ML17334B251
| ML17334B251 | |
| Person / Time | |
|---|---|
| Site: | Cook |
| Issue date: | 11/30/1988 |
| From: | Cross B, Iddings F AMERICAN ELECTRIC POWER SERVICE CORP. |
| To: | |
| Shared Package | |
| ML17334B250 | List: |
| References | |
| RTR-REGGD-01.099, RTR-REGGD-1.099 NUDOCS 8812090060 | |
| Download: ML17334B251 (25) | |
Text
ATTACHNENT NO.
2 TO AEP:NRC:0894K ASSESSMENT OF REGULATORYGUlDE 1.99, M',VISION2 UPON D. C. COOK UNITS 1 AM)2 AOJUSIHD RHPHRHNCB TRMPERATEBUKS At'K)
PRESSURE-TEMPERATURE CURVES
~Q L""
Ch C)-
CD LE cD 0I Ld p (:~
(
l~:
CD SwRI Project 17-2544 Prepared for American Electric Power Service Corp.
1 Riverside Plaza Columbus, Ohio 43216-6631 Prepared by Nondestructive Evaluation Science and Technology Division November 1988 Written by Approved by Frank A. Iddings, Staff S entist Mark Williams (Consultant)
B. T. Cross Director Department of Nondestructive Evaluation Science and Research P
SS12090060 SS1205 PDR ADOCK 05000315 PDC
I
~
~ t
TABLEOF COKIENTS
SUMMARY
OF RESULTS AND CONCLUSIONS,
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
1 2.
MEIHODOLOGY t
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
3 3.
ULTS
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
9 4.
REFERENCES
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
21 LIST OF FIGUIKS ZgKR te
~ae D. C. Cook Unit No. 1 Reactor Coolant Heatup Limitations Applicable For Up to 32 Effective Full Power Years......... ~.......
11 Reactor Coolant System Pressure-Temperature Limits vs Cooldown Rates For Up to 32 Effective Full Power Years..
D. C, Cook Unit No. 2 Reactor Coolant Heatup Limitations Applicable For Up to 32 Effective Full Power Years 12 13 Reactor Coolant System Pressure-Temperature Limits vs Cooldown Rates For Up to 32 Effective Full Power Years.......................
14 D. C. Cook Unit No.
1 Reactor Coolant Heatup Limitations Applicable For Up to 12 Effective Full Power Years Reactor Coolant System Pressure-Temperature Limits vs Cooldown Rates For Up to 12 Effective Full Power Years....
~
~
~
o 15 16 D. C. Cook Unit 2 Reactor Coolant Heatup Limitations Applicable For Up to 12 Effective Full Power Years............................
17 Reactor Coolant System Pressure-Temperature Limits vs Cooldown Rates For Up to 12 Effective Full Power Years....,...
Predicted Decrease in Shelf Energy as a Function of Copper Content and Fluence for D. C. Cook Unit 1
~
~
~
~
o 18
~
~
~
~
~
~
19 10 Predicted Decrease in Shelf Energy as a Function of Copper Content and Fluence for D. C. Cook Unit 2.....................
20 11
- 1. SURGERY OF RESULTS AND CONCLUSIONS In response to the Nuclear Regulatory Commission Generic Letter 88-11 on the subject of radiation embrittlement of reactor vessel materials, dated July 12, 1988, American Electric Power Service Corp., on behalf ofIndiana Michigan Power Company, requested that Southwest Research Institute evaluate the impact of methods described in Revision 2 of Regulatory Guide 1.99 for Donald C. Cook Nuclear Plants 1 and 2.
This evaluation requires calculation of new reference temperatures, preparation of revised pressure-temperature curves, and comparison to previous results reported under Regulatory Guide 1.99, Revision 1.
The following items summarize the comparison of this Revision 2 evaluation with Revision 1 results from previous reports (1 3 7).
(1)
Unit 1 shows an increase from 285'F to 296'F for the Adjusted Reference Temperature (ART)'at 1/4T into the vessel wall for 32 Effective Full Power Years (EFPY) for the Rev.
1 calculation in Reference 7 (1985) as compared to Rev. 2 calculations presented in this report.
The controlling material in Unit 1 is the weld metal and the calculation uses Position 1 of Rev. 2 with average chemistty values of 031 percent copper and 0.74 percent nickel provided by Westinghouse in Reference 2, (2)
The D. C. Cook Unit 1 ART~ of 325'F from Rev. 2 still is slightly more than 200'F below the operating temperature (550'F) which has been used as a screening criteria for older plants but is an increase greater than 300'F over the initial RT~> of O'F for weld metal.
An effort should be made to decrease the neutron embrittlement during the remaining life of the plant to obtain a lower ART at 32 EFPY, to retain operational flexibility l
(3)
Table 2 shows an increase from 185'F to 267'F for weld metal (controlling material) at 12 EFPY for Unit 1, calculated by Rev.
1 and Rev. 2 respectively.
This 80'F increase indicates the need to reduce the fast neutron faux on the pressure vessel wall according to the extremely conservative Rev. 2 procedures.
(4)
Th'e increase in the ART at 32 EFPY for Unit 2 is from 198'F for Rev.
1 in the last Surveillance Capsule Report to 211'F for Rev. 2 calculations in this report ($).
The controlling material is plate material and the Rev. 2 value is less than a 200'F increase over the initial RT~> of58'F for plate material. Unit 2 chemistry values are 0.14% Cu and 058% Ni.
(5)
The Unit 2 ART at 1/4T from the Rev. 2 calculations is 195'F at 32 EFPY so the Unit 2 materials in the beltline region are projected to retain sufQcient toughness to meet the current requirements of 10CFR50 Appendix G throughout the design life of the unit.
(6)
The Pressure-Temperature Curves included in this report indicate the narrowing of the operating window for Unit 1 at 32 EFPY as fairlysevere while the operating window for Unit 2 should not present unacceptable difficulties.
(7)
Table 2 shows an increase of only about 20'F (159'F to 181'F) for the controlling material (plate) ART~ at 12 EFPY for Unit 2.
This small change indicates no near-term diKculties for Unit 2 just as the 32 EFPY calculations indicate no difficulties to end-of-life.
l
~
~
~
I
(
f l
(8)
Figure 9 is a plot of upper shelf energy decrease versus Quence for D. C. Cook Unit 1 using Reg. Guide 1.99, Rev. 2, Figure 2, page 1.99-9.
The plot indicates adequate toughness for the surveillance capsule yecimens of the controlling material, weld metal, through 32 EFPY (Quence of 23 x 10'/cm~, Reference 3).
(9)
Figure 10 is a plot for D. C. Cook Unit 2 indicating that the surveillance capsule specimens of the controlliny material, plate, willretain adequate toughness through 32 EFPY (Quence of 2.1 x 10 n/cm~, Reference 3) to meet current upper shelf require-ments of 10CFR50 Appendix G.
- 2. MEIHODOLOGY Revision 2 of Regulatory Guide 1.99 provides for calculation of the ART using either of two positions:
Position 1 (SurveBlance Data Not Available) and Position 2 (Surveillance Data Available). Limitations of Position 1 given in 13 of Rev. 2 are satisGed by the data used from Units 1 and 2. The equations used in the two positions are noted below.
+ hRTNDT+ Margin NDT Initial RTNDT is the unirradiated specimen data (from WCAP Report) 6RT
= (CF) f(028 - 0.10 log f)
CF is taken from Rev. 2: Table 1 for weld and Table 2 for plate (2)
Quence factor is ffand ff
$028 - 0.10 1Og f) where f = Quence/10 n/cm (E ) 1MeV) or ffmay be taken from Figure 1 of Rev. 2 fsurface (e
)
-024x (3) for Quence at any depth in the vessel wall, x, as measured from the inner wall and as calculated from Quence at the inner surface (OT) of pressure vessel wall (Rev. 2, p. 1.99-3).
Margin = 2Vn<
+ aa (4) the estimated precision for initialRTNDTwas taken to be 5'F or 10% ofinitialRTNDT,whichever is larger tfrom inspection of Charpy curves and values in WCAP 8047 and WCAP 8512.(5 6)] Scatter in the Charpy test data is small, especially at 30 ft lb. region.
nz is 28'F for weld metal and 17'F for plate, p. 1.99-3 of Rev. 2 for Position 1.
Note: Margin for Position 1 for weld metal, in this report, is 5TF using above values.
This compares well with the margin value of 59'F from NRC calculations of D. C. Cook Unit 1 PTS requirements (g).
PQBQELR:
Since the material content of the surveBlance weld differs f'rom that of the vessel weld for Unit 1, a ratio of the measured values of hRTNDTwere adjusted by a ratio of the chemistry in the vessel factor for the vessel weld to that of the surveillance weld. This ratio was 1.06 for the difference of 0.31% Cu Q) and 027% Cu in the capsule (J), respectively.
[Chemistry Factors (CF) taken from Table 1 of Rev. 2].
For Unit 2 there was no difference in Cu values for vessel and capsule material so the ratio is 1.00.
The CF for use in the RTNDz Eq. (2) was calculated from surveillance capsule data (3 capsules) by taking the sum of the products for each adjusted b,RT from capsule data multiplied by its corresponding fluence factor and dividing by the sum of tFe squares of the fluence factors.
See Eq. (5) below.
CF = ~i (ARTNDTx )
z,. (ff)
(5)
For margin calculations in Position 2, fy values were cut in half from those recommended for Position 1 values given in Reg. Guide 1.k9, Rev. 2, p. 1.99-2; e.g., n~ is:
14'F for weld metal and 8.5'F for plate (p. 1.994, Rev. 2)
General Discussion of Comments 1-5, Article B, Reg. Guide 1.99, Rev. 2 (1)
Weld specimens in the capsules for D. C. Cook Unit 1 (the controlling material) do not exactly match the vessel weld metal so Position 1 calculation should be used for Unit 1.
Position 2 calculations were done for comparison purposes. Also calculations were made for the plate material in Unit 1 for comparison purposes.
Plate material in the capsule specimens for D. C. Cook Unit 2 do match the plate material in the vessel and is the controlling material.
Position 2 is the most appropriate calculation for Unit 2 since data from 3 capsules are available.
Position 1 calculation matches Posi-tion 2 calculation of 212'F/211'F respectively for the chemistry values of 0.14% Cu and 0.58% Ni.(3)
(2)
Scatter in the unirradiated materials for Units 1 and 2 is small and should be well represented by choosing either 5'F or 10 percent of the initial RTNDT at 30 ft lb., whichever is larger. This gives values for the margin quite comparable to those accepted in recent PTS calculations (7). Typical standard deviation for a set ofvalues at a test temperature is <5 F.
(3)
Scatter in the surveillance capsule data for the wide range of fluence values represented is not large, as is shown by the fairly close agreement for Position 1 vs Position 2 values obtained for the plate and weld materials f'rom the two units.
Also see Figure 10 from Capsule Y Report, Unit 1 (g$).
(4)
All surveillance capsule thermal monitors were intact for the two units which indicates a
good match to the temperatures experienced by the vessel inner wall.
(5)
No severe excursions of the data from the correlation monitor in the surveillance capsules for Unit 1 has been noted.
See Figures 8 and 10 from the Capsule Y Report for Unit 1.
(Correlation monitor not reported in Capsule X Report of Unit 2.)
Examples of Calculations (for 32 EFPY):
Wd w'c t
~
~
t ART = Initial RTNDT + aRTNDT + Margin Initial RTNDT = O' (CF) $028 - 0.10 log f)
CF = 219'F for: Cu = 031% Ni = 0.74%
f 2Q (x 1019 n/cm2)
(219'F) 23(OM - 0 10 Iog n)
(219'F) (1.22) 268'F Margin
= 2','+ na cr
= 5'F I
5'F is greater than 10 percent of.
initial RTNDT of O' (Eq. 1)
(WCAP4047)
Ref. 5 Eq (2)
(Table 1, Rev. 2)
Ref. 2 Ref. 2 Ref. 5 ng = 28'F (Position 1, Rev. 2, for welds) 56,9'F or 5TF this is comparable to 59'F for generic value for margin in recent PTS calculations for D. C. Cook Unit 1 (7).
ART@@ = O'F + 26PF + 57% = 325'F f-f~a (e
for 1/4T (depth in vessel wall for 1/4T, x = 2.1 inch)
Ref. 1 2g [ 424 (2.1) f(028 - 0.10 log f) 1 38(028 - 0.10 log 138)
= 138
= 1.09
ART1)~ ~ (PF + (219K)(1.09) + 57K ~ 296'F f ~
050 for. 3/4T (depth in vessel wall, x = 6.4 inches) pgp(028 - 0.10 log 050 )
p 8p ART3/4T = O'F + (21')(0.80) + 57K ~ 232'F
't Weld et
't'on o
ev.
(Shown as an example only; capsule weld metal may not be identical to vessel weld metal so Position 1 is appropriate for Unit 1 and Position 2 is not.)
(1)
CF Ratio for CF>/CF 219/206 (Table 1, Rev. 2)
(2)
1 NDT
~;(ffj from Capsule Y Report, Figure 9 (Ref 1):
219'F for 031% Cu, 0.74% Ni (Ref. 2) 206'F for 027% Cu, 0.74% Ni (Ref. 5) 1.06 (5) f(1p19n/cm2) ff 4RTNDT CF b,RTNDT =
Margin 026 0.72 1.06 1 p6 (0.62)(128) + (0.90)(162) + (1.02)(200)
(0.62)
+ (0.90)
+ (1.02) 1.06 (193'F) = 205'F (CF) f(0.28 - 0.10 log f)
(20PF) (122) = 250'F 2 5
+
[05 (28)]
= 30'F for weld: 5'F is larger than 10% of Initial RTNDT of O'F and Rev. 2 allows cr~ = 05 (28) 0.62 128'F 0.90 162'F 1.02 200'F (Ref. 1)
ARTgp =
O'F + 250'F + 30'F
280'F ART1)4T
O'F + (20SV)(1.09) + 30'F = 253'F ART3pT =
O'F + (20')(0.80) + 30'F =
194'F
at w
c t
ate ART = Initial RTNDT + ERTNDT+ Margin Initial RTNDT ~ 58'F RT (CF) f( ~
0'101ogf)
CF = 98.2'F for 0.14% Cu and 058% Ni (Plate Analysis, Ref. 3, 6)
(WCAP 8512)
Ref. 3, 6 (Table 2, Rev. 2) f =
2.1 (x10 n/cm )
= (982OF) 2 1 OM-0.10 1%21)
(98.2'F)(1.20)
11'argin
=
21/e,~ + uaa
= 36'F n, = 5.FF (10% of initial RTMrrr of 58'F which is larger than 5'F) ag =1TF Position 1, Rev. 2 for base metal
- p. 1.994 ART~ = 58'F + 118'F + 36'F = 212'F f = 1.24 for 1/4T (x = 2.2 inch) ff = 1.06 ARTi/4T= 58'F + 982'F(1.06) + 36'F = 198'F f = OA4 for 3/4T(x = 65 inch) ff = 0.78 ART3pp = 58'F + 98.2'F(0.78) + 36'F = 170'F (Ref. 3)
(1)
CF Ratio 1.00 (Vessel and Surveillance Capsule Specimens have the same chemistry values)
(2)
~
1 NDT (5) z,. (6)
Rom Capsule X Report (Ref. 3):
f(10 n/
2) ff 6RTNDp 80 0.64
+
100 0.90
+
03 1.01 (0.64)
+ (0.90)
+ (1.01) 110'F Margin = 2 (5.8)2 + (05(17))2 5.8'F 027 0.70 1.05 0.64 80'F 0.90 100'F 1.01 103'F (10% of 58'F for initial RTND>)
<< = oa(17) for Position 2, plate material (Rev. 2) 20.6'F (-21'F) d,RTNDY =
110'F(1.20) = 132'F ART~ =
58'F + 132'F + 21'F = 211'F f = 124 for 1/4T (see Unit 2, Position 1) ff = 1.06 ART(/~ =
58'F + 11(PF(1,06) + 21'F = 19'
= 0.44 for 3/4T (see Unit 2, Position 1) ff = 0.78 ARTs(~ = 58'.F + (110'F)(0.78) + 21'F = 16'
- 3. RESULTS Table 1
SUMhGMY OF ART VALUES FOR 32 EFPY Initial Unit 1 RTNDT~
Position 1
Rev. 2 Position 2 Default<
Plate OT 45>>
1/4T 0
3/4T 0
Unit 2 220>>
185 130 2900')
478 283 373 192 186 196 184 156 325(c) 297 232 207 192 158 280 253 194 413 377 298 390 354 275 Plate OT 1/4T 3/4T Weld OT 1/4T 3/4T 58<'>
198~@
212 211<'>
419 58 163 198 195
=379 58 130 170 164 303 0<'>
108<'~
147 110 383 0
80 136 100 343 0
40 115 82 267 (a)
Default values calculated from Reg. Guide 1.99, Rev. 2, Position 1 using chemistry values of 0.35% Cu and 1.00% Ni (p. 1.99-3).
Use default "Ifno information available."
Capsule Y Report on D. C. Cook Unit No. 1, 1984 (Ref. 1).
Controlling material for Unit 1 Capsule X Report on D. C. Cook Unit No.2, 1987 (8).
Controlling material for Unit 2.
Table 2
SUMMARY
OF ART VALUES FOR 12 EFPY Initial Unit 1 RTNDT (P)
Plate OT 45( )
1/4T 0
3/4T 0
En MQ 155(')
140 105 185( )
293 160 23<<')
105 117 Position 1
171 158 124 267(4) 236 176 Rev.
Position 2 177 160 129 215 187 135 Default(')
341 302 228 318
'79 205 186 172 146 94 84 66 Capsule X Report on D. C. Cook Unit No.2, 1987 (8).
Controlling material for Unit 2.
Plate OT 58(e) 159( )
181(')
347 1/4T 58 146 165 308:
3/4T 58
66(')
127 310
'/4T 0
47 116 271 3/4T 0
23 96 199 (a)
Default values calculated from Reg. Guide 1.99, Rev. 2, Position 1 using chemistry values of 0.35% Cu and 1.00% Ni (p. 1.99-3).
Use default "Ifno information available.".
Capsule Y Report on D. C. Cook Unit No. 1, 1984 (Ref. 1).
Southwest Research Institute letter to AEP (7).
Controlling material for Unit 1 g
~
~r 10
>>4 2600 I
>>>> I. ~
I
~ l, IIII>>:!
~
2400 2200 2000 1800 1600
~1400 o
1200 4J 1000 5
800 600 400 200 0
D. C. Cook Unit No.
1 Weld Metal Cu Initial RTNDy At 32 EFPY NDT<yg 3/ 4T (Reg. Guide 1.99, Rev. 2)
Margins for Instrument Error:
60 psig and 10'F 0.31/o Ni ~ 0.74%
O' ll
- II'.Ii TEST l
~ I>>I.I
!II LEAK
'I'iiij I
>>I
~
,I I
LIH
~ ~
Bl:F
.'ll III I
il I)'"
,'I."
II'.
I"I I'ii
'1
>>I
~
>>il I
j'
~
I I ~
I,,
>'.
>>I II' Ii I>>,I
~
UNACCEPTABLE OPERATION
- I::
I I II' I:
I>>>> ~ II I"
'l l I
Ili
~ I I>>
Ii li>>
I
~ t ACCEPTABLE OPERATION
~:ii:jl!
I
~ ~
I I
.I j jill i
i!i'!!I I
I,I.
Ii I j'RESSURE-TEHPERATURE LIHIT FOR IIEATUP RATES UP TO 60 F/IIR I>>
I
~ I CRITICALITY LIHIT
~
~
100 150 200 250 350 300 400 450 Indicated Temperature, Deg P Figure 1. D. C. Cook Unit No.
1 reactor coolant heatup limitations applicable for up to 32 effective fullpower years "I
I.
I I
Ii
~ ~
I.
)j I'i
2600 2400 2200 2000 D. C. Cook Unit No.
1 Neld Metal Cu Initial RTNDT At 32 EFPY ARTipg S/4l'argins for Instrument 60 psig and 10'F 031%
Ni ~ 0.74%
O' 29TF 232'F Error:
! u~~.>I'
.:[!:: I I
I I Jl
~
l i jll I
~ 'l
~ (
1800 N
1600 0
1400 0
F4 1200 H
v %$
1000 l50 800 H
600 I ~
~
I
~ ~
I
~ ~ ~
I I ~
- ... I II I
liI.
I I
~ I ~
~ ~
~
II
.');I ii il':.
I;.
III I
~
.i I
~ ~ I Il I
~
~
iI j jm, UNACCEPTABLE OPERATION ACCEPTABLE OPERATION 400 200 0
P/N
~
~
I
~
100 I
tin 'i:i 100 150 200 250 300 350 400 450
-Indicated Temperature, Deg P Figure 2. D. C. Cook Unit 1 reactor coolant system pressure-temperature limits vs cooldown rates for up to 32 effective full po'Lvef years
2600 D. C. Cook Unit No. 2 Plate Cu Initial RTNDT At 32 EFPY ART,~
3/4T (Reg. Guide 1.99, Rev. 2)
Margins for Instrument Error:
60 psig and 10'F I
I s
0.14% Ni 58'F
= 0.58%
2400 s)st
- I
~ $
l
~ I.
Ii';
~ Ii' s
Ij'l ls I
j l
l' I
s sl
~,
il:.
I.lj III!
jjl!
~ I
~ sl
~ sI.II'I s
~ ls
)
~
!, :!j I':.
I:,
Ii I
I I
j I
~ ~
- lj
,jj
~ s
~ s
,Ii
~ ~
j' 2200 195'F 164'F
.- j!i:
i ii:.'
;s
'l I '3 j st S,
g
." ji
, ilI
,.I s ji I
f
~
I I, I
'I':j,'I s
~
s
, Ijj
~ljI s
j j
'I I Ij:I j:
- lsdI
~
'I 2000 j
I I,
s I
~ s I
~
I Is
~
- II I
~ I I
..j EST s ~
I i'l ss'800 1600 1400 1200 1000 800 C!H
~
s
~ [
- I.'
~
LEAK T LI I
MIT (Ij s
s
- (il I ;l I
I ss l
I
~
~ I IIli I, i.
- I ll',lI',
I I ~
ij II fi fl
~ I lI f':
I j
I i;i s'
j.s'>.'I ~
I I,
sI sI Is s ~
I UNACCEPTABLE OPERATION
': ~
1 iji.
I"I
!'lj I
ls ACCEPTABLE I
> OPERATION s ~
gal jll I:.jf.,'I's sli
.I s lj.
Is
'I I jj I:.
ls j'"
I
~
s s
'I
'l, if:
I I
s I
PRESSURE-TEMPERATURE LIMIT FOR HEATUP RATES I
UP TO 60 F/NR II II i il
! Il I ~
I ~
I:
600 I
s
~'i I(
~ s s I' lj'00
".I si I
j II
~.j:
IIl Is I
~ I I
~
s s'
jlji I'
I'-:
s
~ ~
200 s
I s
s:
I ss'ssl Is."I
'.Is l s
s
~
s s
s s
!s :'lII 0
200 250 300 350 400 450 Xnd1cated Temperature, Deg P 100 150 Figure 3. D. C. Cook Unit No, 2 reactor coolant heatup limitations applicable for up to 32 effective full power years Iljs I
Is
s I.'I jj
- jf j! l j.
~ ~
- I I
~
j I
'j (I
Ij:
- I'.:i I;..
,j; 'i l
s ~
s
~
~
ss i fi j'
.j.I
- ls I ls
'!'"i.
f If ll:.
( ll f jl fj',
~ ~
jj' I':
s ~
, ~
2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 (I:
I;'.
I ~Ii'l
- I.
~ ~
~ll.
- I:!
- I:
-'Ii'
~ ~
il" jii'.
- il, Ij I
~ I
~ ~
~
Ill
~j.
I o.".
ll
.i.';Ie
~ ~
Ijil
- ji!
j!i'!::i
!I:s I jo
- il
,"Ii I.:I:
- I I ~ II "I.
I oo ej I:
I~
I ~ I ll.
!I:i lj:;
ii)'
jl I:::
I
~ I'.il Ilj! 'i.
~ ~
I'!:
I!!I i!II Sl D. C. Cook Unit No. 2 Plate Cu Initial RTNDT At 32 EFPY RT)j~
S/IT (Reg. Guide 1.99, Rev. 2)
Margins for Instrument Error:
60 psig and 10'F I
~
i!
~ I 195'F 164'F ss le fLL I
Ill Ijl 0.14% Ni 58'F 0.58%
UN 0
II
~ I I
I)I" ACCEPTAB PERATION I
."j LE
~ I
,i.:
- . !Il!
I ~ ~
I
~
I
~
~
- II:
sjl':'j
! i I, I ill I ~ el
, ~
~
~ I III ss I
I el
~ ~
I ~
ACCEPTABLE OPERATION i!!s i':I il-j sj je 400 200 0
'0/1fr 0
100 I ~
II
~I I
100 150 ji
- j
- s..Ijl 200 250 9
~
300 350 400 450 Indicated Temperature, Deg P Figure 4.
D. C. Cook Unit 2 re)ctor coolant system pressure-temperature limits vs cooldown rates tor up to 32 effective full l)()wer yeelfs
2600 2400 2200 2000
- 800, 600 400 1800 L
1600 lII 1400 P4 1200 Ig 4J 1000 0
~gKl 0.31%%uo Ni 0.749o O'
236 ~~
I i;:
t f
K TEST LEA I
I
- I.
~
~
- Il
- jji
~ II~
UNACCEPTABLE OPERATION Ij
~ I I ~'ll'I
~
~
PRESSURE-TEMPERATURE LIMIT FOR HEATUP RATES UP TO 60 F/IIR
~ I
'Ill
'I'.
C. Cook Unit No.
1 Weld Metal Cu Initial RTNDT At 12 EFPY NDTI]~
(Reg. Guide 1.99, Rev. 2)
Margins for Instrument Error:
60 psig and 10'F jj I[!I
", ':.I:I.
LIkl
!!I I I!j i lj II I j Ili' III. !Ii...
t.,'
- "': iijljli I
I I
~
ltl I
I
,I I
I ~
I ACCEPThSLE OPERATION Ij I
~
~ II I
igl
~ ~
I I
I I
I I
~Ii I
.'i:
I I
I I
il I
~ Ill" tl:I I
~ ~
i li
!Ili
!i!
200 0
'lI'"
j I
I I
'e.j I.
- I! I:
j I ilfl
~
I l,i I
, li I
I I
I I
CRITICALITY LIMIT I I II I 'I:! ':-'I.'j 100 150 200 250 300 350 400 450.
Indicated Temperature, Deg P Figure 5. D. C. Cook Unit No.
1 reactor coolant heatup limitations applicable for up to 12 effective full power years
, ~
2600 2400 2200 2000 1400 1200 800 600 400 200 I
1800 C4 1600 6
lE l)6 OJ 0
~p{
'0 H
~ e.
').
I
~
e
- ,i
I!;Ij,*
.)
~'I'
~
I
~
i 'P/Hr 0
-;I(
i(
jl
!I.'I:.
ll.:
~ ~
.'; I:
I ~ e le
- )I:
.Ill e:I; I;
II
- II'!i
I ",
~
~
"I '
~
I I I ) ~ i) ~
D. C, Cook Unit No.
1 Weld Metal Cu Initial RYNDy At 12 HFPY NOT)]6r (Reg. Guide 1.99, Rev. 2)
Margins for Instrument Error:
60 psig and 10'F 0.31%
Ni 0.74%
O' 236 '[
UHACCEPTABLE OPERATIOH e
I
~.I
~ ~
,I I I
!!!I t,j ACCEPTABLE OPERATIOH Ij II eel
(
I I
I I
~
I lj:I
!(Ii I elI I el I
I I ji I )I
~ e el "I
I::il I:I I i:
el e
II II I ~
e
~
I:
~ I Ii,~ '
'I I'I I
I ~ ~ )
~ ='I I'
~
'I I
~ I
- I:I "el I
I!
il
~ ~
)e I!';
'll'
<<II
~
~
I ~ '
'I II I
Il I )
~
~ I I
~
e) I
~ ~
) ~
I
~ ~
- II~
'll,)
I'I'
~
I ~ ~
i'I'..
I~::I.i
,I ~
Il e
I;li Ill'-:Ii I,)I.
el
~
I e ~
I::
e I::
I e
e
~ ~I!i'
- I I '
I
~ ~ e I.':
I'
~ I
~
~
~ I
~ 'I jl:
I(:
- I':i II; Ill
!i!
':I
~
~
e ~
'e
- I I I
le 100 150 200 250 300 350 400 450 Indicated Temperature, Deg P Figure 6. D. C. Cook Unit 1 reactor cool;)nt system pressure-temperature limits vs cooldown rates for up to 12 effective full power ye:)rs e
e'
~e.
2600 2400 2200 2000 1800 C4 1600 III 1400 1200 v
trj 4J 1000 tI H
600 400 0.14%
Ni ~ 058%
58'F li LEAK TEST LIHIT UNACCEPTABLE OPERATION Hlllll)IIHlili!
II PRESSURE-TEHPERATURE LIH1T FOR IIEATUP RhTES UP TO 60 F/IIR D. C. Cook Unit No. 2 Plate Cu Initial RTNDT At12 EFPY ARTI~
165'F 136'F (Reg. Guide IF9, Rev. 2)
Mnrgins for instrument Error:
60 psig and 10'F I
~I ll I
~ I
~
')l II'i II, I
I
~ ~
I:I' I
) ~ ~'i' t
I ll
'I:
II I ~I I: ili
":,II III.I.I
- ,il
.'Il'II I)
I:I
'I"
- il.'.
'.,ll
. ~',
I
)I
~ I
~ I Ii',;:
~" II I.,
I I
I I
~ I I
I ~
I Ii I
I I
!i'.,ll II'.
~ I h
0 CCEPTABLE PERATIOH I
I.
I I
I II I
1 I
II
.,I ilII')l I
~
I",'I II II III(';I li Ilj
~
~ I II I
I I
I I
I I
I l,i
~
~
200 0
100 150 200 250 300 I
350 400 450 Indicated Temperature, Deg P Figure 7. D. C. Cook Unit 2 reactor coolant heatup limitations applicable for up to 12 effective full power years
es e
s 2600 2400 2200 2000 1800 fb 1600 1400 1200 1000
.5 800 H
600 400 200 0
0.14'l 5$'F slii jl I:.
IIII li I I
i I'
isjl
',j';
s;'I I'j I
I I
s j'
I" I I s
1 I
I ~
~
'I ~s' I'll
- Ili i
- I' I I!
I I
I I i
~,'ij j'I)ij I
I I':
I ji I,
j::
I;,
sl I: s I ~ ~
s.ll sj" s
,'I;:
s' li;
'I s
ss js'I I'
I 11 Ijj
. Il
- il UNACCEPTABLE OPERATION I
I ill I ~.
I jlji I
3,:'i:
- .ilj
'.Il; s ~
I
'I"
'ij!jj:
i'.!.j
~
~
sj:
I I
,I;ijj II I I
s II I
~
s s
s
~
- I
'I" I
~ ~ s s I. ~
ls il I
- :j!
I
'ti/ii) 0 20 40 s
~
s
- I I I
s
'.1 j
ll
~ I:
I 'I; I j ss
~li ill!
I j
l00 I Ijl'j."
si;',I I
s D. C. Cook Unit No. 2 Plate Cu Initial RTNDT At 12 EFPY h Rsl')~
=
165'F 136'F (Reg. Ouisle 159, Rev. 2)
Margins for instrument Error:
60 psig and 10'F si I
j I
j I
~
s'I I
Ill Ili!
s I
ssIs ll
~ ~'I 1
I
~ ~
I Ii
'.I I jil j lij I lj!i I l..i I ill) s I sll s
s jl I j
I'I's
~
s Iljl Ill 1
- s. ~ s I.i:I
, I!'
I 'i '
I I I
- Il',I
'1:
ii j,"
I;I ;I:I 1 lls
, lsl I
iij!I!:I:
s ls
~
~
s s
s ji..'I I
~
s "I
Il s
~
s.l I !I:.
s,I;'l I;:I
~
~
s il
~ ~
s
~ ~
s
~
~
~,
~ ':I
~ s s
~
~I"~
'sl;' l I;i s
ll sl ACCEPTABLE OPERATION s
.I I
~ ~
Is I
I I
s
,s'I
~ ~ ~ ~
100 150 200 250 300 350 400 450 Xndicated Temperature, Deg P Figure 8. D. C. Cook Unit 2 reactor Coolant system pressiire-temperature limits vs cooldown rates for up to l2 effective fullpower years s
s
6IO
'I:
/<<i I-ll
~
~
I
~ ~ <<I II.';
~ <<
I
~ <<I illj
- jll
'II
~
~
~ II
~
I~
50
- LJ0
': j I.'I I
4n X COIIPER
'ii!
II:
I
-UP BASE METAL l 0.35
~ 0.30 I
I 0.25 O.2OO.15
~r NtELOS 0.30-0.25-0.20-30
~
1
~
~
C o~ 20 4I 0-0 CII I
Cuj
~
10 M
C 41
~A 4I4I 0
Cl li
~ ~
Il::
II'I I I:I I:i:
I'-'I
~ ~
~
~
~
~ ~
~ ~
~
~ l
~ ~
. I ~
~ I 2x 10'~
I'
~ I ALII I
II
~ I
<<11 I
I."
ll
<<.I 1
0.15 5 15 I
I
~
~'li I::::
!Ti:.
0.05 0.10 I
j1 I 1
- 1 '
I I:
~ <<<<
~ <<
- ii'<<l
- I':I li!
1'~
I <<I I.'I I:--
I ~ ~
~<<I'Il
~ ~
~ ~ II
~
1 le ~
I 'I'I'
~
TI1!
III'
~
~ ~
~<< ~
~
~
~ ~
J~p II I.:
I~:"I
~
~
~ ~
~ I I ~II ii'I I:i'IIl II il::
I:.
- ,II, II"
~
~
~
~ ~
~ ~
~
.'LL I r I
"ii
.:ft ijIl I..
1 ~ j1
- ~l"
- !I
- I
.il:
.11:
Iij Ii',.
'.jm L:;
l Il
~ ~
~
~4 I':
ilil III i!
Ij l1
~w<<
ilI Il)}
I<<
I,
~
~
i ~ I I ~ I
- II
- I:
<<p:
I":
~
1 I
(
~ ~
1 ~
1
~
~
I
~
I'11
~ 'I 8
10 2
6 8
10 FLUENCE, nlcm (E > 1MCV) 18 D.C. Cook Unit No. I Q Plate, transverse Q Plate, lonsitudinal
~ Meld Reg.
Guide 1.99, Rev.
2 Figure 9. Predicted decrease in shelf energy as a function of copper content and fluence for D. C. Cook Unit 1
II Pl)ggNl
!!~lait.",)~)l ~
I t!
Il p
ANN gaily Ill~'""gNI)~m gl IIIIÃ gs.~
fl MS
. gsel!~
gl&
)0)""'ll
!!tl allH<P.~salgfi~
'I) ggflN gtl
".IH>')e)ii
'gs>>"""'!tl~
sw~
tgtgt N~allllfl.. g li)gk!!'l I
~
gl tINttii "
II )ggifllH
'll gN..g)
Igl
)ggl8
,>llgolNH..
IIiii!N i gii glllli l~)
"'f III 0
Q I
I c
~
- 4. REFERENCES 1.
Reactor Vessel Material Surveillance Program for Donald C. Cook Unit No. 1: "Analysis of Capsule Y," by E. B. Norris, Southwest Research Institute Report 06-7244, (January 1984).
2.
Westinghouse Letter to M. P. Alexich of American Electric Power Service Corp., from A.
P. Suda, Westinghouse Electric Corp., Water Reactor Division, Re: Reactor Vessel Beltline Region Weld Chemistry (June 14, 1985).
3.
Reactor Vessel Material SurveiHance Program for Donald C. Cook Unit No. 2: "Analysis of Capsule X,"by P. K. Nair and M.L Williams (Consultant), Southwest Research Institute Report 06-8888 (May 1987).
4.
Regulatoty Guide 1.99, Revision 2: Radiation Embrittlement of Reactor Vessel Materials (May 1988),
5.
WCAP4047, American Electric Power Service Corp., Donald C. Cook UnitNo. 1: "Reactor Vessel Radiation Surveillance Program," Westinghouse Nuclear Energy Systems (March
,1973).
6.
7.
8.
WCAP-8512, American Electric Power Service Corp., Donald C. Cook Unit No. 2: "Rector Vessel Radiation Surveillance Program," Westinghouse Electric Corporation, Nuclear Energy Systems (November 1975).
Southwest Research Institute, letter from Dr. Prasad Nair (SwRI) to Mr. John Jensen, AEP Service CorpRe:
Heat Up and Cool Down Curves for D. C. Cook Unit No. 1 Reactor Vessel (July 1, 1985).
USNRC letter to John Dolan of Indiana and Michigan Electric Co., c/o American Electric Power Service Corp., from B. J. Youngblood, Director of PWR Project Directorate 14, Division of PWR Licensing, Docket Nos. 50-315 and 50-316 (March 27, 1987).
21