ML18100A894

From kanterella
Jump to navigation Jump to search
Rev 0 of Crack Arrest Depts for High Cycle Loads
ML18100A894
Person / Time
Site: Salem  PSEG icon.png
Issue date: 12/30/1993
From:
MPR ASSOCIATES, INC.
To:
Shared Package
ML18100A891 List:
References
108-32-03, 108-32-03-R00, 108-32-3, 108-32-3-R, NUDOCS 9402280233
Download: ML18100A894 (28)


Text


MPR ASSOCIATES, INC.

320 King Street, Alexandria, VA 22314 CALCULATION TITLE PAGE Client I\\

r...; b LC...

PAGE 1 OF 2-~

TASK NO.

I {Jf-3 L Project 5:,. l !r'l ~ O &- L 1,, er 0zu., lc.11'\\

Calculation Title REVISION NO.

PAGE NO.

AFFECTED PREPARER(S)/

DATE CALCULATION NO.

REVIEWER(S)/

DA

.~~-~

12}8)'13

  • 1-;./30/f.3 Ydv;lk~~

~?:P/CB

  • ~==~==========================~

( 9402280233 940215

\\

. PDR ADOCK 05000272 P

PDR L

. mMPR Calculation No.

/Of-32-03 Revision MPR Associates, Inc.

320 King Street Alexandria, VA 22314 RECORD OF REVISIONS Prepared By

/"'<.-

Cfhe~k~ By 77~.JT~

Description Page 2

mMPR

  • 320 King Street Alexandria, VA 22314 Calcuiation No.

Prepared By Checked By I OK-32-o.3

--va.h;* l~ -Y.; u:-'.tt v Page 3

~

1.0 PURPOSE The purpose of this calculation is to calculate the effective change in stress intensity factor as a function of crack depth for cracks originating at the relief groove in ALCO 251 diesel engine cylinder liners. The stress intensity factors are calculated for mechanical loads (head fit-up and engine firing). As discussed in Reference 2, thermal loads are neglected.

2.0 RESULTS Two cases were evaluated: the nominal configuration of liner design (tolerances, alignment fit-up, etc.) and a worst case configuration in which the tolerances are set to conservative values and a misalignment is assumed between the liner flange and the engine block. The table below summarizes the calculated stress intensity factors for several crack depths for each case.

Case Crack Size K

KMIN AK R

AKE&

(in)

<iMM (ksivin)

(ksivin)

(ksivm) 0.0625 13.2 10.5 2.7 0.795 6.0 0.125 14.3 11.4 2.8 0.802 6.4 0.25 15.6 12.7 2.9 0.817 6.7 Nominal 0.375 16.5 13.8 2.8 0.834 6.7 0.50 16.8 14.4 2.4 0.855 6.4 0.75 14.1 13.l 1.0 0.930 3.7 0.0625 18.0 15.0 3.0 0.832 7.4 0.125 19.7 16.5 3.2 0.837 7.9 0.25 21.5 18.3 3.2 0.850 8.4 Worst Case 0.375 22.6 19.5 3.1 0.864 8.3 0.50 22.8 20.1 2.7 0.882 7.9 0.75 18.6 17.5 1.1 0.941 4.5 Assuming that the threshold stress intensity factor is about 6 to 10 ksivin, crack arrest would be expected to occur at crack depths less than about 0.5 to 0.75 11 for both the nominal and worst cases. However, crack arrest depth for the worst case configuration would likely be deeper.

mMPR Calculation No.

/Of-32.-0 )

  • = 10...

z

~

ft!

't) a)

a:

.c i 0 t;

~ 10...

G u Prepared By

/"'--

Stress Intensity Factor Range. ~Kin MPavm 10 20 40 60 100 Band for Wrought Ferrite-Pearlite Steels Load Range

  • 2000 lb (910 kg) c 2200 lb (1000 kg)
  • 2500 lb (1130 kg) 0 2500 lb (1130 kg)

A 3000 lb (1360 kg)

  • 3300 lb (1500 kg) 10 20 30 40 60 80100 Stress Intensity Factor Range. ~K in ksi v'iiiCFi

\\-\\~.1.

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 GI 0 >

~

E E

  • = z

'O ' m

'O 10-* !i 10-1 m

a:

.c i

0 (3

~

CJ m u Page s;

&r"'-1 ~" (ftc,k, &nc..-~ 'P>4!.~"'lc.or (Qe~c(. l)

. mMPR

~ MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By ff,

.. ~c.

~9;t By r---;_D0 __

-3_2_-o_~-------L _____ ~

__________ _L~~~~'~~(~~~------1--P_a_g_e __ ~

__ _J fl5urt 2 C~vlj LOGA.-h ""

Calculation No.

{Of* S2..-o >

Prepared By

/'1'"7...

MPR Associates, Inc.

320 King Street Alexandria, VA 22314

(') Che,,c~d By

~

~*ifL~-

  • ~

,""'--~*M._~

Page 7 3.3 Calculation of Stress Intensity Factor The stress intensity factor for a given crack depth and loading is calculated directly using finite element stress analysis results. The ANSYS finite element program is used for these calculations. The ANSYS program has the built-in capability to directly calculate the stress intensity factor, provided that the finite element model is developed properly. This includes incorporating the crack directly into the model and using singular crack tip elements at the crack tip.

The finite element model used for the calculations is a modified version of the model described in Reference 2. The model in Reference 2 was used to calculate stresses in the cylinder liner due to head fit-up and engine firing pressure. The Reference 2 model is shown in Figure 3. A typical model used for this calculation is shown in Figure 4. The following changes are made for this calculation:

A very thin pie 11slice 11 of material was removed at the simulated crack location (the relief groove radius). The depth of the slice is the crack depth; the width at the relief groove is several mils (depending on crack depth). The area around the simulated crack tip is modeled with crack tip elements. This is shown in Figures 5 through 10 for each crack size evaluated.

The contact at the cylinder liner lower seal is an interference fit. This effect was conservatively neglected in the Reference 2 analyses. In this evaluation, it is assumed that the interference fit holds the cylinder liner lower seal location in place axially at the non-cracked head fit-up position. These displacements are obtained from References 3 and 4 for the nominal and worst cases as 0.004629 11 and 0.009218 11

, respectively.

A typical ANSYS input file to perform the stress analysis of the cracked liner is included as.

The engine firing and not firing cases represent the stress cycle for the liner (neglecting thermal effects, as descnbed in Reference 2). This cycle occurs at a rate. of about. 450 cycles per minute.

The maximum and minimum stress intensity factor are calculated for each case. The maximum stress intensity factor corresponds to the engine not firing case and the minimum stress intensity factor corresponds to the engine firing case.

The stress intensity factor is calculated using the ANSYS KCALC command. This command directly calculates the stress intensity factors, K1, Kn and K111._ For the cylinder liner cracking, K1 is the stress intensity factor which controls crack growth. K11 is also calculated for information. The cylinder liner is axisymmetric, so Kni is zero. A typical input file used to calculate K1 is included as Attachment 2. The KCALC command requires the specification of the finite element model nodes which comprise the crack tip, as shown in Figure 11.

Calculation No.

/Of-32-0.J Prepared By

~

Flj"f"L 3

~e.feMCL 2 FE" r-\\odc.\\

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Page 6

    • MPR Calculation No.

I OE/ - ~ 2-0__3 Prepared By

/f-<.-_

F\\)Vlt. 4-MPR *Associates, Inc.

320 King Street Alexandria, VA 22314 Page l fv\\lh

~le.-e.-.f-MoJd \\.tJ

  • R Cfl.<-l

. mMPR MPR Associates, Inc.

320 King Street.

Alexandria, VA 22314 Calculation No.

Prepared By CT. ~c(~e2 By r-~/-e>J~--~-2_-o_J~~~..L~~-~~~~----_J_-1.)61.~~~_:_IV_~..:.:.._..:_~~J_-P_a_ge~\\-D~-J l_LJ I I /'\\.

I I

'I *\\

\\14

. mMPR**

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By rep, ~~e(~dJ3Y r-----1a_r-_3_2_-_0J ______..1.-___ ~

__________ _L __ ~l:J=----~/...::....~~~~----_L__Pa_g_e __

\\\\ __ __J

. mMPR

-* - MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By (f

.. h~kfe.~.dJ3Y

.-~-'O~~-~-~-~-)~~~..L.-~~/V'--~~~~~-L-.....:..'l:/':~~'l-=-'l-~t::..:..:.~......,;...--1.._P_a_g_e~\\'-~__J H-t+-t-t-+++++-+-+-+-+++++-1-J~

~t-+-t-+-t-+-t-+-+-1-+-l-+-++++-U~

N"-.__

f,~0rt. 7 Y

4

C~ct Mode-\\

A

. mMPR-Calculation No.

I Of- )i.-oJ Prepared By

~

-I I I J I

~

?'\\!~

~

~

~

..... ~'/

~~

?l'.l.lr ~

I::~

=Ji

~).)<

tX.r I\\

l

?

./

~

r"'

~

. MPR Associates, Inc.

320 King Street Alexandria, VA 22314

~hec~ifBy

~~J(f~

Page \\)

r-.

I I

'"'"-)°'

J

,,)?%

' I

\\

\\

['-,,,

\\/

I/

./

\\

T l

!:IT "\\

TL k-"

~

'-ij f-Q

_,....._i,...-

l;;J T

L

~'

I "I-r

~"--

xt.

f,~1.1/C 8 3/g

(ntc-tL r'\\odt.l

. mMPR Calculation No.

/0~-32. -oJ Prepared By

-...J I

I I I /I I -

k$S

'I.<<

-~

nc.

[7

~~

X)6 ""-.£

~ ~

r\\ I 1

I/

~

~

\\J

. -.MPR Associates, Inc.

320 King *Street Alexandria, VA 22314 (jChec;.,k]£_ By

~~-~

Page 14-1~~

_\\ \\I l~~0 v

I"'---.

/

/

..?

'""'-Y

/

-;~ -

~

I l r-0 T n l/

v

~

i..-... k) ?

T

->--._.Lo--

('

hj I

I JI I

r=\\j\\JI(. 9 y

2,. *l

(.,sl..cl.. M.o ~c.l

mMPR Calculation No.

/Of* 32..-0 J Prepared By A-

/\\ I

~-

I F 15utt lo 3/1

~cl fatoJt I

  • -MPR Associates, Inc.

320 King Street.

Alexandria, VA 22314 Page / 5

mMPR MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By a,

hec(~~ By iog-32--0.J>

/f-..--

IJt ~ Page I (o 1-~~~--L~~~~___L_~~~*--=--*_:_:_~_L_~~~

0~c..l i-' f µoAt t-JJ"" ~U!>

(:f i '--

c~t..L CASc.)

    • MPR

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By Checked By

/ of-3t-o>

/'L

~-h;lA_ ~1lf4.-

Page 17 These nodes are listed below for the different crack sizes evaluated.

I Crack Size I Nodes I

(in) 0.0625 34 51 52 49 48 0.125 34 49 50 47 46 0.25 34 53 54 51 50 0.375 34 65 66 63 62 0.50 34 73 74 71 70 0.75 34 85 86 83 82 The results for stress intensity factor are listed below for each case considered. The ANSYS analysis results used for each case were obtained from References 5 to 28.

Non-Firing Firing Case Crack Size (in)

Kr Kn Kr Kll (psivin)

(psivm)

(psivin)

(psivm) 0.0625 13240 201 10522 327 0.125 14265 513 11437 678 Nominal 0.25 15586 837 12728 1087 0.375 16541 900 13790 1295 0.50 16831 772 14390 1360 0.75 14083 292 13104 800 0.0625 18026 114 14995 104 0.125 19680 134 16478 205 Worst Case 0.25 21516 57 18278 538 0.375 22627 284 19547 915 0.50 22826 372 20125 1196 0.75 18615 595 17508 780

mMPR Calcuiation No.

(Dg -5z.-o)

Prepared By A

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Page 1 b The mean stress during the stress cycle has an effect on the effective change in stress intensity factor during the cycle. These effects are included through the use of the Walker Correction Factor (Reference 29). Using this factor, the effective change in stress intensity factor during the stress cycle is calculated from:

The calculated values of R-ratio for the cylinder liner are about 0.8 or slightly greater. This is outside the typical range of applicability for the Walker Correction Factor (upto about 0.7).

The use of this factor for these calculations is considered acceptable. The results of calculated stress intensity factor, R-ratio and effective change in stress intensity factor are shown in the table Section 2. These results show that the effective change in stress intensity factor peaks at about 0.375" to 0.5 and drops of significantly after about 0.5. In addition, the worst case configuration is worse than the nominal configuration. Assuming that the threshold stress intensity factor is about 6 to 10 ksi...rin, crack arrest would be expected to occur at crack depths less than about 0.5" to 0. 75" for the both the nominal and worst cases. Crack arrest depth for the worst case configuration would be deeper.

The above calculations assumed that no liner movement occured at the lower seal interference fit. If this seal was not tight and relative motion occured between the liner and engine block, the stress intensity factor would be greater, possibly large enough to grow cracks deeper than 0.75".

. mMPR.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By

[;~e(9~~

  • 1--~l_D_f_-_3_~_-o_J~~--..~~~~~~~~~.1..-,{l-'-=---r~Ft.-~_v~--~~--..~P-ag_e~;;~--t

4.0 REFERENCES

1.

Atlas of Fatigue Curves, American Society for Metals, 1986.

2.

MPR Calculation 108-32-01, "Finite Element Stress Analysis of ALCO 251 Diesel Engine Cylinder Liner", 12/17/93.

3.

ANSYS Analysis Results File, NOMINAL.DB, 12/12/93, 1:52a.

4.

ANSYS Analysis Results File, WORST.DB, 12/14/93, 5:34p.

5.

ANSYS Analysis Results File, NOM16.DB, 12/28/93, 3:48p.

6.

ANSYS Analysis Results File, NOM16FR.DB, 12/28/93, 4:19p.

7.

ANSYS Analysis Results File, NOM18.DB, 12/27/93, 8:15p.

8.

ANSYS Analysis Results File, NOM18FR.DB, 12/27/93, 8:42p.

9.

ANSYS Analysis Results File, NOM14.DB, 12/23/93, 4:48a.

10.

ANSYS Analysis Results File, NOM14FR.DB, 12/23/93, 5:18a.

11.

ANSYS Analysis Results File, NOM38.DB, 12/23/93, 8:57a.

12.

ANSYS Analysis Results File, NOM38FR.DB, 12/23/93, 9:36a.

13.

ANSYS Analysis Results File, NOM12.DB, 12/23/93, 1:42a.

14.

ANSYS Analysis Results File, NOM12FR.DB, 12/23/93, 2:36a.

15.

ANSYS Analysis Results File, WRST16.DB, 12/28/93, 5:00p.

16.

ANSYS Analysis Results File, WRST16FR.DB, 12/28/93, 5:40p.

17.

ANSYS Analysis Results File, WRST18.DB, 12/27/93, 9:16p.

18.

ANSYS Analysis Results File, WRST18FR.DB, 12/27/93, 9:50p.

19.

ANSYS Analysis Results File, WRST14.DB, 12/23/93, 5:56p.

20.

ANSYS Analysis Results File, WRST14FR.DB, 12/23/93, 6:35a.

-mMPR

, MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By

~

9

! Che~k d By

'~(

. /"l

~

Page~

{of-)L-o)

~-_......____

__.___-----t

21.
22.
23.
24.
25.
26.
27.
28.
29.

ANSYS Analysis Results File, WRST38.DB, 12/23/93, 10:25a.

ANSYS Analysis Results File, WRST38FR.DB, 12/23/93, 11:14a.

ANSYS Analysis Results File, WRST12.DB, 12/23/93, 3:19a.

ANSYS Analysis Results File, WRST12FR.DB, 12/23/93, 4:11a.

ANSYS Analysis Results File, NOM34.DB, 12/30/93, 12:30p.

ANSYS Analysis Results File, NOM34FR.DB, 12/30/93, 1:06p.

ANSYS Analysis Results File, WRST34.DB, 12/30/93, 3:46p.

ANSYS Analysis Results File, WRST34FR.DB, 12/30/93, 3:02p.

K. Walker, 'The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum", ASTM-462, 1970.

. **MPR MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By

[)c~rr

/of~Jz.-oJ r----.

Page ~I ATTACHMENT 1 TYPICAL ANSYS ANALYSIS INPUT FILE

( tJoM,~ J I//' c..o.. c.J., f,Jo"- hrMj ')

mMPR Calculation No.

/i>f-32.-<>J

/BATCH, LIST

/FILNAM,FL Prepared By

/""

MPR Associates, Inc.

320 King Street Alexandria, VA 22314

()Chec,..k~ By 17 ~f;t~

Page -zz.

/TITLE,ALCO 251 CYLINDER LINER

  • NOMINAL
  • 1/8 CRACK

/PREP7 DELY=*0.0046291 BLKIR=10.752/2 RELIEF=0.133 DEEP=0.050 PFIRE=O FLOFF=0.0001 ACRACK=1/8 G=386.4 PLEN=0.25 GSTIF=30E6 FBOLT=35000 IR=9/2 R1=C9+9/16)/2 R2=10/2 R3=10.254/2 R4=10/2 R5=10.2/2 R6=10.71/2 R7=10/2 R8=10.75/2 R9=11.865/2 R10=R9*1/4 R11=10.660/2 R12=10/2 R13=(9+19/32)/2 R14=R9*1/8 BLKOR=R9+0.25 BLKHT=0.75 RTAN=R8*DEEP+RELIEF RR1=1/2 RR2=5/8 RR3=5/8 RR4=1/2 RR5=5/8 C1=R3*9.8/2 LTOT=21+15/16 L1=1.732*CR2*R1)

L3=0.333 L5=5/16 L7=5/16 L6=C14+7/16)*(13+5/8)*L7 L4=(2*LS*L7*L6)/2 L2=LTOT*1.455*C14+7/16)*L1*L3*L4*LS L8=L4 I?

L9=0.333 L11=0.339 L10=C13+5/8)-L8*L9*(2+1/16)*3/8-1.S*L11 L 13=0.571 L12=1.S*L13 L14=3/8 L15=0.478 L17=0.573 L16=C2+1/16)-9/16-L17*L15 L18=9/16 L20=7/16 L21=1/8

-MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

/0!-32.-0J L22=1.455-L20-L21 H1=1.455*1.266 H2=0.01 H3=1/32 Prepared By

//"t.

LA=L4+LS+L6+L7+L8+L9 LB=L1+L2+L3+LA+L10+L11+L12+L13 LF=LB+L14+L15+L16+L17+L18 LP=LTOT-H1-PLEN ASEAL=2*3.14159*CR11+R12)/2*CR11-R12)

FUP=3.14159*IR*IR*PFIRE PBOLT=C7*FBOLT-FUP)/ASEAL K,101,IR,O K,102,R1,0 K,103,R2,L1 K, 104,IR1 L1 A,101,10~,103,104 K,105,R2,L1+L2 K,106,IR,L1+L2 A,103,104,106,105 K,107,R3,L1+L2+L3 K,108,IRiL1+L2+L3 A, 106,10,,101,1oa I AREA 1 I AREA 2 I AREA 3 RECTNG,IR,R3,L1+L2+L3,L1+L2+L3+LA I AREA 4

..----check~d1 By

!.* *~r

fl'.

r,,,.,,,_.,

RECTNG,R3-C1,R3,L1+L2+L3+L4,L1+L2+L3+L4+LS I AREA 5 ASBA,4,5 I

NUMCMP,AREA RECTNG,R3-C1,R3,L1+L2+L3+L4+L5+L6,L1+L2+L3+L4+LS+L6+L7 ASBA,4,5 I

NUMCMP,AREA

\\IPOFFS6 R4+RR1,L1+L2+L3+LA PCIRC1 iRR1 I AREA 5 ASBA,<t,,

I NUMCMP,AREA WPSTYL,DEFA I AREA 5 RECTNG,IR,R4,L1+L2+L3+LA,L1+L2+L3+LA+L10 I AREA 5 RECTNG,1R,R5,L1+L2+L3+LA+L10,L1+L2+L3+LA+L10+L11+L12 I AREA 6 WPOFFS6 R4+RR2,L1+L2+L3+LA+L10 PCIRC, LRR2 I AREA 7 ASBA,6,1 I

NUMCMP,AREA WPSTYL,DEFA RECTNG,1R,R6,LB*L13,LB+L14+L15 I AREA 7

\\IPOFFS6 R5+RR3,LB-L13 PCIRCL 1RR3 I AREA 8 ASBA,1,0 I

NUMCMP,AREA WPSTYL,DEFA

\\IPOFFS6 R7+RR4,LB+L14+L15 PCIRCL 1RR4 I AREA 8 ASBA, 1,0 I Page "2J

mMPR Calculation No.

/Of'-32..--o J NUMCMP,AREA

\\IPSTYL,DEFA Prepared By

~

RECTNG,IR,R7,LB+L14+L15,LB+L14+L15+L16 I AREA 8 RECTNG,IR,RTAN,LB+L14+L15+L16,LF-RELIEF I AREA 9 WPOFFS 6

R7+RR5,LB+L14+L15+L16 PCIRC,,RRS I AREA 10 ASBA,9,10 I

NUMCMP,AREA WPSTYL,DEFA RECTNG,R8,RTAN,LB+L14+L15+L16,LF-RELIEF/2 I AREA 10 ASBA,9,10 NUMCMP,AREA

\\IPOFFS RTAN,LF-RELIEF PCIRCL6,RELIEF I AREA 10 ASBA,Y,10 I

NUMCMP,AREA

\\IPSTYL,DEFA RECTNG,IR,RTAN,LF-RELIEF,LP I AREA 10 RECTNG6R8,RTAN,LB+L14+L15+L16,LF-RELIEF/2

! AREA 11 ASBA, 1, 11 NUMCMP,AREA

\\IPOFFS,RTAN,LF-RELIEF PCIRC,O,RELIEF I AREA 11 ASBA, 10, 11 NUMCMP,AREA

\\IPSTYL,DEFA RECTNG,IR,RTAN,LP,LTOT I AREA 11 RECTNG11RLR13,LTOT-H1-H2-H3,LTOT I AREA 12 ASBA,11,1" NUMCMP,AREA RECTNG,R13,R12,LTOT-H1-H2,LTOT I AREA 12 ASBA, 11, 12 NUMCMP,AREA RECTNG,R12,R11,LTOT-H1,LTOT I AREA 12 ASBA,11,12 NUMCMP,AREA NUMCMP,ALL RECTNG,RTAN,R9,LF,LTOT I AREA 12 IC,501,R9,LF+L20 IC,502,R9 LTOT IC,503,R16,LTOT IC,504,R14,LTOT-L22 A,501 1502£503,504 ASBA, 12, b NUMCMP,AREA NUMCMP,ALL NUMMRG,ALL NUMCMP,ALL ICSEL,S,LOC,X,R9 KSEL,R,LOC,Y,LF I AREA 13 I

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Page i.4

.mMPR Calculation No.

I Of-32.-0J Prepared By

~

KHlXl,ALL,R9,LF-FLOFF,0 KSEL,ALL AGLUE,1,2 AGLUE,2,3 AGLUE,3,4 AGLUE,4,5 AGLUE,5,6 AGLUE,6,7 AGLUE,7,8 AGLUE,8,9 AGLUE,9,10 AGLUE,10,11 AGLUE,10,12 AGLUE,11,13 NUMCMP,AREA RECTNG,BLKIR,BLKOR,LF-BLKHT,LF-FLOFF I AREA 13 K,601,BLKIR,LF-FLOFF K,602,BLKIR+0.125,LF-FLOFF K,603,BLKIRbLF-FLOFF-0.125 A,601i602,6 3 I AREA 14 ASBA, 3, 14 NUMCMP,AREA I

DC=0.004 CX=RTAN-RELIEF*0.7071 CY=Lf-RELIEF*(1-0.7071)

K,701,CX+oC,CY K,702,CX,CY-DC K,703,CX-ACRACK*0.7071,CY+ACRACK*0.7071 A,701,702,703 ASBA, 10, 14 NUMCMP,AREA KSCON,703,ACRACK/8,1 ET,1,PLANE2 ET,2,PLANE82 ET,3,PLANE42 ET,4,CONTAC48 KEYOPT,1,3,1 KEYOPT,2,3,1 KEYOPT,3,3,1 IDR=1/32 IKSEL,S,KP,,27

! KSEL,A,KP,,31 ILSLK ILSEL,S,LINE,,40,41 ILESIZE,ALL,DR ILSEL,ALL MP,EX,1,16E6 MP,NUXY,1,0.3 MP,DENS,1,0.284/G ALLSEL TYPE,2 MAT, 1 ESIZE, 1/16 AMESHL13 TYPE,c:

ESIZE,1/12 AMESH,9

_ MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Page 2 5-

. mMPR--

Calculation No.

1of-3i -oJ ESIZE, 1/12 AMESHL10,11 TYPE,"

ESIZE, 1/8 AMESHL1,8 TYPE,"

AMESH,12 ALLSEL TYPE,4 R,1,GSTIF REAL,1 LSEL,S,LINE,,56-NSLL,S, 1 CM,CONTACT1,NOOE NSEL,ALL LSEL,ALL LSEL,S,LINE,,68 NSLL,S,1 CM,TARGET1,NOOE NSEL,ALL Prepared By

,A<

LSEL,ALL GCGEN,CONTACT1,TARGET1,1 GCGEN,TARGET1,CONTACT1,1 LSEL,S,LINE,,42 NSLL,S, 1 CM,CONTACT2,NOOE NSEL,ALL LSEL,ALL LSEL, S, LI NE,,69 NSLL,S,1 CM,TARGET2,NOOE NSEL,ALL LSEL,ALL GCGEN,CONTACT2,TARGET2,1 GCGEN,TARGET2,CONTACT2,1 KSEL,S,LOC,Y,LF*BLKHT KSEL,R,LOC6 X,BLKIR,BLKOR DK,ALL,UY,,,1 KSEL,S,LOC,X,R3 KSEL,R,LOC,Y,L1+L2+L3+L4,L1+L2+L3+L4+LS+L6+L7 DK,ALL,UX,O,,

DK,ALL,UY,DELY,,

LSEL,S,LOC,Y,LTOT*H1*.001,LTOT*H1+.001 SFL,ALL,PRES,PBOLT LSEL,ALL LSEL,S,LOC,Y,LTOT*H1*H2*H3-.001,LTOT*H1-H2+.001 LSEL,R,LOC,X,IR*0.001,R12*0.001 SFL,ALL,PRES,PFIRE LSEL,ALL LSEL,S,LOC,X,IR*.001,IR+.001 LSEL,R,LOC,Y,LP,LTOT*H1-H2-H3 SFL,ALL,PRES,PFIRE LSEL,ALL ALLSEL SB CT RAN ANTYPE,STATIC a.JTPR,ALL,0 MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Page 2 6

. mMPR Calculation No.

(Of-3i.- 0 J OUTRES,ALL,0 OUTRES,NSOL,1 OUTRES,RSOL,1 OUTRES,STRS,1 WTRES,NLOAD,1 SAVE,NOM18,DB FINISH

/SOLUTION SOLVE SAVE,NOM18,DB FINISH

/POST1 CSYS,0 Prepared By

/-1..

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Page 2 7 RSYS,0

!LPATH1NODECRTAN*RELIEF*0.7071,LF*RELIEF*C1*0.7071),0),NODECIR,LP,0)

LOCAL111,o,o,o,o,135 RSYS,11 CSYS,11 SAVE,NOM18,DB FINISH

mMPR Calculation No.

/()~-32--0)

Prepared By r

ATI'ACHMENT 2 MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Page 2 b TYPICAL ANSYS STRESS INTENSI'IY FACTOR CALCULATION INPUT

mMPR MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No.

Prepared By fl ff~

t of-3i.-oJ A*

Page 29 LOCAL,11,0,0,0,0,135 RSYS, 1 CSYS,11 LPATH,34,49,50,47,46 KCALC,, 1,3