ML18065A847
| ML18065A847 | |
| Person / Time | |
|---|---|
| Site: | Palisades |
| Issue date: | 08/06/1996 |
| From: | Bordine T CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.) |
| To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
| References | |
| NUDOCS 9608130135 | |
| Download: ML18065A847 (110) | |
Text
consumers Power POWERIN&
MICHl&AN"S PRD&RESS
\\....)
Palisades Nuclear Plant: 27780 Blue Star Memorial Highway, Covert, Ml 49043 August 6, 1996 U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555 DOCKET 50-255 - LICENSE DPR PALISADES PLANT REQUEST FOR APPROVAL OF REVISION TO INCORE MONITORING CODE (PIDAL)
In accordance with the Palisades Technical Specifications and FSAR, in-core monitoring of neutron flux is currently performed using the PIDAL computer code. Use of the PIDAL code was approved by the NRC in Amendment 144 of the Technical Specifications dated April 3, 1992. In a conference telephone call on April 30, 1996 and a letter dated July 24, 1996, Consumers Power Company (CPCo) discussed its plans for a revision to the PIDAL code, and solicited staff input on the most efficient way to obtain NRC review and approval. It was suggested that a submittal be provided to describe the changes and the technical approach that was taken to validate the revised methodology, with limited technical detail. Based on that submittal, the staff would then determine whether a headquarters review or an on-site audit would be conducted, and would assess what additional technical detail, if any, would be needed
- to complete the review. This letter provides the recommended information.
The attached report entitled "The PIDAL-3 Full Core System" describes the code revision. It reviews the methodology used, describes the analyses which have been completed to benchmark the revised code, and provides a sample output computer report. The report also discusses changes in the NRC SER approving use of PIDAL which will be needed to permit use of the code revision.
A CMS' ENERGY COMPANY A-oo l.
The NRC is requested to review this report, conduct any additional audits or other activities deemed necessary, and provide approval to use.the revised PIDAL code.
Approval is requested prior to startup from the upcoming refueling outage, currently scheduled to end in mid-December, 1996. While approval prior to startup is not mandatory, it would provide more efficient use of plant resources by avoiding the need to run both old and new revisions of PIDAL during Cycle 13. It will also permit use of the revised methodology for other analyses scheduled to be performed early in 1997.
In addition, at the staff's earliest convenience, a meeting is requested for our technical staff to meet with NRC technical reviewers to discuss the report and establish a dialogue to facilitate the staff's future activities. This meeting will be coordinated through the Palisades Project Manager.
CPCo looks forward to working with the NRC to support staff review.
SUMMARY
OF COMMITMENTS This letter contains no new commitments and no revisions to existing commitments.
~~. /\\ l9\\.Q_ ~ ~
Thomas C. Berdine Manager, Licensing CC Administrator, Region Ill, USNRC Project Manager, NRR, USNRC NRC Resident Inspector - Palisades Attachment 2
\\~**,
- 1 l i ATTACHMENT CONSUMERS POWER COMPANY PALISADES PLANT DOCKET 50-255 REQUEST FOR APPROVAL OF REVISION TO INCORE MONITORING CODE (PIDAL)
THE PIDAL-3 FULL CORE SYSTEM
CONSUMERS POWER COMPANY Palisades Nuclear Plant THE PIDAL-3 FULL CORE SYSTEM August 1996.
by TC Altenau RD Radulovich RD Snuggerud MA Bates TA Meyers
TABLE OF CONTENTS' TABLE OF CONTENTS....................................................................................................................... ii
1.0 INTRODUCTION
............................................................................................................................. 1 1.1 PIDAL METHODOLOGY EVOLUTION........................................................................................... 2 1.2 PIDAL-3 CHANGES.......................................................................................................................... 2 2.0 SYSTEM DESCRIPTION................................................................................................................ 3 2.1 DATACOLLECTION........................................................................................................................ 3 2.2 PIDAL-3 CALCULATION TRAIN..................................................................................................... 4 2.2.l CASM0-3..................................................................................................................................... 4 2.2.2 SIMULATE-3.......................................................................................................................... :..... 4 3.0 PIDAL-3 METHODOLOGY............................................................................................................ 5 3.1 INPUT COLLECTION...........................................................,............................................................ 5 3.2 THEORETICAL CALCULATIONS................................. :................................................................. 5 3.3 DETECTOR POWER CALCULATIONS........................................................................................,.. 6 3.4 RADIAL POWER DISTRIBUTION CALCULATIONS...................................................................... 8 3.5 AXIAL POWER DISTRIBUTION CALCULATIONS...................................................................... 10 3.6 TECHNICAL SPECIFICATION SURVEILLANCE CALCULATIONS............................................ 12 3.7 PIDAL-3 OUTPUT........................................................................................................................... 14 4.0 PIDAL-3 VALIDATION................................................................................................................. 16 4.1 CALCULATIONS.................................................................................... :........................................ 16 4_.2 COMPARISONS............................................................................................................................... 16 4.3 UNCERTAINTY ANALYSIS........................................................................................................... 18 4.4 EFFECTS ON UNCERTAINTIES.................................................................................................... 18 4.4. l LOW LEAKAGE CORES............................................................................................................ 18 4.4. 2 POOLABILITY AND NORMALITY OF DATA............................................................................ 19 4.4.3 FAIUNG LARGE NUMBERS OF INCOJIB DETECTORS.......................................................... 19 4.4.4 RADIAL POWER TILTS............................................................................................................. 20 4.4.5 LARGE AXIAL OFFSETS........................................................................................................... 21
- 4.5 RESULTS......................................................................................................................................... 21
5.0 CONCLUSION
...................................... :................................... :..................................................... 22 6.0 FIGURES......................................................................................................................................... 23
7.0 REFERENCES
................................................................................................................................ 65 8.0 GLOSSARY............................................................... :.................................................................... 66 APPENDIX A: SAMPLE PIDAL-3 OUTPUT................................................................................... A.1 APPENDIX B: DESIRED SER CHANGES.................................... ;.................................................. B.1 ii
1.0 INTRODUCTION
The PIDAL-3 incore monitoring code is the third generation of the Palisades Incore Detector Algorithm capable of determining the reactor core power distribution, peaking factors, and local LHGR on a full core basis. PIDAL-3 is the result of the first major revision to the PIDAL methodology since its SER was issued by the US NRC on April 3, 1992 [ 1]. Modifications encompass the replacement of Siemens Power Corporation's methods (PDQIXTG) for determination of theoretical assembly powers, detector conversion constants, and local peaking factors with SIMULATE-3, an advanced three-dimensional two-group reactor analysis code.
The current Technical Specification limits were developed using PIDAL comparisons from cycles 5, 6, and 7. These were all eighth core symmetric high leakage core designs that shared identical fuel batch sizes and enrichments, and similar cycle lengths. The PIDAL-3 analysis is based on cycles 9, *10, and 11 with low leakage core designs that transition from 299 to 431 effective full power days. In addition, cycles 10 and 11 are quarter core rotationally symmetric.
The movement to low leakage core designs has made it increasingly difficult for Palisades to adequately predict core power distributions with the PDQ/XTG methodology.
Furthermore, current PDQ/XTG quarter core modeling limits our ability to accurately deal with asymmetric power anomalies such as misaligned control rods. Expansion of the PIDAL methodology to include full core SIMULA TE-3 both improves modeling accuracy and provides a tool for monitoring large quadrant power tilts.
Incorporation of SIMULATE-3 methods would significantly reduce measurement uncertainties. However, Consumers Power Company has chosen to simply show that the PIDAL-3 uncertainties are bounded by those currently stated in the Palisades Technical Specifications. This is a conservative approach, but there are still significant core design and operating flexibility gains introduced by the improved accuracy of the SIMULATE-3 methodology over PDQ/XTG.
Therefore, no changes to the Palisades Technical Specifications are required at this time.
The following is a brief summary of the Palisades incore monitoring system and the PIDAL-3
. methodology. Changes from previous PIDAL versions are highlighted in the discussion. Comparisons between PIDAL-3 and the currently licensed PIDAL methodology ar.e made for key parameters such as Assembly Radial Power RMS Deviations, Assembly Radial Peaking Factors (FR A), Total Radial Peaking Factors (FR r), and Total Peaking Factors (FQ). Finally, an analysis of Palisades cycles 9 through 11 shows
. that PIDAL-3 measurement uncertainties are bounded by the current Technical Specification limits.
1.1 PIDAL METHODOLOGY EVOLUTION The full core PIDAL code was first developed by Consumers Power in the early 1990's [l] to replace the eighth core INCA [2] code. There were two driving forces behind the change from INCA to PIDAL.
First, there was a need for quarter core geometry capabilities in order to design cores which met goals established for vessel fluence reduction and increased cycle length. The movement to low leakage core designs in response to reactor vessel fluence caused radial peaking to increase and reduced the margin to the INCA based Technical Specification limits. Margin gained by switching to PIDAL translated directly into greater flexibility in core design and operation. Secondly, it :was expected that the PIDAL system would eventually allow for full detection and measurement capabilities in the event of an asymmetric power anomaly; i.e. misaligned control rods. Unfortunately, this functionality was limited by both quarter core XTG models and SPC supplied quarter core PDQ W-prime and local peaking factor libraries.
In 1995 a new Palisades Plant Computer (PPC) was installed at Palisades. Modifications were made to the PIDAL code to allow it to run on the DEC VAX 4000 workstations, VMS platform. Concurrently, the XTG axial resolution was increased from 12 to 25 axial nodes over the active fuel height to accommodate axial blankets. Reference 8 includes all the changes made to the program and the corresponding 50.59 Safety Review. No overall methodology changes were made. The PIDAL source code was updated and renamed to level 2 (PIDAL-2).
With the introduction of low leakage cores at Palisades, the limits of the coarse mesh nodal code, XTG, have been approached.
- As a result of these modeling difficulties with XTG, Consumers Power evaluated SIMULATE-3 and a subsequent effort to incorporate SIMULATE-3 as the theoretical model in PIDAL was irutiated [11]. Upon completion, the new core monitoring code incorporating SIMULATE-3 has been renamed PIDAL-3 and is the topic of this document.
1.2 PIDAL-3 CHANGES The changes required to the PIDAL system to incorporate the SIMULA TE-3 nodal code can be grouped into four general categories:
- 1)
Integration of SIMULA TE-3 nodal powers.
- 2)
Integration of SIMULA TE-3 reaction rates.
- 3)
Integrati_on of SIMULATE-3 pin powers.
- 4)
Expansion of PIDAL to full core theoretical coupling calculations.
XTG was completely removed from the PIDAL-3 code. PIDAL-3 now uses nodal powers calculated by SIMULATE-3. PDQ based exposure dependent W-primes provided by SPC were used to calculate power from the measured detector fluxes. In the PIDAL-3 calculation train, full core non-depleting rhodium reaction rates are provided by SIMULATE-3 prior to every PIDAL-3 run. Depletion effects are accounted for by a multiplication factor from a polynomial fit describing an exposure dependent self-shielding factor
[12]. Likewise, previous versions of PIDAL utilized PDQ based local peaking factors (LPF) or pin-to-box (PTB) factors provided by SPC. PIDAL-3 utilizes SIMULA TE-3 full core LPFs calculated prior to every PIDAL-3 run.
Finally, the PIDAL-3 radial coupling is exclusively full core as opposed to the XTG quarter core coupling expanded to full core in PIDAL-2. The SIMULATE-3 full core nodal powers, rhodium reaction rates, and LPFs allow the PIDAL-3 system to effectively measure large quadrant power tilts.
2
2.0 SYSTEM DESCRIPTION The Palisades reactor is a first generation ABB Combustion Engineering (ABBCE) two loop PWR. The core contains 204 fuel bundles and 45 cruciform control blades. The reactor is currently rated at 2530 MWth and the power distribution within the core is measured via self-powered rhodium detectors. There are 45 possible instrumented fuel assemblies. Two of these locations are utilized for reactor coolant level monitoring. Each of the 43 remaining locations contain five rhodium detectors equally spaced at 10, 30, 50, 70 and 90 percent of the active fuel height. Figure 6.1 shows a layout of the Palisades reactor including control blade and incore detector locations.
The incore detectors are manufactured by Reuter-Stokes Incorporated under sub-contract with ABBCE.
The principle of operation involves the conversion of the incident neutron radiation on the emitter material (rhodium) to energetic electrons which migrate through the solid insulation to the collector. The deficiency of electrons in the emitter results in a positive charge on the center conductor of the attached coaxial cable. The rate of charge production produces a low level current which is directly proportional to the rate of absorption at the emitter. This current is monitored by the PPC which performs sensitivity and background corrections while converting the input current to flux. A software interface between the PPC and PIDAL-3 generates the SIMULA TE-3 and PIDAL-3 input files, and initiates the SIMULA TE-3 and PIDAL-3 calculations.
2.1 DATA COLLECTION The PPC is responsible for conversion of the rhodium detector current (amps) to flux (nv).
The conversion uses the K. sensitivity factors provided for each detector by ABBCE. The PPC keeps track of the rhodium depletion and adjusts the K. values accordingly.
As is standard for ABBCE type incore monitoring systems, a linear rhodium detector depletion law is used by the PPC:
K,,(t) = K,,(O) x (I-~:;)
where:
K.;(t)
K.;(O)
~Q; Q"'
- Sensitivity of detector i at time t (amp/nv)
- Initial sensitivity of detector i (amp/nv)
- Acclllilulated charge of detector i at time t (coulombs)
- Total possible accumulated charge of detector i at end oflife (coulombs)
Equation (2.1) is implemented by the PPC as:
where:
1 r=-
Q"'
- Detector Burnup Constant
- Average daily background-corrected detector current for fixed detector i.
(2.1)
(2.2)
Rhodium detector currents (amps) are divided by the K. factor (amp/nv) yielding the detector flux (nv).
These values along with core calorimetric power, control rod positions, and other various plant parameters describing the state of the PCS, are organized into input files for SIMULATE-3 and PIDAL-3 calculations.
3
2.2 PIDAL-3 CALCULATION TRAIN The Stuclsvik Core Management System consists of two principal codes: CASM0-3 and SIMULATE-3.
Three other Stuclsvik codes provide CASM0-3 and SIMULA TE-3 with essential data:
l) INTERPIN-CS supplies fuel temperature data to CASM0-3 and SIMULATE-3.
- 2) MICBURN-3 supplies gadolinia fuel pin data to CASM0-3.
- 3) TABLES-3 processes CASM0-3 cross section data into a library for use in SIMULATE-3.
A SIMULATE-3 calculation is performed for every PIDAL-3 case.
SIMULATE-3 assembly powers, rhodium reaction rates, and LPFs are used by PIDAL-3. Figure 6.2 shows how these codes interact with PIDAL-3 forming the Palisades Core Management System (CMS).
The following sections briefly
. describe the CASM0-3 and SIMULATE-3 methodology, and a detailed discussion of the PIDAL-3 methodology is given in Section 3. 0.
2.2.1 CASM0-3 CASM0-3 is a multigroup two-dimensional transport theory assembly spectrum/depletion code which in various versions has been used by numerous utilities [3]. The code handles a geometry consisting of cylindrical fuel rods of varying composition in a square pitch array with allowance for fuel rods loaded with gadolinia (Gd20 3), via MICBURN-3, burnable absorber rods (B4C), boron steel curtains, instrument tubes, water gaps, cluster con~ol rods, and cruciform control blades. CPCo uses CASM0-3 to generate cross section libraries for XTG and SIMULATE-3. SPC uses CASM0-2E to generate PDQ W-primes and LPFs.
2.2.2 SIMULA TE-3 SIMULATE-3 is an advanced three-dimensional two-group nodal code for the analysis of both PWRs and BWRs which in various versions has also been used by numerous utilities [4]. The neutronics model, QPANDA, employs a fourth-order polynomial representation of the intranodal flux distribution for both the fast and thermal groups [5].. The diffusion equation solution can-be obtained in ~ither two or three dimensions.
SIMULATE-3 requires no adjustable parameters such as albedos or thermal leakage corrections. All cross section information including discontinuity factors and pinwise assembly lattice data are provided by CASM0-3 assembly calculations via the TABLES-3 binary library. SIMULATE-3 performs macroscopic depletion with microscopic depletion of particular fission products while modeling power operation coupled with thermal-hydraulic and Doppler feedback.
The reconstruction of pin-by-pin power distributions is also included.
4
3.0 PIDAL-3 METHODOLOGY The following sections summarize the PIDAL-3 methodology. Many aspects of the methodology have not changed in the transition from PIDAL-2 to PIDAL-3. The intent is to provide a complete overview of the PIDAL-3 functionality as well as indicating the changes implemented with the PIDAL-3 version.
3.1 INPUT COLLECTION PIDAL-3 receives its input data from four different files:
l)
The Binary Input file, generated by the PPC, supplies the primary input data.
The data is supplied on-line directly via the PPC, or off-line via the FETCH-3 program. This1file contains reactor power, pressure, flow, inlet temperature, and boron concentration. The NI excore powers fractions, CET temperatures, control rod positions, detector fluxes, sensitivities, and fractions of remaining rhodium are also included.
. 2)
The ASCII TSSOR file supplies Technical Specification peaking limits information, number of fuel batches and sub-batches, and Startup & Operations Report data.
- 3)
The Binary Restart file supplies cycle specific batchwise data and core loading in the first record, and fuel and control rod exposures in each subsequent record. One record is added after each burnup case.
- 4)
The ASCII Summary file, generated by SIMULA TE-3, supplies all of the full core assembly powers, local peaking factors (pin-to-box), and rhodium reaction rate data. Axially collapsed peak pin and assembly exposures edits as well as linear heat generation rate edits are included for on-line comparisons by PIDAL-3. One file is created for each PIDAL-3 case.
3.2 THEORETICAL CALCULATIONS PIDAL-3 performs a least squares axial curve fit of the SIMULATE-3 nodal powers (204x25) by solving for the boundary conditions with the lowest square sum error, PIDAL-3 then integrates over the 5 detector levels (204x5) to obtain the theoretical detector powers. These theoretical detector powers are used in the W-prime and coupling coefficient calculations (Sections 3.3 and 3.4), and the boundary conditions are used in the axial curve fit of the measured/inferred detector powers (Section 3.5).
The boundary conditions represent the top and bottom axial points where the flux goes to zero. We start at the end of the active fuel height, and iterate on increasing boundary conditions until we find the lowest square sum error.
This routine is the same for all versions of PIDAL, including PIDAL-3. The only difference is PIDAL-3 uses SIMULATE-3 nodal powers instead ofXTG.
5
3.3 DETECTOR POWER CALCULATIONS The rhodium incore detectors deplete approximately l % per full power month, so corrections are necessary to the detector signal to account for the effects of rhodium depletion. These corrections result from the change in detector self-shielding due to rhodium burnup, and the change in rhodium concentration itself.
The sensitivity correction, described in Section 2.1, accounts for the change in rhodium concentration, but not for self-shielding. Since the detector signal is proportional to the rhodium reaction rate, given a constant flux, the rhodium reaction rate will decrease as the rhodium depletes but not at the same rate due to self-shielding [12].
Corr~ction of the detector signal for depletion of rhodium is accounted for by a multiplication factor, N(t)/N0. N(t) is the rhodium concentration at time t divided by No, the initial (undepleted) rhodium concentration. From equation 2.1, we find the Ks(t)/ Ks(O) ratio is equivalent to N(t)/N0. Therefore, the change in sensitivity corrects for the change in rhodium concentration and the Ks(t)/Ks(O) ratio is equivalent to the fraction of remaining rhodium.
Since the SIMULATE-3 model does notaccount for rhodium depletion, we apply an external correction to the SIMULA TE-3 rhodium reaction rates for self-shielding.
This is slightly more complicated and requires an understanding of the physical phenomena known as self-shielding.
Self-Shielding occurs when a neutron absorbing material of finite thickness is bombarded by neutrons.
Initially, if the neutron flux is approximately thermalized when it reaches the surface of the absorbing material, more neutrons will be absorbed at the surface of the material as compared to the center. For the rhodium detectors this means that more activation occurs on the surface compared to the center.
However, as the surface of the rhodium detector is depleted* the neutrons will begin to "see" more of the interior atoms. The effective diameter of the emitter material is thus decreasing and self-shielding is also.
The overall result is an increase in the effective absorption cross-section of rhodium.
This can be described by the following equation:.
ff a a ;:plaud tP d&fV SSF= -VE ff a a =~-depleted <P d&lV (3.1)
VE The numerator describes the rhodium reaction rate using depleting rhodium detector cross-sections, and the denominator uses non-depleting rhodium detector cross-sections. A function of self-shielding vs.
fraction of remaining rhodium will emerge as the depleted to non-depleted reaction rates are plotted over burnup.
CASM0-3 was used to generate the function of self-shielding factors vs. fraction of remaining rhodium by depleting several fuel types to 100 mwd/kgu to obtain 95% percent rhodium depletion. A 5th order polynomial curve fit of the self-shielding factors vs. fraction of remaining rhodium generated the needed coefficients to calculate the W-primes [12].
These coefficients verify Southern California Edison's assumption tha~ the self-shielding factors are independent of fuel type [6].
To summarize, the detector signals (amps) are corrected for rhodium depletion by the depleting sensitivity values (amps/nv) and converted to flux (nv). The non-depleting SIMULATE-3 rhodium reaction rates are corrected for self-shielding by a self-shielding factor, and the depleting detector signal (nv) is converted to power (MWth) via the W-primes.
The following equations demonstrate how the background and sensitivity corrected signal is converted to power [9].
6
The average power over a detector is calculated using the following equation:
AVGPOW = (CALPOW) x (HAD)
RNAS HAX where:
AVGPOW CALPOW RNAS HAD HAX
- Average power over a detector (MWth)
- Reactor core calorimetric power (MWth)
- Number of assemblies in core
- Detector height
- Active fuel height The self-shielding factors are calculated using the following equation:
[
SCOEF(I) + SCOEF(2) x DFRHO(i,j) +
J DSSF(i,j) = SCOEF(3) x DFRHO(i,}) 2 +SCOEF(4fx DFRHO(i,)) 3 +
SCOEF(S) x DFRHO(i,})
4 +SCOEF(6) x DFRHO(i,)) 5 xSMULT where:
DSSF(ij)
DFRHO(ij)
SCOEF(6)
SMULT
- Self shielding factor for string i level j
~ Remaining fraction of rhodium for string i level j
- 6 curve fit coefficients
- SSF multiplication factor for specific CASM0-3 detector model {1.0)
The W-primes are calculated using the following equation:
WPRJME,(i ") = S3DPF(DETLOC(i),j) x AVGPOW. x CALIB *
,J (S3RR2(DETLOC(i),j) xDSSF(i,J)).
where:*
. WPRIME(ij)
S3DPF(D(i)j)
S3RR2(D(i)j)
CALIB
- Detector signal to power conversion factor for string i level j
- SIMULA TE-3 detector power fraction for string i level j
- SIMULA TE-3 detector rhodium reaction for string i level j
- Detector power to calorimetric power norrilalization constant The PIDAL-3 detector powers are calculated using the following equation:
DPOWER(i,j) = WPRJME,(i,j) x DFLUX(i,j) where:
DPOWER(ij)
DFLUX(ij)
- Detector power for string i level j (MWth)
- Detector signal for string i level j (nv)
(3.2)
(3.3)
(3.4)
(3.5) 7
3.4 RADIAL POWER DISTRIBUTION CALCULATIONS The original PIDAL methodology was based on the ABBCE method CECOR [7]. Over the course of development, several enhancements were made to this methodology, and in general, PIDAL departs from CECOR in the way the inter-assembly coupling is generated.
The underlying assumption in the CECOR method is that the power in any assembly K can be given by the equation:
"J2P(m,J)
P(K *) __
m __
,J - CC(K,J) where:
P(Kj)
P(mj)
CC{Kj)
- Power in assembly K, axial level j
- Power in assembly m, axial level j. Assembly m is adjacent to assembly K.
- Assembly average coupling coefficient for assembly K, axial level j.
Using algebra, CC(Kj) is defined as:
"J2P(m,J)
CC(K,J) = m (
")
PK,J (3.6)
(3.7)
In the Palisades core, there are 204 assemblies (K = 204) and thus the dimension of CC is also 204.
Obviously, P(Kj) is only known for assemblies which contain an operable incore detector. Therefore, a synthesis method is used to determine powers for each of the uninstrumented locations.
It is necessary for the CC(Kj)s to be defined or known. for all core logitj~ms. The CECOR method precalculates the CC(Kj)s from planar depletion studies and fits these values based.on burnup. This would be similar to calculating the CC(Kj)s based solely on the SIMULATE-3 predicted solution.
The problem with this method is that the CC(Kj)s are based solely on prediction and the final full core solution is greatly biased by the predicted solution. Therefore, it was determined that the preferred method would be to somehow infer the CC(Kj)s based on measurement as well.
Once the CC(Kj)s are known, the problem consists of determining the P(Kj)s for uninstrumented assemblies. Equation 3.6 can be rewritten as:
P(K,J) x CC(K,J) = "J2P(m,J)
(3.8) m If equation 3. 8 is written for each uninstrumented assembly K level j, then a set of equations on the order of 204 x 204 results for each detector level. If the unknown P(mj)s are subtracted over to the left. hand side of each equation and the known P(mj)s remain on the right, then a very sparse banded matrix appears on the left, and a known vector appears on the right. Remember (or assume) that the CC(Kj)s are known.
8
Knowing that core locations 4, 9, and 13 are instrumented with detector strings l, 2, and 3 (Figure 6.1),
the first 5 equations are written for each detector level j in expanded matrix-vector notation as:
P1CC1
-P2 0
0 0
0 0
0 0
0 0
0
-Pi P2CC2
-P3 0
0 0
0 0
0
-Pio 0
0 0
-P2 P3CC3 0
0 0
0 0
0 0
-P11 0
0 0
-P3 P4CC4
-Ps 0
0 0
0 0
0
-P12 0
0 0
0 PsCCs
-P6 0
0 0
0 0
0 The corresponding matrix equation for the above set of equations is written as:
A.xP=S where:
A p s
- Coefficient matrix consisting of the CC(Kj)s and -1 multipliers to the P(mj)s
- Unknown P(Kj)s and P(mj)s on the left hand side
- Known P(mj)s in a column of sums on the right hand side
= P9
=O
=P4
=O
= P4+P13 (3.9)
What must be found is the vector J5 solution. As alluded to by ABBCE [7], the matrix A is a very sparse banded matrix. Therefore, an efficient way of solving the above set of simultaneous equations should be employed.
ABBCE uses the conjugate gradient method.
PIDAL employs a trustworthy Gaussian elimination routine for sparse matrices. The routine was part of the YALE Sparse Matrix Package available in the public domain [9].
After the vector P has been determined, it is recombined with the known values of P(Kj) and the full core radial power solution for each detector level is obtained.
First, PIDAL-3 calculates the full core assembly average coupling coefficients based solely on the 204 SIMULATE-3 detector powers. Then the SIMULATE-3 coupling coefficients are integrated with the PIDAL-3 measured (known) detector powers to calculate the full ~re measured/inferred detector powers.
The full core measured/inferred detector powers are then used to recalcUlate the full core assembly *average coupling coefficients, which are used to recalculate the final full core measured/inferred detector powers.
I
.As far as coupling is concerned, the PIDAL-3 methodology differs from the PIDAL-2 methodology only in that SIMULA TE-3 detector powers are used to determine coupling coefficients for the full core as opposed to XTG powers used to determine coupling coefficients for the quarter core.
9
3.5 AXIAL POWER DISTRIBUTION CALCULATIONS Up to this point, the core power distribution is given by a radial power distribution at each of five detector levels. Now, by curve fitting, a continuous function for axial power shape within each assembly is defined. This continuous function can then be used to infer the axial power distribution in the regions not covered by detectors. The general idea is to apply a five mode Fourier fit to the axial data for each assembly, resulting in a continuous function describing the axial distribution.
In order to do this, three assumptions are made:
- 1)
It is assumed that the axial power distribution shape is adequately approximated by the Fourier sine function. Thus the function may be used for interpolating or extrapolating to compensate for the gross measurements.
- 2)
It is assumed that the power goes to zero near the top and bottom of the active fuel height. This assumption allows the addition of points (boundary conditions) near the top and bottom to the five known points, effectively improving the curve fit.
- 3)
It is assumed that the. PIDAL-3 measured/inferred boundary conditions are adequately approximated by the SIMULATE-3 theoretical boundary conditions.
From the continuous function, a power distribution is generated for each assembly consisting of 51 axial nodes. This distribution is then collapsed to 25 axial nodes and even further to a two-dimensional radial and a one-dimensional axial power distribution.
The underlying assumption is that the axial power distribution within an assembly can be given by the sum of the first few Fourier modes. Written in equation form:
N P(z) =Lan sin(mrBz)
(3.10) where:
P(z)
N z
8 h
H n=I
- Point power as a function of core fractional core height
- Number of Fourier modes (5 in our case)
- Unknown coefficients (5 in our case)
-Axial boundary condition, the real core height as a fraction of the apparent core height, W(H+ 28)
- Fractional core height, h/H (between 0 and 1)
-Extrapolation distance, the extra distance past the core edge where the flux apparently goes to zero, (H/2)(1/B - 1)
- Axial position within core in inches
- Core height (131.8 inches)
Equation 3.10 assumes that the flux goes to zero at the edge of the active fuel region and therefore does not precisely describe the axial power distribution used by PIDAL. In reality, the flux actually extends beyond the active fuel region, therefore, we shall redefine P(z) to accommodate the actual point where the flux goes to zero:
(3.11) 10
Integrating equation 3.11 yields 5
(
) Zi,"'
-a n~
POWER(i) = L _n cos mrB( z - 0.5) + -
n=l n7Cl3 2
Zi bot (3.12)
The unknowns in equation 3.11 and 3.12 are the five a., coefficients. The axial boundary conditions (B) are determined from the SIMULATE-3 theoretical solution by solving equation 3.12 in reverse. The a.,
coefficients are determined using the integrated detector powers.
If equation 3.12 is written in expanded form for each of the five known axial powers in an assembly, then a system of five equations and five unknowns emerge. The system of equations can then be solved simultaneously for the a., coefficients. The resulting a., coefficients are used in equation 3.11 to describe the axial power profile of the assembly.
To summarize:
l)
A loop is performed over each assembly in the core. Within the loop, equation 3.12 is expanded to five terms for each of the five axial powers known for that assembly, resulting in a system of five equations and five unknowns. The system is solved simultaneously and the coefficients, an.
are determined.
- 2)
After the coefficients for all 204 assemblies are known, a second loop over the assemblies is performed. In this loop, the coefficients in Equation 3.11 are used to determine point powers at
- 51 equally spaced axial positions in each assembly. When this loop is complete, the full core three-dimensional power distribution consisting of 204 x 51 axial nodes is known.
PIDAL-3 axial power distribution methodology differs from previous PIDAL versions only in that SIMULA TE-3 theoretical nodal powers are used to determine the axial boundary conditions and inferred detector powers instead of XTG.
11
3.6 TECHNICAL SPECIFICATION SURVEILLANCE CALCULATIONS Based on the data input to PIDAL-3 and the resultant measured core power distributions, the following Palisades Technical Specification (TS) surveillances are performed:
TS 3.1. l.g TS 3.11.1.a TS 3.11.1.b TS 3.11.2.a TS 3.11.2.a-c TS 3.11.2.b TS 3.11.2.c TS 3.23.1 TS 3.23.2 TS 3.23.3 Monitoring axial power shape within limits Incore detector operability Calculation of incore alarms for the incore monitoring system Calculation of target axial offset (AO) and allowable power level (APL)
Excore system calibration for LHGR monitoring Excore system calibration for ASI monitoring Excore system calibration for quadrant power tilt (T Q) monitoring Monitoring LHGR within limits Monitoring radial peaking factors within limits Monitoring T Q within limits The TS limits established for the core average axial power shape (AO or ASI) are designed to ensure that the assumed axial power profiles used in the development of the primary coolant inlet temperature LCO bound* all measured axial power profiles.
The excore detectors monitor ASI continuously and are calibrated to the PIDAL-3 measured core average AO.
The uncertainty analysis for Palisades requires that 75% of the incores are operable for PIDAL-3 to be valid for TS surveillance or incore alarm limit setpoints. In order to protect the core from abnormally high local power densities, the PPC continuously compares the incoming incore detector signals to the alarm setpoints. The alarm setpoint for each detector is simply an alarm factor added to the detector signal. The alarm factor is the minimum margin to the LHGR TS limit measured within the detector level.
Calculation of the target AO and APL, along with the verification that the excore monitoring system is calibrated for monitoring LHGR, ASI, and T Q is performed as part of a single surveillance. The excore ASl monitoring function is calibrated based on the PIDAL-3 target-AO. The excore T Q monitoring function is also calibrated based on the PIDAL-3 target TQ. The PIDAL-3 APL is based on the limiting LHGR and ensures that the LHGR limits are bounding for a given band of AO.
Verification that the excore monitoring system is calibrated consists of comparing PIDAL-3 T Q and AO with corresponding excore TQ and ASI values. If any of the 4 excore channels diverge from PIDAL-3 by more than the allowable margin, the excore channel is declared inoperable and recalibrated.
LHGR limits exist to ensure the peak cladding temperature will not exceed 2200 °F in the event of a LOCA. LHGR is monitored continuously by the incore monitoring system alarm setpoints or by.the excore monitoring system TQ and ASI alarms if the PPC fails. PIDAL-3 must calculate the LHGRs in order to generate alarm setpoints or calibrate excore channels. PIDAL-3 calculates the local peak pin powers by applying SIMULA TE-3 LPFs to the assembly nodal powers. The local peak pin powers are converted to local LHGRs and compared to TS limits.
PIDAL-3 performs a verification of two different radial peaking factors:
FRA -Assembly Radial Peaking Factor Maximum ratio of individual fuel assembly power to core* average assembly power integrated over the total core height, including tilt.
12
FR T - Total Radial Peaking Factor Maximum ratio of the individual fuel pin power to the core average pin power integrated over the total core height, including tilt.
The assembly radial peaking factor is determined from the axially collapsed nodal power distribution.
The total radial peaking factor is determined from the axially collapsed. nodal power distribution multiplied by the LPFs and a ratio of average fuel pins/assembly to the number of fuel pins in each assembly as follows:
FRT = RPD x LPF FRT = FRA x Avg Number of pins in assembly x LPF Number of pins in assembly FRT = Assembly Power x Avg Number of pins in assembly x LPF Avg Assembly Power Number of pins in assembly FRT = Avg Pin Power in assembly x Peak Pin Power Avg Pin Power in core Avg Pin Power in assembly Peak Pin Power FRT = --------
Avg Pin Power in core The relationship of RPO to RPF is as follows:
RPD = RPF x Avg Number of pins in assembly Number of pins in assembly RPD = Assembly Power x Avg Number of pins in assembly Avg Assembly Power Number of pins in assembly RPD = Avg Pin Power in assembly Avg Pin Power in core (3.13)
(3.14)
PIDAL-3 incorporates an innovative method of calculating TQ from the incore detectors. A system of equations is used which defines all the possible combinations of tilt between two-way symmetric detectors for each level. PIDAL-3 also has the ability of calculating integral T Q based on quadrant assembly powers if there are not enough symmetric operable incore combinations. The T Q calculation based on two-way symmetric combinations is preferable since the quadrant assembly powers are a combination of measured and inferred powers and are, therefore, influenced by SIMULATE-3.
13
3.7 PIDAL-3 OUTPUT PIDAL-3 calculates the accumulated assembly exposure distribution based on the total thermal power output over a given time period (MWhrs) and a nodal power distribution representative of the time period.
PIDAL-3 also calculates the accumulated control rod exposures.
PIDAL-3 produces a variety of default summary edits:
Edit P3X ZICI P3XFMAP P3XDMAP S3X 2DPF S3X2TBC P3X QICI P3X 2DPF P3X2RPF P3X3DDV P3XFCAL P3X3CPF P3X 3TPF S3X 3TPF P3X3QPT P3XZRPF P3XTSPF P3XBFRA P3XBFRT P3XBKWF P3XFALM Subroutine PAGONE GETRES DETAXL CORMAP EXTRAP DETSIG SOLVES RADIAL IDS TOG ED SOME ED SOME GETTPF GETTPF TILT TL TERR INTTLT EDTILT ED SOME ED PEAK ED PEAK EDLHGR CLIMIT Description Summary ofFile Trail Data (FTD) and Plant Input Parameters Ewasure Step Mating Identification Axial Locations of each ICI within each String Full Core Assembly Ids and Pins/ Assembly Full Core Assembly Ids and ICI Locations SIMULATE-3 2D Detector Power Fractions by ICI level SIMULATE-3 2D Theoretical Boundary Conditions ICI Signals (nv) and Powers (MWth) by 1/4 Core Symmetry 20 Measured/Inferred (Mii) Detector Power Fractions for each ICI level and failed ICis by PDEV Axially Collapsed Assembly Relative Power Fractions Distribution of Deviations between Measured and Predicted ICI Powers Total ICI Core Power to Calorimetric Power Ratio Core Peaking Factor - Peak Point, P3HRP(204x5l)max divided by the-Average Measured Assembly Power FQ (Total) Peaking Factor with Assembly and Axial Location
- SIMULA TE-3 FQ (Total) Peaking Factor with. Assembly and Axial Location
- ICI Quadrant Power Tilt based on 2-way Symmetric ICis by level Possible Symmetric Sets of Operable ICis for 6 Quadrant combinations ICI Quadrant Power Tilt based on Integral Quadrant Powers Incore and Excore Quadrant Power Tilts and Comparisons Radially Collapsed Assembly Relative Power Fractions TS Peaking Factor Verification Sub-batch FRA (Assembly) Peaking Factors with TS Uncertainties Sub-batch FR T (Pin) Peaking Factors with TS Uncertainties Sub-batch LHR (kw/ft) with TS Uncertainties ICI Alarm Factors for most limiting LHR by ICI level 14
Edit Subroutine Description P3X 3APL GET APL Allowable Power Level for Monitoring LHR using oµly Excores P3X 2PIN EDKWFf FRT (Pin) Peaking Factors by Assembly P3XPKWF Peak Nodal LHR by Assembly (kw/ft)
P3XZKWF Peak Nodal LHR Corresponding Axial Locations P3X2EXP EXPOZF Axial Collapsed Assembly Exposures (GWD/MTU)
P3XCEXP Axial Collapsed Assembly Cycle Exposures (GWD/MTU)
P3XBRPF POWMAX Sub-batch Average and Maxim~ Relative Power Fractions P3XBEXP BRNMAX Sub-batch Average and Maximum Exposures (GWDIMTU)
P3XFCRD EXPO ZR Control Rod Locations, Positions, and Exposures (GWDIMTU)
P3X 3ICI CAL ARM ICI Alarm Limits, Currents, and Sensitivities by each ICI P3XFSUM CORDAT Summary of Core Information and Axial Offsets P3XFASI EXMON Excore Monitoring System Operator Information P3X TS06 CDWT06 DWT -06 TS Surveillance Calculation Summary P3X TS12 CDWT12 DWT-12 TS Surveillance Calculation Summary An example PIDAL-3 output is provided as Appendix A.
15
4.0 PIDAL-3 VALIDATION The PIDAL-3 calculation results are compared to PIDAL-2 results for cycles 9 through 11.
Key parameters such as Assembly Radial Power RMS Deviations, FRA, FRr, and FQ are considered.
- An analysis of the uncertainty in the PIDAL-3 peaking factor calculations is also performed for these reference cycles. The derived uncertainties are compared to those currently approved in the Palisades Technical Specifications. Core loading maps for cycles 9 through 11 are provided in Figures 6.3 to 6.5.
Details of the calculations are documented in Reference 11.
4.1 CALCULATIONS.
Eighty-two cycle 9 exposure cases, 76 cycle 10 exposure cases, and_ l 00 cycle 11 exposure cases were run to generate the PIDAL-3 Restart files. Twelve Uncertainty Analysis cases were then run for cycle 9, twelve for cycle 10, and fourteen for cycle 11. The UNSAT-3 code was used to run the cases; all covering steady-state HFP operation from BOC to EOC. Five uncertainty analysis cases covering 25%. detector failures were also run for each cycle. Finally, two uncertainty analysis cases were run covering an EOC 11 xenon transient and MOC 11 dropped control rod radial power tilts.
4.2 COMPARISONS The cycle 9, 10, and 11 Exposure and Power case comparisons between PIDAL-3 and PIDAL-2 illustrate SIMULATE-J's superiority over PDQ/XTG. The following 3 sets of comparisons were made:
l) PIDAL-2 vs. PIDAL-3 Figures for Cycles 9 to 11:
Figures 6.6a-c:
Cycles 9-11 Assembly RMS Deviations The Assembly Radial Power RMS deviations are considerably lower with PIDAL-3/SIMULA TE-3 over the 3 cycles with a flatter BOC to EOC distribution.
- 2) PIDAL-~vs. PIDAL-3 vs. SIMULATE-3 Figures for Cycles 9.to 11:
Figures 6.7a-d:
Cycles 9-11 Assembly Axial Offset
- The AOs show similar results between PIDAL-3 and PID.AL-2 as expected. SIMULATE-3 is using time step averaging over these cycles and tends to smooth out the transients. For the xenon transient, the SIMULATE-3 End-of-Step (EOS) depletion option was used to recreate the oscillation, but 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> time steps still cause SIMULA TE-3 to diverge after the first 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
Figures 6.8a-d:
Cycles 9-11 Assembly Radial Peaking vs. Exposure The FR A is slightly less for PIDAL-3 since SIMULA TE~3 calculates slightly lower peaks than XTG. XTG applies artificial reflector albedos and
- assembly coupling factors to manipulate the calculations.
SIMULATE-3 actually models the reflectors and uses discontinuity factors for assembly coupling. The reflector model and discontinuity factors affect the SIMULA TE-3 assembly powers, which generate the PIDAL-3 coupling coefficients, and with the addition of the SIMULATE-3 W-primes, will have an effect on lowering FRA* This is not a consistent effect across all Palisades cycles. For example, the cycle 12 SIMULATE-3 model shows a higher BOC assembly peak than XTG which is much closer to actual measurement.
16
Figures 6.9a-d:
Cycles 9-11 Total Radial Peaking vs. Exposure The FR r is considerably less for PIDAL-3 which is expect~ since FRA is lower and the addition of the average fuel pin-to-assembly fuel pin ratio. Two SIMULATE-3 peaks in cycle 10 appear to be inverted from PIDAL-3. The second peak occurs in exposure step E-39 when power *is reduced to 44%. Two factors could contribute to this; one is time step averaging over the cycle as alluded to earlier, and the second is core stability during the transient. If xenon is causing an oscillation, PIDAL-3 will see it, but the SIMULA TE-3 model could miss it depending on when the snapshot was taken. Again, time step averaging is the likely cause and smaller time steps with captured xenon effects will eliminate the problem.
Figures 6. lOa-d: Cycles 9-11 Total Peaking Factors vs. Exposure The FQ (TPF) is considerably less for PIDAL-3/SIMULATE-3 for the same reason as stated for FRr*
- 3) PIDAL-3 vs. SIMULATE-3 Figures for Cycles 9 to 11:
Figure 6.1 la Figure 6.1 lb Figure 6.llc Figure 6. _1 ld Figure 6.1 le Figure 6.12a Figure 6.12b Figure 6.12c Figure 6.12d Figure 6.12e Figure 6.13a Figure 6.13b Figure 6.13c.
Figure 6.13d Figure 6.13e Figure 6.14a Figure 6.14b Cycle 09 BOC filP Axially Collapsed Assembly RPF Cycle 09 BOC HFP Axially Collapsed Assembly RPF Cycle 09 BOC HFP Radially Collapsed Assembly RPF Cycle 09 EOC HFP Axially Collapsed Assembly RPF Cycle 09 EOC HFP Radially,Collapsed Assembly RPF Cycle 10 BOC filP Axially Collapsed Assembly RPF Cycle 10 BOC HFP Axially Collapsed Assembly RPF Cycle 10 BOC HFP Radially Collapsed Assembly RPF Cycle 10 EOC HFP Axially Collapsed Assembly RPF Cycle 10 EOC HFP Radially Collapsed Assembly RPF Cycle 11 BOC filP Axially Collapsed Assembly RPF Cycle 11 BOC HFP Axially Collapsed Assembly RPF Cycle 11 BOC HFP.Radially Collapsed Assembly R.PF Cycle 11 EOC HFP Axially Collapsed Assembly RPF Cycle 11 EOC ijFP Radially Collapsed Assembly RPF Cycle 11 EOC Xenon Transient Axially Collapsed Assembly RPF Cycle 11 EOC Xenon Transient Radially Collapsed Assembly RPF All show excellent agreement.
The '2PIN' edit in PIDAL-3 shows the same RMS deviation the* '2RPF' edit shows. This is expected since the only difference between PIDAL-3 and SIMULA TE-3 is the assembly power. The LPFs for both are the same. The '3KWF' (LHGR) edit produces larger deviations since it looks at only the axial peaks in fuel pins between PIDAL-3 and SIMULA TE-3 with no axial integration (Appendix A).
17
4.3 UNCERTAINTY ANALYSIS In order to determine the uncertainties associated with the PIDAL-3 full core monitoring model, it was necessary to employ the appropriate statistical model.
As with all previous PIDAL uncertainty calculations, Siemens methodology (15] was chosen.
Three computer codes are used to generate the statistical analysis data:
The PIDAL-3 program was used to determine the measured and inferred full core detector powers and power distributions required.
The PIDAL-3 program fails each detector string one at a time, and recalculates the power distribution based on inferred data. The uncertainty analysis data is written to the
- uncertainty file.
The UNSAT-3 program was used to calculate the F(s), F(sa), F(r), and F(z) uncertainty components. This program reads the Uncertainty file generated by the PIDAL-3 program statistical analysis routines and calculates the deviations, means, and standard deviations required by this analysis. UNSAT-3 also sets up histogram data files for figure plotting (Figures 6.16a to 6. l 9d).
The BWSTAT program was used to calculate the F(L) uncertainty component.
This program was generated to analyze SIMULATE-3 modeling ofB&W critical experiments (13].
Finally, individual component uncertainties were combined in an EXCEL spreadsheet to determine the overall uncertainties as defined by the statistical model (10].
4.4 EFFECTS ON UNCERTAINTIES Included in this analysis is a study of various effects on the final uncertainties such as:
- 1) Low Leakage Cores
- 2) Poolabil_ity and. Normality of Data.
- 3) Failing Large Numbers ofincore Detectors
- 4) Radial Power Tilts
- 5) Large Axial OffsetS
- The following sections discuss each of these topics.
4.4.1 LOW LEAKAGE CORES One of the consequences of low leakage core designs is that the uncertainties for low power assemblies with relative power fractions (RPF) much less than 1. 0 are inflated-due to higher percent deviations given the same absolute deviation. One possible solution is to use absolute differences instead of percent differences, but the absolute differences in low power assemblies is small compared to average assemblies and would not be conservative. The uncertainty analysis methodology was not changed in order to comply with the NRC expectation that a previously approved methodology be used.
- The alternative was to eliminate all assemblies with a RPF less than 1.0. Since the assemblies of interest all have RPFs greater than 1.0, this produces a representative uncertainty that is conservative for peak assemblies, but not so conservative as to penalize the peak unnecessarily (6].
18
4.4.2 POOLABILITY AND NORMALITY OF DATA Before combining data in a statistical analysis, the data must be tested for poolability. Two questions must be answered: First, should the data be poolable? Second, does it make sense? The widely accepted Bartlett Test was used to determine poolability of data within each cycle and across the cycles [16).
In order for data to be poolable, it must be independent and devoid of trends. First, the data generated by the PPC is predictable at steady-state conditions regardless of how often the data is sampled. Therefore, we have truly dependent data and one could significantly increase the degrees of freedom by sampling more data points. This is true of all nuclear plants and is also the case with the original PIDAL uncertainties generated by pooling cycles 5, 6, and 7. Second, since the inception of low leakage core designs, BOC uncertainties tend to be higher than EOC uncertainties since the cores are more heterogeneous at BOC and become more homogeneous at EOC after the peaks have burned out.
With this in mind, it appears that Palisades is unable to pool data within a cycle let alone between cycles.
OPPD had a similar problem and they contacted Charles T. Rombough of CTR Technical Services Inc. for assistance. He advised OPPD to use fewer time points to reduce the degrees of freedom and produce more independent data. OPPD believed that a conservative estimate of 12 time points across the cycle produced independent data. The much lower degrees of freedom is also very conservative [6].
Palisades has concluded that this approach is acceptable for use in the PIDAL-3 application. By sampling Palisades data every 1000 MWD/MfU, we believe the data is independent and we have significantly reduced the degrees of freedom.
The SIMULATE-3 model produced a much flatter assembly radial power RMS deviations across the cycles compared to XTG. (see figure 6.6 a-c) Poolability across cycles 5, 6, and 7 was deemed possible given the similarity in core designs and cycle length. The Bartlett test was not considered in the original SER [l].
The W test and the D-prime test were used to determine normality of data within each cycle [17). The data for cycles 9, 10, and 11 exhibit normal distributions across the cycles [11) (Figures 6.16a to 6.19d).
. 4.4.3 FAILING LARGE NUMBERS OF INCORE DETECTORS Current Palisades Technical Specifications require that 75% of all possible detector locations, with a minimum of two detectors per core level per quadrant be working in order to declare the incore
. monitoring system operable. This is consistent with current ABBCE specifications. It is assumed that the ABBCE standard is referring to plants which incorporate the standard ABBCE full core monitoring methodologies.
In Reference 15, SPC came to the conclusion that the accuracy of an incore monitoring system or methodology depended more on which detectors were operable than on the total number operable. SPC also concluded that it was best to use all available data points in determining the individual component uncertainties, and therefore, did *not go into great detail investigating the effects of large numbers of incore failures on the measured/inferred power distribution. These conclusions are valid because, for random detector failures, there is an equal probability that the well behaved detectors and the non-well behaved detectors would fail.
In order to prove these conclusions, it would be necessary to test every possible combination of failed detectors for a large set of power distributions. From a computational standpoint, this is not practical.
Therefore, a test was devised to.verify that incore failures resulting in 75% detector operability would produce accurate measurements.
A base test case was chosen at the middle of each cycle, and results for each of the component uncertainties were recorded. Five sets of 11 failed incore strings were then chosen using a random 19
number generator. The statistical analysis was repeated for each of the 5 failed sets. The results of the 5 sets were compared to each of the components. The difference was then added to each of the components across all of the cycles. This analysis did not fail 55 individual detectors, since the Fs and FsA statistical analyses only consider fully operable strings. The effects of large radial power tilts with 25% detector failure were examined, but with the inception of SIMULATE-3 full core coupling calculations and the elimination of assemblies with RPFs less than l.O, the consequences of loosing 25% of the detectors is greatly diminished from the original submittal with or without tilt.
The uncertainty analysis for cycles 9, 10, and 11 already eliminates at least 25% of the operable detectors with RPFs less than l.O, and no effect on uncertainties was observed for the PIDAL-3 cases run examining tilted cores [11] and 25% detector failures. For PIDAL-3, an additional 0.0010 is added to the Fs component, and an additional 0.0005 is added to the FsA component. There are no additional penalties for the FR and Fz components. The original PIDAL applied larger penalties for 25% detector failure.
Based on these results, the uncertainties associated with the PIDAL-3 system documented by this report are valid for an incore monitoring system operable with up to 25% of its 215 incore detectors failed.
4.4.4 RADIAL POWER TILTS The original PIDAL methodology determined the F(s) uncertainty component for power distributions with quadrant power tilts up to 5% [14]. The Palisades Technical Specifications allow for full power operation with quadrant power tilts of up to 5%.
The F(s) uncertainty component was recalculated for radially tilted cores. The results showed that in all cases the F(s) value (0.0277) was bounding for quadrant power tilts up to 2.8%. It was also found that the F(s) value depended strongly on the direction and magnitude of the oscillation causing the power tilt. For cores oscillating about the diagonal core axis, the F(s) value was valid for tilts up to 5%. For oscillations about the major core axis, the F(s) value was valid for tilts up to 2.8%. Since the Palisades Technical Specifications allow for full power operation with quadrant power tilts of up to 5%, and it was clear that the overall PIDAL uncertainties were only valid for tilts up to 2.8%, it was necessary to derive a second set of uncertainties for tilts above 2.8%. The current uncertainties are listed in TS Table 3.23-3.
With the inception of SIMULATE-3, radial power tilts between 2.8% and 5.0% do not require additional uncertainties since SIMULA TE-3 and PIDAL-3 can monitor the full core including dropped control rods.
The major limitation of the original submittal was a quarter core XTG model, and quarter core PDQ W-primes and LPFs. No effect on uncertainties was observed for the PIDAL-3 cases which examined tilted cores [11].
4.4.5 LARGE AXIAL OFFSETS The PIDAL-3 uncertainty analysis contains an actual power transient which produced a xenon driven power oscillation. The movement of control rods and changes in boron concentration have the greatest effect on SIMULATE-3's ability to reproduce the transient. The major limitation is due to the frequency of snapshots from the PPC (1 per.hour).
Too many evolutions can occur within each hour for!
SIMULATE-3 to accommodate over the entire transient. For example, control rod movements 10 minutes passed the hour produce very different results than those 10 minutes to the hour. Therefore, as a transient continues PIDAL-3 and SIMULA TE-3 begin to diverge. Ten to fifteen minute time steps are ctirrently available with the PPC and will improve the uncertainties.
20
4.5 RESULTS Overall the changes made to the PIDAL-3 code produced significant differences in the output compared to the PIDAL-2 code. The fundamental methods used in calculating the coupling coefficients (full core vs.
quarter core), W-primes (SSFs and rhodium reaction rates), and LPFs (pin ratio in equation 3.13) have significantly changed. The theoretical data produced by SIMULA TE-3 are far superior to the PDQ/XTG data. This is expected since SIMULA TE-3 is an advanced diffusion theory nodal code compared to the very old PDQIXTG methodology.
The uncertainties also reflected SIMULATE-3's superiority over PDQ/XTG. The SIMULATE-3 model greatly reduced the component uncertainties even without eliminating all assemblies with RPFs less than
- 1. 0. The mean also shifted closer to zero thus allowing for the continued use of a zero bias as assumed in the original uncertainty analysis, and the standard deviations were normally distributed about the mean.
The degrees of freedom were greatly reduced by limiting the time points to approximately 1000 MWD/MTU to improve the independence of the data and allow for pooling within the cycle. Cycles 9, 10, and 11 were not poolable across the cycles, and cycles 5, 6, and 7 were not analyzed for poolability in the original uncertainty analysis.
- Statistical analysis results can be seen in Figure 6.15, and the corresponding histograms in Figures 6.16a to 6. l 9d show the standard deviation distributions about the mean.
All of the 95/95 uncertainty components analyzed by UNSAT-3 are lower than the original uncertainties [10,11,18] for cycles 5 through 7. The degrees of freedom as discussed in Section 4.4.2 were significantly reduced, and PIDAL-3 is still bounded by the original uncertainties.
21
5.0 CONCLUSION
The PIDAL source code and all support codes were updated and renamed to level 3, version 1.00, date 05/01/96 due to the extensive modification on each code to accommodate SIMULATE-3.
The total rewrite of the interface with theoretical data is due to the installation of SIMULA TE-3 and the full core coupling calculation.
The final results produced significant differences when compared to PIDAL-2 as expected. The ability of PDQ/XTG to reproduce measured plant data is severely limited due to the present day low leakage core designs with higher peaking. SIMULA TE-3 results are far superior.
The PIDAL-3 program has been validated per Reference 11, and the uncertainty analysis results are bounded by the present Palisades Technical Specification values (TS Table 3.23-3). This proposed update to the PIDAL SER will not require Technical Specification changes at this time, but the following changes will occur when the CE Standard Technical Specifications are submitted in the first quarter of 1997:
Palisades Technical Specification Table 3.23-3 will be moved to the COLR with the addition of Table 2.3 since the CE Standard Technical Specifications do not include uncertainty values. The. definition for Total Radial Peaking Factor (FRr) will also be rewritten for simplification as follows:
FR r Total radial peaking factor shall be the maximum ratio of the individual fuel pin power to the core average pin power integrated over the total core height, including tilt.
After the CE Standard Technical Specifications are issued it is our intent to remove the additional uncertainties for radial tilts above 2.8%. Sections 4.4.3 and 4.4.4 previously stated that the PIDAL-3 methodology, with the full core SIMULATE-3 model, has the ability to measure radial tilts (e.g. dropped control rods) without any additional penalty to the uncertainties for up to 5% quadrant power tilts.
Since it is Palisades intent to reinsert incore detectors starting with cycle 14, we intend to observe the additional penalty to the uncertainties until we obtain enough data to verify the effects of reused incore detectors on the PIDAL-3 uncertainty analysis.
22
Figure 6.1 Palisades Core Coiifiguration Reactor vessel level monitoring system installed in detector locations 7 and 44.
24
INTERPIN-CS l
MICBURN-3 l
FETCH-3 (Off-line)
PPC (On-line)
CASM0-3 l
l l
TABLES-3.
SIMULATE-3 PIDAL-3 1
1 L
UNSAT-3 PPC (Alarms)
Figure 6.2
. PIDAL-3 Calculation Flow 25
2 4
5 6
7 8
9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 A
Figure 6.3 PALISADES NUCLEAR PLANT Cycle 9 Core Plan B
C
()
I; F
G J
K L M N P Q
R S
T N
148 l50
___8 Ell EE] ~
~
147 Batch I Assemblies Contain Halfnium Clusters Cycle 09 Core Loading Pattern 151 v w x z
26
2 3
4 5
6 7
8 9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 Figure 6.4 B
C I)
PALI SADES NUCLEAR PLANT Cycle 10 Core Plan E
F G
H J
K L
M N
p Q
R S
T v w x SAN Assemblies Contain Stainless Steel Shield Rods.
Batch I Assemblies Contain Halfnium Clusters cle 10 Ccre Plan Uses 14 Ccre Rotational Cycle 10 Core Loading Pattern z
27
PALISADES NUCLEAR PLANT Cycle 11 Core Plan A
B c
D E
F G
H J.
K L
M N
p Q
R s
T v w x z
N 2
- 3.
4 5
6 7
043 M13 M43 028 8
M15 031 020 M42 9
10 027 M38 11 M39 019 12 13 017 M31 14 M30 025 15 16 M9 030 M34 018 029 M7 17 042 M11 026 M35 M5 041 18 19 20 21 2_2 23 SAN Assemblies Contain Stainless Steel Rods.
Cycle 11 Core Plan Uses Y. Core Rotational Symmetry Figure 6.5 Cycle 11 Core Loading Pattern 28
PIDAL-2 XTG vs PIDAL-3 S-3, Assembly Radial RMS, Cycle 9 6 -------------.. --*-*---**--"--**--*-1 5
.. 4 GI
~
Cl.
al 3
iii E 0
2 z
0 Figure 6.6a P2RMS 2
4 6
8 10 GWCYMTU Cycle 9 Assembly RMS Deviations PIDAL-2 XTG vs PIDAL-3 S-3, Assembly Radial RMS, Cycle 10 6 ------------*-------------*-----**----.
5 4
~
ci.
P2RMS al 3
iii
~ 2 z
0 Figure 6.6b 2
4 6
GWCYMTU Cycle 10 Assembly RMS Deviations I
8 10 12 29
6 5
4 Ill
~
a..
'C 3
.~
iii E 0
2 z
0 Figure 6.6c PIDAL-2 XTG vs PIDAL-3 S-3, Assembly Radial RMS, Cycle 11
~-------*------------1 2
4 6
8 10 12 14 GWD'MTU Cycle 11 Assembly RMS Deviations 30
0.08 0.06 0.04 0.02 0
-0.02
-0.04
-0.06
-0.08 PIDAL-2 XTG vs PIDAL-3 S-3 vs S-3, Axial Offset, Cycle 9
*-----------~------*--~-~**-*
l !
I i
I i
-0.1 +------+------+-------+------+-------!
0 Figure 6.7a 0.08 0.06 0.04 0.02 0
-0.02
-0.04
-0.06
-0.08
-0.1 0
Figure 6.7b 2
4 6
8 GW[)MTU Cycle 9 Assembly AO Deviations PIDAL-2 XTG vs PIDAL-3 S-3 vs S-3, Axial Offset, Cycle 10 P3AO 2
4 6
GW[)MTU Cycle 10 Assembly AO Deviations 8
10 10 12 31
0.08 0.06 0.04 0.02 0
-0.02
-0.04
-0.06
-0.08 PIDAL-2 XTG vs PIDAL-3 S-3 vs S-3, Axial Offset, Cycle 11 P2AO I
i
-0.1 +-----+-----+----+--------1----+-----+-------j 0
2 4
6 8
10 12 14 GWDMTU Figure 6.7c Cycle 11 Assembly AO Deviations PIDAL-3 vs SIMULATE-3, AO, Cycle 11 Xenon Transient 0.15 0.1 0.05 0
Qi
~ -0.05 0
"iii
')(
-0.1
-0.15
-0.2
-0.25 0
5 10 15 20 25 30 35 40 45 Time (Hours)
Figure 6.7d Cycle 11 Xenon Transient Assembly AO Deviations 32
1.65 1.6 1.55 GI 1.5 3:
0 a.
"'C 1.45 GI
-~
iij 1.4 E
0 z 1.35 1.3 1.25 Figure 6.8a 1.65 1.6 1.55 Gi 1.5 3:
0 a.
"'C 1.45 GI iij 1.4 e
0 z 1.35 1.3 1.25 Figure 6.8b PIDAL-2 XTG vs. PIDAL-3 S-3 vs. S-3, FRA, Cycle 9 0
0 2
4 6
8 GWDMTU Cycle 9 Assembly Radial Peaking vs. Exposure PIDAL-2 XTG vs. PIDAL-3 S-3 vs. S-3, FRA, Cycle 10 I
I I I
I 10
*---------~-*----~-----~-----*------------------.
2 4
6 GWDMTU 8
Cycle 10 Assembly Radial Peaking vs. Exposure 10 i '
! i 12 3 3
1.65 1.6 1.55 Qi 1.5
~
- c.
't:I 1.45 fll iii 1.4 E..
0 z 1.35 1.3 1.25 0
Figure 6.8c 1.72 1.7 1.68 1.66 1.64
~
u..
1.62 1.6 1.58 1.56 1.54 0
Figure 6.8d PIDAL-2 XTG vs. PIDAL-3 S-3 vs. S-3, FRA, Cycle 11
~ I I I 2
4 6
8 10 12 14 GWC:VMTU Cycle 11 Assembly Radial Peaking vs. Exposure PIDAL-3 vs. SIMULATE-3, FRA, Cycle 11 Xenon Transient 5
10 15 20 25 30 35 40 Time (Hours)
Cycle 11 Xenon Transient Assembly Radial Peaking vs. Exposure I
I i i
45 3 4
PIDAL-2 XTG vs. PIDAL-3 S-3 vs. S-3, FRT, Cycle 9 2.00 -----------------------------*---------!
1.95 1.90 1.85 QI 1.80 0
I Q.
"C 1.75 QI jij 1.70 e
0 1.65 z
1.60 1.55 S3FRT 1.50 +------+-----+------+------+-----.............
0 Figure 6.9a 2
1.95 1.9 1.85 QI 1.8 0
Q.
"C 1.75 QI jij 1.7 E..
0 1.65 z
1.6 1.55 1.5 0
Figure 6.9b 2
4 6
8 10 GWD'MTU Cycle 9 Total Radial Peaking vs. Exposure PIDAL-2 XTG vs. PIDAL-3 S-3 vs. S-3, FRT, Cycle 10
*-----*-----*~-------------*-*----*----------*-----*-----,
2 4
6 GWD'MTU Cycle 10 Total Radial Peaking vs. Exposure i
i 8
10 12 3 5
PIDAL-2 XTG vs. PIDAL--3 S-3 vs. S--3, FRT, Cycle 11 2 ----------*----------------------~
GI 1.95 1.9 1.85
~
1.8
~ 1.75
~
1.7 0
z 1.65 1.6 1.55 1
. 5 +-~~---+~~~-+~~~+-~~---+~~~-+-~~~+-~~--l 0
2 4
6 8
10 12 14 GWCYMTU Figure 6.9c Cycle 11 Total Radial Peaking vs. Exposure PIDAL--3 vs. SIMULATE--3, FRT, Cycle 11 Xenon Transient 1.88 1.86 1.84 1.82 1.8 I-1.78 0::
u..
1.76 1.74 1.72 1.7 1.68 0
5 10 15 20 25 30 35 40 45 Time (Hours)
Figure 6.9d Cycle 11 Xenon Transient Total Radial Peaking vs. Exposure 36
2.50 2.40 2.30 2.20 Cll
~ 2.10 0
Q.
"O 2.00 Cll iii 1.90 E...
0 1.80 z
1.70 1.60 1.50 0
Figure 6.lOa 2.5 2.4 2.3 2.2 Cll
~ 2.1 Q.
"O 2
Cll iii 1.9 E...
0 1.8 z
1.7 1.6 1.5 0
PIDAL-2 XTG vs. PIDAL-3 S-3 vs. S-3, TPF, Cycle 9
*---i 2
4 6
8 GWtvMTU Cycle 9 Total Peaking Factors vs. Exposure PIDAL-2 XTG vs. PIDAL-3 S-3 vs. S-3, TPF, Cycle 10
' ' I I I I
10
---***-----**--------*---*-------*---**---*---***1 2
4 6
GWtvMTU 8
10 12 Figure 6.lOb Cycle 10 Total Peaking Factors vs. Exposure 37
2.5 2.4 2.3 2.2 GI 3:
2.1 0
Q.
"C 2
GI i; 1.9 E
0 1.8 z
1.7 1.6 1.5 Figure 6.lOc 3
2.5 2
~ 1.5 I-0.5 PIDAL-2 XTG vs. PIDAL-3 S-3 vs. S-3, TPF, Cycle 11
~----------------------*---,
I 0
2 4
6 8
10 12 14 GW[)MTU Cycle 11 Total Peaking Factors vs. Exposure PIDAL-3 vs. SIMULATE-3, TPF, Cycle 11 Xenon Transient
~-----*----.. --*-------------~~---,
Time (Hours)
Figure 6.lOd Cycle 11 Xenon Transient Total Peaking Factors vs. Exposure 3 8
2 4
5 7
CYCLE 9
E l
22.4t POWER - DATE/TIME 03/14/91 18:17:00 PRI.P3X 2RPF AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP RMS DEVIATION FOR THIS MAP= 2.16 t A
B D
G H
J K
M N
Q R
T 0.323 0.422 0.318 0.309 0.421 0.322 0.324 0.426 0.324. 0.323 0.423 0.320 0.445 0.909 1.735 4.672 0.443 -0.458 0.134 0.466 0.990 1.195 0.133 0.466 0.993 1.206
-0.418 0.002 0.304 0.931 1.194. 1.197 1.207 0.996 0.469 0.135 1.210 1.208 1.203 0.988 0.465 0.133 1.290 0.974 -0.333 -0.729 -0.996 -1.168 0.424 1.044 1.351 1.205 1.321 1.330 1.219 1.373 1.054 0.425 0.420 1.044 1.358 1.219 1.342 1.341 1.218 1.356 1.043 0.420
-0.834 -0.045 0.507 1.160 1.560 0.797 -0.100 -1.272 -1.124 -1.281 v
x 0.137 0.433 0.747 1.261 1.168 1.034 1.343 0.133 0.420 0.734 1.253 1.174 1.049 1.360
-2.936 -3.113 -1.802 -0.633 0.542 1.431 1.238 1.349 1.045 1.180 1.266 0.744 0.431 0.136 1.360 1.048 1.173.l.252 0.734 0.420 0.133 0.842 0.272 -0.538 -1.104 -1.418 -2.414 -2.160 0.476 1.08~ 1.278 1.275 1.077 1.210 1.216 0.464 1.043 1.254 1.257 1.084 1.245 1.231
-2.630 -3.868 -1.922 -1.409 0.706 2.911 1.265 1.218 1.234 1.085 1.274. 1.273 1.078 0.474 1.231 1.245 1.084 1.257 1.255 1.045 0.465 1.074 0.855 -0.073 -1.342 -1.434 -3.081 -1.825 z
8 0.308 0.999 1.378 1.185 1.096 1.050 1.054 1.401 1.384 1.060 1.052 1.079 1.177 1.366 0.996 0.325 0.320 0.989 1.357 1.177 1.096 1.065 1.079 1.404 1.404 1.079 1.065 1.096 1.178 1.359 0.993 0.325 3.969 -1.045 -1.515 -Q,647 -0.013 1.383 2.439 0.210 1.415 1.874 1.183 1.581
~.OS~ -0.533 -0.326 -0.258 10 0.425 1.220 1.227 1.042 0.423 1.204 1.220 1.053
-0.406 -1.380 -0.600 1.02~
1.242 1.063 1.173 1.331 1.256 1.090 1.239 1.370 1.104 2.522 5.638 2.932 1.333 l.206 1.370 l.239 2.757 2.699
- l. 075 1.090 l.459 l.241 l.256
- l. 231
- l. 046 1.053
- 0. 724 l.209 l.221
- l. 041 1.204 0.-426 l.207' 0.426 0.294 0.108 11 0.325 1.218 1.350 1.363 1.229 1.380 1.318 1.192 1.186 1.317 1.397 1.227 1.356 1.337 1.208 0.324 0.323 1.210 1.343
-0.583 -0.638 -0.474 1.365 1.237 1.409 0.105 0.715 2.058
- l. 368 3.~53 1.238" l.238 3.840 4.363 l.368 3.891 l.409 0.846
- l. 238 0.884
- l. 365 0.637 l.344 1.211 o.sso 0.234 0.324 0.089 13 0.326 1.215 1.352 1.372 1.243 1.. 390 1.313 1.187 1.154 1.316 1.382 1.225 1.358 1.336 1.215 0.326 14 0.324 1.211 1.344 1.365 1.238 1.409 1.368 1.238 1.238 1.36~ 1.409 1.237 1.365 1.343 1.210 0.323
-0.458 -0.310 -0.624 -0.480 -0.452 1.332 4.233 4.249 7.229 4.000 1.956 1.012. 0.512 0.513 -0.384 -0.669 0.430 1.219 1.234 1.064 1.266
- 0. 426 1:.::2.07
- l. 221
- l. 0_53
- l. 2_56
-i.oo7 -0*_973 -1:o'n -0.999 -0.723 1.087 1.219 1.343 1.334 1.090 1.239 1.370. 1.370 0.342 1.646 2.011 -2.724 l.198 l.067 l.246 l.*054 l.229 l.230 0.431 l.239 1.. 090 1.256 l.053 l.220 1.204 0.423 3.454. 2.1s1-o.. 779 -o.097 -o.n1* -2.142 -i.001 16 0.329 1.009 1.383. 1.201-. 1.117 1.077 1.091 1.405 1.414 1.067 *l.037 1:098 1.189 1.375 1.006 0.326 17 19 20 22 23 0.325 0.993 1.359 1.178 1.096 1.065" 1.079 1:404 1.404. 1.0?9 1.065 1.096 1:177 1.357 0.989 0.320
-1.442 -1.547 -1.741 -1.891 -1.881 -1.142 -1.065 -0.095 -0.744 1.173 2.636 -0.258 -1.027 -1.349 -1.740 -1.823 0.480 1.072 1.294 1.302 1.104 1.258 1.239 1.238 0.465 1.045 1.255 1.257 1.084 1.245 1.231 1.231
-2.974 -2.519 -3.021 -3.484 -1.849 -1.099 -0.640 -0.536 1.245 1.089 1.291 1.284 1.065 0.475 1.245 1.084 1.257 1.254 1.043 0.464 0.031 -0.427 -2.645 -2.382 -2.014 -2.281 0.138 0.435 0.769 1.323 1.188 1.060 1.371 1.368 1.052 1.183 1.280 0.767 0.434 0.143 0.133 0.420 0.734 1.252 1.173 1.048 1.360 1.360 1.049 1.174 1.253 0.734 0.420 0.133
-3.257 -3.408 -4.564 -5.367 -1.202 -1.117 -0.789 -0.554 -0.354 -0.773 -2.121 -4.374 -3.363 -6.840 0.454 1.087 1.385 1.234 1.351 1.346 0.420 1.043 1.356 1.218 1.341 1.342
-7.629 -4.054 -2.113 -1.310 -0.784 -0.332 1.219 1.364 1.057 0.431 1.219 1.358 1.044 0.420 0.023 -0.420 -1.237 -2.558 0.141 0.480 1.008 1.221 1.216 0.133 0.465 0.988 1.203 1.208
-5.436 -3.252 -1.901 -1.464 -0.592 1.207 1.195 0.989 0.469 0.135 1.210 1.206 0.993 0.466 0.133 0.202 0.959 0.389 -0.607 -1.560 0.326 0.429 0.325 0.319 0.395 0.317 0.320 0.423 0.323 0.324 0.426 0.324
-1.854 -1.418 -0.474 1.628 7.820 2.463 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100t Figure 6.lla Cycle 09 BOC HLP Axially Collapsed Assembly RPF 39
2 4
5 7
CYCLE E
10 99.6\\ POWER - DATE/TIME 04/11/91 09:02:00 PRI.P3X 2RPF*
AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP RMS DEVIATION FOR THIS MAP = 1.96 \\
A B
D E
G H
J K
M N
Q 0.333 0.430 0.325 0.316 0.430 0.333 0.332 0.431 0.327 0.327 0.428 0.328
-0.355 0.106 0.824 3.492 -0.510 -1.433 R
T 0.144 0.479 0.980 1.169 1.160 1.163 1.183 0.990 0.484 0.145 0.143 0.477 0.975 1.170 1.165 1.164 1.168 0.972 0.476 0.143
-0.691 -0.400 -0.506 0.155 0.399 0.121 -1.289 -1.787 -1.721 -1.596 0.444 1.036 1.321 1.190 1.296 0.440 1.035 1.323 1.196 1.303
-0.965 -0.107 0.152 0.562 0.541 1.301 1.206 1.355 1.051 0.446 1.302 1.195 1.321 1.034 0.440 0.094 -0.868 -2.493 -1.641 -1.479 v
x 0.146 0.449 0.767 1.245 1.169 1.048 1.330 1.334 0.142 0.440 0.751 1.242 1.175 1.060 1.343 1.343
-2.107 -2.154 -1.980 -0.211 0.595 1.131 0.970 0.678 1.058 1.184 1.254 0.760 0.447 0.145 1.060 1.175 1.242 0.751 0.440 0.143 0.126 -0.776 -0.959 -1.099 -1.649 -1.472 0.485 1.057 1.255 1.259 1.102 1.236 1.222 1.225 1.248 1.111 1.266 1.255 1.056 o.~83 0.475 1.034 1.244 1.262 1.115 1.266 1.244
-2.110 -2.152 -0.911 0.187 1.133 2.426 1.743 1.243 1.265 1.507 1.363 1.115 1.262 1.244 1.035 0.476 0.335 -0.372 -0.878 -2.002 -1.391 z
8 0.327 0.991 1.340 1.181 1.119 1.090 1.087 1.374 1.372 1.082 1.092 1.122 1.181 1.332 0.982 0.334 10 11 13 0.328 0.972 1.322 1.178 1.125 1.108 1.116 1.405 1.405 1.116 0.431 -1.897 -1.335 -0.234 0.610 1.689 2.707 2.259 2.426. 3.146 1.108 1.126 1.179 1.323 0.976 0.332 1.412 0.346 -0.182 -0.679 -0.640 -0.660 0.439 1.208 1.211 1.057 1.261 1.101 1.209 1.334 0.428 1.168 1.197 1.064 1.276 1.126 r.263 1.376
-2.367 -3.321 -1.162 0.639 1.239 2.341 4.460 3.181 0.332 1.181 1.313 1.344 1~235 1.381 1.330 1.220 0.327 1.165 1.304 1.346 1.249 1.409 1.375 1.261
-1.462 -1.330 -0.674, 0.212 1.103 2.036 3.380 3.399 1.337 1.227 1.376 1.263 2.933 2.897 1.219 1.261 3.443 1.335
- 1. 375 2.995 1.105 1.126 1.975
- 1. 375 1.409 2.467 o.329 1.168 1.310 1.346 1.237 1.389 1.323 0.328 1.166 1.305 1.347 1.249 1.409 1.375
-0.509 -0.157 -0.411 0.080 0.966 1.484 3.918 1.218 1.207 1.328 1.377 1.261 1.261 1.375 1.409 3.550 4.469 3.486 2.315
- 1. 263 1.276 1.046
- 1. 233
- 1. 249
- 1. 265
- 1. 235
- 1. 249 1.107 1.061 1.064 0.337 1.197 1.176 0.433 1.198 1.171* 0.431 0.049 -0.424 -0.578 1.342 1.306 1.173 0.330 1.347 1.305 1.166 0.328 0.383 -0.106 -0.586
-~.796 1.343 1.306 1.183 0.333 1.346 1.304 1.165 0.327 0.224 -0.111 -1.492 -1.870 14 0.435 1.180 1.206 1.067 1.272 1.113 1.232 1.344 1.339 1.208 1.102 1.267 1.068 1.215 1.216 0.443 16 17 19 20 22 23 0.431 1.171 1.198 1.064 1.276 1.126 1.26_3 1.376 1.376
- i.2.~3 1.,126
-0.873 -0.793 *-0.676 -0.310 0.303 1.189 2.525 2.430 2.799 4.536 2.240 1.276 1.064 1.197. 1.168 0.428 0.720 -0.400' -1.535 -3.942 -3.448 0_331* o._99_1 1.342 1.193 1.135 0.332 0.976 1.323 1.179 1.126
-1.353 -1.518 -1.376 -1.149 -0.804 1.104 1.096 i,389 1.400 1.098 1.108 1.116 1.405 1.405 1.116 0.355 1.771 1.167 *. 0.. 371 1.609 1.092 1.130 1.192. 1.347.1,000 0.339 1.108 1.125 1.178 1.322 0.972 0.328 1.433 -0.419 -1.152 -1.869 -2.767 -3.045 1.261. 1.119 1.289 1.269 1.266 1.115 1.262 1.244 1.057 0.488 1.034 0.475 0.497 1.058 1.272 1.292 1.122 1.262 1.240 1.241 0.476 1.035 1.244 1.262 1.115 1.265 1.243 1.244
-4.101 -2.181 -2.212 -2.351 -0.670 0.268 0.254 0.163 0.383 -0.373 -2.091 -2.040 -2.121 -2.743 0.148 0.453 0.779 1.292 1.182 1.066 1,349 1.345 1.062 1.183 1.264 0.776 0.453 0.151 0.143 0.440 0.751 1.242 1.175 1.060 1.343 1.343 1.060. 1.175 1.242 0.751 0.440 0.142
-3.482 -2.848 -3.517 -3.874 -0.571 -0.608 *-0.420 -0.165 -0.189 -0.652 -1.693 -3.123 -2.865 -5.884 0.471 1.070 1.349 1.216 1.317 1.311 1.200 1.331 1.047 0.449 0.440 1.034 1.321 1.195 1.302 1.303 1.196 1.323 1.035 0.440
-6.601 -3.390 -2.081 -1.736 -1.116 -0.621 -0.302 -0.610 -1.114 -1.995 0.150 0.492 0.999 1.208 1.183 1.173 1.172 0.978 0.481 0.145 0.143 0.476 0.972 1.168 1.164 1.165 1.170 0.975 0.477 0.143
-4'.888 -3.228 -2.715 -3.370 -1.626 -0.651 -0.098 -0.271 -0.822 -1.400 0.338 0.441 0.332 0.328 0.419 0.330 0.328 0.428 0.327 0.327 0.431 0.332
-2.865 -3.029 -1.756 -0.137 2.723 0.591 PIDAL-3 SIMULATE-3
"(S3-P3) /P3*100\\
Figure 6.llb Cycle 09 BOC HFP Axially Collapsed Assembly RPF 40
CYCLE 9
E 10 99.6t POWER -
DATE/TIME 04/11/91 09:02:00 PRI.P3X ZRPF NORMALIZED CORE AVERAGE AXIAL POWER DISTRIBUTION (P = PIDAL-3 ANDS = SIMULATE-3)
TOP 1.00 +------------------------+------------------------+------------------------+------------------------+
SP!
I I
I I
I I
I I
s s
I I
I I
I I
s I
I SI 0.80 +------------------------+------------------------+------------------------+------------------------+
I IS I
I I
I s I
I I
I PS I
I I
I PS I
I I
I PS 0.60 +------------------------+-------------:----------+------------------------+------------------------+
I PS I
I I
I
.1 I
PS I
I I
I I
I s
I I
I I
I I
PS I
I I
I I
I s
I I
0.40 +------------------------.+~-----------------------+---------------------.---+------------------------+
I I
s I
I I
I PS I
I I
I s
I I
I I
s I
I*
I I
SP 0.20 +------------------------+------------------------+------------------------+--~---------------------+
I I SP
. I I
I I
I SP!
I I
I I.
I
. SP I
I I
I I
I SP I
I I
I I
SIP I
I 0.00 +------------------------+------------------------+----------------7-------+------------------------+
0.0 0.5
- 1. 0
- 1. 5 2.0 P3 - 0.490 0.669
- 0. 811 0.916 0.987
- 1. 034 1.064
- 1. 086 1.106 1.125 1.142 1.157 1.166 1.169 1.167 1.162 1.155 -
1.147 1.134 1.110 1.066 0.993 0.882
- 0. 728 0.533 SJ - 0.465 0.666 0.818 0.917 0.986
- 1. 036
- 1. 074 1.104 1.128 1.147 1.162 1.172 1.179 1.18~
1.179 1.173 1.162 1.145 1.121 1.088 1.042 0.977 0.877
4 5
7 8
CYCLE E
82 97.2\\ POWER -
DATE/TIME 02/05/92 17:38:00 PRI.P3X 2RPF AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP RMS DEVIATION FOR THIS MAP= 0.75 \\
A 8
D E
G H
J K
M N
Q 0.394 0.483 0.362 0.356 0.483 0.395 0.398 0.487 0.366 0.366 0.485 0.395 1.064 0.914 1.195 2.610 0.593 0.084 R
T 0.187 0.555 1.066 1.164 1.146 1.147 1.170 1.078 0.560 0.188 0.189 0.560 1.077 1.173 1.153 1.153 1.172 1.076 0.559 0.189 0.644 0.882 1.061 0.759 0.596 0.506 0.190 -0.224 -0:093 0.050 0.516 1.123 1.337 1.380 1.210 1.213 1.389 1.354 1.1)2 0.517 0.517 1.129 1.346 1.387 1.217 1.217 1.387 1.346 1.129 0.517 0.277 0.540 0.705 0.516 0.578 0.339 -0.109 -0.525 -0.250 0.068 0.188 0.517 0.797 0.188 0.517 0.793 0.139 0.061 -0.431 l.216 l.382
- l. 220
- l. 388 0.345 0.433 1.087
- l. 092 0.443 1.202 1.202 1.091 1.391 1.221 0.792 1.205 1.205 1.092 1.388 1,220 0.793 0.253 0.178 0.116 -0.176 -0.080 0.141 v
x 0.514 0.187 0.517 0.188 0.635 0.763 0.558 l.127 0.558 l.129 0.053 0.183 1.220 1.196 1.104 1.305 1.093 1.221 1.206 1.108 1.302 1.092 0.089 0.865 0.390 -0.232 -0.015 l'.092 l.303 l.093 l.302 0.027 -0.075 1.107 1.108 0.106
- l. 202
- l. 206 0.361 l.217 l.121 l.221 l.129 0.261 0.697 0.555 0.559
- 0. 665.
0.384 1.078 1.348 1.390 0.395 1.075 1.345 1.388 2.838 -0.296 -0.182 -0.110 1.112 l.114 0.213 1.063 1.045 1.190 1.188 1.064 1.045 1.188 1.188 0.107 -0.025 -0.189 -0.077 1.044 1.065 1.117 1.045 1-065 1.114 0.048 -0.035 -0.261 1.386 l.388 0.173
- l. 339
- l. 345 0.474 1.072 1.076 0.360 z
0.396
- 0. 398.
- 0. 406 10 0-487 1.187 1.397 1.097 1.310 1.052 1.304 1.158 1.157 1.305 1.056 1.307 1.088 1.381 1.168 0.485
- 11 13 0.485 1.171 1.386 1.092 1.306 1.051 1.302 1.157 1.157 1.302 1.051 1.306
-0.~61 -1.356 -0.772 -0.388 -0.294 -0.084 -0.190 -0.068 -0.060 -0.233 0.069 -0.064 0.368 1.166 1.225 1.211 1.097 1.192 1.155 0.365
~.152 1.216 1.204 1.093 1.188 1.155
-0.742 -1.199 -0.751 -0.528 -0.343 -0.304 0.053 0_369 1.168 1.226 1.211 1.098 1.197 1.149 1.041 1.042 1.159 1.186 1.091 1.042 1.042 1.155 1.188 1.093 0.052 -0.031 -0.336. 0.179 0.214 1.039 1.039 1.148 1.183. 1.089 0.366 1.152 1.216 1.204 1.093 1.188 1.155 1.042 1.042 1.155 1.188 1.093
-0.900 -1.347 -0.783 -0.558 -0.421 -0.718 0.514 0.223 0.264 0.605 0.445 0.353 l.092 l.386 l.172* 0.487 0.372 0.342 0.326 0.341 1.200 1.211 1.151 0.365 1.204 1.216 1.152 0.366 0.339 0.435 0.069 0.301 1.200 1.208 1.156 0.366 1.204 1.216 1.152 0.365 0.395 0.696 -0.372 -0.249 14 0.491 1.183, 1.397 1.097 1.313 1.054 1.306 1.156 1.151 1.280 1.043 1.303 1.090 1.392 1.190 0.491 16 17 19 20 22 23 0.487 1.172 1.386 1.092 1.306 1.051 1.302 1.157 1.157 1.302 1.051 1.306 1.092 1.386 1~171 0.485.
-o.876 -o*.900* -*o.799 -o.402 -o.535 -0.360 -0.300. 0.055 0.510 l.718.. 0.764 0.255 0.211 -0.379 -i.620 *-i.206 0.401 i.*005 l.353 l.395 2'.116 l.069. 1..054 i.191 1.191 l.038 l.063 0.39.
1.076 *i.345 1.388 1.114 1.065 1.045 1.188 1.188 1.045 1.064
-0.784 -0.814 -0.567 -0.483 -0.184 -0.355 -0.861 -0.324 -0.269 0.600 0.172 0.563 1.135 1.226 0.559 1.129. 1.221
-0.695 -0.578 -0.480 1.203 1.206 0.228 1.107 1.307 1.094 1.092 1.108 '1.302 1.093 1.092 0.045 -0.383 -0.148 0.046 l.299
- l. 302 0.249 1.103 1.108 0.407 l.lil 1.389 1.349 1.086 0.399 1.114 1.388 1.345 1.075 0.395 0.263 -0.038 -0.311 -0.983 -0.978 1.202 1.221 1.132 0.562 1.206 1.221 1.129 0.558 0.323 -0.056 -0.298 -0.698 0.189 0.520 0.801 1.22~ 1.385 1.092 1.20~ 1.202 1.086 1.382 1.217 0.188 0.517 0.793 1.220 1.388 1.092 1.205 1.205 1.092 1.388 1.220
-0.539 -0.571 -0.921 -0.724 0.246 0.012 0.004 0.219 0.578 0.460 0.309 0.792 0.518 0.193 0.793 0.517 0.188 0.124 -0.235 -2.621 0.531 1.139 1.351 1.394 1.218 1.213 1.379 1.337 1.123 0.515 0.517 1.129 1.346 1.387 1.217 1.217 1.387 1.346 1.129 0.517
-2.554 -0.872 -0.341 -0.475 -0.036 0.379 0.581 0.702 0.556 0.506 0.192 0.564 1.084 1.185 1.156 1.148 1.160 1.067 0.555 0.187 0.189 0.559 1.076 1.172 1.153 1.153 1.173 1.077 0.560 0.189
-1.596 -0.788 -0.780 -1.079 -0.267 0.429 1.089 0.938 0.840 0.737 0.398 0.489 0.365 0.361 0.467 0.390 0.395 0.485 0.366 0.366 0.487 0.398.
-0.754 -0.81'8 0.152 1.455 4.345 2.023 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100\\
Figure 6.lld Cycle 09 EOC HFP Axially Collapsed Assembly RPF 42
CYCLE 9
E 82 97.2\\ POWER -
DATE/TIME 02/05/92 17:38:00 PRI.P3X ZRPF NORMALIZED CORE AVERAGE AXIAL POWER DISTRIBUTION (P = PIDAL-3 ANDS
~ SIMULATE-3)
TOP 1.00 +------------------------+------------------------+------------------------+------------------------+
s I
I P s I
I PIS I I PS I I PS 0.80 +------------------------+------------------------+------------------------+------------------------+
I s I
I s I
I s I
IS I
SP 0.60 +------------------------+---------------------~--+------------------------+------------------------+
I I
I I
I
- I I
I I
s I
SP I
SP I
SP I
SI I
I I
I I
I*
I I
I 0.40 +------------------------+------------------------+------------------------+------------------------+
I
.PS I
I.
I I
I s
I I
I I
I IS I
I I
I I
I s I
I I
I I
I. s I
0.20 +----------~-------------+------------------------+----~~------------------+-----------------7------+
I SP I -
I s
I
. jPS I
PS I
I s P I
0.00 +------------------------+------------------------+-------------.-----------+------------------------+
0.0 0.5
- 1. 0
- 1. 5 2.0 P3 - 0. 718
- 0. 877 0.986 1.048 1.073
- 1. 072
- 1. 060
- 1. 044 1.031 1.023 1.018 1.014 1.008 1.001 0.996 0.996.
- 1. 004 1.024 1:051 1.078
- 1. 093
- 1. 081
- 1. 028 0.921 0.758 S3 - 0.703 0.905
- 1. 030
- 1. 076
- 1. 083
- 1. 073 1.057
- 1. 040
- 1. 026 1.014
- 1. 005 0.998 0.995 0.994 0.997
- 1. 003 1.012
- 1. 025
- 1. 042 1.062 1.079 1.085
4 5
7 CYCLE 10 E
1 23.1\\ POWER -
DATE/TIME 04/18/92
- 20: 02: 00 PRI.P3X 2RPF AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP RMS DEVIATION FOR THIS MAP a 2.01 \\
A B
D E
G H
J K
M N
Q 0.248 0.398 0.259 0.233 0.384 0.238 0.242 0.388 0.256 0.255 0.383 0.235
-2.467 -2.439 -1.329 9.241 -0.206_;1.204 R
T v
x 0.167 0.537 1.264 1.092 1.377 1.339 1.060 1.232 0.529 0.166 0.167 0.530 1.235 1.063 1.339 1.317 1.039 1.213 0.523 0.166
-0.061 -1.288 -2.348 -2.635 -2.731 -1.669 -1.962 -1.502 -1.076 -0.395 0.559 1.306 1.278 1.363 1.354 1.251 1.319 1.260 1.299 0.562 0.567 1.305, 1.258 1.328 1.295 1.219 1.295 1.240 1.293 0.564 1.427 -0.088 -1.557 -2.584 -4.362 -2.609 -1.817 -1.539 -0.491 0.265 0.162 0.551 1.203 0.166 0.564 1.252 1.998 2.366 4.097 0.514 1.273 1.146 0.523 1.293 1.175 1.700 1.585 2.552 1.164 1.310 1.066 1.179 1.278 1.050 1.298 1.182 1.302 1.046 1.146 1.250 1.034 1.289 1.560 -0.615 -1.944 ~2.833 -2.167 -1.532 -0.641 1.234 1.137 1.230 1.084. 1.091 1.231 1.132 1.254 1.132 1.215.1:059 1.070 1.219 1.129 1.659* -0.497 -1.296 -2.294 -1.936 -0.985 -0.271 1.166 1.175
- 0. 787
- 1. 236 1.254 1.519 1.231 0.555 0.164 1.252 0.567 0.167 1.696 2.237 2.243 1.156 1.264 0.517 1.182 1.305 0.530 2.307 3.261 2.471 z
8 0.222 1.187 1.221 1:211 1.124 1.006 1.092 1.305 1.247 1.093 0.998 1.118 1.281 1.235 1.212 0.237 0.235 1.213 1.240 1.289 1.129 0.997 1.071 1.271 1.223 1.086 0.997 1.132 1.302 1.258 l*.235 0.242 5.960 2.204 1.524 1.446 0.413 -0.911 -1.993 -2.634 -1.937 -0.630 -0.129 1.200 1.597 1.850 1.900 1.748 10 11 13 0.374 1.017 1.276 1.020 0,393 1.039 1.295 1.034 2.490 2.168 1.527 1.329 1.218 1.100 1.293 1.233 1.237 1.282 1.076 1.219 1.086 1.264 1.204 1.211 1.264 1.071 0.079 -1.281 -2.248 -2.399 -2.133 -1.412 -0.475 0.252 1.304 1.210 0.255 1.317 1.219 1.094 0.957 0.711 1.244 1.075 1.240 1.235 1,234 1.237 1.236 1.275 1.251 1.070 1.223 1.211 *1.207 1.207 1.204 1.271 0.497 -0.501 -1.336 -1.969 -2.251 -2.475 -2.634 -0.344 1.208 1.215
- 0. 572 1.057
- 1. 059 0.229 0.255 1.341 0.256 1.339 0.159 -0.084 1.292 1.146 1.068 1.287 1.224 *1.234 1.243 1.234 1.231 *1.067 1.295 1.146 1.059 1.271 1.204 1.207 1.207 1.211 1.223 1.070 0.261 -0.011 -0.818 -1.270 -1.675 -2.224 -2.940 -1.879 -0.679 0.249
- 1. 036
- 1. 046 0.957
- 1. 312
- 1. 328 1.187 1.047 0.382 1.063* 0.388
- 1. 489
- 1. 534 1.136 1.278 1.318 1.146 1.295 1.339 0.868 1.304 1.639 0.252 0.256 1.595 1.237 1.251 1.129 1.198 1.219
- 1. 680 1.292
- 1. 317 1.900 0.250 0.255
- 1. 84 7 14 0.386 1.057 1.319 1.044 1.219 1.085 1.288 1.237 1.228 1.277 1.090 1.211 1.021 1.271 1.017 0.375 o.388 1.063 1.328 1.046 1.215* 1.011 1.264 1.211 1.204 1.264 1.086 1.219., 1.034 1.295 1.039 o.383 0.597 0.610 0.673 0.17~ -0.370 cl.277 -1.825 -2.075 -1.937 -0.962 -0.381 0.615 1.284 l.8q5 2.224 2.208 16 17 19 20 22 23 0.239 1.215 0.242 1.235 1.280 i.641 1.244 1.258 1.146 1.290 1.131 1.008 1.115 1.249. 1.291 1.081 1.302 1.132 0.997 1.086 1-223 1.271 1.071 0.887 0.048 -1.116 -2.584 053 -1.521 -0.985 0.996, 1.117
- 0. 997.
1.129 0.047 1.025 1.266 1.289
- 1. 852 0.507 1.279 1.158 0.530 1.305 1.182 4.549 2.026 2.079 1.237 1.134 1.237 1.090 1.080 1.223 1.254 1.129 1.219 1.070 1.059 1.215 1.380 -0.439 -1.444 -1.859 -1.874 -0.724 1.128 1.132 0.368 1.227 1.254 2.196 1.140 1.175 3.122 0.162 0.556 1.220 0.167 0.567 1.252 3.100 2.060 2.658 1.149 1.175 2.304 1.288 1.046. 1.273 1.182 1.054 1.289 1.034 1.250 1.146 1.046 0.082 -1.150 -1.767 -3.039 -0.841 1.292
- 1. 302 0.734 1.152 1.197 1.182 1.252 2.617 4.578 0.548 1.279 1.244 1.308 1.235 1.311 1.328 1.249 1.284. 0.552 0.564 1.293 1.240 1.295 1.219 1.295 1.328 1.258 1.305 0.567 2.928 1.050 -0.291 -0.993 -1.330 -1.194 -0.053 0.687 1.648 2.640 0.163 0.522 1.222 1.059 1.330 1.344 1.055 1.222 0.524 0.164 0.166 0.523 1.213 1.039 1.317 1.339 1.063 1.235 0.530 0.167 1.482 0.087 -0.696 -1.800 -0.972 -0.350 0.777 1.065 1.225 1.798 0.238 0.389 0.257 0.253 0.358 0.235 0.235 0.383 0.255 0.256 0.388 0.242
-0.963 -1.604 -0.861 1.117 8.269 2.581 Figure 6.12a Cycle I 0 BOC HLP Axially Collapsed Assembly RPF 1.216
- 1. 240 2.001 1.261 1.293 2.547 0.546 0.564 3.232 1.187 1.213 2.186
- 0. 511 0.523 2.360 0.159 0.166 3.857 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100\\
44 0.230 0.235 2.285
1 2
4 5
7 CYCLE 10 E
3 99.6\\ POWER -
DATE/TIME 04/26/92 09:02:00 PRI.P3X 2RPF AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP RMS DEVIATION FOR THIS MAP= 1.63 \\
A B
D E
G H
J K
M N
Q 0.248 0.390 0.244 0.235 0.382 0.240 0.242 0.381 0.239 0.238 0.377 0.236
-2.389 -2.242 -1.908 1.493 -1.476 -1.462 R
T 0.174 0.536 1.212 1.051 1.290 1.264 1.028 1.182-0.529 0.174 0.175 0.530 1.184 1.027 1.260 1.240 1.006 1.165 0.524 0.173 o.266 :1.000 -2.351 -2.244 -2.338 -1.864 -2.104 -1.451 -0.998 -0.430 0.572 1.272 1.242 1.310 1.300 1.212 1.275 l.228 l.270 0.577 0.580 1.274 1.228 1.286 1.260 1.187 1.255 1.212 1.263 0.577 1.47~ 0.157 -1.102 -1.858 -3.127 -2.128 -1.568 -1.294 -0.502 0.062 0.170 0.565 1.222 0.173 0.577 1.262 1.724 2.206 3.284 1.190 1.292 1.066 1.177 1.262 1.051 1.286 1.204 1.290 1.054 1.153 1.241 1.039 1.279 1.173 -0.110 -1.139 -2.002 -1.639 -1.182 -0.567 1.197 1.198 0.086
- 1. 2°51 1.262 0.869 v
x 0.569 0.171 0.580 0.175 1.889 2.136 0.518 1.245 1.175 1.260 1.156 1.236 1.105 1.115 1.244 1.158 1.272 0.524 1.263 1.198 1.282 1.157 1.230 1.087 1.098 1.234 1.154 1.282 1.230 1.493 1.887 1.773 0.140 -0.478 -1.636 -1.483 -0.755 -0.286 0.792 1.188 1.236 0.518 1.204 1.274 0.530 1.382 3.082 2.292 z
8 0.227 1.152 1.199 1.262 1.146 1.042 1.123 1.329 1.286 1.132 1.042 1.155 1.276 1:208 1.164 0.238 0.236 1.165 1.212 1.279 1.154 1.038 1.108 1.298 1.264 1.127 1.038 1.157 1.290 1.228 1.184 0.242 4.192 1.121 1.038 1.314 0.717 -0.34) -1.393 -2.351 Cl.718 -0.437 -0.354 0.24) 1.115 1.675 1.687 1.5)7 10 11 13 14 16 17 19 20 22 23
- 0. 374 0.377 0'.630 1.004 1.006 0.203 1.247 °1.027 1.255 1.039 0.629 1.153 1.232 1.137 1.323 1.280 1.290 1.323 1~118 1.230 1.234 1.127 1.299 1.252 1.261 1.299 1.108 1.230 0.231 -0.888 -1.766 -2.217 -2.220 -1.823 -0.945 -0.001 0.240 1.251 i.190 0.238 1.240 1.187
-0.774 -0.855 -0.316 1.240 1.102 1.279 1.285 1.301 1.309 1.300 1.312 1.090
_1:241 1.098 1.264 1.261 1.270 1.270 1.252 1.298 1.087 0.139 -0.317 -1.225 -1.854 -2.322 -2.925 -3.747 -1.067 -0.255 0.244 1.292 1.270 1.156 1.088 1.318 1.276 1.301 1.316 1.290 1.277 1.099 0.239 1.260 1.260 1.153 1.087 1.298 1.252 1.270 1.270 1.261 1.264 1.098
-1.996 -2.493 -0.848 -0.267 -0.095 -1.499 -1.907 -2.335 -3.460 -2.232 -1.042 -0.128 0.384 1.035 1.287 0.)81 1.027 1.286
-0.793 -0.725 -0.085 1.053 1.230 1:119 1.320 1.283 1.270 1.306 1.131 1.229 1.05~ 1.230 1.108 1.299 1.261 1.252 1.299 1.127 1,234 0.112 -0.015 -1.008 -1.589 -1.669 -1.454 -0.482 -0'.334 0.458 0.241 1.175 1.219 0.242 1.184 1.228 0.319 0.771 0.773 1.278
- 1. 290 0.939 0.512 1.251 1.183 0.536 1.274 1.204 3.50~ 1.820 1.752 1;151 1.043 1.156 1.278 1,299 1.109 1.157 1.038 1.127 1.264 1.298 1.108 0.594 -0.433 -1.994 -1.146 -0.030 -0.158 1.256 1.148 1.241 1.106 1.093 1.282 1.154 1.234 1.098 1.087 2.049 0.560 -0.512 -0.745 -0.550 1.228
- 1. 230 0.173
- 1. 038 1.038 0.012 1.147 1.157
- 0. 943 1.142 1.154 1.130
- 1. 252
- 1. 282 2.415 1.047 1.054 0.638 1.271 *1.015 o.377 1.286 1.02~ 0.381 1.169 1.227 1.234 1.149 1.153 0.359 1.250 1.260
- 0. 771
- 1. 247
- 1. 260 1.043 0.237 0.239 1.034 1.235 1.180 1.227 0.236 1.241 1.187 1.240, 0.238 0.521 0.579 1.023 1.039 1.029 1.240 1.-.039
- 1. 255 0.940. 1.182
- 1. 257
- 1. 279 1.707 1.192 1.212
- 1. 645 1.167
- 1. 234 1.198 1.263 2.655 2.398 0.994 l'. 006 1.230
- 0. 372
- 0. 377 1.324 1.147 0.232 1.165' 0. 236 1.612 1.640 0.513 0.524 2.119 0.170 0.568 1.230 1.162 1.263 1.039 1.249 1.172 1.053 1.273 1.175 1.208 0.559 0.166 0.175 0.580 1.262 1.198 2.796 2.099 2.550 3.108 0.560 1.238 0.577 1.263 3.014 2.061 1.279 1.039 1.241 1.153 1.224 -0.038 -0.630 -1.580 1.203 1.255 1.191 1.264 1.212 1.255 1.187 1.260 0.763 -0.060 -0.403 ~0.313
- 1. 054 0.127
- 1. 278
- 1. 286
- 0. 574 1.290
- 1. 345 1.213 1.228 1.266
- 1. 204 2.473
- 1. 247 1.274 2.109 1.262 4.418 0.563 0.580 3.070 0.170 0.518 1.163 1.018 l.244 1.258 1.018 1.168 0.521 0.171 0.173 0.524 1.165 1.006 1.240 1.260 1.027 l.184 0.530 0.175 2.081 1.192 0.192 -1.176 -0.301 0.171 0.939 1.368 1.680 2.431 0.236 0.380 0.239 0.237 0.366 0.237 0.236 0.377 0.238 0.239 0.381 0.242
-0.132 -0.943 -0.373 0.828 4.236 1.973 0.577 0.173 3.343 4.202 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100\\
Figure 6.12b Cycle 10 BOC HFP Axially Collapsed Assembly RPF 45
CYCLE 10 E
99.6t POWER -
DATE/TIME 04/26/92 09:02:00 PR!. PJX ZRPF NORMALIZED CORE AVERAGE AXIAL POWER. DISTRIBUTION (P a 'PIDAL-3 AND S
~ SIMUL/\\TE-3)
TOP 1.00 +------*------------------+-----------------*-------+------------------------+------------------------+
s s
s s
SP 0.80 +------------------.------+------------------------+------------------------+------------------------+
I SP I
I I
I s
I I
I I
SP I
I
- I I
SP I
I I
I SP I
0.60 +------------------------+------------------------+------------------------+------------------------+
I s
I I
I I
I I
s I
I I
I I
I s
I I
I I
I, I
s I
I I
- I I
I s
I I
0.40 +--------------~---------+------------------------+------------------------+-----------~-----------~*
I PS I
I I
I PS I
I I
I s
I I
I I
PS I
I I
'I*
s I
0.20
+------------------------+-----------------------~+------------------------+------------------------+
I I
IS I'
I I
I I
1
- I s
I I
I I
I I
I I
PS I
I I
I I
I I
I PS I
I I
I I
I I
SP I
I I
0.00 +-----------------~------+------------------------+------------------------+------------------------+
0.0 0.5
- l. 0
- l. 5 2.0 PJ - 0.436 0.632 0.794 0.920 1.010
- l. 072 1.114 l.143 l.164 1.180' l.192 1.199 l.200 l.195 1.185 1.172 1.158 l.141 l.119 1.084
- l. 028 0.941 0.817 0.652 0.450 SJ - 0.426 0.631 0.800 0.917 0.999 1.058 1.101 1.133 1.157 1.174 1.187 1.195 l.199 1.199 1.195 1.187 l.173 1.152 1.124
- l. 084 1.029 0.951 0.836 0.663 0.431 Figure 6.12c Cycle l 0 BOC HFP Radially Collapsed Assembly RPF 46
1 2
4 5
7 8
10 11 13 14 16 17 19 20 22 23 CYCLE 10 E
76 99.9\\ POWER - DATE/TIME 06/04/93 19:02:00 PRI.P3X 2RPF AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP RMS DEVIATION FOR THIS MAP= 1.05 t A
B D
E G
H J
K M
N Q
0.241 0.382 0.267 0.273 0.388 0.241 0.238 0.376 0.263 0.264 0.380 0.238
-1.575 -1.381 -1.523 -3.009 -1.858 -1.326 R
T 0.191 o.509 1.010 o.935 1.124 1.129 o.948 1.020 o.511*
0.191 0.190 0.503 0.997 0.923 1.111 1.114 0.932 1.005 0.506 0.190
-0.599 -1.222 -1.986 -1.336 -1.132 -1.284 -1.707 -1.393 -0.978 -0.566 0.574 1.184 1.143 1.394 1.158 1.152 1.429 1.158 1.190 0.575 0.572 1.174 1.131 1.381 1.148 1.142 1.414 1.143 1.179 0.573
-0.357 -0.830 -1.001 -0.933 -0.886 -0.888 -1.070 -1.263 -0.904 -0.469 v
x z
0.192 0.577 1.196 1.173 1.489 1.106 1.137 1.448 1.152 1.501-1.175 1.199 0.571 0.189 0.190 0.573 1.195 1.168 1.480 1.102 '1.131 1.441 1.148 1.493 1.171 1.195 0.572 0.190
-0.810 -0.688 -0.024 -0.425 -0.611 -0.397 -0.480 -0.442 -0.291 -0.550 -0.381 -0.275 0.184 0.453 0.512 i.198 i.176 1.495 1.215 1.452 1.114 1.119 1.452 0.506 1.179 1.171 1.487 1.211 1.452 1.114 1.120 1.458
-1.219 -1.537 -0.444 -0.501 -0.288 -0.062 -0.070 0.136 0.356 0.235 1.017 1.152 1.495 1.215 1.060 1.142 1.434 1.157 1.087 0.238 1.005 1.143 1.493 1.214 1.060 1.141 1.433 1.164 1.109 1.408 -1.135 -0.782 -0.113 -0.069 -0.057* -0.118 -0.096 0.593 1.997 1.213 1.490 1.168 1.214 1.487 1.168 0.049 -0.170 0.046 1.052 1.215 1.480 1.060 1.211 1.480 0.694 -0.255 -0.025 0.387 0.951 1.424 0.380 0.932 1.414
-1.588 -2.072 -0.694 1.135 1.452 1.109 1.398 1.148 1.458 1.109 1.391 1-169 0.353 0.046 -0.456 1.118 1.088. 1.375 1.130 1.447 1.099 1.119 1.095 1.391 1.141 1.452 1.102 0.081 0.621 1.160 0.955 0.344 0.294 0.272 1.143 1.155.. 1.439 0.264 1.114 1.142 1.441
-2.653 -2.547 -1.091 0.125 0.274 1.164 1.168 0.263 1.111 1.148
-3.837 -4.547 -1.682 1.131 1.131 0.022 1.113 1.120 0.625 1.162 1.164 0.147 1.093 1.095 0.175 1.092 1.435 lcl09 1.114 1.433 1.119 1.981 -0.130. 0.847
- 1. 013
- 1. 016 0.256
- 1. 011 1.016 0.471
- 1. 012
- 1. 019 1.016 1.016 0.379 -0.296 1.105 1.119 1.266 1.085 1.095 0.868 1.413 1.433 1.406 1.151 1.164 1.078 1.105 1.114 0.764 1.112 1.120 0.702 1.127 1.131 0.337 1.437 1.441
- 0. 307 1.170 0.501 1.174 0.503 0.39.6 0.385 1.129 1.131 0.162 1.379 1.381 0.097 0.996 0.997 0.152 0.237 0.238
- 0. 374 0.922 0.376 0.923*. 0.376 0.023 0.063 1.147 1.112. 0.264 1.148 1.111 0.263 0.125 -0.081 -0.220 1.140 1.120 0.267 1.142 1.114 0.264 0.155 -0.521 -0.837 0.385 0.944 1.397 1.103 1.444 1.137 1.383 1.087 1.110 1.375 0.376 0.923 1.381 1.102 1.452 1.141 1.3.91.. 1.095 1.119 1.391 1.095 1.449 1.145 1.420 0.950 0.386 1.109 1.458 1.148 1.414 0.932 0.380
-2.338 -2.248 -1.146 -0.104 0.495 0.391 0.612 d.694 0.819 l.~75 1:3~1 0.589 0.263 -0.461 -1.959 -1.531 0.240 1.007 1.138 1.483 0.238 0.997 1.131 1.480
-1.089 -0.935 -0.576 -0.218 1.210" 1.055 1.211 1.060 0.109. 0.408 1.101 1.109
- 0. 771 1.154 1.164 0.879 1.416 1.433 1.181 1.125 1.141 1.453
- 1. 035 1.060 2.428 1.208 1.214 0.508 l.~92 1.147 1.015 0.240 1.493 1.143 1.005 0.238 0.057* -0.284 -0.915 -0.885 0.499 1.176 1.168 1.492 0.503 1.174 1.168 1.487 0.909 -0.117 -0.004 -0.284 1.211 1.451 1.214 1.458 0.200 0.474 1.111 1.101 1.120 1.114 0.832 1.174 1.437 1.452
- 1. 040 1.202 1.495 1.211 1.487 0.824 -0.525 1.170 1.181 -0.506 1.171 1.179 0.506 0.065 -0.130 -0.174 0.188 0.570 1.190 1.158 0.190 0.572 *1.195 1.171 0.734 0.272 0.409 1.076 0.569 1.174 0.573 1.179 0.707 0.450
- 1. 490 1.143 1.493 1.148 0.215 0.480 1.142 1.414 1.143 1.414 0:120 -0.018 0.189 0.504 1.009 0.942 0.190 0.506 1.005 0.932 0.600 0.212 -0.336 -1.143 1.431 1.441
- 0. 747 1.115 1.090 1.131 1.102
- 1. 430* 1.126 1.470 1.480 0.694 1.137 1.142 0.449 1.138 1.148
- 0. 911 1.112 1.102 1.114 1.111 0.181 0.819 1.368
- 1. 381 0.952 1.122 1.131 0.814 0.912 0.987 0.923 0.997 1.139 1.002 0.239 0.383 0.264 0.260 0.363 0.233 0.238 0.380. 0.264 0.263 0.376 0.238
-0.292 -0.785 0.012 1.224 3.567 1.934 1.164 1.168 0.385 1.168 1.174 0.549 1.188 1.195 0.653 0.568
- 0. 572
- 0. 712 0.499 0.188 0.503 0.190 0.847 0.938 0.570 0.573 0.513 0.186 0.190.
2.238 PIDAL-3 SIMULATE-3 (S3-P3)/P3*lOOt Figure 6.12d Cycle l 0 EOC HFP Axially Collapsed Assembly RPF 47
CYCLE 10 E
76 99.9\\ PO~R -
DATE/TIME 06/04/93 19:02:00 PRI.P3X ZRPF NORMALIZED CORE AVERAGE AXIAL POWER DISTRIBUTION (Pa PIDAL-3 ANDS a SIMULATE-3)
TOP 1.00 +------------------------+------------------------+------------------------+------------------------+
s I
I PS I
I PIS I I PS I
I s 0.80 +------------------------+------------------------+------------------------+------------------------+
I s I
I s I
IS I s I
SI 0.60 +------------------------+------------------------+------------------------+------------------------+
SI I
SI I
SPI I
SI I
SI I
I I I.
I I'
I I
I 0.40 +------------------------+------------------------+------------------------+----------------------.--+
I
- I SI I
I
. I I
I I
I s
I I
I I
I I
I IS I
I I
I I
I I
I SP I
I I
I I
1*.
I I
s I
0*.20 *~-----------------------+------------------------+------------------------+------------------------+
I SP I
I s
I I
PS 1
- s I I
s p
I 0.00 +------------------------+------------------------+------------------------+------------------------+
0.0 0.5
- 1. 0
- 1. 5 2.0 P3 - 0. 718 0.882 0.992
- 1. 052
- 1. 071
- 1. 064 1.045 1.024 1.007 0.998 0.993 0.991 0.987 0.983 0.981 0.986 1.000 1.027
- 1. 063 1.100 1.123 1.117 1.064 0.952 0.778
, S3 - 0. 710 0.909
- 1. 034 1.078
- 1. 080 1.064
- 1. 044 1.024 1.007 0.994 0.986 0.981 0.979 0.982 0.988 0.998 1.012
- 1. 031
- 1. 054 1.080 1.104 1.113
- 1. 082 0.959
2 4
7 8
10 11 13 14 16 17 19 20 22 23 CYCLE 11 E
1 28.0t POWER -
DATE/TIME 11/06/93 18:02:00 PRI.P3X 2RPF AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP RMS DEVIATION FOR THIS MAP= 2.37 t A
B D
E G
H J
0.162 0.276 0.161 0.274
-1.168.-0.965 K
M 0.210 0.187 0.211 0.213 0.698 13.971 N
0.335 0.339 1.392 Q
0.201 0.202 0.448 R
T v
x z
0.128 0.361 0.687 0.894 1.346 1.068" 1.345 0.793 0.387 0.135 0.127 0.357 0.679 0.884 1.335 1.070 1.345 0.794 0.387 0.135
-0.718 -1.060 -1.207 -1.146 -0.768 0.194 0.002 0.137 0.144 -0.111 0.388 1.279 1.293 1.506 1.432 1.541 1.300 1.294 1.344 0.402 0.388 1.270 1.279 1.488 1.407 1.536 1.301 1.299 1.348 0.401
-0.077 -0.707 -1.090 -1.230 -1.729 -0.373 0.051 0.364 0.321 -0.156 0.137 0.405 0.135 0.401
-1.721 -1.042 0.853 1.251 1.525 1.126 1.498 0.967 0.867 1.245 1.511 1.111 1.486 0.966 1.610 -0.540 -0.955 -1.342 -0.802 -0.115 1.304 1.310 0.508 1.544 1.554 0.652 0.396 1.379 1.336" 1.438 0.984 1.488 1.209 0.908 1.331 0.943 0.387 1.348 1.324 1.418 0.971 1.463 1.208 0.918 1.354 0.954
-2.118 -2.231 -0.858 -1.409 -1.296 -1.719 -0.157 1.016 1.704 1.211 0.194 0.806 i.320 1.566 0.961 1.393 1.272 1.194 1.348 0.945 1.355 0.202 0.794 1.299 1.554 0.954 1.391 1.276 1.217 1.384 0.983 1.391
- 3.918 -1.506 -1.612 -0.772 -0.761 -0.104 0.294 1.922 2.698 4.069 2.691 0.345 1.371 1.322 1.313 1.353 0.339 1.345 1.301 1.310 1.354
-1.554 -1.851 -1.601 -0.248 0.098 0.220 1.109 1.572 0.977 0.914 0.213 1.070 1.53~
0~966 0.918
-3.339 -3.489 -2.309 -1.116 0.357 0.976 1.526 0.983 1.550 0.706 1.574 1.362 1.180 1.384' 1.201 1.668. 1.843 0.984 1.164 1.006 1.201 2.219 3.183
- 1. 071
- 1. 058 1.104 1.104 3.042 4.333 1.495 1.239 1.550 1.276 3.656 3.004 0.967 1.167 1.006 1.217 4.039 4.246 1.319 0.871. 0.399 0.131 1.324 0.867 0.388 0.127 0.394 -0.540 -2.914 -3.315 1.410 1.258 1.325 0.370 1.418 1.245 1.270 0.357 0.536 -1.072 -4.158 -3.510 0.953 1.515 1.302 0.692 0.163 0.971 1.511 1.279 0.679 0.161 1.905 -0.301 -1.780 -1.924 -1.813 1.436 1.463
- 1. 831 1.186 1.208 1.820 1.110 1.501 0.895 0.278 1.111 1.488 0.884' 0.274 0.078 -0.865 -1.316 -1.494 1.482 1.418 1.352 0.214 1.487 1.407 1.335 0.211 0.296 -0.786 -1.212 -1.396 0.224 1.425 1.453 1.506 1.197 1.182 0.991 1.064 1.031 0.211 1.335 1.407. 1.487 1.208 1.217 1.006 1.104 1.104
-5.777 -6.298 -3.190 -1.31~ 0.878 2.901 1.499 3.684 7.080 1.162 1.345* 0:905 0.967 1.555 1.091 0.217 1.201 1.384 0.918 0.966 1.536 1.070 0.213 3.405 2.915 1.416 -0.102 -1.240 -1.919 -2.051 0.287 0~925 1.532 1.131 1.464 1.259 1.516 1.167 0.971 0.274 0.8~4 1.488 1.111 1.463
~.276.1.550 1.201 1.006
-4.766 -4.501 -2.896 -1.764 -0.063 1.295 2.213 2.. 9.73 3.563 1.532 0.967 1.340 1.311 1.318 1.391 0.350 1.550 0.983 1.354 1.310 1.301 1.345 0.339 1.143 1.710 l.o3o -0.053 -1.31r -3.260 -3.119 0.167 0.705 1..316 _1.543 0.985 1.383* 0.958 0.161 0.679 1.279 1.511 0.971 1.391 0.983
-4.052 -3.726 -2.812 -2.082 -1.475 0.591 2.641 1.343 1.162 1.250 1.361 1.384 1.217 1:276 1.391 3.065 4.713 2.099 2.196 0.374 1.306 1.276 1.466 0.961 0.357 1.270 1.245 1.418 0.954
-4.388 -2.762 -2.435 -3.275 -0.736 1.346 0.909 1.354. 0.918 0.633 0.974 1.196 1.208 0.956 1.447 0.9.60 1.463 0.971 1.111 1.108 0.132 0.398.0.879 1.339 1.554 1.315 0.973 1.516 1.113 1.500 0.127 0.388 0.867 1.324 1.554 1.310 0.966 1.486 1.111 1.511
-3.576 -2.518 -1.384 -1.124 -0.032 -0.376 -0.789 -1.931 -0.235 0.746 0.395 1.356 1.309 1.313 1.549 1.421 1.491 0.401 1.348 1.299 1.301 1.536 1.407 1.488 1.490 -0.~91 -0.743 -0.986 -0.862 -0.988 -0.182 1.274 1.279 0.358 0.944 0.954 1.080 1.545 1.304 0.808 0.207 1.554 1.299 0.794 0.202 0.535 -0.389 -1.717 -2.198
- 1. 399 1.418
- 1. 311 1.307 1.340 0.387 1.324 1.348 0.387 1.297 0.643 0.121 1.227 0.839 1.245 0.867 1.432 3.271 1.258 0.382 1.270 0.388 0.979 1.590 0.394 0.401
- 1. 834 0.124 0.135 9.056 0.135 0.391 0.804 1.369 1.083 1.345. 0.886 0.678 0.355 0.126 0.135 0.387 0.794 1.345 1.070 1.335 0.884 0.679 0.357 0.127 0.128 -0.961 -1.287 -1.713 -1.120 -0.700 -0.240 0.131 0.506 0.897 0.205 0.346 0.215 0.212.0.268 0.159 0.202 0.339 0.213 0.211 0.274 0.161
-1.534 -1.803 -1.098 -0.343 2.236 0.702 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100t Figure 6.13a Cycle 11 BOC HLP Axially Collapsed Assembly RPF 49
1 2
4 5
7 8
10 11 CYCLE 11 E
4 100.0\\ POWER -
DATE/TIME 11/18/93 08:02:00 PRI.P3X 2RPF AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP' RMS DEVIATION FOR THIS MAP= 1.95 \\
A B
D E
G H
J K
M N
Q 0.172 0.282 0.206 0.198 0.339 0.208 0.169 0.280 0.206 0.208 0.341 0.209
-1.632 -0.874 0.218 5.297 0.517 0.300 R
T v
x z
0.136 0.373 0.701 0.881 1.277 1.039 1.291 0.792 0.397 0.143 0.135 0.369 0.687 0.873 1.273 1.040 1.289 0.794 0.398 0.143
-0.627 -1.120 -1.954 -0.900 -0.308 0.120 -0.083 0.220 0.144 -0.154 0.404 *l.247 1.261 1.440 1.368 0.404 1.241 1.250 1.430 1.359
-0.032' -0.514 -0.863 -0.695 -0.624 1.472 1.473 0.076 1.270 1.273 0.244 1.264 1.270 0.526 1.305 0.417 1.308 0.416 0.224 -0.273 0.145 0.419 0.879 1.246 1.479 1.119 1.457 0.143 0.416 0.888 '1.241 1.470 1.110 1.454
-1.267 -0.752 1.030 -0.392 -0.591 -0.872 -0.171 0.980 1.297 1.499 1.314 0.896 0.414 0.139 0.983 1.306 1.508 1.313 0.888 0.404 0.135 0.310 0.685 0.602 -0.069 -0.845 -2.503 -2.711 0:404 1.330 1.319 1.417 0.998 1.479 1.231 0.398 1.308 1.313 1.409 0.991° 1.456 1.234
-1.573 -1.641 -0.446 -0.617 -0.724 -1.516 0.204 0.946 1.338 0.965 1.414 1.257
- 1.2~6 0.380 0.957 1.362 0.975 1.409 1.241 1.240 0.369 1.213 1.781 1.031 -0.372 -1.243 -3.544 -2.843 0.206 0.804 1.283 1.507 0.974 1.392 1.295 1.238 1.378 0.982 1.362 0.209 0.794 1.270 1.508 0.975 1.399 1.304 1.265 1.415 1.022 1.399 1.577 -1.216 -0.951 0.088 0.078 0.499 0.717 2.138 2.683 4.075 2.699
.0.347 1.313 1.286 1.291 0.341 1.289 1.273 1.306
-1.703 -1.770 "0.974 1.138 1.348 1.008 1.538 1.050 1.231 1.522 *1.269 1.362 1.022 1.572 1.074 1.265 1.572 1.304 1.051* 1.366 2.191 2.295 2.757 3.268 2.786
. 0.215 1.011 1.502 o.~86 o.947 1.388 0.208 1.040 1.473 0.983 0.957 1.415
-3~422 -3.449 -1.886 -0.331 1.088 1.948 1.240 1.161 1.156 1.265 1.190 1.190 2.012 2.466 2.929
- 1. 042
- 1. 074 3.939 1.220
- 1. 265
- 3. 641 0.968 1.470 1.266 0.697 0.172 0.991 1.470 1.250 0.687 0.169 2.367 0.019 -1.280 -1.441 -1.308 1.429 1.105 1.434 0.882 0.283 1.456 1.110 1.430 0.873" 0.280 1.944 0.413 -0.314 -0.937 -1.082
- 1. 213 1.234
- 1. 714 1.449 1.368 1.288 0.209 1.454 1.359 i.273 0.206 0.397 -0.618 -1.134 -1.276 13 0.219 1.364 1.401 1.465 1.212 1.233 1.057 1.161 1.151 1.234 1.382 0.947 *0.985 1.492 1.063 0.213 14 16 17 19 20 22 23 0.206 1.273 1.359 1.454 1.234 1.265 1.074 1.190
-5.994 -6.682 -2.969 -0.707 'l.829 2.607 1.564 2.475 1.190
- 1. 265 3.322 2.472 0.294 0.915 1.470 1.124 0.280 0.873 1.430 1.110
-4.728 -4.517 -2.700 -1.319 1.451 1.456 0.387 0.1'6 0.169 0.714 1.284 1.498 1.002 0.687 1.250 1.470 0.991
-3.960 -3.673 -2.625.-1.824 -1.149 1:287 1.541 1.236 1.304. 1.572. 1.265 1.316 2.031 2.321
- 1. 389
- 1. 399 0.672 0.997
- 1. 022 2.461 1.380 1.415 2.566 1.046
- 1. 074 2.612 1.219
- 1. 265
- 3. 721 1.546 1.572 1.677 1.281 1.304 1.854 0.387 1.274 1.272 1.455 0.981 1.352 0.369 1.240 1.241 1.409 0;975 1.362
-4.617 -2.667 -2.432 -3.157 -0.579 0.684 0.948 1.222 1.442 0.957 1.234 1.456 0.927 0.985 0.983 0.140 0.413 0.900 1.319 0.135 0.404 0.888 1.313
-3.495 -2.306 -1.360 -0.432 1.507 1.309 0.988 1.470 1.111 1.508 1.306 0.983 1.454 1.110 0.092 -0.218 -0.477 -1.078 -0.158 1.415 2.395
- 1. 006
- 1. 022 1.538 1.377 1.399
- 1. 598.
0.985 0.991 0.598 1.466 1.470 0.295 0.957 0.983 1.473 1.040 0.208 1.126 -0.213 -1.272 -2.219 -2.460 1.353 1.311 1.297 1.346 0.355 1.362 1.306 1.273 1.289 0.341 0.662 -0.441 -1.797 -4.169 -3.906 0.971 1.510 1.284 0.814 0.215 0.975 1.508 1.270 0.794 0.209 0.394 -0.149 -1.055 -2.432 -2.899 1.408 1.310 1.311 0.401 1.409 1.313 1.308 0.398 0.055 0.190 -0.220 -6.11~
1.236 1.241 0.428
- 0. 871 0.888 1.937 0.412 0.416 0.842 0.135 0.143 6.069 0.415 1.313 1.279 1.286 1.485 1.371 1.435 1.251 1.236 0.400 0.416 1.308 1.270 1.273 1.473 1.359 1.430 1.250 1.241 0.404 0.154 -0.382 -0.636 -1.000 -0.806 -0.833 -0.359 -0.058 0.335 0.861 0.144 0.401 0.805 0.143 0.398 0.794 1.317 1.054 1.284 0.880 0.690 1.289 1.040 1.273 0.873 0.687 0.369 0.134.
0.369 0.135
-0.466 -0.863 -1.364 -2.130 -1.312 -0.884 -0.809 -0.423 -0.012 0.378 0.212 0.349 0.211 0.209 0.287 0.171 0.209 0.341 0.208 0.206 0.280 0.169
-1.660 -2.144 -1.499 -1.251 -2.611 -1.038 PIDAL-3 SIMULATE-3 (S3-P3) /P3*100\\
Figure 6.13b Cycle 11 BOC HFP Axially Collapsed Assembly RPF 50
CYCLE 11 E
4 laa.at POWER - DATE/TIME 11/18/93 a0:a2:aa PRI.P3X ZRPF NORMALIZED CORE AVERAGE AXIAL POWER DISTRIBUTION (P = PIDAL-3 ANDS= SIMULATE-3)
TOP 1.00 +------------------------+------------------------+------------------------+------------------------+
SP I
I SP I
I s
I I
s I
I s a.8a +------------------------+------------------------+------------------------+------------------------+
I s I
I s
I I
s*
I I
PS I
I PS 0.60 +---.---------------------+------------------------+------------------------+------------------------+
I PS I
I I
I I
I
. PS I
I I
I I
I PS I
I I
I I*
I PS I
I I
I I
I PS I
I 0.40 +------------------------+----~-------~-----------+------------------------+------------------------+
I I
PS I
I I
I I
I*
PS I
I I
I I
I s
I I
I I
I I
s I
I I
I I
I SP I
0.20 +------------------------+-------------------------+---------7--------------+------------------------+
I I
ISP I
I I
I I
I I
SP I I
I I
I I
I I
s I
I
- 1 I
I I
I I
s I
I I
I I
I I
s P I I
I*
0.00 +------------------------+------------------------+------------------------+------------------------+
a.a a.5
- 1. a
- 1. 5 2.a P3 - a.447 a.648 a.812 a.933 l.a11
- 1. a7a l.la3 1.124 1.139 1.153 1.165 1.174 1.179 1.178 1.173 1.165 1.156 1.146 1.129 i.1aa
- 1. a49 a.. 965 a.84a
- a. 672 a.462 S3 - a.424 a.637
.a. 8a9 a.926 l.aa7
- 1. a63
- l. la4 1.133 1.155 1.171 1.183 l.19a 1.193 1.193 1.189 l.18a 1.167 1.147 1.121 l.a84 l.a31 0.955 a.841 a.667 a.43a Figure 6.13c Cycle 11 BOC HFP Radially Collapsed Assembly RPF 51
l 2
4 5
' 7 CYCLE 11 E
97 99.5\\ POWER -
DATE/TIME 05/09/95 23:02:00
B D
E G
H J
K M
N Q
0.223 0.341 0.243 0.241 0.366 0.238 0.225 0.345 0.246 0.243 0.370 0.240 0.900 l.043 l.209 0.974 l.115 0.997 R
T v
x 0.175 0.427 0.744 0.894 l.163 0.970 l.127 0.754 0.424 0.175 0.177 0.431 0.750 0.903 l.179 0.982 l.140 0.760 0.427 0.176 l.274 0.930 0.769 l.013 l.424 l.233 l.135 0.851 0.861 0.786 0.454 l.158 _l.182 l.469 l.257 l.444
. 0.461 l.169. l.191 l.483 l.279 l.461 l.644 0.965 0.783 0.929 l.789 l.203 l.129 l.106 1:148 0.453 l.140 l.113 l.158 0.457 l.001 0.642 0.873 0.841 0,175 0.451 0.865 l.179 l.539 0.176 0.457 0.888 l.190 l.544 0,935 l.437 2.708 0.935 0.374 l.152 l.517 l.005 l.225 l.495 l.194 l.154 l.527 l.014 l.235 l.508. 1:208 0.122 0.608 0.913 0.843 0.870 l.109 0.881 0.461 0.178 0.888 0.461 0.177 0.763 -0.030 -0.081 0.425 l.151 l.195 0.427 l.158 l.208 0.576 0.574 l.052 l.509 l.093 l.578 l.214 l.015 l.514. l.092 l.552 l.213 l.020 0.357 -0.152 -l.119 -0.117 0.444 l.497 l.507 0.670
- l. 064. l. 490 l.075 l.. 514 l.084 l.666 l.181 l.176 0.431 l.190 l.169 0.431 0.781 -0.580 -0.103 z
8 o.234 o.756 l.105 l.492 l.069 l.547 l.260 l.185 l.478 l.084 l.533 l.079 l.531 l.102 o.745 0.223 l.o 0.240 0.760 l.113 2.567 '0.590 0.751 l.508' l.075 l.545 l.252 l.188 l.480 l.068 0.591 -0.113 -0.599 0.287 0.139 l.090 l.545 l.092 l.544 0.495 0.815 l.197 0.901 l.191 0.750 0.225 0.747 0.581 0.685 0.369 l.138 l.133 l.212 l.~96 l.089 l.496.l.007 l.163 l.486 0.370 l,140 l.140 1~235 l.507 l.090 l.482 l.001 l.158 1:482 0.342 0.158 0.601 l.943 0.77b 0.034 -0.952 -0.518 -0.417 -0.293 l.243 l.538 l.141 l.460 0.895 0.342 l.252 l.552 l.154 l.483 0.903, 0.345 0.759 0.911 l.106 l.600 0.895 0.756.
ll 0.245 0.993 l.466 l.009 l.014 l.481.l.170 l.066 l.067 l.021 l.170 l.201 l.515 l.269 l.174 0:245 13 0.243 0.982 l.461 l.014
-l.035 -l.091 "-0.357 0.529 0.253 *1.211 l.294 l.529 0.246 l.179* l.279 l.527
-2.738.-3.154 -1.110 -0.173 l.020 l.480 1:159 l.054 l.054 l.001 0.604 -0.072 -0:996 -l.149 -1.294 -1.956 l.188 l.545 l.201 l.183 l.026 l.070 l.070 l.176 l.482 l.213.l.188 l.001 l.054 l.054 l.159 l.480 0.973 ri.469 -2.351 -1.543 -1.564 -l.458 -0.109 l.213 l.527 l.279 0.938 *0.784 0.810 l.179 0.427 0.246 0.231
- l. 016
- l. 020 0.314 l.010 l.014 0.470 l.457 0.988 0.245 l.461 o.982 0.243 0.319 *0.595 -0.864 14 o.35~
o.922* l.501 l.161 l.55*
l.258 l.499 l.110 l.013 l.519 l.095* l.509 l.236 l.147 l.172 o.378 o.345 o.903 l.483 r.154 l.552 l.252 l,482 l.~$~ l,001 l.482 l.090 l.507 l.235. l.140 l.140 o.370
. c2.001 -2.033 -i.222 -"c).. 627 -0.353. -0.435 -l.i56 -i.006 -i.uo -2.4°28 -o.502 -0.126* -0.074.-0.598 -2.691 -2.242 1'***
1,6 0.229 0.762 l..205 l.561 l.103 l.557 l.097 -l.487 l.181 l.259. 'l.543 l.075 l.508 l.116.0.771 0.244 17
. 19' 20 22 23 0.225 0.750 l.191 l.544 l.092 l.545 1:090 l.480 l.188' l.252 l.545 l.075 l.508 l.113 0:760 0.240
-l.709 -1.609 -1.190 -1.090 -0.990 -0.763 -0.670 -0:430 0.577 -0.540 0.125 0.061 0.013 -0.285 *l.35~ -1.600 o.437 1:104 l.205 l.548 l.002 l.515 l.024 l.211 l.559 l.092 l.516 l.201 0.431 l.169 l.190 l.514 l.075 l.507 l.020 1.213 l.552 l.092 l.514 l.208
-1.363 -l.221 -1.272 -2:117 -0.665 -0.536 -0.385 -0.350 -0.442 -0.012 -0.116 0,531 0.119 o.~65 o.891 0.177 0.461 0.888
-1.133 -0.876 -0.302 l.201 l.208 0.522 0.453 l.153 0.457 l-.158 0:920 0.394 l.501 l.238 l.019 l.544 l.159 l.546 l.104 0.065 l.508 l.235 l.014 l.527 l.154 l.544 l.190 0.888 0.481 -0.188 -0.496 -l.107 -0.451 -0.082, 0.502 2.691 l.112 l.144 l.470 l.288 l.490 l.192 l.113 l.140 'l.461 l.279 l.483 l.191 0.135 -0.333 -0.608 -0.694 -0.491 -0.106 l.166 l.169 0.314 0.455 0.461 l.244 0.176 0.427 0.763 l.148 0.989 l.187 0.909 0.176 0.427 0.760 l.140 0.982 l.179 0.903 0.752 0.430 0.176 0.750 0.431 0.177 0.456 0.124 -0.295 -0.713 -0.660 -0.647 -0.639 -0.365 0.116 0.674 0.241 0.372 0.245 0.248 0.350 0.226 0.240 0.370 0.243 0.246 0.345 0.225
-0.390 -0.678 -0.725 -0.895 -l.382 -0.640 l.154 0.427 l.158 0.427 0.314 -0.036 0.450 0.170 0.457 0.176 l.523 3.746 PIDAL-3 SIMULATE-3 (S3-P3.) /P3*100t Figure 6.13d Cycle 11 EOC HFP Axially Collapsed Assembly RPF 52
CYCLE 11. E 97 99.5\\ POWER -
DATE/TIME 05/09/95 23:02:00 PRI.P3X ZRPF NORMALIZED CORE AVERAGE AXIAL POWER DISTRIBUTION (P = PIDAL-3 ANO S = SIMULATE-3)
TOP 1.00 +----------~-------------+------------------------+------------------------+------------------------+
SP PS p s PS PS 0.80 +------------------------+------------------------+------------------------+-----------~------------+
I s
I I
I I
s I
I I
I PS
. I I
I I
I s
I I
I I
I Si I
0.60 +------------------------+-----7------------------+------------------------+------.------------------+
I s1 I
I I
I I
I
.I SI I
I I
I I
I I
SI I
I I
I I.
I*
I SPI I
I I
I I
I I
PS I I
I 0.. 40 +-------------~----------+------------------*------+-----------------------~*----~~------------------+.
I.
PSI I.
I I
I
- I SI I
I I
I I
s I
I I
I I
IS I
I I
I I
I SP I
0.20 +------------------------+---------------~--------+-*-----------------------+--------------~---------+*
I SP*
I I
I
- 1 I
I s
I I
I I
- I I PS I
I I
I I
PS 1*.
I I
I I
I s
p I
I I
0.00 +------------------------+------------------------+-7----------------------+-~--~-------------------+
0.0 0.5
- 1. 0
- 1. 5 2.0 P3 - 0. 771 0.922
- 1. 019 1.067
- 1. 077
- 1. 064.
- 1. 042
- 1. 020
- 1. 004
- 0. 996 0.993 0.992 0.989 0.984 0.979 0.978 0.987 1.008
- 1. 038
- 1. 071
- 1. 095
-1. 094 1.052 0.957
- 0. 803 S3 - 0.752 o_. 942 1.057
- 1. 088
- 1. 083
- 1. 064
- 1. 042
- 1. 023
- 1. 008
- 0. 996 0.988 0.983 0.980 0.980
- 0. 982.
0.988 0.997
- 1. 010
- 1. 029 1.053
- 1. 078 1.094 1.076
1 2
4 5
7 8
10 11 13 CYCLE 11 53.6\\ POWER -
DATE/TIME 05/10/95 19:02:00 PRI. P3X
- 2RPF AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP
- RMS DEVIATION FOR THIS MAP a 1.53 \\
A 8
D E
G H
J K
M N
Q 0.223 0.351 0.257 0.244 0.371 0.236 0.226 0.359 0.265 0.261 0.384 0.242 1.607 2.281 3.389 6.849 3.504 2.499 R
T 0.162 0.410 0.744 0.923 1.224 1.012 1.157 0.745 0.400 0.159 0.162 0.412 0.754 0.943 1.262 1.043 1.192 0.760 0.405 0.160 0.105 0.538 1.298 2.108 3.074 3.112 3.027 1.986 1.226 0.756 0.409 1.108 1.180 1.523 1.311 1.508 1.146 1.083 1.080 0.401 0.408 1.109 1.190 1.551 1.357 1.549 1.170 1.095 1.087 0.402
-0.131 0.075 0.780 1.847 3.507 2.730 2.101 1.123 0.707 0.384 v
x z
0.161 0.406 0.741 1.044 1.522 1.171 1.576 1.023 1.232 0.160 0.402 0.736 1.031 l.52i 1.178 1.604 1.043 1.249
-0.850 -0.938 -0.714 -1.231 -0.077 0.622 1.725 1.903 1.414 1.457 1.045 0.739 0.411 0.163 1.469 1.042 0.736 0.408 0.162 0.843 -0.334 -Oc432 -0.580 -0.328 0.236 0.242 2.326
- 0. 381 0.384 0.969 0.407 1.100 1.058 1.379 1.069 1.608 1.243 1.029 1.515 0.405 1.087 1.042 1.332 1.058 1.592 1.251 1.041 1.532
-0.583 -1.193 -1.504 -3.425 -1.040 -0.996 0.682 1.127 1.107 0.756 1.096 1.470 1.043 1.562 1.286 0.760 1.095 1.469 1.035 1.553 1.282 0.423 -0.107 -0.056 -0.738 -0.533 -0.312 1.180 1.164 1.231 1.192 1.170 1.249 0.980 0.520 1.452 1.527 1.108 1.545 1.532 1.107 1.536 0.327 -0.105
~0.625 1.209 1.521
- 1. 224 ' 1. 536 1.194 0.951 1.025 1.!)26 0.091 1.191 1.195 0.360
- 1. 095 1.107 1.102
- 1. 528 1.536 0.496 0.262 1.046 1.550 0.261 l.043 1.549
-0.225 -0.292 -0.028 1.038 1.036 *1.534 1.203 1.086 1.084 1.034 1.043 1.041 1.536 1.195 1.081 1.081 1.026 0.455 0:450 0.098 -0.666 -0.485 -0.292 -0.842 0.269 1.283 1.367 1.605 '1.240 1.214 1.047 1.090 1.082 1.202 1.029 1.350 1.037 1.119 1.035 1.332 1.031 1.109 0.621 -1.373 -0.543 -0.889 1.536 1.553 1.096 1.265 1.282
- 1. 300 1.198 1.224 2.166
- 1. 527
- 1. 044
- 1. 058 1.295 1.568 1.592 1.578
- 1. 230 1.251 1.696 1.031 1.. 503
- 1. 521 1.186 1.173 1.190 1.431 1.155 1.502 1.178 1.551 2.010 3.2.89 1.573
- 1. 604
- 1. 954
- 1. 026 1.325 1.357 2.402
- 1. 513 0.412 0.412 0.073 0.742 0.754 1.497 0.223
- 0. 226
- 1. 740 0.920 0.351 0.943, 0.359 2.410 2.242
- 1. 236
- 1. 262 2.107
- 1. 030 0.260 0.265 1.931 0.259 0.265 1.262 1.3?7 1.604 1.251 1.224 1.026 1.081 1.081 1.195 1.536 1.041 1.043 1.549 1.043 0.261
-1.500 -1.661 -0.746 -0.116 0.939 0.790 -2.037 -0.851 -0.112 -0.563 0.568 0.933 1.602 2.365 1.323 1.013 14 0.365 0.958 1.570 1.189 1.603 1.290 1.553 1.203 1.030 1.564 1.109 1.530 1.244 1.163 1.199 0.386 16 17 19 20 22 23 0.359 0.943 1.551 1.178 1.592 1.282 1.53?
1.195.
1.026 l.~?6 1.1.07 1.532 1.249 1.170 1.192 0.384
-1.618 :1.61i -1:2~7. -0.~74 -0.672 ~0.657 -1.097 -6:669 -0.440 -1.803 :0.189 0.131 0.404 0.619 -0.593 -0.325 0.231 0.769.1.212 1.552 1.081 1.575 1.119 1.539 0.226 0.754 1.190 1.521 1.058 1.553 1.107 1.536
-1.922 -2.067 -1.876 -2.003 -2.152 ~1.394 -1.015 -0.213 1.210 1.286 1.554 1.042 1.474.
1.0~6 0.763 0.243 1.224 1.282 1.553 1.035 1.469 1.095 0.760 0.242 1.154 :0.356 -0.024 -0.675 -0.320 -0.115 -0.403 -0.368 0.425 1.138 1.069 1.411 1.055 1.546 1.045 1.253 1.601 1.068 1.378 1.057 1.092 0.406 0.412 1.109 1.031 1.332 1.035 1.532 1.041 1.251 1.592 1.058 1.332 1.042 1.087 0.405
-3.165 -2.580 -3.513" -5.622 -1.882 -0.931 -0.416 -0.150 -0.524 -0.953 -3.377 -1.458 -0.467 -0.344 0.167 0.419 0.759 1.076 1.476 1.256 1.047 1.613 1.185 1.535 1.049 0.739. 0.403 0.159 0.162* 0.408 0.736 1.042 1.469 1.249 1.043 1.604 1.178 1.521 1.031* 0.736 0.402 0.160
-3.016 -2.687 -2.974 -3.196 -0.451 -0.528 -0.366 -0.597 -0.607 -0.885 -1.707 -0.402 -0.277 0.657 0.409 1.105 1.102 1.172 1.553 1.363 1.559 1.198 l.H9 0.411 0.402 1.087 1.095 1.170 1.549 1.357 1.551 1.190 1.109 0.408
-1.543 -1.556 -0.595 -0.226 -0.258 -0.453 -0.519 -0.728 -0.917 -0.640 0.162 0.409 0.761 1.185 1.-044 1.265 0.947 0.759 0.415 0.164 0.160 0.405 0.760 1.192 1.043 1.262. 0.943 0.754 0.412 0.162
-1.369 -1.033 -0.146 0.624 -0.049 -0.267 -0.456.-0.705 -0.810 -0.817 0.242 0.383 0.261 0:266 0.358 0.227 0.242 0.384 0.261 0.265 0.359 0.226 0.022 0.402 0.027 -0.174 0.243 -0.401 PIDAL-3 SIMULATE-3 (S3-P3) /P3*100\\
Figure 6.14a Cycle 11 EOC Xenon Transient Axially Collapsed Assembly RPF 54
CYCLE 11 53.6% POWER -
DATE/TIME 05/10/95 19:02:00 PRI.P3X ZRPF NORMALIZED CORE AVERAGE AXIAL POWER DISTRIBUTION (P = PIDAL-3 ANDS= SIMULATE-3)
TOP 1.00 +------------------------+------------------------+------------------------+------------------------+
I s P I
I PS I
I PS I
I s
I I
s P 0.80 +------------------------+------------------------+------------------------+------------------------+
I I
SP I
I I
. I SP I
I I
I s
I I
I I
PS I
I I
I PS 0.60 +------------------------+------------------------+------------------------+------------------------+
I PS I
I I
I PS I
I I
I s I
I I,
s I
I I
PS I I.
0.40 +------------------------+------------------------+------------------------+------------------------+
I PS I
I I
I s
I I
I
- 1 PS I
I I
I s
I I
I I
SP I
0.20 +---------------~-------~+------------------------+------------------------+-------------------*-----+
I SP I
I I
I PS I
I PS I
I I
I s
I I
I s
P I
0.00 +-----------~------------+------------------------+------------------------+------------------------+
0.0 0.5
- 1. 0
- 1. 5 2.0 P3 - 0.952 1.139
- 1. 266 1.338
- 1. 363
- 1. 356 1.327 1.288 1.247 1.204 1.162 1.116
- 1. 065 1.010 0.951 0.893 0.840 0.797 0.765
- 0. 742 0.723 0.698 0.*659 0.596 0.503 SJ - 0.902 1.152
- 1. 292
- 1. 330 1.328
- 1. 321
- 1. 316.
1.296
- 1. 266
- 1. 227 1.182 1.131
- 1. 076 1.018 0.960
- 0. 904 0.852 0.806 0.768 0.740
- 0. 719 0.701
Cycles 5 to 7 Cycle 8 Cycle 9 (3)
Cycle 10 (3)
Cycle 9 (4)
Cycle 10 (4)
Cycle 11 (4)
Cycle 11 XT (4)
Cycles 5 to 7 Cycle 8 Cycle 9 (3)
Cycle 10 (3)
Cycle 9 (4)
Cycle 10 (4)
Cycle 11 (4)
Cycle 11 XT (4)
Figure 6.15 Ref2 Ref 3 Ref4 Ref 5 Ref6 Ref6 Ref6 Ref6 Ref2 Ref3 Ref4 Ref5 Ref6 Ref6 Ref6 Ref6 Sf(s) 0.0277 0.0254 0.0258 0.0262 0.0179 0.0220 0.0220 0.0273 Sample Variance Input for Uncertainty Components Sf(sa)
Sf(r)
Sf(z) 0.0194 0.0022 0.0151 0.0140 0.0007 0.0151 0.0161 0.0038 0.0151 0.0172 0.0018 0.0151 0.0107 0.0009 0.0073 0.0155 0.0009 0.0069 0.0174 0.0009 0.0060 0.0197 0.0013 0.0065 Tolerance Factor Input from Ref I Kf(q)
Kf(rT)
Kf(rA) 1.692 1.727 1.712 1.692 1.750 1.744 1.692 1.746 1.755 1.692 1.744 1.752 1.763 1.844 1.784 1.744 1.809 1.805 1.744 1.791 1.778 1.727 1.774 1.752 Uncertainty Analysis Results Sf(L) 0.0135 0.0135 0.0135 0.0135 0.0163 0.0163 0.0163 0.0163 F(q) 0.0582 0.0550 0.0558 0.0562 Calculated Peaking Factor Variances Degrees of Freedom Input fo*r Uncertainty Components Calculated Peaking Factor Degrees of Freedom Sf(q)
Sf(rTf Sf(rA)
Df(s)
Df(sa) 0.0344 0.0237 0.0195 8768 1754 0.0325 0.0195 0.0140 3513 703 0.0330 0.0214 0.0165 2858 538 0.0332 0.0219 0.0173 3886 591 0.0253 0.0195 0.0107 1840 368 0.0283 0.0225 0.0155 1420 284 0.0280 0.0239 0.0174 2015 403 0.0325 0.0256 0.0197 3015 603 Calculated Tolerance Limits for Peaking Factors:
No Failures 25% Failures (Tech Spec)
F(rT)
F(rA)
F(q)
F(rT)
F(rA) 0.0409 0.0334 0,0623 0.0455 0.0401 0.0341.
0.0244 0.0591 0.0387 0.0311 0.0374 0.0290 0.0599 0.0420 0.0357 0.0382 0.0303 0.0603 0.0428 0.0370 0.0446 0.0360 0.0191 0.0494 0.0407 0.0280 0.0488 0.0428 0.0309 0.0561 0.0454 0.0345 Df(r) 2754 918 816 1173 1812 1772 1840 3000 Df(z)
Df(L)
Df(q)
Df(rn Df(rA) 1122 188 4826 1226 1790 1122 188 3267 625 703 1122 188 3135 695 592 1122 188 3529 708 605 1812 517 188 368 1772 96 711-273 284 1840 96 721 339 403 3000 96 1212 436 603
References:
I) Factors for One-sided Tolerance Limits DB Owen, March 1963, Pages 46 to 51
- 2) EA-P-PID-88002
- 3) EA-BRG-92-01
- 4) EA-BRG-92-06
- 5) EA-A-NL-92-098
- 6) EA-PID-96-01 Rev 0 Notes:
I) Spreadsheet Equations from EA-P-PID-89002
- 2) Penalties for 25 % failure are:
Refs. 2-5 use Fq+0.0041, FrT+0.0046 and FrA + 0.0067 Ref. 6 use Fs+0.0010 and Fsa+0.0005
- 3) Indicates ICis; 1,13,34,41,42, & 45 eliminated
- 4) Indicates Assembly Powers < 1.0 eliminated
600 500 400
~
.9
~
c:
~
"' 0 300 200 100
-25
-20 Cycle 9 Full Core F(s) Synthesis
-15
-10
-5 0
5
% Deviation Figure 6.16a Cycle 9 Full Core F(s) Synthesis Cycle 9 Full Core F(sa) Synthesis 200 150
~
0
-~
100 c:
~
- o 50
-25
-20
-15
-10
-5 0
5
% Deviation Figure 6.16b Cycle 9 Full Core F(sa) Synthesis 10 15 20 25 10 15 20 25 57
Cycle 9 Full Core F(r) Synthesis 800 700 600
"' 500
~
0 *g 400 c:
~
.0 300 0
200 100 n
0 n
-2.5
-2
-1.5
-1
-0.5 0
0.5 3 Deviation Figure 6.16c Cycle 9 Full Core F(r) Synthesis 1000 900 800 700 600 500 400 300 200 Cycle 9 Full Core F(z) Synthesis 1.5 2
2.5 100 n
0 ~~~~~~~-,.....~~...--~.......,........_~-,-~~~~~,--.~~~~~
-25
-20
-15
-10
-5 0
5 10 15 20 25 3 Deviation Figure 6.16d_
Cycle 9 Full Core F(z) Synthesis 58
Cycle 10 Full Core F(s) Synthesis 600 500
"' 400
=
0
- ~ 300
~
~
.0 0
200 100 0
-25
-20
-15
-10
-5 0
5 10 15 20 25
% Deviation Figure 6.17a Cycle 10 Full Core F(s) Synthesis Cycle 10 Full Core F(sa) Synthesis 200 150 c:
0
-~
100
~
~
.0 0
50 0
...,.... n
-25
-20
-15
/
-10
-5 0
5 10 15 20 25
% Deviation Figure 6.17b Cycle 10 Full Core F(sa) Synthesis 59
Cycle 10 Full Core F(r) Synthesis 800 700 600
"' 500 d.8
~ 400 c::
~
.0 300 0
200 100 nn 0
n
-2.5
-2
-1.5
-1
-0.5 0
0.5 1
1.5 2
3 Deviation Figure 6.l 7c Cycle lO Full Core F(r) Synthesis Cycle. 10 Full Core F(z) Synthesis 1000 900 800 700
- =
600 0 "i 500 c::
~
400
.0 0
300 200 100 n
0 n
-25
-20
-15
-10
-5 0
5 10 15 20 25 3 Deviation Figure 6.17d Cycle 10 Full Core F(z) Synthesis 60
Cycle 11 Full Core F(s) Synthesis 600 500
"' 400
=
0 "i 300
~
~
.0 0 200 100 0
__ n n-I
-25
-20
-15
-10
-5 0
5 10 15 20 25
% Deviation Figure 6.18a Cycle 11 Full Core F(s) Synthesis Cycle 11 Full Core*F(sa) Synthesis 200 150
~
.9
~ 100
~
~
.0 0
50 o +-~~,--~~.--~--.~---"=...._.-n...................,........~,=---~-~~--.~~---r-~~--.-~~~
-25
-20
-15
-10
. - -5 0
5 10 15 20 25
% Deviation Figure 6.18b Cycle-11 Full Core F(sa) Synthesis 61
Cycle 11 Full Core F(r) Synthesis 800 700 600
"' 500 d.9
~ 400 c:
~
.0 300 0
200 100 0
__ n n
-2.5
-2
-1.5
-1
-0.5 0
0.5 l
l.5 2
2.5 3 Deviation Figure 6;18c
. Cycle 11 Full Core F(r) Synthesis Cycle 11 Full Core F(z) Synthesis.
1000 900 800 700 d
600
.9
~ 500 c:
~
400
.0 0
300 200 100 0
r
-25
-20
-15
-10
-5 0
5 10 15 20 25 3 Deviation Figure 6.18d Cycle 11 Full Core F(z) Synthesis 62
Cycle 11 Trans. Full Core F(s) Synthesis 600 500
"' 400 d.9
~ 300 c:
Cl)
.0 0
200 100 0
-~nnnn........
n
-25
-20
-15
-10
-5 0
5 10 15 20 25
% Deviation Figure 6.19a Cycle 11 Transient Full Core F(s) Synthesis
. Cycle 11 Trans. Full Core F(sa) Synthesis 200 150 d 0
- ~
100 c:
Cl)
.0 0
50
% Deviation Figure 6.19b Cycle 11 Transient Full Core F(sa) Synthesis 63
Cycle 11 Trans. Full Core F(r) Synthesis 1600 1400 1200
"' 1000 d
0
-~
800
~
~
.0 600 0
400 200 0
.nn 1n
-2.5
-2
-1.5
-1
-0.5 0
0.5 1.5 2
2.5
% Deviation
- Figure 6.19c Cycle 11 Transient Full Core F(r) Synthesis Cycle 11 Trans. Full ~ore F(z) Synthesis
. 2000 1800 1600 1400
~ 1200 0
-~
1000
~
~
800
.0 0
600 400 200 0
n_
-25
-20
-15
-10 5
10 15 20 25
% Deviation Figure 6.19d Cycle 11 Transient Full Core F(z) Synthesis 64
7.0 REFERENCES
NRC Docket Number 50-255, 'Palisades Plant; Amendment to Facility Operating License',
Amendment Number 144.
2 INCA Users Manual, Nuclear Power Department, Combustion Engineering Ver. 1.0.
3
'CASM0-3; A Fuel Assembly Burnup Program, Users Manual', Version 4.7, Studsvik/NFA-89/3 Rev. 3.
4
'SIMULATE-3 Advanced Three-Dimensional Two-Group Reactor Analysis Code, Users Manual', Studsvik/SOA-95/15 Rev 0.
5
'SIMULATE-3 Methodology Manual', Studsvik/SOA-95/18 Rev. 0.
6 CECORLIB 3.3, Omaha Public Power District, EA-FC-94-044 Rev. 0, 1994.
1
'Calculational Verification of the Combustion Engineering Full Core Instrumentation Analysis System CECOR', W.B. Terney et al, Combustion Engineering Inc, presented at International Conference On World Nuclear Power, Wash D.C., 11/19/76.
8 EA-PID-95-02 Rev 0, 'PIDAL/PMS Conversion', July 1995.
9 EA-PID-96-01Rev0, 'The PIDAL-3 Full Core System, Methodology Manual' Rev. 11, July 1996.
10 EA-PID-96-01Rev0, 'The PIDAL-3 Full Core System, Uncertainty Analysis Manual' Rev. 5, July 1996 11 EA-PID-96-01 Rev 0 'PIDAL-3 CODE', June 1996.
12 EA-CAS-96-01 Rev 0 'Rhodium Detector Self Shielding Factor Determination using CASM0-3', ~une 1996.
. 13 EA-SIM-96-01Rev0 'SIMULATE-3 Benchmark Calcul.ation of the B&W Critical Experiments', June 1996.
14 EA-GAB-90-06 'PIDAL Quadrant Power Tilt Uncertainty', August 1990.
15 XN-NF-83-0l(P), 'Exxon Nuclear Analysis of Power Distribution Measurement Uncertainty for St. Lucie Unit l ', January 1983.
16
'Statistical Theory with Engineering Applications', A. Hald, Wiley & Sons 1952, pg. 290.
17 American National Standards Institute Inc., 'Assessment of the Assumption of Normality (Employing Individual Observed Values)', ANSI Nl5.15-1974, Approved October 3, 1973 18
'Factors for One-Sided Tolerance Limits for Variable Sampling Plans', D.B. Owen, Sandia Corporation Monograph, SCR-607, March 1963 65
8.0 GLOSSARY 95195 AB BCE APL ARO BOL/BOC*
CASM0-3 CECOR EOL/EOC EXPOSURE CASE HFP INCA Ks LPF LHGR Normal PIDAL-3 POWER CASE PPC P1B RE Tolerance Limit - this limit ensures that there is a 95 percent probability that at least 95 percent of the true peaking values will be less than the PIDAL-3 measured/inferred peaking values plus the associated tolerance limit.
ABB Combustion Engineering.
Allowable Power Level. See Palisades Tech Spec 3.11.2.
All Rods Out. All control rods pulled out of the active fuel region.
Beginning of Life I Beginning of Cycle.
An advanced two-dimensional transport theory infinite lattice fuel assembly burnup code, developed by Studsvik of America, Inc., to generate the fuel cross sections for SIMULATE-3.
An incore analysis program developed by ABB Combustion Engineering to determine (measure) the power distribution on a full core basis.
End of Life I End of Cycle.
PIDAL-3 calculation where depletion of the core takes place according to PPC determined exposure increment.
Hot Full Power. Rated Power (2530 MWth).
An incore analysis program developed by ABB Combustion Engineering to determine (measure) the power distribution on an eighth core basis.
Incore Sensitivity, usually in amps/nv. Utilized by the PPC to account for rhodium depletion in each detector..
Local Peaking Factor. Ratio of peak pin in assembly to average pin in assembly.
Linear heat generation rate, usually in kw/ft.
Refers to a statistically "normal" or Gaussian distribution of data.
An on-line incore analysis program, developed by Consumers Power Company, to determine (measure) the power distribution on a full core basis.
PIDAL-3 calculation where no depletion of the core takes.place.
Palisades Plant Computer System: Network of DEC workstations used to monitor all plant data points (i.e. G2VXs, Host, PMS Database).
Pin-to-box factor (Same as LPF).
Reactor Engineering.
66
RPO RPF SIMULATE-3 SPC SSF Relative Power Density. Average pin power in assembly to the average pin power in core.
Relative Power Fraction. Assembly Power normalized to 1.0.
An advanced three-dimensional two-group diffusion theory nodal code, developed by Studsvik of America, Inc., to detennine the theoretical power distributicm and core characteristics on a full core basis.
Siemens Power Corporation.
Self Shielding Factor. Applied to the SIMULA TE-3 rhodium reaction rates to account for non-depleting detectors in the CASM0-3/SIMULATE-3 model.
Quadrant Power Tilt.
67
APPENDIX A EXAMPLE PIDAL-3 OUTPUT A.l
PIDAL - PALISADES INCORE DETECTOR ALGORITHM PIDAL-3 VERSION 1.00 DATE 05/01/96 CYCLE 11 PIDAL-3 FILE TRAIL DATA P3 INPUT FILE P3 TSSOR FILE P3 RESTART FILE S3
SUMMARY
FILE P3 OUTPUT FILE P3 TREND FILE P3 UNCERTAINTY FILE P3 ACCOUNTING FILE P3 ALARM FILE USER COMMENTS PIDAL-3 INPUT PARAMETERS PLANT SNAPSHOT DATE pidll06.inp
/nukef /program/ ems I cycle 11/pidll *. sor pidll. res simll06.sum pidll06.out pidll06. tnd2 pidl106. unc2 pidl106. ace pidl106.alm CYCLE 11 PIDAL E-51 TO E-60 CASES CORE THERMAL POWER CORE PERCENT POWER BORON CONCENTRATION CORE INLET TEMPERATURE PRIMARY COOLANT PRESSURE PRIMARY COOLANT FLOW GROUP 4 AVERAGE POSITION P3/S3 MAXIMUM DEVIATION P3 MINIMUM !CI POWER 10/12/94 20:02:00 2503.0 98.9 536.0 532.0 2057.7 142.3 131. 0 20.0 0.0001 MATING TO EXPOSURE STEP 50 DATE 10/09/94 17:02:00 MWT
'" PPM F
PSIA E+06 LBS/HR IN WITHDRAWN MWT A.2
l CYCLE ll E
51 98.9\\ POWER - DATE/TIME 10/12/94 20:02:00 PRI.P3X ZICI INCORE INSTRUMENT AXIAL POSITIONS TOP OF ACTIVE FUEL 334.772 CM 131.800 IN 321.752 CM 126.674 IN 5
281.752 CM 110.926 IN 254.696 CM 100.274 IN 4
214.696 CM 84.526 IN 187.640 CM 73.874 IN 3.
147.640 CM 58.126 IN 120.584 CM 47.474 IN I
-1 I
2 I
I 80.584 CM 31.726 IN 53.528 CM 21.074 IN l
13.528 CM 5.326 IN BO'ITOM OF ACTIVE FUEL A.3
2 4
7 8
10 11 13 14 16 17 19 20 22 23 CYCLE 11 E
Sl PRI.P3X FMAP A
SS L317 202 71 M449 216 87 NS03 160 103 NS06 160 119 M448 216 l3S L316 202 B
27 L208 202 41 M22S 216 S6 N21S 216 72 0103 216 88 N347 216 104 0114 216 120 N238 216 136 N230 216 lSl M224 216 l6S Ll40 202 98.9% POWER -
DATE/TIME 10/12/94 20:02:00 CYCLE 11 1/4 CORE ROTATIONAL LOADING PATTERN D
28 Mll4 216 42 0107 216 S7 N463 216 73 N211 216 89 0223 216 lOS N3SO 216 121 02S4 216 137 Nl02 216 lS2 0110 216 166 Mll2 216 E
7 Ll47 202 17 Mll6 216 29 N23S 216 43 Nl07 216 G
8 M226 216 18 0111 216 30 N4SS 216 44 0243 216 S8 S9 023S MllS 216 216 74 7S N4S9.
0227 216 90 Ml03 216 106 0246 216 122 M333 216 138 02SO 216 lS3 N4S4 216 167 N234 216 179 MllO 216 189 L20S 202 216 91 M339 216 107 N226 216 123 0238 216 139 Ml09 216 lS4 0242 216 168 Nl06 216 180 0106 216 190 M223 216 H
L318 202 N23l 216 19 Nl03 216
.31 02Sl 216 4S Mll3 216 60 0:231 216 76 M338 216 92 0219 216 108 N222 216 124 N218 216 140 0230 216 lSS Mlll 216 169 0234 216 181 N462 216 191 N214 216 199 L31S 202 J
2 M4SO 216 10 N239 216 20 02SS 216 32 M337 216 46 0239 216
- 61 N219 216 77 03S9 216 93 N243 216 109 M336 216 l2S 03S8 216 141 M334 216 lS6 0226 216 170 N4S8 216 182 N210 216 192 0102 216 200 M447 216 K
NS07 160 11 OllS 216 21 N3Sl 216 33 0247 216 47 N227 216 62 N223 216 78 M340 216 94 NS67 216 M
4 NS04 160 12 N348 216 22 0224 216 34 Ml04 216 48 M343 216 63 0220 216 79 N244 216 9S NS68 216 110 111 NS66 NS6S 216 216 126 127 N242 M332 216 216 142 143 0218 N22l 216 216 lS7 M33S 2i6 171 Ml02 216 183 0222 216 lS8 N22S 216 172 024S 216 184 N349 216 193 194 N346 0113 216.
216 201 202 NS02 NSOS 160 160 N
s M4Sl 216 13 0104 216 23 N212 216 3S N460 216 49 0228 216 64 M342 216 80 0360 216 96 M344 216 112 N24l 216 128 03S7 216 144 N217 216 Q
6 L319 202 14 N216 216 24 N464 216 36 0236 216 so Mll9 216 6S 0232 216 81 N220 216 97 N224 216 113 0217 216 129 M330 216 l4S 0229 216 lS9 160 0237 Ml OS 216 173 M329 216 l8S 02S3 216 l9S N237 216 203 M446 216 216 174 0249 216 186 NlOl 216 196 N229 216 204 L314 202 R
15 M227 216 2S 0108 216 37 Nl08 216 51 0244 216 66 Mll 7 216 82 0240 216 98 N228 216 114 M33l 216 130 0225 216 146 Ml07 216 161 0241 216 175 N453 216 187 0109 216 197 M222 216 T
16 L211 202 26 Mll8 216 38 N236 216 52 N4S6 216 67 02S2 216 83 M34l 216 99 0248 216 llS MlOl 216 131 N4S7 216 147 0233 216 162 Nl05 216 176 N233 216 188 Ml08 216 198 Ll33 202 v
39 Ml20 216 53 0112 216 68 Nl04 216 84 02S6 216 100 N352 216 116 0221 216 132 N209 216 148 N46l 216 163 OlOS 216 177 Ml06 216 x
40 LlS4 202 S4 M228 216 69 N232 216 8S N240 216 101 0116 216 117 N34S 216 133 0101 216 149 N213 216 164 M22l 216 178 L202 202 ASSEMBLY NUMBER ASSEMBLY LABEL PINS/ASSEMBLY A.4 z
70 L320 202 86 M4S2 216 102 NS08 160 118 NSOl 160 134 M44S 216 lSO L313 202
1
. 2 4
5 7
8 10 11 13 14 16 17 19 20 22 23 CYCLE 11 E
51 PRI.P3X DMAP A
55 L317 13 71 M449 0
87 NS03 0
103 NS06 0
119 M448 0
135 L316 0
B 27 L208 0
41 M225 0
56 N215 0
72 0103 17 88 N347 0
104 0114 23 120 N238 0
136 N230 0
151 M224 34 165 Ll40 0
98.9' POWER - DATE/TIME 10/12/94 20:02:00 CYCLE 11 FULL CORE ICI PATTERN D
28 M114 0
42 0107 8
57 N463 0
73 N211 0
89 0223 0
105 N350 0
121 0254 0
137 Nl02 0
152 0110 0
166 M112 0
E 7
Ll47 0
17 M116 0
29 N235 43 Nl07 0
58 0235 0
74 N459 18 90 Ml03 0
106 0246 0
122 M333 0
138 0250 0
153 N454 0
167 N234 0
179 MllO 42 189 L205 0
G 8
M226 0
18 0111 0
30 N455 0
44 0243 9
59 MUS 0
75 0227 0
91 M339 0
107 N226 24 123 0238 0
139 Ml09 0
154 0242 35 168 Nl06 37 180 0106 0
190 M223 0
H 1
L318 0
9 N231 2
19 Nl03 0
31 0251 0
45 M113 0
60 0231 0
76 M338 0
92 0219 0
108 N222 25 124 N218 0
140 0230 0
155 Mlll 0
169 0234 38 181 N462 0
191 N214 0
199 L315 0
J 2
M450 0
10 N239 0
20 0255 0
32 M337 0
46 0239 10 K
NS07 0
11 0115 0
21 N351 4
33 0247 0
47 N227 61 62 N219.
N223 0
14 77 78 0359 M340 19 0
93 94 N243 0
109 M336 26 125 0358 0
141 M334 31 156 0226 0
170 N458 0
NS67 0
110 NS66 0
126 N242 0
142 0218
.0 157 M335 0
171 Ml02 0
182 183 N210 0222 0
0 192 193 0102 N346 43 0
200 M447 0
201 NS02 M
4 NS04 12 N348 0
22 0224 0
34 Ml04 0
48 M343 0
63 0220 0
79 N244 0
95 N568 0
111 N565 27 127 M332 0
143 N221 32 158 N225 0
172 0245 39 184 N349 0
194 0113 0
202 NSOS 0
N 5
M451 0
13 0104 3
23 N212 0
Q 6
L319 0
14 N216 0
24 N464 5
36 R
15 M227 0
25 0108 0
37 T
16 L211 0
26 M118 0
v x
35 N460 0
0236
- Nl08 38 N236 7
39 Ml20 0
40 Ll54 0
0 0
49 0228 0
64 M342 15 80 0360 0
96 M344 21 50 Mll9 0
65 0232 0
81 N220 0
97 N224 22 112 113 N241 0217 0
0 128 129 0357 M330
- 29.
0 144 145 N217 0229 0
33 159 0237 0
173 M329 0
185 0253 0
195 N237 0
160 Ml OS 0
174 0249 0
186 NlOl 0
196 N229 44 51 0244 11 52 N456 0
66 67 Mll 7 0252 16 0
- 82.
83 0240 M341 0
0 98 99 N228 0
114 M331 0
130 0225 0
146 Ml07 0
161 0241 36 175 N453 0
187 0109 0
197 M222 0
0248 0
115 MlOl 0
131 N457 0
147 0233 0
162 NlOS 0
176 N233 40 188 Ml08 0
198 Ll33 0
53 0112 12 68 Nl04 0
84 0256 20 100 N352 0
116 0221 28 132 N209 0
148 N461
-o 163 0105 0
177 Ml06 0
54 M228 0
69 N232 0
85 N240 0
101 0116 0
117 N345 0
133 0101 30 149 N213 0
164 M221 0
178 L202 41 ASSEMBLY NUMBER ASSEMBLY LABEL z
70 L320 0
86 M452 0
102 NS08 0
118 NSOl 0
134 M445 0
150 L313 0
203 M446 45 204 L314 0
ICI (7 & 44 LEVEL INDICATIONS)
A.5
CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.S3X 2DPF SIMULATE-3 INCORE INSTRUMENT POWER DISTRIBUTION FOR LEVEL 1 LEVEL NORMALIZATION FACTOR 0.949919E+OO A
B D
E G
H J
K M
N Q
R T
v x
z 0.192 0.308 0.219 0.218 0.348 0.218 2
0.153 0.396 0.725 0.901 1.238. 1.021 1.214
~.771 0.403 0.154 4
0.428 1.214 1.237 1.462 1.349 1.467 1.218 1.191 1.223 0.429 5
0.154 0.429 0.891 1.227 1.509 1.144 1.492 0.994 1.273 1.492 1.260 0.892 0.428 0.153 7
0.403 1.223 1.260 1.444 1.039 1.506 1.239 0.982 1.404 1.013 1.444 1.227 1.214 0.396 8
0.218 0.772 1.191 1.492 1.013 1.453 1.296 1.245 1.427 1.043 1.453 1.039 1.508 1.237 0.726 0.192 10 0.348 1.213 1.219 1.273 1.403 1.043 1.525 1.043 1.223 1.525 1.296 1.506 1.144 1.462 0.901 0.308 11 0.218 1.021 1.467 0.994 0.982 1.427 1.223 1.140 1.140 1.043 1.245 1.239 1.492 1.349 1.237 0.219 13 0.219 1.237 1.349 1.492 1.239 1.245 1.043 1.140 1.140 1.223 1.427 0.982 0.994 1.467 1.021 0.218 14 0.308 0.901 1.462 1.144 1.506 1.296 1.525 1.223 1.043 1.525 1.043 1.403 1.273 1.219 1.213 0.348 16 0.192 0.726 1.237 1.508 1.039 1.453 i.043 1.427 1.245 1.296 1.453 1.013 1.491 1.191 0.772 0.218 17 0.396 1.214 1.227 1.444 1.013 1.404 0.982 1.239 1.506 1.039 1.444 1.260 1.223 0.403 19 0.153 0.428 0.892 1.260 1.492 1.273. 0.994 1.492 1.144 1.509 1.227 0.891 0.429 0.154 20 0.429 1.223 1.191 1.218 1.467 1.349 1.462 1.237 1.214 0.428 22 0.154 0.403 0.771 1.214 1.021 1.237 0.901 0.725 0.396 0.153 23 0.218 0.348 0.218 0.219 0.308 0.192 PRI.S3X 2DPF SIMULATE-3 INCORE INSTRUMENT POWER DISTRIBUTION FOR LEVEL 2 LEVEL NORMALIZATION FACTOR 0.109214E+Ol A
B D
E G
H J
K M
N Q
R T
v x
z 0.188 0.305 0.230 0.228 0.343 0.212 2
0,145 o.~84 o.709 o.891 1.269 1.023 1.220 o.756 o.389 0.147 4
0.414 1.220 1.229 1.522 1.351 1.517 1.189 1.158 1.222 0.414 5
0.147 0.414 0.872 1.214 1.571 1.143 1.552 0.991 1.251 1.535 1.246 0.872 0.414 0.145 7
0.389 1.222 1.245 1.500 1.035 1.562 1.224 0.963 1.455 1.009 1.500 1.214 1.220 0.384 8
0.212 0.756 1.158 1.535 1.009 1.512 1.273 1.198 1.452 1.039 1.512 1.035 1.571 1.229 0.710 0.188 10 0.343 1.220 1.189 1.251 1.456 1.039 1.528 0.982 1.164 1.527 1.273 1.562 1.143 1.522 0.891 0.305 11 0.228 1.023 1.517 0.991 0.963 1.453 1.164 1.053 1.053 0.982 1.198 1.225 1.552 1.351 1.269 0.230 13 o.23o 1.269 1.351 1.552 1.225 1.198 o.982 1.053 1.053 1.164 1.453 o.963 o.991 1.517 1.023 0.229 14 o.305 o.. 891 1.522 1.143 1.562 1.273 1.527 1.164 o.982 1.528 1.039 1.456 1.251 1.189 1.220 o.343 16 0.188 0.710 1.229 1.571 1.035 1.512 1.039 1.452 1.198 1.273 1.512 1.009 1.535 1.158 0.756 0.212 17 0.384 1.220 1.214 1.500 1.009 1.455 0.963 1.224 1.562 1.035 1.500 1.245 1.222 0.389 19 0.145 0.414 0.872 1.246 1.535 1.251 0.991 1.552 1.143 1.571 1.214 0.872 0.414 0.147 20 0.414 1.222 1.158 1.189 1.517 1.351 1.522 1.229 1.220 0.414 22 0.147 0.389 0.756* 1.220 1.023 1.269 0.891 0.709 0.384 0.145 23 0.212 0.343 0.228 0.230 0.305 0.188
1 CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.S3X 2DPF SIMULATE-3 INCORE INSTRUMENT POWER DISTRIBUTION FOR LEVEL 3
.LEVEL NORMALIZATION FACTOR 0.107746E+Ol A
B D
E G
H J
K M
N Q
R T
v x
z 0.192 0.310 0.232 0:231 0.347 0.216 2
0.149 0.390 0.716 0.895 1.259 1.020 1.212 0.760 0.395 0.150 4
0.420 1.213 1.224 1.507 1.344 1.502 1.187 1.157 1.214 0.420 5
0.150 0.420 0.877 1.212 1.557 1.145 1.541 0.995 1.254 1.523 1.242 0.877 0.420 0.149 7
0.394 1.214 1.242 1.492 1.044 1.554 1.228 0.973 1.453 1.018 1.492 1.212 1.213 0.390 8
0.216 0.760 1.157 1.523 1.018 1.508 1.276 1.204 1.451 1.046 1.508. 1.044 1.557 1.224 0.716 0.192 10 0.347 1.212 1.187 1.254 1.453 1.046 1.520 0.991 1.170 1.521 1.276 1.554 1.145 1.507 0.895 0.310 11 0.231 1.020 1.503 0.995 0.973 1.451 1.170 1.063 1.063 0.991 1.205 1.228 1.541 1.343 1.259 0.232 13 0.232 1.259 1.343 1.541 1.228 1.205 0.991 1.063 1.063 1.170 1.451 0.973 0.995 1.503 1.020 0.231 14 0.310 0.895 1.507 1.145 1.554 1.276 1.521 1.170 0.991 1.520 1.046 1.453 1.254 1.187 1.212 0.347 16 0.192 0.716 1.224 1.557 1.044 1.508 1.046 1.451 1.204 1.276 1.508 1.018 1.523 1.157 0.760 0.216 17 0.390 1.213 1.212 1.492 1.018 1.453 0.973 1.228 1.554 1.044 1.492 1.242 1.214 0.394 0.149 0.420 0.877 1.242 1.523 1.254 0.995 1.541 1.145 1.557 1.212 0.877 0.420 0.150 20 0.420 1.214 1.157 1.187 1.502 1.344 *1.507 1.224 1.213 0.420 22 0.150 0.395 0.760 1.212 1.020 1.259 0.895 0.716 0.390 0.149 23 0.216 0.347 0.231 0.232 0.310 0.192 PRI.S3X 2DPF SIMULATE-3 INCORE INSTRUMENT POWER DISTRIBUTION FQR LEVEL 4 LEVEL NORMALIZATION FACTOR 0.106830E+Ol A
B D
E G
H J
K M
N Q
R T
v x
z 0.197 0.317 0.234 0.232 0.354 0.222 2
0.154 0.399 0.726 0.899 1.246 1.018 1.206 0.766 0.404 0.155 4
o.430 1:200 1.219 1.482 1.331 1.479 1.189 1.161 1.212 o.429 5
0.155 0.429 0.885 1.212 1.534 1.144 1.518 0.997 1.257 1.507 1.241 0.885 0.430 0.154 7
0.404 1.212 1.241 1.476 1.049 1.536 1.227 0.984 1.443 1.024 1.476 1.212 1.208 0.399 8
0.222 0.766 1.161 1.507 1.024 1.494 1.277 1.216 1.447 1.053 1.494 1.049 1.534 1.219 0.726 0.197 10 0.354 1.207 1.189 1.256 1.443 1.053 1.518 1.013 1.188 1.518 1.277 1.536 1.144 1.482 0.899 0.317 11 0.232 1.018 1.479 0.997 0.984 1.447 1.188 1.091 1.091 1.013 1.216 1.227 1.518 1.332 1.247 0.234 13 0.234 1.247 1.332 1.518 1.227 1.216 1.013 1.091 1.091 1.188 1.447 0.984 0.997 1.479 1.018 0.232 14 0.317 0.899 1.482 1.144 1.536 1.277 1.518 1.188 1.013 1.518 1.053 1.443 1.256 1.189 1.207 0.354 16 0.197 0.726 1.219 1.534 1.049 1.494 1.053 1.447 1.216 1.277 1.494 1.024 1.507 1.161 0.766 0.222 17 0.399 1.208 1.212 1.476 1.024 1.443* 0.984 1.227 1.536 1.049 1.476 1.241 1.212 0.404 19 0.154 0.430 0.885 1.241 1.507 1.257 0.997 1.518 1.144 1.534 1.212 0.885 0.429 0.155 20 0.429 1.212 1.161 1.189 1.479 1.331 1.482 1.219 1.208 0.430 22 0.155 0.404 0.766. 1.206 1.018 1.247 0.899 0.726 0.399 0.154 23 0.222 0.354 0.232 0.234 0.317 0.197 A.7
2 4
5 7
CYCLE 11 E
51 PRI.S3X 2DPF 98.9\\ POWER -
DATE/TIME 10/12/94 20:02:00 SIMULATE-3 INCORE INSTRUMENT POWER DISTRIBUTION FOR LEVEL 5 LEVEL NORMALIZATION FACTOR 0.896662E+OO A
B D
E G
H J
K M
N Q
R T
0.212 0.332 0.226 0.226 0.369 0.236 0.172 0.427 0.754 0.911 1.191 1.005 1.182 0.791 0.434 0.172 0.462 1.192 1.216 1.391 1.305 1.396 1.212 1.192 1.203 0.463 v
x 0.172 0.463 0.919 1.224 1.445 1.145 1.431 1.009 1.278 1.440 1.251 0.919 0:462 0.172 0.434 1.203 1.251 i.404 1.067 l.458 1.245 1.024 1.383 1.043 1.405 1.224 1.192 0.427 z
8 0.236 0.791 1.192 1.440 1.043 1.423 1.301 1.274 1.416 1.072 1.423 1.068 1.445 1.217 0.754 0.212 10 0.369 1.182 1.212 l.278 1.383 1.073 1.504 1.101 l.263 1.504 1.301 1.458 1.145 1.391 0.912 0.332 11 0.226 1.005 1.396 1.009 1.024 1.416 1.263 1.206 1.206 1.101 1.274 1.245 1.431 l.304 1.191 0.226 13 0.226 1.191 1.304 1.431 1.245 1.274 1.101 1.206 1.206 1.263 l.416 1.024 1.. 009 1.396 1.005 0.226 14 0.332 0.912 1.391 1.145 1.458 1.301 1.504 1.263 1.101 1.504 1.073 1.383 1.278 1.212 1.182 0.369 16 0.212 0.754 1.217 1.445 1.068 1.423 1.072 1.416 1.274 1.301 1.423 1.043 1.440 1.192 0.791 0.236 17 19 20 22 23 2
4 5
7 0.427 1.192 1.224 1.405 1.043 1.383 1.024 1.245 1.458 1.067 1.404 1.251 1.203 0.434 0.172 0.462 0.919 1.251 1.440 1.278 1.009 1.431 1.145 1.445 1.224 0.919 0.463 0.172 0.463 l.2b3 1.192 1.212 1.396 1.305 1.391 1.216 1.192 0.462 0.172 0.434 0.791 1.182 1.005 1.191 0.911 0.754 0.427 0.172 0.236 0.369 0.226 0.226 0.332 0.212 PRI.S3X 2TBC SIMULATE-3 ASSEMBLY BOUNDARY CONDITIONS A
B D
E G
H J
K M
N Q
R T
0.844 0.855 0.887 0.888 0.856 0.843 0.822 0.842 0.859 0.864 0.886 0.874 0.881 0.858 0.841 0.823 0.838 0.874 0.864 0.887 0.868 0.887 0.854 0.* 54 0.873 0.841 v
x 0.823 0.841 0.855 0.858 0.884 0.857 0.884 0.843 0.855 0.883 0.860 0.855 0.838 0.822 0.841 0.874 0.860 0.884 0.850 0.884 0.854 0.843 0.882 0.850 0.884 0.858 0.874 0.842 z
8 0.843 0.858 0.854 0.883 0.850 0.884 0.856 0.850 0.881 0.849 0.882 0~850 0.884 0.864 0.858 0.844 10 0.856 0.878 0.854 0.854 0.880 0.849 0.874 0.841 0.852 0.877 0.856 0.884 0.857 0.888 0.864 0.855 11 0.891 0.874 0.887 0.843 0.840 0.881 0.852 0.849 0.848 0.840 0.850 0.854 0.884 0.867 0.886 0.887 13 0.887 0.886 0.867 0.884 0.854 0.850 0.840 0.848 0.849 0.852 0.881 0.840 0.843 0.887 0.874 0.891 14 0.855 0.864 0.888 0.857 0.884 0.856 0.877 0.852 0.841 0.874 0.849 0.880 0.854 0.854 0.878 0.856 16 0.844 0.858 0.864 0.884 0.850 0.882 0.849 0.881 0.850 0.856 0.884 0.850 0.883 0.854 0.858 0.843 17 19 20 22 23 0.842 0.874 0.858 0.884 0.850 0.882 0.843 0.854 0.884 0.850 0.884 0.860 0.874 0.841 0.822 0.838 0.855 0.860 0.883 0.855 0.843 0.884 0.857 0.884 0.858 0.855 0.841 0.823 0.841 0.873 0.854 0.854 0.887 0.868 0.887 0.864 0.874 0.838 0.823 0.841 0.858 0.881 0.874 0.886 0.864 0.859 0.842 0.822 0.843 0.856 0.888 0.887 0.855 0.844 A.8
CYCLE 11 PRI.P3X E
51 QICI ICI BO'ITOM l
2 3
17 30 43 4
5 6
40 8
9 11 35 36 10 12 13 14 22 25 32 15 31 16 18 19 29 20
. 21 26 23 24 27 28 33 34 37 38 39 41 42 45 FLUX (NV)
- 2. 050E+l3 2.792E+l3 4.050E+l3 4.107E+l3
- 4. 230E+l3
- 3. 996E+l3
- 5. 361E+l3 4.978E+l3 3.420E+l3 3.456E+l3 4.087E+l3 4.849E+l3 5.174E+l3
- 5. l 77E+l3 5.041E+l3
- 5. 225E+l3
- 4. 287E+l3 l.105E+l3 4.949E+l3 5.038E+l3 4.922E+l3 4.858E+l3
- 5. 033E+l3 5.108E+l3
- 5. 053E+l3 4.955E+l3 5.235E+;l3
- 5. 450E+l3
- 5. 033E+l3
- 4. 913E+l3
- 5. 034E+l3 4.334E+l3 4.955E+l3
- 4. 577E+l3 5.096E+l3 4.978E+l3
- l. 903E+l3
- 5. 016E+l3 5.136E+l3 l.993E+l2 7.813E+l2
- 2. 037E+l*3 l.474E+l3 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 INCORE INSTRUMENT SIGNALS BY 1/4 CORE ROTATIONAL SYMMETRY (MWT) 0.1984
- 0. 6611 1.1159
- l. 1312 l.1641 1.1016 1.2312 1.1433 0.8007 0.8089 l.1171 1.3084 1.3936
- l. 3940 1.3586
- l. 4059 1.1701 0.1956 1.1289 1.1483 1.1228 1.1087 0.9437 0.9572 0.9361 l.141 7
- l. 3911
- l. 4467 1.3501 0.9536 0.9761
- l. 2020 1.1237 1.0489
- l. 3684
- l. 3463 0.3702 l.1664
- l. 3 779 0.0551 0.1434 0.3934 0.2887 LOWER MIDDLE FLUX (NV)
(MWT) 2.415E+l3 3.233E+l3
- 4. 811E+l3 4.791E+l3
- 4. 995E+l3
- 4. 811E+l3
- 6. 515E+l3 5.614E+l3
- 4. 087E+l3
- 4. 087E+l3
- 4. 858E+l3
- 6. l34E+l3
- 6. 082E+l3
- 6. 311E+l3
- 6. 059E+l3 6.418E+l3
- 4. 977E+l3 l.290E+l3
- 5. 772E+l3
- 5. 698E+l3
- 7. 018E+ll
- 2. 891E+l3
- 6. 087E+l3 6.183E+l3
- 6. 299E+l3
- 5. 896E+l3 6.192E+l3 6.335E+l3 6.120E+l3
- 5. 594E+l3
- 5. 685E+l3 5.160E+l3 O.OOOE+OO
- 5. 060E+l3 6.188E+l3
- 6. 016E+l3
- 2. 244E+l3
- 5. 946E+l3
- 6. 216E+l3 6.340E+l3 8.622E+l2
- 2. 389E+l3
- l. 750E+l3 0.2368 0.7349
- l. 3080 1.3042 1.3580
- l. 3079
- l. 4350 l.2424 0.9217 0.9217 1.3094
- l. 6327 l.6191 1.6779 l.6135 1.7035
- l. 34 34 0.2190
- l. 2594
- l. 2436 0.0159 0.6338
- l. 0926 l.1092 1.1071 l.3064
- l. 6290
- l. 6652 1.6201
- l. 0369
- l. 0530 1.4142 0.0000 l.1092
- l. 6407
- l. 6066 0.4185 l.3349 1.6473
- l. 6837 0.1507 0.4419 0.3315 MIDDLE FLUX (NV)
(MWT)
- 2. 392E+l3
- 3. 355E+l3 4.402E+l3
- 4. 691E+l3
- 4. 861E+l3
- 4. 728E+l3
- 6. 373E+l3 5.411E+l3
- 4. 014E+l3
- 4. 033E+l3
- 4. 789E+l3
- 5. 945E+l3 5.997E+l3
- 6. ll8E+l3
- 6. 059E+l3
- 6. 329E+l3 4.877E+l3
- l. 271E+l3
- 5. 665E+l3
- 5. 594E+l3 5.591E+l3
- 5. 628E+l3
- 6. 012E+l3
- 6. 066E+l3 6.186E+l3 5.755E+l3 6.063E+l3 6.169E+l3 6.060E+l3 5.502E+l3
- 5. 586E+l3
- 5. 020E~l3
- 5. 731E+l3
- 4. 902E+l3 6.069E+l3 6.014E+l3
- 2. 263E+l3
- 5. 771E+l3 6.074E+l3 6.187E+l3 8.436E+l2 2.325E+l3
- l. 727E+l3 0.2352 0.7668 1.2042
- l. 2823 1.3274
- l. 2 914 l.4148 1.2066 0.9106 0.9148
- l. 2965
- l. 5891
- l. 6040
- l. 6352
- l. 6188
- l. 6871
- l. 3206
- 0. 2172
- l. 2448
- l. 2300
- l. 2293
- l. 2370
- l. 0857
- l. 0948 1.0973
- l. 2844
- l. 6018 1.6287
- l. 6112
- l. 0269
- l. 0420
- l. 3822
- l. 2578 1.0832
- l. 6174
- l. 6120 0.4251 1.3035
- l. 6171
- l. 6511 0.1485 0.4329 0.3291 UPPER MIDDLE FLUX (NV)
(MWT)
- 2. 34 7E+l3
- 3. 275E+l3
- 4. 559E+l3 4.664E+l3
- 4. 727E+l3 4.698E+l3 6.104E+l3
- 5. 343E+l3
- 4. OllE+l3
- 3. 935E+l3
- 4. 666E+l3
- 5. 811E+l3
- 5. 916E+l3
- 5. 938E+l3
- 5. 820E+l3
- 6. l36E+l3
- 4. 756E+l3
- l. 312E+l3
- 5. 568E+l3
- 5. 504E+l3
- 5. 536E+l3
- 5. 462E+l3
- 5. 895E+l3
- 5. 954E+l3
- 6. 030E+l3
- 5. 795E+l3
- 5. 934E+l3 5.928E+l3 5: 772E+l3
- 5. 559E+l3
- 5. 537E+l3
- 4. 909E+l3
- 5. 724E+l3
- 4. 941E+l3 5.777E+l3
- 5. 824E+l3 2.285E+l3
- 5. 785E+l3
- 5. 961E+l3 6.087E+l3 8.445E+l2
- 2. 391E+l3
- l. 740E+l3 0.2296 0.7536 l.2483
- l. 2763 1.2933
- l. 2848 1.3663 1.2007 0.9142 0.8976 1.2670 1.5571 1.5848
- l. 5901 1.5598
- l. 6414
- l. 2913 0.2261 1.2330
- l. 2192
- l. 2259
- l. 2103
- l. 0725
- l. 0826 1.0796
- l. 3024 l.5721 1.5707
- l. 5403 1.0434 1.0392
- l. 3543
- l. 2621
- l. 0976
- l. 5438
- l. 5657 0.4320 1.3144
- l. 5918 1.6283 0.1502 0.4482
- 0. 3 34 0 TOP FLUX (NV)
- l. 943E+l3 2.745E+l3 l.036E+l2 3.658E+l3
- 3. 773E+l3 3.850E+l3
- 4. 867E+l3
- 4. l 77E+l3 3.253E+l3 3.282E+l3 3.865E+l3
- 4. 585E+l3
- 4. 383E+l3
- 4. 564E+l3 4.454E+l3
- 4. 743E+l3
- 3. 731E+l3 l.ll5E+l3 4.738E+l3 4.485E+l3 4.647E+l3
- 4. 702E+l3 4.787E+l3 8.227E+l2
- 4. 845E+l3 4.688E+l3
- 4. 680E+l3 4.620E+l3 4.437E+l3 4.755E+l3
- 4. 677E+l3
- 3. 822E+l3
- 4. 542E+l3
- 4. 352E+l3 4.470E+l3 4.419E+l3 l.907E+l3
- 4. 577E+l3 4.588E+l3 4.638E+l3 7.465E+l2
- 2. 025E+l3
- l. 453E+l3 (MWT) 0.1874 0.6646 0.0297
- l. 0216 1.0528 1.0737 l.1497 0:9889
- 0. 7798 0.7865 1.0697 1.2531 1.2000
- l. 24 78
- l. 2185 l.2952 l.0340 0.2026 1.1115 t.0541
- l. 0908 l.1035 0.9231 0.1611
- 0. 9291 1.1107
- l. 2642
- l. 2487
- l. 2091 0.9455 0.9305
- l. 0770 1.0582 1.0227
- l. 2207
- l. 2138 0.3805
- l. 0909 1.2514
- l. 2686 0.1415 0.4021 0.2912 A.9
l 2
4 5
7 10 CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X 2DPF NORMALIZED P3/S3 POWER MAP FOR LEVEL l THERE WERE FAILED DETECTORS PRIOR TO SOLUTION FOR THIS LEVEL RMS DEVIATION FOR THIS MAP= 1.67 t A
B D
E G
H J
K M
N Q
R T
0.190 0.304 0.217 0.214 0.346 0.220 0.192 0.308 0.219 0.218 0.348 0.218 1.427 1.254 1.248 1.766 0.553 -0.975 0.150 0.390 0.715 0.891 0.153 0.396 0.725 0.901 1.943 1.644 1.500 1.219 0.419 1.193 1.221 1.446 0.428 1.214 1.237 1.462 2.222 1.693 1.337 1.126 1.223 1.013 1.238 l.02i 1.155 0.766 1.206 0.784 0.415 0.159 1.214 0.771 0.403 0.154 0.615 -1.648 -2.690 -2.964 1.331 1.460 1.228 1.236 1.265 0.444 1.349 1.467 1.218 1.191 1.223 0.429 1.394 0.417 -0.797 -3.628 -3.302 -3.219 v
x 0.152 0.421 0.865 1.204 1.491 1.138 1.481 0.991 1.283 1.527 1.302 0.921 0.444 0.158 0.154 0.429 0.891 L.227 1.509 1.144 1.492 0.994 1.273 1.492 1.260 0.892 0.428 0.153 1.525 1.979' 2.999 1.886 1.178 0.516 0.716 0.255 -0.779 -2.279 -3.216 -3.149 -3.641 -3.358 0.399 1.207 1.234 1.414 1.030 1.519 1.232 0.976 0.403 1.223 1.260 1.444 1.039 1.506 1.239 0.982 1.047 1.304 2.080 2.112 0.895 -0.911 0.541 0.672 1.402 1.027 1.506 1.263 1.265 0.409 1.404 1.013 1.444 1.227 1.214 0.396 0.139 -1.342 -4.135 -2.883 -4.034 -3.049 z
0.211 0.767 1.176 1.460 0.993 1.434 1.284 1.220 1.405 1.020 1.436 1.012 1.516 1.253 0.735 0.195 0.218 0.772 1.191 1.492 1.013 1.453 1.296 1.245 1.427 1.043 1.453 1.039 1.508 1.237 0.726 0.192 2.926 0.547 1.295 2.144 1.939 1.316 0.903 2.033 1.612 2.274 1.136 2.703 -0.517 -1.310.-1.289 -1.104 0.349 1.223 1.210 1.234 1.373 1.026 1.503 1.028 1.206 1.504 1.283 1.492 1.142 1.459 0.348 1.213 1.219 1.273 1.403 1.043 1.525 1.043 1.223 1.525 1.296 1.506 1.144 1.462 0.906 0.310 0.901. 0.308
-0.438 -0.746 0.734 3.184 2.192 1.652 1.426 1.440 1.385 1.425 0.979 0.940 0.118 0.216 -0.504 -0.667 11 0.223 1.041 1.475 0.985 0.965 1.403 1.212 1.130 1.128 1.031 1.241 1.236 1.494 1.354 1.248 0.221 13 14 0.218 1.021 1.467 0.994 0.982 1.427 1.223 1.140 1.140 1.043 1.245 1.239 1.492 1.349 1.237 0.219
-1.940 -1.967 -0.538 0.947 1.757 1.710 0.850 0.877 0.999 1.187 0.302 0.218 -0.156 -0.389 -0.843 -0.949 0.229 1.299 1.372 1.491 0.219 1.237 1.349 1.492
-4.110 -4.744 -1.640 0.041 1.215 1.214 1.055 1.239 1.245 1.043 1.978 2.579 -1.142 0.317 0.928 1.488 1.153 1.503 1.288 0.308 0.901 1.462 1.144 1.506 1.296
-3.031 -2.910 -1.707 -0.775 0.164 0.618
- 1. 521 1.525 0.285 1.137 1.140 0.276 1.214 1.223 0.704 1.134 1.229 1.433 0.986 1.000 1.479 1.038 0.223 1.140 1.223 1.427" 0.982 0.994 1.467 1.021 0.218 0.538 -0.500 -0.377 -0.414 -0.614 -0.837 -1.709 -1.940 1.038 1.564 1.054 1.416 1.287 1.239 1.258 0.359 1.043 1.525 1.043 1.403 1.273 1.219 1.213 0.348 0.443 -2.476 -0.998 -0.861 -1.045 -1.662 -3.551 -3.219 16 0.197 0.741 1.259 1.533 1.054 1.456 1.035 1.403 1.198 1.293 1.455 1.022 1.506 1.207 0.790 0.223 17 19 20 22 23 0.192 0.726 1.237 1.508 1.039 1.453
-2.351 -2.060 -1.745 -1.583 -1.456 -0.199
- 1. 043 0.835 1.427
- 1. 699 1.245 3.897 1.296 1.453 1.013 1.491 1.191 0.772 0.218 0.244 -0.155 -0.920 -0.994 -1.364 -2.345 -2.618 0.400 1.236 1.255 1.507 1.023 1.398 0.396 1.214 1.227 1.444 1.013 1.404
-0.933 -1.802 -2.271 -4.158 -0.978. 0.400
- 0. 971
- 1. 220 0.982 1.239 1.149 1.563 1.497 1.042 1.468 1.268 1.234 0.409 1.506 1.039 1.444 1.260 1.223 0.403 0.547 -0.272 -1.658 -0.652 -0.886 -1.385 0.155 0.434 0.900 1.261 1.489 1.266 0.985 1.478 0.153 0.428 0.892 1.260 1.492 1.273 0.994 1.492
-1.185 -1.416 -0.925 -0.062 0.183 0.584 0.915 0.973 1.137 1.506 1.227 0.874 0.428 0.155 1.144 1.509 1.227 0.891 0.429 0.154 0.554 0.153 -0.032 1.960 0.242 -0.461 0.425 1.218 1.183 1.206 1.452 1.338 1.454 1.233 1.210 0.424 0.429 1.223 1.191 1.218 1.467 1.349 1.462 1.237 1.214 0.428 0.989 0.423 0.630 1.022 0.987 0.833 0.550 0.325 0.272 0.958 0.153 0.400 0.762 1.191 1.008 1.227 0.898 0.723 0.395 0.152 0.154 0.403 0.771 1.214 1.021 1.237 0.901 0.725 0.396 0.153 0.866 0.737 1.212 1.919 1.221 0.819 0.430 0.321 0.317 0.649 0.215- 0.342 0.216 0.218 0.312 0.193 0.218 0.348 0.218 0.219 0.308 0.192 1.380 1.757 1.234 0.475 -1.404 -0.199 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100t A.IO
1 2
4 5
7 8
10 CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X 2DPF NORMALIZED P3/S3 POWER MAP FOR LEVEL 2 THERE WERE 3 FAILED DETECTORS PRIOR TO SOLUTION FOR THIS LEVEL RMS DEVIATION FOR THIS MAP a 1.33 t A
B D
E G
H J
K M
N Q
0.182 0.299 0.226 0.220 0.341 0.212 0.188 0.305 0.230 0.228 0.343 0.212 3.076 1.780 1.562 3.379 0.618 0.277 R
T 0.143 0.377 0.684 0.877 1.254 1.014 1.218 0.755 0.389 0.148 0.145 0.384 0.709 0.891 1.269 1.023 1.220 0.756 0.389 0.147 1.440 1.780 3.643 1.568 1.190 0.872 0.178 0.123 -0.028 -0.184 0.409 1.211 1.217 1.508 1.336 1.505 1.183 1.157 1.223 0.415 0.414 1.220 1.229 1.522 1.351 1.517 1.189 1.158 1.222 0.414 1.127 0.768 1.006 0.899 1.120 0.802 0.443 0.088 -0:103 -0.330 v
x 0.146 0.411 0.858 1.213 1.569 1.143 1.543 0.983 1.244 0.147 0.414 0.872 1.214 1.571 1.143 1.552 0.991 1.251 0.629 0.777 1.581 0.092 0.144 0.013 0.577 0.729 0.599 l.~31 1.249 0.878 0.421 0.148 1.535 1.246 0.872 0.414 0.145 0.226 -0.227 -0.673 -1.714 -1.712 0.387 1.219 0.389 1.222 0.473 0.228 1.243 1.520 1.042 1.586 1.245 1.500 1.035 1.562 0.234 -1.341 -0.658 -1.508 1.220 0.953 1.224 0.963 0.388 1.028 1.440 1.455 1.035 1.004 1.508 1.225 1.251 0.391 1.009 1.500 1.214 1.220 0.384 0.485 -0.528 -0.885 -2.444 -1.711 z
0.204 0.750 1.149 1.519 1.007
~.511 1.270 1.173 1.427 1.017 1.494 0.212 0.756 1:158 1.535 1.009 1.512 1.273 1.198 1.452 1.039 1.512 4.100 0.841 0.746 1.053 0.210 0.090 0.239 2.185 1.776 2.116 1.243 1.031 1.573 1.234 0.713 0.188 1.035 1.571 1.229 0.710 0.188 0.431 -0.107 -0.436 -0.423 -0.309 0.340 1.214 1.179 1.216 1.440 1.033 1.517 0.969 1.145 1.500 1.251 0.343 1.220 1.189 1.251 1.456 1.039 1.528 0.982 1.164 1.527 1.273 o.725 o.502 0.026 2.877 1.085 o.544 o.709 1.369 1.676 1:020 1.010 1.545 1.136 1.509 1.562 1.143 1.522 1.099 0.600 0.881 0.890 0.305 0.891 0.305 0.135 -0.041 11 0.230 1.035 1.525 0.988 0.960 1.448 1.157 1.042 1.036 0.965 1.158 1.208 1.544 1.350 1.274 0.231 13 14 16
- 17.
19 20 22 23 0.228 1.023 1.517 0.991 0.963 1.453 1.164 1.053 1.053 0.982 1.198 1.225 1.552 1.351 1.269 0.230
-1.087 -1.209 -0.493 0.305 0.314 0.307 0.562 1.076 l.6d7 1.726 3.469 1.404 0.546 0.107 -0.394 -0.500 0.237 1.317 1.374 1.566 1.232 1.200 0.981 1.044 1.033 0.230 1.269 1.351 1.552 1.225 1.198 0.982 1.053 1.053
-3.153 -3.637 -1.659 -0.920 -0.571 -0.150 0.167 0.846 1.953 1.156 1.164 0.666 1.433 1.453
- 1. 348 0.955 0.963 0.780 0.990 1.528 1.038 0.232 0.991 1.517 1.023 0.228 0.035 -0.682 -1.475 -1.689 0.313 0.915 1.551 1.160 1.579 1.280 0.305 0.891 1.522 1.143 1.562 1.273
-2.635 -2.575 -1.872 -1.460 -1.081 -0.503 1.526 1.161 o.902 1:551 1.527 1.164 0.982 1.528 0.089. 0.228 -0.037 -1.481
- i. 036
- 1. 039 0.262 1.453 1.255 1.204 1.2,5 0.354 1.456 1.251 1.189 1.220 0.343 0.209 -0.288 -1.283 -3.484 -3.094 0.192 0.725 1.254 1.603 1.056 1.524 1.033 1.451 1.200 1.276 0.188 0.710 1.229 1.571 1.035 1.512 1.039 1.452 1.198 1.273
-2.279 -2.125 -1.975 -1.961 -1.962 -0.776 0.593 0.108 -0.142 -0.213 1.496 1.007 1.538 1.167 0.771 0.217 1.512 1.009 1.535 1.158 0.756*
0.212 1.079 0.230 -0.185 -0.754 -1.968 -2.322 0.390 1.246 1.244 1.562 1.022 1.459 0.965 1.230 1.566 1.034 0.384 1.220 1.214 1.500 1.009 1.455 0.963 1.224 1.562 1.035 1.502 1.244 1.224 1.500 1.245 1.222 0.391 0.389
-1.476 -2.032 -2.415 -4.009 -1.275 -0.266 -0.244 -0.447 -0.246 0.146 -0.169 0.116 -0.183 -0.491 0.148 0.421 0.880 1.243 1.534 1.253 0.995 1.568 1.148 1.572 1.211 0.858 0.145 0.414 0.872 1.246 1.535 1.251 0.991 1.552 1.143 1.571 1.214 0.872
-1.531 -1.582 -0.954 0.222 0.055 -0.169 -0.476 -1.005 -0.422 -0.048 0.229 1.584 0.411 1.220 1.157 1.190 1.522 1.359 1.528 1.230 1.219 0.411 0.414 1.222 1.158 1.189 1.517 1.351 1.522 1.229 1.220 0.414 0.548 0.207 0.073 -0.080 -0.332 -0.544 -0.386 -0.137 0.125 0.704 0.147.0.388 0.755 1.218 1.025 1.274 0.895 0.711 0.384 0.145 0.147 0.389 0.756 1.220 1.023 1.269 0.891 0.709 0.384 0.145 0.376 0.194 0.137 0.180 -0.203 -0.418 -0.444 -0.247 0.014 0.371 0.212 0.342 0.228 0.231 0.309 0.189 0.212 0.343 0.228 0.230 0.305 0.188 0.133 0.124 -0.181 -0.537 -1.291 -0.563 0.410 0.140 0.414 0.147 0.823 4.948 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100\\
A.11
1 2
4 5
7 8
10 11 13 14 CYCLE 11 E
51 98.9% POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X 2DPF NORMALIZED P3/S3 POWER MAP FOR LEVEL 3 THERE WERE 0 FAILED DETECTORS PRIOR TO SOLUTION FOR THIS LEVEL RMS DEVIATION FOR THIS MAP= 1.76 t A
B D
E G
H J
K M
N Q
0.193 0.310 0.230 0.222 0.328 0.207 0.192 0.310 0.232 0.231 0.347 0.216
-0.825 0.139 1.260 3.674 5.771 4.297 R
T v
x z
0.149 0.392 0.725 0.894 1.245 0.991 0.149 0.390 0.716 0.895 1.259 1.020 0.039 -0.553 -1.237 0.060 1.108 2.941 1.139 0.733 0.388 0.149 1.212 0.760 0.395 0.150 6.448 3.637 1.663 0.788 0.418 1.215 1.230 1.509 1.338 0.420 1.213 1.224 1.507 1.344 0.595 -0.217 -0.472 -0.197 0.423 1.478 1.157 1.141 1.502 1.187 1.157 1.675 2.606 1.384 1.207 0.420 1.214 0.420 0.571 -0.021 0.151 0.419 0.861 1.214 1.566 1.155 0.150 0.420 0.877 1.212 1.557 1.145
-0.122 0.163 1.837 -0.130 -0.580 -0.823 1.539 0.985 1.237 1.541 0.995 1.254 0.119 1.006 1.308 1.513 1.246 0.885 0.429 0.152 1.523 1.242 0.877 0.420 0.149 0.676 -0.313 -0.965 -2.094 -2.239 0.396 1.226 1.239 1.503 1.054 1.595 1.228 0.964 1.437 1.015 1.517 1.232 1.249 0.399 0.205 0.216 5.154 0.394 1.214
-0.424 -0.978
- 0. 757 1.152 0.760 1.157 0.415 0.378 1.242 1.492 1.044 1.554 1.228 0.973 0.192 -0.718 -0.957 -2.563 -0.040 1.010 1.506 1.012 1.506 1.277 1.177 1.425 1.523 1.018 1.508 1.276 1.204 1.451 1.113 0.561 *0.114 -0.112 2.313 1.793 0.346 1.213 0.347 1.212 0.421 -0.078 1.177 1.215 1.187 1.254 0.826 3.208 1.427 1.453 1.797
- 1. 035
- 1. 515 1.046 1.520 1.047 0.360 0.977
- 0. 991 1.474 1.149 1.170
- 1. 870 0.233 1.033 1.503 0.231 1.020 1.503
-1.151 -1.220 -0.025 0.240 1.307 1.355 0.232 1.259 1.343
-3.123 -3.665 -0.875 0.982 0.953 0.995 0.973 1.382 2.125
- 1. 528.
1.189 1.541 1.228 0.852 3.2~2 1.422 1.451 2.015 1.162 1.205 3.630 1.157 1.170 1.167 0.985 0.991 0.609
- 1. 045
- 1. 063 1.708
- 1. 043 1.063 1.889
- 1. 039
- 1. 063 2.348
- 1. 024
- 1. 063 3.789 1.453 1.018 1.492 1.212 1.213 0.390 1.135 0.323 -1.622 -1.554 -2.876 -2.394 1.027 1.490 1.046 1.508 1.846 1.161 1.493
- 1. 521
- 1. 871
- 0. 971 0.991 2.084 1.157 1.170 1.118
- 1. 254 1.276 1.727 1.163 1.205 3.564 1.434 1.451 1.150 1.038 1.569 1.243 0.728 0.195 1.044 1.557 1.224 0.716 0.192 0.619 -0.768 -1.508 -1.601 -1.558 1.543 1.150 1.524 0.907 0.315 1.554 1.145 1.507 0.895 0.310 0.751 -0.377 -1.106 -1.386 -1.460 1.217 1.547 1.359 1.279 0.236 1.228 1.541 1.343 1.259 0.232 0.924 -0.388 -1.190 -1.580 -1.662 0.972 1.004 1.529 1.043 0.236 0.973 0.995 1.503 1.020 0.231 0.125 -0.905 -1.759 -2.239 -2.369 0.317 0.915 1.523 1.146 1.539 1.259 1.504 1.154 o.310 o.895 1.~01 1.145 1.554 1.216 1:521 1.110
-2.340 -2.199 -1.052 -0.059 0.999 1.361 1.137 1.461 0.977 1.540 1.051 1.465 1.270 1.212 1.255 0.359 0.991 1.520 1.046 1.453 1.254 1.187 1.212 0.347 1.437 -1.298 -0.538 -0.834 -1.295 -2.036 -3.471 -3.214 16 0.196 0.730 1.241 1.573 1.053 1.505 1.035 1.429 1.170 1.278 1.524 1.033 1.545 1.176 0.778 0.222 17 19 20 22 23 0.192 0.716 1.224 1.557 1.044 1.508 1.046
-2.039 -1.908 -1.315 -1.020 -0.839 0.204 1.004 1.451 1.204 1.276 1.508 1.018 1.523 l.157 0.760 0.216 1.504 2.957 -0.171 -1.073 -1.470 -1.406 -1.667 -2.403 -2.659 0.402 1.233 1.234 1.546 1.028 1.454 0.390 1.213 1.212 1.492 1.018 1.453
-3.011 -1.667 -1.768 -3.499 -0.953 -0.016 0.970 0.973 0.338 1.226 1.563 1.058 1.531 1.257 1.228 0.399 1.228 1.554 1.044 1.492 1.242 1.214 0.394 o.~10 -o.522 -1.290 -2.540 -1.220 -1.164 -1.015 0.152 0.425 0.879 1.233 1.529 1.258 1.001 1.561 1.156 1.574 1.225 0.865 0.418 0.140 0.149 0.420 0.877 1.242 1.523 1.254 0.995 1.541 1.145 1.557 1.212 0.877 0.420 0.150
-2.042 -1.126 -0.207 0.757 -0.406 -0.363 -0.616 -1.302 -0.951 -1.045 -1.033 1.370 0.335 7.062 0.409 1.207 1.159 1.193 1.513 1.357 1.521 1.236 1.223 0.420 0.420 1.214 1.157 1.187 1.502 1.344 1.507 1.224 1.213 0.420 2.548 0.595 -0.170 -0.517 -0.730 -0.965 -0.933 -0.935 -0.831 0.051 0.148 0.393 0.763 1.221 1.028 1.270 0.903 0.722 0.393 0.150 0.150 0.395 0.760 1.212 1.020 1.259 0.895 0.716 0.390 0.149 1.451 0.310 -0.363 -0.743 -0.778 -0.871 -0.858 -0.878 -0.814 -0.367 0.217 0.350 0.232 0.234 0.311 0.193 0.216 0.347 0.231 0.232 0.310 0.192
-0.472 -0.711 -0.763 -0.776 -0.400 -0.734 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100%
A.12
2 4
5 7
8 CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X 2DPF NORMALIZED P3/S3 POWER MAP FOR LEVEL 4 THERE WERE 0 FAILED DETECTORS PRIOR TO SOLUTION FOR THIS LEVEL RMS DEVIATION FOR*THIS MAP= 1.68 t A
B D
E G
H J
K M
N Q
R T
0.196 0.314 0.229 0.220 0.349 0.220 0.197 0.317 0.234 0.232 0.354 0.222 0.653 1.014 1.840 5.444 1.469 1.007 0.154 0.398 0.722 0.891 1.229 1.004 0.154 0.399 0.726 0.899 1.246 1.018 0.338 0.228 0.497 0.880 1.406 1.404 0.428 1.207 1.217 0.430 1.208 1.219 0.440 0.054 *0.158 1.474 1.482 0.600
- 1. 309 1.331 1.690 1.461 1.479
- 1. 270 1.196 0.760 0.403 0.156 1.206 0.766 0.404 0.155 0.823 0.794 0.187 -0.232 1.177 1.189 0.956 1.151 1.214 0.432 1.161 1.212 0.429 0.937 -0.140 -0.622 v
x 0.155 0.428 0.876 1.215 1.540 1.149 1.508 0.987 1.247 1.505 1.254 0.897 0.438 0.157 0.155 0.429
-0.004 0.279 0.885 1.212 1.534 1.144 1.518 0.997 1.257 0.990 -0.244 -0.344 -0.390 0.670 0.950 0.735 1.507 1.241 0.885 0.430 0.154 0.126 -1.068 -1.342 -1.930 -1.823 0.405 1.214 1.243 1.492 1.059 1.573 1.223 0.972 0.404 1.212 1.241 1.476 1.049 1.536 1.227 0.984
-0.303 -0.197 -0.194 -1.106 -0.985 -2.379 0.348 1.176 1.428 1.025 1.519 1.233 1.237 0.406 1.443 1.024 1.476 1.212 1.208 0.399 1.047 -0.064 -2.830 -1.664 -2.369 -1.708 z
0.217 0.770 1.165 0.222 0.766 1.161 2.324 -0.530 -0.274 1.506 1.026 1.495 1.507 1.024 1.494 0.023 -0.152 -0.058 1.275
- 1. 277 0.131 1.182
- 1. 216 2.886 1.416
- 1. 447 2.180 1.028 1.053 2.411 1.472 1.035 1.536 1.226 0.730 0.198 1.494. 1.049 1.534 1.219 0.726 0.197 1.516 1.391 -0.131 -0.594 -0.561 -0.433 10 0.358 1.223 1.196 1.248 1.435 1.045 1.507 0.995 1.163 1.487 1.250 1.512 1.137 *l.476 0.899 0.318 11 0.354 1.207 1.189 1.256 1.443 1.053 1.518
-0.982 -1.355 -0.562 0.661 0.557 0.744 0.779 0.237 1.040 1.497 0.998 0.974 1.422 1.170 0.232 1.018 1.479 0.997 0.984 1.447 1.188
-2.079 -2.119 -1.157 -0.095 0.971 1.737 1.515 1.013 1.188 1.518 1.277 1.867 2.099 2.028 2.178 1.069 1.067 1.000 1.168 1.091 1.091 i.013 1.216 2.022 2.306 1.363 4.041 1.536 1.144 1.482 0.899 0.317 lc532 0.647 0.397 -0.028 -0.137 1.205 l.?06 1.328 1.249 0.234 1.227 1.518 1.332 1.247 0.234 1.819 0.796 0.269 -0.192 -0.305 13 0.242 1.298 1.355 1.524 1.210 1.175 0.996 1.065 1.052 1.165 1.418 0.972 0.992 1.479 1.027 0.235 14 16 19 20 22 23 0.234 1.247 1.332 1.518
-3.524 -3.957 -1.727 -0.353 1.227 1.216 1.442. 3.476 1.013 1.091 l.767 2.440
- 1. 091
- 3. 719 1.188 1.447 1.900 2.023 0.984 1.177 0.997 1.479 1.018 0.232 0.432 -0.008 -0.905 -1.133 0.327 0.924 1.508 1.154 1.531 1.261 0.317 0.899 1.482 1.144 1.536 1.277
-2.853 -2.1jo -1.760 -0.~46 0.269 1.283 1.492 1.162 0.9~6 1.505 1:518 1.188 1.013 1.518 1.682 '2.241 2.749' 0.869
- 1. 045
- 1. 053 0.689 1.439 1.257 1.198 1.239 0.363 i.443 1.256 1.189 1.207 0.354 0.321 -0.063 -0.762 -2.652 -2.312 0.203 0.744 1.243 1.558 1.060 1.491 0.197 0.726 1.219 1.534 1.049 1.494
-2.610.-2.503 -1.924 -1.538 -1.064 0.197 1.037 1.414 1.160 1.053 1.447 1.216 1.460 2.328 4.816 1.263 1.500 1.028 1.510 1.167 0.777 0.226 1.277 1.494 1.024 1.507 1.161 0.766 0.222 1.090 -0.399 -0.394 -0.199 -0.462 -1.373 -1.672
. 0.414 1.236 1.240 1.524 1.035 1.445 0.399 1.208 1.212 1.476 1.024 1.443
-3.682 -2.263 -2.199 -3.153 -1.098 -0.125 0.980 1.223 1.536 1.055 1.495 1.240 0.984 1.227 1.536 1.049 1.476 1.241 0.405 0.326 -0.052 -0.603 -1.275 0.072 1.211
- 1. 212 0.091 0.404 0.404 0.086 0.159 0.439 0.899 1.260 1.525 1.270 1.011 1.560 1.158 1.545 0.154 0.430 0.885 1.241 1.507 1.257 0.997 1.518 1.144 1.534 1.214 0.860 0.422 0.144 1.212 0.885 0.429 0.155
-2.848 -2.061 -1.644 -1.510 -1.232 -1.034 -1.433 -2.689 -1.193 -0.698 -0.177 2.862 1.676 7.924 0.430 1.227 1.178 1.207 1.504 1.357 1.502 1.229 1.212 0.426 0~429 1.212 1.161 1.189 1.479 1.331 1.482 1.219 1.208 0.430
-0.012 -1.252 -1.389 -1.538 -1.663 -1.852 -1.317 -0.829 -0.314 0.952 0.156 0.409 0.779 1.231 1.036 1.268 0.911 0.733 0.401 0.154 0.155 0.404 0.766 1.206 1.018 1.247 0.899 0.726 0.399 0.154
-0.671 -1.364 -1.680 -2.046 -1.787 -1.680 -1.334 -0.957 -0.498 0.249 0.226 0.361 0.236 0.237 0.320 0.199 0.222 0.354 0.232 0.234 0.317 0.197
-1.773 -1.975 -1.795 -1.560 -0.911 -0.943 PIDAL-3 SIMULATE-3 (S3-P3) /P3*i'oot A.13
2 4
5 7
8 10 11 13 14 16 17 19 20 22 23 CYCLE 11 E
51 98.9t POWER -
CATE/TIME 10/12/94 20:02:00 PRI.P3X 2DPF NORMALIZED P3/S3 POWER MAP FOR.LEVEL 5 THERE WERE 2 FAILED DETECTORS PRIOR TO SOLUTION FOR THIS LEVEL RMS DEVIATION FOR THIS MAP= 1.73 t A
B D
E G
H J
K M
N Q
0.215 0.335 0.227 0.216 0.361 0.229 0.212 0.332 0.226 0.226 0.369 0.236
-1.428 -1.067 -0.164 4.440 2.366 2.914 R
T 0.172 0.432 0.766 0.923 1.200 0.999 1.160 0.766 0.421 0.168 0.172 0.427 0.754 0.911 1.191 1.005 1.182 0.791 0.434 0.172
-0.365 -1.138 -1.586 -1.205 -0.741 0.642 1.871 3.172 3.151 2.803 0.460 1.204 1.233 1.411 1.325 1.393 1.189 1.140 1.166 0.452 0.462 1.192 1.216 1.391 1.305 1.396 1.212 1.192 1.203 0.463 0.361 -0.964 -1.327 -1.426 -1.559 0.220 1.916 4.556 3.186 2.480 0.174 0.465 0.899 1.237 1.465 1.163 1.447 1.008 0.172 0.463 0.919 1.224 1.445 1.145 1.431 1.009
-1.026 -0.485 2.274 -1.033 -1.396 -1.554 -1.065 0.140 1.260 1.406 1.224 1.278 1.440 1.251 1.442 2.412 2.184 0.905 0.919
- 1. 511 v
0.459 0.462 0.650 x
0.171 0.172 0.339 0.441 1.233 1.267 1.444 1.086 1.493 1.258 1.022 0.434 1.203 1.251 1.404 1.067 1.458 1.245 1.024
-1.597 -2.419 -1.231 -2.779 -1.720 -2.303 -1.060 0.134 1.369 1.028 1.383 1.215 1.192 0.427 1.383 1.043 1.405 1.224 1.192 0.427 0.992 1.497 1.548 0.797 0.040 0.006 z
0.234 0.795 1.205 1.452 1.053 1.428 1.301 1.281 1.411 0.236 0.791 1.192 1.440 1.043 1.423 1.301 1.274 1.416 1.028 -0.446 -1.100 -0.853 -0.962 -0.373 -0.006 -0.560 0.362 1.064 1.409 1.071 1.441 1.072 1.423 1.068 1.445 0.795 1.023 -0.298 0.253 1.216 0.755 0.213 1.217 0.754 0.212 0.006 -0.122 -0.198 0.369 1.178 1.218 1.280 0.369 1.182 1.212 1.278 0.206 0.363 -0.486 -0.155 0.229 1.021 1.409 1.011 0.226 1.005 1.396 1.009
-1.438 -1.561 -0.969 -0.144 1.380 1.061* 1.457 1.383 1.073 1.504 0.215 1.140 3.193 1.014 1.396 1.235 1.024 1.416 1.263 0.940 1.459 2.290 1.085 1.101 1.455 1.184 1.206 1.847
- 1. 249
- 1. 263 1.124 1.187
- 1. 206 1.578 1.485 1.277 1.443 1.504 1.301 1.458 1.244 1.938 1.090 1.090 1.215 1.220 1.101 1.274 1.245 1.006 4.857 2.013 0.234 1.241 1.325 1.433 1.220 1.257 1.072 1.182 1.179 1.228 1.373 1.005 0.226 1.191 1.304 1.431 1.245 1.274 1.101 1.206' 1.206 1.263 1.416 1.024
-3.486 -4.079 -1.588 -0.088 2.065 1.330 2.633 2.014 2.317 2.867 3.128 1.815 0.341 0.936 1.412 1.152 0.33~ 0.912 1.391 1.145
-2.703 -2.600 -1.536 -0.594 1.453 1.293 1.458 1.301 0.390 0.683 0.217 0.770 1.236 1.462 1.076 1.425 0.212 0.754 1.217 1.445 1.068 1.423
-2.301 -2.123 -1.552 -1.157 -0.809 -0.132 1.486 1.246
- 1. 504. 1. 263 1.205 1.354 1.070
- 1. 072 0.229 1.411 1.416 0.347 1.077 1.439 1.045 1.101 1.504 1.073 2.153 4.477 2.688
- 1. 364
- 1. 383
- 1. 357 1.272 1.274 0.156
- 1. 280 1.301
- 1. 672
- 1. 399
- 1. 035 1.423 1.043
- 1. 714 0.831 0.439 1.213 1.244 1.438 1.052 1.391 i.029 1.252 0.427 1.192 1.224 1.405 1.043 1.383 1.024 1.245
-2.623 -1.685 -1.586 -2.336 -0.807 -0.564 -0.516 -0.601 1.456 1.063 1.404 1.458 1.067 1.404 0.182 0.407 -0.014 1.140 1.394 0.915 0.333 1.145 1.391 0.912 0.332 0.453 -0.208 -0.335 -0.370 1.422 1.307 1.198 0.228 1.431 1.304 1.191 0.226 0.660 -0.225 -0.607 -0.674 1.005 1.407 1.019 0.229 1.00~ 1.396 1.005 0.226 0.400 -0.809 -1.327 -1.464 1.274 1.222 1.213 0.378 1.278 1.212 1.182 0.369 0.331 -0.832 -2.611 -2.309 1.435 1.195 0.801 0.240 1.440 1.192 0.791 0.236 0.298 -0.291 -1.254 -1.592 1.246 1.251 0.387
- 1. 201
- 1. 203 0.198 0.434 0.434 0.077 0.175 0.469 0.928 1.257 1.442 1.292 1.025 1.462 1.154 1.448 1.222.0.907 0.458 0.163 0.172 0.462 0.919 1.251 1.440 1.278 1.009 1.431 1.145 1.445 1.224 0.919 0.463 0.172
-2.003 ~1.423 -0.970 -0.510 -0.185 -1.060 -1.533 -2.100 -0.826 -0.221 0.156 1.401 1.075 5.718 0.463 1.214 1.208 1.240 1.426 1.329 1.407 1.223 1.194 0.460 0.463 1.203 1.192 1.212 1.396 1.305 1.391 1.216 1.192 0.462
-0.108 -0.901 -1.360 -2.246 -2.112 -1.851 -1.166 -0.574 -0.133 0.495 0.174 0.441 0.813 1.238 1.035 1.215 0.924 0.760 0.429 0.172 0.172 0.434 0.791 1.182 1.005 1.191 0.911 0.754 0.427 0.172
-0.830 -1.589 -2.778 -4.502 -2.862 -2.038 -1.389 -0.842 -0.369 0.078 0.244 0.385 0.233 0.231 0.336 0.214 0.236 0.369 0.226 0.226 0.332 0.212
-3.209 -4.119 -3.036 -2.014 -1.218 -0.957 PIDAL-3 SIMULATE-3 (S3-P3) /P3*100t A.14
1.
2 4
5 7
9*
10 11 13 14 16 17 19 20 22 23 CYCLE 11 E
51 98.9\\ POWER - DATE/TIME 10/12/94 20:02:00 PRI.P3X 2RPF AXIALLY COLLAPSED NORMALIZED FULL CORE POWER MAP RMS DEVIATION FOR THIS MAP= 1.31 t A
B D*
0.155 0.428 0.155 0.430 0.088 0.430 0.405 1.219 0.404 1.214
-0.239 -0.389 E
G H
J K
M N
Q R
T v
x 0.195 0.312 0.226 0.219 0.344 0.217 0.196 0.314 0.228 0.227 0.352 0.220 0.535 0.606 1.165 3.782 2.116 *1.450 0.153 0.397 0.721 0.894 0.154 0.398 0.724 0.898 0.528 0.318 0.438 0.453 1.230 1.003 1.183 0.759 0.403 0.156 1.242 1.017 1.207 0.767 0.404 0.155 0.950 1.364 1.979 1.051 0.343 -0.058 0.426 1.206 0.430
- 1. 209 0.833 0,264 1.223 1.471 1.328 1.460 1.187 1.225 1.477 1.337 1.476 1.197 0.179 0.369 0.699 1.050 0.918 0.871 0.887 1.752 1.217 1.529 1.150 1.218 1.528 1.146 0.092 -0.074 -0.363 1.505
- 1. 511
- 0. 377 1.245 1.477 1.055 1.556 1.232 1.248 1.467 1.048 1.527 1.232 0.202 -0.679 -0.626 -1.845 0.005 0.992 0.999 0.681
- 0. 977 0.985 0.838 1.254 1.262 0.665 1.416 1.431
- 1. 014 1.164 1.215 0.432 1.170 1.214 0.430 0.503 -0.064 -0.463 1.498 1.255 0.896 0.438 0.157 1.502 1.248 0.887 0.430 0.154 0.284 -0.606 -1.094 -1.866 -lc892 1.020 1.489 1.234 1.239 0.406 1.023 1.467 1.218 1.209 0.398 0.243 -1.492 -1.297 -2.427 ~1.864 z
0.214 0.767 1.168 1.490 1.019 1.477 1.281 1.204 1.416 1.031 1.462 0.220 0.767 1.170 1.502 1.022 1.482 1.283 1.224 1.440 1.051 1.482 3.102 0.042 0.167 0.819 0.378 0.324 0.152 1.686 1.680 1.969 1.332 1.038 1.530 1.235 0.731 0.197 1.048 1.527 1.225 0.724*
0.196 1.027 -0.160 -0.780 -0.979 -0.754 0.352 1.210 1.195 0.352 1.207 1.197
-0.047 -0.288 0.175 1.238 1.262 1.983 1.413 1.431 1.266 1.041 1.501
- 1. 051
- 1. 519 1.037 1.188
- 1. 008
- 1. 023 1.425 1.179 1.197 1.495 1.493
- 1. 519 1.750 1.262 1.283
- 1. 675 1.509 1.527 1.199 1.142 1.146 0.352 1.474 0.903 0.315 1.477 0.898*. 0.314 0.168 -0.525 -0.585 0.. 230 1.034 1.483 0.993 0.973 1.419 1.184 1.090 1.087 1.009 1.187 1.217 0.227 1.017 1.476 0.999 0.985 1.440 1.197 1.102. 1.102 1.023 1.224 1.232
-1.497 -1.603 -0.505 0.518 1.186 1.494 1.088 1.164 1.434 1.375 3.094 i.211 1.505 1.341 1.250 0.230 1.511 1.337 1.242 0.228 0.409 -0.288 -0.671 -0.854 0.236 1.293 1.357 1.511 0.228 1.242 1.337 1.511
-3.486 -3.933 -1.496 0.004 0.323 0.923 1.499 1.154 0.314 0.898 1.477 1.146 1.214 1.200 1.016 1.232 1.224 1.023 1.507 2.006 0.676 1.523 1.276 1.527 1.283 1.505 1.519 1.090 1.079 1.185 1.418 0.978 1.000 1.486 1.033 0.231 1.102 1.102 1.197 1.440 0.985 0.999 1.476 1.017 0.227 1.150 2.146 1.028 1.503 0.667 -0.105 -0.703 -1.532 -1.689 1.185 1.010 1.521 1.047 1.429 1.269 1.215 1.246 0.362 1.197 1.023 1.519 1.051 1.431 1.262 1.197 1.207 0.352
-2.153 -2.696 -1.474 -o.698 0.223 a*.613 o.913 l.o4o 1.239 -0.112 o.403 0.092 -o.497 -1.433 -3.102 -2.061 0.201 0.741 1.247 1.548 1.061 1.482 0.196 0.724 1.225 1.527 1.048 1.482
-2.349 -2.318 -1.705 -1.360 -1.168 -0.047
- 1. 042
- 1. 051 0.895
- 1. 421 1.198 1.440 1.224 1.283 2.171 1.278* 1.477 1.026 1.508 1.182 0.783 0.225 1.283 1.482 1.022 1.502 1.170 0.767 0.220 0.407 0.287 -0.305 -0.423 -0.980 -2.010 -2.221 0.408 1.233 1.244 1.518 1.032 0.398 1.209 1.218 1.467 1.023
-2.464 -1.921 -2.076 -3.363 -0.963 1.431 1.431 0.006 0.983 1.230
- 0. 985
- 1. 232 0.224 0.124 1.526 1.051 1.482 1.251 1.219 0.407 1.527 1.048 1.467 1.248 1.214 0.404 0.053 -0.279 -1.053 -0.285 -0.409 -0.630 0.157 0.437 0.896 1.250 1.506 1.268 1.005 1.529 1.152 1.532 1.220 0.872 0.427 0.148 0.154 0.430 0.887 1.248 1.502 1.262 0.999 1.511 1.146 1.528 1.218 0.887 0.430 0.155
-2.073 -1.621 -1.072 -0.234 -0.246 -0.414 -0.616 -1.161 -0.530 -0.288 -0.196 1.718 0.748 5.012 0.427 1.217 1.176 1.207 1.485 1.349 1.485 1.231 1.212 0.427 0.430 1.214 1.170 1.197 1.476 1.337 1.477 1.225 1.209 0.430 0.703 -0.202 -0.502 -0.764 -0.647 -0.885 -0.565 -0.439 -0.204 0.538 0.155 0.406 0.773 1.218 1.026 1.252 0.906 0.729 0.400 0.154 0.155 0.404 0.767 1.207 1.017 1.242 0.898 0.724 0.398 0.154 0.136 -0.439 -0.815 -0.975 -0.871 -0.788 -0.833 -0.694 -0.358 0.059 0.222 0.355 0.229 0.230 0.317 0.197 0.220 0.352 0.227 0.228 0.314 0.196
-0.859 -1.036 -0.919 -0.943 -1.079 -0.742 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100t A.15
CYCLE 11 E
51 98.9\\ POWER - DATE/TIME 10/12/94 20:02:00 PRI.P3X 3DDV DISTRIBUTION OF DEVIATIONS BETWEEN MEASURED AND PREDICTED DETECTOR POWERS OUTLYING DATA PLOTTED AT -25 AND +25, RESPECTIVELY N = 209.0 MEAN*
0
-25 0
-24 0
-23 0
-22 0
-21 0
-20 0
-19 0
-18 0
-17 0
-16 0
-15 0
-14 0
-13 0
-12 0
-ll 0
-10 0
-9 0
-8 0
-7 0
-6 2
-5 11
-4 ***********
0. 4 ST. DEV. =
14
-3 **************
16
-2 ****************
30
-1 ******************************
2. 4 SKEWNESS =
35 0 ***********************************
36 1 ************************************
27 2 ***************************
17 3 *****************
11 4 ***********
6 5 ******
2 6
l 7
- l
-9
- 0 9
0 10 0
ll 0
12 0
13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0
22 0
23 0
24 0
25 0.2 PEAKEDNESS =
2.9 A.16
CYCLE 11 E
51 98.9\\ POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X FCAL ICI POWER OF 1675.2 MWT ADJUSTED TO MATCH CALORIMETRIC POWER OF 2503.0 MWT (RATIO IS 0.669).
PRI.P3X 3CPF PRI.P3X 3TPF PRI.S3X 3TPF THE P3 CORE PEAKING FACTOR IS 1.776 IN ASSEMBLY 138 AT AXIAL LOCATION 0.76 FROM TOP OF CORE THE P3 TOTAL PEAKING FACTOR IS 2.006 IN ASSEMBLY 104 AT AXIAL LOCATION 0.78 FROM TOP OF CORE THE S3 TOTAL PEAKING FACTOR IS 1.893 IN ASSEMBLY 174 AT AXIAL LOCATION 0.74 FROM TOP OF CORE PRI. P3X 3QPT QUADRANT POWER TILTS FOR EACH AXIAL ICI LEVEL BASED ON TWO-WAY SYMMETRIC ICI SETS LEVEL QUADRANT l QUADRANT 2 QUADRANT QUADRANT 4 5
0.9757 1.0101
- l. 0097 1.0044 4
0.9955 1.0006 1.0061
- 0. 9977 0.9798 1.0000
- l. 0055
- l. 014 7 2
0.9901 0.9946 1.0081
- l. 0072 l
- l. 006 9 0.9870
- l. 0013 1.0047 AVERAGE 0.9896 0.9985 l.0061 1.0058 THE FOLLOWING ROTATIONAL SYMMETRIC INCORE DETECTOR SETS WERE AVAILABLE FOR TILT CALCULATIONS QUADRANT POSSIBLE SYMMETRIC SETS OPERABLE SETS BY LEVEL COMBINATIONS 2
3 4
5 1-2 22/14 11/ 9 3/17
- 3.
- 3.
- 3.
- 3.
- 2.
1-3 22/25 11/35 3/43 21/26 15/31
- 5.
4..
- 5.
- 5.
- 3.
1-4 22/32 11/36 3/30
- 3.
- 2.
- 3.
- 3.
- 2.
2-3 14/25 9/35 17/43
- 3.
- 2.
- 3.
- 3.
- 3.
2-4 14/32 9/36 17/30 19/29 6/40
- 5.
- 4.
- 5.
- 5.
- 5.
3-4 25/32 35/36 43/30
- 3.
- 2.
- 3.
- 3.
3.
QUADRANT POWER TILTS BASED ON INTEGRAL QUADRANT POWERS QUADRANT QUADRANT 2 QUADRANT 3 QUADRANT 4 0.9952 0.9962 l.0061 1.0024 QUADRANT TILT
SUMMARY
QUADRANT l QUADRANT 2 QUADRANT QUADRANT 4 NI/CHANNEL 5/A 8/D 6/B 7/C INCORE POWER FRACTION 0.9896 0.9985 1.0061 1.0058 UPPER LEVEL EXCORES 0.0000 0.0000 0.0000 0.0000 LOWER LEVEL EXCORES 0.0000 0.0000 0.0000 0.0000 NORMALIZED UPPER LEVEL EX CORES 0.0000 0.0000 0.0000 0.0000 NORMALIZED LOWER LEVEL EX CORES 0.0000 0.0000 0.0000 0.0000 NORMALIZED TOTAL EX CORES 0.0000 0.0000 0.0000 0.0000 EXC -
INC QUADRANT POWERS 0.9896 0.9985
- l. 0061 1.0058 MAXIMUM EXC/INC DEVIATION 100.61 \\
MAXIMUM INCORE QUADRANT TILT 0.61 \\
MAXIMUM EXCORE QUADRANT TILT
-100.00 \\
THE TILT CALCULATIONS WERE PERFORMED USING THE SYMMETRIC INCORE DETECTOR TILT FORMULATION A.17
l CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X ZRPF NORMALIZED CORE AVERAGE AXIAL POWER DISTRIBUTION (P = PIDAL-3 ANDS = SIMULATE-3)
TOP 1.00 +------------------------+------------------------+------------------------+------------------------+
SP s
PS PS I
IPS 0.80 +------------------------+------------------------+------------------------+------------------------+
I SP I I s I
I s I
I s I I s 0.60 +------------------------+------------------------+------------------------+------------------------+
I I s I
I I
I I
I s I
I I
I I
I s I
I I
I I
I s I
I I
I I
I PS I
0.40 +------------------------+------------------------+------------------------+------------------------+
I n
I I
s I
I s
I I SP I I SP 0~20 +------------.------------+------------------------+------------~-----------+------------------------+
I I
s I
I I
I s I
I I
PS I I
I I
PS I
I I
I s
P I
0.00 +------------------------+------------------------+------------------------+------------------------+
0.0 0.5
- l. 0
- l. 5 2.0 PJ - 0.586 0.768 0.902 0.991 1.040
- l. 060
- l. 065 l.063 1.062 1.065 1.070 1.075 1.079
- l. 079 1.079 1.080
- l. 085
- l. 094 1.105 1.109
- l. 094 1.048 0.958 0.817 0.624 SJ - 0.564 0.778 0.926
- l. 003
- l. 042
- l. 059
- l. 067
- l. 070 1.070
- l. 071
- l. 072 1.073
- l. 075.
- l. 078 1.082 1.085 1.090 1.093 1.095 l.093 1.082 1.050 0.977 0.828 0.578 A.18
CYCLE 11 E
Sl 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.PJX TSPF PEAKING FACTORS FOR VERIFICATION OF TECHNICAL SPECIFICATION COMPLIANCE PRI.P:iX BFRA ASSEMBLY RADIAL PEAKING FACTORS BY FUEL TYPE THE ALLOWED ASSEMBLY RADIAL PEAKING FACTOR= 1.760 * (1.0 + O.J * (1.0 -
2SOJ.O / 2SJO.O)) / 1.0401 1.70 THE LIMITING ASSEMBLY RADIAL PEAKING FACTOR RATIO= 1.091 (A/M) IN ASSEMBLY 46 THE MEASURED ASSEMBLY RADIAL PEAKING FACTOR = l.SS6 FUEL TYPE 01 02 OJ Nl N2 NJ N4 NS NS Ml M2 MJ M4 Ll L2 LJ BUNDLE 104 46 128 J7 61 lOS lJl 110 lOJ 139 lSl 122 134 16S 16 lSO PRI.PJX BFRT ASSEMBLY MWT lS.86 19.09 18.67 lS.40 lS.72 16.6S 1S.S7
- 13. J7 2.90 lJ.01 S.01 14.16 4.44
- 1. 9J
- 1. 91 2.76 TS HFP FRA
- 1. 76
- 1. 76
- 1. 76
- 1. 66
- 1. 66
- 1. 66
- 1. 66
- 1. 66
- 1. 66
- 1. S7
- 1. S7
- 1. S7
- 1. S7
- 1. S7 l.S7 l.S7 ALLOWED FRA
- 1. 70
- 1. 70
- 1. 70
- 1. 60
- 1. 60*
1.60
- 1. 60 1.60 1.60 l.Sl l.Sl
- 1. Sl l.Sl
- 1. 51
- 1. Sl l.Sl TOTAL RADIAL PEAKING FACTORS BY FUEL TYPE MEASURED FRA
- 1. 29J l.SS6
- 1. S21 l.2SS 1.281 l.JS7 1.269.
1.090 0.2J6 1.061 0.408 l.1S4 O.J62 0.1S7 0.1S6 0.225 ALLOWED/
MEASURED
- 1. Jl3
- 1. 091 1.116.
1.276
- 1. 249 1.180 1.262 1.469
- 6. 77J 1.428 J.708
- 1. Jl3 4.182 9.622 9.7J4
- 6. 721 THE ALLOWED TOTAL RADIAL PEAKING FACTOR= 2.040 * (1.0 + O.J * (1.0 -
2SOJ.O / 2SJO.O)) / l.04SS = 1.96 THE LIMITING TOTAL RADIAL PEAKING FACTOR RATIO= 1.102 (A/M) IN ASSEMBLY 46 THE MEASURED TOTAL RADIAL PEAKING FACTOR= 1.777 FUEL TYPE 01 02 OJ Nl N2 NJ N4 NS NS Ml M2 MJ M4 Ll L2 LJ BUNDLE 104 46 128 137 61 lOS 15J 110 lOJ 139 lSl 122 134 16S 16 lSO PEAK PIN KW 101.87 102.49 100.JO 8S. 02 80.2J 8J.87 79.67 67.87 29.48 66.2S 4J.66
- 71. 9J J6.S6 2J.02 22.98
- 26. 74 TS HFP FRT 2.04 2.04 2.04
- 1. 92
- 1. 92
- 1. 92
- 1. 92
- 1. 92
- 1. 92 1.92
- 1. 92 1.92
- 1. 92
- 1. 92
- 1. 92
- 1. 92 ALLOWED FRT 1: 96
- 1. 96
- 1. 96 1.84
- 1. 84
- 1. 84
- 1. 84
- 1. 84
- 1. 84
- 1. 84
- 1. 84
- 1. 84
- 1. 84
- 1. 84 1.84 1.84 MEASURED FRT 1.766
- 1. 777 l.7J9 1.474 l.J91 l.4S4
- l. J81 1.177
- 0. Sll 1.149 0.7S7 1.247 0.6J4 O.J99 O.J98 0.46J ALLOWED/
MEASURED 1.108 1.102 1.126 1.2SO l.J2S 1.267
- 1. JJ4 l.S66 J.60S 1.604 2.4J4 1.477 2.907 4.617 4.62S J.97S A.19
CYCLE 11 E
51
- 98. 9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X BKWF LINEAR HEAT GENERATION RATE BY FUEL TYPE (KW/FT)
THE ALLOWED LINEAR HEAT GENERATION RATE a 15.28. i. 0000 I i. 0623 I 1.0300 I THE LIMITING LINEAR HEAT GENERATION RATE RATIO = 1.300 (A/M) IN ASSEMBLY 104 THE MEASURED LINEAR HEAT GENERATION RATE = 10.53 FUEL BUNDLE MAXIMUM AXIAL ALLOWED TYPE LHR PENALTY LHR 01 104 15.28 1.0000 13.69 02 138 15.28
- l. 0000
- 13. 69 03 128 15.28
- l. 0000
- 13. 69 Nl 137 15.28
- l. 0000 13.69 N2 124 15.28 1.0000
- 13. 69 N3 105 15.28 1.0000 13.69 N4 153 15.28 1.0000
- 13. 69 NS 95 15.28 0.9615 13.16 NS 103 15.28 0.9685 13.26 Ml 139 15.28 1.0000 13.69 M2 1.51 15.28 0.9685 13.26 M3 122 15.28
- l. 0000
- 13. 69 M4 200 15.28 0.9685 13.26 Ll 165 15.28 0.9615 13.16 L2 189 15.28 0.9615 13.16 L3 199 15.28 0.9685 13.26 UNCERTAINTIES APPLIED TO LHGR CALCULATIONS -
MEASUREMENT ENGINEERING 1.0623 1.0300 MEASURED LHR 10.53 10.50 10.40
- 8. 71 8.07 8.57 8.06 6.57 2.91 6.65 4.30 7.30 3.59 2.27 2.28 2.65 THERMAL POWER 1.0200 1.0200 = 13.69 ALLOWED/
FRACTION FROM MEASURED BOTTOM OF CORE 1.300 0.22 1.304 0.26
- l. 317 0.22
- l. 572 0.22
- l. 697 0.22
- l. 598 0.22
- l. 699 0.22 2.005 0.82 4,556 0.78 2.058 0.26 3.080
- 0. 78 1.877 0.22 3.697 0.78 5.789 0.82 5.783 0.82 5.002 0.78 PRI.P3X FALM INCORE ALARM FACTORS BASED ON THE LHGR WITH THE MINIMUM MARGIN TO THE TECH SPEC LIMITS LEVEL 5
4 3
2 PRI.P3X BUNDLE 46 46 46 104 104 3APL FRACTION FROM BOTTOM 0.82 0.62 0.46 0.22 0.18 ALLOWABLE POWER LEVEL ALLOWABLE POWER LEVEL 100.0 t LIMITil:IG LOCA'I'.ION IN...SSEMBLY 1Q4 FRACTION FROM THE BOTTOM 0.22 V(Z) 1.1100 LIMITED BY PEAK FUEL PIN ALARM FACTOR 1.3647
- l. 3481
- l. 3306 1.2997
- l. 3146 A.20
l l
2 4
5 7
8 10 11 13 CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X 2PIN AXIALLY COLLAPSED NORMALIZED FULL CORE PIN POWER MAP RMS DEVIATION FOR THIS MAP= 1.31 t A
B D
0.398 0.777 0.398. 0.781 0.098 0.482 E
G H
J K
M N
Q R
T 0.381 0.584 0.488 0.480 0.603 0.447 0.383 0.587 0.493 0.498 0.616 0.453 0.524 0.560 1.076 3.667 2.187 1.393 0.389 0.736 1.091 1.200 1.681 1.303 1.526 1.110 0.740 0.398 0.391 0.739 1.096 1.205 1.697 1.320 1.556 1.121 0.743 0.398 0.630 0.412 0.449 0.408 0.966 1.337 1.974 0.984 0.357 -0.085 0.761 1.496 1.446 1.682 1.422 1.672 0.767 1.500 1.449 1.688 1.432 1.689 0.799 0.236 0.208 0.331 0.670 1.023 1.275 1.320 1.512 0.784 1.286 1.326 1.511 0.781 0.885 0.474 -0.044 -0.420 v
x 1.193 1.351 1.748 1.243 1.669 1.084 1.339 1.213 1.352 1.746 1.238 1.675 1.092 1.347 1.717 0.066 -0.091 -0.392 0.370 0.714 0.626 1.689 1.385 1.227 0.782 0.398 1.693 1.376 1.213 0.767 0.391 0.250 -0.635 -1.135 -1.903 -1.829 z
0.745.1.516 1.374 1.658 1.142 1.777 1.368 1.035 0.743 1.511 1.376 1.646 1.135 1.744 1.368 1.043
-0.219 -0.361 0.181 -0.709 -0.622 -1.843 0.034 0.784 1.679 1.094 1.672 1.370 1.538 0.752 1.696 1.096 1.647 1.353 1.500 0.738 0.998 0.223 -1.479 -1.262 -2.466 -1.909 0.439 1.121 1.324 0.453 1.121 1.326 3.088 -0.026 0.136 0.616 1.561 1.284 0.616 1.556 1.286 0.028 -0.290 0.149 1.680 1.092 1.735 1.391 1.286 1.613 1.104 1.718 1.694 1.096 1.741 1.393 1.307 1.640 1.126 1.741 0.842 0.382 0.321 0.148 1.625 1.696 1.969 1.333 1.321 1.675 1.115 1.715 1.347 1.696 1.126 1.736 1.957 1.257 1.029 1.200 1.128 1.320 1.706 1.144 1.340 1.736 1.420 1.518 1.758 1.370 1.393
- l. 667 0.506 1.342 1.698 1.086 1.031 1.615 1.325 1.176 1.173 1.128 1.268 0.499 1.320 1.689 1.092 1.044 1.639 1.340 1.190 1.190 1.144 1.308
-1.468 -1.621 -0.530 0.549 1.222 1.471 1.114 1.156 1.422 1.374 3.116 0.511 1.766 1.454 0.493 1.697 1.432
-3.528 -3.909 -1.514 1.675 1.348 1.282 1.136 1.177 1.165 1.326 1.675 1.368 1.308 1.144 1.190 1.190 1.340 0.021 1.521 2.027 0.668 1.137 2.135 1.053
- l. 615
- l. 639 1.478 1.124 1.749 1.460 1.107 0.386 1.135 1.746 1.449 1.096 0.383 1.019 -0.169 -0.769 -0.990 -0.798 1.723 1.234
- l. 744
- l. 238 1.194 0.323 1.686 1.212 0.591
- l. 689
- l. 205.. 0. 587 0.197 -0.574 -0.645 1.351 1.668 1.436 1.708 0.497 1.368 1.675 1.432 1.697 0.493 1.225 0.423 -0.307 -0.645 -0.900 1.037 1.093 1.701 1.341 0.507 1.044 1.092 1.689 1.320 0.499 0.700 -0.080 -0.728 -1.551 -1.662 14 0.604 1.239 1.714 1.247 1.740 1.385 1.720 1.326 1.130 1.739 1.122 1.695 1.354 1.305 1.607 0.634 16 17 19 20 22 23 0.587 1.205 1.689 1.238 1.744 1.393 1.736 1.340 1.144 1.736 1.126
-2.811 -2.743 -1.443 -0.726 0.220 0.607 0.920 1.060 1.231 -0.159 0.395 1.696 1.347 1.286 1.556 0.616 0.083 -0.523 -1.456 -3.185 -2.798 0.392 1.122 1.474 1.770 1.149 1.742 1.116 1.619 1.280 1.387 0.383 1.096 1.449 1.746 1.135 1.741 1.126 1.640 1.307 1.393
-2.390 -2.325 -1.693 -1.369 -1.}76 -0.045 0.895 1.304 2.115 0.405 1.736 1.099 1.701 1.340 1.145 0.463 1.741 1.096 1.694 1.326* 1.121 0.453 0.288 -0.303 -0.389 -1.015 -2.078 -2.261 0.757 1.530 1.381 1.704 1.107 1.696 0.738 1.500 1.353 1.647 1.096 1.696
-2.497 -1.957 -2.042 -3.348 -0.982 -0.008 1.041 1.366
- l. 043
- l. 368 0.170 0.155 1.743 1.138 1.664 1.380 1.517 0.748 1.744 1.135 1.646 1.376 1.511 0.743 0.057 -0.277 -1.086 -0.308 -0.391 -0.620 0.399 0.780 1.227 1.380 1.698 1.353 1.098 1.695 1.245 1.751 1.355 1.193 0.391 0.767 1.213 1.376 1.693 1.347 1.092 1.675 1.238 1.746 1.352 1.213
-2.005 -1.646 -1.109 -0.258 -0.288 -0.450 -0.580 -1.159 -0.559 -0.300 -0.226 1.674 0.775 1.514 1.333 1.296 1.700 1.445 1.698 1.455 1.504 0.763 0.781 1.511 1.326 1.286 1.689 1.432 1,688 1.449 1.500 0.767 0.765 -0.172 -0.523 -0.794 -0.669 -0.909 -0.597 -0.415 -0.237 0.502 0.398 0.746 1.131 1.571 1.332 1.710 1.216 1.103 0.741 0.390 0.398 0.743 1.121 1.556 1.320 1.697 1.205 1.096 0.739 0.391 0.123 -0.406 -0.877 -0.973 -0.894 -0.764 -0.877 -0.675 -0.275 0.157 0.775 0.379 0.781 0.398 0.794 5.029 0.457 0.622 0.503 0.498 0.594 0.386 PIDAL-3 0.453 0.616 0.498 0.493 0.587 0.383 SIMULATE-3
-0.897 -0.951 -1.021 -1.033 -1.138 -0.765 (S3-P3)/P3*100t A.2"1
l CYCLE 11 E
51 98.9\\- POWER - DATE/TIME 10/12/94 20:02:00 PRI. P3X PKWF PEAK NODE LHGR FOR EACH ASSEMBLY (KW/FT)
RMS DEVIATION FOR THIS MAP a 3.93 t A
B D
E
- G H
J K
M N
Q 2.177 3.326 '2.844 2.829 3.538 2.614 2.129 3.261 2.795 2.821 3:394 2.513
-2.193 -1.959 -1.714 -0.269 -4.079 -3.863 R
T v
x z
2 2.221 4.158 6.203 6.881 9.981 7.693 9.353 6.494 4.277 2.251 2.160 4.054 6.010 6.742 9.716 7.428 8.871 6.153 4.070 2.196
-2.755 -2.507 -3.116 -2.020 -2.654 -3.442 -5.149 -5.257 -4.848 -2.460 4
4.301 8.806 8.402 9.925 8.280 10.009 7.457 7.868 9.133 4.504 4.208 8.595 8.216 9.690 8.098 9.685 7.126 7.428 8.636 4.274
-2.173 -2.395 -2.216 -2.370 -2.193 -3.242 -4.441 -5.589 -5.446 -5.112 5
2.272 4.396 6.800 7.799 10.239 7.153 9.818 6.262 7.795 10.043 8.192 7.051 4.447 2.246 2.196 4.274 6.665 7.566 9.941 6.931 9.547 6.102 7.484 9.593 7.750 6.670 4.208 2.160
-3.324 -2.770 -1.979 -2.989 -2.912 -3.099 -2.762 -2.561 -3.994 -4.476 -5.390 -5.397 -5.379 -3.840 7
4.213 8.896 7.989 9.797 6.538 10.401 7.885 5.873 9.887 6.264 9.931 7.986 9.206 4.279 4.070 8.630 7.750 9.383 6.312 9.926 7.653 5.738 9.613 6.051 9.388 7.566 8.600 4.054
-3.397 -2.992 -2.997 -4.225 -3.460 -4.571 -2.947 -2.303 -2.770 -3.406 -5.468 -5.260 -6.579 -5.264 8
2.549 6.361 7.655 9.821 6.227 10.167 7.990 7.291 9.414 6.284 10.079 6.460 10.293 8.575 6.288 2.189 2.519 6.153 7.428 9.593 6.051 9.854 7.730 7.156 9.209 6.225 9.854 6.312 9.941 8.211 6.010 2.124
-1.185 -3.273 -2.970 -2.318 -2.829 -3.074 -3.256 -1.850 -2.175 -0.936 -2.235 -2.297 -3.423 -4.246 -4.419 -2.954 10 3.516 9.246 7.367 7.574 9.838 6.386 10.104 6.398 7.574 10.038 7.912 10.162 7.135 9.942 6.997 3.380 11 3.394 8.866 7.126 7.484 9.613 6.219 9.818 6.245 7.376 9.823 7.730 9.931 6.931 9.690 6.736' 3.261
-3.474 -4.105 -3.275 -1.190 -2.289 -2.618 -2.831 -2.390 -2.618 -2.145 -2.298 -2.277 -2.859 -2.537 -3.731 -3.521 2.958 7.856 10.122 6.292 5.911 9.535 7.652 6.700 6.678 6.398 7.295 7.854 2.821 7.428 9.685 6.107 5.738 9.209 7.376 6.501 6.501 6.245 7.156 7.653 9.839 8.386 10.131 2.907 9.552 8.098 9.71, 2.795
-4.621 -5.448 -4.320 -2.945 -2.922 -3.424 -3.613 -2.963 -2.649 -2.390 -1.900 -2.564 -2.922 -3.436 -4.095 -3.850 13 2.990 10.534 8.568 9.990 7.984 7.439 6.512 6.728 6.700 7.682 9.519 5.896 6.293 10.095 7.835 2.960 2.795 9.716 8.098 9.552 7.653 7.156 6.245 6.501 6.501 7.376 9.209 5.738 6.107 9.685 7.428 2.821
-6.523 -7.768 -5.487 -4.386 -4.143 -3.801 -4.101 -3.380 -2.969 -3.985 -3.252 -2.679 -2.961 -4.060 -5.189 -4.682 14 3.466 7.220 10.256 7.295 10.403 8.067 10.206 7.673 6.489 10.39.
6.431 9.956 7.809 7.507 9.571 3.633 3.261 6.736 9.690. 6.931 9,931 7.730 9.823 7.376 6.245 9.~18 6.~19 9.613 7.484 7.126 8.866 3.394
-5.914 -6.698 -5.519. -4.992 -4.537 -4.182 -3.748 -3.876 -3.764 -5.576 -3.293 -3.441 -4.159 -5.074 -7.368 -6.584 16 2.. 247 6.399 8.709 10.500 6.651 10.282 6.385 9.526 7.384 8.035 10.129 6.271 9.969 7.790 6.536 2.642 2.124 6.010 8.211 9.941 6.312 9.854 6.225 9.209 7.156 7.730 9.854 6.051 9.593 7.428 6.153 2.519
-5.480 -6.074 -5.716 -5.328 -5.102 -4.162 -2.511 -3.329 -3.090 -3.791 -2.717 -3.513 -3.773 -4.641 -5.858 -4.642 17 4.305 9.114 8.060 10.152 6.334 9.965 5.928 7.93j 10.277 6.516 9.761 8.052 9.004 4.235 19 20 22 23 4.054 8.600 7.566 9.388 6.051 9.613 5.738 7.653 9.926 6.312 9:303 7.750 8.630 4.070
-5.828 -5.638 -6.125 -7.522 -4.463 -3.536 -3.209 -3.528 -3.412 -3.125 -3.871 -3.754 -4.155 -3.900 2.288 4.415 7.015 8.081 9.940 7.780 6.322 9.958 7.185 10.273 7.823 6.798 4.393 2.158 2.160 4.208 6.670 7.750 9.593 7.484 6.102 9.547 6.931 9.941 7.566 6.665 4.274 2.196
-5.583 -4.697 -4.918 -4.094 -3.492 -3.806 -3.481 -4.131 -3.533 -3.233 -3.288 -1.953 -2.711 1.754 4.430 8.977 7.715 7.390 10.045 8.414 10.054 8.515 8.892 4.289 4.274 8.636 7.428 7.126 9.685 8.098 9.690 8.216 8.595 4.208
-3.531 -3.796 -3.720 -3.578 -3.579 -3.760 -3.623 -3.510 -3.341 -1.884 2.291 4.261 6.388 9.162 7.694 10.104 7.016 6.257 4.175 2.219 2.196 4.070 6.153 8.871 7.428 9.716 6.742 6.010 4.054 2.160
-4.143 -4.482 -3.675 -3.175 -3.457 -3.840 -3.902 -3.944 -2.909 -2.644 2.651 3.587 2.915 2.902 3.418 2.210 2.513 3.394 2.821 2.795 3.261 2.129
-5.200 -5.368 -3.214 -3.676 -4.589 -3.677 PIDAL-3 SIMULATE-3 (S3-P3)/P3*100t A.22
2 4
5 7
10 11 13 CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X ZKWF PEAK NODE LHGR AXIAL LOCATION FOR EACH ASSEMBLY A
B D
E G
H J
K M
N Q
0.780 0.500 0.260 0.220 0.220 0.220 0.740 0.740 0.340 0.300 0.740 0.740 R
T 0.780 0.780 0.540 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.780 0.740 0.260 0.260 0.260 0.260 0.220 0.260* 0.780 0.780 0.780 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.740 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.780 v
x 0.780 0.780 0.220 0.260 0.260 0.220 0.220 0.260 0.220 0.220 0.220 0.220 0.220 0.780 0.780 0.740 0.260 0.260 0.260 0.260 0.260 0.300 0.260 0.260 0.260 0.260 0.780 0.780 0.780 0.220 0.220 0.260 0.260 0.260 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.740 0.260 0.260 0.260 0.300 0.260 0.260 0.300 0.260 0.300 0.260 0.260 0.260 0.740 z
0.780 0.220 0.220 0.260 0.260 0.220 0.220 0.220 0.220 0.260 0.220 0.260 0.220 0.220 0.220 0.780 0.740 0.220 0.260 0.260 0.300 0.260 0.260 0.220 0.260 0.300 0.260 0.300 0.260 0.260 0.260 0.780 0.220
- 0. 740 0.220 0.300 0.220 0.340 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.260 0.300 0.260 0.260 0.260 0.260 0.260 0.300 0.260 0.260 0.260 0.300 0.220 0.220 0.220 0.220 0.220
.0.260 0.220 0.220 0.220 0.780 0.220 0.780 0.180 0.820 0.180 0.820 0.220 0.220 0.180 0.820 0.180 0.820 0.220 0.260 0.220 0.780 0.220 0.220 0.220 0.260 0.180 0.220 0.220 0.220 0.220 0.260 0.220 0.260 0.220 0.300 0.220 0.260 0.. 220 0.260 0.260 0.300 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.500
- 0. 740 0.500 0.340 0.220 0.300 14 0.220 0.220 0.220 0.220 0.260 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.22~ 0.220 0.740 0.260 0.260 0.260 0.260 0.260 0.260 0.220 0.780 0.260 0.300 0.260 0.260 0.260 0.260 0.740 16 17 19 20 22 23 0.780 0.220 0.220 0.260 0.780 0.260 0.260 0.260 0.780 0.220 0.220 0.740 0.260 0.260 0.260 0.300 0.220 0.260 0.260 0.260 0.260 0.300 0.260 0.300 0.260 0.260 0.220 0.260 0.260 0.300 0.780 0.780 0.780 0.780 0.220 0.220 0.220 0.220 0.260 0.260 0.260 0.260 0.260 0.300 0.260 0.220 0.260 0.260 0.220 0.220 0.500 0.260 0.260 0.300 0.260 0.500 0.220 0.260 0.300 0.260 0.260 0.220 0.260 0.220 0.260 0.260 0.260 0.260 0.780 0.220 0.220 0.220 0.220 0.220 0.780 0.260 0.260 0.260 0.260 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.260 0.220 0.740 0.780 0.780 0.780 0.220 0.220 0.220 0.220 0.220 0.780 0.780 0.780 *0.780 0.260 0.220 Q.260 0.260 0.260 0.260 0.740 0.780 0.780 0.780 0.740 0.260 0.220 0.780 0.740 0.740 0.300 0.340 0.740 0.740 0.220 0.220 0.260 0.220 0.220 0.220 0.260 0.740 0.220
- 0. 740 0.180 0.780 PIDAL-3 SIMULATE-3 A.23 0.220
- 0. 740
2 4
5 7
8 10 11 13 14 16 17 19 20 22 23 CYCLE 11 E
51 98.9t POWER - DATE/TIME 10/12/94 20:02:00 PRI. P3X 2EXP AXIALLY COLLAPSED FULL CORE EXPOSURE MAP (GWD/MTU)
RMS DEVIATION FOR THIS MAP = 1.02 \\
A B
D E
G H
J K
M N
Q 31.975 25.616 5.581 5.488 26.001 32.280 31.839 25.462 5.519 5.534 25.889 32.123
-0.426 -0.601 -1.113 0.836 -0.430 -0.486 R
T 38.830 27.423 20.396 21.617 8.192 19.382 8.071 19.912 27.574 37.980 38.788 27.458 20.360 21.465 8.254 19.200 8.181 20.070 27.652 38.145
-0.109 0.129 -0.174 -0.701 0.757 -0.940 1.366 0.791 0.282 0.435 27.310 7.972 19.736 9.515 21.574 27.208 7.986 19.663 9.516 21.313
-0.374 0.173 -0.368 0.006 -1.210 9.598 23.265 21.201 9.671 23.149 21.354 0.762 -0.500 0.719 8.184 27.840 8.218 27.800 0.410 -0.142 v
x 38.119 27.814 20.911 21.535 9.796 27.486 38.145 27.800 20.909 21.402 9.772 27.181 0.069 -0.052 -0.010 -0.619 -0.247 -1.108 9.673 29.792 21.820 9.695 29.953 21.906 0.223 0.542 0.393 9.762 19.861 20.957 27.268 38.813 9.812 19.856 20.909 27.208 38.786 0.516 -0.024 -0.228 -0.220 -0.069 27.653 8.268 20.153 9.413 31.502 9.900 23.462 29.240 8.979 31.483 9.443 21.623 8.203 27.532 27.652 8.218 19.856 9.337 31.209 9.736 23.353 29.217 9.104 31.491 9.338 21.402 7.986 27.458
-0.005 -0.601 -1.471 -0.803 -0.931 -1.654 -0.466 -0.078 1.394 0.025 -1.110 -1.024 -2.646 -0.270 32.319 20.118 21.480 32.122 20.068 21.354 9.754 31.478 9.813 31.491 9.341 23.612 22.975 9.384 23.686 23.047 9.127 29.818 9.332 29.948 9.204 31.371
- 9. 384 31. 209 9.775 19.914 20.534 32.046 9.772 19.665 20.360 31.839
-0.610 -0.247 -0.585 0.600 0.040
.0.461 0.312 0.311 2.245 0.436 1.961 -0.516 -0.030 -1.252 -0.849 -0.647 26.067 8.214 23.174 21.662 25.890 8.181 23.148 21.907
-0.678 -0.404 -0.113 1.130 8.990 29.918 9.892 26.754 22.708 9.833 23.487 9.104 29.948 10.105 26.699 22.810 10.104 23.686 1.271 0.099 2.151 -0.206 0.450 2.753 0.845 9.583 27.478 9.516 21.510 25.518
- 9. 736 27.181
- 9. 516 21. 466" 25. 462 1.592 -1.080 -0.001 -0.204 -0.221 5.671 19.661 9.752 29.739 29.420 5.534 19.199. 9.669 29.956 29.217
-2.410 -2.348 -0.853.
0.729 -0.691 9.160 22.943 22.791 22.709 26.599 23.008 23.118 9.647 21.404 8.295 5.561 9.332 22.811 22.884 22.886 26.699 23.047 23.354.9.694 21.313 8.254 5.518 1.876 -0.577 0.406 0.781 0.376 0.170 1.020 0.486 -0.426 -0.493 -0.778 5.752 8.644 22.078 9.707 23.279 22.913 26.934 22.714 22.633 22.564 5.518 8.254 21.313 9.694 23.354 23.047 26.699 22.886 22.884 22.811
-4.070 -4.513 -3.465 -0.139 0.323 0.585 -0.874 0.756 1.108 1.094 9.144 29.144 29.701 9.751 19.410
~.609 9.332 29.217 29.956 9:669 19.199 5.534 2.053 0.249 0.857 -0.837 -1.087 -1.343 25.628 21.666 9.688 27.563 9.698 23.574 9.927 22.819 26.431 9.996 29.894 25.462 21.466 9.516 27.181 9.736 23.686 10.104 22.810 26.699 10.1"05 29.948
-0.648 -0.925 -1.771 -1.387 0.396 0.473 1.781 -0.039 1.012 1.086 0.180 9.067 21.721 23.276 8.438 26.048 9.104 21.907 23.148 8.181 25.890 0.409 0.855 -0.550 -3.043 -0.607 32.139 20.527 19.856 9.914 31.423 31.839 20.360 19.665 9.772 31.209
-0.932 -0.813 -0.963 -1.430 -0.682 9.356 29.954 9.384 29.948 0.299 -0.019 9.131 22.835 23.513 9.332 23.047 23.686 2.203 0.926 0.735 9.318 31.393 9.833 21.287 19.999 32.325 9.384 31.491 9.813 21.354 20.068 32.122 0.709 0.311 -0.203 0.314 0.344 -0.628 27.605 8.141 21.486 9.654 31.634 27.458 7.986 21.402 9.338 31.491
-0.534 -1.904 -0.390 -3.277 -0.452 9.072 29.526 23.117 9.104 29.217 23.353 0.355 -1.046 1.019 9.677 31.352 9.398 19.721 9.736 31.209 9.337 19.856 0.612 -0.458 -0.651 0.683 8.217 27.563.
8.218 27.652 0.017 0.321 38.822 27.372 20.931 19.927 9.824 21.773 29.842 9.798 27.556 9.768 21.339 20.701 27.750 37.689 38.786 27.208 20.909 19.856 9.812 21.906 29.953 9.695 27.181
-0.094 -0.599 -0.104 -0.357 -0.127 0.613 0.372 -1.050 -1.360 9.772 21.402 20.909 27.800 38.145 0.039 0.296 1.007 0.179 1.211 27.778 8.216 21.323 23.200 9.721 21.338 9.548 19.722 27.800 8.218 21.354 23.149 9.671 21.313 9.517 19.663 0.078 0.027 0.145 -0.218 -0.512 -0.116 -0.320 -0.299 7.962 27.167 7.986 27.208 0.303 0.151 38.061 27.450 20.023 8.260 19.297 8.288 21.394 20.349 27.356 38.608 38.145 27.652 20.070 8.181 19.200 8.254 21.465 20.360 27.458 38.788 0.221 0.736 0.234 -0.959 -0.503 -0.410 0.332 0.054 0.374 0.466 32.331 26.015 5.571 5.507 25.422 31.864 32.123 25.889 5.534 5.519 25.462 31.839
-o.644 -0.486 -0.659 0.211 0.159 -0.077 PIDAL-3 SIMULATE-3 (S3-P3) /P3*100\\
A.24
2 4
5 7
8 10 ll 13 14 16 17 19 20 22 23 CYCLE ll E
51 98.9\\ POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X CEXP AXIALLY COLLAPSED FULL CORE CYCLE EXPOSURE MAP (GWD/MTU)
A B
D E
G H
J K
M N
Q R
T 30.681 23.670 3.674 3.652 23.759 30.776 1.294 1.946 1.907 1.836 2.241 1.504 31.975 25.616 5.581 5.488 26.001 32.280 37.813 24.903 15.727 15.777 0.000 12.673 1.017 2.519 4.669 5.839 8.192 6.709 38.830 27.423 20.396 21.617 8.192 19.382 0.000 14.810 24.958 36.928 8.071 5.103 2.616 1.052 8.071 19.912 27.574 37.980 24.599 0.000 11.654 0.000 12.744 0.000 15.204 13.288 0.000 25.068 2.711 7.972 8.082 9.515 8.830 9.598 8.061 7.913 8.184 2.771 27.310 7.972 19.736 9.515 21.574 9.598 23.265 21.201 8.184 27.840 v
x 37.063 25.051 15.191 13.539 0.000 20.098 0.000 23.352 13.506 1.056 2.763 5.720 7.997 9.796 7.387 9.673 6.439 8.314 38.119 27.814 20.911 21.535 9.796 27.486 9.673 29.792 21.820 0.000 11.540 15.098 24.486 37.772 9.762 8.321 5.858 2.782 1.040 9.762 19.861 20.957 27.268 38.813 25.010 0.000 11.854 0.000 24.820 0.000 15.387 22.978 2.643 8.268 8.298 9.413 6.682 9.900 8.076 6.262 27.653 8.268 20.153 9.413 31.502 9.900 23.462 29.240 0.000 25.023 8.979 6.461 8.979 31.483 0.000 13.535 9.443 8.089
- 9. 443 21. 623 0.000 24.962 8.203 2.570 8.203 27.532 z
30.837 14.960 13.502 1.482 5.158 7.977 32.319 20.118 21.480 0.000 24.997 9.754 6.481
- 9. 754 31.478 0.000 15.174 14.964 9.341 8.439 8.012 9.341 23.612 22.975 0.000 23.260 9.127 6.558 9.127 29.818 o.ooo 24.841 *o.ooo 11.773 15.837 30.744 9.204 6.529 9.775 8.142 4.697 1.303 9.204 31.371 9.775 19.914 20.534 32.046 23.779 0.000 15.044 13.425 0.000 23.259 2.287 8.214 8.130 8.238 8.990 6.659 26.067 8.214 23.174 21.662 8.990 29.918 0.000 20.037 14.795 9.892 6.717 7.912 9.892 26.754 22.708 0.000 15.191 9.833 8.297 9.833 23.487 0.000 20.160 9.583 7.317 9.583 27.478 0.000 15.636 23.557 9.516 5.874 1.961 9.516 21.510 25.518 3.703 12.743 0.000 23.281 23.170 1.967 6.918 9.752 6.458 6.250 5.671 19.661 9.752 29.739 29.420 0.000 14.993 15.369 15.313 19.902 15.108 15.150 9.160 7.951 7.423 7.396 6:696 7.900 7.969 9.160 22.943 22.791 22.709 26.599 23.008 23.118 0.000 12.528 9.647 8.877 9.647 21.404 0.000 8.295 8.295 3.619 1.942 5.561 3.743 0.000 13.062 2.009 8.644 9.016 5.752 8.644 22.078 0.000 15.326 14.930 20.174 15.296 15.288 14.626 9.707 7.953 7.982 6.761 7.419 7.345 7.938 9.707 23.279 22.913 26.934 22.714 22.633 22.564 0.000 22.876 23.220 0.000 12.524. 3.646 9.144 6.269 6.482 9.751 6.886 1.963 9.144 29.144 29.701 9.751 19.410 5.609 23.614 15.636 0.000 20.154 2.014 6.030 9.688 7.410 25.628 21.666 9.688 27.563 0.000 15.177 9.698 8.398 9.698 23.574 0.000 14.882 19.730 9.927 7.937 6.702 9.927 22.819 26.431 0.000 23.211 9.996 6.683 9.996 29.894 0.000 13.314 15.040 9.067 8.408 8.236 9.067 21.721 23.276 0.000 23.701 8.438 2.347 8.438 26.048 30.811 15.753 11.632 1.328 4.774 8.224 32.139 20.527 19.856 o.ooo 24.713 o.ooo 23.308 o.oqo 14.949 15.135 9.914 6:711 9.35~ 6.646 9.131 7.887
~.378 9.914 31.423 9.356 29.954 9.131 22.835 23.513 0.000 24.893 9.318 6.500
- 9. 318 31. 393 0.000 13.254 14.754 30.770 9.833 8.033 5.246 1.555 9.833 21.287 19.999 32.325 25.007 0.000 13.324 0.000 25.083 0.000 23.242 15.090 0.000 24.722 0.000 11.424 0.000 24.924 2.599 8.141 8.162 9.654 6.551 9.072 6.284 8.028 9.677 6.631 9.398 8.297 8.217 2.640 27.605 8.141 21.486 9.654 31.634 9.072 29.526 23.117 9.677 31.352 9.398 19.721 8.217 27.563 37.778 24.598 15.061 11.605 1.045 2.774 5.870 8.322 38.822* 27.372 20.931 19.927 0.000 13.374 23.335 9.824 8.399 6.507 9.824 21.773 29.842 0.000 20.187 9.798 7.369 9.798 27.556 0.000 13.359 14.998 25.010 36.690 9.768 7.980 5.702 2.740 0.999 9.768 21.339 20.701 27.750 37.689 25.031 0.000 13.322 15.023 0.000 12.427 0.000 11.643 0.000 24.462 2.747 8.216 8.001 8.177 9.721 8.911 9.548 8.079 7.962 2.705 27.778 8.216 21.323 23.200 9.721 21.338 9.548 19.722 7.962 27.167 37.009 24.811 14.835 1.052 2.639 5.188 38.061 27.450 20.023 0.000 12.467 0.000 15.516 15.682 24.839 37.593 8.260 6.831 8.288 5.878 4.667 2.517 1.015 8.260 19.297 8.288 21.394 20.349 27.356 38.608 30.796 23.711 3.625 3.565 23.441 30.563 1.535 2.305 1.946 1.942 1.981 1.301 32.331 26.015 5.571 5.507 25.422 31.864 BOC EXPOSURE CYCLE EXPOSURE TOTAL EXPOSURE A.25
l CYCLE 11 E
Sl 98.9t POWER - DATE/TIME 10/12/94 20:02:00 PRI.P3X BRPF POWER FRACTIONS BY FUEL TYPE BATCH 01 AVERAGE BATCH 02 AVERAGE BATCH 03 AVERAGE BATCH Nl AVERAGE BATCH N2 AVERAGE BATCH N3 AVERAGE BATCH N4 AVERAGE BATCH NS AVERAGE BATCH NS AVERAGE BATCH Ml AVERAGE BATCH M2 AVERAGE BATCH M3 AVERAGE BATCH M4 AVERAGE BATCH Ll AVERAGE BATCH L2 AVERAGE BATCH L3 AVERAGE 1.228 1.484 l.SOS 1.242
- 1. 041 1.184 1.219 1.086 0.229 0.787 0.404 1.044 0.33S O.lSS 0.1S4 0.209 BATCH 0 AVERAGE 1.417 BATCH N AVERAGE 1.022 BATCH M AVERAGE 0.738 BATCH L AVERAGE 0.182 MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS MAXIMUM IS 1.293 IN ASSEMBLY 0114 IN CORE LOCATION 104 l.SS6 IN ASSEMBLY 0239 IN CORE LOCATION 46 1.521 IN ASSEMBLY 0357 IN CORE LOCATION 128 1.255 IN ASSEMBLY Nl08 IN CORE LOCATION 37 1.281 IN ASSEMBLY N219 IN CORE LOCATION 61 l.3S7 IN ASSEMBLY N350 IN CORE LOCATION 105 1.269 IN ASSEMBLY N4S7 IN CORE LOCATION 131 1.090 IN ASSEMBLY N566 IN CORE LOCATION 110 0.236 IN ASSEMBLY NS06 IN CORE LOCATION 103 1.061 IN ASSEMBLY Ml09 IN CORE LOCATION 139 0.408 IN ASSEMBLY M224 IN CORE LOCATION 151 l.1S4 IN ASSEMBLY M333 IN CORE LOCATION 122 0.362 IN ASSEMBLY M445 IN CORE LOCATION 134 0.157 IN ASSEMBLY Ll40 IN CORE LOCATION 165 0.156 IN ASSEMBLY L211 IN CORE LOCATION.16 0.225 IN ASSEMBLY L313 IN CORE LOCATION lSO PRI.P3X BEXP EXPOSURES BY FUEL TYPE BATCH 01 AVERAGE BATCH 02 AVERAGE BATCH 03 AVERAGE BATCH Nl AVERAGE BATCH N2 AVERAGE BATCH N3 AVERAGE BATCH N4 AVERAGE BATCH NS AVERAGE BATCH NS AVERAGE BATCH Ml AVERAGE BATCH"M2 AVERAGE BATCH M3 AVERAGE BATCH M4 AVERAGE BATCH Ll AVERAGE BATCH L2 AVERAGE BATCH L3 AVERAGE BATCH 0 AVERAGE BATCH N AVERAGE BATCH M AVERAGE BATCH L AVERAGE 8.223 GWD/MTU 9.S2S GWD/MTU 9.912 GWD/MTU 19.861 GWD/MTU 22.066 GWD/MTU 20.Sl8 GWD/MTU 21.S21 GWD/MTU 22.712 GWD/MTU S.S93 GWD/MTU 29.SSl GWD/MTU 27.S20 GWD/MTU 28.3S7 GWD/MTU 2S.789 GWD/MTU 38.768 GWD/MTU 37.962 GWD/MTU 32.160 GWD/MTU 9.203 GWD/MTU 19.88S GWD/MTU 28.292 GWD/MTU 3S.263 GWD/MTU MAXIMUM IS MAXIMUM IS MAXIMUM IS 8.644 IN ASSEMBLY 0114 IN CORE LOCATION 104 9.914 IN ASSEMBLY 02SO IN CORE LOCATION 138 9.996 IN ASSEMBLY 03S7 IN CORE LOCATION 128 MAXIMUM IS 20.1S3 IN ASSEMBLY Nl07 IN CORE LOCATION 43 MAXIMUM IS 23.612 IN ASSEMBLY N219 IN CORE LOCATION 61 MAXIMUM IS 22.078 IN ASSEMBLY N350 IN CORE LOCATION 105 MAXIMUM IS 21.820 IN ASSEMBLY N460 IN CORE LOCATION 35 MAXIMUM IS 22.791 IN ASSEMBLY N567 IN CORE LOCATION 94 MAXIMUM IS 5.752 IN ASSEMBLY NS06 IN CORE LOCATION 103 MAXIMUM IS 31.634 IN ASSEMBLY Mlll IN CORE LOCATION 1S5 MAXIMUM IS 27.653 IN ASSEMBLY M22S IN CORE LOCATION 41 MAXIMUM IS 29.9S4 IN ASSEMBLY M334 IN CORE LOCATION 141 MAXIMUM IS 26.067 IN ASSEMBLY M449 IN CORE LOCATION. 71 MAXIMUM IS 38.830 IN ASSEMBLY Ll47 IN CORE LOCATION 7
MAXIMUM IS "38.119 IN ASSEMBLY L208 IN CORE LOCATION 27 MAXIMUM IS 32.331 IN ASSEMBLY L31S IN CORE LOCATION 199 A.26
CYCLE 11 E
51 98.9~ POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X FCRD FULL CORE CONTROL ROD MAP A-01 1-21 3-33 1-22 A-02 131.1 130. 9 131.4 130. 9 130. 9 0.156 0.273 0.248 0.270 0.151 0.156 0.273 0.241 0.270 o.i51 0.02 0.02 0.02 0.02 0.02 A-03 4-38 8-13 P-42 8-14 4-39 A-04 131. 0 131.0 130. 9 130. 9 131.1 130. 9 131.2 0.158 1.291 0.312 0.328 0.308 1.146 0.151 0.158 0.999 0.312 0.326 0.308 0.858 0.151 0.02 0.02 0.02 0.02 0.02 0.02 0.02 1-23 8-15 2-29 A-05 2-30 8-16 1-24 131. 5 131. 0 131. 3 131.3 130. 5 130. 9 131. 2 0.276
- 0. 313 0.324 0.344 0.326
- 0. 311 0.266 0.276
- 0. 313 0.323 0.344 0.325
- 0. 311 0.266 0.02 0.02 0.02 0.02 0.02 0.02 0.02 3-34 P-43 A-06 3-35 A-07 P-44 3-36 130. 5 130. 9 131. 0 131. 2
'130.e 131.3 130.7 0.294 0.317 0.341 0.329 0.338 0.322 0.291 0.287 0.315 0.341 0.322 0.338 0.320 0.284 0.02 0.02 0.02 0.02 0.02 0.02 0.02 1-25 B-17 2-31 A-OB 2-32 8-18 1-26 131. 0 130.9 131. 3 131.4 131.1 130. 5 131.1 0.270 0.307 0.325 0.341 0.316 0.308 0.273 0.270 0.307 0.324 0.341 0.315 0.308 0.273 0.02 0.02 0.02 0.02 0.02 0.02 0.02 A-09 4-40 8-19 P-45 8-20 4-41 A-10 130.B 131.3 131. 0 131.1 130. 2 130.B 130. 7 0.155 1.205 0.312 0.327 0.307 1.421 0.155 0.155
- 0. 914
- 0. 312 0.325 0.307 1.130 0.155 0.02 0.02 0.02 0.02 0.02 0.02 0.02 A-11 1-27 3-37 1-28 A-12 CRD SYSTEM INDEX NUMBER 131. 0 131. 0 130. B 131. 0 131. 3 CRD POSITION (IN WITHDRAWN) 0.157 0.281 0.295 0.269 0.154 CRD EXPOSURE (GWD/MTU) 0.157 0.281 0.289 0.269 0.154 MAX NODAL EXPOSURE (GWD/MTU) 0.02 0.02 0.02 0.02 0.02 NODE LOCATION FROM BOTTOM A.27
CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI.P3X 3ICI ICI AUGMENTED ALARM LIMITS AND SIGNALS WITH DEPLETED SENSITIVITIES FAILED DETECTOR LEGEND Z a FAILED MINIMUM ICI POWER TEST (PMIN)
FAILED STRING 1
1 1
1 2
2 2
2 2
3 3
3 4
4 4
4 4
5 5
5 5
5 6
6 6
6 8
8 8
8 8
9 9
10 10 10 10 10 11 11 11 11 11 12 12 12 12 12
- 13.
13 13 13 13 14 14 14 14 14 15 15 15 15 15 LEVEL 5
4 3
2 l
5 4
3 2
1 5
4 3
2 1
5 4
3 2
1 5
4 3
2 1
5 4
3 2
1 5
4 3
2 1
5 4
3
.2 1
5 4
3 2
1 5
4 3
2 1
5 4
2 1
5 4
3 2
1 5
4 3
2 1
5 4
3 2
1 a
FAILED MEASURED/PREDICTED ICI POWER TEST
~ FAILED MEASURED/PREDICTED ICI POWER TEST HIGH (PDEV)
ALARM LIMITS INCORE CURRENTS LOW (PDEV)
ALARM/
(NV)
(AMPS)
(NV)
(AMPS)
- 2. 6520E+l3
- 3. l639E+l3
- 3. l828E+l3 3.1390E+l3 2.6952E+l3
- 3. 7467E+l3 4.4144E+l3
- 4. 4639E+l3
- 4. 2016E+l3
- 3. 6710E+l3 l.OOOOE+l6 6.1463E+l3
- 5. 8577E+l3
- 6. 2526E+l3
- 5. 3237E+l3
- 6. 6425E+l3
- 8. 2285E+l3 8.4795E+l3
- 8. 4680E+l3
- 7. 0473E+l3
- 5. 7001E+l3
- 7. 2026E+l3
- 7. 2001E+l3 7.2960E+l3
- 6. 5439E+l3 4.4402E+l3
- 5. 4074E+l3
- 5. 3415E+l3
- 5. 3122E+l3 4.4960E+l3 5.2747E+l3
- 6. 2902E+l3
- 6. 3 723E+l3
- 6. 3132E+l3 5.3729E+l3
- 6. 2579E+l3
- 7. 8338E+l3 7.9106E+l3
- 7. 9723E+l3 6.3748E+l3 6.4727E+l3
- 8. 2722E+l3
- 8. 4211E+l3
- 8. 3411E+l3
- 6. 8691E+l3
- 5. 9821E+l3
- 7. 9758E+l3
- 7. 9788E+l3
- 7. 9040E+l3
- 6. 8023E+l3 5.0914E+l3 6.4111E+l3
- 6. 4887E+l3
- 6. 4680E+l3
- 5. 6352E+l3
- 1. 5215E+l3
- 1. 7693E+l3 L 6908E+l3 l.6766E+l3
- 1. 4532E+l3
- 6. 4657E+l3
- 7. 5068E+l3
- 7. 5375E+l3 7.5011E+l3 6.5059E+l3
- 6. 5332E+l3
- 7. 9471E+l3
- 7. 9998E+l3 7.9107E+l3 6.6163E+l3 9.7587£-07
- l. l.620E-06 1.1662£-06 i'.l511E-06 9.9936£-07 l.3556E~06
- l. 5733£-06
- l. 5872£-06 1.4991£-06 l.3499E-06 O.OOOOE+OO 2.1384E-06 2.0352£-06 2.1631E-06
- l. 8885£-06 2.3015£-06 2.7841£-06 2.8487£-06 2.8451£-06 2.4468£-06
- l. 9992£-06 2.4476E-06 2.4377£-06 2.4651£-06 2.2786E-06 l.6040E-06 l.8954E-06 l.8887E-06 1.8791£-06
- 1. 6213£-06 1.8583£-06 2.1830£-06 2.2016£-06 2.1826£-06
- l. 9040£-06 2.1794E-06 2.6475£-06 2.6652E-06 2.6837£-06 2.2517£-06 2.2477E-06 2.7769£-06 2.8160£-06 2.7936E-06
- 2. 3)33E-06 2.0937£-06 2.6921E-06 2.6866E-06 2.6642£-06 2.3705£-06
- l. 8016E-06
- 2. 2262£-06.
2.2443£-06 2.2369£-06 l.9917E-06 5.7391E-07
- 6. 5720E-07 6.3431E-07 6.2916£-07 5.4845£-07 2.2448£-06 2.5670£-06 2.5714£-06 2.5612E-06 2.2786E-06 2.2709£-06
- 2. 7137E-06 2.7250£-06
- 2. 6990E-06*
2.3196E-06
- 1. 9432E+l3
- 2. 3469E+l3
- 2. 3920E+l3 2.4152E+l3
- 2. 0502E+l3
- 2. 7454E+l3 3.2745E+l3 3.3549E+l3 3.2328E+l3
- 2. 7925E+l3 O.OOOOE+OO
- 4. 5593E+l3
- 4. 4023E+l3
- 4. 8109E+l3 4.0497E+l3
- 4. 8672E+l3 6.l038E+l3
- 6. 3728E+l3 6.5155E+l3 5.3608E+l3 4.1767E+l3
- 5. 3428E+l3
- 5. 4113E+l3
- 5. 6137E+l3
- 4. 9779E+l3
- 3. 2535E+l3
- 4. Ol12E+l3 4.0144E+l3 4.0874E+l3
- 3. 4201E+l3
- 3. 8650E+l3 4.6660E+l3 4.7891E+l3 4.8576E+l3
- 4. 0871E+l3
- 4. 5854E+l3
- 5. 8110E+l3 5.9452E+l3 6.1341E+l3 4.8493E+l3 4.7428E+l3 6.1362E+l3
- 6. 3289E+l3 6.4179E+l3 5.2252E+l3 4.3833E+l3 5.9163E+l3 5.9965E+l3 6.0816E+l3 5.1744E+l3 3.7307E+l3
- 4. 7557E+l3 4.8766E+l3 4.9766E+l3
- 4. 2866E+l3 l.1148E+l3 l.3124E+l3
- l. 2707E+l3
- 1. 2900E+l3 l.1054E+l3 4.7377E+l3 5.5684E+l3 5.6648E+l3
- 5. 7716E+l3
- 4. 9490E+l3
- 4. 7871E+l3 5.8951E+l3
- 6. 0123E+l3 6.0867E+l3 5.0329E+l3 7.1506£-07 8.6193£-07 8.7648£-07 8.8572£-07 7.6020£-07 9.9330E-07 l.l670E-06 l.1929E-06 1.1535£-06 1.0269£-06 0.0000E+OO l.5863E-06
- l. 5296£-06
- l. 6643£-06 l.4365E-06
- l. 6864E-06 2.0652E-06 2.1410E-06 2.1891£-06 l.86l~E-06 1.4649£-06 1.8156£-06 1.8321£-06 l.8967E-06 1.7333£-06 l.1753E-06 l.4060E-06 l.4195E-06
- l. 44 58E-06 l.2333E-06
- l. 3617E-06
- l. 6193£-06 l.6546E-06 1.6793£-06 1.4484£-06 1.5969£-06 1.9639£-06 2.0031E-06 2.0649E-06 1.7129£-06 l.6470E-06 2.0599£-06
- 2. l164E-06 2.1495£-06 l.8053E-06 1.5341£-06 1.9970£-06 2.0191£-06 2.0499E-06 1.8032£-06 1.3201£-06
- 1. 6513£-06 l.6867E-06
- 1. 7211E-06 1.5150£-06 4.2053E-07 4.8750E-07
- 4. 7672£-07 4.8409£-07 4.1720£-07 l.6448E-06 1.9041£-06 l.9325E-06
- l. 9706£-06 l.7333E-06 1.6640£-06 2.0130£-06 2.0480£-06 2.0767£-06 1.7645£-06 CURRENT 1.3647
- l. 34 81 l.3306
- l. 2997 1.3146 l.3647 l.3481 1.3306
- l. 2997 1.3146 1.3647 l.3481
- l. 3306 l.2997
- l. 3146
- l. 364 7 1.3481 1.3306 l.2997 l.3146
- l. 364 7 1.3481
- l. 3306
- l. 2997 l.3146 l.3647
- l. 3481 1.3306 1.2997
- l. 3146 l.3647
- l. 3481
- l. 3306 l.2997 l.3146 l.3647
- l. 3481 l.3306 l.2997
- l. 3146
- l. 364 7 1.3481
- l. 3306
- l. 2997
- l. 3146 l.3647
- l. 3481
- l. 3306
- l. 2997
- l. 3146
- l. 3647
- l. 3481
- l. 3306
- l. 2997 1.3146 l.3647 1.3481
- l. 3306
- l. 2997 1.3146
- l. 364 7
- l. 3481
- l. 3306 l.2997
- l. 3146
- l. 3647
- l. 3481
- l. 3306 l.2997
- l. 3146 KSUBS (AMPS/NV) 3.6798£-20
- 3. 6726E-20
- 3.6641E-20
- 3. 6672E-20 3.7079£-20 3.6181£-20
- 3. 5640£-20 3.5556E-20 3.5680E-20 3.6773£-20 3.8015E-20 3.4792£-20 3.4744£-20 3.4595E-20 3.5473E-20 3.4647E-20 3.3835£-20 3.3595£-20 3.3599£-20 3.4720E-20 3.5074£-20 3.3982£-20 3.3856E-20 3.3788E-20 3.4820£-20 3.6126£-20 3.5052£-20 3.5359E-20 3.5374£-20 3.6061£-20 3.5230£-20 3.4705£-20
- 3. 4549£-20 3.4571E-20 3.5437£-20 3 *. 4826E-20 3.3796£-20 3.3692E-20 3.3663£-20 3.5322E-20 3.4726E-20 3.3570£-20 3.3440£-20 3.3492£-20 3.4551E-20 3.4999£-20 3.3753£-20 3.3671£-20 3.3707E-20 3.4848E-20 3.5386E-20 3.4723E-20 3.4587E-20 3.4584£-20 3.5343£-20
- 3. 7721£-20
- 3. 7145E-20 3.7515E-20 3.7526£-20 3.7741£-20 3.4718£-20 3.. 4195£-20
- 3. 4115E-20 3.4144£-20 3.5023E-20 3.4760£-20 3.4146£-20 3.4063£-20
- 3. 4118E-20 3.5059£-20 A.28
CYCLE 11 FAILED z
E 51 STRING 16 16 16 16 16 17 17 17 17 17 18 18 18 18 18 19 19 19
. 19 19 20 20 20 20 20 21 21 21 21 21 22 22 22 22 22 23 23 23 23 23 24 24 24 24 24 25 25 25 25 25 26 26 26 26 26 27 27 27 27 27 28 28 28 28 28 29 29 29 29 29 30 30 30 30 30 98.9\\ POWER -
DATE/TIME 10/12/94 ALARM LIMITS LEVEL 5
4 3
2 1
5 4
3 2
1 5
4 3
2 5
4 3
2 1
5 4
3 2
5 4
3 2
l 5
4 3
2 1
5 4
3 2
l 5
4 3
2 l
5 4
3 2
1 5
4 3
2 1
5 4
3 2
1 5
4 3
2 1
5 4
3 2
1 5
4 3
2 1
(N)l)
(AMPS)
- 6. 6117E+l3 8.1291E+l3 8.2305E+l3 8.1866E+l3
- 6. 6421E+l3
- 4. 9927E+l3 6.2875E+13
- 6. 2416E+13 6.2261E+13
- 5. 3991E+l3
- 6. 3983E+l3
- 7. 8125E+l3
- 7. 6579E+l3
- 7. 6631E+l3
- 6. 5142E+l3
- 6. 3864E+l3
- 7. 9998E+13 8.0673E+l3
- 8. 0480E+l3 6.8825E+13 6.0558E+l3 7.7817E+l3
- 8. 0637E+l3
- 7. 9537E+l3 6.6169E+l3 6.4893E+13 7.4942E+l3 7.3206E+13 7.2709E+13
- 6. 4587E+l3 6.1208E+l3 7.4202E+l3
- 7. 4431E+l3 7.4049E+l3
- 6. 6233E+l3
- 5. 2159E+l3
- 6. 6179E+l3 6.6793E+13 6.7069E+13
- 5. 6968E+l3 6.1989E+13 7,_ 7161E+l3 7.6253E+13 1.0000E+l6 6.5137E+l.J 6.3417E+13
- 7. 4635E+l3 7.4394E+13
- 1. OOOOE+l6 6.4710E+l3
- 6. 383SE+l3
- 7. 4644E+l3
- 7. 4324E+l3
- 7. 3886E+l3
- 6. 6174E+l3 S.9394E+l3 6.6612E+13
- 6. 5223E+l3 6.5767E+l3
- 6. 016 9E+l3 6.1008E+l3 *
- 7. 7884E+l3 8.0758E+13
- 8. 0420E+l3 6.69968+13 6.30478+13
- 7. 99148+13 8.2079E+13
- 8. 2339E+l3 7.1649E+l3 5.1489E+l3 6.3731E+l3
- 6. 4683E+l3 6.4924E+13
- 5. 5610E+l3 2.2971E-06 2.7467E-06 2.7719E-06 2.7602E-06 2.3281E-06 l.7842E-06 2.1614E-06 2.1604E-06 2.1547E-06 l.9125E-06 2.2215E-06 2.6346E-06 2.6069E-06 2.6085E-06 2.2772E-06 2.2143E-06 2.6806E-06 2.6951E-06 2.6906E-06 2.3677E-06 2.1155E-06 2.6533E-06 2.7307E-06 2.6976E-06 2.3125E-06 2.2506E-06 2.5368E-06 2.4804E-06 2.4665E-06 2.2602E-06 2.1373E-06
- 2. 5411E-06 2.5429E-06 2.5320E-06
- 2. 3139E-06 l.8423E-06 2.2664E-06 2.27708-06 2.2856E-06 1.99318-06 2.1620E-06 2.6101E-06 2.6027E-06 O.OOOOE+OO 2.2828E-06 2.2056E-06 2.5296E-06 2.5173E-06 O.OOOOE+OO 2.2461E-06
- 2. 2172E-06 2.5267E-06
- 2. 5131E-06 2.5013E-06 2.2899E-06 2.0762E-06 2.27948-06 2.2329E-06 2.2508E-06 2.0991E-06 2.1286E-06 2.6504E-06
- 2. 7278E-06
- 2. 7171E-06 2.3337E-06 2.1896E-06 2.6791E-06 2.7363E-06 2.7449E-06 2.4765E-06 l.8191E-06 2.1888E-06 2.2101E-06 2.2160E-06
- 1. 9464E-06 20:02:00 INCORE CURRENTS (NV)
(AMPS) 4.8446E+l3
- 6. 0301E+l3 6.1856E+l3
- 6. 2990E+l3 5.0525E+13 3.6583E+13
- 4. 6640E+13
- 4. 6909E+l3 4.7905E+13 4.1070E+13
- 4. 6883E+l3
- 5. 7952E+l3
- 5. 7553E+l3 5.8962E+l3
- 4. 9553E+l3
- 4. 6795E+l3
- 5. 9341E+l3 6.0630E+l3 6.1923E+l3
- 5. 2354E+l3 4.4374E+13
- 5. 7723E+l3
- 6. 0603E+l3 6.1198E+l3
- 5. 0334E+l3
- 4. 7550E+l3 5.5591E+l3 5.5018E+l3 S.5944E+l3
- 4. 9130E+l3 4.48SOE+13
- 5. 5042E+l3
- 5. 5939E+l3 S.697SE+13
- 5. 0382E+l3
- 3. 8219E+l3 4.9091E+l3 S.0198E+l3 5.160SE+l3 4_. 33358+13 4.54228+13
- 5. 72378+13 5.73098+13 0.00008+00 4.9549E+l3 4.6468E+13 5.5363E+13
- 5. 5911E+13 O.OOOOE+OO
- 4. 9224E+l3
- 4. 6774E+l3 5.5370E+13 S.5859E+l3 S.68SOE+l3 5.0337E+l3
- 4. 3520E+l3
- 4. 9411E+l3
- 4. 9019E+l3 S.0603E+l3 4.5770E+l3 4.4703E+l3 5.7773E+l3 6.0694E+13 6.1877E+13
- 5. 0963E+l3 4.6197E+l3
- 5. 9279E+l3 6.1687E+l3
- 6. 3354E+l3
- 5. 4503E+l3
- 3. 7728E+l3
- 4. 7275E+l3 4.8613E+l3
- 4. 9954E+l3
- 4. 2302E+l3
. 1. 6832E-06 2.0375E-06 2.0832E-06 2.1238E-06 l.7709E-06
- 1. 3074E-06
- 1. 6033E-06.
l.6236E-06
- 1. 6579E-06 l.4548E-06 l.6278E-06 1.9543E-06
- 1. 9592E-06 2.0071E-06 l.7322E-06 l.6225E-06 l.9884E-06 2.0255E-06 2.0702E-06 l.8010E-06 l.SSOlE-06 l.9682E-06 2.0522E-06 2.0756E-06 l.7591E-06 l.6491E-06 l.8817E-06 l.8641E-06 l.8978E-06
- 1. 7193E-06 l.5661E-06 l.8849E-06
- 1. 9111E-06 l.9481E-06 l.7602E-06 l.3499E-06 l.6812E-06
- 1. 7113E-06 l.7586E-06 l.5161E-06 l.5842E-06 l.9362E-06 l.9560E-06 O.OOOOE+OO l.7365E-06
- 1. 6161E-06 l.8764E-06
- 1. 8919E-06 0.0000E+OO l.7086E-06 l.6246E-06 l.8743E-06
- 1. 8887E-06
.1. 9246E-06 l.7419E-06
- 1. 5213E-06
- 1. 6908E-06 l.6781E-06 l.7318E-06
- 1. 5967E-06 l.5597E-06 1.9660E-06 2.0501E-06 2.0906E-06 l.7752E-06 l.6044E-06 1.98748-06 2.056SE-06 2.1120E-06
- 1. 8838E-06 l.3329E-06 l.6236E-06 l.6610E-06 l.7050E-06 l.4806E-06 ALARM/
CURRENT
- 1. 364 7 1.3481 1.3306
- 1. 2997
- 1. 3146 1.3647 1.3481 1.3306 1.2997 1.3146 1.3647 1.3481 1.3306 1.2997 1.3146 1.3647 1.3481 1.3306
- 1. 2 9 97 1.3146 1.3647 1.3481 1.3306
- 1. 2997 1.3146
- 1. 3647 1.3481 1.3306 1.2997 1.3146 1.3647 1.3481
- 1. 3306 1.2997
- 1. 3146 1.3647
- 1. 3481 1.3306
- 1. 2 997
- 1. 3146
- 1. 3647 1.3481
- l. 3306
- l. 2997
- l. 3146
- l. 364 7 1.3481 1.3306
- l. 2997
- l. 3146
- l. 364 7
- 1. 3481
- l. 3306
- l. 2997
- l. 3146 l.3647 1.3481
- 1. 3306
- 1. 2 997 1.3146 1.3647 1.3481
- 1. 3306
- l. 2997
- l. 3146
- l. 364 7 1.3481
- l. 3306
- l. 2997
- l. 3146 1.3647
- l. 3481
- l. 3306
- l. 2997
- l. 3146 KSUBS (AMPS/NV) 3.4743E-20 3.3789E-20 3.3679E-20 3.3717E-20 3.5050E-20 3.5736E-20 3.4377E-20 3.4612E-20 3.4608E-20 3.5423E-20
- 3. 4 721E-20 3.3723E-20 3.4042E-20 3.4040E-20 3.4957E-20 3.4672E-20 3.3508E-20 3.3408E-20 3'.3432E-20 3.4401E-20 3.4933E-20 3.4096E-2.0 3.3864E-20 3.3916E-20 3.4949E-20 3.4682E-20 3.3850E-20 3.3882E-20 3.3924E-20 3.4995E-20 3.4918E-20 3.4246E-20 3.4165E-20 3.4193E-20 3.4936E-20 3.5321E-20 3.4247E-20 3.4090E-20 3.4078E-20 3.4985E-20 3.4876E-20 3.38278-20 3.4132E~20 3.6444E-20 3.5047E-20 3.4778E-20 3.3893E-20 3.3838E-20 3.8151E-20
- 3. 4 710E-20 3.4733E-20 3.3850E-20 3.3812E-20 3.3854E-20 3.4605E-20 3.4957E-20 3.4219E-20 3.4235E-20 3.4224E-20 3.4886E-20 3.4890E-20 3.4030E-20 3.3778E-20 3.3786E-20 3.4834E-20 3.4729E-20.
3.3525E-20 3.3338E-20 3.3337E-20 3.4564E-20 3.5330E-20
- 3. 4344E-.20 3.4169E-20 3.4132E-20 3". 5001E-20 A.29
CYCLE 11 E
51 FAILED STRING 31 31 31 31 31 32 32 32 32 32 33 33 33 33 33 34 34 34 34 34 35 35 35 35 35 36 36 36 36 36 37 37 37 37 37 38 38 38 38 38 39 39 39 39 39 40 40 40 40 40 41 41 41 41 41 42 42 42 42 42 43 43 43 43 43 45 45 45 45 45 98.9\\ POWER -
DATE/TIME 10/12/94 ALARM LIMITS LEVEL 5
4 3
2 1
5 4
3 2
1 5
4 3
2 1
5 4
3 2
1 5
4 3
2 1
5 4
3 2
1 5
4 3
2 1
5 4
3 2
1 5
4 3
2
.1 5
4 3
2 5
4 3
2 1
5 4
3 2
1 5
4 3
2 1
5 4
3 2
1 (NV)
(AMPS) l.OOOOE+l6 8.0259E+l3 8.0707E+l3
- 8. 0365E+l3
- 6. 7148E+l3 6.4175E+l3 7.3635E+l3 7.4880E+l3 l.OOOOE+l6
- 6. 3858E+l3 6.0307E+l3
- 7. 8513E+l3
- 8. 0024E+l3
- 7. 8193E+l3 6.5447E+l3 2.6026E+l3
- 3. 0811E+l3 3.0106E+l3
- 2. 9160E+l3 2.5019E+l3
- 6. 2281E+l3 8.0046E+l3 8.1407E+l3
- 8. 2020E+l3
- 6. 8058E+l3 6.0784E+l3
- 7. 8457E+l3 8.0622E+l3
- 7. 8741E+l3 6.6269E+l3
- 6. 2461E+l3
- 7. 7991E+l3
- 7. 6784E+l3
- 7. 7283E+l3
- 6. 5939E+l3 6.2619E+l3 8.0361E+l3
- 8. 0817E+l3
- 8. 0788E+l3 6.7517E+l3 6.3296E+l3 8.2056E+l3 8.2316E+l3 8.2393E.+13 l.OOOOE+l6 4.4791E+l3
- 5. 3052E+l3 5.3664E+l3
- 5. 3120E+l3
- 4. 5432E+l3 l.0188E+l3 l.1385E+l3 l.1224E+l3 l.1206E+l3
- 1. 02718+13
- 2. 7640E+l3 3.2239E+l3 3.0942E+l3 3.1054E+l3 2.6779E+l3 5.2542E+l3
- 6. 3330E+l3
- 6. 29048+13 6.25248+13 5.2536E+l3 l.9827E+l3 2.3463E+l3 2.2981E+l3 2.2747E+l3
- 1. 9372E+l3 O.OOOOE+OO
- 2. 7108E-06
- 2. 7193E-06 2.7101E-06 2.3281E-06 2.2303E-06 2.52388-06 2.5572E-06 O.OOOOE+OO 2.2404E-06 2.1097E-06 2.6576E-06 2.6980E-06 2.6405E-06 2.2729E-06 9.5748E-07 l.1217E-06 l.1065E-06 l.0732E-06 9.3010E-07 2.1707E-06 2.6993E-06 2.7335E-06 2.7519E-06 2.3507E-06 2.1242E-06 2.65338-06 2.7122E-06 2.6558E-06 2.2956E-06 2.17368-06 2.6303E-06
- 2. 6112E-06 2.6252E-06 2.29988-06 2.1780E-06 2.7007E-06 2.7321E-06 2.7310E-06 2.35078-06 2.2027E-06 2.7568E-06 2.7833E-06 2*. 7B67E-06 O.OOOOE+OO l.6026E-06 l.8810E-06
- 1. 89728-06 l.8791E-06
- 1. 6369E-06 3.8358E-07 4.3143E-07 4.2524E-07 4.2454E-07
- 3. 9013E-07 l.0141E-06
- 1. l 706E-06 1.13498-06 l.1386E-06 9.9229E-07 l.8525E-06 2.1758E-06 2.1760E-06 2.1631E-06 l.8659E-06 7.36648-07 8.7292E-07 8.54758-07 8.46308-07 7.2655E-07 20:02:00 INCORE CURRENTS (NV)
(AMPS)
O.OOOOE+OO 5.9535E+l3 6.0656E+l3 6.1835E+l3 5.1079E+l3 4.7024E+l3 5.4621E+l3 5.6276E+l3 O.OOOOE+OO
- 4. 8576E+l3
- 4. 4190E+l3
- 5. 8240E+l3
- 6. 0143E+l3
- 6. 0164E+l3
- 4. 97858+13
- 1. 9070E+l3
- 2. 2855E+l3
- 2. 2626E+l3 2.2437E+l3 l.9032E+l3 4.5636E+l3
- 5. 9377E+l3 6.1182E+l3 6.3109E+l3
- 5. l 771E+l3
- 4. 4539E+l3
- 5. 8198E+l3
- 6. 0592E+l3
- 6. 0585E+l3
- 5. 0410E+l3 4.5768E+l3 5.7853E+l3
- 5. 7708E+l3 5.9463E+l3
- 5. 0159E+l3 4.5884E+l3 5.9610E+l3 6.0738E+l3 6.2160E+l3 5.1359E+l3
- 4. 6379E+l3
- 6. 0868E+l3 6.18.65E+l3 6.3395E+l3 O.OOOOE+OO 3.28208+13
- 3. 9353E+l3
- 4. 0331E+l3
- 4. 0872E+l3 3.4559E+l3 7.4649E+l2 8.4449E+l2 8.4357E+l2 8.6221E+l2
- 7. 8130E+l2
- 2. 02538+13
- 2. 3915E+l3
- 2. 3254E+l3
- 2. 3893E+l3
- 2. 0371E+l3 3.8500E+l3
- 4. 6977E+l3
- 4. 7276E+l3
- 4. 8108E+l3
- 3. 9963E+l3 l.4528E+l3 1.74058+13
- 1. 7271E+l3
- 1. 7502E+l3 1.4736E+l3 O.OOOOE+OO 2.0108E-06 2.04378-06 2.0852E-06 l.7709E-06 l.6342E-06
- 1. 8721E-06 l.921BE-06 O.OOOOE+OO l.7043E-06
- 1. 5458E-06 l.9714E-06
- 2. 0277E-06 2.0317E-06
- 1. 7290E-06 7.0159E-07 8.3206E-07 8.3158E-07 8.2574E-07 7.0751E-07 l.5905E-06 2.0023E-06 2.0544E-06
- 2. ll 74E-06 l.7881E-06 l.5565E-06 l.9682E-06 2.0383E-06 2.0435E-06 l.7462E-06
- 1. 5927E-06
- 1. 9511E-06 l.9625E-06 2.0199E-06
- 1. 7494E-06 l.5959E-06 2.0034E-06 2.0533E-06 2.10138-06 1.78818-06
- 1. 6140E-06 2.0450E-06 2.0918E-06 2.1441E-06 0.0000E+OO l.1743E-06 l.3953E~06 l.4259E-06 l.4458E-06 l.2451E-06 2.8106E-07 3.2002E-07 3.1959E-07 3.2666E-07 2.9677E-07 7.4311E-07 8.68338-07 8.5296E-07 8.76088-07 7.5483E-07 1.35748-06 l.6140E-06
- 1. 63548-06
- 1. 6643E-06 l.4193E-06 5.3976E-07 6.47528-07 6.4239E-07 6.5117E-07 5.5268E-07 ALARM/
CURRENT 1.3647 1.3481 1.3306
- 1. 2997 1.3146
- 1. 364 7
- 1. 3481 1.3306 1.2997 1.3146 1.3647 1.3481 1.3306 1.2997
- 1. 3146 1.3647
- 1. 3481 1.3306 1.2997 1.3146 1.3647 1.3481 1.3306
- 1. 2997
- 1. 3146 1.3647 1.3481
- 1. 3306
- 1. 2997 1.3146
- 1. 3647 1.3481
- 1. 3306
- 1. 2 997
- 1. 314 6 1.3647 1.3481
- 1. 3306 1.2997
- 1. 3146
- 1. 364 7
- 1. 3481
- 1. 3306
- 1. 2997 1.3146 1.3647
- 1. 3481 1.3306 1.2997 1.3146
- 1. 364 7 1.3481
- 1. 3306
- 1. 2997
- 1. 3146
- 1. 3647
- 1. 3481
- 1. 3306 1.2997
- 1. 3146
- 1. 364 7
- 1. 3481 1.3306 1.2997 1.3146 1.3647
- 1. 3481 1.3306
- 1. 2997 1.3146 KS UBS (AMPS/NV) 3.6495E-20 3.3775E-20 3.3693E-20 3.3723E-20
- 3. 4671E-20 3.4753E-20 3.4275E-20 3.4150E-20
- 3. 4671E-20 3.5085E-20 3.4982E-20 3.3849E-20
- 3. 3714E-20 3.3769E-20
- 3. 4 729E-20 3.6790E-20 3.6406E-20 3.6753E-20 3.6803E-20
- 3. 7176E-20 3.4853E-20
- 3. 3721E-20 3.3578E-20 3.3551E-20 3.4540E-20 3.49468-20 3.3818E-20 3.3641E-20
- 3. 3729E-20 3.4640E-20 3.4799E-20 3.37258-20 3.40078-20 3.3969E-20 3.4878E-20 3.4781E-20 3.3608E-20 3.3806E-20 3.3805E-20 3.4816E-20 3.4799E-20 3.3597E-20 3.3812E-20 3.3822E-20 3.7768E-20 3.5779E-20 3.5456E-20 3.5354E-20 3.5375E-20 3.6029E-20 3.7651E-20 3.7896E-20 3.7886E-20 3.78868-20 3.79848-20 3.6692E-20 3.6310E-20 3.6679E-20 3.6666E-20 3.7054E-20 3.5257E-20 3.4357E-20 3.4592E-20 3.4596E-20 3.5516E-20
- 3. 7153E-20
- 3. 7204E-20
- 3. 7194E-20 3.7205E-20 3.7505E-20 A.30
CYCLE 11 E
51 98.9t POWER -
DATE/TIME 10/12/94 20:02:00 PRI. P3X FSUM
SUMMARY
OF CORE INFORMATION TOTAL CORE POWER 2503.0 MWT EXPOSURE BLOCK ENERGY 180256.0 MWHRS CORE AVERAGE EXPOSURE 20152.2 MWD/MTU CYCLE AVERAGE EXPOSURE 6632.7 MWD/MTU CYCLE EFPD 212.9 DAYS TOTAL CORE WEIGHT 81202.633 KGU AVERAGE PINS/ASSEMBLY 212. 71 P3 AXIAL OFFSET (L-U/L+U) 0.017 S3 AXIAL OFFSET (L-U/L+U)
- 0. 013 PRI. P3X FASI EXCORE MONITORING SYSTEM OPERATOR INFORMATION QUADRANT 1 QUADRANT 2 QUADRANT 3 QUADRANT 4 NI/CHANNEL 5/A 8/D 6/B TARGET AXIAL SHAPE INDICES 0.000 0.000 0.000 EXCORE POWER RATIO 0.000 0.000 0.000 SHAPE ANNEALING FACTORS 2.177 2.317 2.365 CONSTANT B
-0.019
-0.039
-0.061 ALLOWED \\' POWER LEVEL (APL) t POWER USED TO DETERMINE APL PRI.P3X.TS06 TECHNICAL SPECIFICATION CORE REACTIVITY BALANCE REFERENCE DATA CYCLE EXPOSURE THROUGH STEP E -
51 CALORIMETRIC REACTOR POWER MEASURED BORON CONCENTRATION GROUP 4 CONTROL ROD POSITION TECHNICAL DATA BOOK INFORMATION AT REFERENCE CONDITIONS PREDICTED HFP ARO BORON CONCENTRATION RECIP. BORON AT 100.0t POWER*
RECIP. BORON AT
- 98. 9t POWER POWER DEFECT AT 100.0t POWER POWER DEFECT AT 98.9t POWER CONTROL ROD WORTH AT 131.0 INCHES REACTIVITY BALANCE CALCULATIONS DIFFERENCE IN REACTIVITY DUE TO XENON DIFFERENCE IN REACTIVITY DUE TO POWER DEFECT SUM OF XENON AND POWER DEFECT REACTIVITY WORTH OF CONTROL RODS NET BORON DIFFERENCE PREDICTED BORON CONCENTRATION AT 98.9 t POWER BORON ANOMALY REACTIVITY ANOMALY NOTE: NEGATIVE ANOMALY POSITIVE ANOMALY MEASURED BORON < PREDICTED MEASURED BORON > PREDICTED 6632.7 98.9 536.0 131. 0 513.2 109.4 109.4 2.5604 2.5529
- 1. 7409
- 1. 7200 0.0056 0.0075 0.0208 0.0283 3.1 0.6 2.5 515.7 20.3 0.1854 7/C 0.000 0.000 2.075
-0.010 100.0 98.9 MWD/MTU t
PPM INCHES WITHDRAWN PPM PPM/t DRHO PPM/t DRHO t DRHO t DRHO t DRHO t DRHO
\\' DRHO t DRHO t DRHO t DRHO PPM PPM PPM PPM PPM t DRHO A.31
CYCLE ll E
51 98.9\\ POWER -
DATE/TIME PRI.P3X TS12 TECHNICAL SPECIFICATION A
PLANT SNAPSHOT DATE:
10/12/94 B
OPERABLE INCORE DETECTORS LEVEL 5
4 3
2 TOTAL c
APL-ALLOWABLE \\ POWER LEVEL D
QUADRANT POWER TILT NI/CHANNEL INCORE \\ POWER TILT EXCORE \\ POWER TILT ABSOLUTE \\ DEVIATION (EXC -
INC TILT)
E INCORE AXIAL OFFSET (AO)
F ABSOLUTE DEVIATION (INC AO -
Exe* ASI)
G RADIAL PEAKING FACTORS F(RA) ASSEMBLY PEAKING FACTOR F(RT) TOTAL PIN PEAKING FACTOR 20:02:00 QUADRANT l 9
10 10 10 10 49 QUADRANT 1 5/A
-1. 039 0.000
- 1. 039 0.017 10/12/94 20:02:00 SURVEILLANCE
SUMMARY
QUADRANT 2 QUADRANT ll 10 11 11 11 11 11 9
11 11 55 52 QUADRANT 2 QUADRANT 8/D 6/B
-0.154 0.613 0.000 0.000 0.154 0.613 0.017 0.017 TECH. SPEC. LIMIT
- 1. 698
- 1. 957 H
QUALIFIED CORE EXIT THERMOCOUPLE TEMPERATURES DETECTOR CURVE FIT MEASURED 2
570.5 572. 0 5
588.9 592.0 9
599.4 599.0 10 601.7 603.0 11 599.7 599.0 16 584.1 580.0 19 600.1 599.0 21 582.9 580.0 23 593.5 597.0 25 590.2 592.0 27 585.7 587.0 30 591.8 596.0 31 584.2 580.0 33 599.4 598.0 35 600.6 599.0 36 599.5 599.0 NUMBER OF QUALIFIED INCORB INSTRUMENTS 16 QUADRANT 4 ll 11 11 10 10 53 100.110 QUADRANT 4 7/C 0.577 0.000 0.577 0.017 0.017 MEASURED VALUES NEAREST LIMIT
- 1. 556 1.777 209 A.32
2 4
5 7
8 10 11 13 14 CYCLE 11 E
51 PRI.P3X 2CET A
B 98.9l POWER -
DATE/TIME 10/12/94 20:02:00 CURVE FIT CET TEMPERATURES (F)
D E
G H
J K
M N
Q 5.434 5.499 5.451 5.447 5.517 5.446 0.195 0.312 0.226 0.219 0.344 0.217 R
T v
x 5.410 5.545 5.705 5.782 5.913 5.827 5.896. 5.723 5.548 5.411 0.153 0.397 0.721 0.894 1.230 1.003 1.183 0.759 0.403 0.156 5.560 5.904 5.910 5.992 0.426 1.206 1.223 1.471 5.946 5.989 5.897 5.889 1.328 1.460 1.187 1.164 5.907 5.563 1.215 0.432 5.411 5.561 5.772 5.908 6.009 5.884 6.002 5.822 5.921 6.000 5.922 5.*783 5.566 5.412 0.155 0.428 0.871 1.217 1.529 1.159 1.505 0.992 1.254 1.498 1.255 0.896 0.438 0.157 5.549 5.909 5.918 5.994 5.847 6.017 5.913 5.816 5.975 5.834 5.997 5.914 5.916 5.549 0.405 1.219 1.245 1.477 1.055 1.556 1.232 0.977 1.416 1.020 1.489 1.234 1.239 0.406 5.444 5.726 5.890 5.998 5.833 5.994 5.931 5.903 5.975 5.838 5.989 0.214 0.767 1.168 1.490 1.019 1.477 1.281 1.204 1.416 1.031 1.462 5.521 5.906 5.900 5.915 5.974 5.842 6.001 5.829 5.894 5.998 5.924 0.352 1.210 1.195 1.238 1.413 1.041 1.501 1.008 1.179 1.493 1.262 5.454 5.839 5.996 5.823 5.815 5.976 5.896 5.861 5.860 5.829 5.897 5.841 1.038 6.003 1.509 5.908 6.009 5.914 5.710 1.530 1.235 0.731 5.881 5.993 5.786 1.142 1.474 0.903 6.002 5.951 5.920 z
5.435 0.197 5.501 0.315 5.454 0.230 1.034 1.483 0.993 0.973 1.419 1.184 1.090 1.087 1.009 1.187 1.217 1.505 1.341 1.250 0.230 5.457 5.935 5.956 6.004 5.907 5.902 5.832 0.236 1.293 1.357 1.511 1.214 1.200 1.016 5.505 0.323 5.794 0.923 6.000 1.499 5.885 6.008
- 1. 154
- 1. 523 5.929
- 1. 276 6.002
- 1. 505 5.861 5.857 5.896 1.090 1.079 1.185 5.976 5.817 5.825 5.997 5.839 1.418* 0.978 1.000 1.486 1.033 5.454 0.231 5.896 1.185 5.830
- 1. 010 6.007 5.844 1.521 1.047 5.979 1.429 5.926 1.269 5.907 1.215 5.918..
5.526 1.246 0.362 16 5.437 5.714 5.919 6.015 5.850 5.995 5.842 5.977 5.901 5.929 5.994 5.836 6.003 5.895 5.733 5.451 0.201 0.741 1.2°47 1.548 1.061 1.482 1.042 1.421 1.198 1.278 1.477 1.026 1.508 1.182 0.783 0.225 17 20 22 23 5.551 5.914 5.917 6.006 5.839 5.979 5.819 5.913 6.008 5.846 5.995 5.920 5.909 5.550 0.408 1.233 1.244 1.518 1.032 1.431 0.983 1.230 1.526 1.051 1.482 1.251 1.219. 0.407 5.412 5.566 5.783 5.920 6.002 5.926 5.828 6.009 5.884 6.010 5.909 5.772 5.560 5.407 0.157 0.437 0.896 1.250 1.506 1.268 1.005 1.529 1.152 1.532 1.220 0.872 0.427 0.148 5.561 5.908 5.893 5.904 5.996 5.953 5.996 5.913 5.906 5.561 0.427 1.217 1.176 1.207 i.485 1.349 1.485 1.231 1.212 0.427 5.411 5.549 5.129 5.9o9 s.836 5.920 5.101 5.109 5.546 5.410 0.155 0.406 0.773 1.218 1.026 1.252 0.906 0.729 0.400 0.154 5.449 5.523 5.453 5.454 5.502 5.435 0.222 0.355 0.229 0.230 0.317 0.197 THE ORIGINAL PRODUCTION RUN DATE 10/12/94 20:02:00 THIS PIDAL-3 RERUN DATE 07/12/96 12:55:51 END OF PIDAL CASE CET TEMP (XlOO)
PIDAL-3 2RPF A.33
APPENDIXB SUGGESTED SER REVISION B.l
2.0 BACKGROUND
Palisades is a first-generation Combustion Engineering (CE) pressurized water reactor (PWR) with a unique core design consisting of 204 fuel bundles and 45 cruciform control blades. The core power distribution is monitored by self-powered rhodium incore detectors in a maximum of 45 instrumented fuel assemblies. Each detector location contains five equally spaced rhodium detectors ( 40cm in length) with centers at 10, 30, 50, 70, and 90 percent of the active fuel height. Currently, only 43 incore locations are available, since two locations are reserved for use by the reactor vessel level monitoring system.
The rhodium detectors, of standard design for CE type incorC? monitoring systems, are manufactured by Reuter-Stokes of Canada. These rhodium detectors produce a current directly proportional to the incident neutron flux at each detector location by a neutron-beta reaction. This current is passed to the Palisades plant computer (PPC) and converted from an analog to a digital signal.
The PPC performs the background and depletion sensitivity corrections, and provides all the necessary plant data to the PIDAL-3 incore analysis system.
The incore detector signals (amps) measured by the PPC are corrected for background noise and depletion sensitivity {amps/nv), and converted to flux (nv). The integral powers over each axial detector segment are then determined by the application of signal-to-power conversion ratios (W-primes). The W~primes are supplied by SIMULATE-3, an advanced three-dimensional two-group diffusion theory nodal code, as.
part of the incore monitoring system. The PPC provides SIMULATE-3 with all the necessary plant data, and SIMULATE-3 provides PIDAL-3 with all the necessary theoretical data.
The assembly powers for uninstrurnented locations are inferred using coupling coefficients to adjacent instrumented neighbors. This process allows the determination of a measured or inferred radial core power distribution at each of the five axial detector levels. A detailed axial power shape is then inferred using a five mode Fourier curve fit to the five level power integral for each assembly.
The incore analysis program is executed to determine the measured reactor core power distribution.
Based on this analysis the following TS surveillances may be performed:
TS Section 3.1.1.g 3.11.1.a 3.11.1.b 3.11.2.a 3.11.2.a-c 3.11.2.b 3.11.2.c 3.23.1 3.23.2 3.23.3
- Specific Surveillance Item Monitoring axial power shape within limits Incore detector operability Calculation of incore alarms for the incore monitoring system Calculation of target axial offset (AO) and allowable power level (APL)
Excore system calibration for LHGR monitoring Excore system calibration for ASI monitoring Excore system calibration for quadrant power tilt (T Q) monitoring Monitoring LHGR within limits Monitoring radial peaking factors within limits Monitoring T Q within limits Technical Specification 3.1.1.g establishes limits on the core average axial power shape to ensure that the axial power profiles assumed in the development of the primary coolant inlet temperature Limiting Condition for Operation (LCO) bound the measured axial profiles. The axial power shape, referred to as the axial offset (AO) or the axial shape index (ASI), is defined in TS 1.1 as the power in the lower half of the core minus the power in the upper half of the core divided by the sum of the powers in the lower half and upper half of the core. The excore system continuously monitors the ASI and is calibrated to the incore analysis program measured core average AO.
Technical Specification 3.11.1.a requires the determination of the operability of sufficient incore instruments. (ICI) to allow the incore analysis program to perform the required TS surveillances and the B.2
generation of the PPC incore alarm set points. Currently, at least 75 percent of the individual detectors must be operable including at least two incores per axial level per core quadrant.
Technical Specification 3.11.l. b requires the generation of PPC high alarm set points in order to protect the core from high local power densities by continuously comparing the directly measured ICI signals to the alarm set points. The alarm limits, one for each of the* five axial detector levels, are calculated by the incore analysis program and are equivalent to the minimum margin to the LHGR TS limit as measured for each detector level.
Technical Specification 3.11.2 requires the calculation of the target AO and the allowable power level (APL), along with the verification that the excore monitoring system is calibrated for monitoring the LHGR, the ASI, and the quadrant power tilt (T Q). The target AO is derived from the core average AO measured by the incore analysis program and provides the basis for calibrating the excore detectors ASI monitoring function.
The measured power distribution also provides the target or baseline quadrant power tilts which are used to calibrate the excore quadrant power tilt monitoring function. The APL is calculated based on the limiting measured LHGR and ensures that the core LHGR limits are protected within a given band of the AO.
The TS 3.73.1 LHGR limits ensure that the peak cladding temperature (PCT) will not exceed 2200 °F in the event of a loss-of-coolant accident (LOCA). The LHGR (and the related three-dimensional nuclear pin peaking factor FQ) is continuously monitored by either the PPC incore high alarm set points or by the excore monitoring system axial shape index (ASI) and allowable power limit (APL) alarms.
In order to calculate the incore alarm set points and to calibrate the excore monitoring system, the incore analysis program must calculate the local LHGR by applying local peaking factors (LPF) or pin-to-box (PTB) factors to the measured/inferred three-dimensional nodal power distribution.
- These LPFs are also supplied by SIMULATE-3 as part of the incore monitoring system. The calculated local peak pin powers are converted to local linear heat rates for comparison with the TS limits.
The TS 3.23.2 radial peaking factor limits ensure that the assumptions used in the analyses for establishing margin to DNB, LHGR and for the thermal margin/low-pressure (TM/LP) and the variable high power RPS trip set points remain valid. This requires verification of the two radial peaking factors defined by TS 1.1 :
FR A The assembly radial peaking factor is the maximum ratio of the individual fuel assembly power to the core average assembly power integrated over the total core height, including tilt FR r The total radial peaking factor is the maximum ratio of the individual fuel pin power to the core average pin power integrated over the total core height, including tilt.
The assembly radial peaking factor is determined directly from the two-dimensional assembly radial power distribution resulting from the axially collapsed three-dimensional measured/inferred nodal power distribution. The total radial peaking factor is determined by multiplying. the three-dimensional measured/inferred nodal power distribution to the three-dimensional LPFs and the ratio of the average number of pins/assembly to the number of pins in the assembly, then collapsing it axially to two dimensions.
Technical Specification 3.23. 3 requires verification of the quadrant power tilt defined by TS 1.1 to ensure that the design safety margins are maintained:
The quadrant power tilt is the maximum positive ratio of the power generated in any quadrant minus the average quadrant power, to the average quadrant power.
B.3
Operation is not restricted with tilts up to 5 percent. Larger tilts, not to exceed 10 percent, require verification of radial peaking factor limits and/or reduction to less than 85 percent of rated power. Tilts exceeding 10 percent require reduction to less than 50 percent power and verification of radial peaking factor limits and tilts greater than 15 percent require shutdown to hot standby conditions within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
The TS verification that the excore system is calibrated is performed by comparing the measured core average AO and quadrant power tilts to the corresponding vaiues recorded by the four power range (safety) excore detectors. If any excore reading differs from the corresponding incore measured value by more than the allowable margin, that channel is declared inoperable and is recalibrated based on the incore measurements.
Each time the TS requirements are performed, a complete set of det~tor alarm limits are created. These alarm limits are loaded into the PPC at least once every 7 days for use until the next required update.
3.0 EVALUATION 3.1 Methodology General The PIDAL-3 program always models the reactor power distribution on a full-core basis with quarter core symmetry. The incore data collection procedure, including the background and depletion corrections is equivalent to the previous monitoring programs. The incore detector signal-to-power conversion using SIMULATE-3 is equivalent to the CECORLIB program used to generate the W-prime and LPF library for CECOR (Ref. 8). The axial power distribution interpolation technique, including the use of theoretical axial boundary conditions derived using the NRC-approved SIMULATE-3 nodal model (Ref. 9), is similar to the previous monitoring programs. Fuel and control rod exposure calculations, and the TS analysis procedure are equivalent to the previous monitoring programs.
The significant differences between the PIDAL-3 methodology and the original PIDAL methodology are:
- 1) Theoretical Nodal Power Distribution
- 2) Incore Detect~r Signal-to-Power Conversion
- 3) Local Peaking Factors and Pin Ratio
- 4) Full <;:ore Theoretical Coupling Coefficients Theoretical Nodal Power Distribution The original PIDAL program used XTG to determine the theoretical nodal powers on a quarter core basis.
This limited PIDAL's ability to measure radial tilts since the XTG model was limited to quarter core. The PIDAL-3 program uses SIMULATE-3 to determine the theoretical nodal powers on a full core basis. This allows PIDAL-3 to accurately measure radial tilts since the SIMULATE-3 model is full core and will accept individual dropped control rods.
Incore Detector Signal-to-Power Conversion The original PIDAL program used PDQ to determine the theoretical W-primes on a quarter core basis.
This limited PIDAL's ability to.measure radial tilts since the PDQ model was limited to quarter core and to group 4 control rod insertion only.
The PIDAL-3 program uses SIMULATE-3 to determine the theoretical W-primes on a full core basis at any power. This allows PIDAL-3 to accurately measure radial tilts at any power since the SIMULATE-3 model is full core and will accept individual dropped control rods.
B.4
Local Peaking Factors and Pin Ratio The original PIDAL program used PDQ to determine the theoretical LPFs on a quarter core basis. This limited PIDAL's ability to measure radial tilts since the PDQ model was limited to quarter core and to group 4 control rod insertion only. The original PIDAL program did not account for different numbers of fuel pins/assembly. This caused PIDAL to over-measure pin powers in assemblies with more pins than the average and under-measure pin powers in assemblies with less than the average.
The PIDAL-3 program uses SIMULA TE-3 to determine the theoretical LPFs on a full core basis at any power. This allows PIDAL-3 to accurately measure radial tilts at any power since the SIMULA TE-3 model is full core and will accept individual dropped control rods. The PIDAL-3 program accounts for different numbers of fuel pins/assembly and hence, accurately measures the peak pin to the average pin of the core (Ref. 11).
Full Core Theoretical Coupling Coefficients The original PIDAL program determined the full core power distribution based on XTG quarter core coupling integrated with measured powers and expanded to full core coupling. This limited PIDAL's ability to measure radial tilts since the XTG model was limited to quarter core.
The PIDAL-3 program determines the full core power distribution based on SIMULATE-3 full core coupling integrated with measured powers. This allows PIDAL-3 to accurately measure radial tilts since the SIMULATE-3 model is full core.
3.2 Uncertainty Analysis General As defined in the TS and discussed in Section 2.0, the peaking factors of interest for Palisades are FQ, FRA, and FR r. Three separate components for the uncertainty associated with determination of the above peaking factors are considered as follows:
- 1)
The box measurement component is
- defined as the uneertainty associated with measuring segment powers in the detector locations.
- 2)
The nodal synthesis component is the uncertainty associated with using the radial and axial power distribution synthesis techniques employed by PIDAL-3 to calculate a nodal power. Specifically, the uncertainties associated with the radial coupling to the uninstrumented locations and the. aXial curve fitting used to obtain an axial power shape from the five discrete detector powers.
- 3)
The pin-to-box component is the uncertainty associated with using the SIMULATE-3 LPFs to represent the pin power distribution within each assembly.
To adequately address the above uncertainties, it is necessary to mathematically re-define the individual peaking factors in terms of these components. Since the current fuel vendor for Palisades is Siemens Power Corporation (SPC), CPC chose to utilize the SPC breakdown as described in their St. Lucie-1 uncertainty analysis (Ref. 10).
In the uncertainty analysis of the PIDAL-3 statistical model (Ref. 12), CPC has separated the above.
factors into iridividual components which can be investigated and quantified independently.
These components are statistically recombined into the appropriate uncertainty values for the TS surveillance requirements.
B.5
The specific form of the peaking factors used by CPC is as follows:
F(q)
= F(s)
- F(r)
- F(z)
- F(L)
F(rT)
F(rA) where:
F(s)
F(sa)
F(r)
F(z)
F(L)
= F(sa)
- F(r)
- F(L)
= F(sa)
- F(r)
= Relative power associated with a single detector measurement.
= Relative power associated with the average of the detector measurements within a single assembly.
= Ratio of the assembly relative power to the relative power of the detector measurements within that assembly.
= Ratio of the peak planar power in an assembly to the assembly average power.
= Peak local pin power within an assembly relative to the assembly average power.
CPC uses standard forms for the sample means ( x ), standard deviations (s), and root-mean-square (rms) differences. Based on the mean, the standard deviation, and the sample size, the 95/95 tolerance limit (bias plus-or-minus the reliability factor) was determined for each component, assuming that the percent difference (error) between calculated values and measured data are normal distributions. The individual variances are defined in standard terms and are combined statistically by assuming that the individual uncertainty components are independent.
B.6 r