on page 53-27.
( k s a ,,,_ Ic?" Bi:7 VESSEL c.- s. Deie By YET- Sh e _'12_ 1* * %m. ?.? : . ..
CM10ACO BR10GE & IRON COMP ANY OAK BROOK ENGINEERI ( 2 5!. 26 "24 Pl @ Te r 23" 1 -38,260 l - 12,7 5 0 l - 1,0 0 0 2t * *22 2l -11.t 6c -3 7,5 8,0 l - l,0 0 0 3l 9,36 o 7,14 8 ! - l.c o 1 l 1 3,2 4. o l 9 ,3 0 9 l 5 l-27.! 4 e - 29,13 c: l -l.mo
,q . . . . _ . . .,2 o b l~%# 'l O - 10' # S C l - I #
16 1515 I A '
, l16,'190 11,3ccl-t,oe.c IS ' ri 8l 1,566 12,(, l o l \ cl l - 9,59 5 I sc. l - 1, o ce in 12 Io i 3,1 1 o 6,6 S 5 It l 3,6 5 ?_ 5,7 % ?_ l - 1,o o o 12 l 3,12 2 5,5c o l 13l13,750 t o, t i o l-1,00o ic i - s ,s .s i.c s z i
(
?
d 8$ 7 15 l 2,6 5o l 5,51 1 l - 1. o c o o i 16 - 2.,L 5 0 3,~l2S 1 -),o r ; nl E ci 1 3.459 l - 1, o0 0 16 - 5 9 ~} ~$,1 o \ - 1, c o o 19 l 2.,2 o-] 5, t 85 - 1, o c o 2o 2 ,1 ?. 3 5, t 5 0i l 21 I o,62 o 1 4,19 o -(, coo 22 - 3, % 2 \ 1o,460 l 2 1 '- 3 4' ?. 5 4.,4 o Cl 2.o.940 - l,0 0 o 24 2.,%9/c 2 c,54 o 15 4,4 o C ,
- 4,89 6 l -1,0 0 0 i
26l 2. ,3 c[ (o ,5,4 9 E l STRESSES iM Pst ( sTe Aoy siATE (. P + T ) y,,,,, No 2n.E N2 FoR 185" BWR c.,,. tr. s n u o,,,464ts, .a v t 3s,27 ,, c.c ** o s Cheiaed by #' Dose " Lb Rev.No De te- R e v. N o. Date R,N
CHICAGO SRIDGE & IROH COMP ANY CAK 3R00K ENGiHEERl ( 25 " .26
'24 PT CIc Te Tr 23 . I l l l 2t .
22 2l l 3 l t i,57 o l c,oc9 l-l,125 l 4l 6,7 2 5 l 2 ,5 5 <,. l 5l 19 16,;.15 __'.;2o ei I I 15 14 7 l [ <._ q { cc l 16,Glo l - 1,12 5 18 'd Sl 2.d t I 3,o co l 11 12 9l 7, s t i l 6sl l - 1, t 2 5 Io l 2. GG o 6.1 o 3 Ii l c,5 2 o l 7,1 o 8 l-i.i25 12 l 5,o S 5 6,9 o l l L 3 l l 6,77 c t o,7 eo l - 1. i 2 5 14 l - 6,9 Ec 3,7 E l l b 9 ' 5 15l t .2 s I c.4 3 5 -1,125 6 7 3 is l - ( ,7 3 g 3, g g y . i,g 2 5 17 l - % <- t 2.,3 9 4 l - 1 t 25 18 S41 2.S Yl -t125 19 t .7 8 3 5, t 64 l - 1,125 2o 3.o73 5.556 2i S,8 2. o t c. 5' 6 0 l-1,t2.5 12 -i,i lo l 1,5 6 o g -3 4' 25 c, t 9 -l 2. o,3 co l - i, t 2. 5 24 3,<-58 2 o, o E C 15 4,i.91 l - 2, (, P, c l - 1,12 5 26 g,4 57 - . ,S o 6 l t 5 TREs5ES iM PS (. warmup TTcAMsiE2JT ( P'T) 33 , , , , woz LE N2 FoR IS3" BWR ce , ;t.:Sn u De,enM:c, a v t 3s, 2 _ c, c,o 64 o n Chec ke(h ' Dee. h ' I Rev.No D c.ti R e v.N c. Deie R e v.N o. Done
- ~ , CHICAGO BRIDGE & IRON COMPANY OAK BROOK ENGINEERIN 25 .' 26 PT CIo Te Ti-( 23 24 I
l l 21 - 22 '2 l l 3l9.s2s I e.20s I -i.oe 4 1\,o30 l 4.6 3 l l t si I 19
.y_._
20 ei l l 16 is15 (4 7 l l t,(o3 0 l 15,2 8 0 l-1,oco is ' ii s l ,.s 2 s I i <_. n o
. 9 l - l 5,47,0 l - 1,5 IS l-l,000 ti 12 to I S,o 60 7,9 c 4.
ll -S,132 l - l 1,5 9 o l - l,co o 12 13, t to -5.12o 13 l 59,150 l i.503 l - L,c co 14 l - 45,7 ? o l -2 ?,21o l s ,-]7 3 $ 15 l 48.3 4o 4 5.E9 o l - I.oco 6 16 -4t,M.o!16,500 l-I, coo il S t.61 o d. 2,6 l o - 1, c.c o 18 - 3 3,6 i o t 9,5 c o - 1,o c o 19 1,966 l t o.450 - I o o cs 2o 2,363 l 1 o,5-l o 21 l t i,c2e 1 $,o 2 e - t,o o o 3,2o 5
~
22 - 4.619 l l 1 ~5 4' is G, o s o i 2,3 so l - t, coo 2 24 j55 t c ,7 6c 25 6.o. c9 l 1c? l-L,ooo 26 l >se l - t , c_ g l l SMESSES iW PS ( c.coLW.O TRAQstEQT I (P+T) s.w... No ~ZLE N2], R IS3" BWR c,. . 6r m u o ,,.n M tr , n ' s*,25_.i
&y il l l 21- <22 2 l l 3 l 12,6,9 5 l l 4 l f 5, 2.c o l si I 19 . ___;2o eI 'l I 15 13 14 ~7 I8,300 is 'd e ! i c.no l I ii 12 Cl l 12.480 l to I S,0 60 11 l 19.o:5 l 12 2.4,ct2.
13 l 6 c, t 5 c l l 14 43,83o l l (- - 9 I
. 15 l 49,34o S
6
*3 g 16 f E,,17 o l rt , 43,s70 l l8 S S, l i o 19 l t.4 5 o ,o to,5 j o l , I5,790 2 g c.,22 (
i 2
-3 4' 15 21,940 24 2.c ,3 Co 25 9,1c 3 l l 26 1.2 %
8 sTRESSESiW Psl PRIMARY PLUS SECodDART SEE PRtQCEss PRi k STRESC li4TEWSITY RANGES PRE.SSURI-
- IE34P-3,.,,,,
, N o ZLE N2 FoR IS3'* BKlR c.,,. n. :w; u c ,,n64 3, aL ss,1 !. ., .
c,..... ch.ek.e b ' '" Dei. '- i l Re he- De ve- R e v. N s. Dcie Re .ht. Det t _
= =
. .a . t AK .. . - .
57 5 SS A L.LO tV A E LE 15, { p- INTEQ G TTY ggg g73 ras 46G ( ps g ) (PSI) 21 -
*22 3 ,! l1,2c2 1
4l l9'50*-3 }. Ss,n = S o,1 co P 7l 21,c 3 u 19 20 Sl 2.c.ois
,6 35 o----n i3 g4 et l 1 6 ,'o l o .
to, *: 10 l *l 2,E l b i.t 11 l 2 5,19 ~4 l 11 12 , 12 l 3 c,9 3 G 13! 67,626 14 ! 55,044 l 15 l 51,14 ' 9 to_ Ib b b,9 E b 3 $ rn 60,900 ISI b 17 l 4.G ,164 IS l 6o,691 l 19 f l G,014 l 20l )5,9So 21l 23,006 3 4 22 ! 7.2 c *s s 2 3 '; 2. q ,1 L E 24 28,512 i ovERALL (- PCMARY PLUS SEcc4 DART 57ggss INTEN S TTY RAMG, ES
,,, MezztE N2 FOR ISS" SWR c,,,,t.i. -tq De,,it'- 9 s,JY' - 55,21_ e oc e. c e Checked by ' ' ' ' ' Donc M Y1 R e v.N e - Defe R e v.lle. Dese Rev.No. D:ie
CHICAGO BRIDGE & 1RON COMPANY OAK BROOK ENGlHEER [ E. PRESSURE DIFFERENCE EFFECTS In accordance with revised interpretation of the GE specification, the recirculation inlet water pressure is always 315 psi higher than the reactor region 3 pressure indicated on the GE Drawing 729E762 during operation. The effects of this pressure difference have not been included in,the analysis in arriving at the primary plus secondary stress intensity ranges. An additional stress analysis using the KALNINS computer program has been done to take into account the pressure difference effects. The loading and boundary conditions are as follows: Loading: 315 psi on the inside surfaces of Parts 5, 6 and 7. ( Boundary Conditions: At the end of Part 1: 0 = 0., U = 0., 4 S4 = 0. At the end of Part 5: 0= 0., N 4
= 0., S 4 = 0.
At the end of Part 7: 0 = 0., N
& = 744. S& = 0.
The stresses at various locations are tabulated en page S8-29. Examining the stresses at the critical locations, at points 13, 14, 15 and 16, the additional stresses due to 315 psi will actually reduce the primary plus secondary stress in-tensity ranges as demonstrated on page S8-30. t f ( Deic 7/ ' ' ' 5, YE ~'
~
Subie e t Igga gwp vrcerI Con . - Sht b e m - M/M o. w. n.'.. o u. n .. .u a
, CHICAGO BRIDGE & IRON COMPANY OAK BROOK ENGlHEERI.
(
, s.
23
.x '24 e7 % cr, s s
l 147 l 1Cl l 2t >
'22 2l 33g l [5j l 31 tss I ies i 4 i,2 s q tss I 5 coS t -43 l is _ ,___,.2o 6l 821 'l - /, S 'l 16 15 la 14 l 8Sc -13 l IS ' ii 8l 459 -2co l . 9l 961 -6E l io cos -2w II l 2.,o 6 0 4II l i2 -70 2ss 13 - 69o l 9 7 '? l
_J I4 l 3,2 6 l l 2,19 9 l 9 10-5 '~7 g" 15 - d.'.S t- o -14 l 6 16 4,5 0c l?,583 l -3t5 Ill-3,~i24 l l ~l o is 3.p + 2.co c -sis 19 l 250 l 1,2 9 I l - 31 5 2o I, t i c l I,54o 21 228 2,2.19 l -385 22 I,913 2 ,7 2 5 l 1 2
-3 4' is 88s 2,49 l - 315 24 1,2 5 5 2. 6, c l 25 %%5 l 2.2.2 5 - 315 26 t ,2 5 5 1,'33 s MESSES iW PSt
(.-
.P = 315 PS8G 3g,,, wo22LE N2 FoR IS3" BNR c,,,, te.:u, u o,,,@4ts, J Y L. 58, 2 9 .:
I % Cs Gr E AN G ES SS l t,o 60' I I,I ol ' -1oco 13 VJ U (6,40 I t,6'il - l 1 2. 5 59,460 CD 5%,460 5,4?o ,
-1oco ss -6,661' 5,8 51 O 14 Wlu -3,683 S,970 0 4 3,5 6, b CD -45,563 - 2 6,o7 l C-ss -(89 o, F, q 6 -lcco 15 h/U - 3,3 o1 4,M 4 -l 12 5 4~l,1C)9 CD 43,8co 45,-l43 -loco SS t,8 9 o 6,3 11 -1 515 16 $ 3,2 6 3 h/u S,le 9 4,2 19 -t4co CD - 4 3,3 0 0 (9,463' -l315 THE PR.tHARY PLus SEco4DAstY STRESS NTEM5'7Y R Ard GES S Ho uld A30 VE ARfr_ LoWlS Ps THAd THOS SHouJed old PAGE S S- 2 G.
STRESSES DuE To P+T O PER ATIM Cs coq DIT t od S 3 ,,, Mo22LE M2. i oR ISY" BNPN Coo # :M0 Dete MM c, J 58, 3o es no uce Checked by l'** Deted~b'l Rev.He Deep R e v.W o. Deve R e v.h a. D:te _
- CHICAGO BRIDGE & lRON COMPA
. Oak Ercok Enc. "
Location [ F. SECONDAP.Y LOADS ON TIIER!'.AL SLEEVE Additional secondary loadings are applied at the inside edge of the thermal sleeve due to the effects of the jet pump diffuser. These act in addition to the hydraulic and piping loads acting on t'he sleeve. It will now be shown that these are less than the design hydraulic loads that were conservatively applied in the calculation of primary plus secondary stress intensities performed in Section D of this report. The loads from the jet pump diffuser are given in G.E. Specification 021D217-8 as follows: F. PE.
- 3
( F y
= [C] tEv .M 'j Cv 6" 'v X
E. J c.6T. 3 3 E.6 3 E.0 3 -, where -3.33*10n -7.l*10- 7.l*10 3 5.12*10 5 4.85* [C] = 1.59 8.81*16' -8.81*16' -3.45*165 -3.2*1
~
9.35 3.24*10 -3.24*162 3.46*16' 3.27* As was mentioned on Page 58-2 the maximum range of primary pl secondary stress intensities occurs at point 13 and is caused b.v the zero stress state combining with the cocidown transier
- 1. In addition, from the sign and magnitude of critical pcir k
. .a c , -act " lc-ac " ; ,, l __. . ;' ,0;-2 r
ya gcft'_-c. 18 3 " BET. VESSEL i ca E l Y-
> }, C i* : - cat * '
i .... i'..._i._. . i n- v 31 or o cc is t _ . .
CHICAGO BRIDGE & lRON COf.*P a toca;,n Oak Brook Eng. 13 thru 18 we can conclude that the secondary loadings need only be investigated for this same cooldown transient 1 to insure the soundness of the nozzle design. Utilizing page 62 of Section 53- Stress Analysis of Shroud Support, the colun._ matrix is evalueted as PE. 1000 .2636*10' 7 '
**887*10 2 5
tE .2794'10' v E cv 6T ( . 263 6) ( . 7 07 ) (4. 5) *10 ' .8386*10 5 j "v E. c . _32 , , (.2636)(.9603) (3.41)*10 5 = .8632*10 5 3 3 3 E.6 ,.2636)(-3.7045)*10' .9765*10 5 3 Es (.2636)(-1.0794)*10 5 .2845*10 5 ( j - - -_ _ _ Premultiplying this by the C matrix yields the secondar,y load-ings caused by the diffuser. F =
-1868. lbs F = +208. lbs y
M x
= -11714. lbs In accordance with the G.E. Specification 9216217-7, the design loads used for design flow rate (65.1 gpm) are F = 13000 lb.
F = 4300 lbs M = -44000 lbs x (
...mc .. . .. . - . . . ...... . . . " i ~'ci" rim va-en, ~ ^~ . Z ~4' 68-2967 DaTE D.it E C**: I h=_ i 0C 781 -
l
. Sat Ort
CHICAGO BRIDGE & IRON COMPAP g,;,n Oak Brock Eng. These values were used for all cases analyzed. Note that the sign convention differs, but only absciute values will be dealt with. The hydraulic loads acting during the cocidown transient 1 are obtained from this by assuming a linear relationship between hydraulic loads and flow rate. During this transient the coolant flow rate is about 4006 gpm. This corresponds to: F = 13,000 4006\,=8000lbs. 6 310,e 2 F = 4,300 /4 0 0 6\ = 2 64 6 lbs . y 6510;j
/
4 006\ -.27,07 0 lbs . M = -4 4 ,0 0 0 i x 6:10*
/
Summing the hydraulic and the diffuser induced loads gives: F; = 9,868 lbs . F = 2,854 lbs
~
M g = 38,7 84 lbs These are all less than the design values used. Hence the e prior analysis is convervative. (
..m, . . . < . . c.,= .. ,,, i~ ry c...u~=.
1E3" EWS Vessel >.
~
65-2967 DetE Dag jI Cput IbeY*- 7
- I , ,g j.. -- f8"*g3 Cr ge
CiiCAGO SRIDGE & lRON COMP ANY OAK BROOK ENGit4EER ( SECTION S8 AFPENDIX A TABLE OF CONTENTS
- 1. DESIGN PRESSURES (KALNINS) SB-A01
- 2. NOIZLE AIC SLEEVE REACTIONS (NAPALM) S8-A18
- 3. STEIWY STATE (KALNINS) S8-A38
- 4. WARMUP TRANSIENT (KALNINS) S8-A56
- 5. COOLDOWN TRANSIENT (K71NINS) S8-A78
- 6. STRESS INTENSITY RANGES (PRINCESS) 58-A98
- 7. AP = 315 psi (EALNINS) SS-A120
( t
\
3 ,,183" BWR VFSSEL c.r e.M-2 9670e.c Ey YbL b, 3 4
l F 7 SECTION F8 . NOZZLE N2 RECIRCULATION INLET NOZ"LE L _J 'l
. CHICAGO SF.!DGE & IRON COMPANY OAK BRC0K ENGlHEERI
(
' FATIGUE ANALYSIS PER ASME CODE SECTION III NUCLEAR VESSELS A. PRESSURE CYCLES In accordance with the GE Drawing 729E762-1, the specified number of uimes .that the pressure will be cycled frca atmospheric prescure to operating pressure and back to atmospheric pressure is 252 cycles (130 cycles of design hydrotest + 120 cycles of startup and shutdown + 2 cycles of extra hydro-static test).
Based on the f atigue curve shown in Fig. N-415 (A) of Ref. 2 for no::le (SA-508 Class 2 low-alloy steel forging with UTS = 80,000 psi), the allow-( able number of cycles correspondine to S = 3S m = a 80,100 psi is 1,100 cycles. For cladding (S A-24 0 304L stainless steel), the allouable number of cycles corresponding to S a =35 = 40,350 psi is 8,000 cycles and for no::le safe end and sleeve (SB-166 inconel) , the allowab]e number of cycles corresponding to S a =3S m = 70,000 psi is 1,600 cycles in accordance with the fatigue curve shown in Fig. N-415 (B) of Ref. 2. The allowable number of cycles are greate: than the specified number of cycles of 252 cycles. Thus the requirement of N-415.l(a) of Ref. 2 is satisfied. s ai ,, 1C?" *WR VESSEL c..a. Dei. g YSL su_l m
CHICACO BRIDGE & IRON COMP ANY OAK BROOK ENGidEERI ( E. PRESSURE FLUCTUATIONS In accordance with the GE Drawing 9210217-1, the significant pressure fluctuations are those for which the total excursion exceeds the cuantity, based on no::le material C ' 2500 design pressure x 1 3 x E- = 1565 x 1' x 26/00 3
= 244 psi S .,. .
based on cladding material S ' '3000 design pressure x 31 x5 - = 156: x3 x la450
= 504 psi m
based on no::le safe end and sleeve naterial ( 1 13000 S- = 1565 x 13 291
= s1 cesign =ressure x 3 xS - x -,
eaa00 - m GE Drawing 729E762-1 shows that there are 153 pres-sure cycles which exceed 244 psi (130 cycles design hydrotest + 21 cycles in scram condition + 2 cycles extra hydrostatic test) . Corresponding to 153 cycles, the following S values were obtained from Fig. N-415 (A) a and (B) of Ref. 2, for no :le S, = 170,000 psi for cladding, no::le
, S = 165,000 psi safe enc, anc sleeve a
(
'C'" F1" coi i. De'. 5, Vc?
s a i.e,_ \T F C E' shi_ ?
CHIC /.GO E. RIDGE & IRON COMP ANY CAK BROOK ENGINEER ( T.ius , the allowable full range of pressure fluctua-tiens during normal operation are based on no :le S a = a x 1565 x 170000 = 3321 psi
' 1 G --
o x design pressure x S - 3 26700 m based on cladding - S 1 a ' 165000
-a x design pressure x S- = 9ax 1565 x s3450_ = 6400 osi a
based on no::le safe end and sl.seve ( 1 S a 1 165000 wa x design pressure x S- = r x 1565 x 23300
= 3694 ps.
m The allowable full range of pressure fluctuations are greater than the maximum specified full range of pressure fluctuations, 1563 psi, during normal operation. Thus, the requirement of N-415.l(b) of Ref. 2 is satisfied. (
. CHICAGO BRIDGE & IRON CO.'.PANY OAK BROOK ENGINEEF.I
( C. TE!GERATUPI DIFFERENCE In accordance with the thermal analysis, Section T8, the maximum temperature difference between any two points of the component is 287'F at .57 minutes during sudden startup. Corresponding to 120 cycles of the specified number of norr.a1 startup-shutdown cycles, the following S, were obtained from Fig. N-415 (A) and (B) of Ref. 2, for no::le S = 190,000 psi a for cladding, no::le 3 , , 85,000 # ei-safe end and sleeve a At the mean temperature of 400*F, the following values of the instantaneous coef ficients of ther-(. mal expansion, c, and the modulus of clasticity, E, were obtained from Tables N-426 and N-427 cf Ref. 2, for no :le c = 7.54 x 104 in/in/*F E = 28.6 x 10 5 psi for cladding c = 9.96 x 16' in/in/*F E = 26.4 x 10 5 psi for no::le c = 8.1 x 104 in/in/*F safe end and sleeve E = 30.0 x 10' psi ( s ai.ci 'c'" W " "ccr7 - c.. . o.. . s, vet ss,_L_ .
CHICACO BRIDGE & IRON COMP ANY OAK BROOK ENGINEER: ( The maximum allewable temperature difference between any two adjacent points of the component are based on no::le S a = 190000 = 441'T 2Ec 2(28.6)(7.54) based on cladding S a 185000
,_ = 352'r ~
2Ec 2(26.4) (9.96) based en no::lc safe end and sleeve S a = 185000 = 0 0 ' , ,- ( 2Ec 2(30.0) (8.10) The allowable temperature dif f erence between any two adjacent points of the ecmponent are greater than the maximum temperature dif f erence of 287'F between any two points of the component. There-fore, the recuirement of N-415.l(c) of Ref. 2 is satisfied, t t. s a i,,, i c v' uwe vrece? c. ..
- c. . sr YSL sw " .
CHICAGO BRIDGE & IRON COMP ANY OAK BROOK ENGINEER ( D. TDiPERATU?2 DIFFERENCE FLUCTUATIONS From the results of the thermal analysis , Section T8, the maximum temperature dif ference between any two points of the component is 110*F during warmup transient and is -287'F during cocidown transient. Thus, the maximum possible temperature difference fluctuation between any two adjacent points of the component during normal operation is 397'F. At the mean temperature of 400*F, the following values were obtained, for nozzle c = 7.54 x 10 in/in/'F E = 28.6 x 10 5 psi S = 12,500 osi (5 a for 10' cveles) ( for cladding c = 9.96 x 10 in/in/ F E = 26.4 x 10' psi S = 13,000 psi (S, for 10' cycles) for nozzle c = 8.1 x 10 in/in/*F safe end and sleeve E = 30.0 x 10 5 psi S = 13 000 psi (S f r 10 8 cycles) a 1 The significant temperature difference fluctuations are: t (.
. ,oe m n t--c ert. -
c .e i. ce,. by ver ss. c
. CHICACO BRIDGE & IRON COMP AN1' O AK BROOK ENGlHEET.:
( ba' sed on no::le , S , 12500 = 2'0'r 2Ea 2(28.6) (7.54) ' based on cladding S 13000 2Ec
= = 2 5 r 2 (26.4) (9.96) based en no::le safe end and sleeve S , 13000 - = 27 'r*
2Ea 2 (30. 0) (8.1) In accordance with the GE Drawing 729E762-1, there are 35 cycles which exceed 25'F of tenperature dif-( ference fluctuation during normal cperation. Cer-responding to 35 cycles, the S a were cbtained frc the design f atigue curve as follows , for nozzle S = 320,000 osi a - for cladding, no::le . safe end and sleeve S a
= 310,000 psi The allowable temperature difference fluctuations between any two adjacent points of the component during normal operation are
( Subject _ 197" E*R V"9 *
- Ceet. Date Ly_ ' E Sh+ 7__.
CHICAGO ER!DGE & IRON COMP ANY OAK BROOK ENGlHEER ( based en no :le C
~a ,
320000
= 742**r 2E: 2(28.6) (7.54) . based on cladding S
a = 310000 = 589,_r 2E: 2(26.4) (9.96) based on no :le safe end and S a ~- 310000 = 638*-* 2 (30. 0) (8.1)
~
2E: which are greater than the maximum possible tem-(. perature difference fluctuations of 397'F between any two points of the component during normal opera-tion. Therefore, the requirement of N-415.1 (d) of Ref. 2 is satisfied. 3 a i,,,
,ev =r> w e c=- -
c .. . . o... sr YsL ss, 8
CHICAGO BRIDGE & IRON COMPANY OAK BROOK ENGINEER ( E. TCGEFATUP.E FLUCTUATION PANGE The thermal analysis, Section 08, shows that the maximum total algebraic range cf temperature fluc-tuation experienced by the ccmponent during normal operation is 397'F. At the mean temperature of 400*F, the moduli of elas-ticity and the instantaneous coefficients of thermal expansion have the values as shown below, - For SA-240 304L stainless steel: E y = 26.4 x 10' psi cy = 9.96 x 10 in/in/*F S = 13,000 psi (S, for 10 6 cycles) ( For SA-502 Class 2 low-alloy steel forging: 5 psi E2 = 28.6 x 10 c2 = 7.54 x 10 in/in/*F S = 12,500 psi (S a f r 10' cycles) For 5B-166 inconcl: E 3 = 30.0 x 10' psi c3 = 8.1 x 10 in/in/*F S = 13,000 psi (S for 10' cycle) A temperature fluctuation shall be considered to be significant if its total excursion exceeds the cuantity, I (.
. Ic3n p e. yr ecri.
Con . Dove B YSL She ?
CHICAGO BRIDGE & IROH COMPANY OAK BROOK ENGlHEEE: ( S , 12500 o-
= ~'32*r' 2 (Eyy c - E 2"2) 2 ((26.4 ) (9.96) - (28. 6) (7.54) )
S , 12500 = o~ 228'r
~
2(E2 "2
~
E3 "3) 2 ( (2 8. 6 ) (7.54 ) - (3 0. 0) (8.1) ) S 13000
, = 326*?
2(E3 "3
~
E1 "l) 2 ( (3 0. 0) (8.1) - (26.4) (9. 96)) GE Drawing 729E762-1 indicates that there are 35 cycles which should be considered to be significant during normal operation. Corresponding to the 35 cycles, the Say = 310,000 psi, Sa2 = 320,000 psi and S.a, = 310,000 c psi were obtained from design fatigue curves for SA-240 304L stainless steel, for SA-502 Class 2 low-alloy steel forging and for SD-166 in:onel, respectively. The may.imum allowable total algebraic range of tempera-ture fluctuation during normal operation is the smallest of the following: S al = 310000 = 3277,,x 2(E yy c - E 2"2) 2 ((26.4 ) (9.96) - (28.6) (7.54) ) S a3 310000
~ = 5666'r
( 2 (E2 "2 ~ E3 "3I * * * * ( 3a;,,, 1??" N 7 VESSEL - c o r. i . D i, sy YSL sh, 1 5 .-
CHICAGO BRIDGE & IRON COMPANY OAK BP.COK ENGINE ER ( S al 310000 _
= 7_/ i 2 ' '-
2 (E3 "3 - Al "l) - 2 ( (3 0. 0 ) (8.1) - (26.4 ) (9. 9 6 ) ) which is far greater than the one experienced by the corc.penent during normal operation. Therefore, the re-
' cuirement of N-415. l (e) of Ref. 2 is satisfied.
( (
.,,, 7 e ' W.' iTe ert - -
c .. . . o. . . sy ve5 ss, l'
CHICAGO BRIDGE & IROH COMPANY OAK BROOK ENGINEEF.! I F. MECF.ANICAL LOADS The maximum stress intensity due to mechanical loads (no::le reactions) is 2282 psi at point AU as shown on page 13 of F8. The significant load fluctuation is the total excur-sion of load stress exceeds 12,500 psi obtained from the f atigue curve shown on Fig. N-415 (A) of Ref. 2. Conservatively assumed that the design hydrotest, normal startup-shutdown and hydrostatic test would all produce the maximum no::le reactions. Then, the number of the significant load fluctuations is 253 cycles. In accordance with the applicable design f atigue curve on Fig. N-415 (A) of Ref. 2, corres-ponding to 253 cycles , the allowable full range of the load stresses os 140,000 psi was obtained. C. . The specified mechanical loads result in much lower stresses than the allowable stress range, therefore, the requirement of N-415 (f) of Ref. 2 is satisfied. t t 193" BWR VESSEL c .. . .. c.i. s YSL ss, i '
1& '2 2 L.~ M 2 F CR l (6~.J,.," El'.V R c% ,. L L ..g . 3. , %.. .. c -
. g. ... : , p. ....,v . ..;- - f, .c .._ ,. , , ,... .s .,., ,u . . 7 % K'. I R" C .s , c a r. . 1, ,n. r., , -s r...^.'.- .. r.- w . ,- n. . a. . u r-vr i~A? C T1 ,; . i .. - 1 ,,,.. =. 3 ,. ...n.,. . , . , . s, s.- s. .
P V l. V'w ** r. u. i. MT y 1 c .r . .. .
;..- .~ ~, . :.... .w .=. t... ...
7,... . a,*. . . .~,, r.e . ,(.r.
. csv NX/P 'X/D '. X /:" C "X/*C ' X /*'L " X / .* L 3 . r> C C 1P3 56C . C' r .4CC . C' S -
A.t / P A / * * ?) / * * (* ** f3 / * 'i( N ') / . L !".'J / *
- L
. s. ,., r .,.=s. . ...2. . 3 . a v, . .ns..--
n 7, : --
- : t e c - ,-.. - e u. i i-.u.
( AL AL liU OL CU CL DU
-.Ex - 2 , < .' . 1837 A77 -6 6 -1795. 975 -1=4 SP -2067 1366 103 3C. - 1 4 .~. . 16C4. . l. .
s TAU 53 ::3 6 6 -PC- -20 79 ( S 2,'XE. 3843 677. c16 196.C. 16Ca. 223 t -tet%. ( P E MB; e.F S T R E M r C_ / T N 7 7 ' ~ T _
- c. c i t i ' ' '.' c -' ' as
- t. A B C D SX -P16. -105 -207 -114
( S C- -352. 67 -175 -107 t TAU 53 6 -PC. 79 5 370. 171 217 190 4 e
~ * **7 TN ' y '.)
- n. 4 .1. '%7, M L D g- -
N(% _ g- k '?- V D Ts' 19.*3 L II .* V N I.' U O '.' I'* ** _A#y.s j I. #* /. F O-
,. " ' " 9, I [. \ I Ih N f* I I '[ Y 3 s n. 7 77- r ,r,. r.,'.
- a. N Cv'y}:Cr4 --
C o-.'
- ri t. * ? t. F_- o n e. 7 ' '
"'t. . . .
- 7 . r. c .i v- g-ia r -
* (C./Old b dbOk.AkklY(.D [ C 'I b t b bb ~.2 b. I $
- b.Vb
CHICAGO BRIDGE L IROH COMPANY OAK BROOK ENGINEERI (
~
PLASTIC FATIGUE ANALYSIS A. THEORETICAL STRESS CONCENTRATION FACTOR Observing the no::le configuration, the localized high stresses will occur at several locations, as shown in the following sketch, where the presence of structural discontinuities results in i modification of the simple stress distributions. Among the structural discontinuities, the most severe one is at the sle eve-safe end junction where the sleeve is fillet-welded to the safe end. The theoretical stress concentration factor (K) of 4 was conservatively assumed at the junction point 13 and point 15. At the other locations, the theoretical stress concentration factors are around 2'0 or below which are substantially ( lower than those at point 13 and point 15.
.n.
P 15'r!3
\r I ^w . 3c,- ee uncert c ., ,, o,,, ' s, Y e- ss,11_
. CHICAGO SRIDGE & 1RON COMPANY OAK BROOK ENGINEER
( B. PEAR STRESSES In accordance wirh GE Drawings 729E762-1 and 921D217-7 and the thermal anilysis results contained in Section TS, the following loadings were used in stress analysis to calculate the peak stresses in the recirculation inlet nozzle. P.ydrostatic Test
- 1. Thermal load, uniform at 70'F
- 2. Pressure, P = 1563 psig
- 3. End reactions, page S8-8 Steady State Condition
- 1. Thermal load, uniform at 546*F
( 2. Pressure, P = 1000 psig
- 3. End reactions, page SS-8 Warmup Transient - scram condition at 33 minutes
- 1. Thermal load, page T8-22
- 2. Pressure, P = 1125 psig
- 3. End reactions, page S8-8 Cooldown Transient 1 - sudden startup at 0.57 minutes
- 1. Thermal load, page T8-23
- 2. Pressure, P = 1000 psig
- 3. End reactions, page 58-8 4
i Suni.ct 1C3" W 'IESSEE Comt. Dave Sr ** E l $liel.1.
CHICACC BRIDGE & IRON COMP ANY OAK BROOr, ENGlHE ER ( Cooldown Transient 2 - scram condition ar 3 minutes
- 1. Thermal lead, page TE-24
- 2. Pressure, P = 875 psig
- 3. End reactions, page 58-8 The stresses.due to pressure and due ro linear radial temperature gradient through the shell thickness (LT) were analyzed with the Kalnins computer program. The local thermal stresses on the surf ace due to the ncn-linear portion of the radial temperature gradient (NLT) were calculated from the follouing ecuation, Ec ( AT)
Ac = Ac =, c 6 A -v ( where AT is the temperature difference between the actual temperature and the linearized temperature at the point of interest on the surf ace of the com-ponent. E, a and v are material properties of the following values, A-508 Class 2 low-alloy steel forging: E = 27.55 x 10 5 psi a = 7.18 x 10 in/in/*F v = .5 V
- The skin stress effects were evaluated for the extreme case of the sudden temperature drop in the_Cooldown Transient 1. This was done en page F8-32. It shows that the values calculated by rhe method above is more conservative.
183 PWF U RSEL c.ai. D. . or Y9L s hi._.lf
. CHICACO BRIDGE & IRON COMPANY OAK BROOK ENGINEERI I
A-240 Type 304L stainless steel: E = 25.55 x 10' psi a = 9.79 x 104 in/in/*F v = .5 B-166 inconel: E= 29.3 x 10' psi c = 7.88 x 10 in/in/*F v= .5' Examining the stresses at the various points on the component due to:
- 1. Pressure (ps_19)
(
- 2. Pressure plus linear radial temperature gradient through the shell thickness - p - LT (S8-23, F8-20, F8-22, and F8-24)
- 3. Non-linear portion of the radial temperature gradient NLT (F8-21, F8-23, and F8-25)
- 4. End reactions (S8-19) it was found that the stresses' at the point 13 on the nozzle safe end were f ar more severe than those at any other points on the component. In addition, the highest stress concentration f actor exists at the point 13, and the nozzle safe end was made of incon~el (S3-166) whose
$ 4 ,,, 1 c t ut e im e c ? .
Ce st. Dove By ve; $g,,1;
CHICAGO BRIDGE & IRON COMPANY OAK BROOK ENGINEER fatigue strength is lower than trat of Icw-alley steel forging and is the same as that of 304L stainless steel. Therefore the stresses at the point 13 were used to evaluate the usage facter of the component. The overall stresses at the point 13 were su .marized on page F8-26. . ( Subice, 1P3" M 7 VECC37 C i. De*e By YEL Sk t.1
. . . , , , . 1.* t..! ......?'...~t.. .... :-.:
, CHICAGO BR*DGE & IRON COMPAtlY OAK GROOK ENGINEER N ~
2s-F 26
'24 PT Go O's Gr 23 I 9,6 i ?. t,Sto l - 156 3 2t - 22 -
2l 1,cs5 t ,2. 37 -t 5 L 5 3 S,I 13 1,5 5 c l-15 6 3 4 - 2,9 0 % l - ( ,9 5 5 l 5 l 1,7 fG 6,9il -tESb 19 %
,,-- g' .2o 6 I I ?> E 1 ~7, 4 ~l !-l 5 b 5 16 is 13 l 7 2,593 7,6 et c -l565 IB 'd 7,557 S l 9,4 77 - .,, 9l 2.15s l 7,# T5 -
l-1563 to :5,c o L ?,o n 11 l ~I,7 I t ?, t l 5 l -15 G 3 12 l 3.2. E4 6,riq 3 l 13 l 19,5 5 o l12,620 l -t 565 I4 l - 5,T7 l l 5,193 l j ' 15 l Af 3 2. l g,t2e 5
-t 56 3 6 7 8 IG -4,212. l 5.4 2 l l -15 h 5 l1l 1,764- 5,7 78 -156.3 18 -1,264 4GV1 -I S G 3 19 7tI ~1, l o l -1563 2o g,qql E,6 60t 21 1,566 i t ,Mo l -15 6 S 22 q,o G 3 l l g,3S o I *-3 4' '23 4,635 12.cq o -l563 2
24 6,000 12.,900 25 c,6.3 3 l o,M o l -1563 2G 6,0 c o I i,4 oc 5 TRESSES iW PSt HYCRosTATIC TEST (1563 P: tG) ' g,,, Mc 2ZLE bJ2 FoR.163" BWR c ,,,6;. m u o,,,wh4:3, Jyt 3n,_L_,;
CHICAGO BRIDGE & IRON COMPANY OAK SRCOK ENGlHEEE:
.' ~
2s 23
-26 "24 PT % Te @
I l - 3 2,29 0 l -14,c io l - 1.12 5 2t -
<22 2 - 1 1, c 5 c l - 3 2.G .: c l - t ,12 5 3l 7.7tt .l- 5', o l o l - t, t 15 l 4l12.,550 9.2 % l 5 l - 2c. vc.c . -i c,o co - 1.17 5 is 6 l-16,69 0 l - 15.c e c l - i ,12 5 16 15,'i5 14__ ,.2o 7 l c ,7 i.o lt6,1?.o -1,11 5 is 'd s I s,us i s,, 7 o I . 9 l,W) -362 l - t,i 2 5 11 12 to (i,i 5 o -),G o c Ii l 3,4 % ! 6.42 l l - 1,115 12 4, t 4 ( 1,813 13 l r 5,cco - ct,9 6 7. l - 1,12 5 14 -5,57I c.,5 c-l 5 $7 '?- 15 ;_p 2 6 ' 5,265 - l,12 5 3
6 16 -2.,026 2,F1 E l - t,t:5 17 l 550 3,5~i (o - 1.12 5 18 -550 ielic- - i,t i 5 19 I.2.63 3,WI l - I,i 2. 5 2o 1, ,6 % 6,l % 21 l ~7,'16 4- l l 3,68o -1,125 22 -l t 3 12.,4 1o I **3 4- 23 1,3 e9 I 9 ,4 6o - t 12. 5 2 24 4,M 6 20,930 15 3, 6 c1 -3.6cl - (,12 5 26 c.,3 4 5 - 2. o 3 o 57REs5ES iW PS vdARauP TlXt4 51~ MT ( P + L'O g,,, No 22LE N2 FoR IS3" BWR c ,,,,ef- m u 3 ,,,i A 4 ts , J v t 3, 7 o ,
.. . , , . , i. .
y CHICACO ERIDGE & IROH COMPANY
~ OAK BRCOK ENGlHEER:r ?
25g26 PT I2 Go, e 23 24 0o Tr-I l C. l 21- a22 2l o, l 3l C. l l 4I m. l. I R 5 - g .,. o . 19
,- - . 9 16,; _isi3 it, 2o 6l-500 l 7 j _ 3 q g, , j l I6 '\ 8l O. l l ri 12 e l - ou .
I - to C. l nl-62 I i 12 l C. l
. sa l c. l 14 C. l I' 9 to 5 :.. a 15 l o.
I 7 g l 16 1
- c,4 2 e l l
l'1 l O. 18 - s,s c4 19 - 5,o t <.. 2o -c62 21 - 1,60,6. l' 12 -462. l t * *- 3 4' H - 3, 3 A, 2 24 C, 25 -23oo 3, 2G O, E 5"TFRESSES tr4 Psi THFf?.}lAL STREST.ES (N LT) h/AFil-lu P TRAW SIE.QI sobi. , wo:2LE N2 FOR IST BW c.,,,6t-:9 m u o,,,wh4:37 JYL sh, ?. l,,g,P y _ _ __ m _ _ ., .. -
CHICAGO BRIDGE & IRON CCMPANY - OAK BROOK ENGINEER!. 25 '
.26 PT G'o Ts G'r 23 24 s I - t 9,o i c - 5.66 c l - 1.o c C 2tr <22 2 - 2 4,1 So l - 2. 9.5 5 0 l - 1.o o c 3 i ~),tc o ! t 2,o ic l - 1.oo 4 - 2,ci s I - 2,2 E2 l 5 - 2 c, 5 4 0 l-16.94o - t No is , . ,_..,2o ,
6 - 2 5.1 i o l - 2.1,12.0 l-Ioco 16 is 2 0, E s o l - i o co g is i4 7l 16.3 50 IS ' li 8l - 4 54 5,t 29 il 12 9 l - 5.0 8 6 E,1 cts l-loce to Ct,6 6 fc -1,461 11 l l o, c t \ l t ,H 1 l -f occ iz t.c i s e.o,gqs l 13 l q i,5 3 o l 15.~i l o l - l c o C 14 -83,130 l-66,t i c l 5 [y g I - 15 l 2.6 c4.0 23,750 l-Iooo 6 16 - 2 6 o c- o c o,t oc l-I c oc l'l 2 ,2 l \ 1 3 ,1 0 0 l - I oo o IS - ?. ;: li A 4,460 -toco 19 ( G,o E o 44,940 -1oco 2o - t 1,-) S o - 2 2. iSO 21 s o,4 4 o 4ct22o -toco 22 - 4'3,6 c o -26,49o { '" 3 4' 73 414.40 46,380 -lcoc 24 - 5 5,6 d c - 2f ,o (30 25 4 2.,44o l 5 6,59 o l-toco 26 -; 5,(,c o I-3 E.6 6o 5TRESSESird PSI cocLDowd TPsAM51EN3T I ( P+ LT) sa.,, Nor:LE b!2 FOR 183" BWR c.,,. g.:wi u e,,,nh,4t a, .' n ss, 2 2 .: c se a Ch. Ld l / i De ,7 2r Rev.No D o'e e- R e v. tie. , RN D-
CHICAGO BRIDGE & 1RON COMP ANY O AK SROOK ENGINE ER.. 2S -26 PI O b,S b6 r-23' 24
. I l 5,oes l 2t+ <22 2 l 5. o o 2, l l 3 l 3,955 .l. l 4 l 2,76 (i l 5lto,co5 l ,s 16 ,.,. , - - ,.2 c eIio.cos l I \isisic 7l 1.912 18 'ti 8 l 5. l .G l .
it 12
. 9 l 9.2. -3 5 10 6, o o 's lI C1.69"i 12 i,123 13 l 5.s c.l. l l I 4- l 6. L(,5 l l 15 l 6,q 2 1 5 *7 g l -
6 16lt9,<,ca. l l n I c r.s . l I 18 15,1 c t 19 n i a, l
- 2. I n. c a 2Il16196 .
12lt1.o85 l 1 -3 4- 23 .E,, ins, 2 24 1-),oE5 2 5 l :.q,o t s l
~ ~ ~
26 I t.S t o f 5 TRESSES ird PS THERMAL STRE55e.5 (WLT) C.coLDovJt4 TRAtJSIEMI I g, ,, No72LE r42 FOR IS3" 6WR c.,i.g :9 n u 3,,,n64ts, J y t s.. .2. _3_ , . f ,q , i , . . . < , - . . -
CHICAGO BRIDGE & IRON COMP ANY OAK DROOK ENGINEERI.
~
ss-23
-26 24 PT L- Gs Tr - I -2 5,l ei o -? F,6'i o l-?75 2i - 22 2 l-17,7 s o l- 3o,2.<t o l - 7 7 5 3 l ( 2,2_:. o c,,c s 3 l - 8 7 5 4l c ,7 t o l 3,6 #11 l 5 -2.1.57 o -2.c,n.o - ? 15 i% 6 -24.950 l-2 3,ol o l - 775 16 , . ,,- - ,. 2 o _
15li3g4 7 I c,60 0 l 16.7 50 l -975 IS - n. Sl 187 9,39: ti 12 9 l - 6.3 5 8 2ft15 l - 37 5 to Io,3 ?O 1,i83 II l <i,7 7 3 4. ,3 3 ~r., l -E15 12 I,24 1 l - 3,1 1 5 l 13 1 l,4. c c l 14.,-} 2 0 l -Th 14 l -2. $ ,2 2 0 -9,3 13 l I 9 to 57 ., . I ,49 l l 9,463 j-375 l 6 7 8 16 l - 1,4 !. I l 12,100 l-T15
- E75 l 7,15 l 5, t i l
_'l 18 -2,tvi t i,51 o -E15 19 5,716 l t-.,6 I o l-775 2o - 1,9 2 -] 2.016 l 1l 17,7 ~l o I ic lo l - 87 5 22 - r,8 ( o ggq { '**3 4' i 1,*i 6 0 2 t , :, 5 o - T 15
.24 - 6,o c3 6,476 25 11,9 6 o 5,5 o 5 l-375 26 -6cos - l o,2 t c l 57RESSES IN PE t
CooLDovJid 'TRAldSIE t4T 2 (P- LT ) g,,, No r:LE N2 FOR IS3" BKR c.,,,,6f-s ta u o,,,d /ss ,JYL. p., 2 p,,: e.. . n ..w.. ce,
CMICAGO BRIDGE L IRON COMP ANY OAK SROOK ENGlHEERI.
. +
j
-g. . 2 c, PT AC4,o 70 Tr 23' '24 I li 1,C C l i
l 21 -
*22 2lt, col l l 31 , ci t l I 41 ns 1 1 5 3.c o 2 l is .,.,-- y2o 6! 3- * ?- l g g 16 15 13 14 7l 2,57 4 l 18 h b l,$l3 \. Il 12 9 l 2. il l l IO t. ,'d C9 II ~t232 12 l 2,7 7.1 l l i31 1.s t s. I i \L \ ,5 9. 5
( 9 io. is I i.t c, s ", 6 g 16,l 2 2,6 3 o l l ni c, n i I is n,n s 19 7 fe.1 % 2o 5,541 21 l *.'.1,'l \ t-
- 7. 2 1.b04 4 I *~ 3 4' 23 11,7 1 C 2
24 3,694 25 ust. l l m-26 4cc2 5* TRESSES tbl PS Te.e_cH AL ST'.F_s5ES ( M LT ') coctocWrd RAdsth'T 2 3g,, yo :7t.E N2 FOR 183" WR c,,,,3 r si o n,,,i A4?o, J y t 3s,] 5 , _, ce ae e t Chech es! )yg.'- A[_ Doge U ' Re v.No I D e fe ' " N . .R e s h a. Deic R e v ,1J e, D::ie
w . :s PT Gep Te T HYDEo STATIC TE ST g g 20 P = l 56 3 P5t G 7 7' 1 -l 5 s TE ADY STATE CorJDt T lod ' ' ' p -. L7 l4 - 9,973 l,G 5 2 l3 15'coe 9,962 - 1,1 N Arva u P 7'4AM s t E'd_t. p t7 14 - 5, 5 M t ,547 l 13 93,550 ' 2.3,Ti o i - l . o CcoLDo u.t d TRAMGlEF 1_1 I l P t LT 14 -S3,110 -46,110 ccc LDocJed TF4ArdGIE:JT 2 ' ' P+LT l4 -19,220 -9,Yl3 57 E A D'( STATE CCM CITICid. 13 , _go P + LT l' ' WAP.J.'i U P Tl!AN S l E id T 13 cqgg -5E P + LT (4 1'255 c ooLOCt'Jtd TEArd'3iEQT I 13 5'2co, -11,17 0 -Sc P r LT l' cool DotdM TRAldnl E QT 2 13 4 'e g e,' _n p + t7 14 7'gq g - STEADY STATE codDITIOld _ q g'ggg g g, g g o, _ g,o P + LT t WLT WARMUP TRAr451E tdt + G 613 00 ct,962 - 1,1 P t L i r MLT c.cotooLVM TCA tJSIErdT I g5 23,311 - t ,c P + L-T
- d 'T .
39(2S4 cooLDoNM ' TRAM SIEt4'T 2 13 55,\40 l b,1c 5 -B1 P , LT n M LT c.;7g g s5 ES AT Pe naT 13 n: K:4'e NAS AFT LIED 3 ,,, wozZLE t42 For: 15W BtW c. ,,.la. m t3 D.,,.n 4. :4r J v t- ss, - 6 so u oe C' netted by Date Rev.No Qefe R e v.t:o. Dose Re v.N n. Dese
CHICAGO ER!OGE & IRON COMP ANY OAK BROCK ENGINEER C. ALTER!;ATING STRESS INTENSITIES In arriving at the alternating stress intensities the following two conservative assumptions were made: (1) Full magnitude of the end reactions were applied at the end of the inconel no::le safe end and at the end of the sleeve; (2) The ranges of stress intensity
, were calculated conservatively by superimposing the ranges of stress intensity due to the pressure plus temperature and the stress intensity of 8,476 psi due to the end reactions.
During hydrostatic test, the amplitude of the alter-nating stress intensity was calculated from the stresses due to 1563 psi pressure, shown on page F8-26, and' stress intensity due to end reactions as follows. 1 Sa"2 [ (774 00 + 1563) + (4)(8476)) = 56,434 psi During warmup-cooldown cycle 1, the stress intensity ranges due to pressure plus temperature, the overall stress intensity ranges (the stress intensity ranges due to pressure plus temperature plus end reactions), the overall fatigue strength reduction f actor, Kf, and the elastic plastic correction factor, K g , are tabu- . lated on page F8-29. The amplitude of the alternating stress intensity was calculated as follows, sa;,,, 19t" BWF VESSEL coni. Doi. Er Yet sn e2 2_.
.. * . L.?_ = *:* . . . - - . . . - - - . -
. CHICAGO ERIDGE & IRON COMPAllY OAK BROOK ENGINEEE 1
S a
- ? K, K 2 c S (n) 1 =1 2
(6.42)(1.2)(103006)
= 396,779 psi During war:.up-cocidown cycle 2, the amplitude of the alternating stress intensity was calculated as follows.
S a
=
2 [ ( 15 514 0 + 875 ) + (4) (8476) ) = 94,960 psi e f Sapei 'C'" E P 'TTCCTT
- Cea , Dcte By %* C T - Shelf,
CHICAGO DR!DCE & IRON COMPANY OAK SROOK E14GlHEER! DUZidC, WAR'Mu P - c cc2L DOWrd CYc.LE 1 S ( n ) = ( 9 3,5 3 C + l oc c) ) -+ 2,4'I b = IC E,0 0 (c: P!l ' s (m) = ( F,L'o + 1 i,il 0) + S, S c5 = 2 5,U 5 Pst - S ( P) : ( 3cl 6,2 E4 - t o c o ) + t,- (8,4-16 ) = 4 31,18 9 P5 '
^
5 $ m =- 6 -1,9 0 0 P t S(m) , _c 4 9 s l SCn) ,
) ke = t.2 . -6C") = l 47 -
3 S n, C P) W = S(n) = d . l '\ A =.7 I k; = kt + A ( ks - 1.3 = G. 4 2 s t gg,, f 6 3 " b N Id Y E I b E k Con . Date 'bb9 Sy.YI L She=b
..a y, or
- CHICAGO BRIDGE & IRON COMP ANY CAK BROOr, ENGINE EP.
D. CUMULATIVE USAGE FACTOR In accordance with GE Drawing 729E762-1, conserva-tively speaking, there are 132 cycles of hydrostatic test (ny = 132) and 155 cycles of significant warmup-cooldown cycle. In the 155 cycles of significant warmup-cooldown cycle, there are 5 cycles of warmup-cooldown cycle 1 (n2=5, sudden startup) and 150 cycles of warmup-cooldown cycle 2 (n = 150, the rest 3 of significant warmup-cooldown cycles). From the fatigue curve shown in Fig. N-415 (B) of Ref. 2, the allowable cycles for S, = 56,434 psi is 3000 cycles (N1 = 3000) , and for S, = 396,779 psi is 20 cycles
~
(N2 = 20) and for S a = 94,960 psi is 680 cycles (N3= 680). n n U = gy 1
+ g22g3+ "3 =
132 5 150 3000 + 20-- + 6 8 0
= . 515 CC"Y
- 5. y. e , 197" C h'O Cent. Date Er YSL Shi l e
CHICAGO BRIDGE & IRON COMPANY OAK BROOK ENGINEEP E. PRESSURE DIFFERENCE EFFECTS The effects of the pressure difference of 315 psi be-tween the inside and outside of the sleeve have not been included in the analysis of this section. An ad-ditional stress analysis using the KALNINS program has been done to take inte account the pressure difference effects. The 1ccding, bou'ndary conditions and the stresses are shown on pages S8-28 and S8-29. Examining the stresses shown on pages 58-29 and F8-26, show that the additional stresses due to 3~15 psi will actually reduce c stresses at point 13, the most 4 critical location, during all transients considered. Since c. and c stresses are the centrolling stresses 9 in arriving at the amplitude of peak stress intensities, hence, the pressure difference of 315 psi will conse-quently lower the cumulative usage factor and increase the margin against fatigue. failure. ea
CHICAGO BRIDGE & IRON CCMPt.' LOCallon Oak Srook Eng.
~.
F. SKIN STRESS EFFECTS The fatigue usage factor calculation page 30 of F8 was cal-culated by taking into account the skin stresses from thermal effects as described on page 16 of FB. However, the most severe skin stresses occur instantaneously in cooldoun tran-sient 1 when the 130'F flow starts through the 522*F no::le. At this time points 16, 18, 19, 21 and 23 incur high tensile skin stresses. Other transients are not as critical. To conservatively account for this, the Ac stresses for these points on the inside-surface will be applied to the cooldown transient 1 even though they actually occur at separate times. In addition it should be recogni:cd that the linearized tempera ture distribution has already accounted for some of this stress, r so we account twice for some of the skin effects. The results will show that these points are less critical in f atigue than is point 13 which was previously shown to conply with the fatigue allowables. The maximum skin stresses are calculated as follows: c = 4S E e AT 0 = c$ 1 (1-9) where S y is a reduction factor to account for the fact in actua' a finite time is required for the stresses to build up, and dur ing that time the cooling ef fect penetrates through the no::le wall, lessening the thermal shock stresses. (See ASMI Publica-tion #69-GT-107) Evaluating at 130' F at the inner wall, w.a c , -o 1 c- o o, c - . n c. c , 183" BWR Vessel > ~"' - ; c e _ , n c 7 _ __e.rc o.u ;! e- e i p n. , - i ce ni o, FS
,,,,,.,,,_3 ,.l..32
. CHICAGO BRIDGE & IRON CCMPA. . Oak Brook Enc.
Lo .ation ~ s h1 = 281\/0.375) 12 . k 9.0
= 0.973 where the approximate half wall thickness (.375") was used.
From Fig. 9 of the ASMI paper S :e -0.22. Conservatively apply Sy = -0.4, then c = 0.4 (31. 3
- 105 ) (7. 3 8
- 10 -') (-3 9 2)
= 72,440 psi 0 (1 .o-)
where the temperature change AT = 130*F-522*F = -392*F and v was conservatively used as 0.5 (ASME Sec. III Par. N-417.5 (b) ) This skin stress will be used for 40 & Ac g for points 16, 18, 4
,' 19, 21, 23 on Sht. F8-23 for cooldewn transient #1. The follow ing page tabulates the stress intensities incorporating this ; new skin effect. Note that a conservative factor of 2.0 was used for the stress concentration factor for point 18. The piping reactions and thern 1 sleeve reaction effects are includ from Sht. S8-19.
The results show that point 18 is critical. Then since the primary plus secondary stresses in Section S8 did not exceed 35m we need not apply elastic-plastic fatigue ana3ysis. The alternating stress amplitude is obtained as follows: alt = 1/2 (100,167) = 50,084 psi S To apply Fig. N-415 (B) from the ASME Code the ratio of E values multiplies with this value. r "cha ' 26.0*'0' S *S (50,084) = 42,69 5 psi a"E actual alt " 30.5=10 m ac. -- o c u , c-o., c - . . c c - e.
,, g 183" BWn vessel JFv ,
l 68-2967 o.it 2.vc ; c-== ce tit 11/71 ..,c i-v 3 3 or FE
CHICAGO BRIDGE & IRON COMPA cak Brook Eng. Ref erring to Fig. N '415 (B) the corresponding allowable number of cycles for Sa = 42,695 psi is about , N = 6,800 cycles Since there are'287 total cycles (See F8 -30), the usage factor can be very conservatively estimated as
=-
n = 287 = U 0.048 N 6800 This is much less than shown on sheet FS-30. Hence the skin stress effects are not critical, and the prior usage factor coverns
- (i e.
U = 0. 515) . (. s t
,,.u c 3 -. c c e. , c-cv c-.ac6 . . .
183" BWR Vessel r. , , c e _ .; o ,;., ce n) o.tc l c.:t j; c- e 71 f 71i i '3., j 54 o' FE
. CHICAGO BRIDGE & IRON CGMP' 'D, '**"'
( IS h N k 1
's' p ( , t' N
g 'l- if h 49 g N tis D d s E E[ 0: t
'n g$B \
d N \ h 't 4 ' 4 s , h k' hb k3 %t k J t b{'\ R[ i'l , U'l M' {$ fi{.'I T l' ,
$s y u y., d d b l r> R S ': a':4.27 R S s' s
( 0 h 6 N h Il h 0 Y dR' @n@!N)' e- ), h4k;'$$' i s 4 f ii \( 4*
' \ 'h ,(1 *
- t. k) y N N(' 96 'EU@. c? N !' Pe K -
I.lkhk f $ ('h' IU d % k, k'SI ab d' 4 kiI?$i' h) I) T! G,J <!$ O %,\
. 8l k'
- l
-I s J
s' k
- j hkkhhhk kbkkhh$hhh gg un'e'e me.an w\ oem k '$'
s p# k k 1 k c no ey w ,,gg7 ==
- c k ev cancc 3,
/py"swir rv DaTC DaTL C ea m : l e ss .ese--
CO se /*ff ,/, 'Q,Q~ ,**..*: [ (l,o ' ,
, s=ij for,Q.
. CHICAGO BRIDGE & IRON COMP ANY OAK ER00K ENGlHEERI SECTION F8 APPEDIX A TABLE OF COh7ENTS KALNINS INPUT AND OUTPUT
- 1. WARMUP TRANSIENT F8-A01
- 2. COOLDOWN TPAUSIENT 1 F8-A22
- 3. COOLDOWN TRANSIENT 2 F8-A43
- 4. HYDROSTATIC TEST F8-A63 3 , .,;, , , 183" BWR VESSEL -
c.,,, c c _7 e c h,, s7 YSL ss,_1E.
CELCAG " 4 G_J.D.O.E AND IB.N CSMDANY - A Y '='
- ___( ArClFC L ?!c" 'hLET N C2 2L E . !!P_. 6 8 - 2 9 6 7 FINA_L _,
, MEMDRANE M t. X I M U *. STRESS INTENSITY a 8553 PSI
_l.M E.D = 2i'. D_EE'EJ_S t aff e - DetNv er acDLLcj.7_Icu 7 ,i_q.250QCp_iN P= 1250 PS! e x,= 3 a gp_,_tey ry. 3 9 0,0 . _ L B 3 F7= -8200 LBS Mx= 271000. IN-LSS MY= 271000 IN-L35 MZ= 102000. IN-LSS STRESSLS LONG. STRESS - DUE 10 PRESSUR = 2950 PS1 LMNQ._S-uM3 - DUE T S _A_X,Lt. L_L a. A D = -527. PS! LeNG. STRCSS - DUE TC RENDING = -4370 PSI C SnEAR STRESS - DUE TC FSRCCS t.ND TCRSICt. = -588 PSI c.cc. c occe - DUr TC D D E SS_U_: E
=
6526 PSI ct= 65.6.it_._D_EI. S2= -138_7. P S) . _ _S 3 = -625 DCI ( ._ 10 W A REACTOR V SSEL 68-2967 ( SUBJECT CONT. DATEl,1931 By 7 ' c ,t c o r n v 2 'd o t i r W: h t R e v . N C . 9_Y DATE SHT S - A o ). _}}