ML19246C377
| ML19246C377 | |
| Person / Time | |
|---|---|
| Issue date: | 06/12/1979 |
| From: | Hodges W Office of Nuclear Reactor Regulation |
| To: | Rosztoczy Z Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 7907240443 | |
| Download: ML19246C377 (87) | |
Text
N
/pn ara u
'o UNITED STATES
[ "y.7, c ' j NUCLEAR REGULATORY COMMISSION E
,.g,
WASHINGTON. D. C. 20555
[/
[
j JUN 12 079 MEMORANDL'h r0R: Zoltan R. Rosztoczy, Chief, Analysis Branch, DSS THRU:
L.E. Phillips, Section Leader Analysis Branch, DSS gp, Reactor Analysis Section, FRCM:
Wayne Hodges, Reactor Analysis Section, Analys ' Branch, DSS i
SUBJECT:
SUMMARY
OF MEETING WITH GENERAL ELECTRIC A meeting was held with General Electric on May 24, 1979, to discuss implications of Two Loop Apparatus (TLTA) results on the GE ECCS evaluation model.
Further discussions were held on model deficiencies, other than those suggested by TLTA, which are being evaluated by GE and by the staff. Enclosure 1 to this letter is a sumary of the meeting.
Slides presented by GE are included as Enclosure 2.
Enclosure 3 is a list of meeting attendees.
M Wayne Hodges Reactor Analysis Section Analysis Branch Division of Systems Safety cc: w/ enclosures Meeting Attendees Joe Ferris ACRS Tech. Assoc.
El,
/
790724oH S 362 261
f I
Summary of May 24, 1979 Meetina With General Electric Reference 1 compared tests 6007, no ECCS and test e405, low ECCS flow, from the blowdown. heat transfer program. Contrary to intuition, the pressure transient with ECCS flow was slower than for nc FrCS flow.
In October, 1973, GE was requested to explain why the test with ECC injection had a slower pressure transient than a similar test with no ECC injection. GE proposed two possibilities: 1) increased vapor generation in the bundle due to water storage in the bundle, 2) lower volumetric break flow because of a higher liquid fraction for the case with ECC injection. Of the two possibilities, the higher vapor generation seemed more likely.
The prospect of higher vapor generation than anticipated in the simulated fuel bundle implies that the vapor generation in the SAFE and REFLOOD codes may be non-conservative. The staff and GE held several discussions and meet-ings ori the subject and in February,1979, a letter was sent to GE (2) request-ing details of w. varisons of evaluation model calculations with test data.
After extensive evaluation of the test data, GE concluded that the slower depressurization observed with ECCS injection was due primarily to the differ-ence in break flow. In fact, the vapor ficw rate exiting the upper plenum of TLTA was less for the ECCS injection test than for the test with no ECCS in-jection.
Based on this new interpretation of the TLTA data, GE concluded that the
^
information requested in reference 10 longer needed. As an alterna-tive, GE proposed to submit a ccmpar en of the peak cladding temperature as calculated by the evaluation model and as measured in the test for two
_ 362 262
, TLTA tests (average power, average ECCS flow and average power, no ECCS flow). The GE argument is that this comparison shows significant con-servatism in the overall calculation (approximately 1000 F) and thus no detailed evaluation of submodels within the evaluation model is ' required.
GE complained that new ECCS inputs to the NRC always create crises; even when the overall model is adequately ccnservative. They urged the use of creative judgement on minor issues and suggested that we pull together to solve real problems.
The staff acknowledged the GE viewpoint and expressed a degree of sympathy with it. However, the staff is compelled to satisfy 10 CFR 50.46 and its Appendix K.
The differences between the GE and NRC positions can be summarized as follows:
GE feels that they have demonstrated overall conservatism in their evaluation model. They, therefore, believe that submodels within their model could be non conservative without violating 10 CFR 50.46 or Appendix K.
The staff distgrees with GE in this particular application; submodels not specifically addrissed in Appendix K but which may substantially affect the peak cladd.ing temperature should be either best estimate or conservati.. The fact that the e' aluation model predicted conservative results for a single, one-dimen-sional, test does not substantiate that the same degree of conservatism exists in a r actor calculation.
In a!.essing the TLTA data, GE uses qualitative argument to reach four basic conclasions: 1) slower depressurization results from higher liquid break flow-less vapor from core region with ECC; 2) vaporization data base is appli-3()2 2b
a f cable after approximately 40 seconds-negligible reactor effect; 3) high heat transfer is applicable to both average and peak cladding temperature. T%
i staff agrees 'that this qual tative assessment is probably correct. However, quantitative infomation is needed to _ support the qualitative argrment. The infomation requested in reference 2 and additional infomation to substantiate the arguments concerning break flow and vapor bundle flow are needed. New neat transfer data would be required to obtain credit for the increased hsat transfer in the ' HASTE code.
GE also discussed staff concerns on model deficiencies referred to as the Leibnitz rule approximation, and h = 4.
In the Leibnitz approximation, GE used absolute rather than relative steam velocity in calculating with a mov-ing boundary in SAFE and REFLOOD. GE has perfomed studies on representative plant types to demonstrate that the maximum increase in cladding temperature e
In July, 1979, GE due to the Leibnitz rule approximation in SAFE is +10 will submit analysis results and bounding case argument to show that the combined effect in SAFE and REFLOOD will be less than +20*F.
Based on pre-liminary results, GE was confident that they could demonstrate an effect of less than +20'E.
GE presented an analysis which shcwed that use of an increased heat transfer coefficient in SAFE (h = 12 rather than h = 4) results in a decrease in peak cladding temperature. However, the manner in which the heat transfer transi-tien frcm nucleate boiling to the h = 4 regime was performed is not clearly conservative. Therefore, the conservatism of the heat transfer transiticn in SAFE should be justified.
362 264
, Action Items Several action items resulted from the meeting. They are:
1.
GE is to supply a written narrative to accompany the slides presented at the meeting. A date for submittal of the narrative has not been negotiated yet.
2.
GE should strengthen the evidence that the steam seperatordP is a,,ositive indication that the core region contributed less steam with ECC and tnat the sicwer depressurization was cont.olled by increased liquid break flow.
3.
GE should quantify and explain the scaling principle for TLTA. Existing documentation may be used for this purpose.
4.
A more detailed description of the tests and facility for the vaporization tests is needed to show that there are no significant difference... hen compared to the test program associated with the present data. GE committed to supply the comparison but no date was. discussed.
5.
GE must either justify that not includinc CCFL at the bottom (side entry orifice) is conservative or put it into their model. Some infomation has been supplied by GE in previous submittals but review of that information after the meeting shows it to be inccmplete. No date for submittal of the infcrmation was discussed.
6.
GE was requested to discuss the ctr.d1+, ions required for water to accumu-late at the grid spacers.
- 7. The conservatism of the heat transfe-transition in SAFE should be justified.
362 26S
f
, References l
s 1.
G.W. Burnette, Thirty-Fourth Monthly Report, "BWR Blowdown / Emergency Core Cooling Program, August 1978," Sept. 11, 1978.
2.
Letter to Dr. Glenn G. Sherwooa, from Roger J. Mattson, February 9,1979.
Et-
..-</.'?.
L GENERAL ELECTRIC AGENDA ECCS MODEL ISSUES -
EXECUTIVE OVERVIEW e
INTRODUCTIOF1 G.G. SHERWOOD e
DISCUSSION OF TECHNICAL ISSUES G.E. DIX TLTA LEIBNITZ RULE o
ECCS PROGRAM COMMENTS H.H. KLEPFER e
SUfEARY G.G. SHERWOOD GGS 5/24/79 362 267
BACKGROUllD ON ECCS MODELS e
PROBLEMS:
1.
NEW ECCS It1 PUTS TO NRC SEEM ALWAYS TO CREATE CRISES
~
2.
ECCS MODEL IMPROVEMENTS NEVER SEEM TO GET APPROVED e
EXAMPLES OF CRISES ECCS INPUT ERRORS NOV. 76
~
(DELAYED TWO HEARINGS)
TLTA, LEIBNITZ, HEAT TRANSFER
~
FEB. 79 (DELAYED BLACK FOX HEARIilG FINDINGS)
(CAUSES LICENSING BOARD CONFUSION) e LAWYERS TELL US STAFF HAS AUTHORITY FOR BALANCED JUDGEMENT NRC MUST INTERPET 10CFR50.46 e
PERSFECTIVE 20 INCREASE IN CALCULATED PCT WITH 1000 MARGIN PRESENTS MAJOR C0f1CERN TO STAFF THIS THINKING APPEARS OUT OF FOCUS GGS 5/24/79 362 268
LOCA EVALUATION MODELS COMMISSIONERS OVERALL THE LOCA MODEL MUST BE ADEQUATELY C0flSERVATIVE APPARENT NRC POLICY IT MUST BE SHOWN THAT ALL OF THE SUBELEMEiiTS OF TliE MODEL ARE CONSERVATIVE REGARDLLS OF THE OVERAL'_ DE110dSTRATED LOC.l. fiODEL CONSERVATISM GE VIBf COMMISSIONERS DO NOT REQUIRE SUBELEMENT CollSERVATISM OR THEY WOULD HAVE SO STATED APPENDIX K DOES NOT REGu dE EACH SUBELEMENT TO BE C0tlSERVATIVE FINAL ENVIRONMEllTAL STATEMENT RECOGNIZES SELECTIVE CONSERVATISMS JUDGEMENT ON C0tlSERVATISM SHOULD BE MEASURED AGAINST 10CFR50.46 CRITERIA (CALCULATED PCT)
GGS 5/24/79 362 269
SUMMARY
2 e
GE BELIEVES 10CFR50.45/ APP K REQUIRES OVERALL LOCA MODELS ONLY BE " ADEQUATELY CONSERVATIVE" THROUGH PCT --t!0T NECESSARILY ALL SUBELEMENTS e
BALANCED JUDGEMENT NEEDED FOR EVALUATION OF i1EW INFORATION TESTS GIVE GOOD AND BAD NEWS CAN'T IGNORE MODEL IMPROVEMENTS e
EXTENSIVE EFFORT SPENT ON SEVERAL MINOR VARIATIONS WHERE 0
1000 F MARGIN DEMONSTPATED s
LET'S LEARi1 FROM THIS EXPERIENCE Gil ECCS CRISES e
LET'S USE SOME CREATIVE JUDGEMENT ON MINOR ISSUES AND PULL TOGETHER TO SCLVE REAL PROBLEMS SIGilIFICANT MODEL CHANGES FOR SAFETY LONG RANGE ECCS IMPROVEMENTS DAY-TO-DAY APPENDIX K "CONFORMANCE" REQUIREMENTS GGS 5/24/79 j e,2 p, g g
t TECHNICAL ISSUES TLTA BACKGROUND TLTA/ECC CONCERNS RECENT DATA INTERPRETATIONS / IMPLICATIONS TLTA/EM COMPARISON LEIBNITZ RULE ISSUE GED 5/24/79 362 271
TWO LOOP TEST APPARATUS (TLTA-5) WITH j EMERGENCY COR5 COO:_ING SYSTEMS.
q
......s,
)
tr-
,,c,
+
db'
.rs NI 9PW.* *% Jf C.stJg l
x Y. ;t.0%
T ism' %= W m:
r.n R....
/ $
l T
u 9
N
. t n n.
, s...
p,
,i.i p
'"g;"a y,;;"$ e-ll
- x 3_- h,1
,l. -1 x
l kfi,mE R d
.c
~M d
-l
~~
es s'
C'EE 5/24/79 z i: ~>
, 7 -)
.) U (_
g_ l r_
~
0 NEDO 21836 1000 1#
O ATA - TEST 49C3muN 16 1000
~
78 m. (200 cml ELEV ATION
/[
== PREDICTED SY SCAT 02 ANO CHASTE 05 1200
=
JET PUMP g
g 1000
$UCTION ipr AEASED MEAT TR ANSFER DUE TO LICuto L
800 UNCQVERY FALLS ACK F ACM UPPE* PLENUM e
7/
1 E
W
]
C 3
[
ST k
~
SATUR ATION TEWE RATVR E g
[*%.m_
600 ~
% 4, a
l l
1 1
O to 2J 30 40 50 7tME (med CO ASTOCWN PCST LOWER P(ENUM FLASHING LOWER PLENUM putsMtNo s
WIN OCW MRE FLOW PERICOS Figuts 4-4. Compernon of Higt Power Rod Poet C: adding Tempresturws for N Nominalhewt Test x
m 5/20/79 vii
.j h.[
L/J
PRELIMINARY INTERPRETATION OF TLTA/ECC TEST (WINTER 1978) s y
e DEPRESSURIZATION TRANSIENT CHANGED
- HEAT TRANSFER
- BREAK FLOW e
INCOMPLETE DATA EVALUATION e
SIMPLE BOUNDING ANALYSES PRELIMINARY CONCLUSIONS e
DEPRESSURIZATION RATE SLOWER WITH ECCS e
APPARENT HIGH LIOUID DENSITY IN BUNDLE WITH ECCS e
IMPROVED BUNDLE HEAT TRANSFER WITH ECCS e
PCT PECREASED WITH ECCS GED 5/24/79 362 274
NRC STAFF CONCERNS WITH PRELIMINARY CONCLUSIONS j
s I.
DEPRESSURIZATION CHANGE COULD RESULT FROM HIGHER BUNDLE VAPORIZATION 11.
VAPORIZATION DATA BASE POSSIBLY INAPPROPRIATE
- HIGHER LIQUID CONCENTRATION IN CORE III.
HIGH HEAT TRANSFER POSSIBLY NOT APPLICABLE FOR PEAK BUNDLES
- ADVERSE BWR PARALLEL CHANNEL EFFECTS IV.
HEAT TRANSFER IN SYSTEM CODES (AVERAGE BUNDLE) TOO LOW
~
GED 5/24/79 362 275
GE INTERPRETATION OF PRELIMINARY CONCLUSIONS l
1 e
NET EFPECT VERY FAVORABLE
- HEAT TRANSFER DOMINATES
FURTHER DETAILED DATA EVALUATION NECESSARY e
APPROPRIATE TO EVALUATE NRC STAFF CONCERNS e
APPROPRIATE TO DEMONSTRATE EM CONSERVATISM FOR TLTA GED 5/24/79
$62 2l0
RECENT DATA IMPLICATIONS TO NRC STAFF CONCERNS l
I.
DEPRESSURIZATION RESULTS FROM HIGHER LIOUID BREAK FLOW 2
- LESS VAPOR FROM CORE REGION WITH ECC II.
VAPORIZATION DATA BASE APPLICABLE AFTER $40 SECONDS
- NEGLIGIBLE REACTOR EFFECT III.
HIGH HEAT TRANSFER APPLICABLE TO PEAK BUNDLES
- NO DRIVING POTENTIAL (aP) DIFFERENCES IV.
INCREASED HEAT TRANSFER IN SYSTEM CODES REDUCES PCT
- LOWER PCT WITHOUT PEAK BUNDLE CREDIT
- MUCH LOWER PCT WITH REALISTIC PEAK BUNDLE CREDIT GED 5/24/79 362 277
PRESSURE DRCP A~ROSS STrAM SEPARATCR FOR AVERAG PChER TSE
.65
[
D AVE. ftWER AYE. ECC a
h T"
r- - AVE. EtWER Ho Ec,C
/
k ho)
.4C en 8
s I I
\\
1 g
\\
TlI J
l N
T I
's L w
1y
.iKr o
T 1
N., T
'T
%J 7
y ' ' ? '
~ l_ ' _ __ _I _'_ _ _
~
1 s
1
.l.
,tc
-10.00 70.00 150.00 230.00 TIME (SECONDS)
$h A
~
49
,s,-
5/79
_ j62 278
TLTA FHENoMEdA lMTER.PR.e7AT:otJ o m-G--Ed'
/
TYPgAt.
Mi stu 2('
o LGh1 (, TEST 640G/h p@
v
&'.c '
o J
L W
3 (:/
).I
,n ci C
g o
[ o-k$
L (A
u t.
d xb Ib k:o o
4e so TIM E (GE cd k
c:an em 1
i g iwo "g % " ~'i sg g
(TEC 6414/'5)
A f
6 i
2 AVeix6 RWF-Q
~
2
/
s u ut t.s (YesT 64cc/ i)
/
s
/
sj \\,
~
/
f
'v a soc i
i i
i o
e Ac 6o So too PLc g
TIME (set) 5/24/79 362 279
/.
s q
l
\\
BASED OW N
fE6uHl9As2.'/
%s INT 68.PtiTATnM N
N N
- ~.,.
k.I -
'~ x s
x.
- ?
Ng _.
GED 5/24/7S
!) 6 2 200
- 6. 0C' i
E ELNDLE (HE.ED LENGTn')
DP FOR AVE. PChER AVE. ECC TEST (6406 RUN 1)
Q
]
Li. 0C c.
Q.
C i.e j\\
)..
l Q
2.0C L
\\
,h l'f't Uh, lia!.in
'iffl(n,
M O.,.. g,,,
p '.,,', 9.;,,,
j
'i i !
%, ~l, j
i
' i.i i
i i
' ^ j+"i%%,yg,y),. %.,,, ;,,
0.CC
.0.00 20.00 u0.00 60.00 TIME (SECONDS}
GED 5/79 362 281
s EUNDLE DIrrrxEIAL PP.ESSL%E FCR AinAGE PChE, NO ECC TEST (6406 PdN 3)
\\
~
- 6. 0C' i
I T
,T ta d r
4 THL.st eso"
,.6..e-o 4.00
,md o,-,g.<
c a rm uud 3p c_
meo &*N C
~
mswmm l
m
= wxr.
gygg &*tN utJ o.
8"'"'""
t-w p
E i
tr 2.CC h
?I'
\\
d 14 N
fi I
- .p tv 4,.,,,.,
7,i, r.,
j I,' J. f_w,6
/ d i
4 g7l,.+hc.y ;,gg;.t,1._,,~w4,.;,s..,.
1 I
0.00
.,c, 0 0 2n.nr.
';0.00 50.00 TIME (SECONDS'.
GED 5/79
[562.
282
~
FIG.(3),
COMPARlSON OF BUNOLE INLET /curLET PR ESS URE
.DRORS a
6 i
.wy f*es
@4 2 *,,<
t m
eunte y
r(pIcAL p p, ESSURE, uscEnrAtHrY
,,* e mp y
0.
\\
x' a ma a
o a.
M 2 a!
AVERAGE. POWEATEST (64o6/0
'(,
- ~ - - PEAK FCWEF, TEST (64 (4/S) 2 4
e t
9 O
Jo 10 0 TIME (SEC.)
7 h;
5/24/79 362 283
SYSTEM CODE HIGH HEAT TRANSFER
~
SAMPLE REACTOR CALCULATION RESULTS e
MOST SENSITIVE PLANT e
SYSTEM EFFECT ONLY (SAFE /REFLOOD)
- AVERAGE BUNDLE TLTA HEAT TRANSFER
- 95*F PCT DECREASE o
REALISTIC EFFECT (SAFE /REFLOOD & CHASTE)
- ALL BUNDLE HEAT TRANSFER
- 335'F PCT DECREASE ACTIONS REQUESTED e
ADDITIONAL SAMPLE CALCULATIONS PLANT SPECIFIC BREAK SIZES GED
~
5/24/79
'44 2
3(g
(
i s
N
~
~~Lxk /E m cDHPaerwrJ
=
?,.500
'i l
l 1
8 1
A 9
- m. m gg
~
{"
g 4.H. cAtru.twTion l
9 L T > t.
'F WW
=2 g
Y 1
Woo i
czrss
@d F
5
/
g".,.
- peo, f
/
TvTA QATA (Tesr Urc6/l)
O
' ~~ l D
u So y
gA c ~.
_1 1,, _ A I
L 0
50 too 15o 7.co 2 00 Bec Tt4E (9eQ
. Gg
.5/24/79 362 28')
CURRENT TLTA STATUS 1
IMPROVED DATA EVALUATION e
SLOWER DEPRESSURIZATION NOT CAUSED BY BUNDLE VAPORIZATION e
VAPORIZATION DATA BASE REPRESENTATIVE AFTER 40 SECONDS e
SIMILAR RESPONSE FOR PEAK AND AVERAGE BUNDLES e
NO BWR PARALLEL CHANNEL INTERACTION POTENTIAL e
HIGH HEAT TRANSFER EFFECTS DOMINATE e
NET RESULTS VERY FAVORABLE ELANNED TLTA EFFORTS e
DETAILED EVALUATIONS CONTINUING e
IMPROVED CODE ANALYSES EFFORTS e
MEASUREMENT IMPROVEMENTS e
ADDITICNAL TESTS e
IMPROVED FACILITY AWAITING NRC APPROVAL
>T. ---=
GED f9 5/24/79 s.-
g LEIBNITZ RULE BACKGROUND e BOUNDING MODELS INCLUDE VARIOUS APPROXIMATIONS DOCUMENT NEDO 10329 e
APPROXIMATION CHALLENGED AS NOT MATHEMATICALLY RIGOROUS e
NRC STAFF CONCERN THAT THIS IS A LARGE EFFECT A
5/24/79 M2 287
LEIBNITZ (CONTINUED) 1 RESULTS/ STATUS o
NET EFFECT IS TO ACCELERATE LEVEL MOVEMENTS e
SAMPLE CALCULATIONS BEING MADE WITh FULL LEIBNITZ RULE e
EFFECT ON PCT FOUND TO BE SMALL<
10*F ACTION / STATUS e
SAFE CODE CALCULATION VERIFICATION IN PROGRESS e
REFLOOD CODE BEING ASSESSED e
EXPECT TOTAL EFFECT TO BE<
20*F CONCLUSION e
SECOND ORDER EFFECTS e
ORIGINAL APPROXIMATION VALID GED 362 288 5/24/79
ECCS PR0 GRAM C0MMENTS l
e RECENT TLTA DATA INTERPRETATION FAVORABLE o
VAPORIZATION CORRELATION IS APPROPRIATE 2
e NRC. TECHNICAL CONCERNS BEING RESOLVED FAVORABLY o
LARGE MARGINS BEING CONFIRMED - TLTA/EM 9
MARJOR RESOURCE COMMITMENT ALREADY EXPENDED e
MAJOR RESOURCE COMMITMENT REQUIRED TO CLOSE CURRENT STAFF REQUESTS e
STAFF REQUESTS CONTINUE e
GE SHOULD CONCENTRATE FUTURE RESOURCES ON MORE IMPORTANT BEST ESTIMATE WORK HHK 5/24/79
$62 289
3 AGENDA - TECHNICAL PRESENTATION
-j
~
INTRODUCTION A. J. LEVINE LATEST TLTA INTERPRETATIONS G. E. DIX iiTw ei COMPARISON RESULTS A. S. RA0 REACTOR IMPLICATIONS A. S. RA0 LEIBNITZ RULE HIGH HEAT TRANSFER STATUS OF DEVELOPMENT OF G. E. DIX IMPROVED LOCA CODES
SUMMARY
AND C0!1CLUSIONS A. J. LEVINE AJL 5/24/79 562 290
TLTA/ IMPROVED LOCA MODEL
~j
~
PURPOSE OF MEETING e
DESCRIBE ADDITIONAL INTERPRETATIONS RESULTING FROM EVALUATION OF TLTA DATA e
PROVIDE PRELIMINARY RESULTS OF THE TLTA/EM COMPARISON e
DESCRIBE WHAT GE IS DOING AND HAS DONE IN AN ATTEMPT TO OBTAIN AN IMPROVED LOCA MODEL e
OBTAIN UPDATE ON REVIEW SCHEDULE OF GE MODEL SUBMITTALS e
DISCUSS THE GE TLTA DRAFT PROPOSAL LETTER RNW/LYH 5/24 /79 362 291
TLTA MATRIX f1RC r,EQUESTS GE PLANS
" SEPARATE EFFECTS" "0VERALL RESULTS"
~
3 COMPARIS0 tis (TLTA TESTS) 1 COMPARISON AVG. ECCS, AVG. POWER AVG. ECCS, AVG. POWER
- ALREADY COMMITTED FOR 6/'~
LOW ECCS, HIGH POWER WORK IN PROCESS, WILL COMMIT TO EVALUATE i1EED FOR ADDITION COMPARISOf1S AFTER 6/79 7 SEPARATE PHEN 0MENA 1 SYSTEM PHEi10MENA - PCT TEMP, PRESSURE, BUNDLE MASS / LEVEL (6007, 6406)
LOWER PLENUM MASS / LEVEL, BREAK FLOW, CORE INLET FLOW, BUNDLE STEAM FLOW (IN/0UT) 4 SENSITIVITY STUDIES BouilDING APPROXIMATION STEAM GENERATION, BUNDLE WATER CALCULATIONS HOLDUP (SAFE & REFLOOD)
SNW/LYH 4/26/79 362 292
l
SUMMARY
e GE's TLTA PROPOSAL APPROPRIATE BASED ON NEW INFORMATION GE TO COMPLETE VERIFICATION OF PRELIMINARY RESULTS TASK COMPLETION - JUNE '79 GE WILLING TO CONSIDER ADDITIONAL COMPARISONS AT THAT TIME IF APPROPRIATE e
GE's COMMITMENT TO LOCA MODEL IMPROVEMENT CONTINUES TO BE SUBSTANTIAL CONSIDERAELE EFFORT ON ZEUS & THRST e
GE BELIEVES BEST ESTIMATE MODEL IS JUSTIFIED JOINT EPRI/NRC/GE PROPOSAL RNW/LYH 5 /24 79 362 2S' 3
GD TLTA DATA INTERPRETATION
~
j TECHNICAL DETAILS e
TEST DESCRIPTION
SUMMARY
e SYSTEM FLUID LEVEL CONDITIONS IN BUNDLE COMPARISON WITH VAPORIZATION DATA BASE o
ECC EFFECTS ON DEPRESSURIZATION BUNDLE VAPORIZATION BREAK Fl.0ll CONDITIONS GED 0l 4ll9
, c, f;
TWO L.OOP TEST APPARATUS (TLTA-5) WITH EMERGENCY CORE COOLING SYSTEMS i
I' Elf au.e=t
)
L
=....
^ ' ' ' ' '
[b
- a a c] -
-p. -
3
@ cfr,t% j$.']
x_
,e
'I*
ECC tuners J
/
e A
e it sin f
le
- e tsuke a
4
- _ _ a x
t)( [n@
lo
\\
get
~
- +
.j 1
F._ _
O D-e Ss SO
[
t2
- b...
REFE RE NC E TEST (AVE. fDWER, AW_ ECC )
B C.
6406 RUN 1 33o
.l 6-D
/. ~.
t B
' e s e :ls i
5 4
$ 2.o 5
u
/
I s,-ws
~
J:
V
/
}
f HPCS.
i U
F 'l o
- l t
/
4 a
< r
{#
l[
h fy /9
-uts O
' "'mo h
O F
m yil m
C 7~/ME C eiQ E ISC) iU El!
j -g "4 1 g esx co s,
i l
r7 L
I i
r A
T Scco y-b l
l u
i r
- 0. [ -
j l\\
y/ %
e e,r u
ud 4
I
~
nst we q] 1500
- T"5 ;x....,,. w, e
^"S 4j m
i T5 11
@is 26
'o o
e oc 2co ao nus escea es.
w s a a.>
'~
362 296
6406 RUN I, EARLY RESPONSES
-f d
1000 m
nta q
LPF RE t t e.
1 sacrics w
us=ven W
a:
i m
O
~
J P SUCTIc
$ 900
- uNCcvEW, y
tc
/<c.
I
%h
\\
[II
,;. ic e'1 i ece v'
O 10 20 TIME cse.c)
A TIME C cec) l
=
l I
'\\ _
,l it "
i s
h' N
hk k
Y N
~Q{ lb'\\g
~
[
N 7 F
i set rewsn % c r c. wasuasuests
/
600-40-c G
cucur
,/
INr" LARES (48 5E) n I
i i
A g
Tur D
5 S ea
< soo E
E d
k 8,
e 5
l x0 0
10"'
20 0
20 40 TIME Csed TIME (sac) oa7 u._
362 o
SYSTEM FLUID LEVELS GED s/24/79 362 298
@ P '* Q
~ JF 5 d
- 6401RUN1, NODAL DENSITIES
' ~~
I N
l' I
d D
60 do l
N
(
q - ~M {E f 7
i s nen secer
-a, 1
$$1
'iN(:f.
I h g fg/k.k d
l
~
"'8 y@ % 4 A
C~~N"}?'mj
/
@,vN/ M w
Mn 4
+f,+s. 44_,.L s.n.
o F
di l-6C de Lik
_g 7
g.
-=-c" s
i e10 1'.
x E
g h-
$2'1
~
, di, fu, l
b haghbM4h[hdddh)$
I j
~
i s:
1
-4 l *o [
i l
Qj
- * [)
CWE R GUNOLE
-e p
)
/]'
JN O'1 \\
%,%'3
- 4. y, @/> h
_ --,4 i
lk, i
. \\
a to a
2 t
g4 Ll L'*8 f
3 8
7 5,
- 3_le
~y' we b.
c m..
cc
,Nt -Yh-l
& m..d, i eyg%20,qMb,$'W.
I b2::.: =
P, wwm L Ed~* L.u w" ;
-r
.).
- G I'
ft IL., ' C C l
] C.I,,
i
""i" g
m..
, {,g_q (rg:
l
.,r 2 us
)
7- - -
. i-. -
i.
t[ L-f b ~l p
i_
y
/#f-
~
4
?"F a,
o
' M ~&.lG%-.P \\
~
CL.
to 2w r.
O i"e V
j nME c sca n
3 362 299 g]N
g)~ D'Mf e
6406 RUN 1 TWO-FHASE LEVEI4
,m SHCW TLTA 9J:_FI LLIN G.
s e
b h-
-a, 7, l :
_t,,t, t
.m e,
a 4
o 8
it
',m l
', -. ".., f,.i O.
p.
T
's, ',
m
?
n 2 ? avtt
\\.
- s "l )
j
\\Igtf?,J.(. -
.a t
r'r
~
'v'
- / i,,,
.6
-* "T,,.
~ - --
,.4
.22
,, p.L-(
3----(\\ z.-~y g..q.y....
(-
i j mi..-
3, 7
i 'l i ' 'i 4
s t.i
. \\.
-~-
e u
4
\\.
w i.
\\
24,t
\\
ev nss F
m' g
24 8 'L L t A 6
(
E i
u,
\\.
\\
w:
\\.
t l
)
t 7
.\\
c - N.4 i;
a i
~l I
i a:
4 L
w w
s.
g s
s D
'g
.[
Qh g
E I
u
~.
t.
a%
/
-e t
n g
1 i5
=.e
' ' ' " " * ".........'....1
\\
E- ] t L-
&0
~i'[FT **
lp=a uevc.. ~
i
,g ; t. p,s:
_E 9 l~22 II Ll-e., e - _l
T %- -
.~.....J,..........
~
il
-m.
u-Ij q 7, -g 7
..p%..e-.~-~-
I s
w.a..a r... 4 a MJ
(
i gT
~~~
ib 3l
< - ~, -=
=
f 3
q'~nn -
~
i l.F 2 7 EVEL
(
7-. }
L nl W
'ra.-i %
l 0
So loo
..o
,co aso aoo
=.
TI'6. (Oe C )
E N
a 3b2 J00
J
.C Oj9 l
-)
(-
]
___l 7 g
,6 C. arm
,,...e---
,,,e
'e,,,
- i.. %,rre
& M.f.w t-M
'p%. 4...: -
h.
f,' *h.*f.. '. ', '
f,I ~,,
1 s'. $)
' _. M
,l',
,A on
~
c'
-1 p'.6,
,' 'q. l i
.l. 4p.
. (J
=
V" L
y
?. 3\\ :
\\\\i T
. it.
. d. l.
- i. b.
e i
,j.-
t-
..o
... cIf d. c.-
. ;s
~, -
?
. M'.
.W...
t.'....:.
A:p f..t..
- e; c~. g,
,;t,
s
..nl
. ~..... -
.c i
p/
p s
/
(? R.sY. m
--W-4 E.
w".
Y d Cn. s: '
r a
a "T
.e c
c:: e..w.
o 3
- % ~
., -i
- s. -
h 4
.C,n
.-.Q s
- m..
... : : m...
r-w
- yy.
.;q;.
..i..,.,..:.
CL, 6406/1 HPCS FL0u INCEPTIM b,
6406/1 JET PUMP EXIT EXPOSURE (27 SEC)
Q (s 40 SEC)
O, C
$C Oj C C
h
)
b M.s q M ?g en.rdr.:'.'.Kr c,u &s Q-%
M
.ms m
., y.. v ~? :
w mrA
., ', ~.... -
g
,, ie m.-.e i ppfy-4gf.(fp
, Q>
,, - m=
,9, y
y
+.,:
u- --
t
- o...
k~r -
- !
- 3
- ~
? f.i.
)'
Y
.r
.n
=,.
=l 3-c
. =.
d,. u.
- r..
ja
'.i.g
'i i
T.
hl
+-
a, i
- *3.
a, in 3
e.7,0 9
3
')(~s g f b yl
.. -1 3 qi N
.g g
y c
O-4 L7 C
w>
- e. g e
m l..
..,e..-,
r v
r
.n p
.t
.Q%.C m
m m
2: 1
. s ;.,.
..r
.*:.1...s.
'. '.:,-:C. p,.
' q.,.
W- ~...
':if.
, J..-
p.
~
s L.
s,.
c, 6406/1 A n n m ence_ c<scsus E d. '
d, 646A Lacs A.MO LPcr meamg.
36,2
@O!.
F
(% 64 SEC)
.S.
e n
c r
'N.
jg 1
-M h El g
Jg g
. hS '
'dh[ E)
[
g g T
' ',Y Y',Y j [gg Yk'd 4' SA.Y.
- .c.
m
.r:dc"!
nho 1p i
i.:q lq
~
p p
p it,
[3
.j
'4',.
gfi 4
.,11 i
J 9
y n
!h en
+
us.*
m B
f il a!
r,
?
yf.. _.
2.W,.w
.c _
- e., _
r
4,l. l, y
'd*
'..L'
.'.t e
... _. g
.: ?.
m;. '..,. =,m? g.
'1 w
,..._ : s 9
+... -
. ; t.-.. -
.s
.y 6dC6/l JET P MD REFILLE D W1.
LIG:.!!D e, 6t.0 6/l CCFL MEAKS tcWN AT BWASS U
(*. 105 SEC)
(s 150 SEC)
.a m
% 4 fra q'^
&' fr1 s)I I
b s
E-~
-s omwn-as
....a 2A m a
,,.s w:.,- 1.r. ' -.<
s e-n s
- r..= a u
ms s_.mo
,,,a
. j.
t; c i g
- .1 -
g i.n :.
a r,.,
c' 9 i,.
.)-
( aM
(.a
)
.,n
'92-
?.1 2
unt..
l T
? f' N ?.-
.I.
-..p4.,-
o.
3 N.-
n J,
e c
,,..- 1,.
yA[G f
- -4 f
0
'.; D-W., ?. g &v..:.d,l.:.l.
1 P:s/
i'
- y,..y~.3.tQ,.;q'~}' &:
n-R :f %.) ~y
- i:
k:_','k *.y,k Q.-
5 Y.5:
h'. $*? $k.$? b.
- ..a
. ;. ~ ?..%.-
>*: :. ?..
%-e
~.. -
.o; L.-
- v -
- g. 6406/1 SYSTEM Ficusc.
A.
640f/1 En m (s160SEC)
Gaco. no sco 362 602
BUNDLE DIFFEREt1DAL FRESSURE FOR ME. ft3WER AVE. Ecc TE ST C 6406/k )
6.0('
L10.00
,6 -
C]rJL I
~ - THL.auso-
- ~; -n iso-o 30.00
]
11. 0 (
g a.
a.
M n-uasmse m,,,.
a y
l
....u..
a r
,5 20.00
_i eno oaia 4
-+ m onuo.m ty g
to
. ;f,*,',',
ma
< un im >ou
_s O
ca 4re 4 von Lij 1-o
- 2. 0(
l l
/
y
, a
-6dL. s t o*
,r e
(
N l.
10.00 i.'.]
h,q, C--
t,,
C I
))h; v
i
',1 p i bv IllV
'/'! r I-
'el,l.,0;'/,h.,... }. l,;..aWd'hyjb,:'gf;(hjlf.__(;.l.f,'ij_.
L I
i t!
0.04_ _ _
,4 w
-10.00
/0.00 1S0.00
- !30.00 310.00 d
Lkl
[
bI
- ) ; - - --- - - y,,
a.
U d 'A d
01730 o
o o
o o.
o.
O.
o.
O O
o o
O 7
m OJ O
O e
e w
O On
.'J 9
3;,
I o
C I
I Z
..,?
O 9
l
-A.
O O
O u
1 s
o
_g
_d O
i I
wg
--1 3
h$
W e
_d.
r l
A
= :2 h
l e
i e
W9 2 Tdn i
i
'5 hW N
i i
w' s
I ydO O
dQ l
$~'
-s.t w
ev W
c "2
'O C u,1 si
+! o m1o
_%I
=
2
$1. ' o N
$~
W I
12 :
1 I
sr,
=e, i
N I
(
I, "M
a i
l if i
'h = !,
5 l
l l
e_-
a s= @ 6 s.
e s.
4 O
Mi e!
a1ss e
eosa 55 g'c).....
j e
PRESSURE CONTROL VALVE STEM
/
SEPARATOR STEAM LINE e STEAM
/
DOME
[
UPPER SL5NUM CORE ~N
- 90 u.'s ;
e $5"ugho" CORE BYPASS mN FEEDWATER PUMP BG.AN BLOWDOWN $
T
~~
~~~
FLov>
VALV ES W N
DOWNCOMER R ECIRCULATION 1 nd L
- c g
n
=%
==
v
\\
DISCH ARG E R ECIRCULATION FLOW l
\\
LOOP g
LIMITERS LOWER PLENUM FIGURE 2. TWO-LOOP TEST APPARATUS
'W r
@3 Q
GED
%2
?;05 s/24/79
t;... -
g VApoit FLOW a
I c
1 l
3(
s h,*
k CRP
%9
=%
.SI i
D NAPOCITATIOM TESTS Q
0
, rd C O
__ _3 () 2
l BUNDLE VAPORIZATION CONCLUSIONS o
HIGHER BUNDLE VAPORIZATION BEFORE JET PUMP UNC0VERY 40 SEC IN TLTA 30 m 45 SEC FOR REACT 0h e
VAPORIZATION DATA BASE ENTIRELY REPRESENTATIVE SUBSEQUENTLY BUNDLE AND SYSTEM CONDITIONS MATCHED CORRELATION CONSERVATISMS APPLICABLE
~
GED 5/24/79 562 3U/
ECC EFFECTS ON DEPRESSURIZATION GED 5/24/79 362 308
PRESSURE DRCP AGCSS SrcAM SEPARATCR FOR AVERA2 PCWER TcSTS a
.OY
(
D AVE. ftWER AYE. ECC dr
{
T
F' I
- 4. -- AVE. fcWER Ho ECC 1
s
/
hoh
.m i
x o
I
<n
\\
e s
1 T
\\ l-c
\\
I T
_a N
7 l
i s
L w
. l,v
,i ('
o 2
il s '
I.
-} T- - l
-. m 1
2 r
1 11
~ IC
-1O.00 70.00 150.00 230.00 TIME (SECCNDS) r w
7 QC) 3()d J
5/79 gg i
BREAK FLOW DENSITY COMPARISON j
N a
5 /
\\
CO 00
/ ~m i Broken Loop Suction
\\
/ /
Line Density
\\/
/ /
k/
[
ECC (6406/1)
/
.p
[.l p
f e
y\\/
o
/
Depressurization No ECC (6406/3)
Rate Changes
/
/( [
- /
l
- n.. n..,
x 3
\\lh h $ l'?..!
I
,i n,
=m p?
/
Broken Loop Jet
{
r$ [] + g! #
I
}
K/
Pump Density I
96 y
re lk>
(d
=
h)
=g
\\
/ :
d/l
=
e.a (
v1 n,sl'g a sd y
g,
./.1 Jr I=
e No ECC (64C6/3) u 0'OC
^-
f gn CS
' I ' " # ' '
I E'
. /['f'dq y
^
Y 1
CC ( 06 1)
/
q
/\\.
Lever Plenum
/
Lever Plenum
's Density
/ /
F~. ashing
'a node 2
/ /
i 9
2
,//
b a !
j gNe
}#
p,.
se ECC (6:06/3)
.,NNM/h%g% -
j j
0.0C
-10.00 70.00 150.00
}i@,,
M TIME (SECONDS}
j\\
4 5
V h'
362 310
ECC DEPRESSURIZATION CONCLUSI0t1C e
CORE REGION CONTRIBUTED LESS STEAM WITH ECC e
PRESSURE VESSEL REWET MAY HAVE INCREASED STEAM FLOW e
SLOWER DEPRESSURIZATION C0tlTROLLED BY INCREASED LIQUID
' BREAK FLOW GED 5/24/79
/
TLTA/EM COMPARISON RESULTS i
e PUFFOSE:
IDUSTPATE CDtEERVATISh IN El GLCLLATIGl CF PCT e
BAC(GFDIO 2
PEVIOUS CALQJLATIG1 SHGED 1000F CUEERVATISi1 7X7 FUEL BLOWDWil FFKE G'LY HOT N O AVEPM E EU ELES 0)PfE!T GLCULATIQ1 8X8 FUEL ELGEd! #0 ECC PFASE9
~ AVEPME BUEE GlLY CO[ESUSED LA@ SCAT FOR ELGE41 PFASE SAFE /EFLOOD FOR EITIFE TP#SIEIT 0%STE FOR PCT GLQJLATIQ1 ASSLPFTICfE FEASUED POER #0 DIPESICIS STADED #FFECIX K #!/ LYSIS ASS'JFTICi3 OTCLUSIGl:
PELIMItMR( GLCULATICfl SHGiS D1 CCfEER!nELY GLCULATES rCT BY 10IF ASR - 1 S/20/79
U N
O e
- ' N PEAK CLAD TEMF
,,,g k VERSUS TIME 1h 35)b !.fk
=10' l
{
\\ Sf 3
i
(' >
D L'
4 6
Q%Q g
l,#
v l
cr.
O_ hh N
X LIJ
. c.
[
b o;"gg
/
~-
nm
/ **W CT [M ttJ O_ { m }
~
omu e ->
O. _ut uuLJuut.
0.
50.
100.
150.
200.
a-2 TIME
(
SEE
)
5/2fi/L rit isiv 1 Tror liiTri Err I -T: Actin g n p. eng gig 3p g7 ie
- 4....
o e
q PEAK CLAD TEMP Y\\ D VERSUS TIME
<h
, a \\.,, \\
'['y, bag 4 3,.
g y;.3 i
\\\\ Y,
., (';
4 4,
's k.
\\
\\
\\
\\
s\\ M'0
\\
t R
e%$\\'
+ Gv 4
g&
'Lu
/
f 2.
uJ C3 I
@ ua vo**
f
@e1 m
_._J L3 PCT AT llIGil Pova ELEVAT10tl C
2MstKi Ovii1E 818
-l M3 0.
11lLI'l111
~
~
50-100*
150.
200.
Asg-3 595 "
0-TIMt.
(
SEC
]
5/24ae ricar 1 Ire,T U/0 ITC f rKilllD N!D Di CN.CUJ,KD PCT t.
4...,
SUMMARY
AND CONCLUSION
~
~ j
~
e QRfEiT CALCLLATIG1 C0iiFIRE PfE/100S CONQ.USIONS ABOUT '
CUSER/ATIS$10F PCT CALOJLATIGl USING El e
PAJOR AEAS OF CONSER/ATISi ELO(m.fi EAT TPREFER - HUCLEATE BOILING TILL lEC0VERY IELA H HIGER ECC PFASE EAT TF#EFER e
OVERALL l.ARGE CONSER/ATISi 0F EM OEPADGS A'.'Y ILERTAINTIES MOUT SE,' EELS ASR - 4 5l2409 3g ZiS
REACTOR I.M P L I C A T I 0 tl S g
e LEIBilITZ RJ'I F[/100SLYDCGFEfiED S%LL PCT SEEITIVITY e HIGi HEAT TP#lSFER SEPAPAE trrtCTS LDB PCT C0iiSISTEii #FPLICATIGl eel LDE PCT CONG.USICfi:
CUEFEIT COES TEED fiOT E CWID ASR - 5 5/24/79 362 3i6
i LEIBNITZ RULE
~
e QRFEE AFFfOXIPATION STEA1 VELOCITY LEAVING NOCE EASED ON EUEELE RISE VELOCITY #D FUU( VELCCITY ONLY LIOJID CALWLATIOiS AE EXALT e
EXACTCALWLATION STERI VELCCITY SHOULD INCLUDE INTERFAE VELOCITY GLY SIGilFIC#E 'nEN LBEL &#!ES AE WRt' P#ID
( ~10 SECS OUT T 200 SECS)
FEFESEEATIVE PLM STUDIES SHW Si9tL SENSITIVITY TO ERIES IN SME e
STUDY DOIE USING SME (EXACD/EFLr0D (FFROX )
SKE CCfniSIO.'l EfEtT. ED FOR SME/EEFLCCD (EGCD CmCLUSIC(1:
GFH #FROXIPATIm IS JUSTIFIED ASR - 6 3/24//9
~~
~~
~
362 3l7
C ii 0 I C E 0F P L A fl T S o
DO IFPCRTNff PAP #EERS 111COVERY TIE #0 RATE PESSUE #0 EFESSURIZATICN PATE CCFL FLASHIt!G e
lflC0VERY TIE #3 PAIE EE FAST GIG BFJJO B,E EDIUM G9ID-SIE BEAK C,D SL0d (SPALL BEA0 F
- TER ECC IllITIATI0il A
e PESSUE>IEPFESSURIZATION PATE HIGi SE1SITIVIT(
A,C,D F0EPATE B
MIt0R E
SPALL SEAK 09IiCPJ F
e C401E CF FLRiiS COES A11 CLASS CF PLRITS #0 ESECTED ESULTS ASR - 7 5/24/19 362 3IO
RESULTS~0F CALCULATIONS EDUCTI0il IN EDUCTION IN PLRif/ BEAK Lt!CWERY TIFE EFLOOD TIE aPCT A
T(PICAL BWP/6 0.6 10.
-40 B
'PCI FDD 251 RW4 2.5 1.8
+5 SUCTDBA C
-10 DSCGDBA D
LPCI FDD 218 RW4 3.4 7.6
-10 LIF11T.".3 DSCG E
T/PICAL R & 3 2.0 0.8
+5 F
TYPICAL 57tL BEAK 0.4 0
+2 BWP/3 o
NO SIE11FICN4T CFAE IN PAER PAP #ETEPS
- PESSUE
- LBEL o
S911 PCT SELSITIVITY ASR - 8 5/2W79 362 3l9
~
~
79fyllfi-fA06T s
i VESSEL PRESSUPE trSIR) 2 BAF -
17.59 F EET i TRF -
29.59 FEET WATER LEVEL F EET
=
I2
- r
,if 3 (ASE - E (N # 0X.)
0&ggg,
~
(n 0.8 CL m
L1J
'g cc
_ J N
D (D
Ul
'.i LiJ
'~
- 0. ll 2
2 2
2 2
2 2
A Lij (D
V i
(D
/
ltJ
/
9/
\\,/
- = " " -
- 0. ILLI r-l r 'txtxt-O.
100.
200.
300.
I10 0.
TIME (SECONDS) mR-9 5/2/1/79 i.
E
^
VESSEL PRESSUPE (PdID) 2 BAF -
17.59 FEET 3 TAF -
29.59 FEET WATER LEVEL FEET u
l' 1.2
- N#**
x10' I
CASE - E (B(AED e
1 i
(
cc
- i-(n 0.0 O_
~
f q
q E
g
_ 2 S A==
~
cn
<n LLI va g-
^
N CL 0
- Il K% 2 2
2 2 -
2
~
2 2
<n Y[l.
td cn Y
/
. ' J' O. l u t =l=i=3=i=l=
~"u O.
100.
200.
300.
110 0.
Asa - Jo TIME (SECONDS 1 5 / 211/ 7 9 i,
t...
7gycq.cgg
~,.
n i VESSEL PRESSUPE (rSIR) 2 BAF -
18.03 F EET 3 TAF -
30.20 F EET 2
WATER LEVEL, FEET h@
u I}
gyg;rg 7-CISE -
B U fPfE t )
- 1. '.
l N
- 3..
-~
yy t,
Y,-.
m b
I 1
t-4(n 0.8 4
4 4
4 4
4 n__
us UJ 3
3 3
3 3
s u
[
1
]
N (D
07 t LJ u,
[
N N
G_
0. 11
_J b_I U3
~
LL)
O. t L L L L b 1rix t 1'- - -
' " " " ' - ' +
~
0.
100.
200.
300.
110 0.
TIME (SECONDS) rsa - n 5/2fi/79 i,
t..
j II y
4 i
J. !
+
M cn D__
sl W
n t
a_
c:c %
-HwH l,.*V N
1-' C 4) W y
LLJ U.J QJ LU L;J uJ UJ 1i C cr_ u. u_ L_
I7
~D W (G O l
W O C\\J J
. u.J j
u.1 cc co o >
g c._ -- co uJ
~
6 J
__J
~ LLJ t i C~
m uJ k D t.L LL H U.J C C C
> OH 2:
l w
-N
- =
I
^
.t k
1
,i to fl C
x k
N o
l,l
=
a 3
,:ln -
c3 b
I_i I
~
o I
~
~,
p., -
!i ts: '
q
\\Q
.,0
~
e
. N,4
~-
l l
1 N
h l
l
,,l l
.s
(-
m-a C
- O O
O M
j
=,
.Eb.E
SUMMARY
AflD CONCLUSIONS e
IPPROXIt'ATION AS DOCLIEfiE IS APPRGRIATE e
trrtCT OF GR1GES IN SAFE IS 57t!_
e FEFLOOD GRES EXPECTtD TO EE 59tL CWCLUSI0th DJREi1T CODES iED fl0T PE GRED
/SR - J3
~
5/2V/9
~62 520 j
EFFECT 0F HIGHER HEAT TRANSFER I ll EM o C00SISTENT APPLICATION HIC +ER EAT TP#!SER IN SAFE /EFLOOD
/FFECTS V/PORIZATIO(1 A'O PESSUPE HI9ER FEAT TiWISFER IN 0%STE AFFECTS STOED BERGY/ DECAY EAT PEO/AL flUCLEATE B0ILIfE OBSERED IN TLTA LChER BOUiB CORELATI0fl SUBMITTE) TO i!RC e
SEPAPATE trrtCTS SAFE /EFLOOD CPEGES LDER PCT GGSTE EFFECT BICC3R TF#1 SAFE GOD '<s 95F) e CONCUJSICI!
EVALUATION TEEL TEAT?EIT CF HEAT TRA'EFER IS OVEELY C0f!SER/ATI'E ASR-14 5/24fi9 362 325
SAMPLE CALCULATI0tl 8
PUWT SaECTED (218 Ev&4) 2 LARGEST SBSITIVITY TO VAFORIZATICil NO PFESSUE LIMITING EPJK - 85 DBA 8
C0fEISTENT APPLICATICH PCT ECPEASES BY 335F 4
SEPAPATE EFFECTS SYSTEi COEE (SAFE /REFLOOD) CHRES ONLY
- PCT DECREASES BY 95F HIGH POWER BLELE (CFASTE)
- PCT DECPEASES ~ 300F 8
CONCUJSI0ft:
THIS CALCULATICU CONFIF?S EfECTED SEEITIVITI TO HIGER EAT TF#EFER ASR-15 5/24//9 362 326
G i t-
}
=m y
EM 4
.3s kE O
3
.. i S
g w
~
e-k l
\\
~
j N
8 bf i
m l
l U
C
?.
t i
1
'S
.h I
9 T
-a d
ei u
x m
u
- 9 O
r-
?
4 l
x
,A 4
~
J.
W' f
E d/2jffs o AG,4 ucq jvaf c
~
- T.6wn+
(
996
,e*
? s,.
362 J27 m-
022 29E
~
h k
=0
/
xn 4
5 4 k I
h2 th i
s S
N 1.
c t5 s2 m
b s
E C
u q
i+
+
o
'E N
8 v
2
=
R 4
t,o
- S.u k
o 4
i V
s 4
I q
b 1 4 i
x 4R I
g e
u f
i E
g
$i
.2noypas /ysvet jny W
,-e
SlW ARY AtB CW CLUSI0fS e
C006ISTEIT ffPLICATIG1 ESULTS Iti CCiEIEPELY LGER PCT e
EVEl EPAPATE trrtLT SRDIES SH31 LGER PCT e
CURFBIT El COES t mal BUT EE CF#!ED ASR - 19 5/2V/9 3(32
?.29 w
e
EFFECTS OF HIGH HEAT T R A fi S F E R O il PRESSURE e POSSIBLE IELAY IN ECC IfUECTI0il EFFECT OF PAFDSE DB.AY TIPES e PEE IthETTORY FE'AINIllG kib< TiOWDOW1 e FDE LIQUID DCMFLOW AT CCFL ES'fRICTICOS e IHlGER PERIOD CF LDER PLBU1 FIKHIllG fET EFFECT:
- PDST PLMS PCT IS LSER FOR HIGER PPESSUE
- FOR (EER PLMS PCT SENSITIVITY SCF 5/24//9 36.2 330 ese-
G.E. LOCA MODEL DEVELOPMENT e
EVALUATION MODEL HISTORY e
STATUS OF IMPROVED MODELS e
CURRENT DIRECTION GED 5/24/79 362 33I
EVALUATION MODELS e
PRE 1974 SAFE 2
LAMB SCAT CHASTE e
1974 - REFLOOD ADDRESS CCFL AT TOP OF LORE /3YPASS e
MODEL IMPROVEMENT SU3MITTALS 1977:
CHAST05 (GREY 30DY FACTORS / CONDUCTION)
PARTIALLY DRILLED CORE A"ALYSIS
\\
1978:
GESTR/CHAST06 i
MODIFIED 3ROMLEY UNDER LEAKAGE FL0ws/REFLD06 Review
(
CCFL CORRELATION j
NUCLEAR MODdLS i
GED 5/24/79 362 33'2
e IMPROVED MODELS e
SYSTEM CODE (ZEUS) 3EGUN 1975 COMPLETED FOR 3 LOWDOWN PHASE IECHNICAL PROBLEMS / LIMITATIONS ZEUS UPGRADE PROPOSED UNDER NRC/EPRI/GE PROGRAM DISCONTINUED IN 1978 IN FAVOR OF 3EST ESTIMATE MODEL (TRAC) e HOT CHANNEL CODE (THRST)
COMPLETED 1978 CANDIDATE FOR EM SusMITTAL GED 5/24/79
_ 6,2 03$
5
~
THRST01 HOT CHANNEL CALCULATION e
FEATURES DRIFT FLUX HYDRAULICS COUNTER CURRENT FLOW AND CCFL LEVEL TRACKING MULTIPLE R0D GROUPS TRANSIENT GAP C0f1DUCTANCE STEAM COOLING e
FUTURE IMPROVEMEf4TS TRANSITION BOILING MODEL IMPROVED REWET CRITERION MECHANISTIC CORE SPRAY HEAT TRANSFER REALISTIC SYSTEM CODE NECESSARY FOR BEST APPLICATION GED 362 3;/!
5/24/79
2 2 0") t.0 N N. N.
. 01, -
(
-e-4, h
uu m u. W CL L LLQ C
N D
C%
D a g-k wC 33 cu ZZ Z 3 ' D w,3 1
O l
o
> cr e.
x--a p~
- -.~*
N
~
1--
r- & &
95
-fe Z
Fj ;; ;aa n-ww www i a
M CD e k
d o a ha H
WN w
mm mmm@c f
en z = c 00 000 _o
[C CL CL CL4-pq w
3 O
U CC E q
(
o. > <
\\
a x
. -,, i.. =. 3 44 a
[
'i I
b..
.k O(
~T o
q u
n x
u co w
1 A.
l-
.N w
,d
~
.5
[
8 Ae O.
4
~
g_
]
%g t
n
-o my 1 1 e i ! t t 1-1 Ia o,(
o a
- Ng.
a a
o g
N O
o O
e
:
e O';
X
.(WHU-D 2W01693dW31 E
362 335
~~
ZEUS 01 SYSTEM HYDRAULICS MODEL e
VESSEL IS DIVIDED INTO 21 N0DAL REGIONS.
e EACH REGION IS SUBDIVIDED TO MODEL THE AXIAL VOID FRACTION DISTRIBUTION, e
THE SUB-NODE HYDRAULICS INCORPORATE THE ZUBER-FINDLA:
DRIFT FLUX FORMULATION FOR LIQUID / VAPOR SLIP FLOW.
s SUBSTANTIAL IMPROVEMENT IN PREDICTED SYSTEM FLUID INVENTORIES RELATIVE TO SAFE /REFLOOD - VERIFIED BY DIRECT COMPARISON TO TLTA DATA.
GED 5/24/79 gg
~
HYDRAULIC NCD1NG ZEUS
=
W\\
///
4 5
N b
g
.0 3
F
-)
Q y
r h
h+
+
=D lb
(,
g_
0__
h
@d Y&
S l}____
['
7m y
(v J
't v CED 5/24/79 bb2
- n, 1
to aa
-cma cn
.=
a ccc
-8e g7
_, J C
_~ o j.
Co-ou LO
<r Ce ac
- ia l
= c u
F---
L:
C u
r d'
=
i
]
J d
d a*
J J
,s
.. r l
J, 0
.A a
, -Q., %
a-
-e
-, v'4 5 CJ O
T gF
( 1 *,r' k.
I 5
g
[JES/WS 1)
HO id MS3WO
- {
g+37
.we vsw1
,cs @% -
..e JM'@
GED jj'hj'?
362 338 5/24n9 N 9-t
4
(
~
l e
a
.=
=
cc cna cn
=
5 c=c F-25 & j.
5l=i F-
.=
u-ow m
s
/
r 4
c e
med dC 3.tQ cc w
u_
aess
%o c:v c
D u
asum v
=- (M 1
.+ kM.
]
A ns fram
]
@M i-*
j
- ^ E l
~'/
l J
bel
[.=', Q,.
e s-3 c st
-~
WIEd) 380S$3Wd W21515
.E.
GE 3^ 6, ')
7 7'39 j 5/24/79
.a.
===*w 0
s 3 +<eo Q
e
=
w C
h' d
M D+
O b
cn
_a a
2 L~
L w
CW C
=
CC (A wCuw HEE EEES
=
aw=
-~-,
O m
i U
i u
I LC
~
A l
u.
I
/.~g C C
C g*.y m
l
% >4 H-L:
CE_5 f
C CI::t:
M '-
i i
~
e%
<W
- 7 G}
h t
4-
~~
e l
W,J e
I f
' LY.?.3
~
g l
1 1
(
w.
.n.
,O 4
C 5
b 3_ ~5
,s,.
.m~
ce,.
g
(,F'1 C l 3 Q C C h*$
aT J
56 GED s/24/79 362 340
ZEUS TECHNICAL LIMITATIONS e
SINGLE PRESSURE e
ONE DIMENSIONAL APPROACH e
THERMAL EQUILIBRIUM UNCERTAINTIES e
LOW PRESSURE NUMERICAL OSCILLATIONS
-FURTHER WORK e
MULTIPLE BUNDLES e
PROGRAMMING IMPROVEMENT 362 341 GE o5/24/79
t D
a O
^
z C
g w-
_J W NU g
w N 'D
[
Z OO g
w z
U CC O U.J C ca z C C "U
C C
C~ LLJ n
ac m
n; l
Oc
_~
a
~
m.
--5 mZ
-:5 0
C
"~
z c;
u_j x.3 _
--Q D
,4 -
m1~
' YW, V
1.. 's
- a
_g
=--C.
'O
-EE LLJ
- i. ~l,{,^_
%m ag
,y t. r1 O
.A
_=- N 3
[
w..
W p
a m.
m
,f..,
E '
N
.h e
c A
4 n
~
ar, n
j N
_--r ldg y
O r
a ce l
^
5
.1 I
ll q \\-
_.7
(,
J u.
j
... =
L..
/
^:-- ^~' -
1,,,,o,.,i.
~
u,
.a m*
O o
f
.O C
d
=
- ""*g EM
=
$~
3 3 S /t,18 1 S M 0 1 _-l M S 3 8 8
, II d.
$ [\\)
__,')
he e %e e e M em
' ede w d m
6 4
9 f
e o
4
' = = = =
6
~
,.- W W W O
f ZZZZ O
C
.s. w D w
'UUUU r
CO --
v H
.U e
L'
'W
/_
C Z CL.
C Z u)Z U
- _J D L t_1 C.O LJ
- C_ C. _.)._ '
C
- gh ZC O U.) Z C_
g Ca
,.J>CD C
l O
i-a n =
w a
w":
w CO l
2 x
=
l
.W=
-5 c:3 Y-e
~. :.-
52
~5
.A*y-. -
319 -
-j Of
$ z g
~.
"$
- 3 9.:
- r.
W:
i
.\\
M
- ( j[>-
w=,..
g e
=
'4 I
c g
s5.
a
-?
a^
is.. t
=<>
. Y M,W. W
.d.
i y
[0 y
.A
-5
~;,
s,
.i s
o a
L I
A-
- x m
W
.. (
i, 4_.
.f\\
i s" A,
C i.
=
h I
m
%w y
k g
g (I'
KT..
,as s-r f
11 c--
l r.,j
. %l
?
2 /
i F_
i I s. /il i _.
i
,. e i i a
=.
.a s.
O
=
O O
- O
- 4
~ --
m 74
...LWS1)
SSSW i
ya 562 M.5
REASONS FOR DISCONTINUINC 'ZE'JS'
,e TECHNICAL LIMITATIONS NOT 'BEST ESTIMATE' MODEL e
UNCERTAINTIES IN CODE PERFORMANCE MAJOR MODEL ADDITIONS REQUIRED DECISION TO SUPPORT NRC EFFORT ON BEST ESTIMATE MODEL e
ADDRESS ALL 'WHAT IF'S '
QUANTIFY REAL MARGINS G8 362 344 5/24/79
.:...~.....,--_ __
CURRENT DIRECTION 3
'e BEST ESTIMATE ANALYSIS COMMITMENT MADE TO TRAC /BWR e
(AWAITING COMMITMENT FROM EPRI/NRC-RSR)
INCENTIVE FOR:
A)
MARGIN OUANTIFICATION e
3)
DESIGN IMPROVEMENTS e
STATUS TRAC-P1/P1A OBTAINED WORK INITIATED ON RESTauCTuRINe, DATA PREDICTION, MODEL IMPROVEMENTS, IEST SET UP ADVANCED hot CHANNEL HEAT TRANSFER MoDEL DEVELOPMEN UNDER WAY
.e.
GED 5/24/79 3b2 345 m,.m e-n a--
SUMMARY
~
s o
CURRE'IT EM SIMPLE A?ID C0'lSERVATIVE e
EFFORT O'1 l'1 TERMED! ATE IMPROVED MODEL DIVERTED TO BEST ESTIMATE MODELS e
G.E. COMMITME'1T TO PURSUE CO-OPERATIVE BEST ESTIMATE LOCA MODELS GED 5/24/79 362 3 ti 6
d i, c.,
.R A77EAf!)AA/CE LIST FOR MA r' 2 4, l919 M MTid6 kti 7//
GE NARE gRGAri12ATIMl LAJA 4.'f
//oDGE5 AJRc/D55 LAUY fM/LLtRS W2cf'pSS
[?0Y LJ0oV 3 422L/DC2
^
%~ Le 2dc/055 2,"Il, To, dace M (R c / b r.=-
l L-D b+u 6 Mne o sto G. 5, D ix
..= - --.....- J Izecav2--
ce
_ L. $. GI P-Po7-v
~
G2,
~
..__~.._--L.e-..
___.c
.....__gh.
L _..
h
....._ a
~
.,;s,_ w
~;.
Toz m k G c.Ala Z'l + B k,% : &mgL Gsw :=.nynGy:q)?,bli. f.enk[f 2. st.a5M.
7
~
(diui Am D. Becka
.- IURYRSL.._
~ ~ '
_... _...~.
-.4 s -.: \\}eswTec~m..u.-.
.sm 2 % n n./ p o z--
..;.=..x::.. w -
3mcc
- 25; Lye 2K: '
- . 2 L
- : L D L dce SQ 72> $
~
o En-D 9
E. ~ CA~ w. %-
~ ~ ~ '
- . - tva c / p e m
~
C:
^ ' Y,. -
uzz,499 m R. 3 /za
'Gr
^
/;f //.// A /
Q. E.
.- O xac/ coa K%p
+
ne g,
o
/EoGee M. trrre u NIec./D 5.5 i
k ?4&T 77M6' 362 3 <7
-