ML18114A516
| ML18114A516 | |
| Person / Time | |
|---|---|
| Site: | Surry |
| Issue date: | 04/30/1979 |
| From: | Leberstein J, Ross T VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML18114A515 | List: |
| References | |
| VEP-FRD-32, NUDOCS 7905040472 | |
| Download: ML18114A516 (47) | |
Text
l'l
(,
Vepco SURRY UNIT 2. eve LE 4
. CORE PERFORMANCE REPORT FUEL RESOURCES DEPARTMENT VIRGINIA ELECTR.IC AND POWER COMPANY VEP-FRD-32 790504 OLf. ?-
-~---------~-~1. __ ___.- -~
I.
I I
I I
I I
I I
I I
I I
I I
I I
I.I I
Approved:
VEP-FRD-32 SURRY UNIT 2, CYCLE 4 CORE PERFORMANCE REPORT Group BY T. K. ROSS J. H. LEBERSTIEN Nuclear Fuel Operation-Group.
Fuel Resources Department Virginia Electric & Power Company Richmond, Virginia April, 1979
I>>
I I
I I
I I
I I
I I
I I
I I
I I
I I
1 2
3 4
5 6
7 TABLE OF CONTENTS List of Tables.
List of Figures Introduction and Summary Burnup Follow Reactivity Depletion Follow Power Distribution Follow Primary Coolant Activity Follow Conclusions.
References...
Acknowledgements i
ii iii 1
7 12 14 37 40 41
I I
II II I
I 11 I
I I
I I
I I
I I
I I
I LIST OF TABLES T_a_b_l_e'--~~~~~~~~~~~~~~~T_i~t_l~e~~~~~~~~~~~~~-=-P~age No~
4.1 Summary Table of Incore Flux Maps for Routine Operation 18 4.2 Summary Table of LOCA Enthalpy Rise Hot Channel Factors 19 ii
I I
I I
I I
I I
I I
I I
I I
I I
I I
I Figure 1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.. 14 4.15 4.16 4.17 5.1 5.2 LIST OF FIGURES Title Core Loading Map..
Burnable Poison and Source Assembly Locations Movable Detector and Thermocouple Locations Core Burnup History Monthly Average Load Factors Assemblywise Accumulated Burnup:
Comparison of Measured with Predicted Batch Burnup Sharing Critical Boron Concentration versus Burnup - HFP-ARO Assemblywise Power Distribution - S2-4-9 Assemblywise Power Distribution - S2-4-17 Assemblywise Power Distribution - SZ-4-36 Hot Channel Factor Normalized Operating Envelope Heat Flux Hot Channel Factor, F~(Z) - S2-4-9.
Heat Flux Hot Channel Factor, F~(Z)
S2-4-17 Heat Flux Hot Channel Factor, F~(Z) - S2-4-36 Maximum Heat Flux Hot Channel Factor versus Burnup N
Interim Thimble Cell Rod Bow Penalty on F~H Enthalpy Rise Hot Channel Factor versus Burnup LOCA Enthalpy Rise Hot Channel Factor - Assy. vs. Btirnup LOCA Enthalpy Rise Hot Channel Factor - Rod vs. Burnup Target Delta Flux versus Burnup Core Average Axial Power Distribution - S2-4-9 Core Average Axial Power Distribution - S2-4-'l 7 Core Average Axial Power Distribution - S2-4-36 Core Average Axial Peaking Factor versus Burnup Dose Equivalent I-131 Concentration versus Time I-131/I-133 Ratio versus Time iii Page No.
4 5
6 8
9 10 11*
12 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 38 39 I
I
I I
I I
I I
I I
I I
I I
I I
I I
I Section 1 INTRODUCTION AND
SUMMARY
On February 4, 1979 after more than seventeen months of operation, Surry Unit 2 completed Cycle 4.
Since the initial criticality of Cycle 4 on October 8, 1977, the reactor core produced approximately 81 x 106 MBTU (13,678 Megawatt days per metric ton of contained uranium) which has resulted in the generation of approximately 7.1 x 109 kwhr gross (6.7 x 109 kwhr net) of elec-trical energy.
Surry 2 reached the end of full power reactivity at a core burnup of approximately 13,280.MWD/MTU at which point power operation was continued through a power coastdown.
The unit was operated in the power coastdown mode for nearly 400 MWD/MTU and the power level prior to EOC shutdown was approximately 91% of full power.
The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 4.
The physics tests that were performed during the startup of this cycle were covered in the Sur~y 1
2, Cycle 4 Startup Physics Test Report and, therefore, will not be included here.
The fourth cycle core consisted of five batches of fuel.
One once-burned batch was brought from Cycle 1 (Batch 1).
One once-burned batch was carried over from Cycle 3 (Batch SA).
One twice-burned batch was carried over from Cycles 2 and 3 (Batch 4B).
Two fresh batches (Batches 6A, 6B) were added to the Cycle 4 core.
The Surry 2, Cycle 4 core loading map specifying the fuel batch definition and the initial Cycle 4 burnup values for each fuel assembly location is given in Figure 1.1.
Burnable poison and source assembly locations are shown in Figure 1.2.
Movable detector locations and thermocouple locations are identified in Figure 1.3.
Routine core follow involves the analysis of four principal performance indicators. These are burnup distribution, reactivity depletion, power distri-bution, and primary coolant activity.
The core burnup distribution is followed
\\
1
I I
I I.,
I I
I I
I I
I I
I I
I I
I I
to verify both ~urnup symmetry and proper batch burnup sharing~ thereby ensur-ing that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, determine if the core is depleting as designed, and indicate at what burnup level refueling will be required.
Core power distribution follow includes the monitoring of nuclear hot channel factors.to verify that they are within the Technical Specification/ limits thereby ensuring that adequate margins to linear power density and critical heat flux thermal limits are maintained. Last1y, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Unit 2 Operating License, and to assess the integrity of the fuel.
Each of the four performance indicators is discussed in*detail for the Surry 2, Cycle 4 core in the body of this report.
The results are sum-marized below:
- 1.
Burnup Follow - The burnup tilt (deviation from quadrant symmetry) on the core was no greater'than +/-0.3% with the burnup accumulation in each batch deviating from design prediction by less than 2%.
- 2.
Reactivity Depletion Follow - The critical boron concentration, used to monitor reactivity depletion, was consistently within
+/-0.3% !J.K/K of the design prediction which is well within the 1% ~K/K margin allowed by Section 4.10 of the Technical Speci-fications.
- 3.
Power Distribution Follow - Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by an average difference of approximately
+/-1.4%.
All hot channel factors met their respective Technical Specifications limits.
2
I I
I I
I I
I I
I I
I I
I I
I I
I I
I
- 4.
Primary Coolant Activity Follow - The dose equivalent iodine-131 activity level in the primary coolant at the end of Cycle 4 was approximately 2.9 x 10-3 ~Ci/gm.
This corresponds to less than 1% of the operating limit for the concentration of radio-iodine in the primary coolant (Conditions of the License dated 3
October 3, 1978).
In addition, the effects of fuel densification were monitored through-out the cycle.
No densification effects were observed.
3
I I
I I
I I
I I
I I
I I
I R
I!
L j
6B 0.0 -
6B
, 6B 0.0 o.o 6B 4B 6A o.o 17.4. o.o 6B 6B 6A 4B O;O o.o 0.0 21.4 K07 6A 6B 4B SA o.o 0.0 16.2 7.4 P07 N04 6B I 6B 4B SA SA 0:0 0.0 14.8 6.8 6.1 P06 POS F.07 6B 4B 4B 4B 4Bx o.o 17.5 21.0 21.6 13.7 Nll NOB JOB
. ROB 6B l 6B 4B SA SA 0.0 o.o 14.8 6.9 6.1 PlO Pll P.09 6A 6B 4B SA 0.0 0.0 16.2 7.5 P09 Nl2 6B 6B 6A 4B o.o o.o 0.0 21.3 J10 6B 4B 6A o.o 17.4 0.0 113 6B 6B o.o 0.0 bB o.o -
Region (103 MWD/MTU)
Burnup Previou~ Location (Cycles l or 3)
SURRY UNIT 2-CYCLE 4 CORE LOADING MAP K
J H.
G T!
I 6B 6B.
6B I
0.0 o.o o.o I
6A 6B 4B 6B 6A o.o 0.0 17.5 o.o o.o L03 6B 4B 4B 4B 6B o.o 14.9 20.9 14.6 o.o K02 H03 F02 4B SA 4B SA 4B tt.6.1 6.9 21.5.
6.8 15.9 J02 102 H07 E02 CO2 SA SA 4B SA SA 7.5 6.2 13.8 6.1 7.4 Mn~
JOl Hn1 r.n, nn~
4B 6A 4B 6A 4B II.9.5 0.0 21.3 0.0 19.7 M07 Jn6 r.n,,
I 6A 4B 6A 4B 6A 0:0 19,7 o.o 19.6 o.o J04 nQ7
~ 4B 6A
- 1.
6A 4B 1.3 0.0 16.6 0.0 21.3 I K09 H06 F07 6A 4B 6A 4B 6A o.o 19.S o.o 19.6 o.o MOQ r.,?
4B 6A 4B 6A 4B 19.5 o.o 21.4 0.0 19.7 Jl2 GlO D09 SA SA 4B
- SA SA 7.4 6.2
- 13.7 6.1 7.4 H11 Jl5 Hl5 Gl5 D1 '\\
~6.0 6.8 21.5 6.8 15.9 J14 114 H09 El4 Gl4 6B 4B 4B 4B 6B a.a 14.8 20.6 14.7 o.o Kl4 Hl3 Fl4 6A 6B 4B 6B 6A 0.0 o.o 17.4 o.o o.o El3 6B 6B 6B 0.0 0.0 0.0 E
D I
I 1
6B 0.0 -
6B 6B o.o o.o 6A 4B 0.0 17.3
- En~
4B 6A 21.4 o.o C06 SA 4B 7.4 15.9
- rnl, B07 SA SA 6.1 6.8 A07 BOS 4B*
4B 13.9 21.6 AOS G08 SA SA 6.1 6.9 A09 Bll SA 4B 7.5 16.1 Cl2 B09 4B 6A 21.2 o.o F09 6A 4B 0.0 17.6 Cll 6B 6B o.o 0.0 6B 0.0 -
FUEL ASSEMBLY DESIGN PARAMETERS Re\\:!'ion 1
4B SA Initial Enrichment (w/o U235) 1.86 3.10 3.11 BUt"nup At BOC-4 (MWD/MTU) 16,621 18,040 6,794 Assembly Type 15x15 15x15 15xl5 17xl7*
No. Of Assemblies 1
50 2
24 Fuel Rods per Assembly 204 204 204 264 4
Figure 1.1 C
ll A
1..
2-3-
6B 0.0 I 6B 6B 0.0 o.o 5
6B 6A o.o o.o 6
4B 6B 6B 14.8 o.o o.o 7
B06 4B 4B 6B 20.8 17.2 0.0 8
cos cos 4B I
6B 6B 14.9 o.o o.o Blf1 9
6B 6.A o.o o.o lQ 6B 6B o.o o.o l.!.
6B o.o
- 12.
ll 6A 6B 2.91 3.20 0
0 15xl5 15xl5 28 52 204 204
1*
I I
I I
I I
I I
I I
I I
I I
Figure 1.2 SURRY UNIT 2 -
CYCLE 4 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS R.
N M
L K.
J 16 20 12 16 12 8
20 8
12 8
12 12 112*
ss 12 8
12 12 I
20 8
16 u
8 12 16 20
- - depleted burnable poison PS - Primary Source SS - Secondary Source 12 8
12 12 12 12 12 8
12 H.
PS 12*
12 12 PS 12*
- 5 G
E D
C B
A
- l.
. 12 20 16 3-8 12 4
12 8
. 12 16 5
12 8
20 6
7 12 12 8
12
,SS 12 12*
8
- 12 12 8
12 9
12 8
. 20 la.
12 8
12 16 l.l.
8 12 l2.
20 16 il
- 14.
12 848 Fresh Burnable Poison Rods 48 Depleted Burnable Poison Rods
I I
I I
I I
- 1
- I I
I I
I I
I I
I I
R
~
0 l
p N'
M L
0 0
0 0
I 0
0 0
SURRY UNIT 2-CYCLE 4 MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS K.
J H.
G I
0 0
0 0
0 0
0 o**
0 0
0 0
0 0
- - Movable Detector Location 0- Thermocouple Location 6
Figure 1.3 F
E D
C B
A 1
0 3
0 4
O*
- 5 6
0 7
0 0
8 0 I 9 0
10 11 0
12 13 O*
14 15
I I
1*
I I
I I.,
I I
I I,.
I I
I I
I Section 2 BUrt.,'IUP FOLLOH The burnup history for the Surry Unit 2, Cycle 4 core is graphically depicted in figure 2.1.
The Surry 2, Cycle 4 core achieved a burnup of i3,G78 M}ll/HTU.
As shown in Figure 2.2, the average lolld factor for Cycle 4 was 83.3% wilen referenced to rated thermal power (2441 Hw(t)).
Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis.
The TOTE4 computer code is usec to calculate these assemblywise burnups.
Figure 2.3 1.s a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 4 operati.on 1.s given.
For comparison purposes, the design values are also given.
As can be seen from this figure, the accumulated assembly burnups were generally within
+/- 3,~ of the predicted values.
In addition, deviation from quadrant symmetry 1.n the core, as indicated by the burnup tilt fact6rs, was less than.+/-0.3%.
The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies.
Batch definitions are given in Figure 1.1.
As seen in Figure 2.4, the batch burnup sharing for Surry Unit 2, Cycle 4 followed design predictions very closely ~ith each batch deviating less than 2% from design; this is considered excellent agreement.
Therefore, symmetric burnup in conjunction with good agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 4 core did deplete as designed.
7
~-----
14,000 12,000 10,000
~
00
~ 8,000 i
~ 6,000
~
0 u 4,000 2,000 0
SURRY UNIT 2 - CYCLE 4 CORE BURNUP HISTORY I
.:.. r.,..
OCT NOV DEC JAN FEB MAR AP 1977 R MAY JUNE JULY AUG 1978 Figure 2,1
~I r
I I
I I
SURRY 2 - CYCLE 4 10/8/77 _. 2/4/79 13678 MWD/MTU
] 11 I t f -f
.l EPT OCT av DEC JAN FEB 1979
li'..e p:I 0
E-1
-~
~
'°
~
100 H
r:,::i 80
~
~ 60 i
40 z i 20 l
0 I
I I
I I
IP I
+
I I
I
~
. I I i I
I!.* I
~
f I
~
I
~
I 1 It I r II 11
~
! ~
SURRY UNIT 2 - CYCLE 4 MONTHLY AVERAGE LOAD FACTORS
{
I I
I j I l
I
~
I I
I i'i.!
~
l
-~
t MAR APR MAY JUNE JULY AUG 1978 11 r,.. !
rr-l I
- 1 I
I t
I r r I
.'I J
I 1
~
I
. ;.a SEPT OCT Figure.2.2 I
CYCLE 4 AVERAGE = 83. 3%
I~
I I l
~
l I
~
~
,J r
ti I
\\" 'ii
. ~..
. ~ 1 **
l;.,;
t*
{
Load Factor= Thermal Energy Generation in Reporting Period (MWHt)
Authorized Power Level (MWt) x Hours in Reporting Period (excludes refueling outage)
I
'I I
I I
I I
I I
I I
I I
I I
I I
I SURRY UNIT 2 -
CYCLE 4 ASSEMBL'YWISE ACCUMULATED BURNUP:
COMPARISON OF MEASURED WITH PREDICTED 103 MWD/MTU R
p N
L K.
J H.
G F
E I I 8,90 l0.9i 18.99 I
I 8.85 I0.99 8,85 I
I
+o i;
-l'l..,
l.r..1 t:.
9,37 12.46 1.4.13 29,93 U.34 12.85 fg.45 9.13 12.45 14.27 29.93 14.27 12.45 9.13
+2.7 0.0 -1.0 o.o I.Mi.5
+3.?
- ..-:i
~
9.95 14.04' 15.33. 29.16 33.01 28.85 I 15.54 ~4..13 9.69 13.72 15.18 28.86 33.28 28.86 1.5.18 b 3. 72
+2.7 1+2.3
+l.O +l.d
-0.8 o.o
+2.4 il.3,0 9.89 29.75 l5,71 31.12 22.23 34.46 22.09 30.97 n.5;76 9.69 29.40 15.48 30.75 22.17 34.51 22.17 30. 75 15.48
+2.1 +1.2
+1.5
+1.2
+D.3
-0.1
-0.4
+o.7 +1.8 9.25 13.97 15.63 35.39 23.15 21.84 28.74 21.82 23.21 ~-52
- 9.13 13. 72 15.48 35.41 23.08 21.64 28.62 21.64 23.08 35.41
+l.3
+1.8. +1.0 -0.1
+o.3 +D.9
+D.4
.r..n s:i
+o.6
.3 12.48 15.33 31,13 22.91 33,9( 16.39 35.51 16.44 34.19 123.18 12.45 15.18 30.75 23.08 34.23 16.54 35.79 16.54 '34.23 23.08
+o.2 +1
/l
+1.2 -0.i
-1 "
-0.9
-0.8
-0.6
-IL l
..r..n L, 8.84 r\\4;};2 29.02 21.97 21.30 16.I, 34,25 16.01 34.ooj 16.48121.81 8.85 28.86 22.17 21.64 16.54 34.20 16.07 34.20 16.54 21.64
-0.l -l.l +o.6
-0.9
-1.6
-2.2 +o.l
-0.4. -o.6
-*n t, +o.8 10.88 30.01 33.22 34.48 :28.02 35.20 16.09128,41 16. 02135 ~53.28.80 10.99 29.93 33.28. 34.51 28.62 35.79 16.07 28.49 16.07 35.79 28.62
-0.9 +o.3 -0.2
-0.1 ~2.1
-l.6 +D.l
-0.3
-0.3 -0.7
+o.6 8.86114.20 129.ll '22.09 '21.46 ' 16.10 34,00 16.10 34.12 16.31 21.80 8.8514.27128.86 _22.17 ~l.~4 '16.54 34.20 16.07 34.20 16.54 21.64
+o.l -0.5 +o.9
-0.4 l-0.8
-2. 7 -0.6
+o.2 -0.2
-1.4 +o 7 12.58 I 15.44 31.20 23.12 33.94 16.39 35.51 16.34 31+. 03.23.13 12.45 15.18' 30.75 23.08 34.23 16.*54 35.79 16.54 34.23 23.08
+1.0 \\ +1.7 +1.5
'1,,(1 2
-ll.R
-n.q
_n a _,.,
_n t:.
.r..n
?
9.36 14.12' 15. 79 hS.30 23.09 21. 74 28.53 21.59 22.98 35.12 9.13 13. 72 15.48 p5.41 23.08 21.64 28.62 21.64 23.08 35.41
+2.5
+? q
.r..?'f'I Ln,
. n n '-'-"
~
':t
!_n ?.
-1'1 /,
1-1'1 s:i 10.04 29.86 15.64 30.93 22.07 34,41 22.13 30.86 15,68
'. 9~69 29.* 40 fs.48 30. 1s 22.17 34.Sl 22.17 30,75 15.48
+3.6
+1.6
.+1.0*,+o.6 -0~5
-0.3
-0.2 +o.4 +1.3 10~04 (l4.24 I 15.38 28.86 32.83 29.12 15.43 14.06 9.69 13. 72 15.18 28,86 33.28 28.86 15,18 13.72
+3;6 +-3.8
+l.3 o.o. -1.4 +D.9
+1.6
+2.5 9.45 '12.77 14.39 30,02 14,30 12.57 9.27 9.13 112.45 14.27 29.93 14.27 12.45 9.13 *
+-3,5
+2.6 +o.8 +o.3 +o.2
+1.0 +1.5 9.02 11.00 8.86 8,85 10 *. 99
- 8,85
+1.9
+o.1
+o.1 Figure 2.3 D
c*
B 9.99 9.69
.+3.1
- 29. 77 9,i9 29.40 9. 9 I
+1.3
+3.1 15,8Z 14.18 9.44 15.48 13. 72
.9,13
.+2.2 +3.4
+3.4 31.04 15.45 12.62 30.75 15.18 12.45
+o.9 u..1 R
+l "
22.08 29.10 14.18 22.17 28.86 14.27
-0.4 ~.8
-0.6 34.64 ~3.10 29.82 34.51 33~28 29.93
+o.4 o.s
-0.4 22.32 29.19 I 14,38 22.17 28.86 14.27
+o 7 J.1.1 l
.j.() R 31.13 15.35 12.87 30.ZS II.5.18 12.45 I.r..1
?
- +1.1
.+/-3..iL 15,75 114.10 9.42 15.48 IJ.3. 72 9.13
.r.., < 1.,.,
0
.l..':t
?
30.ll 9.99 29.40 9.69
+2.4 fl-3.l 10.00 9.69
+3.* 2 A
8.79
- a.as
-ll. 7.
11.00 10.99
+o.* l 9.06 8.85
+? I, I-L
- 2.
3-5 6
j 8
9 lQ.
11...
l2-12..
l,. ~-
BURNUP SHARING (103 MWD/MTU)
D
+MEASURED
... PREDICTED
+ %DIFFERENCE BATCH CYCLE 1 CYCLE 2 CYCLE 3 1
16.62 4B 8,01 10.03 SA 6.79 6A 6B CORE AVERAGE 10 CYCLE 4 1i-:19=
13,88 15.51 Js--:Oi 11.93
-~
TOT.AL z-3:7.r.
3:C92 22.30 Tf.-oi ii.93 icf.~o; BURNUP TILT NW - 0,998 NE - 1.002 SW - 0.999 SE - 1.001
I I
I I
I I
I I
I I
I I
I I
I I
I 36000 32000 28000 24000 20000 16000 12000 8000 4000 0
0 SURRY UNIT 2-CYCLE 4 BATCH BURNUP SHARING 0 A G] 0 0 MEASURED DESIGN 2000 4000 6000 8000
--~-
,~
. ~"'--*
-~
10000 12000 CYCLE 4 CORE BURNUP (MWD/MTU) 11 Figure 2.4 BATCH 4B BATCH 1 BATCH SA BATCH 6A BATCH 6~
14000
I I
I I
I I
I I
I I
I I
I I
I I
I ii Section 3 REACTIVITY DEPLETION FOLLOW The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivicy behavior.
5 The FOLLOW computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level.
The normalized critical boron concentration versus burnup curve for the Surry 2, Cycle 4 core is shown in Figure 3.1.
It can be seen that the measured data*compare to within 30 ppm of the design prediction.
This corresponds to less than +/-0.3% t:,K/K which is well within the +/-1% t:,K/K criteria for reactivity anomalies set forth in Section 4.10 of the Technical Specifications.
In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 4 core depleted as expected without any reactivity anomalies.
12
SURRY UNIT 2 -
CYCLE 4 Figure 3.1 CRITICAL BORON CONCENTRATION vs. BURNUP HFP-ARO 1200 1000 I
- I
~
I
~
800 I
z 0
H
~
E-l
-~ :
z l':r.l I-'
u w
z 600 0 u
-~
z
)~
-I
~
0 I
i:q I
~
I
~
400
~
u H
~
E-l
- j
~
u
~ _-
~
~
.rs:
200 A
MEASURED*
DESIGN
~
~
- -~
0 0
2000 4000 6000 8000 10,000 12,000 14,000 CYCLE BURNUP (MWD/MTU)
I I
I I
I I
I I
I I
I I
I I
I I
I I
Section 4 POWER DISTRIBUTION FOLLOW Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause an "uneven" burnup distribution.
Three-dimensional core power distributions are determined from movable detector flux map measurements 6
using the INCORE computer program.
A summary of.all flux maps taken since completion of startup physics testing for Surry 2, Cycle 4_ is given in Table 4.1.
Power distribution maps are generally taken at monthly intervals with additional maps taken as needed.
Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1 through 4.3.
Figure 4.1 shows a power distribution map that was taken early in cycle life.
Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup.
Figure 4.3 shows a map that was taken late in Cycle 4 life. All.of the radialpower distributions shown were taken under equilibrium operating conditions with the unit operating at approximately full power.
In each case, the measured relative assembly powers were generally within 4% of the predicted values with an average percent difference of less than 2% which is considered good agreement.
In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for all cases.
An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.
Verification that these factors are within Technical Specifications limits ensures that linear power density a.nd critical heat flux limits will not be violated, thereby providing adequate thermal margins and maintaining fuel cladding integrity.
14
I I
I I
I I
I I
I I
I I
I I
'I I
I I
The initial Cycle 4 Technical Specifications limit on the axially T
dependent heat flux hot channel factor, FQ(Z), was 2.00 x K(Z), where K(Z) is the hot channel factor normalized operating envelope.
On April 7, 1978, with the core at a burnup of approximately 4,975 MWD/MTU, the Technical Speci-fications limit for F~(Z) was administratively reduced to 1.81 x K(Z) in order to conservatively compensate for an increase in steam generator tube plugging, level and for an error that was found in the Westinghouse LOCA-ECCS evaluation 7
T model.
This reduced FQ(Z) limit was specified in the Order for Modification of License dated April 28, 1978. 8 This limit remained in effect until July 23, 1978, when the FQ(Z) limit was reduced to 1.79 x K(Z).
On that date, with the core at an approximate burnup of 7,804 MWD/MTU, the limit was reduced due to additional steam generator tube plugging (as per Order for Modification of License dated April 28, 1978).
Figure 4.4 is a plot of the K(Z) curve associated with the 1.79 FQ(Z) limit.
This curve is representative of the K(Z) curves used throughout Cycle 4 since K(Z) changes only slightly with changes in the FQ(Z) limit.
T The axially dependent heat flux hot channel factors, FQ(Z), for a representative set of flux maps are given in Figures 4.5 through 4.7.
Through-out Cycle 4, the measured values of F~(Z) were within the Technical Specifi-cations limit.
A summary of the maximum values of all heat flux hot channel factors measured during Cycle 4 is given in Figure 4.8.
F~(Z) is an important parameter from a loss~of-coolant accident-ECCS standpoint since it directly relates to the stored thermal energy in the core.
The Surry Unit 2, Cycle 4 core maintained a peak F~(Z) value that was at least 7% below the nominal
.allowable limit.
N The value of the enthalpy rise hot channel factor, F~H' which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is also routinely followed.
The Technical 15
I I
I I
I I
I I
I I
I I
I I
I I
I I
Specifications limit for this parameter is set such that the critical heat flux (DNB) limit will not be violated.
Additionally, the F:H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
The Cycle 4 limit on the enthalpy rise hot channel factor is set at 1. 55 x (l+O. 2(1-P)): x T(BU), where P -is the fractional power level and,T(BU) is the interim thimble cell rod bow penalty.
The T(BU) value specified in the Technical Specifications (Amendment Nos. 29 and 30 dated March 22, 1977)9is given in Figure 4.9.
On April 7, 1978, with.the core at a burnup of approximately 4,975 MWD/MTU, two additional enthalpy rise hot channel factor parameter limits became applicable (due to an increase in the steam gene'l:ator. -i:ube_plugging level as pe),; Te~hnical Specification.Amendment. Nos. 35 and 34 7
N I LOCA N I LOCA dated 12/2/77).
These parameters are F~H ASSY' and F~H ROD, and were added N ILOCA N ILOCA as a result of a LOCA-ECCS re-analysis.
F~H ASSY and F~H ROD represent the enthalpy rise hot channel factor (F:H) evaluated for the peak assembly and peak rod in the core respectively, between the 1.5 ft. and 10;5 ft. levels N ILOCA N ILOCA of the core.
Th~ full power limits for F~H ASSY and F~H ROD were set at 1.38 and 1.45 respectively.
Table 4.2 summarizes the F!HI~~~~ and F:Hlig~A values measured during Cycle 4 operation.
Figures 4.10 through 4.12 show that all N
N ILOCA N ILOCA measured values for FfiH' FfiH ASSY' and FliH ROD were within their respective Technical Specifications limits during Cycle 4.
The Technical Specifications requ1re that target delta flux* values be determined periodically.
The target delta flux is the delta flux which would occur at co~ditions of full power, all rods out, and equilibrium xenon.
- Delta Flux= Pt-Pb x 100 where Pt= power in top of core (Mw(t))
2441 Pb= power in bottom of core (Mw(t))
16
I I
I I
I I
I I
, I I
I I
I I,.
I I
I I
Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point.
Since the target delta flux varies as a function of burnup, the target value is updated monthly.
Operational delta flux limits are then established about this target value.
By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.
The plot of delta flux versus burnup, given in Figure 4.13, shows the value of this parameter to have been approximately -3% at the beginning of Cycle 4.
By the middle of the cycle, the value of delta flux had shifted to approximately -4%, and then returned to approximately -1% by the end of Cycle 4.
This power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.14 through 4.16.
In Map S2-4-9 (Figure 4.14) taken at approximately 204 MWD/MTU, the axial power distribution had a flattened cosine shape with a peaking factor of 1.25.
In Map S2-4-17 (Figure 4.15) taken at approximately 4,524 MWD/MTU, the axial power distribution had flattened somewhat with an axial peaking factor of 1.19.
Finally, in Map S2-4~36 (Figure 4~1,6) taken at approximately 1,3,200 MWDlMTU the axial power distribution was even flatter with an axial peaking factor of 1.12 and had moved toward the top of the core.
The history of F during z
the cycle can be seen more clearly in a plot of F versus burnup given in z
Figure 4.17.
In conclusion, the Surry 2, Cycle 4 core performed very satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the hot channel factors were within the limits of the Technical Specifications.
17
1MAP
'tlO, S2-4-9 S2-4-10 S2-4-ll S2-4-12 S2-4-13 S2-4-16(3).
. S2-4-17 S2-4-18 S2-4-19 S2-4-22m, S2-4-23 S2-4-24 S2-4-27(5.):
S2-4-28 S2-4-29 S2-4-.30 S2-4-31 S2-4-32 _..
s2-4-34;(6)
S2-4-36;(7l I BANK CORE D
1DATE
. PWR..
Fz (STEPS)
! 10/19/77, 100 226 1 l.246 11/16/77
- 100
- 223 1.238 *
- 12/14/77:
100 225 1.229 12/16/77, 100
'.2l{i: : 1.231 1/9/78 100 218 1.216 2/10/78 100 217 1.203 3/6/78 100 t(if.
1.188 4/17/78 100 t24.
1.176 5/17/78 100 215 1.179 6/12/78 100 210 1.176 8/14/78 100.
201 1.189
-8/23/78
- 100.
201 1.190 9/14/78 100 202 1.184 10/18/78.
100 210 1.144
.10/30/78
- 100.
225 1.117 11/15/78' 100 223
- 1.128.
11/28/78',100 216 1.141 11/29/78 100 207 1.169 12/14/78' 100 226 1.112 :
1/19/79 100 222 1.122 StrnMARY TABLE OF INCORE FLUX MAPS FOR ROUTINE OPERATION
!FT HOT CHANNEL FACTOR Q
F~IJ HOT CHANNEL ~'ACTPR i T.(l)
AXIAL N(2)
ASSY.
Prt{
FQ ASSY.
.PU(
FllH POINT
- Jl4
- HK 135.
- 1. 777 JlO HG 1.341 JlO
'GIJ:
- 35
.1. 737.
JlO*
GIi 1,369 F7 HI
- 34*'
- 1. 707; JlO GH 1.355 F7 HI
- 34*
- 1. 714 JlO.
- GU 1.353 F7 III 35 1.690.
JlO
. Gil' 1.348 F7 HI 34 1.705 F7 HI 1.359
- F7
- HI 34 1.673 F7 i HI 1.352 F7 HI 34
- 1.662 F7 HI 1.355.
F7
.HI 44:
1.638.
F7 HI, 1.342 F7
- uI,
- 45.
1.646; F7 HI' 1.345 L4 I.I
- 47:
1.646 G6 IL 1.328 Kl3
- FO*
- 45' 1.654 D5 ID 1.329 L4 iI'
- 45' 1.646 D5 I ID
.l,326 L4
.LI
- 46
~.59~.
F7 LI 11,337 L4
- LI.
46
[.li60 F7
'LI 1.334 D5 ID
. 46 i,58t D5
. ID
- 1.330 *
. L4 LI 46 it_,593:
E4.
- DI.
- 1.325
'L4 LI 46 li;631 D5
- ID' 1,329 J6
- GL 12 1.553 F7 LI*
1.328 L4 LJ 46 1.553 Dll JL.
1.321 NOTES:
Hot spot locations are specified by giving assembly locations (e.g. 11-8 is the center-of-core assembly), followed by the pin location (denoted by the "y" coordinate with the fifteen rows of fuel rods lettered A through O, and "x" coordinate designated in a similar manner).
In the "z" direction, the core is divided into 61 axial points starting from the top of the core.
(1)
(2)
(3)
T F includes a measurement and engineering uncertainty of 1.08.
Q
~H includes.a measurement uncertainty o_f 1.04.
Maps S2-4-14 and S2-4-15 were partial maps taken for I/E calibration; (4). Maps S2-4~20 and S2-4-21 were partial maps taken tor l/E calibration, (5)
}laps s2~~-25* and S2-4-26 were partial maps taken.for I/E calibration, (6)
Map S2-4-33 was a parttal map taken tor I/E calibration, (7)
Map S2-4-35 was aborted, TILT DELTA FLUX QUAD MAX.
(%)
LOC.
1.0043 SH
-2.615 1.0052 SW
-2.878 1.0042 SW & NE -2.934 1.0045 NE
' -3. 631*
1.0093 NE
-2.94'7 1.0065 NE
-3.456 1,0051 NE
-2.391 1.0031 NE
-2.612 1.0066 NE
-3.742 1.0080 NE
-4.001 1.0050 NE
-4.500 1.0066 NE
-6.103 1.0064 NE
'-5,803 1.0049 SE
-3,045 1,0064 SE
-0.872 1.0062 NE
-1.680 1,0047 SE & NE. -2.828 1.0061 NE
-5.302 1.0062 NE
-o. 773 1.0066 NE
-1.366 Table 4,1 NO. OF BURNUP (MWD/MTU)
MONITORED THIMBLES
-204 47
-1186 41
-1800 45
,-1870 45
-2667.
45
-3707 43
- -4524 41
-5266 45
-6284 44
-6986 43
-8250 41
-8550 41
- -9250 42
-9950
- 46
-10480,
.~5.
-11006-49
-11500
. 48
. -11500
. 48
-11934 47
,-13200 49
MAP NUMBER S2-4-18 S2-4-19 S2-4-22 S2-4-23 S2-4-27 S2-4-28 S2-4-29 S2-4-30 S2-4-34 S2..-4-36 BURNUP SURRY UNIT 2*.,.. CYCLE 4
SUMMARY
TABLE OF LOCA ENTHALPY RISE HOT CHANNEL FACTORS (MWD/MTU)
N*ILOCA Ft.H ASSY LOCATION N*ILOCA FAH ROD v'-5266 1.260
- F-7 1.352
...,... 6284 1.267 F-7 1.337 v-- 6986 1.275 F-7 1.347
.,.. 8250 1.275 J-6 1.331 v--9250 1.268 G-6 1.330
../'-9950 1.275 F-7 1.333
.J-10480 1.273 F-7 1.333
..,.~11006 1.260 D-5 1.338
-.,.-11934 1.263 F-7 1.329
...,...13200 1.270 C-10 1.325 Table 4.2 ASSEMBLY PIN F-7 HI F-7 HI F-7 HI G-6 JK D-5 ID F-7 KJ U-11 IL D-5 ID D-11 IL D-11 JL
- N ILOCA N ILOCA F t.H ASSY and F t.H ROD
.* are measured between 1. 5 feet and 10. 5 feet of core elevation and include an un~ertainty of 1.04.
- I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I SURRY UNIT 2 -
CYCLE 4 ASSEMBLYWISE POWER DISTRIBUTION-S2-4-9 Jigure 4.1
?
N PREDlCTELI IIEASURE:D M
L J
.H G
F-C.
~-73
- 0.93
- 0.1::..
- 0.73
- 0.94. 0.7~ *
.F1.T DlF-F-ERE:NC.f:.
o.a
- o.s
- o.s, *
- .ki
- L.IC1E:u
~0:hS~KELi
.FC.T ulf-FERt:NC.~.
- o.t:,1
- o.*,s
- 1.10
- 1.04
- 1.10
- o.95
- o~o7 *
- 0.01
- o.;5. i.o9. i.03. 1.10. o.9o
- o.~7.
1.~. -u.7 * -o.7 * -o.7
- 0.-1
- l.l..
1.;c *
.*......***.. ~.***.*...*.. ~ ***....... ***************************
- o.o9
- 0.9~. 1.0~. 1.13. u.99. l.l3
- 1.04. 0.9L. o.o9 *
- C.70. 0.93. 1.04. 1.12. 0.97. l.11. 1.04. 0.9~. 0.10.
1.3. 1.0. o.4. -1.0. -2.0. -1.1
- 0.3. o.o. l.4 *
- o.o9. u.&7. 1.0~. 1.11. l.l~. 1.ul. 1.15
- 1.11. 1.vs. o.87. o.o~.
- 0.10. o.~a
- 1.01. 1.11. 1.1~. 1.00. 1.13. 1.10. 1.00. o.~a. 0.10.
l.l. l.4
- l.a. 0.4. -l.5 * -2.0. -l.o. -0.4. O.o. l.~. l.o *
- c.o7. o.;2. 1.05
- 1.02. 1.13. 1.12. 1.15. l.l2. 1.1~
- 1.02. 1.0~. 0.12. o.c7 *
- o.o7. 0.93. 1.00.* 1.02. 1.13. 1.10. 1.13. 1.11. 1.13. 1.02. 1.01. o.;4. o.oa
- 1.1
- 1.1
- o.o
- 0.1 *.. 0.1 * -1.3 * -1.3 * -o.a * -o.c.
- o.7
- 1 *.:,.
- 1.1
- 1.,;, *
- ~.95. 1.04 1.11 i.13 1.00 1.14. 1.04. 1.14 1.00. 1.1~. 1.1!
- 1.0 ** o.~~
- 0.95
- 1.04
- l.ll
- 1-lZ.* l.o... l.13
- l.u4
- l.13
- l.Oc
- l.l:.
- 1.:..1
- l.04
- O.<;,c, *
- -o.z. -0.2. -0.2. -c.o. -o.3. -0.3. -o.::.. -v.2 * -0.2. 0.2. o.3
- o.o. 0.~
- A
- 0.7~. l.LO. 1.13. 1.15. 1.12
- 1.14. 1.04. l.Oo. l.u4. 1.14. 1.12
- 1.15
- 1.1~
- l.1D. 0.73 *
- 0.12. 1.09. 1.11. 1.1~. 1.c,~. 1.12. 1.~~. 1.06. 1~04. 1.1~. 1.11. 1.13
- 1.11
- 1.lo
- 0.12.
- -v.2. -1.l * -1.s. -2.2. -.:,.2. -1.~. o.o. u.l. -o.~. -0.2. -o.o. -1.2. -1.1. -., *.:, * -u-~ *
- o.,;,:,
- 1.04
- 0.9,;,
- 1.02
- 1.::..:,
- 1.0... 1.0&
- o.79
- l.08
- 1.C.4
- l..l.:,
- 1.;;2
- c..9c;.
- i.u..
- c.,;,::,
- 1.0::.
- o.,7 *,Q.':l':t
- 1.0,;.
- 1.02
- 1.09
- o.79
- 1.01>
- 1.04
- l.14
- l.()l
- 0.c,7
- l.C,j
- 0.9.:, *
- -;;.2. -1.1 * -1.0. -2.0. -4.i,. -2.... o.o
- c,.s.
0.2
- 0.1 * -o.7. -1.4. -1.5. -1.:,. u.o.
o.73 1.10 1.1.:1 1.15 1.12.
1.1..
1.0...
1.... a x.u4 1.14 1.1~
1.b 1.u l.1,;
0.1~
- 0.12. 1.1u. 1.13. 1.1::.
- 1.10. 1.12. 1.os. 1.09
- 1.0:
- 1.1~. 1.11. 1.13
- 1.11. 1.10. o.74 *
- -0.2. -0.2. -o.~. -1.s. -1.4. -1.s
- 1.::.. 1.1. o.a. -0.2. -u.9 * -1.1. -1.1. -o.4. 1.0.
- o.c;.s. 1.04. 1.11. 1.1~. 1.00. 1.1... 1.04. 1.14. 1.00. 1.1:,. 1.11
- 1.04. c.~:, *
- o.,7
- 1.0:.
- 1.11
- 1.1::
- 1.07
- 1.1:.
- 1.04
- 1.13
- 1.00
- 1.12
- 1.c...,
- 1.c.2
- c..*,7
- l.3. 1.::.. o.4.,v.4. u.3. u.9. -0.2. -u.~ * -o.4. -1.0. -l.o. -1.7. 1.~.
o.t.7 0.92 1.os l.o:a.
1.13 1.12 1.u
- ..:..2 1.D 1.oz
- 1.05
- o.c;,2 *.:, *.;.;
- O.o5. 0.94. l.O~. l.02. 1.1~. l.ll. 1.12. i.lu. loL2. l.01. 1.05
- o.~2
- v.~7
- 1.~. 1.~. 1.0. -o.~. c.o. -a.1. -2.~. -L.6. -1.1. -0.1 * -0.1
- o.~.
1.~ *
- o.o9. u.57. 1.05. 1.11. 1.1~. 1.02
- 1.1s. 1.11
- 1.~~. o.~7. o.o9.
- 0.70. 0.5o. 1.0:.. 1.10. 1.13. 1.ou
- 1.14. 1.11. 1.uo. u.be
- u.7u.
2.4. 1.s. -o.o. -o.7 * -1.2. -1.1. -o.a. -0.2. o.z. ::..2. 1.~.
- ~*-************************* **********~*-****-****************
- o.o9. a.92. 1.0~
- l.l~. o.99. 1.1~. L.v4. c.94. o.~9 *
- u.70. 0.':14. l.04. 1.12
- o.99. l.l4. 1.~j. o.9~. u.10.
2.2
- l.;. 0.4. -l.l. v.l
- l.2. l.l. 1.2. 1.4.
- ---~---*.*......*...............**.
- o.~7. o.9,. 1.10. 1.04. 1.10. 0.9;. o.o7 *
- o.c.a
- u *. 97
- l.l3
- 1.uo
- i.11
- o.97
- 0.01
- l.'i> *
- 2.0 *
~-2
- l.b
- l.~
- 1.2
- 1.1 *
~ 'T;..:.u;_R.a C.=Vl.:.TlC.N
=O.Ol.3 MAP NO. SZ-4-9 CONTROL ROD POSITIONS BANK CAT 228 STEPS BANK DAT 226 STEPS BANK P/L 228 STEPS
- Includes uncertainties
- o.73. o.~~. a.73 *
- o.74. c.9;. u.74.
2.2. 1.a. 1.3.
DATE 10/19/77 1.341* AT JlO-HG
= 1.777* AT Jl4-HK
= 1.246 A.13. = -2.615 BURNUP 'v204 MWD/MTU 20
.:. *,i: f<t.Gc
.f'CT Dif-Fi::R!:i,iC~.
=
!..u POWER 'v2441 MWT INCORE TILT NW 0.995 NE 1.002 SW 1.004 SE 0.. 999 l.
2 4
5 c*
7 10 ll 12 l.:.
14
I I
I I
I I
I I
I I
I I
I I
II I
I I
SURRY UNIT 2 CYCLE 4
- ?igure 4.2 p
N
?REDIC TED MEASURED M
ASSEMBLYWISE POWER DISTRIBUTION-S2-4-17 L
K J.
H F
E D
C a
- PCT DIFFERENCE,
- o.64. a.so
- o.64.
, 0,66, 0,32
- 0.67
- 3,2
- 3.l *
,,6
- PREDICTED MEASUPEi:l
,?CT DIFFE;{ENCE,
- 0,67. Q.9l. l,04. 0.92. 1.04. 0.91. 0.67.
*~ Q.69., 0.91
- l,04. *.. 0.92
- l 06
- 0.9~._0.69 *
- 2. 9 * -o. z
- o.2 *
- a. 3 *
- z
- 4
- 2 *
- 2. a *
..*..*.***....*****........*..*..... ~..................**........
- 0,71. 1,00 l,lO. l,05. 0.91. l 05
- 1,10
- 1.00
- 0,71 *
- o.j3
- 1.02
- 1.11
- 1.04. ~-~9
- 1.04. 1.11
- i.01.* 0.12 ~
2.a
- 2.:;
- 0.6 * -o.9 * -2.1 * -:.4
- a.a
- 0.1
- o.6 *
- o.71 ** o.a9. 1.13
- 1.10. i.13 ~ o.97. 1.13
- 1.10
- 1.13
- o.a9. o.71 *
- 0.71. o.9o. 1.1s
- 1.10. 1.11. o.93. 1.0~. 1.07. 1.13. o.9o
- o.73.
0.1
- 1.i
- 1.7 ****-*- o.4 * -2.1*.. -4,l * -,.4 * -2.s * -0.1
- a.a
- 1.1
- 0,67. l,00. 1.13
- 1,02
- 1.15
- l.15. l,l2. l,lS
- l,lS. l,02. 1,13 * !,CO
- 0,67 *
- 0.66. 0.98
- 1.13
- 1.02
- l,15, 1,14. l,09
- 1,13
- 1,14, 1.02. 1.14, 1.02
- 0,69.
., -l.7 * -1.7 ** -0.6 * *-0.1 * -0.4 * -1 *.:. * -2.6 * -,.2 * -0.9, '-0.l
- 1.0
- 2,3
- 3.7,
- 0,91. 1,10. 1,10. l,15
- l,07. 1,21. l,06. 1,21. l,07. l.15. 1,10
- l,lO. 0,91 *
- 0.90
- 1.09. 1.09
~ 1.13
- l,05
- 1.20. 1,04. 1,21. l,07. l.16. 1.11
- 1.12
- 0,93 *
- -1.2. -1.2. -1.3 * -1,9 * -i.1 * -1.1 * -1.s * -<.1. 0.3
- a.a. 1.0
- 1.s
- 2.2.
A
- 0,64. 1,04. l,05. 1.13
- l.15
- l,2l l,08. l.19 * ~.08
- 1,Zl l.15
- l.13
- 1,05. l,04. 0,64.
- 0,65. 1,03. 1,04. 1.10
- 1.11
- 1.19
- 1.07. l.17. l,07. l.21. l.l6
- l.l3
- l,05
- l.04. O.bS
- c.6. -c.s. -o.9. -z,4. -3.7. -z.4. -0.7. -1.2 * -1.0. -0.2. a.a. c.o
- 0.1 o.5
- 0.1 *
- a.so. o.92 *. o.9t
- o.97. 1.12
- 1.06. 1.19. o.e6. l,19
- 1.06. 1.12. o.97. o.91
- 0.92. a.so.
- C.30.* 0,91, 0.89.! 0,94 *.. l.0.6._,:_l.03..,~.l,l8.*. O.A6. 1.1'3.o l,05.* l,11
- 0,97
- 0,9!
- 0.92. O.Sl
- o.s * -1.0. -2.1. -2.a. -4.7. -3.o * -o.6. -0.1. -c.7. -o.7. -o.s. a.a * -a.a * -o.4. 1.6.
- ~*****************
- o.64. 1.04. 1.os. 1.13. 1.1s. 1.21
- 1.oa. 1.19. 1.os
- 1.21
- 1.1s. 1.13
- 1.os
- 1.04. o.64 *
- C,oS. l,03. 1,04. l,ll. l,l3
- 1.1a
- l.07. l.lB
- 1.07. 1.21. 1.15. l,13
- 1.05
- l,05. 0.67.
o.6. -o.3. -a.7. -z.1 * -2.3 * -3.l. -o.o. -0.2 * -\\.3 * -o.7. -o.3.
o.3 * -0.1
- l.~
4.1.
- 0,91
- l.lO. l.10. l.15
- l,07. l.21. l,06. l,21. l,C7. l.15
- l,lO
- l.lC
- 0.9l *
- C.92. l.ll
- l.lO
- l,l4. l_.06, l,17. l,03
- l.20
- l,Oo
- l,l4
- l,10
- l.ll
- 0,95
- C,9. 0.9*.
0.1 * -0.5. ~0.6, -3.4. -2.l * -1.4. -0.9. -0.5
- 0,4, 0,5
- 4,6 *
- -~*-*****************************************
- 0.67'. 1.00*. l.l3. 1.02
- l,15, 1.15. 1.12, l,15. 1.15. 1.02. 1.13, 1.00
- 0.67.
- o.oa. 1.02. 1.1s. 1.03
- 1.15. 1.12. 1.oa
- 1.12
- 1.13
- 1.02. 1.14. 1.01 * ~.7o.
1.a. 1.s
- 1.3 ;
0.1.***-o.3 * -2.6. -3.Z * -,.s * -1.s * -o.4. o.6
- 1.1 *
!o..o *
- ~*-*************************************************************
- 0.71
- 0.89. l,l3
- l~lO
- l,13
- 0.97. l.l3
- 1.lO
- 1,13
- 0,89
- 0,71 *
- 0.73. C.91. 1.14. l.09. l,ll
- 0,Y5
- 1,12. 1,10
- l,l4. 0.91
- 0.73.
2.7. l.9. o.7. -o.s. -l.9. -2.0. -1.1. -0.1. o.4. 1.s
- 1.s *
- 0.71. 1.00. 1.10. l,05. 0,91
- 1.05. 1.10. 1,00. 0.71 *
- o.73. 1.02
- 1.10. 1.03
- o.a9
- 1.01. 1.12. 1.02. o.73 *
- 2. o
- z. s
- a. 4 * -1
- s. * -1
- a
- 1
- a
- 1
- a
- 1
- a
- 1 ; a.*
- 0,67. 0.91. l,04. 0.92. 1.04. 0,91. 0.67 *
- 0.69
- 0.94
- 1.07, C.94
- l.~o
- 0.93
- 0.68,
-* *z *. s*-~
- 2.;; **;* 2. 1
- 1.9 ~-- 1.s **
- 1.s -~
i.a
- STANOARO DEVIATION
=0.01&
- o.o4. a.so
- o.~4.
- --***--*------. *o.66
- O.Sl
~ 0,~6 --~-
MAP NO. S2-4-17 CONTROL ROD POSITIONS BANK CAT 228 STEPS BANK DAT 218 STEPS BANK P/L 228 STEPS
- Includes uncertainties 2,7. 1,9, 1.9.
DATE 3/6/78 F!H = 1.352* AT F7-HI FT= 1.673* AT F7-HI Q
Fz = 1.188 A.O. =0--2.391 BURNUP n,,4524 MWD/MTU 21 AVERAGE
.PCT DIFF:RENC-E.
=
1 *.s POWERn,,2441 MWT INCORE TILT NW -
0.9.92 NE 1.005 SW 0.9..98 SE 1.oos 2,
3 5
7 a
- .o 11 12 13 15
I I
I I
I I
I I
I I
I I
I I
I
.I I
?
N M
SURRY UNIT 2 - CYCLE 4 ASSEMBLYWISE POWER DISTRIBUTI0N-S2-4-36 L
K J
H r
a-------~---- --*-----------
Figure 4.3 0
C A
oR:D ICTEJ
- 0.62. 0.74. 0.62--'-"--------
PREOlCTED
- -,*EASUR.:u
- 0.63--:-ci":-7~0:-.;j *
--*---~V.EASUREC. -- -
=*..:.?_,C::.;Tc._D=-"-'I i=i=::R. E::.:~..:.=Cc:==c::*c._ _________.._:__.:,lc;:*_;9_.:;_ _ l
- 9. *-- 2.6 ___
- _ ------ --
- PCT O l ;::r-eReNC_E -~----------.....
=-~0~*=6=9 ** 0.89
- 1.02
- 0.87. 1.02. 0.89
- 0.69 *~--------------------,..
- 0.10
- 0.91
- 1.03
- o.aa
- 1.0.;.
- o.93
- 0.10
- 2 1.3.
1.3
- o.&
- o.3. 1.s ~
3.5. 2.5 *
- o.73
- 1.09
- 1.19
- 1.02
- o.a1. 1.02. 1.19
- 1.09
- 0.13 *
~-----------~.~o=.74. 1.10. 1.20
- 1.02. o.ao *. 1.01. 1.21
- 1.11
- o.74:
3 1.1
- o.4.
o.6
- 0.1 * -1.4. -0.1. 1.a. 1.5 * ~.Q-~*------------------!I
- .*************************-~******************************************
o.73. o.~1
- 1.1a
- 1.09. 1.12
- o.94. 1.12. 1.09. 1.1a
- 0.91 o.13c--*-----------<1
- 0.74. 0.91
- 1,18
- 1.09. 1.12. 0.93. 1.11. l,09. l,19
- 0,92. 0,15.
o.9
- o.4 * -o.3 * -9.1 * -o.o * -1.0 * -o_.!.? __ !__.9!'.~_! __ <?.!.~---*---Cl*-'1--~---~-5 -~
- o.o9. 1.09. 1.1a. 1.02. 1.1s
- 1.10. 1.01. 1.10. 1.1s
- 1.02
- 1.1e
- 1.09. c.o9 "'-------,;a
- G.c.9
- 1.10
- t.18.~0l.
- 1.14. 1,15
- 1.05. l.l~l~3--:--y;:-1c,--;-1,~1C~-*0~7l; 5
0.6
- 0.6 * -C.3 * -o.z * -o.a * -1.0 * -1.l * *-0:.2
- 0.9
- 1.z
- 0.5 **
t.7.. -""--=3...,.0u,:-.::.*--------
- ***********~*****************************************~******************** *****************
- 0.39
- 1.19
- 1.09 1.15
- 1,04. 1.21
- 1.02. 1.21. 1.04. 1.15
- 1.09
- 1.19. 0.89 -*--------::,~
- 0.90
- 1.20
- 1.09
- 1.i::.
- 1.0::.
- 1.20
- 1.01
- 1.2~0,-.-r~i:s--:-T;;os--:--1~20 :--*c:-,H-.
0.1. 0.1. -o.3. -1.1. -o.9. -o.a. -1.0. -0.1. o.s_. __ o.s. -o.3. ___ 0.1+_. _1.0.
- a******************************************
0.62. 1.02. 1.02
- 1.12. 1.16
- 1.21
- 1.04. 1,18. 1.04. 1.21
- 1.16
- 1.12
- 1.02. 1.02. 0.62.
O.o3
- 1.::;:;
- 1.02
- l.ll
- t.12
- 1.1-a
- 1.03
- l.la
- 1.03
- 1.21
- l.lS
- 1.10
- 1,02.* l,03
- 0,6.?
- 7 2_._c_. __ o_ *. J __
- ___
0~~1.s..!._-:}~_9. -2.3. -o.3. -o_.6. -o.3. o.4. -q..!..~--=-~~-~--~=°*.1 _ _". ___ ~.__s __ ~ __ !~2 ___
- _____ _
- -~*-*****~**************************************************-******************
o.74. o.a7
- o.87
- o.94. 1.07
- 1.02
- 1.1a
- a.as. 1.1s. 1.02. 1.01
- o.94. o.a1. o.a1. o.74 *
- 0.1s
- o.Ja
- o.a1 * ;i.92
- 1.01
- o.9a
- 1.ia
- a.as
- 1.n
- 1.01
- 1.04
- o.93
- o.1rr * (,.99
- o.76 *
- a 1.9
- 0.1 * -o.3 * -2.1 * -.s.3 * -:1.1 * -0.2 * -0.2 * -0.1 * -1.0 * -2.1 * -1.2 * -o.o
- 2._1
- 2..a *
~o2
- 1.cz.* 1.02
- 1.12
- l.16
- l,21
- 1.04
- L,18
- l.O'+_. 1,21_. __ l._16
- 1.12 __ *.. 1.02
- __ l.o:<.
- _0.62_. ___ _
o.63. 1.03. 1.01
- 1.10. 1.13
- 1.11. 1.0::.
- 1.1e
~ 1.0,. 1.1s
- 1.1s
- 1.12
- 1~03. 1.os. o.o4.
9 2.0
- o.4 * -o *.:. * -2.1 * -2.6 * -2.a * -1.0 * -o_.4
~ -0 *.1 * -1.a __ * -1.2_. -o.o _.
1.::.
- ___ ?:_.__~ -~-~~4-~-
o.a9
- 1.19 1.09. 1.1s
- 1.04 1.21
- 1.02 1.21. 1.04. 1.1s
- 1.09. 1.19:-*_,.0_**~3~9_. _____ __,,_,,..
- o.a9
- 1.19
- 1.oa
- 1.14
- 1.03
- 1.19
- 1.00
- 1.19
- 1.0:;
- 1.14
- 1.09 *.i:;:n
- 1.,.9:;
- lC
!l-----'-*---'o_.c_c3__;._-_o;...;..3,_.::.*--..co..c *..c6__;.c.----'-o~_._-o
__._J * -1.2 * -1.3_._-!_~-"'-*--.~~--~--'."'.Q-_7 _._ ___ a. z
- 1.0 --*- ---~--~-~- ------ _
- 0.69
- 1.09
- 1,18. 1.02, l.15
- 1.16
- l,07. 1.16. 1.15. 1.02
- l,lL. 1.09. 0.69 *------
- O.b?. 1.10. 1~19
- 1.02. L.14. 1,14. 1.04. l,L+. 1.13
- l,02. 1.20
- 1.12. 0.71.
i1 a.;
- C.9
- 0.7. 0.4. -o.s. -1.7 * -2.z. -2.l. -1.5
- O.l
- 1.3._-'2-'-._30_._~J-'-.-~1_. _______ 4 u.73 0.,11 1.1a 1.09 1.12 o.94. 1.12. 1.09
- 1.1a
- 0.91
- o.73_*----------~.~
- c.1s
- o.n
- 1.19
- 1.oa
- 1.10
- o.9r:-i.:-i::r~r:os-.-.f~-i.9**~ o.B -~-0:-15
- 1..
2.1
- 1.5
- o.4 * -o.e * -1.9 * -2.5 * -2.1 * -0._9 *. o.4
- 2.4
- 2.1 *-----------
- o.73
- 1.09
- 1.1~. 1.02
- o.a1. 1.02. 1.19.* 1.09
- o.7~3_,.*--------------~..,..
- o.7s
- 1.1.1
- 1.19
- c.99
- o.as
- 1.01
- i.19
- 1.10
- 0-:,5
- 1;;
z.o.
2.0
- 0.2. -2.6 * -3.0. -1.0. -o.s
- 0.7
- 2.7
- i.-----------------"::......;;:o.o9
- o.a9
- 1.02
- o.a1. 1.02. o.a9. o.o9 *
- 0.10
- 0.92. 1.04. 0.87. 1.01. 0.90
- 0,68
- 2.0
- 2.a
- 1.1 0.1
- a *.:.*.
0.3 * -0.1
- STANOAR.0 m---------:o~e~,~~1-ATIQN
=0.015 MAP NO. S2-l4-36 CONTROL ROD POSITIONS BANK CAT 228 STEPS BANK DAT 222 STEPS BANK P/L 228 STEPS
- Includes uncertainties
- 0.62
- 0.74
- 0,62
- AVl:RAG~
0,64-:-o;-1c;-;-o--:-l,..:.---.----------.p(,1'."0H-Fi:R!:NCi:.---------*r3 4.L 3~0
- 1.z 1.3 DATE 1/19/79 POWER -2441 MWT F!H = l.32l*AT Dll~JL INCORE TILT FT =l.553*AT 14-LJ
_Q.
NW 0.997 Fz =1.122 NE LOOS A.O.=. -1.366 SW 0.991 BURNUP-.13200 MWD/MTU SE 1.001 22
I I
I I
I I
I I
I I
I I
I I
I I
I I
1.0
.8
.6
.4
.2 0
0 2
BOTTOM HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (6.00, 1.000) r
+
4 6
8 CORE HEIGHT (ft.)
23 Figure 4.4 c11.31, o*. 933) :
(12.00,, 0.558)~
10 12 TOP
_J
I I
I I
I I
I --
I N
E-1 O' i::.
I i::::
0 E-1 C,)
rZ I
,-:i r;c;i
~
C,)
I E-1 0
~
~
I i::.
~
I I
I I
I I
I 2.5 SURRY UNIT 2-CYCLE 4 HEAT FLUX HOT CHANNEL FACTOR, F~(Z)
S2-4-9 Figure 4.5 2.0~-----.---------...... --..-..... --..---............ ----~--------...... ____ -.....~-----~
1.5 1.0 !
o X >C.
. s.
X X
X 0 :
- l........
60 BOTTOM X
X
. I.
so X
>C
>C
>C >C X
X XXX>C
>C
>C>C
>C
>C XX
>C>C>C
>C
>C X
>(
,(
>(
X X
>(
X
. I. I t
I I
I I
I. I. I I
I I
I I
I. I.
40 30 20 AXIAL POSITION (NODES) 24
>(
X XX X
>(
X
>(
)(
. )(.
)(
>(
- I
- I I
I I
I I
I l 10 TOP
I I
I I
I I
I I --
N -
E-1 O' I
µ,I -
p:::
a E-1 i::.)
I
µ,I
,..::i r:::i I i i::.)
. E-1
§s I
~
~
l=,t I
~
r:::i =
I I
I I
I I
2.5 1.5 1.0
- xx
' i
! X j
>Cl
- 5 *
~o 60 BOTTOM*
X X
SURRY UNIT 2-CYCLE 4 HEAT FLUX HOT CHANNEL FACTOR, F~(Z)
S2-4-17 XX XX X; X
xxxxx X
XX
~
xxxx.x X
X*
X XX
)(
X X
X
- v.v X
X x*
50 40 AXIAL POSITION (NODES) 25 Figure l+. 6 X
X
><XX><
X X
X X*
X X
X xi
.X X
X 1
I I
I I
I I
- 1.
I I
I I
I I
I I
I I
I 11 Figure 4.7 SURRY UNIT 2 -
CYCLE 4 HEAT FLUX HOT CHANNEL FACTOR, F~(Z)
S2-4-36 2-Sr,
,. i i I I i i
- I
~
I I
I
- I 7
II i
1.1, 11 i
+
I:
J*
i i
ii
- 2. 0..
i
~
I I.
l
~:O' { i. l I I
I i i I !
i j -~{!:TT1 1i*T*TnTT 111-.T-l'r~*r 1 n1~*t1t-r1 ti+ti 1
41-.H-.
1
]~
11-_U 1
1_
1 r:.
~I X X I
I I
I I
I X X X X x
x x 1
1 1
1
. *r x x i
...:i
- x
\\x 1
\\
x x x.'- I 1
~ 1. 5 ~
Ix
><\\x x xix xx xx
!x xix xx x!x x
I
"'x I
3 Jl x,
x
' x x.
J x,x xx!
I XL I 1 L I
~
t *
- I
- I I I.
I r::
X I
J *
- 1 II X
X i
~
~
I
. ~
~!
X I
I !
I I I
~ l.O T,
I I I I I I
- i::
~'1>(
I 1
1 ti.
'1 11.
I 11! i I 1
- 1'1 I
~
1*
I
.5:
I r
I i
I I
I I j
I I
0.:, I I
! I I
11 I
I 11 1 I I 60 so 40 30 20 10 BOTTOM AXIAL POSITION (NODES) 26 I
I I
I I
I 11 '
1 TOP
HO' rx.
~
0
~
,-.:i iii I N
H 0 Ill
§ rx.
~
~
~
H i 3.00 2.80 2.60 2.40 2.20 2.00
- 1. 80 SURRY UNIT 2 ~ CYCLE 4 MAXIMUM HEAT FLUX nor CRANNBL FACTOR vs.
BURNUP Limits as per'brder of"Modification i rr :
__ of License, 4/28/~78~*..,.,~~*~~~~~~*
.. ]-
1.40 a++H+ttt++++++-H-H-H-Hl+H-1-H+H+I-H+l-~H+++++++++H-!+H-11-l-1+-µ+.~~l+H-H+I-H+ttt++tt+++t+t++-H+H-!+H-l+H-ll-l-l+-H++-1-H+H+I-H+l-+++++++++H-1-H+*
- 1. 2 0 a+ttttti+tttt+t+ttt+tH+H-lHttHttHttHtttt+ttt+t+tti+tH+H-lH++H++H++HH-++++++++++H-H+l-H+l-H+ll+++-H++l+Hl+Hl+l+l-1+1-H-l-J.+l+l-l-l+l:-R-h~*
0 2000 4000 6000 8000 10000 12000 14000 CORE BURNUP (MWD/MTU)
Figure 4.8
I I
I I
I I
I I
I I
I I
I I
1.0
.99
- 98
.97
.96
.95
.94
.93 0 0 Sl'.IRRY UNIT 2-CYCLE 4 INTERIM TRIMBLE CELL ROD BOW PENALTY ON F~H 5
10 15 AS PER TECHNICAL SPECIFICATIONS AMENDMENTS 112 9 AND II 3 0 3/22/77 20 25 30 REGION AVERAGE BURNUP (1000 MWD/MTU) 28 Figure 4.9 35
-Ill
~<3 p:;
0 E-1 t.) <
~
,-.:i r,::i N
'° E-1 0 Ill r,::i Cl]
- J
- ... j
- z, r,::i
- 1. 6 SURRY UNIT 2 -
CYCLE 4 ENTHALPY RISE HOT CHANNEL FACTOR vs.
BURNUP Most Restrictive Limit :*
as per 11ttt+H-ttt,H-H-tttttttt-ttt,H-H-tttttttttttirttt-tttttt1 Technical Specifications~-~1+H-H+++t+1+++,rH+1++1-tttt+++,+tt-1++1-tttt-*
- 1. 5 Amendment Nos. 30 and 29: - *.
. 3/22/7) -,
1.4 ll++H+l:i:i+IH++-H+tH+t-H-HH++-H+tH+t-H-HH++-l+H-H+t-H-H+t+H+ttttt-H+l+t+ltttttttttH+ttt+tttttttl+/-tii:Hitttttttttttfjj:tttll:tttttlttfjj:ttt~*
1.31-H-lfl+fR-f+m+fflffHl+ltll+ltllfH-ltl-l-HtfH+l-++HtH:!+/-H:l:H:H+l+/-ll+/-t-t-H:H:l+/-H:i:ltttttl::f+/-H+/-tti+/-Hi+/-ttl+/-ttl::H:HHtt:H:!tl+/-ltl:l:tt_tt_tt.:ttttittltt:t:1~
1.2 a-H+l+IH++-H+t++H-H-HH++-H+tH+t-H-H+H-H+t+-1-H-H-H+H-H+tH+t-H+l-tthH-ttH+t-H+l+t+lttttttttttt-H+llttt-tttttttt-H+lttt-ttttttttttttrttt-lttttt*
1.1....... ~~~iliillilllMi~~iilri.ail~~w.w.~~i"11iii/i~~l:W.l~lillllldilililli:6iiiiat.W.ll~iiliriW..taiiilaill~IIW&;illi.t:.t.illiaiiiiiUA Figure 4.10 0
2000 4000 6000 8000 10000 12000 14000 CORE BURNUP (MWD/MTU)
1.60 u
Ul 0
Ul
..:I<
~~
- 1. 50 Ul
~
I iz 0
E-l
~
- 1. 40
..:I l,.) I 0
E-l 0
- 1. 30
- i::
ri:I Ul
~
~
- i::
1.20 E-l "fi1 u
0..:I 1.10 0
2000 SURRY UNIT 2.,.. CYCLE 4 LOCA ENTHALPY RISE HOT CHANNEL FAC'I:OR.,.. ASSY.
vs.
BURNUP Limit as per Technical Specifications Amendments 1134 and 1135.
12/2/?}
JI 4000 6000 8000 10000 12000 CORE BURNUP (MWD/MTU}
Figure 4.11 14000
- 1. 60
~A s~
- :::0
~<1 A
- 1. 50
~
p:j 0
H u <
r,:..
- 1. 40
...:I w
ril I-'
I H
0
- 1. 30
- 0
[ii t/l H
p::l
- ,-.. i 1.20
~
u 0
...:I 1.10 0
2000 SURRY UNIT 2 -
CYCLE 4 LOCA ENTHALPY RISE HOT CHANNEL FACTOR -
ROD vs.
BURNUP
'. UllllUllWll llllJITITillff!JtlllllllllJ * -
- 11-11 HI-I l 11H11111-111-1-1-11-1 ui:m+l 11-H 1111-1 Limit as per Technical Specifications Amendments f/34 and 1135, 12/2/77 I,,
4000 6000 8000 10000 12000 CORE BURNUP (MWD/MTU)
Figure 4.12 14000
SURRY UNIT 2 -
CYCLE 4 Figure 4.13 TARGET D~LTA FLUX v~,.
BURWJP
+12
~ ---
+10
+8
+6 E:-1
+4 fi1
~
f:<1 P-l
+2 B
l..,.J N
µ.i 0
~
~
A
-2
-~
E:-1 f:<1
~
~
-4 E:-1
-6
-8
-10
-12 0
2000 4000 6000 8000 10000 12000 14000 CORE BURNUP (MWD/MTU)
I.
I I
I I
I I
I I -
i::::i I
i:...:i N
H i I
0 z --
N -
I N
~
I I
I I
I I
I 1.5 -
1.2 I.:,_...
~.
- 9 ":--.
~,,.
i-:.
~..
.6 ~
~
I I
X
,,c
.3 ;_
I..
1.
. ~.
Fz = 1.246 D.
( Q...,l......... 1..... ;... l......... 1......... 1......... l........ l 60 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP 33 I I I I I I I I I - i:::i I ~ N H ~ I N I ~ l=-4 I I
- I I
I I
- 1
- 1. 5. to:-.
~. ~.. 1.2 :
- 8.!-..
Fz = 1.188 t,.q, = -2.39 X X X )( X X X SURRY UNIT 2-CYCLE 4 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-4-17 XXX xx )()( XXXXX X XX X X XX X XX X ~X X X X )( X X XX X X )( X X X Figure 4.15 )(
- x X
)( 1-,... . 6.:.. X ~.. ... )( X. ~..
- 3 :-.....
~.. t-:.. ~. i )( >< )( X X X 0..:.1......... t.... *...... 1......... t......... l......... 1........ 1 60 50 40 30 20 10 1 BOTTOM AXIAL POSITION (NODES) TOP 34 I. I I I I I I I I - 0 ~ N H I ~ ! 0 z I - N N i::.. I I I I I I I I Figure 4.16 1.5 1.2 .9 .6 .3 Ix I I I I )xx: I
- ,. I ;
i SURRY UNIT 2 - CYCLE 4 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-4-36 I.. i : I ! i
- i.
J ! __ L.l. I I_::. _: ~~t;~_, I 1 I !
- 1 I '
i i ' I I
- i.
I I. I! 1' II I i I I . I I ! x:x xi x:x..1 1 >< xi I I,.',. x1x
- x i Ix 'x.
ix,<l i
- x x jX I : I j i
I
- x x x,x xx x:x ;
! x*x xi x I x xi 1
- 1
-11 1 r... 1 1 "1": ** 1 1 1-1. xi I 1
- 1 I i i
I J I x x I
- i j
I
- 1 I I I
I, I I I I i i I i I I i I I I I I l I i I I i - I i I I I I ! I I I I I II I I I I I I I I X . I.. ! ** !... I I I I I I I I I I :
- I I
! I ! I I (! 1!
- I
- ., * *I'**.
- ***.***,I. l **** *l ****. ! *.* *' **** '
1 i i I o :. II.... ! *., *.. 1!. 60 BOTTOM 50 . 40 30 AXIAL POSITION (NODES). 35 20 10 1 TOP N lfz< p::; 0 [3 <11 rx. l!J ~ ~ i:il w Pa (J'\\ ~ H ~ t5 ~ ~ ~ 0 0 1..60 1.50
- 1. 40
- 1. 30 1.20
~ SURRY UNIT 2 - CYCLE 4 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP
- r.
Figure 4.17 1.10 1-W-J+H-l+++J+H-l+l+l+++J+H-l+++J+H-J+H-H+l-J+H-H+l-H+l-H+l-H-H,H+l-l+ttll+ttll+ttllttH-H~~~~~~~tt+ttt+ttttttttttttrtitttttt* 0 2000 4000 6000 8000 10000 12000 14000 CORE BURNUP (MHD/MTU) I I I I I I I I I I I I I I I I I I I Section 5 PRIMARY COOLANT ACTIVITY FOLLOW Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indi-cators of defective fuel. Additionally, they are also important with respect to the offsite dose calculation values associated with accident analyses. Both I-131 and I-133 can leak into the primary coolant system through a breach in the cladding. As indicated in the Conditions of the License dated October 3, 19783, the dose equivalent I-131 concentration in the primary coolant was limited to 1.0 ~Ci/gm for normal steady state operation during Cycle 4. Figure 5.1 shows the dose equivalent I-131 activity level history for the Surry 2, Cycle 4 core. The data demonstrates considerable scatter, however, the trend shows that during Cycle 4, the core operated substantially below the 1.0 µCi/gm limit on dose equivalent I-131. Specifically, the average dose equivalent I-131 concentration of 2.4 x 10-3 l,.Ci/gm is less than 1% of the 1 µCi/gm limit. The ratio of I-131 to I-133 is used to determine the type of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a shor.t half-life (approxi-mately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days) so that for pinhole defects where the diffusion time through the defect is on the order of days, the I-133 decays out leaving I-131 dominant in activity, thereby causing the ratio to be 0.5 or more. In the case of large leaks, uranium particles in the coolant, and/or "tramp" uranium*, where the diffusion mechanism is negligible, the I-131/I-133 ratio* will generally be less than 0,1. Figure 5.2 shows the I-131/I-133 ratio data for the Surry 2, Cycle 4 core. These data are inconclusive in terms of indicating the type of defects present in the fuel used durin~Cyc1e 4.
- "Tramp" uranium consists of small particles of uranium which adhere to the ouside of the fuel during the manufacturing process.
37 I I I I 101 I I I I ~ e co --""' u
- i z
0 H I r,. ~ .... z ..i u z 0 I u 10-l I H z I [:l
- J >
H :, O' [:l I [:l 0 I Cl I I I OCT I I NOV DEC 1977 SUR.RY UNIT 2 - CYCLE 4 DOSE EQUIVALENT I-131 CONCENTRATION VS. TI¥.E JAN FEB MAR AFR MAY JUNE JULY 1978 38 AUG. SEPT OCT NOV DEC Figure 5.1 JAN FEB 1979 w 10° 10-l 10-2 --* **--'" 11, ;!f = : :~:: :_. : :* :- :: =: ~ SURRY UNIT 2 - CYCLE 4 I-131/I-133 RATIO VS. TIME .. ~ = :- ~ -=~~,~~~~; -~~-*-~:~~~
- ,,,:'Jc.
... : :: : : ' *-., ~ -* .. -. -= -~--(!)- __ a-*1--+-+-1--+*+-*1--+-1-1--l"He,l-l-l-4-l-l--H-I--H-l 1-+-H_+-_ l--+--t--1--+*-i* --t--+_-i. l-+-Hl-+-t-H-t-H-t-H*-J-t-f*-t-t-t-t-H-1-+-f-+-+-t-1-;- l-*H'-+-Hhk-Hl-)1-l-l--H-l . - ~ . -1, ,p,!, ~:.:"~--~-- 'r, lil- - :~--.-. :,_.: .1,p.. ,p - e l!l
- , c - -. *c --..
- l,l. - - - - - -
e ID 0 IH33~~§=f. ;1_1_ ~~: ~d:,a: ~,:hl*,f=:t:_E-cf,.ff¥.t~'l=d_ §., §§,_F-_F-::_f=::fccf=f_f __ ~-.§', _§*'itc!~ a:t1::1:~l.'=ff,Jil,1!.ft.i~'f::'f,.. a:~~ ~.,i;i;. f-=:.~~c:f'a;fcc'lc:-cf*,t* *ij!*ti. -~~~j=-p-. l :: ~ :, = -: ~ r" . ~ :_. ., -,':' ~ - -- -... - - - -. *, *. C :: C CC= C: - - :fa C- *: C.: *-
- -* *- - =
- .*,ee-*:: ::-. _
_ =_ l=_B=f'E~*-,F-l io=!cEl=lt-71=f'l=I. p* HfH'+--H~f'ici'i=tt-.=~*-,-,.-+-+-t-+-r * -.. - - - *- - *- - -.Y' :: - OCT 1977 NOV DEC JAN FEB MAR APR MAY JUNE JULY AUG 1978 SEPT OCT NOV DEC JAN FEB 1979 Figure 5.2 rm HOLE LEAKS LARGE LEAKS AND/OR TRAMP URANIUM I I I I I I I I I I I I I I I I I I I I Section 6 CONCLUSIONS The Surry 2 core has completed Cycle 4 operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and all core related Technical Specifications limits were met with significant margin._ No abnormalities in reactivity, power distribution, or burnup accumulation were detected. In addition, the excellent mechanical integrity of the fuel has not changed perceptibly throughout Cycle 4 as indicated by the radioiodine analysis. 40 1~ .I, 11 I I I I I I I I I I I I I I I I I Section 7 REFERENCES
- 1.
M. Lloyd and J. H. Leberstien, "Surry Unit 2, Cycle 4 Startup Physics Test Report", VEP-FRD-28, January*, 1978.
- 2.
Surry Power Station Technical Specifications.
- 3. Letter from Mr. A. Schwencer (NRC) to Mr. W. L. Proffitt (Vepco) dated October 3.
1978.
- 4.
W. D. Leggett, III, "TOTE Code", WCAP-7309, March, 1969.
- 5.
R. D. Klatt, W. D. Leggett, III, and L. D. Eisenhart, "FOLLOW Code", WCAP-7482, February, 1970.
- 6.
W. D. Leggett, III and L. D. Eisenhart, "INCORE Code", WCAP-7149, December, 1967.
- 7.
Letter from Mr. C. M. Stallings (Vepco) to Mr. E.G. Case (NRC) dated April 7, 1978.
- 8.
Letter from Mr. A. Schwencer (NRC) to Mr. W. L. Proffitt (Vepco) dated April 28, 1978.
- 9.
Letter from Mr. R. W. Reid (NRC) to Mr. W. L. Proffitt (Vepco) dated March 22, 1977. 41 i 'I I I I I I I I I I I I I I I I I I I J) ,) ACKNOWLEDGEMENTS The authors would like to acknowledge the cooperation of the staff at Surry Power Station in supplying the basic data for this report. Special thanks are due Messrs. L. J. Curfman, L.A. Johnson, and to Hs. Q. F. Grandison'. Special thanks is also due to Hs. C. E. Bullock for her patience and accurate typing of this report.