ML19269B974
| ML19269B974 | |
| Person / Time | |
|---|---|
| Site: | Atlantic Nuclear Power Plant |
| Issue date: | 12/22/1978 |
| From: | Hafiz A Office of Nuclear Reactor Regulation |
| To: | Schauer F Office of Nuclear Reactor Regulation |
| Shared Package | |
| ML19269B972 | List: |
| References | |
| NUDOCS 7901190170 | |
| Download: ML19269B974 (23) | |
Text
UNITED STATES
,f
- g*
NUCLEAR REGULATORY COMMISSION y,
WASHINGTON. D. C. 20555
%, +.'... /
DEC 2 21978 MEMORAtiDUM FOR: Franz Schauer, Chief Structural Engineering Branch Division of Systems Safety THRU:
C. P. Tan, Acting Section Leader 3 4/' I Structural Engineering Branch Division of Systems Safety FROM:
A. Hafiz Structural Engineering Branch Division of Systems Safety
SUBJECT:
TRIP REPORT-FLOATIriG NUCLEAR PLAT 4T/ BUCKLING CRITERIA REVIEW (SES: 1206) 9n hvember 16 and 17,1978 a meeting was held between the staff and
't-consultants and OPS at their facilities in Jacksonville, Florida.
The objective of the meeting was to discuss NRC questions (Enclosure 1) regarding the buckling criteria for the Floating Nuclear Plant as contained in draft Revision B to report No. 7270-RP-16A5, entitled
" Buckling Criteria And Application Of Criteria To Preliminary Design of the Containment Shell for the Floating Nuclear Plant". The attendance list and a surmiary of the meeting are attached (See enclosures 2 and 3 respectively).
/
, s_
A. Hafiz Structural Engineering Branch Division of Systems Safety Encisoure:
As stated ght A. Hafiz SES Members
?S011go g
ENCLOSURE 1 FLOATING NUCLEAR POWER PLANT STRUCTURAL ENGINEERING BRANCH REOUEST FOR INFORMATION The stress analysis assumes that cutout reinforcement as pre-1) scribed by the ASME Pressure Vessel Code is sufficient to a.1-leviate stress concentrations. How certain is this assumption?
What studies have been made to substantiate this claim?
- 2) The buckling analysis replaces the two-dimensional stress These corres-distribution by uniform stress distributions.
The pond to combined axial, circumferential and shear stress.
stress components at every point in the shell. are compared to the critical uniform stress values. While the effectiveness of opening reinforcement can also be questioned, more questionable is the procedure of replacing the variable geometry shell by a What it, the justification for shell having uniform properties.
this method? Why is not the stress analysis model also used for buckling analysis?
Capacity reduction factors have been defined on the basis of 3)
Xoiter's asymptotic imperfection sensitivity studies and assumed In the present study, the deformation deformation amplitudes.
amplitudes are taken as the maximum out-of-roundness values permissible With under the ASME Pressure Vessel Code, the shell thickness. The choice such a large " imperfection" the method is conservative.
of amplitude is rather arbitrary, however, and may be too severe.
Lesser amplitudes may yield unconservative results since it is not at all certain that the ASME tolerances control all of the imper-fections which reduce buckling loads. Yhy isn't aerospace industry experience in the form of empirical buckling criteria, NASA SP-8007, 8032, for example, used?
Dynamic reduction factors are in cuestion since the literature 4) indicates that for axial load, the dynamic buckling load is at least 70.9% of the static buckling load of the imperfect structure.
Why, then, is the capacity reduction factor equal to unity wnen the dynamic stress is greater than 1.42 (1/.707) of the static stress?
-m.
ENCLOSURE 2 ATTENDANCE LIST
- 1) Abdel Hafiz NRC
- 2) Richard Orr OPS
- 3) Ken Perry OPS
- 4) Narendra Prasad OPS S) Paul Seide ISE/USC
- 6) Jeffrey Shulman GPS
- 7) John Tsai OPS
ENCLOSURE 3
SUMMARY
OF THE MEETING HELD WITH OPS ON NOV. 16 & 17 AT JACKSONVILLE, FLORIDA The following is a summary of the pertinent subjects discussed:
1.
OPS presented their buckling criteria as proposed in draft Revision B of the subject document. Attached (Encl. 3A) is a sumary of their presentation.
2.
After a long discussion on the proposed CPS answers to NRC questions, we and OPS agreed on the following points:
a.
The buckling criteria as proposed by darft Revision 3 of the subject document are good for preliminary design only. This is, in part, due to the way in which OPS model their containment for the analysis. Basically, they ignore the penetrations, smear the stiffners and idealize the containment as a cylindrical shell with constant thickness.
b.
There is a need for an independent analysis to check the design of steel containment against buckling. Our consul-tant presented an acceptable buckling criteria to be used for this independant analysis. OPS agreed to use these criteria to check their design of the steel containment. The detail of these acceptable buckling criteria will be publishea in a separate document in the near future as a result of the current NRC contract with ISE (NRC-03-77-131).
ENCLOSURE 3A CONTAINMENT SHELL ANALYSES 1.
Physical arrangement of containment area structures - olatform structure description (Figures 1 & 2).
2.
Loading condit. ions - high energy pipe ruptures inside containment-pressure transients.
2.1 Pressure compartments-typical (Figures 3 & 4).
2.2 Transient mass distribution (TMD) - typical pressure transients (Figures 5 & 6).
3.
Finite element modelling.
3.1 Containment shell.
(Figure 7) 3.1.1 Axisymmetric - Ghosh-Wilson 3.1.2 3-Dimensional-ANSYS 3.2 Other containment area superstructure.
3.2.1 3-Oimensional-ANSYS
- 3. 3 Platform structure.
3.3.1 3-Dimensional-ANSYS (Figure 8).
4.
Linear elastic analyses.
4.1 S tatic 4.1.1 Containment shell-uniform and non-uniform pressure.
4.1.1.1 Axisymmetric - Ghosh-Wilson 4.1.1.2 3-Oimensional-ANSYS 4.1. 2 Structure-To-Structure interaction - dead load, unift -m and non-uniform pressure (Figurqs 9 & 10).
4.1.2.1 3-Dimensional-ANSYS "Hard Spots" (Figure 11).
4.2 Ovnamic 4.2.1 Containment shell - Uniform and non-uniform pressure.
4.2.1.1 Axisymmetric - Ghosh-Wilson 4.2.1.2 3-Oimensional-ANSYS - Substructuring.
4.2.1.2.1 3-Dimensional "!SYS vs. closed-form (Figures 12 - 17).
. 4.2.1.2.2 Substructuring by linearly constrained " slave-to-master" node displacements (Figures 12 - 17).
4.2.1.2.3 Substructuring penetrations.
4.2.2 Structure-To-Structure Interaction (Eigures 9 - 11).
4.2.2.1 Lateral extent of model - boundary conditions.
4.2.2.2 Vertical extent of model - boundary conditions.
4.2.2.3 Interface degrees of freedom.
N, l. _.
w jx s
p-x c.'
r-ii 0 p!
e m
^
5 b
-l I
lW il' 2
I le c
l t
> = =
I 5
hhNN,qo,h<,.]5
[
^-
.j I
j i
.., _=k 3
'x
, lta;.n nd. ffg =
. m ag c
- t 5E' 4
/f s
s
_ _ w;;.q.
v.
1
_i _ 4... ~ d *-- ??
'9.r s'
4 fsff '
.t
\\
\\, y j I'\\q'.A,1 o
_s
^
1 hrn G-- -.3 };: g 4
t 4
v e. d,
....n
\\
4
~-
, g' ;k9-i t's y;
4 is l lll A
1
.I
-l j
~
a
's c
r
's
\\
W
'/'s N
'b f
C
\\,
,r I
i Q..
]
-W g
L1 i
a d_
i l.
\\
f p.
% g ', -
A 'j/ -
\\.g e c~,. ~.,
ca s w a.a.
'.ntas - --
,s fv/
,,.. a s
..co.. m..e 7 g-.3 t
r "h- -
\\
\\.3 p
i
,g C
- m, ------c D
ee:...
\\
,,,,,, w ]
ch.-
, _.. _. _a,n....
~,..
' 4. 14..s. --q... w. sp.... w.... u -- f
,-.-a.+.! %-
I L. _.J I 11 iT Ci t il
. ]
[
- i_. I 7,.
TJ n-
. i t, ; H-1 p -*[=i:4< - ~_]j
- 'r?' %n s hu i
g:
/
c
.@i jr - y- &
i
?
_ i s
[- "-
1 lI.j q. H i l i I I 11 -Im:...- L---[. ~ll T-i e ?
)
pI:;'l!
lb
~
1 '"
-i
?!
-" i
?
N n
i -
li
. 2.._-
li II IlY '
hiiIi f
?
dIj7T' f!I
>C P-d]
O.
ZElil__ __ J ___J G-
-1 i,-QN Ih 3
l' i.! Yf
'd T
't i -' o-t i so J.,". I e -? D
- ', "ji
, i p i i ;,
't r 7_
i
- i. -
i.
o I,.
l
'. r,.
- i.,,.
- mv..n..
1 swtcswa p
i y
J
.c a >
j
,,1).
C "C ' ** ' '
cod.'= sam E' 'l 8
q; lT
[ T-1 [_,
F l'
- d. u 3
lid.
= --,c rj q1 i N'! h'
,1-*-
i t
.t griti s
j ;
-l
-y M7.
- g-
-, p /l:
3
' tG.
'j h\\g' m{2
- . I
_ t
_. _I'
!...clJ:Q
-A
- i..[.it l
li
- N.,,,,,,, '
"L&d f.*r i,[
/-
.i h -
,lHj coo' ' -
c.o.u r et i
l',. -
~.
w.-
c 1,- u a
l
[' {
gI c
c',',, ]
.' [, ]
I.
C i.
.i
. _. >A.,.
pt'3:{!
-1
*7"'
' 91
. i.. :....
4-i n,
I n
S 0- ;
us I
- 1l0 0 4
a
,d
, @..-f e'
-.~.
- I t t,.
4mp.L-ca i :.' 0 ra L-.
- Igp-gi '3..,N_.g 00; g
i, y' ',-;
o - u
.yy s-3 t
'tg
-.x, 9
5 ji
'='--
l H._fr g
! f
...cre.
i s
I
}
j.'
l lt
,,,g.
I
. u.
oow ipj.,,
emit
...c 7,-
,...;.., [
3 m.
, ;,e m
l
.i m.
- i. 2 l
Iw ri.
[n l
I I
(sl.,
y]r.,l2, N
c.e.....
O p
6_
I.
U u
--- R-j P
7 cl
- I D.
LL s
i_
m.v
.,u 4
l
. * ~, ' "
ra bg-
]
..... m aM
.y, C,s
.-r~- o.
m
.,1'""
,,..,p j
M c-l 4
.. <.. /
}
g l
pI J
[m[]
{
{o.!
_S.-
-T 7, 1
c g-j y;==q
-A-Pt,,A 7 8 0R*8
.0 80
.g FIGURE 2
$1 LLtt'i.f1T Tf'O El.i.I'L!;T LOCATI0ff SCllEf'ATIC SECTIOfi VIEW TPROUGH REFUEL!f:r CAf1AL AND STEAM GENERATOR i
s
/
/
- t, til'I't it dni' Art flM.lil 47,48 49,50 -
2 '4 ' 0
'~~----
41,42, 43,44, 45,46 206'4" 9.16, 15,1f,
21,2(
4 --
190'4"
,q l,17, 20,23 174'4" 25 7,10 I'
13,16, SG 158'4" El 35,36, F
37,38
_J
- - 161 '
39,40 31
- rA I L 148'9" k
25
+q' q
^
A 30
\\
1l4'8" j
l11.141 !. t ilG
\\
r A(JAL i
_, y 1
1
- 32. 33 I
~ [1
.l n
RC i
~u i
103' l
5, 6 5
RC Reacter Cavity SG Steam Generater OF FSHORE POWE A SYSTEMS P AOP AIE TAR Y FIGURE 3
j J
51 ELE.'tE:iT T!'D FLO'.! TlET'.10RK ICE C0!CE*iSER ELE"F:ITS UPPER CO:'PARTMEtar 25
? 51
,y I
e 41 42
-I 43 44 45 d6 2
^
n n^- -
.m A
sp l
a
?
i i
e r
m no y
5OA 9
12 E 33 l
l l 15
^
18 21 24 s
o A
A i
m ;;; 3
/ s l
NS c
n u, O
I 8
il la 17 29 23 i
m g
f, o
A o
,s
-l l
l 19 22 l
7 10 13 16 1
s
/ N
^
^
/]'
6
/
l l
35 36 37 33 33 20 l
1
~
M rJ
~
e->
to i to 2 to 3 to 4 to 5 cc i
o.
m o
m i
6 t
-=
l I
w
- -,j w g e
e-p t
o s:
- u. e i
o.
m
>. e m
b 1...
N 9
o e.a s
c l
4, m.
y u
^
= u w
o w o E
..oo.ee.
2
.e.
H y
v e
g W
m g
De e
f W W m
w c
a m<
e
.=
m g
u c
m o
e' e,
l e
I
>. J clw I
a=
C,L C
j l
C 7
o I
4 J
J e
o o.
o.
o.
e.
o.
e.
o.
e o
~
w m
n m
m o
DISd 3EOSS3Bd lV101 FIGURE 5
o m
j t
WC
...I.
6.e.....
I
=
m
.ti....,!
L Q g.
c.
'E:M l
i g
llI ll 8
b 8
.7
.+
- -+.
A o
.,t.....
. --J...t w
c
.b
........I
~
, 4,iti
.i i it a
>=
e.......
...e...
ey -
Ilil.!
Q I.' 4.l 8 I.I
}
=
o J
.t'.-
.i
.i n.e l 8
{,
lll!
v C
c i
m m 7
m 2
2;m.h.L_Jd,Q1 e
o 3
i ' l
'l I
ll'l w o
-."*.'.',a f-illfI+l.
=:.
'Ie
).
w.
is
'ile
'e lll't w
H
. ~. -
x 4
w
'Il1 I
IiiiI e
C3 e-
.i. #.
i 1.!. +
m 0
@ W m
l r
i.
p y
c I
^
e i
i c.
D w
CJ
.i e,e.'.. 1..
a US b
l
~~
W a
w u,
i.
l h.
" A......
J a =
<iW l
f
=a u L.
e.
o o
o.
o o.
o.
o.
e.
o.
o.
o
~
e e
e m
m o
i 91Sd 3BnSS3Bd lV101 FIGURE 6
CosrA NmcNT SHELL Et 25 8 ' 7 Fr.'
s is/n," R I
/
g.g
.'./
iI ga i'Oe.
i II 7 gi. zzu' iI lI-'
Il
%'d
~
Il l I
a 196 an?i.LL$
II iI.
i lti iI-I's' tl Il ll-El II1-7f[ {l i
II
_ ; p*nt Sr#F 5FAcicG TYP ve jl illi
.. lO
'e l
e
- l norts. virF SPAc.80G
{ IL i
gj til
~
,T'
'{
l '/q ft.
Ii ll-u o,e 1 l ~'
El.iec'lui lI l
l FIGURE 7
e m
.e 4
- q#
~
'-d a
.a 5 "T
"i 1
+
s =
e S
O
~
- - =q e
e
~ _
~ C 2
3 Q
+
<?
i p
e e
e
- 7. ad 4
f #.
e e -t, 6
e c.
C
- t. &
Y 4
1 1
--e.e K'
i j
'N it.
t 1
T
.ain
.5
.M
.E
.E
.e3
. In g,
t 6
l u
3' S-r r
(d l
1 1
I i
I i
t t
i E.
O en t'
~.et
.d
.e?
3 eaC
.d
.C 4
=
wI e
-I c.)
mee.me SSWW666666660
...........- ---===
dueb%
w A
40ee
, (#
gm OOO.
8OO9
-e
'D:
r-e
,em Ikp3h5p
i O\\. ['
+j;
-- e n$i
/\\
k 3;
r
-. h f
[
s s4
~
b^'
s
.\\
i l
,~G Y ','
'f, f
lk,
1 l*-f
,i, k
s y
., /
_4
- /
m@,
/
g/
,/
~
- 4
/
tr e O
/\\
/
f s,~
b'o J)Q ',
/ _ _ _ Q,
\\
c
~
=
g
(
a t-
.a,.
- - - -/,' ' =.
\\.
j 3*-A C
\\
_ _s'
~Q l
f I'71' v
/
k e
A
. A S40 1-
- l. i
\\
l V$
Q gI j
,.>,. /
/
/
[
f==-
/(
- ,;.y
/
\\ 'y \\ \\
m
\\
\\
/
@ l, i.
?-
~ Y'
/
\\
g/I
,l,/ ~ ~ ~,
[$.
l
~.... _ -
\\
O iil.,,.,-
i s,.. j
[',
- 7 e
O FIGURE 9
.l l
.r.cae
.l.
i r.. c.,e i
i
- 'l 0
-j a
i l
t, i
a 1
i e
5 s
i a
,i i
l l
i i
g
_ _CN i
M N
i l
e i
- /
e i
x N
- j }
,1 CH8
- j., ',.
j
',, l
'X.
i I CHO i,-
i b
'l l
l
%'k i
((
j!
i i
i i
l i
i l
i i
i i
i i
I i
g F
aw
,i,',
H GH8 A$
H.CH8 l
l i
e t
+O, w'
u i
i
-a i,
i i
i
'3 i G we i
e i
J I I I i
CW (3
EZ*
l i
2 i
QW g
i I e
i 3,
c-W i - - -
a2 i
i r
_d_
e i
i ic i i
i ww te i o
i I
3 I
l i" l l
u i
gz Om j
i i
i oc i
i i
i i
x:
i e
i i
i, s
i i,
wo e
i i
i
.0, CH8 dW e
,,0
- CH8, i
i,,
e i,
e i
i i
i i
i l
i i
i i
e i
i i
i i
i e i i
i i
i i
i 8
l l
g I
I I
i t
i e
i I
a g
I i
i i
i i
i I
I I
4 1
i j
i l
8 I
I I
l f
f
{
,J 1
dCy8 N
N
- I
/
-d.CH8 l
/ I M
l i
't i
i I
i l
i
=
=
- m.,
M e
e
'J l
l I
i 3
I i
I G
G I
l Q
3 I
I El l
l 5
l i
5
.3.CH8
.3 CHO FIGURE 10
w' C-Gh5 H
I b
E c4
_1 E
Ef /r~X
~
1.
s
[
C sg./
e s.
L_./
z\\
^
^
l 7
\\
t o
o
_]
d x9 l
\\s
/
NN af N
/
y
?
?
i C
C i
m.
m 3-os FIGURE 11
VIBRATI0ft FREQUEfiCIES OF A THIfl SPHERICAL SHELL Shell Radius = 720 in.
l1 Den ty=00b6 6
fiodulus of Elasticity = 14.5 x 10 psi Poisson's Ratio = 0.27 fiOCE FREQUEflCY (hz) b 32.54 2
a 72.77 n
a2 123.40 Re fe rence:
W. E. Baker, " Axisynretric Modes of Vibra tion of Thin Spherical Shell," Journal of the Acoustical Society of America, Vol. 33, flo.12, Dec. 1961, pp 1749-1758.
FIGUpr 12
I I
u j
. r '] &._ ' o.
,g +-
i, g s x
x <
v'
'e k,,/,7 i
A
~
4/
4 s
4 /
Q t
N. -
\\,".\\
\\ ',
m
<\\
')
A ;/
ef, y
' v,'
, 'j '
'N j'
y
'* 2.1.#
k - Q,1_. /'
a-I Shape of Oc mcde Sn. ape of Gz m ade 4
6 i
,a-w Y
, T' 4
//
'k_
/y
%~\\
?
a I
l
/
v r
i 1__
__ b, i
[
1 i
q cl y,
Y
\\
/
l t,,,
.t s,
e-l 4
4 l
x,
t-
,'y
~..L b -
'<N [..i y<
l t
Shace of Ge made Shace of b, mode w
- )
l'44 p
i
/.s
,o I;-
's Ii 0
f' l
t, r;
1 G
J--
_t I
t i
N 4
<j
/
\\.
%.(
's l
,1>
3
\\
l yf
~
'n
,y m
a v
~p, _ g y
- ,.-4/
+
.V
'W Jhace oY b, mcde Shape oN*C mcde 3
=
'0""3""
p;< AIRE 13
561,..,596 d, 534
~sr498 RESTRAIN UY,ROTX, ROTE-
\\
9,/ 426 525
' % 390
- 489,
\\
E,.354 453
\\
' x,,.
417 N
318 s
381
's t t-1 282
@ 345.
s s u-g
\\
z 2 309 /
246 E
\\
h
\\it-c 9,
273 7 8
\\
D 2a2 t
2Ai e
9 9
237gY p
- e 2cs 206 1 1e te 70 1 202 203 204 l
RESTRAIN IR,ROTX,ROTY NCCES WITH DYNAMIC DJF IN X & 4 OIRECTICd6 FIGURE la
4 I
t e
i j-
.. L_ _..
i I
i
. a
- . _l u
.osi
..Hode shape showing a plot _of _. radial. displace.
(.097 )
i rnents obtained from rnodel with all dynamic
~%
N i
degrees of f reedom. Radial di.splacements ob-tained from model using constraint equations ~are s.
N hhown in parentheses.
' o 2) l i
's q --
i N
N xs i
'N N
l i
i NN g.02 2 l
E
\\ \\( 015) i m
'\\
l i
_j....
l g
I I
\\
j j.
i g
FREQUEllCY
,y l
i j\\
__.'a) Model with all dynamic DOF,,= 32. Shy.
i p (:_.025 l
l tr.
l \\'-on) i i
,. _ b) nodei using constraint t.
\\.
equations =334hz.
i O
e l
a i
J l
i_
)
I
L- --
.046 i
I
.( l o 44_)
1 i
)
l_
l
/
.i
._i_.
i
e a
D m U
Q C V
W 9 O O
C g3
- m-G
-3 aEww n
1 m9 C 9 L
- C e3 x
u4 1
tXE7 7 A m C~
V Q t C.
O C4 U
U b.
_c + 8 q$
- J -
1 c
'3 m C. -
gy O ft 9
m9 4"
C
- es w g: - L
- p5 u7w e )
e ist C
- P 1 O vs t
o i i
,s e
at r-.
e*
se) a3 4 c-
- U s
is is 3 0 ru O w
o (4.
o 3
-M g O c
oC o7 3 Q Cr. C L6.
EQ C D c
m
^
M ma
. OO E e
..J -... a E
2 c i
C%
O-
~J
-%D D.C 3
D D **
O7 @ O C C0 b Eo mCs u
Em V a3 += 0 C.
c1 w O 6 na uC
= 0 v, m
@ V 3 Ll
,u d 2 E 5, 17 o3 C o--
O V w n.=
-1
^
=E,-o.
wm
/- _1 r -r oo-,-
y-
'/
. /
/ /
/
/
/
/
s'-.
s*-
/
n e r-
/
q ~r
/
O s3 /
i
,/
s l~ ' '
l 1
i
/
/
/
/ j
/
l
/ /
/ /
/
n l
r is,
-r r / /
j o
o/
c i
/
I
/
/
I 1
e
/
{
/,,
l l
I
,s en l
s t 'o j
'I o
- - I...
I FIGURE 16
e b
e e
U aA
'J W
y Q C O **7 "1
O o.O e
i 3 E w
- J
~3 "3
m a3 c
~3 C
bwq
,A a C v3 o
zsu=
v~v ra r
=r C
O r4 u
e v-n
-> a n
--,a c. e N
mn un wn
=
=
-+
u,l
- to, uc.
c
> =
una 3-no o
a3-c 2 o a
-s a
o C
,D
,J u,,u
- U 2
o a
m
-v a en x
ac a :r CL Q FC C 6
EO E V g
n sw e
ov n
a C'5 O E e
= u a-o
-s ev:
3
@ 7w 0t CJ OC
=vuao oc%
se u -s ~ o :.
ou a, o w
ue SOA m
e t7 aoa=
x a-U se uc3 W
me=-a c o.
oy vn=
EaVW O
^
- n. o
-oo i
v 1
-[. -
l
/
\\
/.. /
/.-
/
,' /
n cs 0, 0, l
i m,,.
7
//
I
,//
/
l
, ',p/
n
/
i
/
l
/
j.
e
/ /
I
,/ /
/
00
/
/ /
i 47?o o
/
s
- /
{
l t
l/
\\
I
/
i
/ /
I 1 I l I l
-.I u
b fYh i
o,
.~ 3 l
=s e
- !GURE U