ML18026A348
| ML18026A348 | |
| Person / Time | |
|---|---|
| Site: | Susquehanna |
| Issue date: | 04/30/1981 |
| From: | Curtis N PENNSYLVANIA POWER & LIGHT CO. |
| To: | Youngblood B Office of Nuclear Reactor Regulation |
| References | |
| PLA-752, NUDOCS 8105050611 | |
| Download: ML18026A348 (64) | |
Text
REGULATO INFORMATION DISTRIBUTION TEM (RIDS) eg A'CCESSI ON NBR!8105050611 DOC ~ DATE'. 81/04/30 NOTARIZED; NO DOC FACIL':50 3S7 Susquehanna Ste'as Electric station, Unit I, Pennsylvs
- 50. 388 Susquehanna Steam Electric Stationi Unft 2'i Pennsylva 05000%
8 AUTH BYNAME AUTHOR AFFIL'IATION CURTISF N ~ W ~
Pennsylvania Power L Light-Cos RECIP ~ NAME RECIPIENT AFFILIATION YOUNGBLOODiB~ J, Operating Reactors Branch 1
SUBJECT!
Forwards response to SER Outstand)ng Issue 28.
DISTRIBUTION CODE!
B001S COPIES RECEIVED:LTR $ 'NCL'g 'IZEsF.
TITLE': PSAR/FSAR AMDTS and Related Correspondence NOTES!Send ILE 3 copjes FSAR 8 all amends, Send ILE 3 copies" FSAR' all amends, 05000387 05000388 RECIPIENT" ID CODE/NAME)
ACT'ION!
A/D LICENSNG RUSHBROOKrM, INTERNAL's ACCID EVAL -
BR'26'HEM ENG BR 08 CORE PERPBR 10.
EMEQG PREP 22'EOSC IENCES 14 HYD/GEO BR 15, ILE~
06 LIC QUAL, BR MECH ENG BR 18 NRC PDR 02",
OP LIC BR PROC/TST REV 20.
R
SS BR22' FI 01 S
'NG BR25 COPIES LTTR ENCL' 0
1 0
1 1
1 1
1 1
1 0
1 1
2 2
3 3
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 RECIPIENT ID CODE/NAME'IC BR 42" BC ST'ARK g R ~,,
04 AUX SYS BR 07 CONT'YS BR 09'FF TR SYS BR12'QUIP QUAL BR13 HUM FACT ENG BR I8C'YS BR 16 LIC'UID BR MATL> ENG BR 17 MPA OELD POWER SYS" BR 19 QA BR 21 REAC SYS BR 23 SIIT'NAL BR 24 COPIES LTTR ENCL 1
0 1
1 1
1' 1.
1 1
3 3
1 1
1 1
1 1
1 1
0 1
0 1
1 1
1 1
1 1
EXTERNAL: ACRS NSIC 27 05 16 1
1 LPDR 03 1
1 MN 0 6 1SSl TOTAL NUMBER OF COPIES REQUIRED:
LTTR ENCL'
r FF
~I 4
I 4
II I
F'
TWO NORTH NINTH STREET, ALLENTOWN, PA. 18101 PHONEs (215) 770-5151 NORMAN W. CURTIS Vice President-Engineering 8 Construction-Nuclear 770.5381 Mr. B.J. Youngblood, chief Licensing Branch No.
1 U.S. Nuclear Regulatory Commission Washington, D.C.
20555 Susquehanna Steam Electric Station SER Outstanding Issue No.
28 ER100450 File 841-2 PLA-752 April 30, 1981
, I I Ipi C
C 4,
Dear Mr. Youngblood:
In response to SER Outstanding Issue No. 28, we provide the attached writeup.
-We believe this resolves your concern.
Very truly yours, N.W. Curtis Vice President-Engineering and Construction-Nuclear cc:
R.M. Stark poor 5
y p g O Q Q 4)'L L~>
PENN SYL'VANIA POWER 8
LIGHT COMPANY F
I I
2.
The dominant frequency for test 21.2 appears to be 8.0 Hz instead of the 6.8 Hz reported in Table 8-10 of the DAR.
Using the multipliers from Figure 8-174 and this 8.0 Hz frequency, we get a transposed frequency of 10.6 Hz.
This value falls outside of the specified frequency range.
A Fourier analysis indicates an exceedance of approximately 70% at this 10.6 Hz 'frequency.
Please provide justification for the existing load specification frequency range.
Response
As can be seen in'igure 8.-188 of the Susquehanna DAR, test 21.2 does not show a clearly predominant frequency.
We have interpreted 6.5 Hz as the predominant frequency because of the maximum peak occuring in the PSD at that frequency;
- however, a second
- peak, only slightly lower than the 6.5 Hz peak,'an be seen in that PSD at approximately 8.0 Hz.
To investigate further the significance of test 21.2 to the acceptability of the Susquehanna T-Quencher load specification KWU performed a pressure response spectra comparison of the load specification and test 21.2.
The method of "weighted traces" presented to the NRC in the June 13, 1980 Lead Plant Meeting and documented in the KWU Report R 141/141/79 E is used for this comparison.
The results can be seen in the attached
- figures, Figure 1
shows that'he Susquehanna load specification bounds the measured pressure time history of Karlstein test 21.2 representing the all valve case.
Assuming a maximum predominant frequency in test 21.2 of 8 Hz and transfering the measured data of test 21.2 to the all-valve and single-valve load case we get the comparison shown in Figure 2, The pressure response spectra of the Susquehanna load specifications is slightly exceeded by the pressure spectra from test 21.2 in the frequency range between 10 Hz and 11 Hz.
This slight exceedance is only related to the single-valve load case and is considered
4 pc
s insignificant to the total load specification and in relation to the total data base from Karlstein.
Xn addition, the term "dominant frequency" is highly subjective and sensitive to the method chosen for determining the dominate frequency.
Originally, KWU determined the dominate frequency range for the. three SSES design traces (KKB Traces 8'5, 27 and 82) to be 6.5 to 8,0 Hz (.see SSES DAR, page 8P-101).
Th'is frequency range was based on a PSD analysis of the three traces'.
- However, for these non-stationary SRV traces, the PSD analysis is sensitive to the time segment chosen for analysis, Using a particular time duration may give one dominate frequency while another may give a slightly different dominate frequency.
Subsequently, Bechtel has taken the design traces and performed their own analysis to determine the dominate frequency.
They calculated a dominate frequency range of 6.45 to 8 69 'z for the three traces.
This frequency range was based on the inverse of the peak-to-peak oscillation time period.'his was done for both k
negative.and positive peak-to-peak periods.
Furthermore, Sargent
& Lundy have determined the dominate frequency range of the three traces to be 6.8 to 8.9. Hz.
As can be seen, the dominate frequen'cy varies according to who performs the analysis and the methodology selected, For containment analysis, the KWU methodology requires that time scale multipliers be applied to the three design traces.
They range from 0.9 (time, contraction or frequency expansion) to 1.8 (.time expansion or frequency con-I traction).
When these multipliers 'are applied to the three design traces, specified frequency ranges of 3,3 to 8,9 Hz, 3.6 to 9.7 Hz and 3,8, to 9,9 Hz
,are obtained by using the above dominate frequency ranges from the original traces...Thus, the specified frequency range varies depending on the inter-pretation of the "dominate frequency".
a t
However., regardless of the interpreted dominate frequency range, the same three traces and time expansion and contraction factors are used for contai'n-ment. analysis.
- Thus, ones opinion of what the dominate frequency range is
~
for the three traces is not as important as the time factors chosen for actually applying the traces to the containment boundary.
With this in mind, Attachment 1 illustrates the response spectra generated'
~
by KWU Trace 876 for SSES.
The trace was frequen'cy expanded and contracted by 110% and 55%, respectively, to give a specified frequency ranges of 3.3 to 8.9 Hz, 3.6 to 9.7 Hz or 3.8 to 9.9 Ha, again, depending on the interpre-tation of the "dominate frequency".
Attachment 2 presents the response spectra generated by KWU Trace 876 for the Limerick Generating Station (LGS).
The LGS structural model is essentially identical to the SSES model.
- However, these spectra reflect the use of frequency expansion and contraction factors of 125% and 55%, respectively.
This gives specified frequency ranges of 3.3 to 10 Hz, 3.6 to 10.9 Hz or 3.8 to 11 Hz.
- Thus, depending on the dominate frequency, these spectra reflect the use of the NRC's upper bound dominate frequency of 11 Hz, as required by Supplement No.
1 to NUREG-0487.
A node by node comparison of the two spectra shows that the expanded spectral input used for LGS has negligible effect on the total response contributed by all modes.
Thus, this supports the conclusion that an extention of the upper frequency multiplier would have no significant impact on the SSES response spectra analysis.
g le 80 Psl 9
70 60 M
O u).50 IX SS=S Load Defini:!en g 40 30 20
'0.
0 0.01 0 02 0.03 0.05 0.1 0.2 0.3 0.5 s
t.G.-
Period Susquehanna Units 1 and 2
Comparison of the
Response
Spectrum of Karlstein,Test No. 21:2-Pesoresentinc the A ll. Valve Case - and; h"=
Re=-pon-:;e Spectrum of th SSES Load:
-';:;,",it:;o:;;
I 0%
Damping weighted Trace
~
~ I
)
-80 Pst D
70 CL '
60 CO 50 SSES Loo" Definition g 40 30 20 0
0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 s
'..0
<<~f 'IQd e
Susquehanna Units 1 and 2
Comparison of the
Response
Spectrum of Karlstein Test No. 21 2-Representing the All Valve Case and the one Valve Case -c.nd the Respons=
Spectrum oi the S".FS Load De iinition 0'lo Damp.ing weigl~ted Trace Fl 9.
2
CO m),00 V)
Z0I-nr LLJ LLj0: 75 OO.
K O
p 0.50 (0
- 0. 25
- 0. 00 0.1 4
6 8 ]0 8 )p.p 6
8 )pp FREQUFNCY-CPS Fb. ".
Accalaratlon Sp~tra for PEDESTAL b,g /r jf Load.Caaa..~uuahanna KWU-SRV Ii76 ASTRA.
1 Damping: 0.005, 0;01, 0.02, 0.05 N)'V ~
J. 'oad Casa'uuehanna KWU-bHV tt /0 AbXNN.
MAR 1980 Npdp 215, 0irppiipp 9, Bpv Damping: 0.005, 0.0 1, 0.02, 0.05
,(
10.0 0
1,S 0.1 0.01 1.25.
W
~1. 00 0)
Gl-0 wO. 7S O
K
~"O.SO O.ZS 0'. 00 0.1 G
0 10 6
8 1OO 4
G 8
100 FREQUE.NC'(-CPS Ir0 0'ig
~
2~
Acce1era1jpn gp~1ya fpp PEDESTAL Lpad Caee: ~UUehanna KWU-SRV'76 ASXMM.
l98 N
Damping: 0.005, 0.01, 0.02, 0.05
ATTACHMENT 1
I t
10.0 I
10 0.1 0.01 I
- l. SO
- l. 25 CO el,OO V) z0
'.I-0 UJ w 0.75
(.)O 0I-.
~ o.so Vl O. 25
- 0. 00 0.1
~7 4
8 I P 8
1OO 4
6 8
1PP F!tEQ U 1NCY-CPS Rg ~AP I I
Acpe~pp<6pp Sppppp tpp CONTAINMENT SHELL REV.
1 Load Casa. ~uuahanna KNU-SRV I 76 ASXHM.
MAR ~
1980 Np6 ~
131 Hpppt[pp X
Bpp 672'-0" Damping: 0.005, 0.0$, O.OZ, 0.05
0.1
- 1. 50
- t. 25 be
~1.00
'l Z0 1-K LIJ ug 0. 75 OO K
- I-O L 0.50 V)
T
- 0. 25
- 0. 00 0.1 4
6 8
) 0 2
8 1o.o FREQUENCY-CPS 4
6 8
100 F.
A&I l5 REV.
1 MAR. 19 80 Acceleration Spectra for.
TAINMENT SHELL Load Cage. ~UUehenna YMM.
Oamping: 0.005, OIO1, 0.02, 0.05
- l. 50 P.01 l
1.
25'0 fffl.00 Ul 0
p
~e w0.75 UO nI--
O p 0.50 M
0.25 0p00 0.1 2
4
" 6 8 1nP FREQUENCY-CPS
$ jg ~A&I-I App~ j ~fpfjpp Spppf fp fpp CONTAINMENT SHELL REV. l i pad Caza: ~uuahanna KWU-SRV 76 ASYMM.'9
~,
B 6>>'-
Damping: 0.005, 0.01, 0,02, 0.05 6
8 1PP
10.0 O. I t0 Ital.
00 U) 0I-II uJ ug 0. 75 OO I-
'O Loj o 0.50 V)
- 0. 25 0.00 0.1 4
6 8
2 8
1OO FREQUENCY-CPS 4
6 8
100 Eat'c'csl
~ ration Sosctra for
@col-Eo RRV.
1 conf Ears rcuutustrsanKnUtOSR
-V i8 A8>ttff~
ffAR. 1980 fforf~ 1>8.,0iraction K,Etsv Dmmping 0005 001 002 005
10.0 I. 50 1.0
0.1 0.01
- l. 25 M
~ l. 00 M
0I-K LLI m 0.75 OO 0I-U 0 0.50 (0
0.25 0.00 0.1 4
6 0
10 4
6 01OO 0
1oo FREQUENCY-CPS F jg jAS
$7 AogajaIa)jpn SpagIIa foI PEDEST L REV.
j.
Load Case: ~uuehannaKWU-SRV Ij76 ASYMM.
MAR 19 80 jjgdI 21 1 pj~gjjpp jj 'jgy 70 2 3
DanIping: 0.005, 0;01, 0.02, 0.05
ca'P.P 1.P s
s 0.1 P.P1 I. 50 I. 25 Mfj'.00 M
0I-p UJ m0.75 OO KI-O 0 0.50 lO
~
0.25 0
F 00 0.1 4
b 8
1P 2
4 6
8 1pp 4
8 lpp FREQUENCY-CPS pig.
Accslsratioo Spscjra for RSV.
1 Louj Sara ~uushsona KjSU-0RV t 76 ASXffhj.
MlLR 1 9 80 fjorja 2 15 Ujrscjjou Z
Baa 702 3
Oamping: 0.005, 0.01, 0.02, 0.05-
10.0 l
I. 50 I
I I IIVEJ I.G O,l 0 ol
- l. 25 00
~ l. 00 V)
Z0t-
+rK ug0. 75 O
C) 0:.
O'~ 0. 50 V)
- 0. 25
- 0. 00 O.l 4
6 8
I p p
6 8 IOO 4
6 8 lpp f'REQUENCY-CPS A0i l r Apppfpfgfpp$pppfpp fpf CONTAINMENT SHELL REV.
1
'pad Ca~'. ~UUahanna KW 198 Damping: 0,005, 0,01, 0.02, 0.05
10
- 1. 50
- 1. 25 5)
III1, 00 0) 0I-0'.
LIJ 1u D.75 O0 K
1-U 0 O.SO V7 D.25 D.OO 0.1 8
8 2
6 8 100 4
6 8
100 FR1:.QUENCY-Cf'S Fjg P ~
~ 4 Alga)apa)ion 3pac))a to1 CONTAINMENT SHELL REV.
1 Load Casa: ~uuahanna KHU-SRV 76 ASYMM.
19 0
Ih ~. ii,~
'-3" Oamping: 0.005, 0.01, 0.02, 0.05
10.0 I. 50.
C.1 0.01 A
- 1. 25 b0
~
~I. 00 V7 G
~
I-Q:lu w0.75 OO Kl-V 0 0.50 V)
- 0. Z5
- 0. 00 0.1 e
81O 4
6 8 1OP 4
<<1OO FBEQL)ENCY-CPS F~.~AI-lb Accsiaal90n SF9cl9alor CONTA>NFlENT CHEF l Load Caaa
~uuohanna 99 III, 'I ~B Damping: 0.005, 0.01, 0.02, 0.05
10.0
- l. 50 O.I e
IXi
. ~l,00 M
Z0.I-K LJJ
~0.75 OO K
o 0;SO V)
L
- 0. 25
- 0. 00 0.1 J
4 6
8 IO 8 Ioo FREQUENCY-CPS 6.
@31 IG AccNeMrroosnecrN iorcoNTAYNMENT sHELL REV 1
Loed Sere'ovehennrNWV-.'SRV 76 ASYMM.
MAR ~
7SSO Node 266,0irection S,Elov 7rr2 Damping: 0.005, 0.01; 0.02, 0.05
10.0
- 1. 50 1.0 0.1 0.01 00
- 41. 00 (0
Z '
I-K LU w 0.75 0O n
V 0 0.50 U)
J.
- 0. 25 0.00 0.1 G
8 1p 4
'G 8100 6
8 1pp FREQUENCY-CPS F~ 4'
~
f A~~ga~1iun $pa~1(a f01 CONTAINMENT SHELL REV.
1
'oad t;aaa: ~uuehannaKWU-SRV 076 ASXMM.
19 Damping: 0.005, 0.01, 0.02, 0.05
I 10.0 1.0 0.1 0.01
'I. 30 I. ZS b0 fti I. 00 V)
I-Kw w0. 75 V
O nl oI-O 0
W 0'T30 vj o
s s
s I
- 0. 00 0.1 n
8 1O.O 8
1OO Ff',EQUEIIICY.Ci~S Fio.
Accslsrstion Spectre for T 'XH EHT SHELL Ac I. lo REV.
1
~
Load Caaa: ~uuah>nna KNU-SRV 76 ASYMM.
idAR ~
1980 Node, Direction ~,Etsv 330 '-8-1 2" Damping: 0.005,0.01,0.02,0.05
I.
10.0 l
- l. 50 I.n O.pl
- l. 25 ru 1. 00 ffl OI-p-
LV w 0.75 OOcf KI-
~
~ 0.50 o)
- 0. 25 0.90 0.1 1P 0 Ipp 4
6 8
1PP FREQUENCY-CPS REV.
1 Load Case: ~uuehanna KWU-SRV il76 ASYMM.
MAR 198O Bode KB,Djpag~jgn Y
g-73O'-1/2" Damping: Q.Q05 p.pl p.p2 p p5
. 10.0 1.0 0.1 0.01 1..50
- 1. 25'
~1. 00
{O
.z0{-
0 m 0.75 OO
. I-rg.
{1 O.SO V)
- 0. 25
- 0. 00 O.l fe 8 )p 8 100 4
~ 6 8
1PP F REQUENC Y'-CPS f'~
h AccelerationS actra for Fig.
Load Case: ~vvehanna KWU-SRV f76 ASXMH.
19 li,~j 0;;
B 1/
Oamping: 0.005, 0.01, 0.02, 0.05-
t 0.0
- 1. 50 1.0 0.)
0.01 CO
~1.00 V) 0I-
- <K lu 0. 75 O0 KI-U' 0.50
'V)
- 0. 25
- 0. 00 0.1 1.0 2
4 t
. "10.0 4
6 8
100 FREQUENCY-CPS Fig A9 I 9 Accelerafjon Speq)pa for CONTAINMENT SHELL REV.
1
.'oad Casa: ~uuehanna W -SRV 76 ASYMM.
19 ~.
i i ~ >>5
'-1 Damping: 0.005, 0.01, 0.02, 0.05
. 10.0
'.SD 1.0 4sasvv iy
(
0.1T 0.01 l.
25'0 Rf 1. 00 V) z0l-O4l w0.7S O
U O,I-V o 0.50 V)
- 0. 25 0.00 P. I ta 8
1P 8
1O.O 4
6 8
1OO FREQUENCY-CPS pftf ~~
+
AccsfarationSpsctrsfor WT YMMEWT SSEYL REV.
7, Loatf Saaa
~uushanna KWU-6RV 76 ASYMM.
19 ~
i i
r ~7'-l r Damping: 0.005, 0.01, 0.02, 0.05 '
10.0 0.1 0.01 1,25 t4nl; 00 M
z' t-0Ul w 0.75 OO 0
. 0 0.50 M
0.25 e
0.00 0.1 G
8 1p 2
8 lop FHEQUENCY-CPS Fig.~~
Acceleration Spectra lor REV 1
LoI4 Qase'uushannaKNU-SRV ii76 ASYMM.
MAR. 1980 ttorte 411,Direction X,Eln 778' 3/4 Damping: 0.005, 0.01, 0.02, 0.05
I 50 ITTT PERIOD-F~
TI 1.0 0.1IT 0.01 I. 25
, ml.00 M
0
. I-0 u 0.75 0
~ 0 I
0:I-(3' 0..50 V)
- 0. 25 0.00 0.1 6
8 8 Ioo 4
6 8
1pp FREQUFNCY-CPS fq~ ) + AITgaia~a1jpn Spap)Ia fpI'ONTAINMENTSHELL REV 1
Lpad Ca~'UUlhannaKWU-SRV l76 ASYMM~
MAR 1 9 80 gpda 4 1 1 Dj~)jpn Z
Eigy 77 8 9
3 4
Damping: 0.005, 0.01, 0.02, 0.05
~~
~
~
10.0 PERIOD-S~
1.0 0.1 I. 50
- l. 25 bC~l. 00 apl (3
o W
w0.75 OO KI-o Op50 V)
- 0. 25
- 0. 00 0.1 4
6 8
1O 8 too.
8 1oo FREQUENCY-CPS Appp[ppptjpn Sppptpp fpp CONTAINMENT SHELL RE+, I Lppd Cppp ~vvphanna KNU-SRV 876 ASXMM.
1980 ~
i, i
>> '- -3 0 rnnlnn: 0.005. 0.01. 0.07. 0.05
1 O.o~l
- 3. 50 PERIOO-S~
J.ol~~f, 0.1 OOI f~~l I
1, 25.
Nl
~ l. 00 Q) z0I-CC txJ ug0. 7S 0
KI-()
t) 0.50 (0
8
- 0. 00 0.1 6
0 n
6 8 too 6
8 ypp FREQUENCY-CPS Fq A&
4 A,la),-,nSp~l 1,CONTAINMENT SHELL
. 8:~~l" "
I 198 Il ~.
I 9'.ll Damping: 0.005, 0.01, 0.02, 0.05
~
~
~
1 ~
ATTACHMENT 2
10.0
- l. 50 1.0 PERlOD-&
0.1
'.01 l ~ 2,5 4 1.00 z0I-tajO. 75 O0 l-O 0 "0 FO 0 25 dO. 00 4
6 8
10.0 0.1 2
4 6
8 10 2
2 FREQUENCY-CPS Flg.
4-2 Llmerlck Generation Station, Acceleration Spectra for ETwELL
'Load Case:
SRV ASYMMETRI dd, dd d ~dd:~~A
, Damping: 0.005,0,0t,o.oz,o'.05 By: <c-,gate: 5-<-tao check: t4~0ate: >~I(8o
10.0 0
1.0
(
PERIOD-<
0.1 0.01
~l. 00
.V) 0 z0.75 0O
~5I-O 0 0.50 VJ
- 0. 25
- 0. 00 0.1 4
6 8
10 2
4 6
8 10.0 4
6 8
100 FREQUE NCY-CPS Fig~ Limerick Generation Station, Acceleration Spectra fol wETwELL Load Case:
.. sRv ASYMMETRIC TMcE 76 Node:
131 Direction:
VERT Elev: 205'-ll" Angle:
0 Damping: 0.005,0.01,0.02,0.05 By: ~(.
Date:
5'-g-DoCheck:
El(
Date:
/0/S o
I 10.0 I ~ 50 1.0 PERtOD-'1 0.01 1.'25 b4 f01. 00 V) 0I-LLJ tIj0. 75 OO 0 50 M
25 a0.00 4
6 8
10 0.1 2
2 4
6 8 100 2
FREQUENCY-CP.S Fig.~ Limerick Generation Station, Acceleration Spectra for NETNELL Load Case:
SPV '- ASYMMETRIC TRACE 76 4
6 8
100 Node: ~gS Direction:
iiORXE Eley: 205'-ll" Angle:
90'amping:
0.005,0.01,0.02,0.05 By: ~f,gate: 5 Bo Check:
l/u Date:
5!5/8o
\\
10.0 1.0 0.1 0.01 b0
- 41. 00 V) 0I-K Laj kaj 0. 75 00 I-O
~<o. ~o V) 0.
aS 0.1 4
6 8
1O 2
4 6
8 1OP 4
6 8
1oo FREQUENCY-CPS Fig.~ Limerick Generation Station, Acceleration Spectra for NBTwELL Load Case:
'RV - ASYMMETRIC TRACE 76 Node:
135 Direction:
VERT Elev: 205'-ll" Angle:
90'amping:
0.005,0.01,0.02,0.05 By:
Pc Date: 5'-'S &Check: ~~ Date: a~48o
10.0 1.0'EBlOC
'.."r 0.1 0.01 50
'1 ~ 25 CO ttt 1 a 00 K0I-taj0. 75 0
.r 0
I-O 0 o.r~O Uj (O.
- 0. 25
- 0. 00 0.1 2
4 6
8 10 2
4' 8 100 6
8 100 F)g.
4-22 FREQUENCY-CPS Limerick Generation Station, Acceleration Spectra for PEDESTAL Load Case:
MM TRA E 76 Node: ~~ D)rectton:
HQRls 'lev: 236'-2" Angle:
0 Damptng: 0.005,0.01,0.02,0.05 By: ~
Date: c-a-to Check: A~gate: <~lee
10.0 1.50 1.0 PERlOD-0.1 0.01 tat). pp V)
K0 Etjo. 75 00 I-O 0 P.50 M
- 0. 2's p.pp 0.1 6
8 4
6 8 10.0 4
6 8
100 FREQUEHPY-CPS F]g. ~~L Limerick Generat)on Station, Accelerat)on Spectra for Load Case:
SRV ASYMMETRIC - TRACE 76 Node: ~1 Direction:
vEBT Elev: 236'-2" Angle:
0'amptng:
0.005,0.01,0.02,0.05 By: p<-
Date: 5~s-0 Check:
la&Date: <l</8o
10.0 1.0 P ERIOD-.
O.l 0.01 b0
~].00 V) 0I-K LU t21 0. 75
~ 00 I-
.O r
<0.~0 Q) 0.:
- 0. 00 0.1 4,
6 8
2 4
6 8 lop 4
~ 6 8
100 FREQUENCY-CPS Ffg.-~~ L)merfck Generation Stat)on, Acceleration Spectra for Load Case:
M RI TRACE 76
. PEDESTAL Node:
215 Dlrectton:
BORzz Elevvl: 236'-2" Angle:
90'amptng:
0.005,0.01,0.02,0.05 By: 'PC Date: 5 5 BOCh-ec-k: b(~gate: 5 lr'ii
10.0 1.0 0.1 0.01
~
~
b4-~l 00 M
K0I-uJ 0. 75 00 OIIj 0 O.raO V)
- 0. 25
- 0. 00 O.l 4
6 8
10 4
6 8 100 4
6 8
100 FREQUENCY-CPS F)g. ~~ Limerick Generation Station, Acceleration Spectra for pEDE$ TAL Load Case:
Node:
215 Dlrectton:
vRRT Elev: '236'-2" Angle:
90'amping:
0.005,0.01,0.02,0.05 By: K 'ate:
~s-s-8 Check: dun'ate:
5 C(Bo
10.0 1.0 P ERIOO =.
01 0.01 I ~ So Ia I, 00 (0
0I-0W taj 0. 75 "0
O I-
.O 0 0 riO U)
- 0. 00 0.1 4
6 8
10 2
4 6
8 100 2
4 6
8 100 FREQUENCY-CPS Flg.
4-6 L>merlck Generatfon Station, Acceleration Spectra for wETwE Load Case:
SRV ASYMMETRIC TRACE 76 II: >>
I I:
I:>> '-'
Damping: 0.005,0.01,0.02;0.05 By:
1'c Date: ~5'~~ocheck:
tie Date:
/8/BcA
10.0 1.0 PERIOD-0.01
- 1. 2S b0 atg 1. 00 2'-0I-K 5'a10. 7S OO 1-O 0 O.rap V)
- 0. 25 O. 00 0.1 4
6 8
1p 4
6 8 10p 4
6 8
1pp FREQUENCY-CPS Ffg.
4-7 Limerick Generation Stat)on, Acceleration Spectra for NETNE>L Load Case:
SRV>> ASXMMETRIC TRACE '76 Node: ~21 Dtrectton:
VERT
'lev: 236'-2" Angle:
0'Damptng:
0.005,0.01,0.02,0.05 By:
yc Date: ~g-20Check:
lA~ Date: ~55 go
I 10.0 1.0 PERiOn 01 0.01 I. SO
~1.2S DO tts 1. 00 V) z0I-w0.7S OO 0 0.00 IO
- 0. 25
- 0. 00 4
.6 8 Ipp 4
6 8
1p 0.1 2
. 2 4
6 81pp 2
FREQUENCY-CPS Ffg.~ Ltmerlck Generation Station, hcceleratfon Spectra for wETWELr.
a Load Case:
SRV ASYMMETRXC TRACE'6
. Node: ~01, Direction:
>IORIr,'lev: 236'-2" Angle:
90'amptng:
0.005,0.01,0.02,0.05 By: l>c.
Date: o~IG Check: ~ Date: S~f(So
10.0
- 1. 00 1.0 PERIOD-.01
+1. 00 (0
0I-ufo. 75 (3O O
W 0 o.~o Qj
- 0. 00 O.l 4
6 8 lp 4
6 8 lpp 6
8 100 FREQUENCY-CPS Fig. ~.Limerick Generation station, Acceleration spectra for wBTwmLL Load Case:
SRV'- ASrtmETRIC TRACE 76 Hode:
295 Direction:
VERT Elev: 236'-2" Angle:
90'amping:
0.005,0.01,0.02,05,05 By: gc.
Date: s-5'.8m check: ~~ Date: ~5/5 5
10.0 1
~ 00 1.0 PERIOD.
Ol 0.01 DO
~l. 00 V) 0I-K LLJ w0.75
. OO KI-O
~
LLJ 0 0 rao V)
- o. oo 0.1 4
6 8
1p 4
6 8 1pp 4
6 8
1pp FREQUENCY-CPS Fig. ~lo Limerick Generation Station, Acceleration Spectra for Load Case:
SRV ASYMMETRIC TRACE 76 DRYWELL
. Node:
331 0)rect)on:
- HOR17, El ev: 264 '-6" Angle:
0 Damping: 0.005,0.01,0.02;0.05 By: K.
Date: ~5'-80 Check: Ll~ Date: Gl /to
10.0 1 ~ 50 1.0 PERIOD-!
r 0.1 0.01 1 ~ 25 t01. QQ z0I-wo. 75 OO O
W005Q Q. 25 Q oo O.l 4
6 8
10 2
4 6
8 100 8
1oo FREQUENCY-CPS Fig. 4-ll -Lamer)ck Generation Stat)on, Acceleration Spectra for DRYWELL Load Case:
SRV ASYMMETRIC TRACE 76 Node:
331 Dlrectton:
VERT 'lev: 264 '-6" Angle:
0'Damp]ng:
0.005,0.01,0.02,0.05 By:
K.
Date: ~5 oCheck: ~4 Date:
/4/go r
1 l
) 'I
10.0 1.0 PERIOD C.
l 0.1 0.01 b0 its I. 00 V) 2:0 K
LJj w0.75 00 I-
~0 LJjL.o. ~0 Ul 0 2b 0 00 0.1 4
6 8
10 8
1OO 4
<<1OO FREQUENCY-CPS fig. ~2 Limerick Generation Station, Acceleration Spectra for DnywGLL Load Case:
SRV ASYMMETRIC TRACE 76 Node:
335 D)rection:
HORIZ Elev:
264 '-6" Angle:
90'amping:
0.005,0.01,0.02,0.05 By: ic.
Date:
5'-5-BoCheck:
WL Date: mfkfSa
10.0 1.0 PERIOD
'C.
0.1 0.01
. t01. 00 0I-mp. 75 OO
~~o. ~o U) 0, 25
- o. ao 0.1 4
6 8
10 2
4 6
8 1pp 4
6 8
1pp FREQUENCY-CPS F)g. 13 L)mer)ck Generation Stat)on, Acceleration Spectra for DRYHELr.
Load Case:
SRV ASYMMETRIC TRACE 76 Node:
335 Dfrectfon:
VERT Elev: 264'-6" Angle:
90'amp]ng:
0.005,0.01,0.02,0.05 By: ~C Date: 5~gay Check:~ Date: 5~5 o
r
~
~
I gl
10.0
- 1. 50 1.0 PERIOD 1 0.01
]
~ sr b0 m>.00 U) z0I-Ltl0 7M 00 0.0. 50 tO O. 25 0 00 0.1 4
6 8
1p 2
4 6
8 1pp 4
. 6 8
1pp FREQUENCY-CPS Fig.
e-le Limerick Generat'ion Station, Acceleration Spectra. for DRy<ELL Load Case:.
H THAcE 76 Ild:~dd d:~dd%>>'
"ll Damping: 0.005,0.01,0.02;0.05 By:
F<
Date: 5-5'DPCheck: la~ Date:
> (/Bo
~
0
10.0 1.0 0.1 0.01
- 1. 25 b0
~1. 00 K0I-wo. 75 00 O
LIJ~0..0 U)
- 0. 25
- 0. 00 0.1 4
6 8
1p 4
6 81pp 4
6 8
1pp FREQUENCY-CPS Fig. ~~ Limerick Generation Station, Accelerat]on Spectra for DRYWELL
. Load Case:
TRA E 76 Node: ~g Direction:
VERT Elev: 283'-ll" Angle:
0 Damptng: 0.005,0.01,0.02,0.05 By: ICDa,te: 5-5-00 Check: ~ Date: > 5/So
~ y
~
l~
~.
gl
10.0 1.0 PER[00-.
0.1 0.01
- 1. 50 CO fts 1. 00 z0I-K Lkj Ltj 0. 75 OO l-.
O LIJ 0 0. ~40 (0
- 0. TS 3.4 Ta )O.gg
- 0. 00 0.1 4
6 8
1p 4
6 8 1pp 4
6 8
100 FREQUEN.CY.-CPS Flg.
4-18 Lfmrlck Generat>oli Station, Acceleration Spectra for DRY14ELL
'Load Case:
ERV ASYMMETRIC TRACE 75 Node: '1L Dlrectlon: 'ORIK El ev:
. 312 '-7" Angle:
amping:
0.005,0.01,0.02,0.05 By: FCDat,e:
5'-5 Bt7Check:~ Date: >I</So
1P.P 1.P PERIDD~
O.l P.ol 1 ~ 00 b0 Ds l. 00
. U7 2:0I-Ltj0. 75.
0O pI-O UJL 0. >0 V) 0 25
- 0. 00'.1 4
6 8 Ip 4
6 8 Ipp 4
6 8 1pp FREQUENCY-CPS Ffg.
a-19 Ltmerfck Generation Statton, Acceleratfon Spectra for Load Case:
svMMETRxc Tre.cE 76 Node:
411
- 0) I ection:
VERT El ev: 312 '-7" Angle:
0'amplng:
0.005,0.01,0.02,0.05 By:
PC-Date: 5-5-BOCheck: il~ Bate:
/((8o
C s
~ 4'
10.0 1.0 0.1 0.01 1 ~ 25 b0
~1. 00 0
ktJ 0 75 0O
- 0. r~o V) 0
'lee
- 0. 00 0.1 4
6 8
1p 4
6 8 1pp 4
6 8
1pp FREQUENCY-CPS Ffg. ~~L Lfmerfck Generatfon Statfon, Acceleratfon Spectra for DRYHELL
~
Load Case:
SRv ASYMMETRIC TMCE 76 Node:
415 Dfrectfon:
BORIC.'lev: '312'-7" Angle:
90'amptng:
0.005,0.01,0.02.0.05 By: ~
Date: 5W-&0 Check:
Qe Date:
5 5(ge
10.0 1.0 PEWO&C.
O.l 0.01 P
1
- o. oo 0.1 4
6 8
10 4
6 8 10.0 4
6 8
100 FREQUENCY-CPS Fig.
4-2l Limerick Generation Station, Acceleration Spectra for Load Case:
I
RA Node: ~~ Direction:
v R
Elev: ~312'-
" Angle:
Damptng: 0.005,0.01;0.02,0.05 8y: ~c gate:
8-5-20 Check:
hgluA)ate: 8 L/Ao