ML19209B200

From kanterella
Jump to navigation Jump to search
Preliminary Util Peak Demand Projection:Rept to Project Task Force
ML19209B200
Person / Time
Site: Callaway Ameren icon.png
Issue date: 08/14/1979
From: Haigh P
MISSOURI, STATE OF
To:
Shared Package
ML19209B184 List:
References
NUDOCS 7910090316
Download: ML19209B200 (34)


Text

.

F PRELIMINARY Ut! ION ELECTRIC COMPANY PEAK DEMAND PROJECTION 1

i l

A REPORT TO THE CALLAWAY PROJECT TASK FORCE l

i i

PREPARED BY PETER A. HAIGH liij

7 79100903'M

SUMMARY

AND CONCLUSI0'4S The Staff has prepared a tentative projection of Union Electric's (UE) future peak 'oads as an aid to studying the need for the Callaa y nuclear units. The peak load is the maximum kilowatt demand which an electric utility must be prepared to meet with its generating capacity.

Due to the long lead time (10 to 12 years) to construct a nuclear power plant, it is extremely important to have a good forecast of f'Jture needs if the consuner is to avoid paying excessive rates.

This proulem has been magnified in the last decade by a reduction in the rate at which consumer demand has been growing, implying that if a company does build too nuch generating capacity it will be longer before this excess capa-city c:n be absorbed by increased demand.

The Staff's pmjection of UE's peak load is based on trend analysis.

Trend analysis is a statistical technique which allows the researcher to study how the vatoe of a variable (for instance, peak load) changes through time.

It is then possible to project the probable values of this variable into the future.

In order to have a high degree of confidence in these projections it is necessary that they are found to be accurate,and that they remain relatively stable as new data becomes available.

For the purposes of projecting peak load, both the Staff and UE have divided peak into base and temperature sensitive components.

Base load represents that component of peak electricity demand which does not depend on temperature.

Er.amples of base load would be the use of lights or an electric range in the home, refrigeration units in a grocery store and machinery driven by electric motors in a manufacturing concern. Tem-perature sensitive load is that portion of peak demand which is due to the use of air conditioners (A/C) in the-sumer and electric heating in the winter.

Temperature sensitive load was further divided into that due to residential customers and that due to commercial enterprises.

These three components of peak demand (base load and residential and commercial temperature sensitive load) were each projected and the results added together to arrive at projected system peak demand.

In order to make a forecast, the statistician must build a mathe-matical model which involves the choice of what variables to use and how these variables are related.

The quality of the forecast depends on the app opriateness of these choices. Once these decisions are made, the stadstician uses a computer to estimate the model and other values which, in part, help to detennine the appropriateness of these decisions.

To project.the future values of base lead, UE decided base load depended on the sales of electricity to large comercial and industrial customers and on the passage of time. One problem in this is that sales to large users is more sensitive to economic conditions ~ than the base load it is supposed to predict. This is an inappropriate statistical procedure which will tend to make projections unstable.

In addition, UE chose a relationship between its variables which will tend to project values of base load which grow rapidly. The Staff found UE's forecast of base load has been too high in the past and that it has consistenly had to be revised downward as new data became available.

37 1/0 il)

U

The Staff's model used only time to explain the movement of base load and chose a relationship between base load and time which seemed

~

to reflect the actual growth in base load much more accurately.

Besides providing projections which were more accurate and stable, the Staff's projections of base load are much lower than UE's.

It is shown in the text that a high level of confidence can be attached to the Staff's projections.

The projection of commercial A/C demand by UE grows at an annual rate of 5%. The Staff estimated the trend of connercial A/C demand and projected this trend. Once again, these projections were lower than UE's and were found to be more accurate and more stable over time. This would, again, imply that more confidence can be attached to the Staff's projecti ons.

The Staff checked UE's projections of residential A/C demand care-fully and found these to be both accurate and stable and, therefore, accepted these results.

The !taff's analysis has demonstrated two important results. One, UE's peak i arecast has required downward revision every year since the Arab oil em~ argo and that these downward revisions have been approaching o

the relatively stable values forecast by the Staff.

Second, the accuracy and stability of the Staff's projections demonstrate that it is possible to provide estimates to future peak demand to which a high degree of confi-dence can be attached.

The results of this study are summarized in Figure A following this section. Sho #n on the graph are the Staff's projection and UE's forecast of the load. As indicated on the Figure for 1987, the Staff model projects a load requirement of approximately 7,800 megawatts while the UE model forecasts approximately 8,830 megawatts.

Also shown on the graph is the planned plant capacity to be installed by UE.

In 1982 and 1987 UE plans to add the generating capacity of Callaway Unita 1 and 2 respectively. When comparing the available capacity after Callaway Unit 1 is generating power in 1982 with the estimated load require-ments as projected by the Staff model, the graphs clearly show that there is excess system capacity available from Unit 1 through 1988.

While Unit 2 is planned for completion in 1987, the graph shows that it is not needed until after 1988.

If Unit 2 were finished as UE plans, there will be approximately 1,350 megawatts of excess capacity in 1987 above that which is projected by the Staff model.

/Q 4

n%

O==

a_6 N

<M

/1 1

w

  • " it'~ar

'"= 6 N;

hd u

w

..a c

,T l yX,

-. - + -...

.e

.., v..C

_4.; 4_L i_

W--

- _ 4.. ;._

-- __._e. n. _

i

..i.

e

c. k_

Q..

L -,..

.-~r4 ea t>.

+_

..,i E. 6

  • v k...

i., i.

&.i L4 4_ i..- i..

I j f r. 4.4.L6

... 4.

.... j...

L*i

+...

.LL{4 4i kk 4_4... i -i ; -.,,.+,. {. t., 4 4.}t-p.*.j . *, *6 pLi. . 4_. 4. . _.. + t _ -. .. +..... p-.- + &.t .-.1. .. p +_. + i + - .+.-.-, &_. ._.- p.-.- ~. _. - 1 -*. + .. t ,.4 ._+-....6-p -. + - + -. - * *.+. L. 7-. , _ +.._.7.. +,. .-.....h.. ~ -.._.-._.-_7 _ __ _ sc....= N t% .J \\ + e< .\\. a. + a L x J % g. k 6 s M % t \\. g ., a \\. .u .\\ 1 \\ et \\ e X

+

\\ \\ P \\ 'h s 2 \\ 'N \\ W l-y ;y 1 NJ __. L g t y \\ s, y ^. \\ e \\ O. N \\- \\ G Y \\ k N u ._-. g \\ h \\ O Z< ,2 s 1 o______. s ew

g

- - - - - n, g, ~ Ca J i \\ C:3 a r-C3::lll \\ t CD s p. g3 a____ 1 r- ---- s, I i 1 g 1 x s a ty C \\' \\ 4 1 e ~ \\ p s s s .... ~ T s, - = _ _ T** o y o o o w*

  • M o

(s qwysnet.L ) 'aty.Lo37.y. s.t.a.wmW 91}/ ]3,,1J-&Typ Q u v

O e I e * \\ Y ,4 I \\, PEAK DEMAND PROJECTION -DETAILS-1" (. I\\ ft 4 4 i o e % e i Z B L ii1J i

I. BASE LOAD Base load represents that component of peak demand which is independent of occurring weather. Union Electric uses laroe power sales (LPS) and time (t) to project base load (BASEmw). LPS is defined as annual billed GWH sales to large commercial (purchases of more than 300,000 KWH/ year) and industrial customers. Since LPS is the driver in this model, it must be forecast. As far as can be determined, UE primarily uses judgment to project LPS rather than a quantitative model. Time is a proxy variable to account for the growth in base load cau!9d by variables not include in the ecuation. The functional forms used by UE and the PSC Staff are the following: UE: in(BASEmw) = a + b [1n(LPS)] +b2(t) + u 1 PSC: BASE,, = a + b[1n(t)] +v t with the associated computer runs including 1979-1998 projections being found as Schedules 1(UE) and 2(PSC) in the Appendix. The statistics associated with both models are quite encouraging except that positive serial correlation is indicated for the Staff's model while its presence is indeterminant in UE's model. Since this is a possible sign that the wrong functional form has been fit to the data, a check was made of model residuals for the years 1964-78. No serial correlation was found to exist in these latter years which are the most important for forecasting purposes. The summer base load projections based on UE's and the Staff's models can be seen graphically in Figure 1 and numerically in Table 1.2 The Staff felt discrepancies of this magnitude should 2In addition to the model projections, the base load projection for UE includes an "other base" component which UE uses to re-flect expected growth in base load from conversions of other energy sources to electricity. ,7 379 lJ L

FIGun= 1 ~ i; .;}. l +y'. i ilt . 4 _._.1. J 3 :.[. .i

l 4

t_ i. i j( i .L ll. l . _m t d t._ t_._: _ }* 4ii .,- t. -Q- ~t-'.-' A i*I -a + 44.r.L t li l i H-H-t- . 't';':' + -t-er'tt-- rrr . i i e .i,i,.. i >6 i Q

i,,

4. i i,. i. .,i , i i, 1 a,

i.,..

ex ,i.i,ii. i u4 i,, L.1) i i r 6 _L_ i i i ~ i e i i, i i , i, l 1 l g g g g g g .g i 1 9 (f-x . i,. , i i ,Y 4 i i i iN , i,, 1 i .x i, i i i I i. % t ( t N i I, .. d{ t I. I, T. '.e i 9 i i i .N .\\ we i.. . i, ,,,, i. i.. i. i... i N i 4, M j , 4 g t s,., ', I .. l 4 g Ng i ,, 3 i i j\\. l ., "*~ *

  • f l.

t, M,, w ,.4-. .,. t _.,.N. 7.. _ -... -,i. ~ s i t, e t i g +- ~- ~ ' Y is H&M+4 "- &, ' h. C' T' H,-H..i. +t 1 ..>.n.W ' _-.. 'u~ , -'-~.. &. _. i ~ i u r._ t. i . t. ta '+L. i.. Lu.t. - 1 L. .9_..,.... . - ~ g . \\ \\m i g e t X \\ i ~ X x, =N t N \\ \\ Q N,. \\ t - i i. .N-my W t i .\\ M I t a X1 Q { . i i . i (C '\\' - y 3 m g.s W i i iii i e 4J A i i. c:, g 1 c:a .... m a tm 1 E-f f-. 5- - + -. -. - - - 1 h. b==.e-. w

  • -+ r-+.

et, ~+ r. i +\\* T ' i i i i i., - g L . i,, .g. D 1' O 1, i.,t 1 g i T p X j

  • i '

\\ i Z \\ N

l;'

\\ s a N. i, ( 1 , i 1 8 f ,\\- i. .g t 1 I . f S v- \\

  • inesse i

X i....4 p E l e b

TABLE 1 / COMPARISDN QF PROJECTED BRSE LDAD PROJECTED PEMM GMQHTH RRTES r' YEAR PSC UE PSC UE 1965 1724 1724 8.50 8.50 r i 1966 1886 1886 9.40 9.40 1967 1981 1981 5.04 5.04 1968 '2047 2047 3.33 3.33 1969 2224 2224 8.65 8.65 1970 2256 2256 1.44 1.44 .1971 2354 2354 4.34 4.34 1972 2469 2469 4.G9 4.89 1973 2592 2592 4.98 4.98 1974 2612 2612 0.77 0.77 1975 2679 2679 2.57 2.57 1976 2793 2793 4.26 4.26 1977 2917 2917 4.44 4.44' 1978 2933 2933 0.55 0.55 ) 1979 3042 3130 3.72 6.71 1980 3124 3250 2.70 3.84 '~ 1981 3204 3376 2.56 3.87 1982 3284 3527 2.50 4.49 1983 3362 3690 2.38 4.61 1984 3440 3864 2.32 4.72 1985 3516 4055 2.21 4.94 1986 3592 4268 2.16 5.25 1987 3667 4494 2.09 5.29 1988 3741 4733 2.02 5.31 I 1989 3814 4974 1.95 5.11 1990 3887 5210 1.91 4.74 1991 3958 5450 1.83 4.61 1992 4029 5695 1.79 4.49 i 1993 4099 5940 1.74 4.30 1994 4168 6193 1.68 4.26 1995 '4237 6453 1.66 4.19 1996 4305 6720 1.60 4.13 1997 4372 6998 1.56 4.15 1998 4439 7265 1.53 4.10

be checked very carefuliy, especially since both projections are based on models with " good statistics". It is desirable to check both the accuracy and the stability provided by the two models. Both of these checks were made on the basis of sequential model estimates. To accomplish this, the historical data series were truncated to 1971 and both models estimated for the years 1958-71 with projections being made through 1998. The same estimation procedure was carried out for the years 1958-72, then 1958-73, etc. so that a total of 8 years' forecasting " experience" could be gained for each model. It was then possible to check the accuracy of the models by comparing the forecasts through 1978 with the values which actually occurred and to check (Se stability over the forecast period by comparing the secuence of forecast values for a particular year, say 1988, generated by the set of truncated models. The comparative accuracy of UE's and the Staff's models can be seen by looking at Table 2. The row headings in Table 2 indicate the year of the last observation included in the truncated model while the entries are the forecasts given by that model for the year designated in the column heading. For example, the value 2870 found in the top half of Table 2 in the row labeled 1973 and column labeled 1976 means that UE's model projected 1976 summer base load to be 2870 MW when the forecast was made from data avail-able through'1973. The number beneath 2870 in parenthesis (2.76) is the percentage error between the forecast and the value actucliy occurring in that year. Two interesting comparisons of the models are revealed in Table 2. First, using the sequential forecasts for 1978 (see the 7 4 7 r, lJ J

TABLE 2 ACCURACY OF BASE LOAD MODELS YEAR OF FORECASTED VALUE FORECAST 1972 1973 1974 1975 1976 1977 1978 UE MODEL \\ 1971 2451 2567 263u 2688 2838 3005 3097 (0.73) (0.96) (0.88) (0.34) (1.61) (3.02) (5.59) 1972 2582 2655 2715 2868 3037 3135 (0.39) (1.65) (1.34) (2.69) (4.11) (6.89) 1973 2654 2716 2870 3039 3140 ( 1. 61) (1.38) (2.76) (4 ~8) (7.06) 1974 2694 2845 3013 3106 (0.56) (1.86) (3.29) (5.90) 1975 2841 3008 3100 (1.72) (3.12) (5.69) i 1976 2975 3063 (1.99) (4.43) 1977 3055 (4.16) PSC MODEL 1971 2419 2506 2593 2678 2761 2844 2926 (2.03) (3.32) (0.73) (0.04) (1.15) (2.50) (0.24) 1972 2519 2606 2692 2777 2861 2944 (2.82) (0.23) (0.49) (0.57) (1.92) (0.38) 1973 2623 2711 2797 2882 2966 ( 0.'42 ) (1.19) (0.14) (1.20) (1.13) 1974 2708 2794 2879 2963 (1.08) (0.04) (1.30) (1.02) 1975 2788 2872 2956 (0.18) (1.54) (0.78) 1976 2873 2957 (1.51) (0.82) 1977 j))j ]76 2965 (1.09) ACTUAL VALUE: 2469 2592 2612 2679 2793 2917 2933

4 column labeled 1978) as an example, the UE model has shown a reduc-tion in the forecasted value for 1978 for every year since 1973. The Staff model 1978 forecast has remained much more stable. In addition, the UE 1977 forecast of 1978 base load was still substan-1 tially above the realized value while the 1977 Staff forecast, although higher, was much closer. The important point here is that the UE model requires regular downward revision of forecasts yet ) is still well above the realized value. / The second point of note in Table 2 is that the percentage errors associated with UE's forecasts are substantially higher than those associated with the Staff's forecasts. Hence, the Staff's model appears to provide ex post forecasts which are more accurate and more stable than UE's model. j Table 3 provides a comparison of the ex ante forecasts of the two models. A row reports the forecast for that year made by each of the 8 sequential model estimates. A column reports the fore-casts made by the associated truncated model for each of the 20 years 1979-98. To study forecast stability for a particular year, say 1988, find the row labeled 1988 and study the change in values as years are added to the estimation period. If UE and Staff forecasts are compared for any year, it is seen that the insta-bility associated with UE's forecasts (and mentioned with regard to Table 2) is still present with a tendency for downward revision after 1973. The seriousness of this downward revision becomes very obvious when the forecasts for 1998 are studied. 11i3 177 F

TABLE 3 COMPARISCN OF SEGUENTIRL BASE LCAD FORECASTS BASED ON UE85 MODEL FORECAST BASED ON DATM ENDING IN THE FOLLCHING YEARS YEM" 1971 1972 1973 1974 1975 1976 1977 1978 1979 3209 3252 3273 3227 3217 3194 3168 3130 1980 3341 3389 3414 3360 3349 3324 3294 3250 1981 3480 3533 3561 3501 3488 3459 3426 3376 3 1982 3624 3684 3716 3648 3633 3601 3564 3507 s 1983 3776 3843 3878 3802 3786 3750 3708 3645 1984 3935 4009 4048 3964 3946 3905 3859 3789 1985 4102 4183 4226 4133 4113 4069 4018 3940 1986 4276 4366 4413 4311 4289 4240 4184 4098 1987 4460 4558 4610 4497 4473 4419 4357 4264 1988 4652 4760 4816 4693 4666 4607 4540 4438 1989 4854 4971 5033 4898 4869 4805 4731 4619 1990 5066 5193 5261 5114 5082 5012 .4932 4810 1991 5288 5426 5500 5340 5306 5229 5142 5010 1992 5521 5672 5751 5578 5541 5458 5363 5220 1993 5766 5929 6015 5827 5787 5697 5595 5440 1994 6021 6197 6291 6087 6044 5946 5836 5668 ~ 1995 6289 6479 6580 6360 6313 6208 6089 5908 1996 6570 6776 6885 6647 6596 6483 6354 6160 1997 6866 7087 7204 6948 6894 6772 6633 6423 l 1998 7176 7414 7541 7265 7206 7075 6926 6700 \\s COMPRMISCN OF SEGUENTIAL BASE LCAD FORECASTS BASED CN PSC'S MODEL FORECAST BASED ON DATM ENDING IN THE FULLOWING YERMS YEA

  • 1971 1972 1973 1974 1975 1976 1977 1978 1979 3006 3025 3049 3045 3038 3039 3048 3042 1980 3086 3106 3131 3127 3119 3121 3130 3124 1981 3165 3185 3212 3208 3200 3201 3210 3204 1982 3242 3264 3291 3288 3279 3280 3290 3284 1983 3319 3342 3370 3366 33S7 3359 3369 3362 1984 3395 3418 3448 3444 3435 3436 3447 3440 1985 3470 3494 3525 3521 3511 3513 3524 3516 1986 3544 3569 3601 3597 3587 3588 3600 3592 1987 3617 3643 3677 3672 3662 3663 3675 3667-1988 3689 3717 3751 3746 3735 3737 3750 3741 1989 3761 3789 3825 3820 3808 3810 3823 3814 1990 3832 3861 3897 3892 3881 3882 3896 3887 1991 3902 3931 3969 3964 3952 3954 3968 3958 1992 3971 4001 4040 4035 4023 4024 4039 4029 1993 4039 4071 4111 4105 4092 4094 4109 4099 1994 4107 4139 4180 4175 4162 4163 4179 4168 1995 4174 4207 4249 4243 4230 4232 4248 4237 1996 4240 4274 4317 4311 4298 4299 4316 4305 1997 4306 4341 4385 4379 4365 4366 4383 4372 1998 4371 4406 4452 4445 4431 4433 4450 4439
  • 7
  • ~7 ()

is U

II. COMMERCIAL A/C DEMAND The commercial A/C demand at temperature corrected peak has been projected by UE at an annual growth rate of 5%. Although conversations with UE's forecasting personnel indicate that the process used by the Company is much more complex than this (and will be reviewed in detail when the necessary data is received), the projections currently in hand, however they were arrived at, silow this constant growth rate. The Staff tried several models of commercial A/C demand and found a simple linear function of time to provide the best overall perforraance, see Schedule 3 in the Appendix. This model projects growth as a ccnstant absolute amount each year as opposed to UE's constant rate of growth which implies a larger absolute amount [ of growth each year. i. A comparison of the projections ma e by both models can be f found graphically in Figure 2 and numerically in Table 4. Again a relatively large divergence between UE and Staff proaictions can be seen and, as a result, it was felt desirable to study the accuracy and stability of the two models. Table 5 was developed to compare accuracy and should be read in the same manner as Table 2 while Table 6 shows the sequential commercial A/C demand projec-tions and is similar to Table 3. Examination of Table 5 shows the Staff model to have a marked tendency to greater accuracy than UE's model and Table 6 shows greater stability in the Staff's sequential forecasts although in neither case is the difference as dramatic as in the case of base load. Looking at Figure 2, the Staff's extension of the historical data series would seem to be a inore natural one than that provided s ~1 0 b l

&C Fu.<1tre: 1 i +. -m I l I ' U I I l 1 . l l.. [ 4 I i j i i $ i 0 6 ~4 --a l 5 t i f I _A I I ,. 4 6 . j i I l 5 I l t 4 I I i e j ' I i i f e - N' / 1 e e i 3 3. i, fa E s.I f i 6

  • i i

i 3. i e i e. , i ;. i Ce ~ i i i e t . t t.. e i. I e, e i i. 6. I i t i, ! ' 4 '#d' di %i Tt t I i ! t t i Y' ' I N i i i ) i e i,, i i i i.. , i. r . i 6 6 .. t ., i i i,.,,, ,,,,. 2 , i, I i i I m e i l i i . O. p. N ,., j.., g' v f\\l i g,g 6,LJ I . i 1 4 i i. I i.i i. fi I~ s w4 i. , i i i,. 4 i,,,. = i.'. M 3 i. l. I 6 4 t. i. a. I e 6 e. + i N i..,,., i..,,... , i,. I t i . i T , i, k i e q I e t i e i, t 8 6 \\i 1 \\

6 i e e. e

.. i . i,, e r i i,. . i i A. i ,et i . i., , i . i 1 / ..N I N g .i i i i e i 8 ph, ./ N i e

  • i

.X. ,. t e . i t e r i i e s I I "m y 1 4 .X. i. g i. >. e e, t ., t we i, ., i. . i.... e e ... i

  • i i,

6. 6 0 . 9 l 6 g ,. i i t, i s s i i + t N e =* , i i i. 1 i m N g-y ,N , 6 . 1.. m N i, j Q . \\. i

  • ~~ M c r-.

_f N \\. \\ \\ CF f 7 1 . r. L, ~ i ..h .4 i._.g g. g \\ e \\ Y \\ \\- T \\. \\t2 s i N sm.m.sek r, N \\ i X- \\ L> Q .A g. i i .X \\ r l y. aM X \\ t A i, i.. e e p 6 e t t . s 9 ~, m w./.. A .i i i i - W.. \\\\. i i T, i . i i..., . w. ,, i... i t t i e e 4 1 e t e i s l t { I 1 0 t I ! i I l l l 4 0. { t I I [ 6 t c:.3 , i. p \\ g (-L e . i i - X .g. 1 i.. \\. i, i.,, q 1 6 X- _ M g .J_ N i. <,, t i,,, i i tym 4 , i \\ i e. . t i r i 1 J. I [. 1 0 4 1 I i -( i e t ,s t A ' i ,'.d \\l i e t, e v i s 4 i i, i, , i e 1 i [ e 1 I i r I ga ]g _ y a.N _. i .n e I e jV i T 5 ' L e iQ .A - g .g =. f, .v .n ,O A i. W i, N i i R .A} W + v /- . i i I k 0 f l i e i. t I l r 1 i 6 . e i., 4 8 t 1 [.... I g f 1 I a f 8 i 8 I i

  • 4 1 1 t I

9 1 I i I l t 6 l 8 { l 9 l 1 { I 4 l 3 . e e e . I e i e e l j i, e t. t I 3 t i t t 4

TABLE 4 v COMPRMISON OFr PROJECTED COMMERC1.4L M/C PEMM LORDS PROJECTED PERM GROWTH RMTES YEAR PSC UE PSC UE 1965 200 200 7.62 7.62 1966 215 215 7.30 7.30 1967 233 233 8.30 8.53 1968 251 251 7.9< r.27 1969 272 272 8.13 8.13 1970 289 289 6.23 6.23 1971 307 307 6.27 6.27 1972 324 324 5.60 5.60 1973 345 345 6.35 6.35 1974 365 365 5.83 5.83 1975 380 380 4.10 4.10 1976 401 401 5.70 5.70 1977 417 417 4.00 4.00 1978 431 431 3.29 3.29 1979 452 453 4.90 5.00 1980 470 475 3.99 5.00 1981 488 499 3.84 5.00 1982 507 524 3.70 5.00 1983 525 550 3.57 5.00 1984 543 578 3.44 5.00 1985 561 607 3.33 5.00 1986 579 637 3.22 5.00 1987 597 669 3.12 5.00 1988 615 702 3.03 5.00 1989 633 738 2.94 5.00 1990 651 774 2.85 5.00 1991 669 813 2.77 5.00 1992 687 854 2.70 5.00 1993 705 896 2.63 5.00 1994 723 941 2.56 5.00 1995 741 988 2.50 5.00 1996 759 1038 2.44 5.00 1997 777 1090 2.38 5.00 1998 796

1144 2.32 5.00

%es# 1113 '?!

o TACLE 5 ACCURACY OF COMMERCIAL A/C DEMAND MODELS t. YEAR OF FORECASTED VALUE FORECAST 1972 1973 1974 1975 1976 1977 1978 UE MODEL i 1971 322 338 355 373 392 411 432 (0.62) (2.03) (2.74) (1.8A) (2.2a) (1.44) (0.23) 1972 340 357 375 394 414 a3a (1.45) (2.19) (1.32) (1.75) (0.72) (0.70) 1973 362 380 399 alo aan (0.82) (-) (0.50) (0.a8) (2.04) 1974 381 402 422 da3 (0.79) (0.25) (1.20) (2.78) 1975 399 419 444 (0.50) (0.4A) (2.n9) 1976 422 443 (1.20) (2.78) 1977 438 (1.F2) PSC MODEL 1971 323 341 358 376 39A all 429 (0.31) (1.16) (1.92) (1.05) (1.75) (1.da) (0.46) 1972 341 359 377 39e 412 429 (1.16) (1.64) (0.74) (1.7:) (1.20) (0.aA) 1973 360 378 39F ald A3? (1.37) (0.53) (1.25) (0.72) (0.23) 1974 380 39P 416 43A (-) (0.75) (n.2a) (0.70) 1975 398 416 a3A (0.75) (0.24) (0.7n) 1976 a17 435 (-) (0.93) 1977 435 (0.91) ACTUAL VALUE: 324 345 365 380 401 4 1 i i7 n 131 7 4 m

TABLE 6 COMPAPISCN OF JEDUENTIAL COMMEPCIAL A -C FCPECASTS PA5ED ON UE'5 MODEL FCPECAST PATED CN DATA ENDING IN THE FCLLOWING 'Y E A R S rEAa 1971 1972 1973 1974 1975 1976 1977 1978 1979 454 456 462 466 462 465 460 453 \\ 1980 476 479 485 489 485 488 483 475 'l 1981 500 503 509 513 509 512 507 499 f 1982 525 528 535 539 534 538 533 524 k 1993 551 554 562 566 561 565 559 550 \\ 1984 579 582 590 594 589 593 587 578 1985 608 611 619 624 619 623 617 607 1986 638 642 650 655 650 654 648 637 1987 670 674 683 688 682 687 680 669 1988 704 708 717 722 716 721 714 702 1989 739 743 753 758 752 '757 750 738 1990 776 780 790 796 790 795 787 774 1991 814 819 830 836 829 835 827 813 1992 855 860 871 879 870 876 868 854 1993 898 903 915 922 914 920 911 896 1994 943 948 960 968 960 966 957 941 1995 990 996 1008 1016 1008 1014 1005 988 1996 1040 1045 1059 1067 1058 1065 1055 1038 1997 1991 1098 1112 1121 1111 1118 1108 1090 1998 1146 1153 1167 1177 1167 1174 1163 1144 COMPARISCN OF 5EDUENTIAL COMMERCIAL A/C FCPECAFTS PASED CN PSC'S MCLEL FCPECAET EA5ED ON DATA ENDING IN THE FCLLOWING YEARS . EAR 1971 1972 1973 1974 1975 1976 1977 1979 1979 446 447 449 452 452 453 453 452 1990 464 465 467 470 470 471 472 470 1981 482 482 485 488 488 490 490 488 1982 499 500 503 506 506 508 508 507 1993 517 518 521 524 524 526 526 525 1984 534 535 538 542 542 544 544 543 1995 552. 553 556 560 560 562 562 561 1996 569 570 574 578 579 580 581 579 1967 587 588 592 596 596 598 599 597 1988 605 606 610 614 614 617 617 615 1999 622 623 628 632 632 635 635 633 1990 640 641 645 650 650 653 653 651 1991 657 659 663 668 668 671 671 669 1992 675 676 681 686 686 689 690 687 199? 692 694 699 704 704 707 708 705 1994 710 712 717 722 ?22 725 726 723 1995 729 729 735 740 740 744 744 741 1996 745 747 752 758 758 762 762 759 1997 763 764 770 776 776 780 780 777 1999 780 782 788 794 794 798 799 796 n7 3 3., II!J J

by UE's constant rate of growth. In fact, the actual rate of growth in commercial A/C demand has shown a dowr. ward trend since the beginning of the 1970's, see Table 4. It should be noted that at this time there is a substantial difficulty associated with the data series representing commercial [ A/C demand and also re',idential A/C demand which is defined as the difference between s.' stem temperature sensitive demand and commercial A/C demand. The prJblem is that commercial A/C demand is derived from a diversity fictor applied to installed commercial A/C capacity. The diversity factor is of primary importance since it determines how temperature sensitive demand is broken into its commercial and residential components. This separation is important because, as will be seen in the next section, the two components seem to 'e following different. growth patterns. UE is currently developing i a new methodology for estimating the diversity factor and the Staff will also study this whole problem carefully in the tuture. The ~ point is that a revision in both Company and Staff projections of the two components of temperature sensitive demand is likely although conversations with the Company's personnel indica'e they expect the impact on system peak to be small. b lJ

III. RESIDENTIAL A/C DEMAND As was mentioned in Section II, UE uses a residual series to represent residential A/C demand at temperature corrected peak. p This component's projection is based on a regression of the residual variable against DEMAND (the product of number of customers, ,5 KW demand at temperature corrected peak and percent A/C saturation) and DUMMY (to account for the conservation effect showing up after the OPEC oil embargo). This dummy variable allows a gradual adjust-ment in the 1974-77 period. The functional form of the model is the following: RES =a+b DEMAND + b DUMMY + u mw l 2 The model computer run can be found as Schedule 4 in the Appendix and the projections can be found graphically in Figure 3 and i numerically in Table 7. This circuitous approach was adopted by UE because the residual nature makes their residential variable depend on the diversity factor adopted for commercial A/C. It might be thought that DEMAND could be used to represent the residential component leaving com-i mercial A/C as a meaningful residual, however, the only component of DEMAND known with any confidence is number of customers. As a s result, the absolute value of DEMAND is not dependable. The UE model , somewhat unconventionai and very difficult to interpret although its projections seem very reasonable compared to historical growth and no alternative model could be found, given the data which the Staff currently has, which provided projections ~ as accurate and stable as UE's. However, the same caveat should 1113 :"5

T-OW - I b - + - +- - + - + - - + - - * - - .4, f~ l f ' ' .+! i '.4 i 4 _L pJ L i 4-A-7 1.. L 4... ; 4., ! 4. L.. 2_ a -.. .4 } t,. + L-i- - L-tt 1 6- . ti 6. t.. I LiJ . + a-A L L4 }'sI, .t. 4 . '.. i ! .i 1.l_i., f' ;l 4 '. ! j.4 1 i. L. 'L l.; a i 4'.! (-. ... l l - 1} t [,...k.k.- 44 - +L-1 1 + i L-. 4- '.4 L L. g i1 i i i i i i - - +. 6 t 4---* t-m * +--- - 1 + + -H ' 14 '.4 b4 i [ ) 14 ' i ; ! - +- t -i-t -' 4 ' 'i-4 '1 l !l fk .1-.+ . ' L 4--. i i. i i y} 1 1 j ! L-- w 'f4 li!I 6 44 a Cf'" -+ 1 r-*l- . -, e +- 4+.t 4--+- . L.L-. i . i c. -f I-l 4 ' ' I 6 i6 li L L .,}l 1.1 !!4 +- -+- e i o i, i 6. t. -. -- + - ~.. - -. - .. i.. ..}tf{. 4 (f".".=.7. -{* }- }4..-tI.j L4--j -.- 4 4.j- ;1 14 g. i..i^ {. )1 }. 4 a 1i t i. 6 ii ... - ~. -.4 46,9 L.+ r. 6.

. +-.-+

-.i. ;,.4 t., i + m t_t i, i { (N:*-t

  • t p+ 1-f l,,.'['

t..k. '.M[ ; .-h - i-3, f-; i +- t ji .-o L.. -.t :-t. ' :a. d. - .._ L'+5d.... H -- n r . i.. L' t. + + 4,.-i + -r-- t r L 1 -_i i t ". 4--.- + D .4.7 4 .a.. _ j_ L. 1 ++ I .. L. . t. Q L.- ( Q ll ~ .Ql , 7 LL. _A_.. g .... +. + -.. - +. j t ,g F. .. -. ~ L' 1-- L .g T + ,3 p_ w. -._-. -6 7 f- - i I g ( g. o .-~_.-4 w.- -+ V'~ C/'" d \\ c-q s g t-- .NM u -... a...._ __{. l 3 \\ v) \\, y \\ ~ +.. ... 6. _.. - 1 l q m .k k o I e g

. g A,

/. v ,== = I \\ ,.s x s e m m I i t \\ i e t.-. ~ l L-I x \\ \\, Mm P .-4 e.-. e g M.g h> Wim. . > e .-em. .e_. g g-- h i--.-- - k. ..-....-.-S 1 L ..... s -. 4 -j. . _, 5 6.. -.A-4. g a \\ ..g i .6.._ x.. - g -. ~. SW w

.-a

I + m s ) k -M /R 'M r ~ u ~. w iv oc-- w 4n n %r t L-fM N ,D4

==.y. I 1 I N i %e.r a f l t I, t t k.. e 9 I l i 7 4 (1 /. {-. i .J V 4

TABLE 7 PROJECTED RESILENTIAL A/C PEAK LDADS YEAR PROJECTCD PEAM GROWTH RATES 1965 891 15.84 1966 1019 14.41 1967 1146 12.48 1968 1452 26.65 1969 1524 5.00 1970 1585 4.01 1971 1759 10.97 1972 1837 4.42 1973 2033 10.69 1974 2053 0.98 1975 2121 3.31 1976 2126 0.21 1977 2196 3.29 1978 2266 3.20 1979 2321 2.44 1980 2374 2.27 1981 2432 2.45 1982 2491 2.42 1983 2547 2.28 1984 2605 2.25 1985 2659 2.10 1986 2714 2.07 i 1987 2766 1.91 j 1988 2811 1.62 1989 2852 1.48 1990 2894 1.47 1991 2937 1.47 1992 2980 1.46 1993 3023 1.46 1994 3064 1.34-1995 3105 1.34 1996 3150 1.45 1997 3191 1.33 1998 3230 1.21 i t [ l

TABLE 8 ACCURACY OF RESIDENTIAL A/C DEMAND MODEL YEAR OF FORECASTED VALUE f~ FORECAST 1972 1973 1974 1975 1976 1977 1979 r 1971 1915 2051 2163 2250 2340 2408 2a66 (4.25) (0.89) (5.36) (6.08) (10.07) (9.65) (8.83) f 1972 2017 2125 2209 2269 2361 2418 (0.79) (3.51) (4.15) (6.73) (7.51) (6.71) 1973 2131 2216 2303 2369 2426 (3.80) (4.48) (8.33) (7.88) (7.06) 2133 2190 1974 2059 2067 (2.92) (2.78) (2.87) (3.35) 1975 2147 2212 2269 (0.99) (0.73) (0.13) 1976 2198 2255 (0.09) (0.49) 1977 2254 (0.53) ACTUAL VALUE: 1837 2033 2053 2121 2126 2196 2266 lll) O

TABLE 9 COMP 6"'5CN OF SEQUENTIAL RESIDENTIAL A/C FORECASTS BASED ON UE'S MODEL FORECAST BASED ON DATA ENDING IN THE FOLLOWING YEARS ' REAR 1971 1972 1973 1974 1975 1976 1977 1978 7.. (> 1979 2532 2481 2490 2254 2333 2319 2318 2321 1980 2587 2534 2543 2307 2385 2371 2370 2374 1981 2647 2592 2601 2365 2443 2429 2428 2432 p' 1982 2708 2650 2660 2424 2502 2488 2487 2491 1983 2766 2707 2717 2481 2558 2545 2544 2547 1984 2825 2764 2774 2538 2616 2602 2601 2605 c 3 1985 2882 2818 2829 2593 2670 2657 2656 2659 1986 2939 2873 2884 2648 2725 2712 2711 2714 1987 2992 2925 2936 2700 2777 8764 2763 2766 1988 3038 2969 2981-2745 2921 2809 2808 2811 1989 3081 3011 3023 2787 2863 2850 2849 2852 1990 3125 3053 3065 2829 2905 2892 2891 2894 1991 3169 3095 3107 2871 2947 2934 2934 2937 1992 3213 3138 3150 2914 2990 2977 2976 2980 1993 3258 3181 3194 2958 3033 3021 ' 3020 3023 1994 3300 3221 3234~ 2999 3074 3061 3060 3064 1995 3342 3262 3275 3040 3115 3102 3101 3105 1996 3388 3307 3320 3085 3159 3147 3146 3150 1997 3431 3348 3362 3126 3201 3189 3188 3191 1999 3471 3387 3401 3165 3240 3228 3227 3230 t 6 4 \\ t ng i l,i ) i

.bc made here as at the end of Section II. It is realized that much more research nas to be done before a high degree of confidence can ~ t be placed on these results. Although no comparisons are being made, Tables 8 and 9 are r-f offered as an indication of the overall performance of UE's model. r- ) i o ' k t k \\ 1 ~[ i O fl i J i V

r-IV. SYSTEM PEAK DEMAND A comparison of projected system peak based on UE's and the Staff's models can be found graphically in Figure 4 and numerically in Table 10. Of particular interest is how these forecasts translate into capacity deficits if Callaway I is not brought on line. I Tables 11 and 12 provide this information through 1988 based on s. the UE and Staff forecasts, respectively, including the 15% capacity j-i~ reserve required by UE's power pool agreement. The base load component is the major contributor to difference between UE's and the Staff's projections. UE's model does not seem consistent with the changes in electricity consumption which have occurred since the OPEC oil embargo. In fact, in November, 1977 UE forecast 1978 summer base'to be 3040 while the actual value which occurred was 2933, a drop of 107 mw. The explanation given for this unexpected drop was the coal strike in early 1978 which caused a downward shift in consumption due to user adjustment to the conservation required during the strike. This was similar in type to the affect of the OPEC oil embargo. The unstable energy supply situation we are currently experiencing testifies to the possibility of recurring " conservation effects" in the future. Again it should be emphasized that the Staff's projections are tenative and that a major modeling effort is currently being undertaken by the Staff to improve its forecasts. UE is currently working on the temperature sensitive component of demand and has recently retained consultants to help them with their model of the base component of peak Toad. i{)

l(4 fi?[~ h/ i i i "-*-t 1 i i i i i ii,e i.. i i.i ., iii 5 - -+ 1 .r \\ i i i.. 1 i i.. Co 1, i .+ -*y _i . i I i ~ ._4 4 y, ..L.,. N ( q [M_. a _. 7 ~, .-4 a w LL.l_4 g . r + --... {, ,4.-._'.'- s ._.-L f-( '3

_...,. 4 4 L L. l_.. _M f

'\\* ..p' _.w_1 ; p ; .i A. 4 4 i 1 - .. ) 4..._ Q L;4J '\\' L.p 4_L. LL._ _l l ' k" - ' + + t W' A .g ,3 '\\ _ r a g -- I i. i g , ii A' 2_ p i i i. N ~~ \\. Y \\ \\ \\ - ~ _ i _L ( \\\\ g \\[ U' \\ \\ E"* g g ~. _ ~.. .-L- ~ gg- 'L 1_._..-,_._.. [ - \\ - ._.. L_ a.. ,G Q u jg -n. v= i w. a i .Q l ....-._1.~. t f ' f ~ _ _,.. -..i.L J-f Q l l ,y i. t i \\- ,i Q Q CJ'. I c._- X N i _ \\. 0 k W = = - g. q-g --t-***X a g T \\ ( d (J-- ~ ..,_._a i .l. . L _ L l. 4_.' _.._ -. _ _.. -t..._.. s t_ _ . _.. -. _. _ ~' L,i s ...._./ T i 4, A L M 'fT h \\ ~ A ( N N C A.( - = %/ ('T M M i V ' 4-9

  • ~~~4.

-r_ .w A ~ ev. w w. . v. N t ~ m I L. t n') < ? \\) \\

TABLE 10 '~ r w. COMPmMISDN OF PROJECTED SYSTEM PERMS \\ /'~ PROJECTED PEAK GROWTH RATES YEAR PSC UE PSC UE 1965 2761 2761 0.00 0.00 1966 3125 3125 13.18 13.18 1967 3249 3249 3.97 3.97 1968 3586 3596 10.37 10.37 1969 3834 3834 6.92 6.92 1970 4160 4160 8.50 8.50 i 1971 4249 4249 2.14 2.14 1972 4592 4592 8.07 8.'07 1973 4846 4846 5.53 5.53 l 1974 4963 4963 2.41 2.41 1975 5037 5037 1.49 1.49 1976 5236 5236 3.95 3.95 1977 5476 5476 4.58 4.58 1978 5474 5474 0.04 0.04 1979 5812 5900 6.18 7.79 ( 1980 5965 6096 2.63 3.31 1981 6121 6304 2.62 3.41 1982 6278 6539 2.56 3.73 1983 6431 6784 2.43 3.76 1984 6584 7043 2.38 3.82 1985 6733 7318 2.26 3.90 1986 6882 7616 2.21 4.08 1987 7027 7926 2.11 4.06 1988 7164 8243 1.95 4.00 1989 7296 8561 1.85 3.87 1990 7429 8876 1.82 3.67 i 1991 7561 9197 1.77 3.62 1992 7693 9525 1.75 3.57 1993 7824 9857 1.71 3.48 s 1994 7952 10195 1.63 3.44 1995 8080 10543 1.61 3.41 1996 8211 10904 1.62 3.42 1997 8338 11276 1.55 3.42 ~ 1998 8461 11656 1.48 3.37 4 i S t i Id J

.~ m TA8LE 11 C8"f.Cisf 8ALAhCE SHEET

  • UE FORECAST 1

2 3 4 5 6 7 8 9 8ASE COMM RES FORECAST LOAD ADJ'D W/155 PLANT CAPACITY YEAR LOAD A/C MC, LOAD ADJ'T LOAD RESERVE CAPACITY DEFI C UTPLUS 1979 3130 453 2321 5904 220 5684 6537 6573 36 1980 3250 475 2374 6099 223 5876 6757 6675 -82 1981 3376 499 2432 6307 226 6081 6993 6654 -339 1982 3527 524 2491 6542 229 6313 7260 6854 -406 1983 3690 550 2547 6788 232 6556 7539 6854 -685 1984 3864 578 2605 7047 235 6812 7834 6854 -980 1985 4055 607 2659 7321 238 7083 8145 6854 -1291 1986 4268 637 2714 7620 241 7379 8486 6854 -1632 1987 4494 669 2766 7929 214 7685 8838 6854 -1984 1988 4733 702 2811 8246 247 7999 9199 6854 -1345

  • Without Callaway I e

s h -..A k,' .:1w

TABLE 12 CAPACITY BALANCE SHEET

  • PSC PROJECTION 1

2 3 4 5 6 7 8 9 BASE COMM RES FORECAST LOAD ADJ'D W/155 PLANT CAPACITY A LOAD ADJ'T LOAD RESERVE CAPACITY DEFICIT SURPLUS YEAR LOAD A/C E 1979 3042 452 2321 5815 220 5595 6434 6573 139 1980 3124 470 2374 5968 223 5745 6607 6675 68 1981 3204 488 2432 6124 226 5898 6783 6654 -129 1982 3284 507 2491 6281 229 6052 6960 6854 -106 1983 3362 525 2547 6434 232 6202 7132 6854 -278 1984 3440 543 2605 6587 235 6352 7305 6854 -451 1985 3516 561 2659 6736 238 6498 7473 6854 -619 1986 3592 579 2714 6885 241 6644 7641 6854 -787 1987 3667 597 2766 7030 244 6786 7804 6854 -950 1988 3741 615 2811 7167 247 6920 7958 ( '5 4 -1104

  • Without Callaway I e

a M n -.a F 3

i. r1

9 0 .e t t i { APPENDIX r 1 k f e k_ k ? 11 f, II !J U

a ~ SCHEDULE 1 sumasa sa66 tape s LN e sassJL).a.s tLw,Les> }.c.v. 3959-79 e oseases or.*asscom gg stawmano smaca or twa estimers 32.64040386 a sova** 0.9492251003 comas ct u o, a savana 0.9490290404 sanoa sum or sovames 19377,32735 ovassw-warsum c statistic 3.454=29754 p cursace=r waarmeLa nsma as 2044.714296 I l., NosPsNosNT VamamDLaS iPM vaasants asemass GM CS$PP:Casw? maam courancaswf staneano smaca t-statistic 6 1.004% 1.5783 0.1861 8.4631 7295.6476 0.4997 0.0346 14.4289 T' f 60.0000 0.0233 0.0019 12.3744 r ossenvan v $s?imarse v austovac 1123.5000 1826.2289 ~2.726u 1229.0000 1237.5929 0.407; 1276.0000 1277.0509 ~1.0909 1333.5000 1307.0711 25.6289 1393.0000 1403.7256 ~10.7256 1522.5000 1511.6020 10.8900 1580.5000 1618.5993 ~30.0993 1724.0000 1750.3270 ~26.3270 1 1885.5000 1895.6674 ~10.1674 I 1991.0000 1977.6937 3.3063 2047.0000 2069.8390 ~22.8399 r 2224.0000 2187.6202 36.3798 j 2256.0000 2268.9586 ~12.9586 \\ 2353.5000 2354.1358 ~0.6358 2469.0000 2432.0775 36.9?23 2591.5000 2542.0923 49.eJ77 1 2611.5000 2597.1503 14.3497 2679.0000 2634.5794 44.4206 2792.5000 2700.4170 12.003! 2916.5000 2943.3667 ~26.0667 2933.0000 3020.7473 ~97.7473 esaa pacJacTsow 1979 1829.884 1990 3250.059 1991 3375.836 1992 3507.347 1993 3645.049 1994 3789.301 1905 3940.711 1906 4090.312 1907 4263.896 1990 4437.505 1989 4619.468 1990 4010.190 1991 5010.2/8 1992 5220.094 1993 5440.174 1994 "668.487 1995 5909.197 1996 6159.759 1997 6423.330 1999 6700.190 b 8 !J i i i~

SCHEDULE 2 sumaan sasa Loans sagaJL.a+s1LM(TIMa)), j95$.7$ tuommes or resecon 19 sta*caan ammon or twa ast:Mata 50.12763147 a sava*a 0.9932916755 con =actan a savana 0.9929386057 amaca sum om savanas 47742.8093 ovestm_warson o. star stsc 0.8743264028 capaNeaur vammasta maan as 2044.714286 f~ amoreannant vastastas vantasta esemassion cosFractamr MaaN CouPP:CzaMT sTaNDaaD mR 5cm T.sT*TasT:C f 1.0000 25268.7540 515.0705 49.0588 4.2155 6479.2730 122.1569 53.0406 ossanvas y asvanavan y assanuat 1123.5000 1039.9647 83.5353 1233.0000 1150.7242 97.2758 ~ 1276.0000 1259.6221 16.3779 1333.5000 1366.7200 33.2200 1393.0000 1472.0764 ~79.0764 1522.5000 1575.7469 ~53.2469 1588.5000 1677.7848 89.2848 1724.0000 1778.2407 ~54.2407 1885.5000 1877.1628 8.3372 1981.0000 1974.5973 6.4027 2047.0000 2070.5883 23.5883 { 2224.0000 2165.1779 58.8221 2256.0000 2258.4065 2.4065 2353.5000 2350.3126 3.1874 2469.0000 2440.9333 28.0667 2591.5000 2530.3040 61.1960 2611.5000 2618.4597 ~6.9587 2679.0000 2705.4301 26.4301 2792.5000 2791.2496 1.2504 2916.5000 2875.9472 40.5528 2933.0000 2959.5518 26.5518 YeaM P#oJaCTsoM 1979 3042.091 1980 3123.593 1981 3204.082 1982 3283.583 1983 3362.121 1984 3439.718 1985 3516.396 1986 3592.178 1987 3667.084 1988 3741.133 1989 3814.346 1990 3886.741 1991 3958.336 1992 4029.149 1993 4099.195 1994 4168.493 1995 4237.058 1996 4304.904 1997 4372.047 p 1998 4438.502 11"lJ ' n () 7 l i v

SCHEDULE 3 commanc:m. Ric nammans 7 scones m+a e 7 ma). 3%4-78 casmess op amammon 13 svan. m o ammon op Twa asTammTa 2.436278ti37 = soumme 0.9491560599 compacTan a saumma 0.999n911413 Emaca sum or soummas 77.16u8%79 Du=9 8 N-memT scM n 57mT1sT8c 1.171024846 capamounT vamanaca namn as 307.83 [ 2NDaPaMDaNT Vmalmabas Um=ImDba maemasstoM CosPPIClaMT nama CoaPPICIENT ATmMDemD ameCM T-37m?IsTIC 1.0000 974.6151 10.3564 94.1075 71.0000 18.0626 0.1456 124.0602 ossamvan v asvanavan v massnums 18e.2300 181.3918 4.8382 200.4300 194.4544 0.9756 215.0600 217.5170 2.4570 2?2.9100 235.5796 ~2.6e9e 251.4700 253.6422 2.1722 271.9100 271.7048 0.2052 288.8500 289.7674 0.9174 306.9700 307.8300 0.8600 324.1600 325.8926 ~1.73d6 344.7300 343.9552 0.7748 g 364.8300 362.0178 2.8122 379.7800 380.0804 0.3004 401.4300 398.1430 3.2670 417.4700 416.2056 1.2644 431.2200 434.2682 3.0482 tema emCJaCT1oM 1974 452.331 1980 470.393 1981 48A.456 1982 506.519 1983 524.581 1984 542.644 1985 560.706 1986 578.769 1907 596.832 1988 614.894 1989 632.957 1990 651.020 1991 669.082 1992 687.145 1993 705.207 1994 72'3.270 1995 741.333 1996 759.395 1997 777.458 1449 795.52fs I O, . s

SCHEDULE 4 =asananviac arc canamos numar Ntancant. 1964-79 cromers ce Psaanna 12 svamoaan amaca or Twa asynnara 45.34434865 a savaae 0.9930421443 ccapacTao a savaae 0.9918825017 an=am sum or smuamas 24673.31945 ovas N kaTsON D= STATIST:C 2.59350591 [ narannawr vaasanta maan as 1651.703333 i I NDuPaNDaM7 VaasasLas f vna.asta maenassaan compracnawr m a n.. corrwactant stannaan amman T-sTarasisc ( 1.0000 72.8250 48.0924 1.5143 1754.9000 0.9240 0.0314 29.4781 0.2667 165.1800 44.4457 3.7164 QBsamvaD Y asTIMaTaD v aas:Duab 769.7700 778.6731 9.9031 990.5700 997.6292 7.0592 1018.9400 1016.5391 2.4009 1146.0900 1229.1397 83.0497 1451.5300 1347.0416 104.4884 1524.0900 1476.7160 47.3740 1585.1500 1606.8344 21.6844 1759.0300 1745.6642 13.3658 } 1836.8400 1888.4523 51.6123 2033.2700 2019.9948 13.2752 2053.1700 2073.8434 ~20.6734 2121.2200 2102.2637 18.9563 2125.5700 2135.0005 9.4385 2195.5300 2200.4284 ~4.8904 2265.7000 2257.3216 8.4584 1 ranN

  • nGdaCT DN 1979 2321.060 1990 2373.661 1991 2431.802 1992 2490.712 1993 2547.392 1984 2604.609 1985 2659.292 1996 2714.262 1987 2766.180 1988 2910.921 1999 2852.407 1990 2994.384 1991 2936.841 1992 2979.788 1993 3023.226 1994 3063.722 1995 3104.635 1996 3149.515 1997 3191.335 1999 3229.991 4

3 7 onn lIIJ v}}