ML19270H567

From kanterella
Jump to navigation Jump to search
Forwards Requested Info Re U Load,Isotopic Ratio in Fresh Fuel,Design Basis Percentage of Leakage Fuel,Steam Generators & Primary Coolant Flow Rate
ML19270H567
Person / Time
Site: Crane  Constellation icon.png
Issue date: 02/22/1972
From: Creitz W
METROPOLITAN EDISON CO.
To: Deyoung R
US ATOMIC ENERGY COMMISSION (AEC)
References
NUDOCS 7911110178
Download: ML19270H567 (36)


Text

" " Metropolitan Edi Company 2 b$" "*

I2f57

^'

962 1

,RaadIma,, Pennsylvania ~'503

'E o'~5*

E E traits

~~

y TO:

O RIG a

CC OTHEA gy 1 V' R. C. DeYoung

.Crion =ecivan, O

co~cu aar~ce O

oaTr aas*cato:

s i

ao actio= ~tc'esaar O co==E~r O

=<:

I CLAS $ 4F.

POST OF F KE F ebE CODE;

.. 289 50-320 (ENVIRO FI1JC)

I U

5 t

.ro ~o.

DESCAePTION; (MUSt SS URClallafred)

REFERRED TO DATE RECEN ED gy DATE i Ler re our 2-15-72 Itr...trans the g,gy g "8 Benaroya 2-28-72 W/4 cys for ACTION DISTRIBUTION:

u."*""*

e

's Reg Files (Itr only 50-220) klier Answers to Questions regardingp3e_ste

' ARC PDE(Itr only 50-32C)

Gamertsfelder data for a source term calculation Compliance (2) and for a gaseous is liquid affluent Entzing & Staff analysis....

Morris /Dube/Wilscn Denton g

(,(t e7 r='d) 212!"'

DO NOT RE.TN i

Setneencer kh,hiN

[~!

l 1 - Local PDR(Harrisburg, Pa)

Karas Holding (16) cys for ACKS hs m an's (S) Cys for ORIL(T. H. Rove DeYmang 962 fod g,,

I.

v.s. ATOMC ENERGY COMMLSSION M All CONTROL FORM roau *Ec-226s80-607

  • U.S. G o v E R N-E N T P RIN TIN G O r PI C E -.13 7 t.42 4 e g a i

8

' ? q,l 0 0 1, u~e

\\,

l mem==

7911110 /7[

' /,

/

l

,/

M27M I

i.

i j

7 :,,

/

- -u

/

/

I METROPOLITAN EDISON COMPANY wes omav or anem pueucurrtiriescaaponarics POST OFFICE BOX 542 READING, PENNSYLVANIA 19603 TELEPHONE 215 - 929 3601 cn 8

9

<D

  1. .N

[ @'

/

/

D00 6

.6 MG

n

[g>y.

g,-_

k FEB 251972 " -6 neuen

'i D, g 1 gl Cg p

February 22, 1972

' ]. g NN 4

s sp s

y 6

1

/

h Mr. R. C. DeYoung, Assistant Director for Pressurized Water Reactors

& Morv "ik Cy.

United States Atomic Energy Commission Division of Reactor Licensing Washington, D. C.

20545

SUBJECT:

THREE MILE ISLAND NUCLEAR GENERATING STATION UNITS 1 AND 2-%) AND 50-320 DOCFETNOS.(50-289

Dear Mr. DeYoung:

Your letter of February 15, 1972 forwarded a request for basic data for a source term calculation and for a gaseous and liquid ef fluent analysis that specifically relate te Three Mile Island. The request was in the form of an enclosed list of thirty-three questions.

In order to minimize the time needed to answer these questions, a member of your staff telephoned our office on February 14, 1972 and dictated the questions to us.

As per instructions from a member of your staff, we mailed an informal set of answers on February 18, 1972.

The enclosed set of answers are duplicates of the ones mailed to your staff on February 18, 1972.

qzgq qgg csu;

u Very truly yours,

/

W. M. Crei z President

/

lf,

t w

Enclosure t

4

.- / -

s QUESTION NO. 1 Operating power (MWt) at which impact is to be analyzed.

RESPONSE

The Three Mile Island Nuclear Station is comprised of two pressurized water reactor units. Unit No. 1 is designed to operate at core power levels up to 2535 MWt which, when the 16 MWt contribution from the reactor coolant pumps is included, corresponds to a gross electrical output of 871 MW.

Unit No. 2 is designed to operate at core power levels up to 2772 MWt which, when the 16 MWt contribution from the reactor coolant pumps is included, corresponds to a gross electrical output of 959 MW.

The basis for the analysis in the Environmental Report is a power level of 2772 MWt. Differences in environmental consequences between Unit 1 and Unit 2 result from differences in secondary system reheat arrangement and secondary system purification system equipment. Both Unit 1 and Unit 2 have been analyzed whenever these differences affect the environmental analysis.

QUESTION NO. 2 Rate of uranium loaded (first loading and equilibrium cycle).

RESPONS E The first load of fuel for TMI Units 1 and 2 each consist of 93.1 metric tons of UO, (see page 3-81 of Three Mile Island Unit 1 FSAR). The rate of uranium' loaded in the equilibrium cycles will be 31.0 metric tons at each refueling. The initial fuel cycle time is 433 full power days and the equilibrium cycle is 292 full power days for Three Mile Island Unit 1.

For Three Mile Island Unit 2 the initial fuel cycle time is 421 full power days and the equilibrium cycle is 284 full power days, t

1

(

t. _c J

QUESTION No. 3 Isotopic ratio in fresh fuel (first loading and equilibrium cycle).

RESPONSE

The initial fuel loading for Three Mile Island Unit 1 will contain an average U-235 content of 2.62 weight percent (see page 3-81 of Three Mile Island Unit 1 FSAR). The fresh fuel in the equilibrium cycles will contain an average U-235 content of 2.99 weight percent.

The initial fuel loading for Three Mile Island Unit 2 will contain an average U-235 content of 2.57 weight percent and the fresh fuel for the equilibrium cycle will contain 2.98 weight percent U-235.

QUESTION NO. 4 Design basis percentage of leaking fuel.

RESPONSE

This value is given un page 11-1 of the Three Mile Island Unit 1 FSAR, page 11-1 of the Three Mile Island Unit 2 PSAR, and page 3.6-14 of the Three Mile Island 1 and 2 Environmental Report. The numerical values are as follows:

Environmental Report 0.1%

Safety Analysis Reports 1.0%

9TO c ~ u.l

'l O i I

u QUESTION NO. 5 Escape rate coefficient used (or reference).

RESPONSE

These values are given on page 11-28 of the Three Mile Island Unit 1 FSAR, page 11-4 of the Three Mile Island Unit 2 PSAR, and Appendix 1, page 4, of the Three Mile Island Units 1 and 2 Environmental Report. The numerical values are as follows:

ENVIRONMENTAL SAFETY ANALYSIS ELEMENT REPORT REPORT Kr, Xe 6.5 x 10-8 1.0 x 10-7 Br, I, Ca, Rb 1.3 x 10-8 2.0 x 10-8 Te, Se, Pd, Ag, Sh, Cd, In, Sn 1.0 x 10-9 4.0 x 10-9 Mo, Nh, Tc, Ru, Rh 2.0 x 10-9 4.0 x 10-9 Sr, Ba 1.0 x 10-11 2.0 x 10-10 V, La, Ce, Pr, Zr, Nd

-12 Sm, Eu 1.6 x 10 1.0 x 10-11 QUESTION NO. 6 Plant availability factor.

RESPONSE

The availability factor assumed for analysis in the environmental report for both units, is 0.8.

The availability factors assumed for FSAR analyses were 1.0.

970 q-L-u],

b tj 3 0-e t

9 QUESTION NO. 7 Number of steam generators.

RESPONSE

There are two steam generators in each unit.

QUESTION NO. 8 Type of steam generators (recirculating, straight through).

RESPONSE

Three Mile Island Units 1 and 2 utilize the straight through type steam generators.

QUESTION NO. 9 Mass of primary coolant in system total (lbs) and mass of primary coolant in reactor (lbs).

RESPONSE

The normal volume of hot reactor coolant in the total reactor coolant system is 11,800 ft3 (see page 3.6-14 of the Environmental Report) and the mass is 514,950 lbs. The volume of hot reactor coolant in the reactor vessel is 4,058 ft3 (see page 4-39 of Three Mile Island Unit 1 TSAR) and the mass is 182,000 lbs.

97Q

'"'l l; fl /'C9 OUESTION NO. y Primary coolant flow rate (lbs/hr.).

RESPONSE

The reactor r)olant flow fc. Three Mile Island Unit 1 is 131.32 x 106 lbs/hr (see page 4-J9 of Unit 1 FSAR) and the flow for Three Mile Island Unit 2 is 137.8 x 106 lbs/hr (see page 6.8-6 of the Environmental Report).

8 QUESTION NO. 11 Mass of steam and mass of liquid in each generator (1bs).

RESPONSE

3 The amount of reactor coolant in each of the steam generators is 2,030 f t (see page 4-40 of the Three Mile Island Unit 1 FSAR) and the mass of hot reactor coolant is 87,000 lbs.

The mass of steam and water on the secondary side of each steam generator at rated full power is:

TMI #1 TMI #2 S team, lb s.

5,400 5,200 Water, lb s.

34,500 36,000 Total, lbs.

39,900 41,200 QUESTION NO. 12 Total mass of secondary coolant (lb).

RESPONSE

6 The total mass of the secondary coolant for Unit 1 is 2.1 x 10 lb s,

and for Unit 2 is 5.0 x 106 lbs.

c. 70 1.

min 7, o

u

. &GL _ v ' ' E,

n QUESTION NO.13 Generator operating conditions (temperature and pressure).

RESPONSE

The temperatures and pressures in the steam generator vary with operating power. At full rated power, the operating conditions are:

A.

THREE MILE ISLAND UNIT 1 (See pages 1-67 and 1-68 of Three Mile Island Unit 1 FSAR) 1.

Reactor Coolant Side a.

Temperature :

Inlet - 604*F; Outlet - 554* F b.

Pressure:

2185 psig 2.

Secondary a.

Temperature:

570*F (35'F superheat) b.

Pressure:

910 psig B.

THREE MILE ISLAND UNIT 2 1.

Reactor Coolant Side a.

Tempe rature :

Inlet - 608'F; Outlet - 557*F b.

Pressure:

2185 psig 2.

Secondary Side a.

Temperature:

570*F (35*F superheat) b.

Pressure:

910 psig QUESTION NO.14 Total steam flow rate in the secondary sfstem (1bs/hr).

]hh

RESPONSE

At full reactor power (2535 MWt) the steam flow from each Three Mile Island 6

Unit 1 steam generator is 5.6 x 10 lbs/hr (see page 4-40 of Unit 1 FSAR).

At full reactor power (2772 MWt), the steam flow from each Three Mile Island Unit 2 steam generator is 6.1 x 106 lbs/hr.

~.

QUESTION No.15 What is the containment volume (cu. ft.)?

RESPONSE

The containment volume for both Three Mile IslandUnit 1 and Unit 2 is 2 x 106 cu.ft.

QUESTION NO.16 s

What is the expected leak rate of primary coolant to the containment (lbs/hr)?

RESPONSE

This value is given on page 3.6-18 of the Three Mile Island 1 and 2 Environmental Report as 10 gallons per day or about 2.5 lbs per hour.

QUESTION NO.17 How often is the containment purged? Is it filtered prior to release? Are iocine absorbers provided? What contamination factor is expected?

RESPONS E Purging of the reactor buildings at the Three Mile Island Station is planned to be performed at least once a year prior to refueling. During normal maintenance operations air packs will be utilized to the maximum extent practical in order to reduce the necessity for purging. However, purging will be performed more frequently if dictated by the buildup of radioactivity in the reactor building and the maintenance requirements.

Prior to release to the environs, the exhaust gases will pass through particulate and charcoal filters.

A decontamination factor of 100 is expected.

23h)

[]O)

QUESTION NO. 18 Is there a continuous air clean up for iodine in the containment?

If so, what volume per unit time is circulated through it? What contamination factor is expected? At what concentration will purging be initiated?

RESPONSE

Neither Unit 1 or Unit 2 have been provided with a continuous air cleanup system for the removal of iodine.

QUESTION NO. 19 Give the total expected continuous letdown rate (lbs/hr).

RESPONSE

This value is given on page 11-1 of the Three Mile Island Unit 1 FSAR, page 11-2 of the Three Mile Island Unit 2 PSAR and Appendix 1, page 1 of the Three Mile Island Unit 1 and 2 Environmental Report as one reactor coolant volume per day or about 2,800 lbs. per hour.

QUESTION NO. 19-A What fraction is returned through the demineralizer to the primary system? What is che expected demineralizer efficiency for removal of principal isotopes?

RESPONSE

All o_ the letdown flow is passed through a purification demineralizer.

There is an expected D.F. of 100 for all principal isotopes except yt trium, molybedenum, krypton, xenon and tritium which have a D.F. of 1.

'7o1 D10 L

d

)

i QUESTION NO.19-B What fraction of this goes to boron contr(el system? How is this treated: deriaeralization, evaporation, filtration?

RESPONSE

When the boron concentration in the primary system is above 180 PPM all s

three methods of treatment are utilized. When the boron concentration falls below 180 PPM only demineralization is used. The answer applies to both units.

QUESTION 19-C Is there a separate cation demineralizer to control lithium and cesium?

PESPONSE The rad waste systems for Three Mile Island Units 1 and 2 have aseparate cc. ion demineralizer in the chain. However, the makeup and purification systems have not been designed to include a cation demineralizer.

QUESTION No. 20 What fraction of the noble gases and iodines are.= tripped from that portion of the letdown stream which is demineralized to the primary return system? How are these gases collected? What decay do they receive prior to release?

RESPONSE

None.

'T01 P1,1, e

u m

OUESTION NO. 21 What fraction of the noble gases and iodines are stripped from that portion of the letdown stream which is sent to the boron control system? How are these gases collected? What decay do they receive prior to release?

RESPONSE

One Hundred percent of the noble gases are stripped off and sent to the gaseous radWaste system. One percent of the iodine also goes to the gaseous radwaste system, the remaining ninety nine percent either stays in solution or plates out.

A 90 day decay period was assumed in the Environmental Report, and a 30 day decay period was used in the SAR's.

QUESTION NO. 22 Are releases from the decay tank passed through a charcoal absorber? What decontamination factor is expected?

RESPONSE

All radioactive gases released from the waste gas decay tanks are passed through charcoal filters. The expected D.F. for these absorbers is 100.

QUESTION NO. 23 How frequently is the system shut down and degassed? How many volumes of the primary coolant system are degassed in this way each year? What fraction of the gasses present are removed?

What fraction of other principal nuclides are removed, and by what means? What decay time is provided?

RESPONSE

It is expected that the primary coolant system will be shut down and degassed on an average of once per year. All of the noble gases are removed. The primary coolant can be cycled through the makeup and purification system during shutdown during which time other principal isotopes will be removed.

If one systems volume is passed through in this manner, a D.F. of 100 is realized. A gaseous decay time of 90 days was assumed in the Environmental Report. However, a gaseous decay time of 30 days was assumed in the FSAR.

' T P} 1 01?

L s

v G

QUESTION No. 24 Are there any other methods of degassing (that is, through pressurizer, etc.)? If so, describe.

RESPONSE

To remove fission product gases and other noncondensable gases from the pressurizer steam space, two paths are used. In the first, the pressurizer is vented to the vaste disposal system via the reactor coolant drain tank connection to the pressurizer vent line. The preferred method for degassing the pressurizer is from the pressurizer vent line, through the pressurizer steam space sample lines in the chemical addition and sampling system where it returns to the makeup system upstream of the purification filters. By controlling the makeup tank pressure, the removed gases are discharged to the waste disposal system until a reactor coolant gas sample indicates the desired conditions have been t<

QUESTION NO. 25 If gas is removed through the pressurizer or by other means, how is it treated?

RESPONSE

The gases removed through the pressurizer are discharged to the waste disposal system where they are compressed, held up for decay and filtered (roughing, HEPA and charcoal) prior to release to the atmosphere.

OUESTION NO. 26 What is the expected leak rate of primary coolant to the secondary system (lb/ hrs.)?

RESPONSE

A maximum leakage rate of 10 GPD (3.5 lbs/hr) was assumed for calculations made in the Environmental Report.

' ? Q l.

OI3 t

e_v W$$

QUESTION NO. 27 What is the normal rate of steam generator blow down? Where are the gases from the blowdown vent discharged? Are there charcoal absorbers on the blowdown tank vent? If so, what decontamination factor is expected?

RESPONSE

Not applicable.

t QUESTION NO. 28 What is the expected leak rate of steam to the turbine building?

What is the ventilation air flow through the turbine building (cfm)?

Where is it discharged? Is the air filtered or treated before discharge? If so, provide expected performance.

RESPONSE

UNIT #1 -- The expected leak rate of steam to the turbine building is

.67 CFM. The ventilation flow through the turbine building is 440,000. The air discharged from the Unit 1 Turbine Building is not filtered prior to discharge.

UNIT #2 -- The expected leak rate of steam to the Turbine Building is

.67 CFM. The ventilation flow through turbine building is 231,080 CFM.

During normal operation the air is discharged thrcugh the Turbine Building roof vent. Upon receipt of a radiation alarm the discharge is then routed through filters prior to discharge.

' ? ^ l n 1. ti c

,a v

t QUESTION NO. 29 What is the flow rate of gaseous effluent from the main condenser ejector? What treatment is provided? Where is it released?

RESPONSE

UNIT #1 -- The flow rate of gaseous effluent from the ejector is 45 CFM.

The effluent is discharged through the Turbine Building exhaust without treatment.

UNIT #2 -- The flow through the Unit 2 air ejector is approximately 20 CFM.

This effluent is routed through demisters to the Auxiliary Building filter train (roughing, HEPA and charccal) and released to the station vent as required.

QUESTION NO. 30 What is the origin of the steam used in the gland seals?

(That is, is it primary steam, condensate, or demineralized water from a separate source, etc?) How is the effluent steam from the gland seals treated and disposed of?

RESPONSE

UNIT #1 -- The origin of steam used in the gland seals is primary steam and is returned to the condenser untreated.

UNIT #2 -- The origin of steam used in the gland seals is demineralized water from a separate source.

9791 O' l '3 L. - v

)

.s.

QUESTION No. 31 What is the expected leak rate of primary coolant so the auxiliary building? What is the ventilation air flow through the auxiliary building (cfm)? Where is it discharged? Is the air filtered or otherwise treated before discharge? If so, provide expected performance.

RESPONSE

UNIT #1 -- The expected leakrate of primary coolant to the Auxiliary Building as stated in the Environmental Report is 25 GF. The total flow from the Auxiliary Building is 118,800 cfm which is passed through roughing, HEPA and charcoal filters prior to discharge from tF-station vent. A D.F. of 100 is assumed for iodine removal.

UNIT #2 -- The primary coolant leakage rate is again 25 GPD. The Auxiliary Building ventilation air flow is 83,890 however, a total ficw of 147,700 cfm is available for dilution (Auxiliary Building plus Fuel Handling Building combined flow). The air is filtered upon demand through rouging, HEPA and charcoal filters. The D.F. for iodine is assumed to be 100.

QUESTION NO. 32 Provide average gallons per day and micr: curies per cubic ce cimeter for following categories of liquid effluent. Use currently observed data in the industry, where different from the SAR or Environmental Report.

(Indicate which is used).

a.

High level waste (for example: primary coolant letdown,

" clean" or low conductivity waste, equipment drain and deaerated waste).

RESPONSE

The estimated volume of high level waste from both units is approximately 500 gals./ day at a concentration of 1 x 10-5 uci/cc.

(Environmental Report).

9?o1 01(3 L. m QUESTION NO. 32-b, 32-c b.

" Dirty" waste (for example, floor drain waste, high con-ductivity waste, aereated waste, and laboratory waste).

c.

Laundry, decontamination and wash down waste.

RESPONSE

See attached Tables 11-3 entitled Radioactive Waste Quantities taken from the Unit 1 and 2 SAR's.

QUESTION No. 32-d d.

Steam generator blowdown - 'give average flow rate and maximum short term flows and their duration.

RESPONSE

Not applicable.

QUESTION NO. 32-e e.

Drains from turbine building.

RESPONSE

The expected volume collected from the Turbine Building drains for both Units 1 and 2 is approximately 7,200 gals./ day.

' ? O l,

.ll a-a FOR THESC WASTES (a THROUGH e) PROVIDE:

QUESTION 32-1 1.

Number and capacities of collector tanks.

RESPONSE

See attached Tables 11-4 entitled " Disposal System Component Data" taken from the Units 1 and 2 S AR's.

QUESTION NO. 32-2 2.

Fraction of water to be recycled or factors controlling decision.

RESPONSE

Approximately 70 parcent of the waste water will be recycled. Some of the factors controlling the decision are tritium buildup, pH, chloride content and also fluoride content.

QUESTION NO. 32-3 3.

Treatment steps -- include number capacity, and process D.F.

for each step.

If step is optional, state factors controlling decision.

RESPONS E 7701 nU; L -V; QUESTION No. 32-4 4.

Cooling time from primary loop to discharge.

RESPONSE

The average decay time for liquids removed from the primary system before discharge is 14 days.

OUESTION NO. 32-5 5.

How is waste concentrate (filter cake demineralizer resin, evaporator bottom) handled? Give total volume or weight and curies per day or year.

RESPONSE

The expected volumes for solid wastes are given in Tables 11-3 taken from the SAR's.

However, an estimate of the number of curies shipped per year are not available.

QUESTION NO. 33 Dilution flow rate for liquid effluent (gpm).

RESPONSE

UNIT #1 -- Environmental Report Assumptions - 36,000 gpm SAR Assumption 5,000 gpm UNIT #2 -- Environmental Report Assu=ptions - 36,000 gpm SAR Assumption

- 17,500 gpm 9 7. O l O1Q N.

i s

L.

w s

~O1 Z [bd /

1.

^

TABLE 11-3 Radioactive Waste cuantities 2

Waste Source Quantity per Year, ft" Assumptions and Comments I.

Liquid Waste 1.

Reactor Coolant System:

For selecting tank &

equipment capacities 60,600 2 cold startups at beginning of core life; 3 cold startups thereafter at 77.5 days inter-vals, continuous shim bleed during operation; bcron re-moval via deborating demin-eralizers during last 55 days of core life & shutdevn for refueling. Total cycle time of 3ho days. Therefore, full power operation for 335 days per year.

2.

Sampling and Laboratory Drains 400 12 sa=ples per week at 5 gal per sample.

']

s

~

3.

Purification Demineralizers Sluice 160 80 ft3 resin /yr. sluiced at l

2 ft3 sluice water /ft3 resin.

4.

Cation Demineralizers 288 14h ft3 resin /yr. sluiced at 2 ft3 sluice water /ft3 resin.

5 Deborating De=ineralizers 1,080 2 resin regenerations /yr. at l

13.5 ft3 re-enerating solution

& rinses /ft resin.

6.

condensate Demineralizers 96 48 ft3 resin /yr. sluiced at 3 sluice water /ft3 resin.

2 ft 7

Precoat Filters 2h0 8 filter bed chat. ;es/yr. at 30 ft3 sluice water / filter bed change.

2 3)

I O

11-29 Am.17 (1 2S_71) q V

'%n e4 0

b

TABLE 11-3 (cont'd) 3 Assumptiens and cc==ents Waste Source Quantity per Year, ft 8.

Misc. Sys. Leakage, Decontamination, etc.

70,000 1,gpm accumulation rate 9

Laundry (1) 7,300 150 gpd accumulation rate

' 10.

Showers (1) 14,600 10 showers per day at 30 gal.

per shever II. Gaseous Waste 1.

Off gas frem reactor Degas at 25 cc H2perlite$

coolant letdevn 1,500 concentration 2.

Off gas frem reactor Degas at 25 cc H2 E*# lit *#

coolant sa pling 10 concertration

' 't 3.

Makeup Tank gas inventory 1,000 Vent once per year k.

Off gas from pressurizer 60 Vent once per year O

III.

Solid Waste j

,v 1.

Purificatien Resin 80 Resin replace =ent twice per yr.

2.

Cation Demineralizers 14h Resin replacement four times per yr.

3 Deborating resin h

one quarter of ene resin bed replaced per yr.

h.

Condensate Demineralizers Resin replacement four times resin h8 per yr.

5 Filter precoat 16 Filter bed replacement eight l

3 times per yr. at 2 ft / rep 1.

6.

Evaporator bottens 811 (2)

Notes:

(1) Only 10 percent of this is assumed to require precessing in the liquid vaste system. Re=ainder is discharged to sanitary vaste.

(2) Based on folleving assu=ptiens:

'l9l O. 9 )

e -.,

11-30 Am. 17- (1-25-71)

L-r TABLE 11-3 (Cent'd) a.

Concentrate from 90 percent of iten I.1 is reclaimed for reuse. Remainder is concentrated by a factor of 20 for packaging (303 ft3).

I b.

Ite= I.2 is concentrated by a factor of 10 for packaging 3

(40 ft ).

c.

Ite=s I.3, I.h, I.6, I.7 and I.8 are concentrated by a factor of 500 for packaging (141 ft3) d.

Item I.5 is concentrated by a factor of 10 fo:. packaging- (108 ft3) e.

10 percent of ite=s I.9 and I.10 are concentrated by a factor of 10 for packaging (219 ft3).

") 7 O 1

,' ' ?

La U '

e, e

11-31

g

.O

?

e

.a e e a

n l w t ao avdot rmu e eh t rsr f

e a nd w e o

s. o r rap eo hbel t

f l si u snl f po uie t t r e, n.

n, n

r a or i i n i arco s

s i

s t e f

e e

s e

p e

r r

e r

s o 'for r

d e

t n

't l gsh t

t ony!

f f

f cia'

/ /

f

/

's rd r

r

/

r e

e e

r e

r 3 u t

t e

t d0s 3 y a

a t

a s d a

w w

a w

t n

eetd w

f o

f es e

e e

e /

r i

a l t l2 p

t t

c t

e w

n, t

i 1 a2 l

c c

e c

r e

a 3

m u

u l

u c.

o o

r h

i t

esg a

l l

u ls s

s t

n ri nf s

s s

t ehi o s

a e

e r

t c

't

- t s r

c e

t n

ue.

e t

t 3 f sd mr p

f f

t f

i p

n o

f u

e c

ou i a 2

2 2

l c

ost e gua y

l 2

s l

n r

e n ce a

t t

t a

o e

t.

nti ce a

t e

i s

ii sl r g

a a

t a

g c

t r

nnl yp 5

d d

d f

t 0

r l

te i oac e

e d

e e

a 3

e t

r gcr s

t c

c e

c 2

t r

't u

1 e

e,r4l y a

i t

c i

a e

a a u

u t

u t

r n

a 1

p o

t C

st t d k

l l

u l

a o

~

tl so e

s s

l a

n i y

r r

a o

t a

H H

a a

aaeT2 e

r r

c t

l c

c y

y s

L e

i a

d e

e vd 9

w n

sr 2

r r

o peg.

r y

y y

y t

a u

r c

c i

ut ngr e

/ / / /

u l

m e

r r

t t ni n o

p n

n n

n l

u u

p 5

5 e

e s

p ri ti f i i i i s

m c

2 2

p p

M i

m a

el s

s s

s s

u c

s c

u t ss en e

e c

e e

r c

a r

t t

e e

t s

syouo l

r r

r r

y c

e a

a c

c i

s abfi p

/

a d

w n

n W

p o

e s

o o t

A dd e et m

't h

l dra a

t t

t t

m 9

h a

a 3

o5 r

s f

f i

f f

p s

g g

t t

g 0

n n

arp e

e-u c

yd C

j c 2

0 0

0 0

2 5

0 e

e 1

27 vf o 1

8 3

9 8

4 $

1 1

t D

V V

s t

l W

s 2

1 a

3-O e

1 1

1 v

/

i tc l

ao 1

J b

D t

f r,

Y ae Y

0 0

0 0

0 4

0 0

0 0

5 7

00 0

0 3

0 3

6 0

0 3

O 0

4 r

9 6

ep 0

0 6

f, S

6 8

0 7

5 1

6 4

1 I

I 1

7 1

y t

i t

na u

c g

s t

n n

I.

O w

i e.

u l

r e

e

.) O

) A D ).

c e

n d

p t

l o

t m

.c T u

l i

e a

rt C s l

a t

l s

t.

r n

s r

a e

i e

n t

t n

a s

n i

n n

ip r

r i

m a

a r.

e s

m s

a l

t y

u z

r e

r t

o o

r r

ms q

y i s

e t

e n

o u

o e

e r

l r

s s

o c

c t

z e

o a

e i

e i

c n

i t

t r

l t

t e

t r

e r

s a

e 1

r s

rs o

v u

1 a

a a

t S

b r

r n

r r

t t

n s

r n

y k.

o d

a e

c.

c c

i s

a a

e a

e r

ej r

r a

p d

i <

)

e e

s r

t t

a e

c i

n L

D r.

r n Mk a

2 g

a g

i.

e o

o i n

o e

e

(

m m m

l r.

d n

m D

C a

o t s a i D

g r

l L

1) o o

k o

c t

r lui g

a p i t

u s.

(

1) e r

r r

s C

e t

n o

e

(

t f

f a

(

e s

T e

v c

a lp i

a p

n c,

d.r r

W - s s

s t

n c

u t

a f

y y

s a

s o

ei i i -

a r

S a

a r

a e

g g

u g

a t

sc f

n r

o t

ra o

a f

f k

f w

s e

c a

r p r

r l

Wt e

s e

s r

J c

oa a

u y

p i a t

o f

f a

f E

f c P

C S

r I.

S e

C o

M c

u 1

o w

r e

G t

t 1

1 2

3 4

5 6

7 8,

9, 0

1.

2 3,

4 1

1 s

I a

I h

3

), 9, c

a a

. ~.

Table 11-3 trontinued)

Sadioactive wa e c Quaitities u]?

~#"

~

1!. Folid Easte 1.

Purafacetion losin 80 Fesin seplacement twice pcr year.

2.

Cicor.-sp Miresalizen s Femin 80 lesin rcplacemnt four tisce ger year.

3.

Ecboratirg Fesin 90 Pesin replaccrent once p r year.

4.

Cor.Jcesate Deeineralizers Fasin 80 Fcsin replacenent four times per year.

5.

Sa'r t l'ael Issir.cratisers Pasin 42 mesin replaceeent twice per year.

4.

EvaMaatc.r bott as 800 Misc. saste' concentrated to 20 percent solids, peactor Coolant concer.t ated to !?S percent 1

l e.

IJ tA CO g

Itr33 4

C3

.J

~.

~D p*

e M*

  • 9 s.

5 e o e

e 1

=

M

g. Il-1 tsontinue.3) se?c s:

(1) (nly 10 rescent of t].is i:s assume 4 to arguir_e processis.g in the 11gu1J waste systen. uinalnder is discharged to sanitary waste.

(23 Lactudes s eactor Buildle.g and Nel stand 11pg Building ventilation.

(33 Based cn following assue>ptiones Corcentgate fh om 90 percent of Item 1.1 is reclaimed for reuse. Fe:malader is concentrated by a f actor' of 20 for packaging a.

(303 ft ).

b.

Item 1.2 is ccacentrated by a f actor of 10 for packaging (40 f t 3.

c.

Itcas I.3.

I.4 I.5, I.6. I.T a.sd I.9 are cor.ece.tza'ed by a factor of 130 for packaging (442 ft 3.

d.

10 percer.t of items I.9 and (.10 are concentrated by a factor of 10 for packaging (223 f t ).

O

\\

e d

A.

Os

~

CO

.)

~

11 34

'J LJ1 t

e s

e y

.m t

y*

e

- e

~*

g m

~

p.

e

, e, o o p.

e I

. W.

g 4

e

..e

e a

l Table 11 14 Disposal System Component Data-Sheet 1 of 4 1

. l.

l Ett:1 paTitts e

imS - 1*aend s 1) Type tank / supports: N/s. horisontal/eaddleg V/L. vertical /lege 1

I l

CAPACITT, Ff VDrfM SETSMIC (Fach Tank)

DESTC16 MATFRf A L TO DFSIGN COIC CESicu c(Evner$

ITF t no.

Fr / mNr71 rut TYPE-Total Uguld @F Prese-peg Body L1 stag OL T.1A R.C. Bleed Tanks /conteln reactor Mastense opMting teep.[ presse!5CT[

M b'-1B coolant letdown & feed to primary M/ S 12,0'30 11.010 200 25 s.s.

None V.N.

ASME I!!-C Class t e, 3 pelg.contains one primary WI L-T-1C syst. volwie.

WLt-T.2 Mtse. Weste Storaye Tank /contsla Maalmian operating tea.p./ press.150 p/

miscellaaeous re.itsactive westes N/3 3.124 2.718 200 25 S.S.

None V. N.

ASME III-C Claea I

  • 3 ents.

t w

WDL-T-3 Reactor Coolant Drain Tank / quench Rupture disk per,vides overpressure pressert ser discharce V/L KO 561 300 SS 8.8.

None V.M.

ASME III.C Class I relief (normal) k_D W!-T.h Spent peeln Storage Tank /contains Celt l'u'inal resin capacity 550 ftI or spent restne V/L 1,120 980 150 15 S.S.

None Ate.

ASME III-C Clase I two year's retention at destga taste Q

I orl L

Wi t-T-5 t7ses filter precoat tank /centaine cett Ncalnet precoat twetty PO ft g

used precoat frue filters V/L 590 510 150 15 8.s.

None Atm.

AsME III-C Class I stout rour > e.r*. rete,.a tu. as s

g elesl6n bests p

w WDbt.6A Concentrat ed fladioactive Weste Netnal two year 3 retectice of (m}

l f0 cir?.63 Storage Tee,ha/ store evaporator Colt eveyusator c or.c e n t i ate g

conc ent rat e V/L 920 728 200 15 8.8.

teone Atm.

ACME III-C Class a only).

Nominal 3 month's stocage per 1.1 WEl-T-7A peclateed Boric Acid Tanks /atore none V.M.

ASME !!!-c Class I of Tatte 113 WLt,T-73 rec 1 steed borte acid V/L 920 720 150 15 t'.s.

kAM) rheno11ae WD I-T-2 Neutraliser Tank /neutralise resta 3f8 Cel!

I regenerattr.g sohttons V/L 194 166 150 15 C.S.

System Atm.

ASME 113.C Claes 1 Ftaur batches /rer in regeneratton Itenotine stores one batch of resin regen.

l h

WLt T-9 putreltser Feed Tank / stores resta Ye Cell erettr4 solution and suteequent rer.enerating solutions V/L. M6 582 150 '

15 C.S.

System Atm.

A3C III-C Class I rinses. Reserve capacity to WD!,T.2 a

67;I-T.10 Neutraitsed waste Storaae Tank /etores 1%enoline Cell Stores one tatch of' resin reden-l j

neutralt ted resin resen, solutione V/L T79 695 150 15 C.8.

74 Atm.

A%=; III.C Cia.a I erettna sehtton and outsequent System tir.ses, peserve cepacity to WLL.T.2 WIrT-11A Evaporator Condensate Storage Tank /

Pienottne Closed Noelnal three day storage for con.

WDL-T 113 stores evep. conJensate for reuse or 3rA Vent Syst.

densate per dellan beels Table 11-3 disposal V/L 1,2 34 1,02b 150 15 C.S.

Systne N2 blanketed ASME I!!.C Clase !

Ny blanketed to preserve 02 free purity of condensate. Tne inventor.

e 5-les in these two ter.hs prir.ctpalts i

H sc#ern releases of radioacttwe N

  • J liquide to the envircreent.

I N, WDL.T.12 laundry waste Tanristores wastee R.enottne Cell Nominal 18 days storage for " hot" l

^p t

(,A fram

  • hot" 1 sundry & ehowere

!!/8 1.352 1,11b 200 15 C.S.

3f4 Ata.

ASME III-C Clasa I laundry & st.ouer wastes. ft.e inven. l f,} Un System tory la tvit e tank governs radio.

fo C/

active releases to the enviroeirent

'N I when the activity levjl of ita contents to below 17 uc/ce.

{}

TOTAL LIQUID CAfACITY IN LIQUID WA$TE SYSTDI TANK 5 = bb,836 F13 w

g t

(

e**

g

( )'

)

%./

(

)

()

\\

T Table 11 h (C)

Disposal System Component Data Sheet 2 of 14

' LEME9 FRocESS EVJIPENT:

Each Each ITre itNtE/FWCTtrAs Each Design Type Tank DCl*J3 MAT'L.

f 3

M.

Resta Flow of tot e Temp.'r

Press, OF VEWrID CESIGN SEISMIC g-EEv]RALIZFRS Yolee,f_t Rat e rpo.

Resin J,

palj., CfWtrR.

TO

_Cg DESICM CCFM g

Ur t.x.1 A Det.orsting reat ne. / remove borete Desin to regenerated In e

hI L-R-1B son frae prtsery coolant 40 70 Anton 80 120

-150 3.3.

V. N.

AivE !!!.C Class !!

place. Spent resta j

deped to spent resin t.

a cr P c o.v.rA C.tton ee.i.. ir-o. riseren C.u on S,,ns r..t. d, ped t.

C' "

7 W!-K.25 pms acts f rus prinary coolant and or opent resta tare.

Qy spent fuel pools water 36 70 Mised Bed 80 120 150 S.S.

V. M.

ASprE III.C Class !!

gJ b

W I, K. ')A Condensate teeins./ pott ah condensate Mised ftpe..t resta durped to bT I-K. 3B frw R.C. & Weste Evaporetore 12 15 Bed 15 120 150 s.8.

V. M.

ASME It!.C Clase II spent resta tack.

Design Tarah DESIGN MAT'L Vol]e Temp.*F Frees.

OF VEfrTED DESIGN SEISFIC Flow Filter FI.t:TERS T,te gt,eg gg.

Medlise Jt_

pelr.

@S3T J,

Cr0E OFSfC1 Cft:g5 g

VD*, F.1 A Frecent Filtere #as9 eve particulates Used precoat asterial g

W'. te r.18 fim spent fuel pool weter & prinary Cell desped to the used I

y y

coo tent Frecost 1W Solka Floe 25 120 150 S. S.

Ate.

AM !!!.C class 11 precoat tank.

Trapped resin is back.

Raarn Trap / eborating deatna.

Cartridge 1k0 Ptero-Wynd 2

120 150 S. S.

V.H.

ASPE I!!.C Class II flusted.o spent resta WN **.2 d

t ank.

1'M e.1tA Pesta Trep/ ret ton deetas.

Ca rt ridge 70 Micro-Wynd 1

120 150

3. 3.

V. N.

AST !!!.C Ctase II Trapped resin is back.

W'A P-N flust ed to spent restn e.

t a nk.

hT L.F.k Resin Trep/condensated deelna.

Ca rt ridge 30 Mi c ro.ir. nd 41 120 150 3.3.

V.M.

ASME III.C Class II Trepped resin is back.

flust.ed to spent resta T:pe, Type tack.

Deatgn Tubesheet Feed to DESIGN MAT'L Flow To Tube Tubenheet T =p.*F

Frese, or VErrED tEsicN SEISvrC COO!!RS
  • g r

Tzu

'a._e., Ag.

f*nne t.

Const.

,, _ yst3._ Crt:3TR.,

T0_

C0rt DFSIO N,

C_rpajEgg k 14 l

1.I'L-C.1 R.C. Drola Tonk Cooler ecola Shell &

f W-Tube p

Welded Welded 250 150

8. 8.

V. M.

ASME !!!.C Class I Contents of R.C. Dreta Tank i _)

Desten Decon.

FWed Tonk DESIGN MAT'L Vol]e Temp.*F Freas.

OF VErrED DE31CN SEISPf!C p

Flow tamir.at ton gs Ft pet s.

CONSTR.

70 000E DESicN CCMT1rrS g P yrgS,

-y Ty pgexg tector Wr!,E.lA Reactor Coolant Evaporator /

d AFF concentrates reactor coolant and N Veeuwe Deetsn condittane given 6

f spent fuel poets water Diett11ation 12.5

> 10 133 250 72.5 3.8.

V. M.

ASME Vggt Class !!

for eveporetor section

^

P WL1,E.15 Placellaneous Weste Fveporator/

AMF l

concent rat es st ae elteneous Vacuus g

Design condit ons Cle<3 g

fu restosctive Itquias Clotillation 12 5

) to 133 250 P2.5-

8. 3.

V.H.,

ASME VI!!

Class !!

for evaporotor sectica VI I

-4b TOTAL LIQUID CAPACITY IN LIQtf!D WASTE SYSTEM FROCESS IQUIPMDr? e 67) ft3

.=-

t f

zj Gr

.==t er

&m Tab!e 11 k M

Disposal Systes Coe3 aent Cata Sheet 3 )f b Abrd 5,yq=g

/

I

% Z, CAPACITY. PT Md Full StNP SLNP M NP CA*ACITY IQ

/

cy (to l'_ from tog DEPDf StvP PWPS CIN Head, ft CN Nave *t*ecTICn TYPE ha v )

Resetor Pullatt.g/cottects water from pone cravity Crating toe keeps parttentates

.Z

_ 22 "

floor an4 else. equip. drains within S.S. Itned drata via 6a out of outlet Itnes. frates to

~i '

reactor but iding.

concrete pit 1,170 7'.6" Igne Aust11ery Eu11dtr4 Sep i-~.

r' ?--7 i Aust lisry Putidinr/ collects we' er froe WMe P-5A 150 75 Austlie ry Ptdr.. Step p sepa are S.S.

f. I,

'loor t rat sc. eetp. drains within S.S. Itnet WLL-P-55 150 75 construction and ct. ass ! Sets.te r""

A.mi t t ery ar.J ful '8andling 1ut idings concrete pit 1, 380 7'.10" Desien. Sep pep out prevent s floMing erwareeted safegt.ards co=ponents.

Spent Ne t Pt t Paomfcollects water from WDier-2A 20 35 g

floo r er.J else. equa ge.ent drains in S.S. lined WDIeP.25 20 35 6*

7tel FaMilrg butiding concrete pit 2 01 6*.8" l

[ Peet Escr ever Vautt collects a,ruumt WDleP-34 20 35 Mot considered part of inquid weste

/

wat er senare aM water raom marc. floor S.S. lined WDte P-35 20 35 _

ar.J equipr ent dr. ins within ifX vault coscrete pit 120 6'.0" syste.s. Water norwally collected to tt.at from d raundwster seepage, tre river or tt.e closed cooling a v s'. ee.

Remote potential for cont amina tion.

Porated Water Tae.h Tunnet/ collects ground Concrete pit WDL-P bA 20 35 Not cor striered part of liquid water se pace into torated water tank Itned with pro-WDIeP b8 20 35 wast e syst em. Pe-ote potential for twel tective coating b2 3'.0" cont a.st ratt on.

'Tendas Access cet ters' collects tround water Concrete pit WDir P-tA 20 60 Not sor.sidered part of Itquid senpa. e into tewon access r. aller i Itned with pro-WtteP-19 20 60 waste e st a.sr.

Re-ot e potent ial tective coating 27 2'-6" for cantamination.

3 TOTAL 1.! QUID CAPACTTY Ill LIQt1ID WASTE SYSTD4 StNPS. 2.'7% ft

( M CO

+

eJ

<3

.O CO t

M k

  • r f

C o

C b

3 tee hS k

C I

I I

1 I

I, I

I I

I I M.

I I

I 1

I I

I I

MF ST s

s s

s s

e s

s s

s s

IS s

s s

s s

a s

s s

s s

EE a

a a

a a

e a

a a

a a

SD l

l l

l l

l l

l l

l l

C C

C C

C C

C C

C C

C SL R,

FT

'T O S A

N S.

S.

5 S.

S.

S, S.

S.

S.

S.

S, M

O S

S 3

S S

5 S

3 S

S 5

C sg 0

0 0

0 0

0 0

0 0

0 0

st 5

5 5

5 5

5 5

5 5

5 5

N es 1

1 1

1 1

1 1

1 1

1 1

Py r

F O

G 5

5 5

5 5

5 5

5 5

5 0

0 0

0 0

0 0

0 0

0 0

0 p

m 1

2 1

1 1

1 1

1 1

2 eT I

O dS T

[

S aI 2

7 7

7 7

7 7

7 7

7 5

e 2

9 9

9 9

9 9

9 9

9 7

! tf E

og 31 3

3 3

3 3

w 0

0 5

5 0

0 0

0 0

p 0

0 0

0 l

3 3

3 2

D Fr h

le b

t I

J

.s i

3 3

w l

t l

l l

i.

l l

l e

a a

a a

a a, l

s as s

2 2

1 g

e s

g g

g g

gl ll f

e b

b u

u u

u u

ua f s ba aa

,s g

f f

f f

f f

f f e e

W' se 1

u i

i i

i i

i e

1 f s r

r r

r r

r i

i s i

S -

v r

r r

f A1 1l il tl tl

t. l tl tl tl tl tl tl il E1 1 a ra na na r a na na na na na na ra L

t e ec ec ac ec ec ec ec er ec t c en.v ns ci ci ci ci ci ci ci ct ct ni h a e

n n

n n

n n

n n

n en t g go cl l a l a l a la l a l a l a l a l a ca ii i i a

ah ab ah ah aL ah ar ah ab h

wF Ft E

l c t c t c t c t c t c t c t c t c t c l c a

P ai ne ne ne ne ne ne ne ne na ae en nl Y

cn om om om om om om os om oe c m ci i o T

ia z

e r

s z

s r

s t

a s

e r

s trt trt rt d e e

s r

i n

s th iht t hl i hl t hl t hl i ht t ht h

h t h ad di rc rt n rt a rt a rt a rt a rt n rt a ee oie oie Vm Pws Hws Ibie oie oie vie toie loi oi ei rt t d wa Hws Hwa liws S

ws f

w Pw V w oa an cc ci ica ad dt n

n n ni ie a

i s

s r da at e

a t s st r

cs s n e

ea

~

f rl laoc d

r s

ec c

e n

n e

6s f

a dn ni e

eno e

s r

ne tsi f&s tit eh t

n t

at t

s r

al s s

a

/

s t pe es l os t

y es r

s r

d e e w cuc f e uoe r

n r

We t

p e

ed d

eeo st ecc e

a r

t

/

m f

t t

N jk r ns r

o f

c u

es s

u O

nap aa t rr s

e l

va p

P n

i s

n ac cp I

iM rw cop n

d s

i w m

a a

m mc T

/

T

/f a

t u

ee r

r ici i e a

t C

a a p

e r

r r

c.

Pd t t t

d blrs s x a

pi n ac, mst t

e e

ac l

aa /

/

ae i e U'.

D i

mve t s ut s

/ s f

f e

P u

st Pna se s

s ion se ss p

p fC S e

/

P

.t t

o t m n n s

s ae ew pt n

n d c c

ee ts e

p n

E t y W

kt as a

a

?: e dd P

P st e

V rsS r

nno S. ),

a r

r R r et nn m

n A

ey s e '.

aot Pw t

t e

er oo ee ne 0

d.

l n

e o

N f sn uf n Tc n

b r

s o

osi r

rd

'o df R o.

Cc t t it d

/p es

- v n

r-i ens iaas tz iz t

ss r

ea aI ss oa nk e ee n

art nas nr u

ie t n di 1 oo ww D "s l

rr aa ss t r l

c aa raa ar e P

P r r c e t t l l S. i

.ip e

m Tm cr l t c rt n l l t t A i r r rr or a

m a s n 's r/

mC s

it o l/

o P

a a

t y

erft esr nr ea l

e b

t n

r e

ca oa dd t e e7 Sd t pt c c pp

.it a

r cp il pn nn c m s,

4 e a

s s

ra se C. r dt a

u c

u T

y nn r c ae uu ei 1

eoa e o

r ee e

t Wt Pr iPPt Rd o N n D

S CP Pr Ee Il R p S

o oe v v me er 43 WB, Wa r

1

=

es m

oe r e t d a v t

o l

Dis

't c s o I

n ev T

A 5 C, A5 d

v

? ?'l hP A9 ipa lf A

Cs 6

i d

9T 0

1 A

0 f

LL 6

n ao "i

1 1

11 lI 11 1

1 Pm

'F P P PP P

PP P

P PP

' pa v

%t p

k P, P P,

Il r

! t l PP P

i t

r I

b

'. l o UP P b b !-

l Ui U,

b Ub

!TP WkT

!T P

V t

?

Q T

TTT rr T

i!

PA p f A1 I

I kkk Ww V

Wk L

i TD M

DT T

T I

A kV kV t

PHbu

,Db b M w

)_

-c y

~QQ t

37 3

_Y

', k,4 h(GECdrh

' j:

.. j; Q _J L

~

(

f( ( r ccU

)

)

e

~_.

lh 55D es) et,.,,..

u vs e cee r1ste.

a c

-ee.ent %ea EWJ!l*LrNT

(,q cAPsCTTT FT (EACM)

DESYCN etATDI AL Gas e Teep PresE DESIGN SEIDf!C

Tt 'so.

ItAP*/P"ecTION T_TFt Ve1*et rie 80 pets

  • L

$ L Badg Lint nq ctYe tts ?,4 Crs**'es "JDi.*.1A veste Ces Eecew Tarks/

Vertical

'Q Win-T.13 store cump-essed weete with Itne Equipped with rollef Salve is tie.

'.Tt ;-T.1*

gases at fl0 poig for reuse leg Chramate charge at 85 pais & dreta camction di er disposal support a 1.125 6.750 (1)

ISO ISS C.S.

primer ASDE.!!!.C Clase !!

for dratatng condensed water eeper.

Wt6 7 2 Weste,as teley Tenh f Ve rt1c al I

rerosal o' ent raaned water with sne Internally bef fled for we'.or de.

C b@"]

vapor and deley of gases for leg Not

.sunate ent ransw=ent 6 deley of gases. t rata decay of stort lived tootopes support s BOO Applicable 150 PS C.S.

Primer ASME.III.C Clase !!

connectice p.or1Jei.

CtNPFIS$0a 124113:

IFSICS PDhTMetATE MACN)

ST9tmmAt. DESICW H

Disch. Pr.

falet Pr7 Pre ss. MAT *tJ. OF SEISMIC f

ITEw ho.

H_'f TrTit4e Ty Plow, sene pets.

pe t s.

Te=p., 'r

.pstg.

emsT.

dew.m TM3 w

o w:r r-nA We st e s.as twpresser/

helsontal M peettlee displacement e

h%. P. l t ecepress weste cases for rotary. water ecapressors. A.JtE.III.C et or a. e.

sealed.

bo 80 16.0 140 100 C.S.

Clase II and Am.VIII applied, as rewired.

P!P! bis Ptpt ng to FA S.S. and C.S. fabricated & erected la accordance with 15AS proposed Code 3.31.7 Claes p.3 Setents Natan Claes es indicated la Pts 117.

V AleTS: velves are 30b S.S. and C.S. bodies, se appitcable to the piping tism.

Bulk of walets are diaphrege type except within containment and teolation valves.

teres: (1) Equivalent to ftI of gas la the low pressore went header systee at 150 agts.

I 101st StuaME LAFMITI. IN ILR'f3 Of FT 3r CAS IN LOW PitSS' RE TEMT MEAatR SYSTE't = 27.250

,i IJ sA CO I

\\

~>

I.

t A 4

L J

Yn) t U M i T' 2 r

T 1Ic 11,

risio6al syst. e covercet reta I T* t i n 7 Ta:75 Capacity. It tesign tsse *.c.

.cc * ' t *.-t i c a g

a 2ch %e a o

8" A " #'

D' " '

W#

D 18'I "

M ar t s Total.

s.tiu t e b;L-T-1A tc.stcr Jaclart Bited H/S 11.000 10.100 150 20 55 hone vesit-Ht ader AVE III-C Class I contairs one frarary I e t.

Volose/Tes h b L-7-;b es,1c-Lp Tar ks/Ccr.tain p g. T. g (,

hearts,s soc,lar.t 14 tdown

& t ec o to i r i. wry ULL-T-2 F.trc.2aste told.y N/$

2616

  • 2534 150 20 55 None Vert-header Asrz Itt-C Class t Tarl, Co tein Tisc.

Nadacactive bestas

&b* '[

. :nW C L-7-3 Feactor Coolar t f ral s N/S 1000

/

500-700 ES Nor.e Vent-He ader ASFE III-C.

Class 1 Pupture 01sk Prcva:cs

]

Ta: a/gae r.ch Treasui er Overpsessora saltet t

a sa..r g.

WLIr7-5 A.naltary isaildir.g u/S 422 387 to 20 55 her.e Veet-iteader AEME Ill-C Class I hap Tar.k/Cor.tain Awaaliasy Bldg.bastee Elet-6A heutraliser TarAs/

W/L 1293 1010 150 20 ES nere.

Atmos Aere ASME III-C Class 1 tautra11:e mise, & A4as P14. hastes b L L-7-SA Lwaporator Cor.densate V/C 1586 1235 150 15 55

e. Mor.e Atmosphere A5ME VIII Class II t.oear.41 3 d-ys a t".

er Co.det. sat 6 ict 4.. g

...as

/

t; K:r7-98 Te.1 Tas.as/ store TaL1e 11-3.

Tr.e : r u: -.e s a s d{q Iveporator Distillate tr.cse two ta hs tr. :. ;lf gosera release c,*

r ;.. ave UM laqsids to tr.e er varc re t.

CIrT-10 Icsta Aldation Tank /

V/L 26 22 00 15 SS Nome Atmos lhes e ALME VI!!

Class II Kew Jesin g

W::rT-11A Ccr.t arir.ated train M/S 334 150 20 55 kone Atmosp.ere A5ME 1:1-C Class I

?.c-ir e l 9 d if s s t-r ay er

  • i c t" It u vi k t r.. ' r -
  • cs.

k;J 118 Tar.s/ store "Not"

  • e ar..er tor / ir. tr( ' t

..s 1.4.rd.y. Lab.Las te s gevtrn r.da..ctavt re;. < - ta

  • t e er vLs o::s: t.re

.s activaty levt1 as u.'.. e"

/cc.

  • K ' C*

ES-T-1A 1per.t lesin Storage v/L 516 401 150 20 54 Hone Vent innader ASME lit-C C1sas I

  • 3.o.ar a t "so t e.s *w e et in Pe te r.t a cr. C.;4c a t y M*h-7-14 7.r.h s/;cr.tain 6per.t a

w s ar.s

-\\

s

~11-35 FJ i 74

~7 J

.e

,. 9

~

a.

_5 t

1%

i ;4

%J 9

e

h.

i r

lable 11-4 K ontir.ued)

]

tIsposal Ey6 tem ree +e..c a t Lata rit.s t*it?.T TAM S t

(

r sten Materist ree.t ed S c isr ic gg I t. c : o.

.t x /%-c t i on g

t.cn tu k Temp r Press.tsig gg taring i

lesion Code

.sace

( or. t 's

. es Total 31ould W.A-;.3 secturcJ tosiJ Acid V/L 67 1510 200 23

$5 None vant I:eader Asrt III-C Class I t.ca &r 1 e s or t.* a : ::: e Tark/atcres s6clatmed

,er I.1 of T.11e

..'-3 Logic ac1J WM-T-2 Cs.rscr.t sateJ *.ast.-

V/L 3290 1010 200 20 SL bor.e Vent Header A5rZ !!1-C

. Class I

  • ctir 41 ene ye ar 's I*'U***

setcr. tion si ev.g:stc r E ' #I concerit s ate Concentsate

  • 77; e s Tar.h/&upWa t s a H/5-Horizontal /SadJtea v/trVe r tic al/kg s

%2D ir.ra n.'

y_=_D Tout uou Cascit, i,. u,u Wast. syst Ta,A..

ET5D

'7 W

sa

.3 dia t~]

J U n-p C =

9

.)

4 CC

, _.)

11 35 rJ e

e e

e q

e

.e s o-

.e e

  • e w.
  • .?

e e

9

L s

g le 11-4 (Continued) t,lerosal Svetce Ccepo ient 04te 8 t'" r %S F3 IF*T

  • 7 E6ch Each E.ch Pts tssion M:,terial

!r< n

  • c.
  • a-a r t-et t es is s ign Flow wpc of Pr es s, et verted resi n Felevic 3

s-

.i crs tul W,rt

. t c..i n s u a e.

'/olm rt Terp. r P!n; torstr.

o to
e a-a terre ts LLL-a-14
<;c r a t a r g
  • c21:.s./iemove kA 70 Ar. ion 2(3 4v0 150 4 err 4.eader Ase! 3XI-C Class I tes:. c a r. Le k L-a-la Lorate aoa fsca pramary 8( i'r ' 8 4 :5 2 - e la
  • cocler t Sr t or a;. rs. n s: ;43 to t; i st;;n

[.

Ear k -

(.-.

{

n'L;r s -2 A 01c;r. Jp ;arins./Mcwe 20 20 Mined 30 2c0 150 ss vent tieader A5 2 III-C Clasa I trert f esas ' p t k R i-2a rist in irce.c ts inom bed to Ipr.t is:1. TA k Frfrary Cc,c ler.t &

M had**~'at ^

kD!rs-3A Eva;aar ator Conder satt.

20 20 t'ined 30 143 150 ss a tmospt.er e Aseit VIII class II spcr t Fcsin L : as E L A-38 (4 mins /Folish Cor.Jetisate led to 5,4.t e ts - Ta: A l'res 60 Evaporator LJ CMT ret *1 rech w f,

,,r, f rmtggn tes im of

%ceted Dr sim SeisPic t

ksign f low Fp tpr -

h Teep. r Press.k!!G (Nstr.

to-Cwde 14saan rc-e - t s

! t e ri !.o.

Filters g

F. t t. t 6 sq h4p'

{/

q..

M 'stp r-1A f esan Traps /1.tssatihg strais.er 70 200 150 55 p.ot vented

,8. sri III-C Class I m;t-ble Mr 7

C sir:Ms a n/ Clean-up st rainer 30 200 150 55 3.ot venteJ ASPI III-C Class t L a-c-:a w ins.

k".L-t - 14 Awa.9133 5ep rittere

- Ca r tridge 200 200 150 55 vent header. AsFI III-C clase I WLL-F-Je.

w:L-t-4A Stutralizer 7.r/a raltere Cartridge Ic0 200 150 st vent Peader A5r1. III-C Class 1

'a:L-I -4 fs l

h..L

-;A ec sin :4;.s '.'s aWrator St rais.er 30 140 150 SS 3.ot vertcd A5:I VIII class I h La - t-5 5 Co.. der.. ate sex tris.

h.tes-6A C lea.s-up i a t tes s/0: ear.-up Cartridge 30 200

  • 150 35 vent eiender AS#I III-C Class I
  • ' L-f -f a Mis s. tr.f lac rit Liqutd GL-r-7A

.'o.t a:.a r.at e J ;e a ta Cartridge 75 200 150 55 vent a.cader Aitz III-c Class I h.~es-7a falters b;L-F-e A Fe ctor B1Jg.;s p Cartridge 200 200 150 65 bent sies.aer Asr4 III-C C1sas I heL-e-se v.-v 311ters

'l-fYN 1 **

='

.12 6t~

[M b 11-37

s. M e

6 0. -

~,

s/

, sp*,

  1. ~

4 e

~

d A

u 3

L i

Tabic 11-4 tCos tissued)

Cisposal Systea remporemt Data M4 E is TCt'IM:7 reed Tar.k Desigm

..rc/ru. c t iom resign Flow Decoetamination rat *1 of ver.t ed Des l am 541sv c tem a'o.

fveroraters h

base. CFM

.Iactor

' Volume pt Te me.. *r Press.rstG Constr.

to Code ht2 Co 'c **

h1L-1 1 Seactor coolart Art 15 10' 134

.z a M

ss vent header AirI all-C Class I E s s;er a ter/Concerv-Vacuum s

tzatcs Peactor Listill; tion Coolant 6 Spent

^

j

  • e ruel Pools heter

'4 m

sex #

3 Ca;4 e i tv, rt h,. -M runt swm Sus'p rumpe 5 rm ru p C.r.ac i t y prere-t-c t i c, g

f1t 1

  • t rom 1bpl L.,st h GW H+.4.

et.

Coxwrte

&cact.11Jg.' Collects SS Lis.ed Conesete 260 6 feet WDL-P-2A 200 70 ka:< r f ron f1cner &

Pit WLIrP-23 Fasc.E.;u1*.LI*If8 6

mitt.in k m t. Eld.

7

. Aasiliary Pullding/

$$ Lir.ed 1022 6 feet 180!rP-3A 100 50 (911ec ts kater f rom Cor. crete Pit WUL-t -35 fb iloct 6 Fisc.Es lp.

C Osatrs.1than Aws.

r[h 6 4'**4.1

!J1.314 9

p]

fccoy Leat.V p fcces/

f 5 Lined v'

48 4 feet W'.IrP-164 50 75 C

.cliect s m'ater fica C or.c r e t e Pit WieF=163 bi recay heat f urp &cce-s teactor B134.!graf 55 Lined 48 4 feet Wfeter-17A 50 15 Oc11cct 1 ter f rc:s Concrete fit WI.Irl-175 h.c tor f; ray l ap 6 c,o:4 m

J "J

11-16 i Af e

).

C. )

',4 j

5 8-

,s

.'O

/

e

e F

f.

T.ble 11 4 Koe.tirred!

Et eoc.a1 System Coi.rwmeet teta 6

4 t(tT* W* E RP

)

Te% Toretton riow thead Prese kat*1 se t nic Irca ko.

T ser s y

g at ti p Terp P

sst, e r t or s tr.

Lar s a r b Cen e.t s m hiL-P-5A haste naufer F s ps/Irlect horarantal Centrifugal 100 153 150 100 55 I-EL4-Sa fred to Trar.fyst. Via with dout;1e tr.tarr.a1 takeup 6 pr tfica:Lon seal with esterr.41 sy stta a t socess re.ctor flashirig Cc41&nt g

E L-P- 7 EC ; rain far.k Fu:rp/Tr anstar Process with single 100 50 200 150 SS I

e F7 T a s t.

ark or Isair.s interr al 1.alanced ccr.ter.ts fwr heste seel

,,-..s

%a a:L P-4A a a.aleg. sap Tad /Trar.sfer Frecess with do Lle 50 60 100 50 55 1

E L-i-48 Wastes los processis.g.

tr. tern el se.1 with enternal t aushis.g h

EtrP-BA t.cutreliaer T.r.k Itc.ps/

Process with date 50 120 100 75 ss I

WL Le p-6 a Ta sna t e r' heut r a11aed tr. tea r.41 bes t m ath hastes esterw! ilu6!.ing h M-P-1 Syr.t Pesin Trar.sfer Pa c,ce ss with r.on-1(,0 65 150 150 SS I

tuap/1rar.sfer besins cin png tapeller a dout te ir.tcznal scal with catern.1 11.shing E *.,s-7-2 Cor.certrated haste Ta1.k Prouss with doale 23 25 200 53

' 55 I

t ar/Trer. ster tone.kastes tr. terr.a1 seal with cat (tr.at flustang E L-P-11A EsaM rator Corider. sate Process with double 50 75 120 50

, 55 II b;L-t-118 l ur;.s/Tr an.f e r twa;=,rator inte rr.41 seal w'.th cc.1dersate ca t ca r.a1 fic t.119 E L-e-(A r.isc. Weste T.rA ev;.s/

Process wath d wt.7e 50 50 1C0 50 SS 1

E L-M a Tr r.sfer Fisc.W.stes for intca r al scel with

rs cu eir.g ca ter r.a t f lust ing E L-P-15A cort.
c.fr.ated train Tark raccess with %uble 50 120 100 50 SS I

M L-t'-15 a N ps/irarafer La r.ciy 11.tcenal seat with s.stes e n te r s.41 21.eshing WLS-P-3 teclat ed toric Acid T.hrp/

lior tscr.tel Cr.ntrif ugal 50 9b 200 150 SS T

ir.rsis: A cc 141u d Im ric witt. co Lic ti.tcar.a1 Acta f l a.hir.g All papir.g ish..ves.stess as F.Lricated and erected i sea accordar.ca with u s: proposed Code B.31.7.clase m3 Seiaa.c katsn Class as Ir.dicated in rics.11-1. 2 3.

61;1r.g:

valves All v are 304 55 ak41cs. f.cismic Luaigs class as indicawd in riga.11-1.2.3.4, as4 4. 8,u1 A of ulvos ar, daa;,r. ram type e scept wita cortairecr.t ar d

4..ru 5.

isolation valsce.

gg.g, 4

d e

8

  • J A

CQ a

k--

. e a

e

--o aw

' A

t

.s e

m'.

1.Lle 11-o P. -

tsaste cas Sys tem roersoncet reta

=

=

r(t U *:";T TAve %

(CC)

'apacity 6t fracht f a-s ! <rn

,3,,,g,g

  • s p.

Pr es s.

Maign Seassic wsv k

h t t..-

h tot w tric 110 psig

,' L pig M

' i s.i n<r rode

  • s t g r.

'c-~ e t s w.

  • a c't retion C;-;.1A haste as kcay Tanas/

e r tic a l 1918 16.463 100 130 1.5 he ASE-III-C Class 1 tc.ipped ' th estas!

.lse h:4-7-13 store scai ress< d waats wath to descraric at 11 ;nig gases at 110 pstg for leg ki, ard crate ca.. recti. 2r re se or disposal supporte 4raanir.; cc dcts d..t(r v.ger.

b#

(Cr& :::*^;L$t** t'::~se CZ forr.arce tracht structurst re.te c

tes,tgn Pe e p,

t a sch.Fr.

Intes er.

tross.

n

  • 1s.of scismic
4-a rr _r.e t t on Tvp.

riow, SCr n pets.

psia

.Terp.,,F psig,.

Curst.

Design Ce re-t s y& sees o.

{[t-w;.4-P-1A Weste 'as Compressor /

lac ritor.t al 43 110 16.0 200 150 55 Class I M positive 61sparciert

. %-7-16 c w6ress waste gases rotary, water co ;rcsscrs. D I-: ;-C Isr stora;e sealed ar.d AS?i *l*1! a;;.tet.

as acq. ired II7l% F1pirag is 344 15 f abricated ar.d < rected in accordaxe with USAS proposed Code 3.31.3 Class N-3.

Seismic tesign Class as indicated,in rig.115.

VALVIS: valves are 104 JS t,odies. Sain of valves are diaphraps type escept w& thin cor.tairacat ar.d isolation valves.

s

!.".715 (1) Equiv.les-t to it of gaa in tJ.a low pressare ver.t header system at 16.0 psig MAL 4;C,ME CAPACITY. in terns Gf rt' of gas in low pressure vant header 6ystem

  • 32.926 e

O r-j

< a b) 11 44 O

_ ~.

. e g

LS r,

y

,e

,e' e

e

  • pD I-r*

1

.. 8 g

e