ML19256A845

From kanterella
Jump to navigation Jump to search
Forwards Report Re Question 361.4 of Unit 1 Psar,App M to Section 2.5 ACNGS-PSAR,design of Ultimate Heat Sink Slopes Using Special Residual Clay Strengths.W/Drawings
ML19256A845
Person / Time
Site: Allens Creek File:Houston Lighting and Power Company icon.png
Issue date: 01/10/1979
From: Eric Turner
HOUSTON LIGHTING & POWER CO.
To: Boyd R
Office of Nuclear Reactor Regulation
References
AC-HL-AE-274, NUDOCS 7901160229
Download: ML19256A845 (54)


Text

{{#Wiki_filter:~. \\

"O Houston f 44 hting i

er d } Com>any Electric Tower RO Box 1700 ~ ~ iU Hcuston. Texas 77001 i 1 t January 10, 1979 AC,-HL-AE-274 Mr. Roger S. Boyd, Director Division of Project Management Nuclear Regulatory Commission Washington, D. C. 20555

Dear Mr. Boyd:

Allens Creek Nuclear Generating Station Unit 1 voc%t No. 50-466 Ouestion 361.4 Please find attached a report concerning question 361.4 of the Allens Creek PSAR. A copy of the report has been sent directly to Mr. Cunny of the Corps of Engineers for his review. Based on telephone conversations with Mr. Cunny this report should resolve his concerns and~ allow the NRC to resolve this open issue. To fully document this issue, HLSP plans to file an amendment to the PSAR next week which will contain this report. Very truly yours,

47..

M E. A. Turner Vice President Power Plant Construction S Technical Services JGW/bkl Enclosure cc: C. Thrash (Baker & Botts) (without enclosure) R. Gordon Gooch (Baker S Botts) (without enclosure) J. R. Newman (Lowenstein, Newman, Reis, Axelrad, S Toll) (without enclosure) \\0h\\ P. A. Horn (without enclosure) R. Cunny (Corps of Engineers) h0 Dy 6 \\ ~9 0' 9 O 79011602 M

'. P,ROJECT,

BOUSTON DATE PRINTED
01/11/79
DATE 01/11/79, TYPIST
gw Page? n DISKETTE NO. :

SD-29 PAGE 1 l ACNCS-PSAR . 01 APPENDIX M TO 02 SECTION 2. 5 ACNCS-PSAR 03 DESIGN OF ULTIMATE HEAT SINK SLOPES 04 USING SPECIAL RESIDUAL CLAY STRENGTHS 05 . 06 M1 INTRODUCTION 07 08 In order to completely respond to the NRC question concerning slickensided 09 clays, at the UHS and to obtain additional data for design of the UHS a 10 subsurface investigation was performed in April and May,1978. 11 12 H2 FIELD INVESTICATION

13 4 14 Subsurface soil conditions at the site were investigated by 7 borings 15 drilled to depths ranging from 8 to 150 ft. at locations illustrated on 16 Fig. No. M1.

A cross section through the borings is shown in Fig. No. M2. 50 17 Detailed descriptions of the soils encountered are given on the boring logs 361.4 18 presented on Figures M3 through Figures M9. A key to the symbols and terms l9 appearing on the logs is included on Figure M10. 20 21 Bor#ngs were drilled with truck mounted drilling equipment. In the ulti-22 mate heat sink area, samples were obtained continuously to 20 ft or com-4 23 pletion depth, whichever was the lesser, 5-ft intervals to 100 ft and at 24 10-ft inter vals below 100 ft. Samples of cohesive soils were generally 25 obtained by alternating a 3-in. thin-walled tube and a 2-in, split-barrel. I 26 Most granular smspies were obtained with a 2-in. split-barrel. Driving i 27 *. resistances for the split-barrel sampler are recorded in the " Blows Per 28 Foot" column on the boring logs. Each of these samples was removed from 29 the sampler in the field and examined and classified by a soil technician. 30 Representative portions of each sample were sealed and packaged for trans-31 partation to the laboratory. 32 33 A Hvorslev-type stationary piston sampler, with a 3-in. thin-walled tube 34 was used to obtain undisturbed granular samples from Borings H-42A, H-43A 35 and H-44A. The tubes and soil were weighed immediately after sampling 36 to determine the undrained density of the soil. The sanples were retained 37 in the tube by using porous caps (to allow drainage) and transported to the 38 laboratory for further testing. Density result: :htain ed from the pistoc 39 samples are presented on Table M1. 40 41 Ihe depth to water in most borcholes was measured at least 24 hours af*.er 42 completion. The depths to water and the dates of observations are recorded 43 in the lower-right corner of the individual boring logs. In addition, four 44 piezometers were installed to monitor groundwater level; two were installed 45 in Boring H-44 to 10 and 25-ft depth and a similar installacion was done in 46 Boring H-48. 47 48 Test Pits 49 50 A test pit was excavated near each of the ultimate heat sink borings fo r 51 the purpose of visually examining the surface clays and in place density 52 testing and bulk sampling of the near surface sands. In place density 53 tests were nerformed at several depthe with a rubber balloon-densometer 54 2.5-M1 Am. No. 50, 1/15/79

P'EdJECT

HOUSTON DATE PRINTED
01/11/79 DATE 01/11/79, TYPIST: ja Page? n DISKETTE NO. :

SD-29 PAGE 2 ACNGS-PSAR 01 in accordance with ASTM Procedure D 2167-66. Results of these tests are 02 presented on Table M2. Bulk samples were sealed for transportation to 03 the laboratory. 04 05 M3 LABORATORY INVESTICATIO_N_ 07 The laboratory program was directed towards evaluation of strength, com-08 pressibility and classification properties of the foundation soils, pri-09 marily of the slickensided clays. 10 50 11 Strength Tests 12 351.4 13 In order to estimate the undrained residual shear strength parameters of 14 the foundation soils, several repeat ed direct shear tests were performed 15 on two typical samples of the clay. These tests were conducted as con-16 solidated-undrained multiple-specimen type tests at incremental normal 17 stresses. The samples were strained forward and moved back manually in 18 the shear box several times until the minimum shear stress (residual 19 strength) was obtained for each load. Results are presented as Mohr's 20 diagram. Stress-strain curves are presented for the respective tests. 21 Figures No. M11 through M16 present the results. 22 23 Consolidated drained repeated direct shear tests were performed in accordance 24 with Appendix IXA of EM 1110-2-190 Engineering and Design, Laboratory Soils 25 Testing, Drained Repeated Direct Shear Test. This procedure includes pre-26 splitting samples and the repeated straining of them to simulate the drcined 27 ; strength along slickensided surfaces. Results are presented as Mohr's dia-28 grams. Stress-strain curves are presented for the respective tests on Figure 29 No. M17 through M19 preseet the results. 30 31 The shear strength properties of the near surface sands were estimated by 32 performing consolidated-drained triaxial tests. These tests were con-33 ducted on undisturbed sand samples obtained from a Hvorslev piston-type 34 s ampler. The results of these tests are presented as a Mohr's diagram on 35 Figure No. H20. 36 37 Density Tests 38 39 Modified Proctor (ASTM D 1557-70) and Maximum-Minimum Density 40 (ASE1 D 2049-69) tests were performed on eaa. bulk sample of granular 41 material. Maximum-Minimum density tests were performed by the dry method. 42 . Results of these tests are presented on Figure Nos. M21 through M25, and 43 Table M3 44 45 Consolidation and classification Tests 46 47 The compressibility characteristics of the foundation materials were 48 investigated by consolidation tests conducted on undisturbed cohesive 49 samples. Results are presented on Figure Nos. M26 through M30. 50 -51, Atterberg limit tests were performed for several samples to evaluate soil 52 plasticity and aid in soil identification. Grain-size analyses were per-53 formed on all Hvorslev and bulk samples and on sevetal other selected 54 granular smsples to aid in soil identification. 2.5-M2 Am. No. 50. 1/15/70

H. o PROJECT-

HOUSTON DATE PRINTED
01/11/79 DATE 01/11/79, TYPIST; ja Page? n DISKETTE NO. :

SD-29 PAGE 3 ACNGS-PSAR 01 Laboratory Classification Test Results 02 03 The results of the soil classification tests performed for this study are 04 plotted or tabulated on the boring logs presented on Fig. Nos. M3 through 05 13 or on the following figures and tabler. . 06 50 07 Grain size analyses are presented on Figure Nos. M31 through M33. Table 361.4 08 No. M4 presents additional classification tests on the samples tested in 09 accordance with the WES procedure for drained repeated direct shear tests 10 shown on Figure Nos. M17 through M19. 11 12 M4 GROUNDWATER LEVEL 13 14 Observations in open bereholes and all piezameters indicated that the 15 groundwater level in the ultimate heat sink area was about EL +94 at the 16 time of the investigation during the month of May 1978. Measurements in 17 the piezemeters on July 24, 1978 indicate that Lne groundwater level was 18 also about EL +94. Groundwater levels can be er.pected to fluctuate with 19 seasonal and climatic conditions. 20 t 2.5-N3 Am. No. 50, 1/15/79

PROJECT

HOUSTON DATE PRINTED
01/11/79 DATE 01/11/79, TYPIST:

Page7 n DISU.TTE NO. : SD-30 PAGE 1 ACNGS-PSAR 01 MS ADDITIONAL INVES'iIG TIONS 02 03 Section 2.5.6.7 of the PSAR presents all of the field and laboratory test 04 results performed in the Ultimate Heat Sink area. Borings H-37 through H-41 05 drilled in May 1977 provide additional data in the area of the causeway, 06 intake and basin area of the'1JHS. Figure No. 2.5.4-5C indicates the location 07 of all the borings in the UHS with the exception of the most recent borings. 08 09 16 DESIGN PARAMETERS - SHEAR STRENGTH 10 50 11 Several shear strength values are needed to completely define the strength 361.4 12 of the clay in the UHS under drained and undrained conditions. The pur-13 pose of this section is to discuss the different types of strength and 14 when each value is applicable. 15 16 Figure 2.5.6-26' of the PSAR indicates the undrained shear strength of the 17 recent flood plain clays with depth. The undrained shear strength ranges 18 from 0.5 ksf to 3.0 ksf with a lower bound average of 1.0 ksf for all depths. 19 20 Figure 2.5.6-27AA of the PSAR presents the Mohr circle results of triaxial 21 unconsolidated undrained tests on near surface samples of clay in the area 22 of the UHS. The undisturbed shear strength varies from 0.8 ks f to 1.9 ks f 23 with a lower bound average of approximately 1.0 ksf. 24 25 Figure 2.5.6-27AA also presents the Mohr circle results of the remolded un-26 consolidated undrained shear strength. The remolded strength was obtained 27

  • from samples kneaded, reshaped and retested. The values range from 0.4 ks f 28 '

to 3.8 ksf with an average value of 1.0 ks f. Based on this result the 29 undrained strength of the clay could be assigned a value of 1.0 ksf. This 30 includes in some way the effect of slickensided surfaces since the samples 31 were remolded. 32 33 Figures 2.5.6-27G, 27I and 27J of the PSAR present the Mohr circle results of 34 triaxial consolidated undrained triaxial tests with pore pressure measure-35 ments on undisturbed and remolded samples from the area of the 'JHS. The 36 total strength or undrained results from undisturbed samples shown on Figure 37 2.5.6-27G varies from 0.7 ksf to 1.2 ksf with an average of approximately 0.8 38 ks f. The remolded undrained strength shown on Figure 2.5.6-27G varies from 39 0.4 ks f to 2.4 ksf with an average of 1.0 ksf. 40 41 The effective strength or drained results from undisturbed sample shown on 42 . Figure 2.5.6-271 varies from &= 28 to &= 21 and C = 0 using the 43 maximum deviator stress as the peak and varies from &= 33 to & = 25 44 and C = 0.3 ksf using the maximum effective stress ratio as the peak. From 45 this data a conservative effective or drained strength would be & = 21 46 and C = 0.3 ksf. The samples presented on Figure 2.5.6-271 were recom-47 pacted to 90 pcf which is approximately 95% of the maximum density ob-48 tained using AS'Di D 698 as the base standard. The drained strength as 49 shown on Figure 2.5.6-27J veies from += 30 to &= 43 using the 50 maximum deviator stress as the peak and varies from += 30 to += 47 51 using the maximum ef fective stress ratio as the peak. Both of these 52 drained strengths are considerably greater than those shown on the 53 undisturbed samples in Figure 2.5.6-27I suggesting that the samples in 54 2.5-M4 Am. No. 50, 1/15/79

~ I PRO'JEC ' 1

HOUSTON DATE PRINTED : 01/11/79

! DATE 01/11/79, TYPIST: ja Page? n DISKETTE NO. : SD-30 PAGE 2 i ACNGS-PSAR 01 the undisturbed state failed along some weak plane, which can be assumed to 02 be along the slickensides. Therefore it would not be unreasonable to use 03 the drained strength from Figure 2.5.6-27I as the drained residual shear 04 strength of the UBS clays. 05 06 1igure Nos. M34 through M36 presents the results of unconsolidated undrained 07 triaxial tests on samples recently obtained in Boring H44. The stress 08 strain curves were carried out to 25% strain to develop the ordinary 09 residual undrained shear strength of the clays. The undisturbed strength 10 of the peak is approximately 1.5 ksf cimilar to that shown on' Figure 2.5.6-26, 11 2.5.6-27A and 2. 5.6-27G. The residual shear strength is 0.5 to 0.8 ksf 12 shown on the lower portion of Figure M34. This compares favorable with 13 the values from 2.5.6-27AA (remolded). 14 15 The lower bound average of shear strength for all the undrained undisturbed 50 16 shear strength samples is therefore 1.0 ksf for undisturbed samples and C = 361.4 17 C.5 ksf for a remolded sample. The lower bound of shear strength for all 18 the drained shear strength samgles is therefore &= 21, C = 0.3 ksf for 19 undisturbed samples and += 30 for a remolded sample. 20 21 At the NRC's consultants (WES) request tests were performed on presplit and 22 repeated direct shear samples. This dated is summarized on Figures Mil & 23 M12 for undrained condition and Figure M17 for drained conditions. The 24 lowest undrained residual strength is &= 8.5, C = 0.1 k*sf shown on Figure 25 M12. The lowest drained residual strength is &=9. As is the normal 26 case for this type of shear test there is practically no difference in 27

  • strength in drained or undrained. conditions suggesting that both tests 28 **

measure drained parameters. Therefore the absolutely lowest drained shear 29 strength is $=9 using the most critical test procedures, of Appendix 30 II A, EM 110-2-1906 of the Corps of Engineers. This value is extremely 31 conservative for use at Allens Creek since the clays at the site are 32 slickensided as a result of drying and shrinkage, not large scale move-33 ments. There are no large scale slickensided surfaces in the Allens Creek 34 clays, slickensides are approximately 1/4" in size, irregular and nonplanar. 35 Only large scale movements could result in the reduction to residual shear 36 strength values. At Allens Creek, as discussed in the following section, 37 large scale slope movements will not occur. 38 39 'two articles presented in the ASCE publication, Research Conference on 40 Shear Strength of Cohesive Soils, University of Colorado June, 1960 41 discuss the use of residual strength of saturated clay, Article 1. The 42-Physical Components of the Shear Strength of Saturated Clays by M Juul 43 Hvorslev indicates that the residual strength of some clays is attained 44 only after very large deformations and that the decrease in shear strength 45 after failure is primarily caused by a transient increase in pore water 46 pressure and a thixotropic loss in strength, which is regained in time upon 47 cessation of the deformations. This artical supports the statements 48 previously noted and indicates that the strength can be regained. Article 49 2, The Relevance of the Triaxial Test to the Solution of the Stability 50 Problems by Alan W. Bishop and Lauritus Bjerrum states that the presence 51 of fissures is reflected in the factors of safety obtained using the 52 effective stress analysis. Article 2 recommends that a factor of safety 53 of at least 1.0 be ensured. Table M5 attached presents the recommended 54 2.5-M5 Am. No. 50. 1/15/79

PROJECT

  • HOUSTON DATE PRINTED
01/11/79

. DATE 01/11/79, TYPIST: ja Page? n DISKETTE NO. : SD-30 PAGE 3 ACNGS-PSAR 01 safety factors from the Corps of Engineers publication EMil10-2-1902, 02 April 1, 1970. Discussions with WES indicated that they would like to see 03 a safety f actor of 1.25 for Class I slopes using the residual strength. 04 mile we believe that the design shear strength of f=9 and a safety 05 factor of 1.25 for effective stress conditions is very unrealistic as 06 . discussed above we will use ic in appropriate places in our analyses. 07 08 M7 STABILITY ANALYSES 09 10 Two representative cross-sections covering the various soil strata were 11 analyzed to determine the slope stability characteristics under different 50 12 conditions. Figure M2 indicates the cross-sections, designated E-E, UHS 361.4 13 Causeway and F-F, UHS Basin. Section D-D on Figure M2 indicates the dif-14 ferent soil strata, standard penetration test results and field descriptions. 15 16 The range of soil parameters used in the analyses are indicated in tables 17 for each cross-section. The parameters considered for the various cases are 18 consistent with the recommendations of Table M5 and developed as the result 19 of laboratory tests as noted in Section M3. Drained and undrained parameters 20 are used for static conditions including the consolidated drained repeated 21 direct shear test results from Figure No. M17. Undrained parameters are 22 used for rapid drawdown and dynamic analyses. At Allens Creek rapid draw-23 down can only occur from E1.118 to 100 as a result of loss of the Main Dam. 24 Below E1.100 the water is contained within the UHS basin and is recirculated. 25 A drained state of soil properties would be characteristic of a long term 26 static condition in which any buildup of pore pressures in the soil due to 27 construction is considered to be dissipated. The laboratory tests yielding ' 2 51 drained soil strength properties were therefore established to simulate this 29 field condition of normal water level pore pressures. An undrained soil 30 condition is one whereby the pore pressure in the soil has been built up as a 31 result of a quick load application as characterized by the water level rapid 32 drawdown or design seismic event. 33 34 Two methods of analysis, the simplified Bishop slip circle method and the 35 U.S. Army Corps of Engineers sliding wedge method were used to investigate 36 the stability of all the slopes. 37 38 In performing the slip circle method of stability analysis the Ebasco 39 computer program was 'used. Tha method employed by the program, the sim-40 plified Bishop approach, is one in which a circular failure surface is 41 assumed to form about its center of rotation. The circle through the 42 slope is then divided into vertical slices and the tangential resisting 43 and driving forces along the circular surface are computed for each 44 slice. The factor of safety against sliding is computed as the ratio 45 of the sum of the resisting moments taken about the center of rotation 46 to the sum of the driving moments about the same center of rotation. 47 48 To use the program the slope geometry must be fully defined on a coordi-49 nate grid system along with changes in soil layers. The soil encountered 50 on the slope being analyzed must be fully defined with respect to its 51 saturated unit weight and shear strength. Water levels along the slope 52 must also be defined, whether it be in the form of freestanding water, 53 groundwater, or pore pressure built up within the soil. Finally, if 54 2.5-M6 Am. No. 50, 1/15/79

PROJECT'

HOUSTON DATE PRINTED : 01/11/79 DATE 01/11/79, TYPIST: ja Page? n DISKETTE NO. :

SD-30 PAGE 4 ACNGS-PSAR 01 appficable, the horizontal (0.lg) and vertical (0.067g) components of 02 the design basis earthquake are input. 03 04 To find the worst possible radius and center of rotation yielding the 05 circle with the lowest factor of safety, a search routine is built into 06 che prcgram by which a trial center of rotation is seleeced. The program 07 will investigate different radii from that center of rotation computing 03 and recording the safety factor for each radius. It then moves the cen-09 ter of rotation at a prescribed increment to a different trial location 10 and the above process is repeated until the lowest safety factor is 11 reached. 12 13 The simplified Bishop solution yields results that are conservative in 50 14 that shear resistance between slices, which would tend to raise the fac-361.4 15 tor of safety against sliding, is neglected. When the simplified Bishop 16 solution is used to compute a factor of safety under dynamic loading ad-17 ditional conservatism is built into the program in that the computed 18 safety factor is calculated assuming the components of the design earth-19 quake acceleration act only in one direction, neglecting any back and 20 forth motion, and the magnitude of the acceleration of the design earth-21 quake is taken to be a constant over the entire slope for an infinite 22 length of time. 23 24 In performing the sliding wedge method the Ebasco computer program was also 25 used. The sliding wedge method consists of an active wedge being mobilized 26 against a neutral horizontal block and a passive resisting wedge. The 27 = factor of safety is calculated as the ratio of the sum of the resisting 28 forces in the horizontal direction to the sum of the driving forces in the 29 horizontal direction. In applying the sliding wedge method to the two cross-30 sections the input data and search routine is similar to that of the slip 31 circle analysis previously discussed. This method also includes a seismic 32 loading in the analyses. This was done by including the product of the 33 weights of the wedges and the neutral block with the horizontal acceleration 34 faccor of 0.lg. This force was then considered to act in the direction of 35 the postulated slide as a driving force. The vertical component of the 36 seismic loading is also incorporated into the solution tending to reduce 37 frictional resistance between the sliding wedges.. This vertical seismic 38 force is computed as the product of the weights of the neutral block and 39 the wedges with the vertical acceleration factor of 0.067g. 40 41 The results of each of these analyses are presented on the tables on Figure 42 . M2. In all cases the actual safety factor exceeds the recommended minimum 43 safety factor from Table M5, indicating that the slopes are safe. 44 45 M8

SUMMARY

AND CONCLUSIONS 46 47 The above described detailed investigation has accurately established the 48 soil conditions in the area of the ultimate heat sink at Allens Creek. The 49 continuous sampling in the upper soils and careful undisturbed sampling of 50 clays and sand establishes a sound basis for the selection of lower bound 51 strength samples. Selection of design strength parameters incorporated 52 the use of lower bound strength parameters from the test results, using 53 very conservative test procedures. Results of the analyses indicated 54 2.5-M7 Am. No. 50,1/15/79

PRO)ECT

HOUSTON DATE PRINTED
01/11/79 DATE 01/!i/79, TYPIST: ja Page? n DISKETTE NO. :

SD-30 PAGE 5 ACNGS-PSAR 01 satisfactory safety factors. Reflected in the analyses are the changes 02 required to obtain the required safety factors..In order to maintain 03 the 1 vertical to 3 horizontal slope of the causeway it was necessary t 50 04 excavate the surface clays from beneath the causeway. Additionally the 361.4 05 elopes of the ultimate heat sink basin have been flattened to i vertical 06 to 8 horizontal from the original i vertical to 3 horizontal. These 07 changes are the result of using the f=9 from the consolidated drained 08 repeated direct shear tests. 09 2.5-M8 Am. No. 50, 1/15/79

PROJECT

Allens Creek DATE PRINTED
01/09/79 DAIE 01/09/79 TYPIST: k Page? n DISKETTE NO. :

SD-31 PAGE 1 01 IABLE M1 02 03 UNIT WEIGHTS OF SAND SAMPLED WITH 04 HVORSLEV PISTON SAMPLER 05 06 Boring Penetration Wet Unit Weight, pcf Dry Unit 07 No Fe c Undrained Drained Weight, pe f 50 08 09 H-42A 7-9 101 101 96 361 4 10 10-12 110 none none-11 13-15 116 109 98 12 13 E-43A 4-6 114 113 97 14 15 H-44A 4-6 111 109 86 16 6-8 117 116 96 17 18 19 20 21 Note: Drained wet unit weights were determined by 22 allowing the tubes to drain through porous caps for 23 48 hours, inverting the tube at the end of 24 hours. 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 2.5-M9 Am. No. 50, 1/15/79

d._- i PROJECT

Allens Creek DATE PRINTED
01/09/79 DATE 01/09/79 TYPIST: k Page? n DISKETTE NO. :

SD-31 PAGE 2 01 TABLE M2 02 03

SUMMARY

OF IN-PLACE DENSITIES 04 Balloon Densometer 05 Allens Creek 06 07 08 Test Pit Penetration Wet Density M3isutre Dry Density. 09 No. Feet Material pe f Content, % pe f 10 11 6 5.5 Fine sand 95.5 5.1 90.9 12 50 13 6 5.5 Fine sand 104.9 4.8 100.1 361 14 4 15 6 10.5 Fine sand with 85.0 11.3 76.4 16 clay pockets 17 18 6 10.6 Fine sand 97.7 11.8 87.4 19 20 7 4.5 Fine sand 119.8 15.3 103.? 21 22 7 4.6 Fine sand 118.5 18.5 100.0 23 24 8 4.0 Fine sand 121.0 21.7 99.4 25 26 8 4.0 Fine. sand 120.9 21.7 99.3 27 28 9 4.0 Fine sand 122.8 22.1 100.6 29 30 9 3.9 Fin,e sand 120.8 25.2 96.5 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 40 49 50 51 52 53 54 2.5-M10 Am. No. 50, 1/15/79

PROJECI

Allens Creek DATE PRINTED
01/09/79 DATE 01/09 / ', TYPIST: k Page?

DISKETTE NO. : SD-31 PAGE 3 01 TABLE M3 02 03 RELATIVE DENSITY TEST RESULTS 04 05 Test Pit Penetration Densities, pe f 06 No. Feet Material Minimum Maximum 07 08 6 5 Fine sand 86 107 09 10 10 Fine sand 89 107 11 12 7 5 Fine sand 85 104 13 14 8* 5 Fine sand 83 100 15 50 16 9 5 Silty fine sand 79 96 361.4 17 18 19 20 Note: Relative densities determined by dry method 21 22 23 - 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 2.5-M11 Am. No. 50, 1/15/79

PBDJECI

Allens Creek DATE PRINTED
01/09/79 DATE.0I/09/79, TYPIST: k Page? n DISKETTE NO. :

SD-31 PAGE 4 t 01 TABLE M4 02 03 CLASSIFICATION AND DENSITY TEST RESULTS 04 05 Sample W _y 06 Boring De pth ( ft) (%) LL PL G ( pe f) 50 07 361.4 08 B44 14 82 29 2.73-09 10 B44 16 35 87 11 12 H44 17.5 36 85 27 13 14 B44 20 39 81 15 16 ~j 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 2.5-M12 Am. No. 50, 1/15/79

P at u t.LT Allens Creek DAIL PkINIr.D - 01/u9/79 paff. ul/Os//s, Ii/IsI: k Page? o DISKETTE h SD-31 PAGE 5 f-I U1 TAbLi M5 02 Hinimurs tact ors o f Sa fety ( Re praduced f rom Dt 1110-2-1902 April I, 1970) i O's Minimum uh Case f ac t or of b7 ha. Design Candition Sa f e t y Shear Strength kemarks Ob u9 I End of const ruct ian I.)fi QorSi Upstreaa and diwnstream st ages i 10 Il Sudden drawdawn fr as 1.0g R, S U pst ream sl age only. Use com-12 maxiwum pal psite envela re. See Fig. 4 11 14 Ill Sudden drawdawn fr am 1.2 R, S Upst ream st ate only. Use com-15 spillway crest or t op psite envelag. See Fig. 4 50 lb af gates 361.4 17 le IV Part ial pot with 1.5 R+S far R 4 8 Upstreaa slope only. Use in-19 steady see pge 2 termediate envelo p. See 2u tig. 5 23 S for Ha-S 22 21 V steaJy sce pge witn 1.5 g ma 4 i m u.a starage pal N +h Dawnstream slipe onl y. Lse h tar k a, O. '. 2 intertaeJiate envela[u. nee 20 C Fig. 5 d 41 5 t e ad y se e pa te witu l.4 S f ar R :. s 2h surcha ge p il b lu vil Ea-toquake (Cases I, 8.0 f L pt rea.a and Jiwnst reaa il IV and with 1.15* s l a gs i 12 seismic 1Tading) 11 +

f. it a g plic'able ta embankments au c l ay shale taundations, i

15 r ir emoank.aent s iv e r 50 ft high an relat ively weak faundations use minimu.a q' b ta( t i-if watety if 1.4. 17 g + In zanes aiere ni excess pre water pressures are ant ici pated, use + S st rengt h. b 19 g y Tne sa fet y f.ac t ar sh.>u l d nat be less than 1.5 when drawdawn rate and pre water tressures devel.i pd tr xi tiaw nets (Appolix !!!) are used in stability analyses. 40 '41 Use snear st rengt h far case analyzed withaut eart hquake exce pt that it is nat 42 -g necessary ti analyze sudden JrasJ m f ar earthquake e f fects 41 1.ie minimum sa f ety f ac t or at I.15 is saggested in NAVFAC UM.7, since t!ais is mare car. servat ive it will be utilized in design. 44 i 45 e rb o 47 45 49 50 51 52 53 54 i

m i J h = LOG OF BORING N O. H-42 3 ALLENS CREEK NUCLEAR GENERATING STATION ULTIMATE HEAT SIN K 4 WALLIS, TEXAS i TYPE:3" thin-walled tube & 2" split-barrel LOCATION: See Plate 1 5 UNDRAINED SHEAR STRENGTH. TONS /So FT g g

m 2

= a = a b DESCRIPTION OF MATERIAL c-w >6 C.2 o.4 o.6 o.8 t.o 1.2 1.4 a 3s 5 m gg 2 os N PLASTIC WATER LICulD N a. p W vs j B D3 LI MIT C O N T E NT. */. LIMIT o o, g +- i 4 SURF. EL: 104.1' o 2o so 4o so s-ro j -Qs Very,lstiff dark gray & brown clay s si 4 3 -wi h roots to l' -with very stiff gray sandy - 5 TM. ph_ clay layer below 3.5' 15 -j!.'l}yj Tan fine sand j7 -Io 3:I:.: 15 1

  • dY;2 4

12 15 ... M 28 w ':.., !] -with cicy seems below 15' 22 i 5 -15 .'1'i[.'g -with clay layers below 17' 18 .f. s

  • .,'.f[l~l 24 1

-2o i:!E. .i'.::.::.::.

  1. ['/.'.

50 J .::ii:: r ,7..: f[5. 5 50 l l -30 '[:lj.jl.

.:0, }

-coarse to fine with gravel l below 31' '* ' il: 13 J 'D8 42-t ::: D -%.ii?:: 'i l c i i 8 '.i* .:f:.,,,3 ",/. 15 e 1. l \\ I i Tan silty clay with clay seams -with calcareous nodules to48'

}

23

    • --'- A

-with sandy clay seems & h coarse sand pockets below 49.5' 30 i - (Qontinued on Plate 2b) m i FIG NO. M3a

La p,, LOG OF BORING N O. H-42 (Cont'd) 3.I ALLENS CREEK NUCLEAR GENERATING STATION t" ULTIMATE HEAT SINK yp WALLIS, TEXAS

  • ((.I uNDRAINED SHEAR STRENGTH. TCNS/SQ FT g

g O at t a ? = O W eg >.h. 0.2 0.4 C.S 0.8 f.O l.2 1.4

  • I ag d

DESCRIPTION OF MATERIAL a. jLa 5 g3 = 3 N PLASTIC WATER LIQUID N G. lr g LIMIT CO NTE NT,*/. LIMIT e +._ i a L-

o

== == o

== o 'o Tan silty clay & coorse se,ndwith clay sandy I 6 i (MT cle seems FL.g ] [^"*h poc ets g iph Ton coarse to fine send 33 J 'i.: } gravelly with clay pockets y to 72' '8 50Aa o 6 -60 j. S.'- 7 kv.~. 35 j -;! !!:1 ~ d, 5.. A.53 50/11" g.;

fjfff,

-medium to fine below 72' l i 50/3" iiii,)':} :!..:,:' --:e2-7' I 50/6" 6 80 $T:./5 ~~ y Very stiff light grey clay with e-y l calcareous nodules & deposits 4 C Z Very stiff light gray sandy clay u .y e - _%g.';J 5 114 ij -with cloyey sand seems

  1. 3.

.J ,T ',.pll[:9 Light gray fine sand 50/8" l 100~ i.", 4 ~ COMPLETIO,N DEPTH: 99.5' DEPTH To WATER Coved at DATE: April 29,1978 IN BORING: 10.5' 10.7' DATE: May 1,1973 FIC NO. M3b

~ J LOG OF BORING N O. H-42A % "i ALLENS CREEK NUCLEAR GENERATING STATION sJ ULTIMATE HEAT SIN K s-r* 3" thin-walled tube & WALLIS, TEXAS kj TYPE: Hvorslev Piston Sampler .LTCATJON: See Plate 1 UNDRAINED SHEAR STRENGTH. TONS /SO FT p b o.2 a.4 a.8 o8 t.o 1.2 1.4 o jg 5 g d DESCRIPTION OF MATERIAL g3 8 c. 2 N PLASTIC WATER LIQUID N b$ LIMIT CO NTENT,*/. LIMIT g j W Q Z" + -e l i SURF. EL: 104.1' io ao 3a 4a so .o ro j }[ -[%s( Verystiff corkgray & brown silty clay 101 e e \\ -with roots to l' ] kkl -ve stiff y sandy clay layer Y -e - -4 e- * -5

//:.' l Tan fine sand

,:: :;:.l. 96 e 5 l: i,f-Si. "IO' n 7 Q 6::. -::. 98 0 5 -15 i-I u L. c, w. P G - ii . l 1 45-d J O COMPLETION DEPTH: 15' oEPTH T0 WATER DATE: April 26,1978 IN BORING: grouted DATE: April 26,1978 FIG NO. M4

la LOG OF BORING N O. H-43 l l ALLENS CREEK NUCLEAR GENERATING STATION 2 ULTIMATE HEAT SIN K WALLIS, TEXAS h TYPE: 3" thin-wolled tube & 2" split-barrel LOCATION: See Plate 1 UNORAINED SHEAR STRENGTH. TONS /SQ FT g [ p it -C 8 I' t a e js 5. o w > h. 0.2 0.4 a.C C.8 1.2 1.4 g m DESCRIPTION OF MATERIAL o-g3 o f 2 a s PLASTIC WATER LIQUID N a. B b5 LI MIT CO NT E NT.% LIM,IT j w n 3 z m o 4 e SURF. EL: 100.7' = ,o ao 3a .o so .o 7a j N Very stiff brown silty' clay l -with roots to 1.5 K clay ms 1 7 N -wit 4.. -der crey Eow 9 ow 1.5', i i i -5

  1. 5(l[ Gruy fine send 13

] .i.:.f.f. fig -with grey sandy clay layers, 15 jf.6 0 6.5' to 7.5, i.;.3M( j -coarse to f,ockets below 7.5' -with clay p 15 g ine below 8.5' 'e:1ir,9 r

t!
9

-ten below 12' 20 3 f Z NX Ton clay with fine send seems 15 & ockets 7 -15 P 20 -with gravel pockets,14' to i . h 18' 12 l.*.N.y:.] Red coarse to fine sand with 22 I I 1 J gravel seems & pockets .:y .l.i.i.::t. 9/.; g -with cloy layers, 24' to 25' . :.]. 'l 6 14 a 60 j 25- -:.;;jr.., -light gray with clay pockets 3:..;;:, below 26' p s. 17 3o 3::4

!!!!j:>i

~

.:.:<.:.g 31

(!!:::. :#.:.!!! ...'t..i):. s

.5i.5.ii.jE 18 e

6 -4o-j .'.] Light grey sandy clay 9 45 J E l l

!iiii Light gray & tan coarse to fine 7

.iigi,] sand with_ gravel 50 1 50 a (Continued on Plate 4b) q F* !U FIG NO. M5a

i 'n \\ ._J LOG OF BORING N O. H-43 (Cont'd) r-s oi ALLEN 3 CREEK NUCLEAR GENERATING STATION P" ULTIMATE HEAT SIN K I WALLIS, TEXAS o,- h l N l.3 ' UNDRAINED SHEAR STRENGTH. TANS /So FT - g g 5,,. M Y c' m g e ,o w ww o.2 o.4 C.* o.3 l.o I.2 1.4 o W j.. 6 = I DESCRIPTION OF MATERIAL a. gg o 2 m N PLASTIC WATER LIQUID N a. j g t* LIMIT CO NTENT.% LIMIT g [_ W e i + - - - e- ---+ l o a j~ j lo ao so 4o so so 7o

f,i,i;.,

Light gray & tan coarse to fine q ?j;.: sand with gravel , {.,::.:{ ig.iij -with gravel seems & pockets 49 e 5 j - 5:,3 - to 60 fij(({. -with gravel layer at 57' l J -.v.. ::-_ $II:: 0 -l.. t gray below 61' ,;i- ] '.i, jji ign J Z

,i

-with clay seems, 61' to 67' 9

JC 25 m

. s5 ?... ;i -with clay layers, 66' to 67' -?h:'M } 70 d,\\i:;hb 50lU" ? a ' ;:l ;l' ' ?. :.. .'..'.'.8.2 50/5" i J :l{:k.. '~ N Very stiff light gray & brov, clay I9 80-L p - 85 J H0 4 A r, 9 Light gray fine rand with clay Ig'i:$ e..:jf pockets 30 J . :.y 5:l!.b.bb 50/7" 95.. ::.. .Y.::.. a N Tan & light aroy sandy clay 24 l l l ,g w COMPLETION DEPTH: 100' DEPTH TO WATER Caved at DATE: April 28,1978 IN BORING: 7.2' 40' DATE: May 1,1978 a FIG No. M5b

7 a LOG OF BORING N O. A-43A &( ALLENS CREEK NUCLEAR GENERATING STATION 3 ULTIMATE HEAT SINK b 3" thin-walled tube &. WALLIS, TEXAS g TYPE:Hvorslev Piston Sampler LOCATION: See Plate 1 s { p UNDRAINED SFEAR STRENGTH. TONS /SQ FT DESCRIPTION OF MATERIAL j S E ! b3 "ENIE co77YEr.y. 'i.'EE E + SURF. EL: 100.7' [o -j io ,o so so ,o 7e \\( \\ s Very stiff brown sil clay 108 4 3 *4p% a \\ s\\ -with roots to 1. ' s [, \\s) -with shell fragments at l' 76 -with clay seems below 1.5' ^} 1 15 jij....: ,,g,(j{' Gray f,ine send 103 -5 m.2,- -with sandy clay layers, 6.5' to [

i 7.5'

!! ~ -with clay pockets below 7.5 {lI II -coarse to fine below 8.5' y n a -15 [. .r- '" [ ' n lL 50- [ COMPLETION DEPTH: 10' OEPTH TO WATER DATE: April 26,1978 IN BORING: grouted DATE: April 26,1978 p nG No, M6

q E LOG OF BORING N O. H-44 Ol ALLENS CREEK NUCLEAR GENERATING STATION [ -- ULTIMATE HEAT SINK Q,_, WALLi$, TEXAS 9,. TYPE: 3" thin-wolled tube & 2" split-barrel LocArroN: See Plate 1 uNORAINED SHEAR STRENGTH. TONS /SQ FT g g g .I N N E o.2 c.4 o.,e. o a t.o 1.2 1.4 I' DESCRIPTION OF MATERIAL a. j... 5 g3 m 2 m N PLASTIC WATER LIQUID c. p j f { LIMIT CO NTENT % LIMIT W tra a + - - e SURF. EL: 98.9' i to to so 40 so so To j ~ N Very stiff brown clay -with roots to 2' Gray fine sand l'# - -with cloyey silt seems below -with silty clay seems to 6' _5 . ::,.,{ ' 7' Stiff ton & light gray clay, 98 +- Q 8 -- $ - -! - ' -)- ~'U slickensided with calcareous 92 \\' r, d nodules i -15 -light gray & brown below 16' J e e { - I f - a }- *, -,- - j 87 ~ "3 Stiff light gray & brown sandy l;.~.;.] clay with shell fragments 30 e l ]! Stiff gray clay -slickensided to 36' o -with organic matter & shell it fragments, 36' to 41.5' l -with fine send seems below 90 Y

  • -*-----~f-~~

4o E 39'

  • j

-( 8 -with sandy clay layers below 7 W 42' u

  • "jg Ton fine to medium send 50/8" l

l '7.ti. 45- -with gravel seems, 44' to 56' -with sandstone layer, h,,,*) 44.5' to 47' .so-wh: IY. 38 ] (Continued on Plate 6b) n

4 FIG NO. M7a

L0G OF BORING N O. H-44 (Cont'd) {7 l ALLENS CREEK NUCLEAR GENERATING STATION s ULTIMATE HEAT SIN K h-WALLIS, TEXAS D L f UNDRAINED CHEAR STRENGTH TCNS/SQ FT g 5 O N U ll f.J to g e us > w. o.2 o.4 o.S o.8 1.o 1.2 1.4 5 DESCRIPTION OF M0'ERIAL a. e o [- 5 g g3 a. 2 to N PLASTIC WATER LIQUID N 3 E -- S LIMIT CO NTE NT,*/. LIMIT g j._, g to ga + o j io ao so 4o so so to '{ {':. Ton fine to medium send Iill.'- -coarse to fine, 53.5' to 55' i ?:!$f.i] 50/9" e 6 L :- -witti sandy clay seams below ff!':i.( 56' ij.. i,'g -fine, 59' to 67' 50/10" - 60 m. :'::. O 0,

  • N:'5

. ;. t. N~#Nb M W 2.

i t/.y...

-tan & light gruy below 67'

l:::-

1 -)!!.!!.h2 35 e 6 - 70 -with clay layers, 72' to 73' i? i .S Ibi, [J ]5 Brown and light grey clay ^ L - 75 Z -with fine send seams, 77' to ~ 81' b 30 W -with sandy clay seems below 81' I e - ' _iiiig Light gray fine send 50/11" s:; f- -with sandy clay seems to

i.'.'. ':

88' &c.;!!x 50/6" ~.... . :: *?. ..:t .a ,$*.*?:- D Light gray sandy clay with 50/9" 1 I I J -1004 ] calcareous nodules & deposits 9 COMPLETION DEPTH: 100' DEPTH TO WATER CCVed Ct DATE: April 26,1978 IN BORING: 4.2' ?4.]s DATE: May 1,1978 FIG NO. M7b

\\ LOG OF BORING N O. H-44A 3 ALLENS CREEK NUCLEAR GENERATING STATION ULTIMATE HEAT SIN K ' c-3" thin-wolled tube & WALLIS, TEXAS Mf' Hvorslev Piston Sampler LocATroN: See Plate 1 "PE 8 I 'UNOMAaNED S' HEAR STRENGTH. TONS /So PT p g-t 3,. - ---C g. _I e O j > an-o.1 o.4 o.4 o.8 1.o 1.2 1.4 fe

t_

5 g DESCRIPTION OF MATERIAL 88 35 a. Q. 3 PLASTIC WATER LIQUID N p LIMIT CO N TE NT,% LIMIT g 2 g e + {~ SURF. EL: 98.9' 'o j lo zo so o so so T Very stiff brown clay -with roots to 2' _g%- Gray cloyey fine send ll -5 -with silty clay seems to 6' 86 e 18 -with cloyey silt seems below 7' n 96 e 66 .,, - = 'a m -15 u a FL, 30-c- L. m U 0 L-6 J ~ [ 50- "~ COMPLETTON CEPTH: 8' DEPTH TO WATER DATE: April 26,1978 IN BORING: grouted DATE: April 26,1973 FIG "O. M8

LOG OF BORING N O. H-45 k -l ALLENS CREEK NUCLEAR GENERATING STATION ULTIMATE HEAT SIN K h-WALLIS, TEXAS al, i TYPE:3" thin-walled tube & 2" split-barrel LOCATION: See Plate 1 uuonAmso sHaa sTasucTu. Tossao rr i t 0 5 '. 0 o c. o.4 o. oe to i.2 i.4 gL 5 E' DESCRIPTION OF MATERIAL o-g3 o = e. 2 m N PLASTIC WATER LIQU10 N 3 5 U LIMIT CO NTENT,% LIMIT j W W ,~ o o, z +. -. i 're SURF. EL: 98.5' = ,o 2a 3a .o so .o j Stiff tan clay i -with roots to l' -with sand seems below 1' 2 ' (l [ 2' to 4' ~ t below 4' 4 l -sondy 4.5'

3 Light gray & tan silty sand with 3

il _!.,\\] sandy clay seems 4 ~ ~30 b rown & light gray clay, with B .. -l-calcareous & ferrous nodules 10 +-e-- Z 11 r-' -15 11 -brown below 18' 12 i l l 'S d -\\. [s]% Brown silty clay 6 l _25-s -with sandy silt layers & clay i N N s seems below 26' s j -with sand partings be'ow 28' 95 3.h --4 30,s\\s%I L \\] Gray clay with shell fragments r-l. & calcareous nodules X 10 35 D, Z L. i e '40' q' .,: };: Ton coarse to fine sand jl,.{

//'

-with clay seems to 47.5' -with gravel seems & pockets, -45 7...-5 23 47.5' to 59' ~ J .:<.e 5((I,I6 50 N.37 37 6 5 q 3 (Continued on Plate 8b) m l L! FIG NO. M9a

a LOG OF BORING N O. H-45 (Cont'd) ALLENS CREEK NUCLEAR GENERATING STATION q ULTIMATE HEAT SINK A, WALLIS, TEXAS s bl., a uNDRAINED SHEAR STRENGTH. TONS /SQ FT L g a g E d 0 E d 0.2 o.4 c.s o.s t.o 1.2 1.4 i DESCRIPTION OF MATERIAL a-2 m g3 f- [ 2 2 PLASTIC WATER LIQUID N

  • E I

D3 LIMIT CO NTENT,% LIMIT ad o S +- e m j to 20 so do 50 so 70

*/

Tan coarse to fine sand J -F.!.:?q:

!:{p-:[

47

:+:.::i G

'i.i::..' j.i.::.:..*- J 2 50/5" . fn..!. !.!..'i. 1 t 50/11a e 10- ?. '.4.X 65-' tid :.< -fine below 66' I.:iii..I ] _.ijdii$ 2 50/5" '.y:;f - 70 .::/;-:- ?. \\*:JY.{- I7 d - 75 V Brown & light gray clay with calcareous nodules -g\\ l e I . go. -with sandy clay seems below l M' 8 50/10" - \\ !q -h m e:l:!! 8 Light gray fine sand 50/7" l i Q,.,.- -with clayey sand seems to : l ete :-; 91

55..;'.'.:

~ ..$.'i.:i.i.i 50)7" C '5!... -with sandstone seems at 97' li?:1. p M ' Very stiff ligt oradan sandy _eJy-- e

j

-100-(Continued on Plate 8c) 5 h .J FIG NO. M9b

LOG OF BORING N O. H-45 (Cont'd) ,5 ALLENS CREEK NUCLEAR GENERATING STATION k" ULTIMATE HEAT SIN K 4, WALLIS, TEXAS ss4m l g UNDRAINED SHEAR STRENGTH. TONS /SQ FT 9 e-C -c = a: o W W ww 0.2 0.4 0.4

0. 8
f. 0 t.2 t.4 f.

g E' OESCRIPTION OF MATERIAL a. g a. 2 m N PLASTIC WATER LIQUID p j g b3 LIMIT Co N TE NT, */. LIMIT w a o g +. .+ a* ' / to 20 so 40 so so 7o .y' Very stiff light gray & tan sandy clay with sandstone nodules & deposits, sand seems '-~ -105- & layers I Light gray cloyey sand with clay ] seams & sand seams 50/1" 110 : :'.. -with sandstone nodules to 108' 7 3 -115-. _. ' _. 50/2" m ] -k. -120-' L l{:: Light gray fine sand '.::?l*.',:l. d 125- .?i:i: l !!:I([:: 50/3" a -130{.'*.*e..:;- [

:.'+1 L

.q: - -135- ?:.:.:l{::,Er!, } -with clay seems below 137' 1 i li:ig 50/6" ~ 140-::?i'S Bii:P -with cemented sand ioyers 3 below 141' ll::.:: -145J.E: -:..s.- OSl:1 9 -F"T' AdGray silt 50/6" is0-COMPLETION Ot.PTH: 149.5' DEPTH TO WATER DATE: May 2,1978 IN BORING: grouted DATE: May 2,1978 L FIG No. M9c

a SYM BO LS AND TERMS USED ON BORING LOGS SOIL TYPES S AM PL ER TYPES t e n owse ese svueot co.uum) s nowse ese samples coLuuN) ve-- -rr-s .a.. ' { h:...,- m a.s. Gravet Sand Sitt Clay S helby Piston Sotit No Predomertant type shown %eavy Tube Spnon Recq u TERMS DESCRIBING CONSISTENCY OR CONDITION COARSE GRA8NEO SOlt.S (maior portion retamed on No. 200 sieve): Includes (t) clean gravels and q sanda.an4 (2) sitty or ctsvey gravets and sanos. Condition es rated accordmg to relative density, se determmed by Laboratory tests. J DESCRIPTIVE TERM R ELATIVE O ENSITY 4 "*i Loose O to 40 % 6 Medium denso 40 to 70 % Dense 70 to 800% FINE GRAINEO SOlt.S (major porten passmg No. 200 sieve): inctuces (1) morganic and orgatue setts and claws. (2) gravettv. sandy.or s. tty clava. and (3) clavey satts. Consistency is rated accoreme to shearmg strengtn.as end.cated by penetrometer readmos or ey unconfmed compression tests. UNCONFINEO j OCSCRIPTIVE TERM COMPRESSIVE STRENGTH TON /SQ FT Very soft tesa than 0.25 Soft 0.25 to 0.50 Fir m 0.50 to I.00 Stiff 6.00 to 2.00 very stiff 2.00 to 4.00 M ard 4.00 and Pugner mete: suoen e.s.as F...,.a c ave m.y n... se, unans.nea c e m..u... .,, a en. m.= n .....u. 4ei.a n....eme.a..nen.. vn. c..... nc, rei.ag of sun. i. are s ne en ee ne er.m.i., e....ne. c' y TERMS CHARACTERIZING SOIL STRUCTURE S t ic kensided - ttaving menined planes of weakness that are sticA and glossy in appearance. L pri s s u re d containing snrtnkage cracks, frequerttty fitted with fme sand or silt; usuatty more or less vertical. 3 Lamenated - composed of inin tavers of wars.ng color and texture. f~ Internedded - composed of alternate Layers of different soit types. Calcareous contamme apprecepte quantities of calcium carbonate. L8 Welt graded - hawmg wede range in grain sizes and substantial amounts of all enf ermediate particle sites. 1 Poorly graded - predommently of one graits stre, or hawmg a range of sites witrt some u .= t e rm.di ate

s.. mis sing.

4 s to te m..aes.a en.. eve.ct der se.casong...a. accare'ne t esser teste, s.- win..se si tris t. ce = seters.nce eita ene vseerste so.t coa.siestatsoes svsets. a. ee.cri es en tecnnat.g ane.n ne se. 3-sst aster

v. Eseerment Stori.a, esarsa ress r --

U FIG NO. M10

1* \\ l Boring: H-43A Depth: 3' f Meterlot: Stiff dark grey sandy clay with '{ clay pockets and calcorecus deposits Yd = 102 pef. ? wt = 18 !s LL = 36 9 PL= 14 a 5-g4 a-6 = 210 c = 0.75 ksf a. 3 3_- u ji2 j f ., i 0 O 1 2 3 4 5 6 7 8 9 10 Normal Stress, K!ps Per Sq Ft UNDISTURBED 7 Notess (1) Repeated direct shear test used to j 5-determine the residual shear strength. (2) See Plates 31 and 32 for stress-strain (- curves. c4 a-m }3 ~ g, 52 y d, = 16' 82 c = 0.2 ksf .I n 1 ,/' a t t t i f f e e t g 0 1 2 3 4 5 6 7 8 9 10 la Normal Stress, Kips Per Sq Ft RESIDUAL DIRECT SHEAR TEST RESULTS ] Consolidated-Undrained J Multiple-Stage Type t J FlG NO. Mll

-]-

Id E Boring: H-44 Death: 11.5' Material: Stiff tan & light gray cicy, ,l slickensided, with calcareous j,] nodules i, r, = 92 wg#34

  • j 5.

tt. 74 PL = 22 C4 E a 7 I 8_ 3 u ~I 5 _ - - - - - - ~ - t e = 3' 2 - 1 e = 1.65 ksf m 1 0 0 1 2 3 4 5 6 7 8 9 10 Normal Stress, Kips Per Sq Ft UNDISTURBED 5-Notes: (1) Repeated direct shear tests used to determine the residual shear strength. (2) See Plates 33 and 34 for stress-strain 4 g cu ves, m t a. ,8_. 3 u I2 ~ 2: w M g (, = 8.50 1 d1 e = 0.1 ksf o d 0_ 0 1 2 3 4 5 6 7 8 9 10 Normal Stress, Kips Per Sq Ft i RESIDUAL r U DIRECT SHEAR TEST RESULTS Consolidated-Undrained 1 Multiple-Specimen Type J I" tJ n.c NO. M2

M Q Q Q Q C O n Q C C C C M L"""3 M E"5 E55 t""1 4, I 3 Normal Load = 2.0 ksf 1 2 j o e g 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 Cummulative Forward Shear Strain, % 4 3 Normal Load - 4.0 kst f2 _ Q ~ ^ ll } ( 4 / 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 Commulative Forward Shear Strain, % No 5 REPEATED DIRECT SHEAR Stress-Strain Curves g Boring H-43A,3-ft Depth u

Il O C n C M n n C"3 c""3 t""3 c3 t3 t" 3 r"" i t-3 t="1 m r='s 4 -@^ ~~ / s s p 3 / / s' / / / 1 / E2 Normal Load = 6.0 lof O i 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32'_ 34 36 31 40 42 44 46 48 50 52 .Cummulative Forward Shear Strain, % 4 3 / 3 / ~ 2 / Normal Lead = 6.0 ksf (cont'd) f

  • 3 I

l 0 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 Cummutative Forward Shear Strain, % REPEATED DIRECT SHEAR 3o Stress-Strain Curves 8 Boring H-43A,3-ft Depth E5

e .oo - ia m ofrw-e=e' n f""3 C"3 C C ("~"J n n C r""3 !""3 C""3 E""3 C""3 M M M M C 5 4 ( Normal Load = 4.0 ksf di 2 ~ ) / 4 / 0 l 0 2 4 6 8 10 12 14 16 16 20

22. 24 26 28 30 32 34 36 38 40 42 44 46 48 '50 Commulative Forward Shear Strain, %

l 3 5 Normal Load = 6.0 kst l o 1, / m ( 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 Commulative Forward Shear Strain, % REPEATED DIRECT SHEAR 5 Stress-Strain Curves g Boring H-44,11.5-ft Depth b

e..uu os m cu-aa r a rJ CJ O O O 07 r7 CJ P C-J LJ L-J L 1 f7 O [] / ^ 4 3 Normal Lead = 8.0 kst 2 ^ j e -e i r 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 Commulative Forward Shear Strain, % 6 Normal Load = 8.0 ksi (cont'cl) \\ 1 ( ,1 3 l f t / f-I 2 / Note: Specimen experienced _ / / substantial loss of materiel / during the third and fowth I repetitions. y 0 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 Commutative Forward Shear Strain, % o g REPEATED DIRECT SHEAR Stress-Strain Curves Boring H-44,11.5-ft Depth

~ ' ' ~ ~ ~ ' iodu &r.iy ii.ier A W s os ~rss t r Boring: N-44 Depth: 14' O - 18' O Material: Stiff tan and light gray clay, i j slickensided with calcareous nodules i I gr 2 - X i k ~ a-8. 2 E1 'gI O E c= 041 ksf E = 90 8 a J0 a 0 1 2 3 4 5 6 Nornel Stress, Kips Per Sq Ft Mo CONSOLIDATED-DRAINED REPEATED DIRECT SHEAR TEST RESULTS 5 5

l{ t. I 4 4 2 'l 4 0 ,f i 4 s L _ R ,0 -l I 9 3 AE 6 H , = 63 S \\@ ss T e 4 tr 4 C 3 ,S T 3 \\ E la R 2 ,~ 2 6f 3 ,m 3 I D / s r k o 0 D 0 ,N i0 3 E s 3 e 4 T v 8 Ar i = 82 2% E u / s PC s e n E n tr 6 6i iS 2 2 r Ri a t a r l 4 S Dt i a 4 ES m 2 " Q-2@ 2 r a r 2 2 h IN s o e s lN A e 2 [ 2 S Rt r d DS r s 0 0 a 2 2 w D ro E 8 8 1 / 1 F T e A v t D 6 6i I 1 1 a L t2 O ~ O 12e O 4 " 4 S I 1 N 2 '" 0f C 1 0 'r 1 10 8 8 6 6 4 4 q \\ 2 2 i 0 0 5 00 0 0 0 o, I 1 0 0 2 t 1 o o t",y

  • 2.'.Ct-8 3

6 6 3 3 4 4 fs 3 3 k O. 2 2 '1 3 3 fs ,= 0 , k 0 s 3 0 3 se r 2 t 8 8 S 2 , = 2 ,s l s a s yu ,m 6 2 e 6 lao r 2, ) 6 tr 2 % o e o n al ,N 4 i d S 3 c r a a y c 2tr .t 0 .la 4 n n 6 2 i S o m a r a C r r ( o ( r gc 2 e .f' ' N t 2 a 8 i 2S t h s 5 igi h L I 2 14h t e ra S

l w

l 0 6 0 h hdd 2 d . a 5, 2 S r n n e a s i 8 r tpad 81 o s d w e 4 r a a e i s r . t' 5 r Dns 4ii o 1 e .l t 1 w a n e t el F S S r k u 6 2 r 6 o f a 5 a f cd m' F v b e 1 S ts n i r t ta o h e 4 S v 0 4i 4t 1 u .N 5 d H la 2 1 t tu ) a m ra

i m

f n e h o I a w gr ( 21 C o k 1 m 2 m 4 r ir ta F u oBM 0 6 e 10C 1 4 v i 8 4 ta 4l 8 u m 2 m 6 4 u 6 C 4 3 4 4 b A@ 8 Wg 2 3 2 6 0 3 0 5 5 0 0 5 0 0 0 1 0 0 3 = S 3,,j c" m!.w

.i .a 4 9 = 4 1

== M l} _il

1*

,I 4 1 e 2 0 f s G L 0 I ,0 (. 4 F ,6 R 8 A = 3 E s H se 63 S ,ri' t (k)' S T .l 4 C a 3 E mr R 2 o 2 I 3 ,N 3 D D 0 0 3 3% E s Tve f 8 8 n Ar ,L 2 2 i E u i a PC 0 tr 6 6S E n ,4 2 2 R i r a a r = ~ e Dt l pO r r 4 4 h ES s 2 *4 2 S sI N s-t 2 n Lb re d I es 2 r A ,S 2i 1 2 a r a w Rt a t o DS m 0S 0F ro 2 2 D r N a e E e v 8 h 8i T S 1 ta A 1 d t D u 6 r 6 m I a 1 m O 1 wr 4C S L u 4 o 1 F 1 N k e O O 1 ta v 2 2i l 1 C 0 r 1 un 0 _+ 1 n ru 8C 8 6 6 4 4 2 2

jiT 0

0 5 0 5 0 0 5 0 5 0 1 1 0 C 2 1 1 0 0 4ij3 id 3: chi a 3 ,fiI 6 6 L l 3 3 0 ,1 4 4 f 3 3 s k = O. 2 s 2 '2 , s' 3 e 3 tr m ,Si 0 = 0 u l 3 'ss 3 ir a e b nr 5 8 ,s l ,o' 2 dtr i r 2 y u i N t u a o q 6 b 6 lc re e 2% 2% r c to o a y ga te 2i 'N 4 n al 4 n r 2i 3 8' bh edi I tr I r c a a a a t 1 igti pl 2 S 2S 2

l w

ty o 2 r r s a a n e e hd d n o 0 h 0 h tp ad m n e e c. 2 S 2 S e o e d d Dn is ic t lc 1 a s 8 r 8 r tan e 1 a el ed y f k u p w w C ec s r r f cd - wr 6 o 6 o 4it ls n lplloa 1 F F i o e 4 1 S e e e i ah H la u eh 1 iv v t s 4 4 i

i mr ta 1

ta gr e c tu lu a n e e w 2 o e s 1 m i 2 r e m m itr a 1 o m BM wlet o o s pr 0C 0 C ts moi - 1 1 e ar T S p )) 8 8 1 2 (( 6 6 w se to 4 4 N 2 2 g 0 0 5 0 0 5 0 O 0 1 0 0 ' m yC 3.E3 m

. I ..,.i%-.,.. i g i, I i6 init,i. t i.,ea:. g\\ iiiei .e i . ii i i i i g ii.. i.. t i. .ik,i ..i.... i. T. e .t. IC. , e ii..,. i ti .e. h ' s I i t ii e i i.. 'i e.i.... 6. a B w i ij .......i . i d f*

  • l $

so . i g 6 e e6eii I ..i i.. i g ,g g l i iii e i i@ 3 ii; ei e i i e ,, g a e it i e le F. i.. ' s i 1,*i. g,, i .6,. 6 1 gei.il. .ieei e i i l \\' U So to 5 are 6 i .:..i, i a i li it e i w l e' g ei \\ F, e i. iiii. e i i E g is ii T\\ i 14, e i .1 ..... i a I , s i o.s as a.cs c oi c.ces o.ooi .... i.. t / 6 i. i I 61 s.. p -v2) g iy At.. . v sei. t. t. i, v, ..ii..., ,i. i er soo 30 .o GRAIN SIZE IN MILLIMETERS I

    • a.tw sa=o

,,L,,,gL,, c s. GRADATION OF TEST SPECIMEN Lhlt Dry Weight, Cwwe sering Penewetten Meterial per 1

  • H-42A 7-9 Ten fine send 96 I

2 H-42A 13-15 Ten fine send 98 3 H-43A 4 Ten silty fine send 97 15 I s-8w 12 g. 3se w my Note: Unit Dry Weights are I o bened on piston soneler. E 2 w 9 i n. m n x 9 n s I wa t-" 3 E I 4 3 w Im I 0 I I I I I f i f 0 3 6 9 12 IS 18 28 24 .7 NORMAL STRESS, XtPS PER SQUARE FOOT I l TRIAXIAL COMPRESSION TEST RESULTS Consolidated-Drained, Multiple-Specimen Type FIG NO. M20 I

.i Test Pit: 6 I Depth: 5' OPTIM U M WATER CO NTENT: 12 % ,y TEST METHOD: ASTM 1557 MAX UNIT DRY WElGHT: 105 ts/cu rr e MATERIAL: Tcn fine Sond 15 125 ti ! ! I i i i i i I ! I I i i i i ; i1 i ' I ! ! I i i I i i i l l I I l l I i ! ! I i l t i i i l ! l ! 1 l ! ! i ' I I i i l l I I l l l l l 8 ! i l 1 ! I i I I i i i Wet ' l ' lI i > 120 1 ! I l I i i I/L. i i i ! I i i i i i i ' I i i i I A l' i I I i. ! I l ! I If I I l 1 ! ! i l i I i ! I I l t ! I l'f l I l l i l l I i ! i I ' ' ' I YI ' ' 'I ' ! ' ' ! ' I ! 115 ,l l' I I I i i i i/ I I i I i l I i I S I I I I I i i i i i i i i l i D I I i : I i i l i i ! i i i I i l I I i I I i !i i i i i I I I I I I I I I I I I I I ' l 110 y S I I I I ! I i is i I i ; E 5 I I I I I I i I\\ l 1 I I i i l i I I i l 1 i \\ l i i r . [ E I I ! l l 1,Dd l l l ! \\il l l hl 3 I I I I I ' ! \\' I I 105 ! I I I I / I hl l I !. I i \\ii i l if NI I l 1 i l i i I(l l l i. ! Il i_.. .. I i/ \\ Zero Air Voids Line l l l l l j l \\ SP ciRe Gravity =_2.65 .g { I I ! I I I I l l ! jg 'l I l l l I I l I i I i i i [ l l l l l l l ! l I I i ! l l ! i l l l l l l l l l l l l l l t I i l I l l l l 1 l 1 l ! l l l i II I ! I I I ! I I I I I I I I ' [ 95 0 5-10 15 20 25 WATER CO NTENT, */. a CO M PACTIO N TEST R E S U LTS 1 g-e L FIG NO. M21

I Test Pit: 6 Depth: 10' o PTIM UM WATER CO NTE NT: 12 o TEST METHOD: ASTM 1557 MAX UNIT DRY WEIGHT: 110 LB/CU FT MATERIAL: Tan fine sand 2 Dc I 130 [ l I i ! l l 'I 6 I I I I i l I il ! :

p l ! l l j i ! :

I : I : I l l l

m I i i t

!, ! l I l! I I i i i : l i { !il l 1 l l l l l i I i i t I i i ! i i i il I i i l i i ' jg I i i i i i l l I 1 I I i i l i i : i I ' r ! I I i ; i i JWet i l ! t i ! I ' l 8 I I i 6 I i iN! i : i ! I i I l l ! i ! ! l I/ i N I i l 1 i i i I ' I I / I ! ' I ' I f b I i l 1

i ! l

/l I ! i l?I I I i i I t 120 S I 1J'I ! 1 l 4 I I ! ! I I ; } l ! I l/ I l 1 I i l i l l I I [ l I i t/ I I I I I I i i l I l N 115 I I I ll I ' I l I I I I I 2 I i i TI l I i i i i i i i i i [. y I l i l l l l 1 i i l I ! ; I I l I I I! I I d kZero Air Voids' s {, iii i l I ! l IYI Line, Specific I I i i l I l ! I I NGravity = 2.65 110 ! I i I I i I / \\l > Dry ' l I !k[I i ! i ! i ! /IXi i i li I l l/" ! l ;\\ I l\\ ;,., I i l / i I i T i l i ! \\! l ! I I I I ! I I I I i\\ ! ! ! ' I !\\ I i 105 i i l I i ! l \\1 l

\\l l l l l

! l l l \\ l i i ! I i [ I I i I i ! I i l I I I I I I I I I I i i ! i l l I i i l i I I I I i ! i I I - : I 100 0 5 10 15 20 25 WATER C O NT E N T, */. CO M PACTIO N TEST R ES U LTS 7 N L FIG NO. M22

.n O Test Pit: 7 / 4-! Depth: 5' O PTIM U M WATER CO NTENT: ]2 % TEST METHOo: ASTM 1557 MAX UNIT ORY WEIGHT: 103 ts/c:.: n f M ATERIAL: Ton fine send 5 D,d

  • r'
la i

125 l I .5 i i i j I 1 j-i 1 l l I ' i 7 l 4 120 i I 7 W . / et i i i" If I 7 115 e C f l l e S i l/ I I ! / t i i a 4 L i i i / i I Zero Air Voids Curve 5 110 /i i 7 2 i i. Specific Grevity = 2.65 i j y /: i i l i i j ' i i i i 1 V

i i

i ! i N s i : ls Ii I i l \\ 3 105 , 9i i g ,0y \\ iW \\ i i I .f Vi I \\ l i i !l ' / ! hm i joo /!, I t I i ' i ' i i I I i ie i i. l i ~ I i! i I i 95 ^ l l i m 3 0 5 10 15 20 25 WATE R C O N T E N T, */. a f )i ~' CO M PACTIO N TEST R E S U LTS R .J FIC NO. M23

I Test Pit: 8 Depth: 5' opriuuu WATER cO NTENT: II

  • /.

TEST uETHOD: ASTM 1557 MAX UNIT DRY WEIGHT: 110 ts/cu rr uATERIAL: ion fine sOnd wsr !L 130 ii I l l I I I I i i i ! l l jy !l I I I I I i l i liI jk ll I I ! l 1 i i l i l i I I I I I l l l l I I I I t ! I I I I I ' 125 I I i I l' I i i l i I ! i i l i ; i i i i i l i i l l l l., Wet ! I i ! I i l I i ' I i ! l W I I i i i i l i i l i I I /! i I # ! I I I l ' I ! I I I/ II I ! I i I I i ! 120 ( b i i I / I I I I I i i I I I l l 8 t i !d I I I I I i i i i D l T I I I i l I I I ( l I l /l I I j.I I I I i i i I I II I I I l 115' bI l I \\/lZero Air Voids b { [I I I II Line, Specific L._ is ' I l l l 3 I i\\i I f l \\' Gravity = 2.65 I I l I I I I i i i s E I I I I I \\l I ! I I l{ ijo I% i i \\l I ! I I I II I riT/i i l ; i\\ i ! I i l I l /l I '\\t j ! ,\\ I i l M lY I i l ! I i ~ I ~l i I I T I I I ! i 105 I I I 'I i' I i i l i ' I : I i i I ! I i i l ! l l l l l l l 1 i i l l ! I I I I I I i ; ! I I i ~ l l l l l l ! ! i i ! I i l joo I I I I ll I i i I i i i i 0 5 10 15 20 25 WATER C O N TE N T, */. 1 CO M PACTIO N TEST R ES U LTS 7 U L FIG NO. M24

  • [

Test Pit: 9 A . Depth: 5' O PTIMUM WATER CONTENT: 11

  • /.

D TEST METHOD: ASTM-1557 MAX UNIT DRY WEIGHT: 110 LB/CU FT &(I~} i<aTERIAL: Tan silty fine sand

Q!

r i.. 130 .E l I l I i l l l ll I I (1 f* Il ! I I t I

I I I

i i

L.

1 I I l ! ! I i i l I i ! ! I i I I i i i l l I ! l l l l l ! i !] I i ! I ' ' ' I I I I ! I i I I ' i 125 i J l i l I I I I Ll I i l i I : I W I i I i i I V ett i i ! i l I l l l l / l } Al i l l ' l l 1 !I I l ! ,/l Ii I "i l l I i i i I I I I I/'I I I ! I I ! I I I I 120 i t i I i/ I I I l I ! l I I I I i 8 i VI I I i i l I i l l I ) i 1 fl I l l i i i i i l I l I /t l l l l l l t I ! I ~ $ 115 I I I III I I I I I I I I I 7 2 l l I i/ i l i I i i i I i I j l / I ll l l 1 I l l l l l Z _1 - LL t-b/.ero Air Voids-I i. Dw I z L l N ine, Spec.fie -

r l,

I l. L _ y i t l i l 110 G

,g mity = 2.65-
i
; g i

I I i /i ! l I ( l i) 1 I I l/l l I i I iT I ! l \\1 I di l i l l ! \\1 ! l i ! i ! I I I I I ! I \\I I I I\\! I L 105 l I l l l I i l' l l ! !\\ i !g I I l l l 1 l l i i l l l il' I l l l l l l l l l l l l l ~ I l l l l l l l l ! I I I I I I I I I I I I I I I ' i 1 100 0 5 10 15 20 25 WATER CO NTE NT, 7'. e 9 L CO M PACTIO N TEST R ES U LTS P ,m FIG No. M25

i' f g porins: H-420 EPTH: 90' UNIT DRY WEIGHT: 114 L8/CU FT MATERIAL: Very stiff IIght grey sandy clay WATER CONTENT: 17 Y. LIQUID LIMIT: 39 7 PLASTIC LIMIT: I4 s,j 't initial Void Ratio = 0.4722 Specific. Gravity = 2.68 (assumed) 21 N 1 h t ) \\ 's N 2d' \\ l \\ \\ 4 4 3 \\ I [a, 'l 's s E s i i,, 4 's !a i N \\ \\ \\ G 5 P z ( m w f N h o P. = s E \\ h 7 N g N { \\ r 5 N t n. L 9 i 10 , a i l ll 12 ']L 13 l U l {' 14 l o.1 0.2 c.4 o.s o.a 1.0 2.o 4.o 6.0 e.o 10 20 30 40 50 VERTICAL PRESSURE. TON /SQ FT k<n,' CONSOLIDATION TEST R ESU LTS 6J FIG NO. M26

u 4 soRixa H-42A oEPTH: 3' UNIT DRY WEIGHT: 114 L8/CU FT fi MATERIAU Very stiff dark gray & brown WATER CONTENT: 16 % q silty clay u ouso u uiT: 32 g ] PLASTIC LIMIT: 13 ,,J 0 Void Ratio = 0.469 s i~ Specific Gravity = 2.68 (assu ned) Ia N b N 2 N J N ] 3 a 4 x 5 l ) s s a x \\ w 6 z s 7 w ,,\\ 7 2 \\ u z 8 N' u z N w 9 u r E L 10 11 1 12 13 '] 14 s. I U 15 0.1 0.2 0.4 0.60.81.0 2.0 4.0 6.0 8.0 to .20 30 40 50 VERTICAL PRESSURE, TON /SQ FT D CONSOLIDATION TEST R ESU LTS ..) J FIG NO. v.27

g_8 toRINsH-43 ocPTw: 85' UNIT oRY'WelGwT: 110 L8/CU FT }g g g MATERIAL: Very stiff light gray sandy clay wAreR couTcNT: 18 % uouso uuiT: 59 plastic uuiT: 17 I initici Void Ratio = 0.5199 i Jecific Gravity = 2.68 (assumed) i I N q s ( V 1 3 s \\ \\ I 2 E sN I g s N s s -5 [ s N 5 \\ 7 u N\\ E, t; U 8 u 9 ( 10 [ ii 12 [ l' o.i o.2 o.4 o.s o.s i.o 2.o 4.o s.o aoio 2o so 4o so VERTICAL PRESSURE. TON /SQ FT CCNSOLIDATION TEST R ESU LTS I hu NO. M28

soRING: H-43A oEPTH: 1.5' UNIT DRY WEIGHT: 108 Ls/cuer hI MATERIAL: Very stiff brown silty clay WATER CONTENT: 13 /. { unuto Liuir: 36 ~E ^87'c "'T: 14 Il3 Initial Void Rotio = 0.5647 N Specific Gravity = 2.70 (assumed) i i \\ !3 N g 1 3 \\ l \\ l \\ 'g 3 s \\ 4 G' 5 M l[ s z N 5 \\ 0 \\ g m s 7 o N b ( \\ l 8 u e a s b 9 ^% j 10 I 11 12 a 13 14 { o. o.2 o.4 o.s o.s i.o z.o 4.o s.o a.o io 2o so 4o so VERTICAL PRESSURE, TON /SQ FT v CONSOLIDATION TEST R ESULTS e L FIG NO. M29

DORING: H-44 D EPTH: 25' uNir ony wEisHT: 87 Ls/cu rT -i ( MATERIAL: Very stiff light gray & brown WATER CONTENT: 36 v. clay with calcareous nodules u 0ulo u nit: 70 { PLASTIC LIMIT: 22

  • L 0

.j 0 i Void Ratio: 0.938 \\ Specific Gravity: 2.70 (assumed) 1-l 2 \\ -l k N s { 4 \\ \\ X i s. 6 \\ \\ l 8 = i N l" \\ 10 C i N \\ G 12 \\ \\ x g E N w 14 s o N h jf s 1 \\ 3 \\ O 18 g rL 20 i 22 1 24 1 26 s 28 a 30

7 i

0.I 0.2 0.4 0.60.81.0 2.0 4.0 6.0 1010 20 30 40 50 6 1" VERTICAL PRESSURE, TON /SQ FT i ! 'l CONSOLIDATION TEST R ESU LTS d F1 NO. M30

G R AIN SIZE CURVES m. .= m. ' l' {g 7-is i l'a i ' I %i I Ll l'l i g ! W 6e i i t:s e i e 4 ie! I. \\t le !ei li W i i iiil ' I i ll{ l l s' % q I.!ll' 6 > * *; I l'I f I i i i i l j ll i ,t !Ig d. )}, ] tillI. I I Ili i ' I i Ils l is i '_Q iiii., i .g l g h-1 I t I } lC fg I .;W i ! ti! ! I t } C.[ li il i ltili, til 4 i I~ ~ g" l e W, i i Ii 16 I I i ll l l 1 6 l y i, ilg i i I is I E V E i', I !'I ll ll 1 1 e i I i o 5* l 'a i n i i ii , i i i T-i wg i 11 '. i ) \\ t I I i i _,, w z t' I $1 11 1 \\ It i I i I ,li i a I 8' ~ l in I t .1  % a al6 I i i t ~ I' -( )l i 69 i' { l I Ili { l }' , lli e t t i 6 I i 66 I liil t t I i t 6li ii i l so so o a e o.s os nos om ooos noos GRAIN SIZE IN MILLIM ETE RS e avec i sa4o p c... I s. c..... I Curve No. 8aring No. Penetration, Ft Material i H-42 11.5 Ton Gne sand 2 H-42 15.5 Ten Hne sand } 3 H-42 34.5 Ten coarse to Gne sand with gravel 4 H-42 39.5 Tan coarse to One send with gravel E G R AI N SIZE CURVES I ...m.. .a m w m. s, .w w i, s. m w.o .e m eo r* }l ~ l ___ N fI I a iit il i4 ' i l 60Iil l 1 lj (6 kTI N I \\l i eiiI i I i li e i i i I i A li61 111 \\ s g 16 t e ! i e lis t i ! t IF !\\ ils i e I lei.

9 T 1

is; i i,

ll; iii i q,

t \\ ill 6 I illi i l 'r -{7)I ill i l, I ! i E \\l I F-. i UJd I s l i~ { t I i ill l l6 i i h _ L/( i l ifi 7 % I!li e i I .it 1 i i i y g I 8 I (5 Yi \\ _I ) i ' _ Lili t i I l l 1 i I I i \\ (8 N t itIII i ti i l i \\ ~ ll I li I I i l i $w I \\ l i I I l [, NJ i i 1 il 8 i 2 ?Q \\l* I i i W y \\, z I so w w To w I( i \\ l 6 e to I so I .\\ t \\ \\ il i i %\\\\ !e 11 till i t i t i It i i %' sii t e l I I i l it l 6l l 6 lit l i t t i i lillis 1 i i co so o s e os as nos om ooos nooi GRAIN SlZE IN MILLIM ETE RS e avro san o c a... c.. Curve No. Boring No. Penetmtion, Ft Material 5 H-42 59.0 Tan gmvelly coarse to Gne send 6 H-42 79.0 Ton snedlurn to Rne sand 7 H-42A 12.0 Ton Une sand 8 H-43 25.0 Red coarse to Gne sand with grovel & clay loyers FIG NO. M31

s e* b GR AIN SIZ E CURVES 8 y a a smu.a.e e.we see e s.r= .a-ee.s e. I 4 p % * % 5% w. g ee. Fa w me .o

  • a re

.me t*e o l ( 1 j i 4l i6 lg th i !'ji i ]li t I e t i I4i< ll ,g t ei n i l I 6 l 4 illi ; I * ! I tilI i i i i i l% ii k '!l I 1 1 Il! 1 l l I 'l lll l l l 8 i f l lll I 1 E 5 c -- - ~ -- [%m ' ' g f k - Nii qu i N J.,d l l l* I I I il i M , i 5 i li i 11 t D si ( I lth I i 8 l ll t ! ' I ili l i N 1( lk 6 It a l i o 'NQ i\\'A QiiI i i { l Go W > eo g ii i i $ ~~ '_"g ^~ l I s 11 I I I Il l sk I \\ r~_ _... iit in i i i r 'O ~ ~ l 6 l l I ie6l l i sie l I i e I e ill Ii ~ soo no o s os o.s a os ooi aaos nuos GRAIN SIZE IN MILLIM ETE RS saave6 sano silt.ecLAY I c.. , c..w. n. i Curve No. Baring No. Peneemtion, Ft Material 9 H-43 39.5 Ught gmy coane to fine sand with omvel 10 H-43 54.0 Light gmy & son course to fine sand with gravel I U ht gmy coarse to fine sand with gravel 11 H-43 69.0 9 12 H-44 54.5 Tan coarse to fine sand with gmvel G R AIN aIZE CURVES I ere. s e m. % %% 5.. ee. m w., w m.* e m i 'll %\\l il'i il 8 l ll0 ( l I l l 8 i i t N. ' I t i i _.\\ 'N li e i i i i l!' e i t i I ' s XI l j -N;,-It$ i ! N--.EA l I in',I l#1 ( c 4 9h t ' li i stF d i

  • s i' l i E

g as i C/ _fi \\ l g il t i i i I i 16t l I i, l E i 17) i\\ I ) IN ! 4 6I I all i I I I ,3 g i'. i 61 i .\\ N:ii I . ii i. i : i g a 6 i L i 111).4 i i e taiii i i t g, T t IN) t t la i i I I i e l 11: I I il# l l l 5 y \\ \\ h ll l 1 I iiI i l 1 I' [, rg i 1 l ll ! l l ,o 3 g 'N, 4 I \\ l ll l t i g e \\ lll I t i l I i t', l 6 \\ \\ :ti i i lt i = ,g j I i l' \\ N I 1811 I t I a-i l h tl} I ! !Il6 l l { 4 %[l (N.u i t t i

4 e

sii6 I i i ll l 6 l iiil l i i s iil i i : I. I ii I I i i 8! ii i i fif t i l i t o j g ico so o e e o.s os oos om acos nooi too GRAIN SIZE IN MILLIM ETERS 6 enavet san l c.. c.... ew { Cee No. Boring No. Peneemtion, Ft Material 13 H-44 69.0 Ton & light gmy inediurn to fine sand 14 H-44A 4-6 Gmy cloyey fine send I 15 H-44A 6-8 Ught brown claysy sand 16 H-45 49.5 Ton coarse to fine sand with gmvel 17 H45 64.5 Brown ca:irse to fine sand I FIG NO. M32 d

.~ t,, 4,, u C^ : CC 0~ 3 T- M M M n r"""! F'"S P"'1 P"5 Pat M M See M M M l l G R AI N SIZE CURVES u s svanoamo sent onuines en sucmas u a siamoaan suvt avessans monomt ra n 3 2 ab e % h, is % 4 s e so se is to so do so 70 soo s40 200 10 0 O -4 . s ,D;,) N 90 k 10 g )I .\\ / Ili 80 g, -l'l *y - - 20 .I h 70 ~ 30 l *.. .j g 3: 60 40 $ 3m ..\\ a. b 50 t d2 50 $ f . g.. [ F 40 60 u 2 ta p 6 30 70 o g h Q-20 3 80 10 90 = 1 l 0 100 10 0 50 10 5 1 0.5 0.1 0.05 0.01 0005 0.001 GRAIN SIZE IN MILLIMF.TERS GRAVEL SAND 5 i Cnarse Fane Coarse Medium Fine l - Curve No. Test Pit No. Penetration, Ft Material 10 6 5 Brown fine sand m E 19 6 10 Brown fine sand z 20 7 5 Brown fine sand ? 21 8 5 Light brown fine sand i$ 22 9 5 Brown silty fine sand w

. ; _, _,; ; _2 ;..... - _, FORM DFT-1D (1s?8) Joe No. _ f1788$6 5 2 1 = it l X uy1 ~ i 8g 5 2 l 1 O d a i l' O 1 2 3 4 5 6. 7 i 8 Normal Stress, Kips Per Sq Ft 'j UNDISTURBED 2-Boring: H-44 Material: Stiff tan and light gray clay, y,,o". slickensided with calcareous d "u nodules 1 .! g u E mE O a e a O 1 2 3 4 5 6 7 8 Nonnal Stress, Kips Per Sq Ft RESIDUAL y E u? UNCONSOLIDATED-UNDRAINED TRIAXlAL COMPRESSION TEST RESULTS 5 1'

,e \\ w

o i

7eNs CURVE SENETRATICN v3 Cv:- 1 3r 3 M KPA KPA l CFT3 CKSF3 CKSF3 I 4.3 193.2 139.3 l, j C 16.03 C 4.03) C 2.913 6.1 95.9 137.6 s C 20.0) C 2.00 C 2.S73 1.0 N, i \\ / \\ g I -e g a s 0.8 s t D. g i E. l 's n s ~ E \\ k I f 8 0.6 s w \\ d s s ___.-~~ e u._ w g i U 1 l e S 3.4 c 3 l -'N.. w Q l Qw N l ~! 0.2 G Eoz O.0 0 5 10 15 20 23 AXIAL STRAIN, C%) UNCONSOL10ATED-UNDRAINED TRIAXIAL COMPRESSION TEST Stress-Strain Curves 3 FIG NO. 35 & 36 ..}}