ML19221A027
| ML19221A027 | |
| Person / Time | |
|---|---|
| Site: | Crane |
| Issue date: | 12/22/1977 |
| From: | Haslinger K Metropolitan Edison Co |
| To: | |
| Shared Package | |
| ML19221A025 | List: |
| References | |
| TR-ESE-220, NUDOCS 7905160503 | |
| Download: ML19221A027 (40) | |
Text
r h
h AT* ACID!TdiT 1 COMBUSTICN ENGI.W ERING DEVELCP.ET DEPARD1LNT TEST REPORT SINGLE "IUEE VIBR\\TICN TESTING.CD EVALUATICN ASSOCIATED WITd EE 3 MILE ISLWD SUCLEAR POWER PU6T STE.41 GENER\\ TOR GENER\\L PUBLIC UTILITIES OF NDI YOFK 677501
/
[
Prepared by:
661
/.
(G) [A I(lO Approved by:
.d.
c.
Laboratory :en;cr K. H. nasiinger Reviewed by: [ A/ I & W tupernsion Document No..
TR-ESE-220 Date of Issue:
Reference:
CE Test Prcrosal to GFU Ihte of Issue: June 10, 1977 1 2 0 c.0 t; n
44*va5@e 79051605C$ '
g TABLE OF CO',TD.TS Section Pace No.
1.0 INTRODUCTION
1 2.0 TEST DESCRIFTICN 2
3.0 DISCUSSION OF TEST RESULTS 3
FIGLFn'ES 4 - 19 TABLES 20 - 21 APPENDIX A - Sumary of Significant Strain and Response kalituder.
Strain Reducticn Ratics as Caused by Sleeving APPENDIX B - Theoretic Modeshapes for Test Tube With Axial Preload of 200 Lbs.
e
-i-
LIST OF FICUIES Ficure No.
DESCRIPTICN Pane h'o.
1 GPU Single Tube Vibration Test - Tube Support 4
Ccnfiguraticri 2
GPU Steam Generator Tube Vibration Test 5
3 Steam Generator Tube Test Facility 6
4 Data Acquisition and Analysis System 7
Basic Block Diagram 5
Time History Traces of Upper and Lcwer Strain 8
Gauges at 48 Hert: Resonance (Fo11cwing Test Series No. 5) 6 Frequency Response Plots Developed For 3 Positions 9
of Span T/1 Virgin Tube Test No.1 7
Strain Response Traces Develcped for Virgin Tube 10 Test No. 1 8A Comparison of NLuimum Tube Response Values Vs 11 Frequency Virgin Tube Vs 2 Different Post L
Sleeving Configurations 8B Ccmparisen of Maximum Tube Respense Values Vs 12 Frequency Virgin Tube Vs 2 Different Post Sleeving Configuration 9
Comparison of Dynamic Strain Amplitudes (At Major 13 Natural Frequencies) Between Virgin and Sleeved Tube Configurations 10A Comparisen of Maximum Tube Response Values Vs 14 Frequency Virgin Tube Vs 2 Configurations With Intermediate Supports 10B Comparison of >bximt:1 Tube Respcese Values Vs 15 Frequency Virgin Tube Vs 2 Configuraticns with Inte mediate Supports 11 Ccmparison of Dynamic Strain Amplitudes (5'ajor 16 Natural Frequencies) Ectween Virgin and Inte medi-ately (Span 1) Supported Tube 12 Ccmparisen of Mode Shape Patterns (48 Hert:
17 Resonance) Ectween Virgin and Sleeved Tube Con-figurations 13 Comparison of Experimental Tube Response with i20 nn7 as:
Analytically Obtained Tube Response First Mcdc Resonance 2". Damping
-ii-
LIST OF FIGURES (continuca)
Figure No.
DESCRIPTICN Pane No.
14 Comparisen of Experimental Tube Response 19 with Analytically Cbtained Tube Response Sixth Mode Resonance 2*3 Damping de 8
120 tu
-iii-
LIST OF TABLES Table No.
Page No.
1 Ideali ed Multi--Span Tube Properties 20 2
Mcdal Analysis Results
?.0 21 3
Caaparison of Analytical Tube Stress With Measured Tube Stress We 120 209
-iV-
1.0 INrrs0DUCTICN Steam generator tube failures at Oconce, and distorted oddy current signals in CPU's steam generators have created concem that excessive tube vibratica may be cccurring in these units.
At present, it is surmised that ficw induced vibrations may have caused high cycle fati-gue failures.
In order to ascertain whether or not installation of tube sleeves would remecy the situation, GPU has approached CE for assistance.
The subject dccument reports the findings frcm a scoping test on a singic steam generator tube - a test designed to investigate the reduction in alternating stress levels by A, installation of tube sleeves at 2 locations of concern and 3, addition of inte=ediate supports at two different locaticns at the uppemost tubespan.
- 2. 0 TEST DESCRIPTICN CE's steam generator tube test facility was used for this task.
A single tube was setup on a slip table-shaker system, which in an in-verted fashion, sir:ulated the five uppermost tube spans of GPU's 35W steam generators.
The five tube supports were rigidly mounted to a strong back while the tube sneet (bolted to the slip table) was sub-jected to acceleration controlled excitation.
Thrcuchout the test program, a constant axial ccmoressive load of 200 lbs. was maintained on the tube (see Figure 1). The follcuing design details were dupli-cated:
- tube support thickness 11/2"
- diametral tube support cleanances of.013"
- tube support spacing of 46, 35, 36, 37 and 38 inches starting at tube sheet tube outside diameter.717", wall thickness.032"
- sleeve outside diameter.625", wall thickness.032"
- simulated tube sheet length 8".
Tube rolled and welded at primary side of tube sheet.
Polling length 1.5".
diametral clearance within tube sheet over 6" length of.006" The test program consisted of five phases, the first of which was to establish baseline data, and four others which were to investigate the effects of possible fixes.
- 1) Tube in virgin state
- 2) Virgin tube with intecediate support located 23 inches from tube sheet.
Support thickness 3/4".
- 3) Virgin tube with intemediate support located 37 inches from the tube sheet.
p n a 4)Tubewithinstalledsicevewhichextended9"abovetubesNe add ' d 7.5" into tube sheet.
- 5) Tube with second sleeve of 13" length at support ndarest to tube sheet.
Testing was conductec. in a similar fashion for all phases.
The tube responce pattern was naoped in tems of natural frequencies, mode shapes, critical damping ratics and actual response amplitudes.
To accomplish this, the proven technique of mapping the tube response amplitudes by means of an intemally mcunted, biaxial acceleremeter probe, during frequency sweep cycles at constant, (1g) acceleration input motion, was employed.
In addition, 2 strain gauges recorded the dynamic stress situaticn i=neiiately above the tube sheet and below the first support.
The frec acncy range of interest was30-300 Hert:. The recorded response acceleration and strain signals were narrcw-band pass filtered to eliminate random noise and hannonic res-ponse ccmponents frca the frequency sweep traces.
The most pertinent data was extracted frca these graphs and then tabulated.
Copies of all graphs, as well as, of all tabulations have previcusly been submitted to GPU and MPR.
Figure 6 ccmpares typical frequency sweep plots developed for 31cca-tions (1/3,1/2, 2/3 span length) of tube span No. T/1.
Frca such transmissibilit/ plots, significant natural tube frequencies, actual tube response amplitudes and modal critical da., ring properties were deternined.
The phase plots indicate the relt.tunship of each moni-toring location in respect to the tube sheet (a 90" offset was used) as a function of frequency.
1 Figure 7 shcws the measured dynznic strain amplit2ies in the virgin tube as a function of frequency.
As one might expect, strain is highest wherever tube resenance is enccuntered.
3.0 DISCUSSICN OF TEST RF.SL7T_S_
The dynamic rescense characteristics of steam generator tubes are greatly influen'ced by the tube support clearances (1cosely held tubes).
In the case of the GPU test, ratthng (especially amund 48 Hert:)
within the tube supports was noticed.
This phenomenon is the cause of nonlinear tube response behavior, but also the scurce of randcm type excitatica (irpacting) at the tube supports.
In order to cevelcp intelligibic infonnation, band pass filtering cf response signals is essential.
This measure allows detenninaticn of redal resconse charac-teristics under a controlled environment.
Figure 5 ccmpar's filtered e
with unfiltered strain response signals. Scme sharp spikes are noted on the unfiltered time traces.
This cbservation is of interest, how-ever, the infonnatica gathered is insufficient to allcw pertinent conclusions.
Also an actual water envircnment would tend to reduce the spikes observed in air.
Evaluation of test results is confined to filtered signals only.
The virgin and the sleeved tubes (Test No.1, 4 and 5) exhibit sinilar frequency response patterns.
Based en response acceleraticn and strain measurements, two najor regions of tube response, namely 45-60 and 170-190 ifertz, were identified within the test range of 30 to 300 Hert:.
The maximum tube response values and the dynami.c strain amplitudes are stmaarized in dependency of frequency in Egures 3 and 9, resd:cepvgly 12
- c.
g I
Comparisen of test data was semcwhat ccmplicated by the fact that repeatibility of the 48 Hert: resonance was not very good (Test Run No. 5).
Nevertheles;, Figure 3 clearly indicates the benefits of sleeving.
Although not ccasistent throughcut the whole frequency range, strain levels decrease at the two tube areas of concern af ter sleeves are installed.
This 1ccalized strain reduction (due to rein-forcement of tube wall) is better demonstrated in sheets 4 and 5 of Appendi_x A.
Sheet 4 gives a direct ccmparisen between the 3 test series, while in sheet 5, ccepensation for the variation in response amplitude is attempted.
Based on these tabulaticas, a minimum tube stress reduction of 30', (with a maximum value of 70',) is expected to result frca a similar sleeving cperation of GFU's steam generators.
The addition of intentediate supports ecdifics the tube respense be-havior significantly. This is reflected in Figures 10 and 11, which compare the results frca test series No. 2 and 3 with -he virgin tube conditicn.
Tube strain, resulting frca secondary side (cross ficw) ficw induced vibraticus could be curbed effectively by a suppor; added halfways between tube sheet and nearest tube support.
Analytical studies were conducted to demonstrate correlation of test results for the virgin tube with computational methods.
These analysis techniques, in conjunction with test results can be successfully employed to explore,in depth, the benefits of sleeving and of inteme-diate supports for the GFU steam generators.
Since these studies were not included in the initially outlined scope, only a li;aited amcunt of work was perfonned. The follcwing findings are noteworthy.
Axial prelcading of the steam generator tubes in ccmpression (200 lbs) reduces the natural frequencies by apprcximately 15-20 per-cent.
See Table 2.
Attach ent 3 shows the first 10 natural frecuencies and mode shapes.
hhen these are compared with the experimental mcde shapes (of two major resonances), measured at 48 Hert: and 135 Hert:
resemblence of their deflection pattern with the fundamental mode and the sinh mcde is eviden+
i Steady-state har enic analyses demonstrate reasonabic correlaticn of the measured experimental response amplitudes with expected, analytical deflection values.
(See Figures 13 and 14).
i Analytically expected strain arnlitudes (see Tabic 3) are in fair agreement with the experimental cnes.
{
l A dynamic force amplitude of 1.4 lbs immediately above the tube shect would produce stress 1cvels siellar to the measured ones.
I i
.eb0 l'9 1
O e
\\
O O
CONSTANT AXIAL LOAD 200 LBS.
Y SUPPORT No. 5 i
1 g
SPAN 4/5 38"
}
SUPPORT No. 4 SPAN 3/4 37' SUPPORT No. 3 i
SPAN 2/3 36"
{
SUPPORT No. 2 i
1 SPAN 1/2 35" SUPPORT No.1 i
i o
c.
No 2 (TEST No. 3)
STRAIN GAUGES CCC ICU n
INTERMEDIATE SPAN T/1 46" No.1 (TEST No. 2)
C 23 SUPPORT 37" LOCATIONS 23" y
o r
h 8"
TUBE SHEET 1 g EXCITATION 2"
o f
l///////////.
Figure 1 T E S T 12 0 2 '. 's G U SIN G L E TUBE VIB R AT!ON TUBE SUPPORT CO N FIG U R ATIO N
n r,-
,rf 'r 79 r
F-'-~
{
p
}
. _. f C. l il i
I :s,
l
, }'
. ' j.:.
1 u
{
h 1,,'
t j
t t
i v>
DATA ACOUISITION AND ANALYSIS SYSTEM r l,,-
4 r
r-s 1 ^
m
\\
1 i
- l3
....e 0
,8 t *<
i(
,J e
i,.
i l:
f.
.a
...-.,.a..v.,,
.,.-v
-, u a -
..a a
uu uu-u.
a.= :
=
l '
_._ _ __~ ~l, - '(
j l
i 3
/~
/
p:
m l' g
.i t
i z
I m
I i
TUBE il 6-2 I
"j i.
t l
a
[
l ' ~~~ ' 6 l. -
\\ AMPLIFIER '
k I
f l
--4
)
.l l.
y m _-.
f (t/,
7 O n
-J i
g,.
)
,' a i
L c
L.
'.8 ' -
ll :
(:
d ca j.
j
. - -~ _ _ _ :
i i
,,)/,
I
~
l' h
E- $, u e
1 t
(l% --
g i. [4 -
H
/
1, m
f f
s v,
- i. \\\\1
\\1.
,,y~ g
~
- i
--i
)
/ . y..
I Qg I,.{,
'/
ki f f * *.,.
j jSLil' m
'y e
-)
'. [../.
i l
. TABLE' 9
il
.)
./
/
j
.' l,
,j f-,,
A.
j
/
y-
.s s
l ^
Q6~. 's
-S* \\
[
pR.,.
.,\\ [
c';
Aq
'i-i i
1
~.
s
~
. a..
/
A i
SHAKER r.:
%{'1'y' /
l r"
\\
i y
J 'i r-c3 N-1 q
',y..
.j m
7 j
i t
e pg
- s.,..,'
,p M / p %...
jp/-
e N}
}
\\
x>
)
.;~
1--
- O s - J,.)
A.% *
\\
(4-A
, i..u :a.+
^
..r_-
..wa s.
a.w i
h
{~1.'t 7 j
l i
^
J t
1 1
3g f ~,
M) '
i f.3
[;j
'd j'
'fl f3 7
i j;
y 7,'% 5 FIRST TUBE i
i e /
SUPPORT
' UPPER 6.
- I i
I fj STR AINi
'GAUGEf T
.., @O) \\,
y yl-).
d I
l c
p.'A INTERMEDIATE
- ij
,0 s 1'
syy g g' SUPPORT le u
t,1 i
Q __
1 C. Z _
~~
i b,3
~1 l
l i
1 A
i STRONG i
I BACl(
J,
.\\
i l
't i
O "3
dn D
f
\\
f
(
i l.
I
~
( ':
I 7
I
~,i l
'/k G
m.,
i a
p>:-
\\ C1
\\
\\
k/
GER -
,..d STR AIN :
([
}
nsj GAUGE -
w:-
a Ij
\\/
SIMULATED i { l,,
y TUBE SHEET \\
2
- ~rh M.
N
- " CONTROL N
fj Y
C,CE LE R O]ETE R jj.'
ql-j
$g.
'v!jf' n
s
[.*
U P T ABLE p i.
n n.
\\
SHAKER t
L.
i b--
s 120 n<4:cs Figure 2 GPU STEAM GENERATOR TUBE VIB R A TIO N TEST
Figure 4 DATA ACQUISITION AND AN A LYSIS SYSTEM B ASIC BLOCK DI A G R AM e
'h STRAIN GUAGE X-Y PLOTTER MZ/TFA r
RESP' VS FR EO.
CONTROL' Pil ASE VS FREO.
SD-127 STRAIN VS FREQ.
N BRIDGE AMPLIFIER h
Nk
RESPONSE
\\
ACCELEROMETER
\\
t.
\\
DUAL CilANNEL TRACKING FILTER N
N CilARGE AMPLIFIERS C
y N TUBE SD 122
,\\ BUNDLE Nh c
h iONTROL ACC.
\\N SWEEP OSCILLATOR SEl1VO/ MONITOR
~
1 h
AMPLIFIER m
a n
- c. s 1200 LBS. Sil AKER SLIP TABLE UMilOLTZ DICKIE 5
gF l-n j
l' l
- I; '
)
S E
5 G
U A
o L
N L
A G
A N
N S
G G
I I
N E S
S I
I D
s.
. D A R s
E E
RE g
R
- r '
R TS E
.. /-
T S
E T
I a
I T
L
_ L F
F RS i,
E E
\\
f WT O
G L
, i N
. r W
I y
['f D
N
,s O
U S A Il!
ij L
.\\
L l3 L
c.R O E
u F
g P
(
i P F U Ii n
u E
C p
F N
O A
N l
4*
S E O n
,d j-C S
- L A E s '
- L A
i A
R R N
.I N
,4 G
T G
I h'
I Z
S h
D Y
- S T
D R
E
'I1 E
R
_ R E
r E
R O
I E
g T
I T
k T
L f
L S
I F
l l
8 F
N i
N 4
l U
U E T 1
A f
i T
e
~
1-i 7
l y
4, T
N N
I R
I A
O A
E PN R
D R
PO T
T U
UI S
T 1
S T
E S A
RE E R G T t
EG V T
E U S\\
0.
s N O N }~~(_
'GO lT 180 l
9 10
~
0 l
l 8
SPAN T/1 l
POSITION 6 6
4
(
l.-
1/ 1 I
2
- w _
- s l~1 O
cn i
l l
36u g
l 0
9 180 k
'N !
l 0
c 10 0
d8 SPAN T/1
{$
l l
POSITION 4 6
MIDSPAN
$4
}I l
l 5
,\\
2 B
C 0 0
l (I
l _ _p 0
180 10 O
l l
l l
8 SPAN T/1 l
POSITION 2 6
b 4
I/ \\
l e
2
' lW IW 0
0 50 100 150 200 250 300 FREQUENCY HERTZ Figure 6
^
FREQUENCY RESPONSE PLOTS DEVELOPED PER
- 3. P O S I T I O N S OF SPAN T/1 VIR GIN TUBE TEST No.
1 120 213
_9
C e
g I
l e'
I i
I e
z m
N w
w >O m
W H
C w
C C
gGEz gt:
H COW C C '3 >t w
w-w EH D c
EH
< < P <>
<<W U
c o dwt c od H C O Wl
/
HCD H
m J w w}
}
m4H cc C
5$
C s<
50 w*
C SD O
p u.
- u-OC N
%Wh C 1
N
.y
).
U Nb z
w cn J Q <O Dx j
Cw>
W w
- l C
w
%.J OO l
W m
N u.
C' M
\\
2 w
N o
e H
l N
w e_'i l
I C/)
I b-2 o
I!
I O
c.
a w
i U
W C
w I
7 i
z Ua a
C U
H w
e C
O O
N CD v
O O
O O
O C
O N
r*
O CD C
v N
o; o (NI/NI d) 3GnindPJV NIVU1S L
A S
/
/
SPAN 1/2
/
'f
/ ~~ E (4) i/
-- g?(_,...
6
'~
\\.q g<
_~.
3
,a
'7
/
s i
w
/
~[ %g '%
R 7
g l
l l
l l
l l
l 4
- --e TEST No.1 VIRGIN TUBE E
7 A---e TEST No. 4 SLEEVE AT TUDE SilEET LOCATIONS Ej
'1 n-
-sa TEST No. 5 ADDITIONAL SLEEVE AT FINAL SUPPORT ELEVATION o
N 6
l s-h
\\@
m 11'AN T/1 3
5
-.A g
h I\\
\\
A s
C
\\
D
\\
4 C
p (h
s 3
h
\\
hs
\\;
y
'n
./
2 h
1 o
N c3 0
O 40 60 80 100 120 140 160 180 200 220 240 260 280 300 FREQUENCY, ilERTZ Figure BA COMPARISON OF M A XIM UM TUBE RESPONSE VALUES vs FREQUENCY VIRGIN TUBE vs 2 D I F F E ll E N T POST SLEEVING CONFIGURATIONS i
O 0
0 3
f 2
m 0
8 Y
sV 2
S
@N }
m C
N N O
' M['
E c
I 0
U 6
T xA 2
Q A W
/,
E R
R U
F
~
0 G
4 3
I N I(e 2
s F
v N
~
S O 0
E C 2
2 U
a> =
N
~
~
O L G i
~
/-
I AN TA VI V
0 V
0 E
l b@
2 E E L
Z E
J%
i Nt S E
_5 T
T t
R E
O S O
at 0l P
8l iP S
't 7
I
,l a
YBS T 1
Nu w
C E S Os TL N
O eR E
AA r
P J
C4 0I i.-
T, Oi 6G i
t 1
g T
~,
L E
F iB T T R
EE T
0 R
l V
S E 4
i E
EE S
4 3
M 1
/
F
/
/
BL 4
3 2
U F
U S N
N N
MI E TL A
A A
B TA P
P P
D I
i f
0 U
X AN S
i 2
T O
1 A2 EI NI VT M
GE I
)
s D
s a
W y,
v RE g
I LD 0
F VSA 0
OE 7Mf 1
'\\
145 l
4 N
NU f
ooo.
(
NJ N I
q:
OT TTT N
S SSS 0
EEE 8
b.
A'M' Av I
N s
TTT R
I e A a.
AG P R
/
/f v
0 MI
~%
cou 6
O V C
4 g
l t_ '
h 0
4 4
3 0 3 2
1 0 4 3
2 0
i.
RZOI doOjngf3 C
- a~^
,7
40 I
UPPER STRAIN gal)GE. LOCATION FIRST SUPPORT f
20 a
g C'
s I
g*
Oh b".L.o---
..,_,4
['*'I~~.
ae
..A
-"h 7 P' - "T - -
- I
~"
0 5 80 E
'i.
o@
ui LOWER STRAIN GAUGE LOCATION TtJOE SitEET o
3b p 60 t:
- I a
4 0--e TEST No.1 VIRGIN TUBE E
& --A TEST No. 4 SLEEVE AT TUBE SHEET LOCATION o---a TEST No. 5 ADDITIONAL SLEEVE AT FINAL SUI' PORT ELEVATION tr 40
\\
h Q\\
. \\
h;\\-
20 s
.\\.?s N
-%~._^...>r, N
(
g ~o~---
p c..)
0 tJ 40 60 80 100 120 140 160 180 200 220 240 260 280 300 FREQUENCY,ilERTZ Figure O COMPARISON OF DYNAMIC STRAIN AMPLITUDES (AT MAJOR NATURAL FREQUENCIES i
DETWEEN VI R GIN AND SLEEVED TUBE CO N F IGU R A TIO N S
i
'\\
- TEST No.1 VIRGIN TUBE e,
3 n-.. -a TE ST No. 2 INTERMEDIATE SUPPORT 23 ACOVE T.S..
A__
.a TEST No. 3 INTERMEDI ATE SUPPORT 37 ABOVE T.S.
r..f~ >.
i 2
l s
SPAN 4/5 I
"l-+-L~~,f"/
P x~~
p
' sgM Q./
O ci 0'
g-
.,t
~.
O 3
p q
A y
y
- 7.. l * \\ <
c-2 o"
g, SPAN 3/4 l
+
g--b-
?
,'a ch-a d,
a O
- a -
V z
o-.. - -
g 0
4 A
O 1@
7 3
SPAN 2/3 2
7 j
_h d
Y&,sh__4--4N --
~
-A a_ M g_/
n3 1
__n
\\
N N.. -...
o
@o N, s o
2 40 60 80 100 120 143 160 180 200 220 240 260 230 300 FilEOUENCY, HERTZ Figure 10A COMPARISON OF MAXIMUM TUBE RESPONSE VALUES vs FREQUENCY VIRGIN TUDE vs 2 CONFIGURATIONS W I T il IN TE R M E DI ATE SUPPORTS 1
e ec
^
M
/
Y 1/
e e
y e
w
/
O-M-__
/
4 c
-k'%
W
/1
/
D:
/ l l
1 o,,
4 l
C D
~
l W
l
.I m
.s(a 4
I 4
=
I, It I
ww dl M !
O H
N
- 4
/
I
'g O
c w w s
\\
o
_e 1 -
\\
N w
c-i
< w
\\
> H k
/
c Z
S
~
l
'i
/
./
~
z-CN I
c.- $
5 5,. ~, 5
/.**/,.. /
V
/
e ao1-
/
c'-
Zw 8
@,/
ew=w Mi iH H c0 m
"C U
w O O w w D '.,
[
H2 m o W
M C
D l
J.
4 w w i
N l
="
3 p
H H
,d <
~
-au
,a a
DC C s
c.
c.
r-w w O
C 2 E E g
bU l
c5 $
e
= ww + a N
y ~ H' E W
~2 j
3
~
b:
w w
o o,
r-a f4 b
& &O O O,
' i'
((S CE
/
Nn 2w 9
oe g 6 m m. m.
m.
t wwswk
\\
H "N & n _ <
O
, w l
}
C N
mf i
C-I 4>
ec s
e
_r c
Cc (g /
~
s,sl i
0-q~
s%s J
\\
i i
I C
4 M
N e
O CQ f=.
O LD v
M N
C
'} Q 22!r 6 'NOI.l.VU3730DV DSNOdS3B m
o w
8 1
o y
2 w
D a~
"o jf p.
W l
CC t
?l
- w e
[ 0 H
a e
mm
{
<O C c.
ww c
D1 e
u D 00 m
aa
< m H
2 W
w Ms NM w
c HH
/V m
o2
-m w
cc j 'f a
oc D
ac
<=
$k
,l.
H 2m o
mm o
^
ww
/
H F- >-
/
N m>
H w:
/
b Cw Doa 8
b H"W e )
c-
"[
(?/e.I O
=
s
_g_a 5?e
/
D m--
=
8 382ss
<C
-me
=
cd6 W
u.
H 222 2
H HHH e
2 C
mom y
4 a
www g
e-F -
C Hc O
o n <i J
i
- 2 l3 oed R
g<
f E<g S
Z=
/
C>
/
1 2
/
8 0m
<y W
r 2g
\\
w i.
e*
~C l
'\\
e
\\
O"
~
@g t
\\
e o
^
v O
o o
o e
a o
w o
e a
NI/Nid '3GnindVJV NIVUIS nnt
\\20 w
~
9 m
SUPPORT No. 5 j
7{f
'4 j
1 l'
}
's
/
s
).
.4 l
l
'VI SUPPORT No. 4
/\\ l
\\
{
}i hs, TEST 1 1
r VinGIN TUBE l,, j
~~ ' l TEST 4 SUPPORT No. 3 SLdCVE AT
[
'(N l
T'IBE SHEET l'i t
\\
TEST S s
t i
- i
)
- /
AT SUPPORT No.1
'l l
\\.
?
'UPPORT No. 2 l,/Sh l
. a..
', /
rs g, '/
\\.N
~~gl
'N
(
\\
.I
's,'
l.
) ',
h)
/
wW '>,l SUPPORT No.1 I
f fw i
}
N%
3
- '/
I M.#
7
- -Y U.-b -
4,
-p'O
.Y'N
[{
g
,/,s '
' s-I A
fl m
TUBE SHEET 6
5 4
3 2
1 0
1 2
3 4
5 6
RESPONSE AMPLITUDE, g Figure 12 COMPARISON OF MODE SHAPE PATTERNS (48 HERTZ RESONANCE)
BETWEEN VIRGIN AND S L E E'V E D TUBE C O N F I G 'J R A T I O N S noe 120 ab x
SUPPORT No. 5
~-~~-i s,s 1
!Yl
/
0
/
,/'
o SUPPORT No. 4 l
i/
l, A
/
q e-- e MEASURED TUBE g
RESPONSE
Nh 48.0 HERTZ 2.14% DAMP!NG SUPPORT No. 3 k
ANALYTICAL TUBE
RESPONSE
43.8 HERTZ j
2% DAMPlNG SUPPORT No. 2 0J t
N
/*-
N f
~ TEST No.1
,o VIRGIN TUSE Nl l
SUPPORT No.1 i
i N =-
l
/
l
- /
l s*, s '
l
'/
TUDE SHEET
^
G 5
4 3
2 1
0 1
2 3
4 5
6 RESPONSE ACCELERATION, g Figure 13
^
COMPARISON OF EXPEHIMENTAL TUBE RESPONSE WITH ANALYTICALLY OBTAINED TUBE RESPONSE FIRST MODE RESONANCE 2% DAMPING s q,'
) } 0,l i '
SUPPORT No. 5 i
i V
SUPPORynn 4
,i d
I
\\
\\
- ~~.
IEASURED TUSc' ESPONS=
185 HERTE 06% OggypgyG SUPPORT No 3 l
Is AL TU35
%N R SPONSE Rz 2.0i gg pI,
SUPPORT No, g I
,s~~a,
I
~s
%'N/, ~ Yq SUPPORT NO, y I
l l
i laD~
s TUDESHEET 3
2 y
3 4
5 6
NSE ACCELERATION, g Figurg O b1 P A R I S O N op E P E n g N1 E N T A L E agSPONsg ANALYTICALLY oS.TAtygD Tugg pg,PONSE
~a Sl _ ni)
- Analyti cal Stresses Reference ESE-77-239 G. D. Redt, n"p q
{
{J N t
APPENDIX A MfARY OF SIGNIFICMT STRAIN AND RESPONSE.4TLITuTES M IN PicuCTION RATIOS AS CAUSED BY SLE?lING e
e f\\
120 a.
COMBUSTION ENGINEERING. INC.
WINDSOR. CONN.
!!/!'
lMN O
CONT No, MAOC BY OATC '"
CL.oMca v
'(*
W b!
OWG.No.
CM< o Os DATE loc ATIO N ll'/L t 4^. ' C'. R 1 0
. ct/1 t L 1.(.ct'd I Cll'% 1 f U ) 0s')(
f Ivi M tlC C fl 2
=_
col b]c. l Oo'icdt[t<5 Fugtu au; [i%Ii]
50 Go 72 3 'i 105 1E5 Shaw al Resi Sappd 13 IS lY
- 13. 5
'7
/0 Sbcan cJav< Tahe SLa[
73 37 17 7
3
/3 Tld< Lpcaae Hea LcJ:cm a l ha xal Ta k s cvn
[cyd e
Pop kn 6
4.1 l.y I. 6
,8
.7 L2 2.3 iI.3 J.2
.,S
.3 Pos, W>.
?
G.0 3
m (D'J t'e s, k cu 2
- 2. 7
,7
,3 t l. /
,6
- Da Gw cu< uoid Ic cM r u v;u. n % a w Rea a lk c m pu.m % fu cGcwcp on aca Lcr% mpa cwvUhk e
\\
h 120 [D -
t,
,[',,
COMBUSTION ENGINEERING, INC.
WINDSOR. CONN.
5
/UY CO N T. N o.
MAOC 3v f CATE 1)
C L.
OMER
' I l
- ! ' 7 8' ' t f I '
!/9I
_ OWC. N o.
CHoo By CATc LOCA TIC N hl hiv. y S{ct n VAs Ic N ici ci { Tuh<. Slw ( lac cScn
~_
_ - - - - ~
- ~
h <yw.r cy [I!w h]
30 60 72 37 105 12 5 Run #
?
/5
/5
/2
-lo lo Sh aa al Li Su,ytkB 2
I?
15.5 lI. 3 3
3,5 LR L/I 30 13 5
~V
/2 S b 6 ah n Ta6 L ILB 17 5 18 JY 5
-3 J2.7 l a.6<
&apcmac
[1ccc k cScv s a l Lcal hb< Spn [9 ]
8
- Pcs k un 6
/,65
- 3. 6 2.1
.8
.9
~S n
n Pot it an 4
Lull Q
b'5)
Q.3
~ l, il.1 1.2 Pa s k on
'2 J 2.0 2,7 I,3
- 1. 3
?
53 Pos kan
- 3. 0
- 3. 6 2.1
~. 3 I, o
- 5. 6 Pos',kun 4
&B S. I y.y
- 2. 7 I.5 f.3 1.2 Pcs : li cvt 2,
2.6
- 2. 6
- l. 6 1.5
?
&5 Oa luu a.u< usccl lo cb (< n u a' dcwd
,c< [O >
m'll1
~
u c owpw sc.!hu fe dzcw cp n,
a ccc h < a fnw napn m caup ulu s
-' 7 n
7aNm cbl$Lnvt45 rY LL u 5 C b Ct f(L 1 c') 41 L2.L3 LLOL C -
O
~~
.1'
_u_
COMBUSTION ENGINEERING. INC.
WIN OSOR. CONN.
Cs
.OMER
^ I I' d b
I CCNT.No.
M Act By
/
_ o Af t C. h u. li,m " 7.:9/
t.c C y:c N owc. No.
C.m.,
o,
o.,t Tea! W. 5 Sbc c1 ai Ttek S!wI and ct I / ' ich Suri,ml S
.~ -~ ~ ~ ~~~ ~ ~
h epuntcy [lkd]
So
-60 72 97 los 18 5
%R
?
- 9. 5
- 9. 0 7,0
- 7. 5 3.5
%ua c l R,sl Sapp,I % 8 x8>
- 7. 0 8.0
.0 6.5 5.0
%C 70
- 7. 8
- 8. 0 s.5 70 5.5
%R I&
22
- 3. 5 ff.5 4.5 75 SRcar a6cv< Tuh % I % B
.25
- 19. 5 8, o
- 4. 5
- 5. 0 G.5 LC 55 18.5 7.b'
- 3. 5 5.0 7.0
~l~te k th o p <n u e Ilca kia kaa a(
Jctx,I Tub <
Spam [cy]
Pos, k cn G 2,3 2, 7
- l. ?
- 0. 6 0.3 3.3 m
m
-m
,0c21 % 4 fthen R 4.Y Q
Q I, 0 Q
l.C Pcoi k cm 2,
2,3 1.3 1./
(0)
}.7 (Y.})
.o
~ Qa kua kwt uwl I o clt (cc,vrvdt n h cu,a,a l'a tillt Ccvmpctac k (w cltctv cf. va ac a L", c< % nopcuse aampGhG llccn H a n d B occ<
ccutclaclid c:i fit unwse acccLucnt!c, uh.cG hubi.
1% C ucw ps,[c m ucL wi th ce c cc G >m alb es llt c(,a wu.
,e s
}{O d) 3 :,
COM DUSTION ENGINEERING. INC.
WINDSOR. CCNN.
G. PU' S v.t ci fr 1a lx 677SC /
u.oc o
////// o.rc FU/77 cu.,,
ca~r. so (hbu.liei 7,t, I tcc 1,c, owc. ~,
c,. < o e,
o...
]h cG.<. c k cvch 5%ua Rwl(w c, %
b cdt o
(' Diiltcal (cm put sc. Kcv b Cltarc Rta lucSm ibyxnu !bnn h?]
aw u
J h cycwu ug kl Sapp eal hu a kw hk kl Luakm
[Ilv:h l 4 Vs. l S us. +
5 0s. )
40s./
Sik ?
SGa./
50
.562
.330 1:3 60 I.000
. b 33
.633
. 8 ll
.733
.595 71 1.07/
.600
,643
, 765
,73/
553 O
87
.683
, fl3
.1/9'
,000 693 JG5 1.41 3
,750
- 1. 0'7l J. 333 J. /25 J,5cc 18 5 1.000
.550
.550
.923
.425
.577
?
Ex awpla TeoI 5 m pcw cl dllt Teol 9' [ ejfc( c/
l V
cacu%cd dna al pn1 La ~pe?
10caKcm a
ir v<0 K <J<d) g S-/> cua /h ko 1/, e
% cum
~
=
- e. c. uml mas c u st,c s n-c 120 m 14
.3, r
COMOUSTION ENGINEERING. INC.
, W I N D S O R. C O N N.
!Il(N I"lO CATE CONT,No.
MADC BY v
C.
.OMER
{
h
l b'
OWG No.
Chico BY DATE LOC A TIO N kl.CO.tChicst nh Sh; CL Un kloh0%t a bycyyt $COys, c;
'1'I (t
[' 'I b b 1 hl (p[
hv1
[
"r# bl
- h.i
))'Yv'T
[
d'i I
b /i'l l
i J
a T.ucptw.zc,
T.si Sappoi lccca !icu T u b < S L tc l lecc&n
[h%h]
4 Os l sus y 5 Us i 4' Os. /
5 0s. Y 5&k /
50
.78Y
.38i
.193 60
,733
,26Y
. 6 33
.535 1.000
.555 L-72
.2/Y
. 903
.790
. 581 l.liC
.643 07
.752 479
.356
. boy
, 73) 442 ICS
.552
.600
.5 71
.EES
,Sco
.Bcc 18 5
.Sif
.773
.70 7
.945
.278 792 S i,cw 12c+ ko
% Shac;, /CM %
un cawpuan
% nup,u/ cia spu 4**
.h 5 :r
- 7....m.
1 O
APPENDIX B EEOP. ETIC >EE519 PES FOR TEST TUBE WIm AXIAL PRELOAD OF 200 LBS-Prepared by G. B. Reddy 8\\
k2 b
MODE 1
FREQUENCY 43 b-
~
l I
I I
l I
./
g I
.I l
j l
t t
i g
1 I
I 1
t I
I I
I I
1 I
I I
I I
l l
~
i i
I i
I n7O 120 oo s-C.P.U. 5TEnM GENEROTOR TUDE - MODE SHAPE NO. 1
MODE 2
FREQUENCY 4g I
I I
I I
g I
i I
I I
I I
I I
I I
I I
~
u l
I f
I I
I i
I I
l-1 I
I I
I 120 239 "E*U' SIEDM CEtJrROTOR Turap _ M0lli: SiinPE rig, a
e a
0
(...
MODE 3
FREQUENCY 63 4*
e 4
l l
l 1
l\\
\\'
I I
I 1
I I
I t
i I
I s
~ ~ -
I I
e I
I I
g i
l i
I
~
I l
I 9
I I
l'
~
I 1
I h
I in q')
/
u C.P.U. STEN.'t GFliERnTOR 7t:nr - unnte
<~ "
MODE 4
FREQUENCY 82.
I I
I I
I I
/
.i l
i I
1 I
~
l I
I i
t 1
1 I
i l
I I
1 I
I I
I I
l l
l
\\l h
120 2.'1 cn:.
~
MODE 5
FREQUENCY 102.
I's l
l g
1 I
i I
i 1
1 1
.y I
g I
I I
I
~
1 m
[
1 I
I I
(
i I
I I
I
~
~
l 120 242 5
f
. G.P.U. STECM CENERGTOR TL'OC M0llE ClinPC NO. 5
~
6 FREQUENCY 173 MODE t
1 I
I I
l' I
r 1
l i
I 11 l
I l
I i
I I
I i
l I
I 1
l I
I 120 213 t
G.P.U. STCOM GCNERnTCR TUOE - MODE SHnPE NO. 6 74
f MODE 7
FREQUENCY 198 i
1 I
I.
I I
I I
1 I
I 1
I I
I I
I g
.t l
I I
1 I
1 I
I i
1 I
I I
I 1
I I
,3 120 nto G.P.U. STEDM CEt4ERGTCR TUDE -. MODL' 9 rpp g y
.