ML19256E442
| ML19256E442 | |
| Person / Time | |
|---|---|
| Site: | Millstone |
| Issue date: | 10/25/1979 |
| From: | Conner E Office of Nuclear Reactor Regulation |
| To: | Office of Nuclear Reactor Regulation |
| References | |
| TAC-11793, NUDOCS 7911050527 | |
| Download: ML19256E442 (37) | |
Text
.
'o UNITED STATES 8
~,7.
NUCLEAR REGULATORY COMMISSION
{
WASHINGTON, D. C. 20655 o
.0ctober 25, 1979 Docket No. 50-336 LICENSEE: Northeast Nuclear Energy Company (NNECO)
FACILITY: Millstone Unit No. 2 (M-2)
SUBJECT:
SUMMARY
OF MEETING HELD OCTOBER 19, 1979, ON FEEDWATER LINE CRACK INDICATIONS The meeting was held it the Comission's office in Bethesda, Maryland. A list of attendees is given in Enclosure 1.
Introduction By letter dated September 28,1979, NNEC0 submitted their proposed repair replacement program for the steam generator feedwater line crack indications at Millstone-2. This was in response to Comitment No. 4 of our August 25, 19791etter, authorizing operation until' Uctober 31r 1979.
~
The staff had requested the meeting to discuss the Enclosure 2, additional information required to ascertain actions necessary regarding the feed-water system piping at Millstone-2.
Sumary After opening remarks by the NRC (Conner), the licensee (DeBarba) presented an outline, discussed the history and reviewed the previous NNECO comitments.
The viewgraphs used are presented in Enclosure 3.
- In responding to the additional information we had requested, Bechtel (McManon) de!cribed the procedure for concrete removal from the shield wall and CE (Crane) and NNECO (Kupinski) discussed repair from inside the pipe (Option B). Pictures of the Option B repair mockup,,nowing a man working inside the 18 inch Schedule 60 pipe, the air driven grinding devise and the welding machine were passed around. NNECO (DeBarba) stated that the Option B repair method was preferred.
However, the Option A concrete removal will be perfonned in parallel with Option 8 to gain access to the safe end-to-pipe weld should the Option A repair be required.
Westinghouse (Ayoob) presented the temperature / strain data taken at Millstone-2 during the startup in August, Enclosure 4.
The temperature cycles occur when auxiliary feedwater is added to the steam generators.
In this startup, about nine cycles occurred. This is more than normal since auxiliary feedwater was added for the purpose of data collection. Westinghouse (Bamford) then presented 7@oA 1255 2_76
an assessment of growth of feedwater line flaws, Enclosure 5.
This presentation is not based on the Millstone-2 data. The input parameters used were conserva-tive compared to Millstone-2.
In the concluding remarks, NNECO (DeBarba) stated that if no crack growth is found when the October feedwater line inspection is performed NNEC0 would plan
.to operate until the 1980 refueling outage in May or June.
It was also stated that the inspection would be repeated if M111 stone-2 was placed in the cold shutdown mode after January 1, 1980. We (Conner) pointed out that our Auaust 25, 1979 letter, forwarding the-safety evaluation of this pr)blea, conclude'd that Millstone-2 could be operated only until October 31,197) without'further staff review.
Conclusion During a staff caucus, questions about compliance with Section XI of the ASME B&PV code surfaced. The licensee was requested to address these concerns before any further staff review takes place.
E. L.
onner, Project Manager Operating Reactors Branch #4 Division of Operating Reactors
Enclosures:
1.
List of Attendees 2.
Additional Information Required to Ascertain Actions Necessary Regardir.g Fee + ater System Piping 3.
Viewgraphs 4.
Temperature / strain data 5.
Assessment of Growth of Feedwater Line Flaws i255 277
?
.a
L MEETING StM1ARY DISTRIBUTION ORBf4
[
+
i I
r Docket File R. Reid NRC PDR V. Noonan L PDR P. Check ORB #4 Rdg G. Lainas NRR Rdg G. Knighton H. Denton Project Manager E. G. Case OELD Ol&E(3)
D. Eisenhut R. Ingram R. Vollmer R. Fraley, ACRS (16)
W. Russell Progr.am Support Branch B. Grimes (TERA-)
Ti J. Carter
'JN. Buchanan A. Schwencer Meeting Summary File D. Ziemann NRC Participants T. Ippolito E. L. Conner W. Gamill Bob Hermann L. Shao Ed Jordan
[
J. Miller R. W. Klecker i
B. D. Liaw T. H. Liu W. S. Hazelton Tom Shedlosky W. F. Sanders W. J. Collins 1255 278 411M506ML
}
-. ~..
a.a' '..
'A'.'.
4 JJ
MILLSTONE-2 FEEDWATER LINE CRACK MEETING OCTOBER 10, 1979 NAME POISTION Monte Conner NRR/0RBf4/PM Eric DeBarba NUSCO Matthew Kupinski NUSCO Richard Kacich Northeast Utilities Michael Cass Northeast Utilities Bob Hermann NRC/ DOR /EB Ed Jordan NRC/IEHQ R, W. Klecker NRC/ DOR /EB P. M. McManon Bechtel J. C. Crane C.E. Chattanooga Tom Hemphill C.E. Chattanooga K. B. Frisbee Combustion Engineering W. J. Heilker C.E. Chattanooga W. H. Bamford Westinghouse A. J. Ayoob Westinghouse E. T. Hughes Westinghouse B. D. Liaw NRC/ DOR /EB T. H. Liu NRC/ DOR /EB W. S. Hazelton NRC/ DOR /EB C. W. Hirst WNTD NUC-Safety Tom Shediosky NRC/ Region I W. F. Sanders NRC/Rsgion I W. J. Collins NRC/IEHQ 1255 279
MILLSTONE NUCLEAR' POWER STATION UNIT 2 ADDITIONAL INFORMATION REQUIRED TO ASCERTAIN ACTIONS NECESSARY REGARDING THE FEEDWATER SYSTEM PIPING 1.
In your letter of September 28, 1979 you stated that thermal variations (stratification) was observed during low flow conditions. Address the potential for crack propagation during these low flow conditions (low cycle f ai;igue). Provide a quanitative analysis regarding crack growth rates during the thermal transient cycle.
2.
Assuming the analysis requested above predicts crack growth at a sufficiently low rate to ensure adequate _ safety margins can be maintained until a perm-anent repair. can be made at the June 19M refueling outage, provide the
~
details of an augmented inspection program which verifies that crack growth has not occurred at a rate faster than predicted by the analysis.
3.
In the proposed repair / replacement progrim you submitted, you stated that
'~
the removal of the shield wall section can be made within design bases
- 1. imitations, a.
Provide the technical information supporting your conclusion.
b.
Provide assurance that the method of removing part of the concrete wall by drilling and chipping will not damage the concrete left in place and the existing reinforcing bars. Describe the quality assurance procedures which will be used during the concrete removal operation.
c.
Describe the procedure which will be used 5# the reinforcing bars must be removed.
d.
If replacement on the removed shield wall segment is required, address the following:
(1) Define the concrete mix which will be used to fill the recess in the shield wall.
(2) Describe the procedure for reinforcing bar.reple:ement.
(3) Define the method to be used to ensure compatibility of the new and old concrete, especially the measures planned to limit shrinkage of the new concrete. Discuss the degree of working together that can be expected from the new concrete and existing wall,
- l..
Provide the details fer material removal as discussed in repair Option B.
Also, provide the detailed procedures for the weld repair on the ID of the pipe shoulc the wall thickness be reduced below Code limits. Address the cock-u:: usG to qualify the welding procedures,fer training and to qualify the v. eiders / welding machine operators.
E.
Describe the simulation for welder training and qualification to account for the li.-ited access oetween the shield wall and steam generatcr in Option A.
Provide any details regarding the consideratior cf automated welding to make the. nozzle to pipe repair.
6.
State if a UT baseline examination will be performed for the nozzle to piping weld if Option A is used.
I755 280
=.;-
.- ~ :. ;."
. 7::" -- "
.. l.
. MILLSTONE UNIT NO. 2 g
(
~[ _
J*
(FEEDWATER PIPE _ CRACK HEETINGj
[;
...._...-)
)
~~"'
7:.:f. j,.
n:--(r n.;
rm.
"r.:
1
. I... NTRODUCT10 @.
. ~
~YN --~~, '.~si -
=:::E AE;DE3.M.BA (NUSCOX-'
I""L
. ~. '..
~
s i..
^ ~ ~ ~
^ 2 ^.:......
^^^.;^^^' :
=..".s ; ~ -.z.._...
.-.. j-[
- .^."'
,:l - - - - - - - - -.. _.. " ". _ " _ ' ' " _ ' ~. _ ' '..,
, :~. '.;
_ : 9. 7...
- y
[_,---*_:.'.'
~'_.~I~~
^^
- 7
.g.,..,
. ;;; '.!NRnSER/NNEC01.C..MMITMENTS
..x.
i = =- -.
.O
,n =
==
=
- 2r iADDLTIONAL INFORMATION REQUIRED To ASCERTAIN =ActioHsT.,
. ~ T-"-
1
..;_=
2
+
-2.l"3NECEbARYsREGARb[kG THE FEEDWATER SYST5M PIPING -
25 =:-:=
. :22.[
I
++==
- ..a
. 3.==--
=.
=... _.. -.. - - -
E.~ ~'
'~~~~"~~'1
.. CC'i l~~
^
M E G 3}N S MEED} WALL:
N P/U$CMAlf0N'GECH.TEO M --
.=
[7 $1HMMhRdATwiOPTIoNfBe ;.;;.,-
ZnsE.RANEk(CEf
~~
diEMi$519R@Alg0PTIONT
[
UNNUYINSNI?NNUSCD1.:)
~
m.
' ITEM;$6 UI BASELINE:
ME KtJPINSKIf;(NUSC0F
=
- ?n" =
.C f_.l__".'.'." ','."._-"":'I..T._EM. _#1P....IH ERMAEi_TR AN S I EN T._1 R AC Kl.___1'.._...... _.
[~~~.".._ _._"""_" _'-"""m__m.mm_
. m~_..
" * " " " ' ~ ~ " " " ~ " " "-
ms an cum - m-mm-newm-w s umw.w -wemm wiw..
==s u-wenn mmumm.nu,.,
- 'eE.
77~~ lire
.s_nm mu mu s.rs.,
2". :.
.22 :. :'----:' :. ::'
'~. v:.'
- ~: :
1:.T.:....=W.Irac#2iEIAUGMENTEDT.IlhSP ECTION 7 ~~ -----
... ' _ - ~...
5="
~ - - - - -
- .7v
- .-[
,' 7,_ '_'_
- 7..
f
.. _. ~..
-~
~~ ~ ~'
~~"
r--
nnr --
- ;. 7..o
.. i
[
~~
- =
- .:l...
_ ~""J
- =. - - -_..,
- =.._..
=;
.._...{*
- - = -.. _ _...
~ ~ - - ~ '
~:
- r
-"--"J,
--' j-22:::
. ~. _.
125528f
...i g
--__,_,.:.z:--
_g-
-- ^
r-
" - ^ ' * * * '
.s.
r.
P00R OR<GINAL MILLSTONE 2 STATUS
+
usus710,1979:.n. J 1 SHUTDOWN TO: REPAIRcSTEAM LEAKt IE BULLETIN
. _. ~. ~ ~. ~ ~. _"
'"~"'
-.-~___~=._.7C
- ";;;; m-j7923: EXAMINATION 55 PERFORMED @ COUNTERBURE -
=;.
. = = - -
=y..._.,. _.
.z..=-
....:-_=....___...
_ w.:pg=,:g_. :i;EARfiAS' 0 F:TFOURE (@iMLDS EVI DENCED:"SHA110W :. -
+
a;; - - :::
=. - --
.m-.
--= +
..- = = - = - -.
==.
-"GT~
""""G
- . i:"""
cygccggng3 WX
-=
==
.... : :... ~~"
= - ::
. = :.. L~": %
-8 T;;;. -. ~b..;
1 iAucusT;27; 1979.
PLANT.. STARTUP ' WITH FEEDWATER.".P.IEJNG.
'* 27-"*".:.l
?;...,:;-<
2:
. :. il: ^~:.":::
2_.~."
^
~.-t 0tTO.BER$27;M9791.. iSCHEDULED. SHUTDOWN.FOR REEXAMINATION. OEE.
.... s.
l.SFEEDWATER_P1EEd.RACKSE.: EDEcIfEDjDURITI0db.
....:FIVE. (5)fDAESh
=:-
..._.-....7...__.
=
= = - -
..... -. =
TMAS~I$fl980E
' EXPECTED START OF REFUELING OUTAGE.
."I'h',2.1C [
.,2--.:
SCHEDULED REPLACEMENT.0F FEEDWATER PIPING!.. ;-~...
N s s s-a-=-==AAcY rNNreYYu J ;;;;;."G '"";" _ j u""%
=v-a.M.~.avy;3.=..w-w.
s _u.; umn
.u.v -r..
sss a,.;,;;;; nua.- &.
u S ECT I ONS. 7 :: :::.-.. :: 7. - :.+.~=+
- q q.. - - - -
,.a.= -
,.m,
.::.;.-:=-------.__.
.3. :...;- :..
-.. =....
...?"".F E'c'?
.k""]...
-.. ~~
E...
f:E.T"T:i.".
3 _- ; _ _ _ _, _ __,
- . =;
==
...N'."*.*.
^ - ' '....
_. _.... ~...
U..,
]._
~
'"*""O...
~~
I"I '
- - * ~ ~ ' " ' " '
~ ~ " "
="'
2
,:. =
~
- ~T"'..K_
,, ". ~ " ~ ~ " ' ",. - - - - - -..
=..
'- =
~
' ;** 'T 2'.':
'"~T
~
. :: -.:.-. :7..:-
"""J....
... = " ' ' '
...:;;;r
'"- ~ ' ::;.-._...T. :'
~".- -
.[
..~"...Y.....
=
..:--
. = -...
1255 282 3
- - h
~
-.~."::.:::" """
="%
f"~
'"."2."; L E~ c,_,,
.._ l,J 2{ -
~ ^ ~ ~
1."Q" '.l
,__,.:. :a;c....
Nu A,,
NNECO COMMITMENTS
"-'l.
STALL. MONITORINGlFOR TEMPERATURF":A!!D STRESS-MEASUREMENTS
....=;=..
==
.. =.
x =;
...I5"
'""~i=
.ON$3 TEAM GE;NERATOR$r2..
~~" ~~~"~
^"
=
'M= =E
=:-
==
- ._.=: L....=.;. ;-.J-
.-- :=:::
=-
- 7. 7
_i"
~
+ = + " -
MyTNTS F0(1..N0dlTdMTNGiEQUIPH. 5NT1.;.;g.-; _.;
__12W.E5fABLiSHMdilDN.:
=.
......=,.:..
- =
.......... ""[
53I?.SSIif50WN ISD'REEfdMINs IJPON WATERHAMRER 6CCURWsNDE;
~ =
==
- d_ hNdk.UBn.. i.n. REPAIRJPROGRAM BY ;0CTOBERJL ;1979.$[
k TAfHIEVEKCodS[bTDOWNTBY.10cToani~31M19_79.2rdj.REEXAMlN55
!!AEEECTED:::NELDSt
'~~~;
..=. .... - -.L ~~"' =
.=: :
.:.=..;...== $M hlNST li -l; LOU i511Ak MONNbRING..EONtBOTH STEAM:: GENERATOR $s{" ~
- 9. -...
= = = - - = .z.:.L d76 : SHUTDOWN-AND REEXAMINE UPON EXCEEDING 40 KSI C3MBINEDr, , =t
- =,....,.,3
,w rurs,. r, ,,r. ~ ii,
- i ea r
ressmi-mr,r rEI ' ' DYN'AM_I_CfSTRESS u... _.. ~mf hd-i =td= Z. -d~ ~ ~ - ~ mm - - o.n..n"...u.=. =-"- .t. c r -r:::
- =:-
m.=...-.. '""~ ......... [..[.1 - E=:. '"h;=,= .l""" i=:1.i; z_;. 2- =.. _= ' ~ ~ ' - - - - " ' - - - ^ -~ _ _ _, .A ~~~
- ?*::::"::.
~:""*""- ~=**
- ,;...~...~..
.. = = + =:~ ~~~ ~..._.-.-..... -... ~.....Y:~"~ -.+ " - ~ ,=
- ~ ~ -....
. _.... 7.. e p... p., =
- __ ~ ~ -........
j3 3..- 7... .. -. = -. - -~ .,.-.:=_. 7.--
e G e G G e SIM%RY OF DYtW4IC STRAINS AND ACCELERAT10flS OBTAINED AT MILLST0tE II e TIERfML STRATIFICATION AS IT OCClRRED DURING TIE TESTING PERIOD e TEMPERATURE PROFILES AS ESTABLISND FROM PLANT IATA e SELECTED FLOW TRANSIENTS e PLANT SPECIFIC STRATIFICATION CYCLES O Er N E u, a u, Nm 4 i i G
O d ,s. e[ ze @Y W 2,u g$ < c$ E. -l-3 eo m ~4 A 4-1b o' e r Oy s l \\ i l ss I cc e g [ p aa + +.I 3 u.l h i gt? .;;~ w
- - e :,;.,
Q
- ' s. g h
',[ l' v)
- -s
- ss s ,iD is .,s !,1 i .I g 'h y M CO .4 g i
- .+
~- 4 ,g 4 d, 'b_ 'T ' N k i ff .y 7. ,e e 3 ,04. '.j o s I / =l hi 4 o 3 __.!N d 5 q{g to 4 + " 1 0 z st i r <ne F DA 1255 285
a STEADY STATE DYtW11C STRAINS Ato ACCELERATI0f6 ECEURATIM (G's), 0 - PEAK STRAIN (/AE) 0-PEAK POER EVEL M d d MT, M. 6mz.) scaz.) (VERT.) B90. B&O. AXIAL WSIM ICT STATE Y 0.12 0.22 0.32 7 5 5 5 50% 0.20 0.33
- 0. 17 9
9 7 7 100% 0.25 0.111 0.22 6 5 11 3 ~ LT) W N CD
P00R OR E L ex ca 1 aos v w 6D -o 5 Mo 6 3N [6 hi coa si " EN ~~ g m 4, a en 005'21 ? e-E o 000'C1 g an E
- 5 um asas s j 5
I E oooo s <n SII meu ones a O'S 8 8 8 8 8 8 H H 8 R E 8 3 (J 3301 3sn1Yulu3det31 1255 287 - - = <
8 0 9 i 4 N 4 I. sa 000G'l. 4 ..e e se ne N = N M$ 4 g \\ m c. M*I.3 4 ~~ i g 'l l c ~ ~. ocu o = 4. 5 E tee d m*s < ox< 5W and*o 4 s O*s 3 4 a 8 g R I j N I u ssai 25at'"2"2'"" 1255 288
~ P00RORGNAL -z I e l - oocet -I -F .o - \\~ E -( . wos t ; m e .N. ~ g 7 7 77 / g C e ne u { // 00GL*0 y - ; i g .; J j,'m/y = ! /// // "/ 177 / t .h o.o k 4 k $ b$ 8 g 3 R E ? ea un_LW3dW3 L (Wds) Mcrid 1255 289
0 4 g e acco*G t 3* I atXE** 5 = h WW E ff 1 l j OO j f occo*t C N ~ N 7 w [ b f ri a p o =
- 3 p
~. a. [} acco a _ I E b 5 5l hh I O N 1 -= 5i. onon i -au f e e me-8 ~ O*O 8 8 8 8 8 8 N N N N N N 0 (J '330) 3Mn1Tulu 3dM 31 1255 290
M *0S e, d' a I o 000 se \\ p g c ~ F f u,
== 9 ~ 7 I g.e e. 4> ee e E' 'JE I l w .x e a. 4 e> i i um \\ \\/1 N suo s=i E< f9 o
- n...
000*02 l { S Ex e, e s x o t i f ~ u m,,, o, e, ex .o, > z x< c00*on 4 i rew I i .r. l e;... e, 4" LD 00 8 2 8 O O O 9 9 8 8., E g a ~ 0 020) junavu3v)dwja 1255 291
000 os E ocoo a C ~ I AO 4 h oooo s : i, i E P ~ [ c. - ( II t ~~ r ocoa s ~ < ~ ~ - E b% C = i 2 3 P x 3 p C Nd I =2: \\ g r:5 s, .x, A 3 Y. ) Q + o's 8 8 3 8 8 8 i i i i i i (J 330) Jun1YM3k3dM31 1255 292 O
I a 2 -= 6s .E 9f 0000*g C L,a c 29 22 5 g e 1 ~~ m, = S tas E O !s; wwx T T ( 3o =
- j.,
2,. gg n; i CR is kWk>( t a a a a a 9 R R E H 2 o 320: Junavutu3dnn 1255 293
4 k ? E i 0005 1 4 2 aa ocu ,i g enarig rs ce l Y ~~ e eQu's 3 I < ~ ~ ~ E n E 2 o#. lllr: eaet e = 155 ) aca. ao 8 8 ? 8 8 I E E i u noi unann.,3 1255 294
i 2 1 r + cost *t ) s - m -- 0009*l ; .. f -- 0052't m v_ oooo n a y-- --mm m h / nu .-- 00SL'O w ev a g E w f, ,f. f I-- ~ .e g, ( \\ ococ o aEg N e zwv -- 00S2'D N m r i O'O k 8 E 88 8 o o ~ S 8 R, g g-s" U S 30) 330.LVH3dH31 (Wd9) Mold 1255 295
l 00G*Li = 5 = = .n., ~ a 6
- C 9
JT s oi g a w .w ~~ w 00001 : 2 e Y .Y M ?. S }} D D C,us. )4Q Y a= i W:5 c, h f =c. l u_,% r, Ma A}) J 8 8 8 8 8 s 'E R 8 E E 8 U 3303 38MlVV3k3dM31 1.255 296 9
0000'2 i .. E ~ 2 9 st ..g
- rs 4
om .s c 4 O E n, M oooo : g <I = g ~~ w am o. g t o [ E 5 O ~ s, Mg. cou o .at". -y om o n"' 9 i n'a 8 8 8 8 8 8 a R 9 i i s (J 2303 3WA1VW3W3dM31 1255 297 '~ ~ ~ - - - - - - -,,
9 e 5 g.gg .3...
== M oos a ~ l' 2 I l iig } ..,x.- 4 e. 4 NN m., g a w 5 = aoo. s .2 o ya5 g a 4 0'. 4 R R s ~ ~ W (J 310) ]yngyyjyjgyjg 1255 298 O '~a== ~ 0000*g o 9 .a-E 00ml's a a.
- l 2
,l I 2 = p. g "O l i m. f 'all 3, O ' O WW M coco r :: ~ W m K ~ ~ j mn o= M ~~ 0000 a O y d'd [ m ["" 9 0 E. O u .s,. W5 emos 3 Kq whz 2Mu (p t 0*Q 8 g g 8 N N Ei g g s_ y e IJ 230) 3r,ygjyja jg 1255 299 r
- -*m-
STRDDRED LE\\lGL A ~ con.o RA/ hA L 'y. A /\\/\\/ / V / ~ 1 9 ^.. / v v e = / v su. ier k A DAYS ~ ~ ~ ~
SUMMARY
OF TEMPERATURE PROFILE OCCURRENCES I2 RANGE (3) NUMBEROFOCCURRENCES(I)0FPROFILE NUMBER PLANT EVENT 0F EVENTS PROFILE i PROFILE 2 1 2 3 4 5 MILLSTONE !!0T STAND 8Y 6 6 6 5 9 ._115 276-1242 276-1242 (LINE2). [ (1) NUMBER OF OCCURRENCES (WITil ATT0P/ BOTTOM"-300*F)ISBASEDONAV g (2) NUMBER OF EVENTS IS BASED ON PRESENTLY AVAILABLE PLANT OPERATING llISTORY INFORMATION. (3) RANGE FOR TOTAL NUMBER OF OCCURRENCES OF THE PROFILE AND IS CALCUL u$ X (# EVENT 5) X S. WHERE S = EVENT SIMILARITY FACTOR AND.5 S 1.5. 55
ASSESSMENT OF GROWTH OF FEEDWATER LINE FLAWS MILLSTONE II W.H. Bamford The purpose of this work is to estimate the future growth of a flaw located in the counterbore region near the feedwater nozzle safe-end-to-pipe weld. The flaw of interest has been confirmed by UT to be approximately 0.10 inches deep, and oriented circumferential1y. As a result of the location of this flaw, instrumentation was in-stalled to monitor the temperature fluctuations in one loop. Results showed that in a certain flow rate range the water stratifies, produ-cing significant stresses which are potentia 11 important for crack ~ growth. The types of stratification produced were typical of those observed .in other plants, but not as severe. The observed stratifications were classified under five different types, as shown in Figure 1. The tem-perature difference from top to bottom of the pipe for profile 1 was measured at about 350*F, whereas for other plants it has beer, found to be as high 'as 450*F. ~ ~ ~ ~ ~ ~ ~ ~ ~ T ~~"~~' A three dimensional finite element stress analysis has been completed for each of the five temperature profiles in Figure 1, and transient studies have shown that the five profiles represent limiting conditions compared with the stress results obtained for any transient step in be-tween the profiles. To accomplish a fatigue crack growth analysis, the system design tran-sients for normal, upset and test conditions were combined with the cycles of stress from stratification, which occurs during hot standby operation. As shown in Figure 2, there are approximately nine cycles of variour, degrees which for tne purpose of this analysis, we will assume, o': cur each time hot standby occurs. 1255 301
2- ~ ~ ~ ~ ._ A tabulation of. t'he cycle.. types used'in the crack growth. analysis, Talong with appl.icable stresses...is..provided in Table 1. Tables 2 threugh 5 ~ show the stresses at various locations around the pipe as a result of 'th'e stratif' cati,on. The actual stresses from the three dimensional analysis were used for the fatigue crack growth analysis, except in two cases, where compres-sive stresses far exceeded the yield stress in compression. The locat-ion is at the top of the pipe, and the condition occurs only when the pipe is nearly filled with cold water (profile 1) at low flow. For this case, tensile residual stress values were assumed to exist, equal to the yield strength. This is seen at locations 1 and 2 in Tables 2 and 4. This assumption is considered to be extremely conservative. ~ . Crack growth was calculated at each of thirteen locations around the pipe for periods of 1, 2, 3 and 4 years, assuming an initial flaw of 0.100 inches deep', extending entirely around the inside of the pipe. A fatigue crack growth law which accounts for mean stress or R ratio (omin./ e max.) as well as the presence of the water environment was used. The law is shown in Figure 3. Results of the crack growth analysis are shown in Table 6, for each of the locations considered. These results show that the observe flaws will not grow significantly during the next years service. The final flaw size for the worst location is a factor of 5 smaller than the critical flaw size for the pipe, as shown in Figure ;. f f 1255 302
'g_.*_._.. $1%TC W A M, $ VINUR$ $ * '!2CSTes!5 $7sA0Y Ol$1RidurwpU 'sc.em,smes j,f,,,,, g,j. 3 A M DATA tReh. irves 2dP, o M. ' ~ 7/s/n o.kes f2) i (i) hou SMT. J a. an. s eum m. me 1 J a an. 3 en m a ,e 1 Tgeg, y f O C \\ I , y -r tara. s.
- 8 l
2 I. i u.s.c[ r ,,P,/ "f l 1 g 1 y i 3 ei l i
- ,?
s 8 8 3 - .J a.,. e , v,,, j g t l ~ <7 ~ ,/ i w ,. 4,-. i-
** *
m.
== p.t. cat,L.oc/ 3 ' Sc. cance t.ef 3 p.c ed w3 TEMP.dFa * ' 1l'lM *W # 7/3/y9 op:,po sc '. W~- 3I, so **=as (g) ~ p e A f l1 7 'll i h I Li l _m c !J I IJ L 1 ( 1 [ I e-8 ? i 3 e, 1 t t il e l 7^ j i I l i ): n ~ f. e s ~ e \\ i/ I l 2 9 E l f. a= 7= =.= se e 71C g me p.
== am em
- m
- J255..3a3 e.
c. p.
_STRAT1FIRD LEVG L g A coLo p A A /.. A A g. / \\ / \\ /- l fi A y w_ C-V E 0-L\\O/ 2 ~- g. l 4 Au. IbT k A DAYS W Fic3uRE 2
SUMMARY
OF TEMPERATURE PROFILE OCCURRENCES I2) RANGE (3) PLANT EVENT NUMBER OF OCCURRENCESU) 0F PROFILE NUMBER OF EVENTS PROFILE 1 PRCFILE 2 1 2 3 4 5 MILLSTONE H0T STANDBY 6 6 6 5 g _115 276-1242 276-1242 (LINE2). i l i N tn TOP / BOTTOM 300*F) IS BASED ON AVAILABLE TEST DATA AND MAY VARY BY b )' NUMBER OF GCCURRENCES (WITH AT 3 W (2)NUMBEROFEVENTSISBASEDONPRESENTLYAVAILABLEPLANTOPERATINGHISTORY INFORMATION. (3) RANGE FOR TOTAL NUMBER OF OCCURRENCES OF THE PROFILE AND IS C X (# EVENTS) X S WilERE S = EVENT SIMILARITY FACTOR AND.5<S<1.5.
APPENDIX A-NONMANDATORY Hg. A 4300 1 coe .w eco ' 700 , t.w dg -- - I.0lx10 $ Goo A Soo (bk%10 4oo 300 d -7 i.9 s-g 1 - 2.52.5 to Ak. an [hY.MN 200 goo. - 9a 80 70 60 SUB4URFACE FLAWS g 50 (Air Environment) f4o = (.0267X10-8 )aK 3#2' i U /N O 30 5 gw 2 R E A* SURFACE FLAWS (Water Reactor Environinent) J 10 - Applicable for R ratio g 9 ~ (kmin/Kmex) bet m en C 8 0 and 0.5 onty. Z 7 ~ ,E h.</g_ s,0.5 8' g sv 3 dg4 M.is s o a Sas - 3.W x10 3 .u A.
- b. S. \\.'10 u tb $
3.- 2 \\ e iit'. e i e i ..e i 1 2' 3 4-5 6.7 8 9 to 20 30 40 50 60708090 00 STRESS INTENSITY FACTOR RANGE, aK (KSI T ) g FiquRE 3 FATIGUE CRACT, GROWTH DATA FOR SA-508, CLASS 2 AND Cl. ASS 3 AND SA-533, GRADE B, CLASS 1 STEELS y 1255 305 P
- g
-y
~ TABLE 1 TRANSIENTS USED IN FATIGUE CRACK GROWTH ANALYSIS MILLSTONE II b Cycles Inside Surface Stress Ou; side Surface Stres Description (40 years) Max. Min. Max. Mir ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ Hot Standby 1 50 ) Hot Standby 2 1500 ) These stresses are dependent on circumferent.ia' Hot Standby 3 500 ) position. See Tables 2 through 5. Hot Standby 4 2500 ) Unit Load-UnToad 1500C 10.47 7.71 8.49 7.: ~ Step Increase / Decrease 2000 9.56 7.67 7.89 7. Partial Loss of Flow 40 23.7 8.42 3.79 7.E Loss of Load 40 23.02 8.42 3.18 7.2 Reactor Trip 400 22.69 8.21 2.88 7. Secondary Leak Test 200 11.23 0.0 10.04 0.- 1255 306
TABLE 2 STRESS RESULTS - AXIAL DIRECTION CONDITION 5 HOT STANDBY f1 Outside Surface Inside Surface Location Max. Min. Max. Min. (Ksi) (Ksi) ~ 1 40.0 0.0 -40.0 0.0 2 40.0 0.0 -40.0 0.0 3 9.46 -23.0 8.56 8.29 4 35.12 4.63 11.23 7.02 5 68.97 - 1.43 13:20 4.66 6 66.05 - 7.28 12.61 1.71 7 46.17 - 8.06 10.83 -0.33 8 24.37 7.27 7.34 3.68 9 24.61 7.27 8.98 2.01 10 23.67 - 2.47 6.47 -3.44 ggg l 11 14.93 - 5.67 - 0.44 -7.05 I UUli U l ei 12 9.30 - 5.44 - 6.03 -8.45 13 7.62 - 4.95 - 8.11 -8.69 2-
- O' :
,is:1....g: . gi; '@9. Pg' : fili @
- r;!F iiiili.
2 g.[.. i. i:: t .I MF r lli .llIi.i., i. ii. 6 !! 3 i. 3: i!!! U' :::: l... g- 'l: .dl.k. O j: .i: 'ii.i 7 @, i. !!!!! !!!! "" ?-- I 55 d07 i!!ll.!i!: !!!! N) b: y. li! n!' I!- !!- Illi !!h .l.. :li! iii !!!. !!!!..!!!: lii! !!F i!: ... ~ _ .o ._t ...... a u _.
TABLE 3 STRESS RESULTS AXIAL DIRECTION CONDITION 5 HOT STANDBY
- 2 b
Inside Surface Outside Surface Location Max. Min. Max. Min. (Ksi) (Ksi) 1 13.49 9.78 9.62 3.24 2 12.57 9.68 9.40 3.25 3 9.46 9.34 8.56 3.24 4 8.76 4.63 3.21 7.02 5 8.23 -1.43 3.17 4.60 6 7.91 -7.28 3.17 +1.71 7 7.69 -8.06 3.18 -0.33 8 7.60 7.27 3.22 3.63 9 24.61 7.71 8.97 3.37 10 23.67 8.02 6.47 3.63 11 14.93 8.44 -0.44 3.96 ; 12 9.30 8.76 -S.03 4.20 13 7.61 8.86 -8.11 4.29
- l...:l:::@i:l!: :l-r
- .-a_,-
.!l!!I .: ' n @ 7 iii, ~!. il i;:!l:-
- li
.iO"' .Ai
- l:
i: ---j I! h:: :, .!';..' h!. ..illi_
- t il::
iji
- p
- pii.b ip:.ip
..+I;:
- i.
9
- lid'::1:m*:'
I
- r; 1255 308 1
ii e. i. O. 'l-3 - };,. n:: $ @ M ' !l! li!! m0 !!!! :.t n - ~ ' 9 - .i ~ir::~: :
- ....:l:.-
.:n g,
TABLE 4 STRESS RESULTS - AXIAL DIRECTION CONDITION 2 + 1 - HOT STANDBY
- 3 Inside Surface Outside Surface Location Max.
Min. Max. Min. (Ksi) (Ksi) 1 40.0 0.0 -40.0 0.0 2 40.0 .0.0 -40.0 0.0 3 16.19 23.71 9.31 8.30 4 35.12 10.11 11.23 8.45 5 68.97 2.39 13.20 6.52 6 66.05 - 4.85 12.61 3.45 7 46.17 -11.04 10.83 -0.88 8 24.37 -15.29 .M -5.64 9 7.27 -14.93 2.01 -8.39 -4.210h 10 - 2.48 - 3.19 - 3.44 11 19.41 - 5.67 7.35 -s.05Ib l 12 36.44 - 5.44 16.75 -8.45 F :%f U "- 13 41.23 - 4.9' 19.41 -8.69 r.2:
- c
.iii! @. ili-...!ll a!B-g "ili ic .i. lp ~ ~l
- !li "
e ji ili u.. .t Im ili 1 i .o ._t.. p r i 1255 309 e pii~' ri!= " lie t~i li .J I! il! .i .;p -g-T]u @ ili.. !1: ini .u p-=.. ....n a, 4.:..
- p:
s.:- -. 3 ;. ;l. n .in ii,:. m g 3.n i!: .: i" !!!
- j.
TABLE 5 AXIAL DIRECTION STRESS RESULTS CONDITION 2 Il0T STANDBY f4 Inside Surface Outside Surface Location Max. Min. Max. Min. (Ksi) (Ksi) 1 21.51 9.78 9.73 3.24 2 20.0 9.68 9.60 3.24 3 16.19 9.34 9.31 3.24 4 10.11 8.76 8.45 3.21 5 8.23 2.39 3.17 6.52 6 7.91 - 4.88 3.17 3.45 7 7.69 -11.04 3.18 -0.88 8 7.60 -15.29 3.22 -5.64 9 7.71 -14.93 3.37 -8.39 10 8.02 - 3.12 3.63 -4.21 11 19.41 8.44 7.35 3.96 12 36.44 8.76 16.75 4.20 g ;. g ;ll;: g g 13 41.2 3 8.85 19.41 4.28 3;. : 1- - A".;; ,j !!n @,
- ti
- i
- -.il; t!
.c
- g;:n.::
4
- i
y. a 1255 310 l Ei- @- g4
- i-
.i. ~ . g,. .g.. '*:1
- t:
.l,_ Ili!! 3:. il l!$!5 U! '!! .Ifi gp i.:- p:ii" p @g. M !!!. !!!i!!!! lill!!! . iC@ ..: 1::: :::: ::p..- I;- ......._.._.....i...._.,
TABLE 6 RESULTS OF. FATIGUE CRACK GROWTH ANALYSIS INITIAL CRACK LENGTH = 0.100 INCHES h Crack Depth After Year Location .1 2 3 4 1 .1008 .1016 .1024.1032 2 .1002 .1004 .1007.1009 3 .1001 .1001 .1002 .1003 4 .1001 .1003 .1004.1005 5 .1021 .1045 .1067.1092 6 .1042 .1090 .1137.1190 7 .1011 .1023 .1034.1046 8 .1001 .1002 .1003.1003 9 .1001 .1002 .1003.1004 10 .1001 .1002 .1002.1003 11 .1001 .1003 .1004.1006 12 .1014 .1030 .1045 '1062 13 .1032 .1067 .1105.1146 . ;lj,'W :: d ;.,l: ':l* ii;. li i.I! ^: ^::
- I.
A:s. !. I I.
- 1,! i. ii.i..'
t lItf ilt!!I!!M liit: !!!i I!!! :": !!ii :::: :::: i~ iii 9 i. g UU WE) LA si'll. i 7lli~ '!l! !l! il: il 7 I ~@l ~ ~~ ~
- l:
f. ..li 4 n: .q. .. q.... . u. p_. ,h. $li !l! I!E i
- i.
\\l.i.
- t' jp.
- 3. t.!-"T.j '
1,2 5 5 .; j j .l. T r
- 1:
I;
- i'.
l:.
- 1 s!! n-4
- - g N4 iii
@.g- !ij; pj, ji-F lHi ih, iSi h:, i:'j~i-
i Nil. :-8ii. rE 5!~i 5}I;;- MI5 5$55 Sid5 !Ef!EI_"l.i~. ini lE lh NY.*..d
- l.
. =4. -
- ;...., :=.
m- - -- t: - F i ,m ,J u t m Lq p1 y .=n._ m :- 2,2 -- : := n 2.==:::==:=.:_a= . 2: = a.y. :. n .n-nrr=,,= unt=
:
= =
= ten _.... _.. t _.4 2
- 1..p m urfi=._r=n-Qk:::r=
-- -- -. s e' ...un. - e ausu i n.:::. - s
=== t = m.- u.;= =r- .= ; t:..:: = _ n: =._..n= - {~~_: t = =- :t n:. :l :. _.. r. ..:r::.:t _ :::- - -. - - ~...:t t =ir-ri = a
- l'-- - ;-4i_ci u. aili_-{=-!ini}i.-Edi-iiHi-It
.{: = Mi= :i-.- it:. : = g4 =:!;: : .u_;4 =. 3 ;_,=.k..;u g. _..__.....h. _.g..... _a_=p===.;;.g..= ! -- m -G._=. _. u.. . r --- r. = :- :s =ri-A==- = :.8._r ---. = t,:- C sg. =2= w =
p_=sp= =u=>
tes% .m;= n,.y. n =r .--- :-- : =
- -~ ;
. " - p. -
= i=....i
..i
- m. _ :.g:. ; - t ---
g..- 2- -- !.- 4..._.. j ~'.. _. t - r,.... I.. _. " - "_ ~.. C
- ..,... 1 -
-!-.G L-- - -r ._....g.. ~{--* -- ! "1 - ---}... =. +j... - t. t--- w...___, __ _ :g = : = 2 = [___ _ _. - -- {--- - + - - j._- _ r- ----- g _== = = = gn _...,g ;_.._.; ._ur a 2: - CO 9 - H --" .= .:1.- !:7 2. .1 ~ f. :2= =n = L._ ___n_ 7T._- t-_:--{rr"-- ' -A-- t.,__.___ .-..-_ _:r- - . g=. :t;r -- --- -_. _ _._.r - m-12. _ .ne h.._.! .11.. i.._J.', .\\... _J + - [- =.:._.z_ -.. w _=.., h =I _ f.._ _ 1.t.\\. - = = a =t m. s__ -. __p g \\ ., y _._F. ;.,.. : 4 P.- I c '.s . l :_.,.._ _ I. L k._ w . = :-- -f==+t.._._.in._1.\\=.. _h.x - - .__1_m_.V i,.,._.__.. *. _. - 2- .._.f------- _. c-n. pm _.t..._. t.-... - _.=.:;.... a r i:n =l.. _.u. 2n.= i- - : y.n z n} =_ d. =_.A =- - ., u _'-. _: _ _.. .- c _. __ ___ _ - t ---- - i -x. ._._ n __.w '~~ --._ _ __ N -Q . _.._-t. _... _ : :=st,i _..__ _..[__ y.___. y.fCEORE PA'AT.vTHROUMF e p. _... m so 2i:~._ ___. _2. . ___....__..:,___ _;; - - * --.-.___ _.. _ ____,:\\- .n-t, -~T---
- CRAC K5 ___.....
c-A....._. ._._...5._...__.r-n- : - - '-.-- - - - = n = t__ ..,._. 6 _. = :---r -- :1:--
- u. i n.== r * - A
- ..r:4 __- ;== * --
= ::= =. : = - - .=-,=. :. _2- _ :. _. =:. 1= __.___..; =_._ xt =_: = _....- u _.. - (r. : n4.:_n, _ _.._._ __ a \\ =_=__=_tn:.=t
- _.. _._y _ _
.r...__; = - - = = _ (_ -"Z-5:~~E
- i ~ ~- ri__==I ~
~ N.I5El-T 3---- -ti:. _. ;2- .I. ..: _.. i.._. "- ._ _._=.....____.- [ -- - - - - {. _ _7... - g,' . _..,..._ t _ _.. _ - I _. m4 _.. -2 ___. . -r, u-- u. nu,. c. _--t= - - , _. ' ".... _T_N_.".. 5. A. : .t... r==..t _. -- nn ;. r-. _......_._.r:-=--" ._._x. b,. .- C~~ ~} i_2i. i.__~...* _~.i_i_ri d_. _~.. E._:__: _.~-E..L-- \\I 2*T.3 ";--il' ~ i ~ d- \\.
- t... u.n..
\\ f5 D M: s - - t ll .- p- - : 1 ^ W)w- . _.._. {rt.= !=n-J. \\
- !....... 3 = r. _ t..
- r 5
...., : =- r_. .s '\\- r. ce .p U t 74ERM8,l. b MO N'T. OML% '- ~ 1 I: ~ a x! ..,. =. _. g .._._.t. y g y . _. r - ~-l - ---- --+g.- - ' - --- - t__._ h 1--- ! fCWTl3 VGM-Wall - - 1---'- g ,._... = k..... . CrJ "35 '\\ ;:_. _.. O j.- l f h I [ [% ) t ij: 7 i .t. l _ _ l... L.. i ' .. __i.. _ l... .(. / /\\ t '. .t.. Q _. / /._.,-. i i e 'M N l O 13 l g 1 _g i_, t l CRt,tg t w u A (Id I i J. '... [.... .t. t .j.. . i....., _3 g .3_. g. ._n t. 1. i _ :t : : U _.. :.L. t. .t. . t: :1. .... p_;.:. .l.
- l...-
i t Eq r,: Fait.uRe PREN Cito4 s - W CD ME 0 D WM l. ..b255 312 .....}}