ML17334A434
| ML17334A434 | |
| Person / Time | |
|---|---|
| Site: | Cook |
| Issue date: | 09/30/1982 |
| From: | Hunter R INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG |
| To: | Harold Denton Office of Nuclear Reactor Regulation |
| References | |
| AEP:NRC:0500H, AEP:NRC:500H, NUDOCS 8210050349 | |
| Download: ML17334A434 (178) | |
Text
I REGULATORY FORMATION DISTRIBUTION SYS
) (BIDS) t, ACCESSION NBR:8210050309 DOC.DATE: 82/09/30 NOTARIZED:
NO DOCKET FACIL:50"315 Donald C,
Cook Nuclear Power Plant~ Unit 1~ Indiana ff 05000315 50 316 Donald C ~
Cook Nuclear.Power Plant~ Unit 2i Indiana ff 05000316 AUTH BYNAME AUTHOR AFFILIATION
,HUNTERiR AS>>
Indiana 8, Michigan Electric Co.
R ElC I P ~ NAME RECIPIENT AFFILIATION DENTONiH ~ RE Office of Nuclear Reactor Regulation>>
Director
SUBJECT:
Forwards addi info re hydrogen mitigation L control at facilities, Util continues to work w/TVA 8
Duke Power Co toward completion of executive summary rept on ice condenser hydrogen R
8 D program, DISTRIBUTION CODE A00 1 S COPIES RECEIVED << L R
~
ENCL /
SIZE: J~
TITLE:
OR Submi t ta l: General Distr ibution NOTES:
RECIPIENT ID CODE/NAME NRR ORB 1 BC 01 INTERNAL: ELD/HDS3 NRR/DL D IR NRR/DSI/RAB RGN3 COPIES LTTR ENCL 7
7 1
0 1
1 1
1 1
1 RECIPIENT ID CODE/NAME NRR/DHFS DEPY08 RAB REG F ILE 04
'COPIES LTTR ENCL 1
1 1
0
]
1 EXTERN'L:
6 1
1 1
1 LPDR NSIC 03 05 2
2 1
1 TOTAL NUMBER OF COPIES HEUUIRL'D ~
LTTR 25 EflCL 23
'I Jf, 0 I rl Il x I I III 7 If F" NlW<<
A II/t rN f.t tfx 7
II "NIAf I IA, IIII Q
I I
f 1p W
xll II)ll )
f Xl 7 I'x sr; Ij
'N )
r7f>A<
W l
l I,'t 7
fr III lli x f77A Wl II Ng IN<<II f rx Wlr
" xo rx 4 'l ~
~
~
I Ql W
II IrN5 II 47'll PA, 7 f "7'7 p <<7 a
II 7 f I<<le 7
,r Nr I
I '1 llyW x7'7()
w I<<A 1
'Nx l
Il
'<<AW 7 II f AI yW w7 j
7 7
<<7 ~,'"Ng'I f,N') i ANI7IX g
.I NrIW,W,r<<
x I
~~~ax xxx m~ ~
7 x f ld N
L wll
/
N,I W
'I
<>>7' Wr'77,'r fl, >,<<,r>
I l
r 7
)
I W,Ili xl. I 7i l f IIWA rI f I f
I N
S
INDIANA L MICHIGAN ELECTRIC COMPANY P. O.
BOX 18 BOWLING GR E EN STATION NEW YORK, N. Y. 10004 September 30, 1982 AEP:NRC:0500H Donald C.
Cook Nuclear Plant Unit Nos.
1 and 2
Docket Nos.
50-315 and 50-316 License Nos.
DPR-58 and DPR-74 HYDROGEN MITIGATION AND CONTROL STUDIES Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D.
C.
20555
Dear Mr. Denton:
This letter and its Attachments provide additional information related to Hydrogen Mitigation and Control at the,'Donald C.
Cook Nuclear Plant Unit Nos.
1 and 2.
Attachment No.
1 contains a summary of the results of Cook Plant specific analyses.
The CLASIX analyses included in Attachment No. 1, supplement the analysis contained in Attachment No.
2 to our AEP:NRC:00500E letter dated July 2, 1981.
Attachment No.
2 to this letter contains a summary of a Core Recovery Analysis performed by Westinghouse using the LOCTA and WFLASH computer codes.
Attachment No.
3 to this letter contains a summary of an evaluation of igniter separation in the ice condenser upper plenum'.
American Electric Power continues to work with the Tennessee Valley Authority and Duke Power Company toward compilation of an Executive Sum-mary Report on the ice condenser utilities'ydrogen research and develop-ment program, as requested in Mr. S. A. Varga's letter of April 29, 1982.
This document has been prepared following Corporate Procedures which incorporate a reasonable set of controls to insure its accuracy and com-pleteness prior to signature by the undersigned.
Very truly yours,
/os cc:(attached)
R.
S. Hunter Vice President 82i0050349 820930 PDR ADOCK 050003i5 P
Mr. Harold R. Denton AEP:NRC:0500H cc:
John E. Dolan - Columbus M..P. Alexich R., W. Jurgensen W.
G. Smith, Jr. - Bridgman R..C. Callen G. Charnoff Joe Williams, Jr.
NRC Resident Inspector at Cook Plant - Bridgman
C.
~
~
V WJ
ATTACHMENT NO.
1 TO AEP:NRC:00500H DONALD C.
COOK NUCLEAR PLANT UNIT NOS.
1 AND 2 HYDROGEN MITIGATION AND CONTROL STUD'IES CLASIX ANALYSES
X 1.0 Introduction A series of five containment response analyses have been performed using the version of the CLASIX computer code described in Reference 1 (hereafter referred to as the "new" version of CLASIX).
Theses analyses supplement the analysis detailed in,Attachment No.
2 to Reference 2 and provide additional information requested in Mr. S, A. Varga's letter of. July 15, 1981.
The results of the containment analyses, indicate that for all.cases analyzed the containment pressure remains well within the structural capability of the Cook Plant containment, The basis for selection of base case accident conditions and a summary of the parametric analyses are given below.
1
2.0 Selection of 'Base Case Accident'onditions
'The selection, of a 'base, case. accident'equence.
to be used for evaluation of hydrogen control in general and use of the Distributed Ignition System (DIS) was made in consideration of the hydrogen generation during the TMI-2 accident, the relative probability of various hypothetical event sequences involving substantive hydrogen generation, and engineering judgment.
The S2D sequence was chosen. as. it. is.somewhat'similar,in'.nature:to the TMI-2 accident and it represented one of the more probable event sequences for a Pressurized Water Reactor identtfied in the Reactor Safety Study, WASH-1400 (Reference 3).
The selection of S2D as the base case event sequence is further justified'in,light of the results of the Reactor Safety Study Methodology Applications Program (RSSMAP) analysis of the Sequoyah Ice Condenser Plant (Reference 4), the results of which-indicate that small and intermediate break LOCAs are the dominant accident sequences.
- Hence, the S2D event.was chosen as the base case accident sequence.and parameter'ic variations on hydrogen and steam production rates evaluated in light of the remaining dominant hydrogen-related sequences identified in NUREG-1659.
The base case hydrogen and steam production'ates were generated by analysis of the S2D event with the MARCH computer code.
The containment response to the S2D event, including hydrogen release and combustion, was analyzed with the CLASIX computer code.
CLASIX is fully described in Westinghouse/Offshore Power Systems (gW OPS) document OPS-07A35 (Reference I),
previously transmited to the NRC by Tennessee.
Valley Authority (TVA) in...
Reference 5.
The percent hydrogen required for ignition in the base case analysis is eight volume percent (v/o).
Use of the relatively high ignition limit in effect denies credit for the ability of the glow plug igniter to reliably'nitiate combustion of mixtures as lean as 5-6 v/o in hydrogen under adverse conditions, as shown in the results of'he Fenwal (Reference'6 and 7),
Whiteshell. Nuclear Research (Reference 8), and.Lawrence Livermore Laboratory (Reference
- 9) test programs.
Furthermore, use of an 8'.v/o ignition limit, coupled with the 855 burn completion fraction assumed in the base case analysis, results in conservatively high predictions -for post-combustion containment temperature and pressure transients.'imilarly, use of a six feet per second (fps) flame speed results in a conservative overestimation of the energy input rate into the containment which, in turn, results in conservatively high containment temperature and pressure transients.
t 8 /
0
3.0 The Base Case Anal sis Containment analyses have been performed, using the version of the CLASIX compute'r code described in Reference No.
1'.
The analysis detailed in Attachment No.
2 to Reference 2 (Case A), originally performed with the
'old'ersion of CLASIX, has been repeated using the new version of the code.
The results of the re-analysis.(Case B) are shown in Figures 3.0-1 through 3.0-19.
In these figures, Case B is described as the "Cook, Old Base Case" because the differences in results between this case and Case A
are only due to coding changes in CLASIX, not to changes in the input parameters.
Input parameters for both of these cases are given in Tables 1 through 18 of Attachment No.
2 to Reference 2.
A comparison of the results of these two analyses, contained in Table 3.0-1, shows very small differences in the calculated results as a result of the coding modifications.
A third base case analysis, Case C, was performed using the same input parameters as were used for Case A and Case B except that:
(1)
The burn time withi.n a given compartment and the burn propa-gation delay time between compartments have been modified to reflect the number and location of igniters installed in the containment, and (2)
The air recirculation fan flow/head curve has been modified to account for increased air flow rates during periods when
. the upper compartment (fan suction) pr essure exceeds the fan/
accumulator room pressure.
Case C constitutes the best possible "Base Case". for the Cook Plant.
These changes in input values are sumaarized in Table 3.0-2 and a
sugary of the results is given in Table 3.0-3.
The percent hydrogen for ignition and the burn completion fraction used in Case C are 8 v/o
-and 85%, respectively.
The results of the analyses are shown in Figures 3.0-20 through 3.0-38.
TABLE 3.0 -1 COMPARISON OF CLASIX RESULTS *
'k*
CASE A CASE B *
- NUMBERS OF BURNS PREDICTED LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMULATOR ROOMS 7
0 30 0
0 0
7 0
31 0
0 0
PEAK ATMOSPHERIC TEMPERATURE ( F)
LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUYiiLATORROOAMS 828 383
'1155 168 216 205 846 359 1140 160 208 185 PEAK PRESSURE (PSIG LOWER COMPARTMENT
,LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMULATOR ROOMS 10.9 10.8 10.8 10.5 10.9 10.8 10.9 10.2 10,5 10.0 10.7 10.7 r
NOTES FOR TABLE 3.0 -1 Hydrogen concentration for ignition assumed to be 8
/o and i'he burn fraction assumed to be 85%.
Remaining input parameters are given in Table Nos.
1 through 18 of Attachment No.
2 to Reference 2.
Case A.was performed using the 'old'ersion of CLASXX.
The results of this analysis have been previously transmitted to
,the Commission via Reference 2..
- +
Case B was performed using the 'new'ersion of CLASXX described in OPS Document No. OPS-07A 35 (Refererice 1)
~
J
TABLE 3.0.-2 CLASIX INPUT PAKQKTERS-BURN PARAMETERS CASE C
(1)
COMPAR~ZNT LOWER COMPARTMEhT (LC)
LOWER PLENUM (LP)
UPPER PLENUM (UP)
UPPER COMPARTMENT (UC)
DEAD-ENDED VOLUME (D-E)
FAN/ACCUMULATOR ROOMS (F/A)
(2)
JUNCTION LC-IP IP-UP UP-UC UC-LC DE-LC F/A-LC BURN T~
(SECONDS) 3.80 4.36 1.80 9.70 2.42 2.58 PROPAGATION DELAY TIME (SECONDS) 3.80 5.48 1.10 9.70 3.80 3.80 (3)
HEAD inches of H>QO FAN FLOW/HEAD PARAMETERS FLOW (cfm) 1.40 E+2 1.20 E+2
- 8.00 E+1 4.00 E+1 2.00 E+1 0.00 E+0 1.00 E+0 2.00 E+0 3.00 E+0 4.00 E+0 4.50 E+0 5.00 E+0 6.00 E+0 6.50 E+0 6.80 E+0 6.90 E+0 6.90 1.672 E+5 1.547 E+5 1.264 E+5 8.939 E+4 6.321 E+4 5.300 E+4
, 5.050 E+4 4.750 E+4 4.450 E+4
'4.150 E+4 3.970 E+4 3.800 E+4 3.420 E+4 3.100 E+4 2.500 E+4 1.600 E+4 0.00 Note:
ALL OTHER INPUT PARAMETERS FOR CASE C ARE THE SAME AS THOSE GIVEN IN TABLE NO.
1 THROUGH 18 OF ATTACHMENT NO.
2 TO REFERENCE 2.
TABLE 3.0 -3
SUMMARY
OF RESULTS CASE C
NUMBER OF BURNS PREDICTED LOWER COMPARTMENT LOWER PLENUM UPPER PLENUH UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACQlMULATOR ROOMS 8
0 27*
0
~
0 0
PEAK ATMOSPHERIC TEMPERATURE ( F)
LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUHULATOR ROOMS 1076.
477 1191 170 264 234 PEAK PRESSURE.(PSIG)
LOWER COMPARAKNT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMJLATOR ROOMS 14.8 13.9 11.6 10.2 14.1 14.3 "A twenty-eighth UP burn is in progress at the ternination of the transient.
0
VLOI l 20.14. IB I'Rl 22 JAN, 1982 JOB"AHZRIHL p CYBI:RIKT NO 1.0 OISSPLII VN 8.2 COOK, OLD BASE CASE C)O CI
>Q Ao O
~ S.
H ci CI Cl c1 CO CQ 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.0 6800.0 7200.0 7600.0 0000.0 TIME (SEC)'
PLQT 2
- 20. I4.2l VRI 22 JAtt, 1982 JOB-RNZRlttg, CTBERtKT ttOS 1.0 01SSPt.tt,VER 8.2 0
0 Od COOK, OLD BASE CASE OO CO OO CO
~O OO Q8 O
HR O pI-l K ci XN.
A RSFl OO CO OO C9 OOO 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 640Q.O 680 Q.O 7200.0 7600.0 0000.0 TIME (SEC)
~ p
OOOO Ol O
O CO COOK, OLD BASE CASE r'5 Ao C4 H.
5I O
O 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.0 6000.0 7200.0 7600.0 6000.0 TIME (SEC)
Case 8
~ Figure 3.0-3 I
20.14.29 fRI 22 JRH, lea2 JOB-RWZR IHI:,
CNNIIPT NOS I.O 0155PN PR B. 2 ooO CO COOK, OLD BASE CASE o
ooI
~o go Q4
~O A o Ko KQ
>~ o P
Pm o0 Ooo 4000.0 4400.0 4000.0 6200.0 6800.0 8000.0 8400.0 6800.0 7200.0 7800.0 0000.0 TIME (SEC)
l
rl.Or b 20.ll.32 fRl 22 JAW, l982
~
~
OOo 03 COOK, OLD BASE CASE oO oO CD Gl
~O
~ O G co-Ao0 wQ.
A HO oo oo Ooo 4000.0 4400.0 4800.0 5200.0 5600.0 6000.0 8400.0 8800.0 7200.0 7600.0 B000.0 nME (sec)
Case B
PLOT 6 r
20.14.36 FRI 22 JRN~
lS82 JOB-RNERlkE p
CIBERNET NOS 1.0 01SSPLR VER B.2 0
COOK, OLD BASE CASE OOO CQ OO CD oO CD
~o go A o kl o f4~
<o f4 w-I-4Qo Wg9
~ )
Oo OO oOO 4000.0 4400.0 4800.0 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 nMz (szC)
M M o X ad O
4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 8400.0 6800.0 7200.0 7600.0 0000.0 nMI,'(src)
Case B
Figure 3.0-7
COOK, OLI3ASE CASE o
o M
f/) cu l-4 0 8 M
U3@o.
à cd P
0 o
o oo 4000.0 4400.0 4800.0 6200.0 6600.0 8000.0 8400.0 8800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case B
Figure 3.0-8
rC O
COOO ToTm pzzssvzE LP (I'>>~)
10.0 12.0 14.0 16.0 iELO 20.0 22.0 24.0 28.0 29.0 SO.O I
I I
OOO 8O OO OO C
tC ~O
~OO
<<a o O
O OO O
IO0 I
I ~
>00Ic III I O I
00 EOO O
8OO OOOO dPP'%
PLOT 9 18 FRI 22 JAH, 1902 JOB-AIQRIHC, CYBCRHCT HI5 1.0 8.2 oo c9 COOK, OLD BASE CASE
+ o.
CO 4 cu Q N g o.
p O
@o P
+i o-O o
~ N-o
'000.0 4400.0
'000.0
=
5)200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 0000.0 TIME (SE'C)
C;ase 8
'ulgur'e 3.0-9
vj
~ v P
COOK, OLD BASE CASE 4
a Mm C4 co Q
cQ W
PQ 8 f'Q D3Ro A
0.0 I
Case B --Figuxq,3.0-10 4000.0 4400.0 4800.0 5200.0 5600.0 6000.0'40 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
C.l I "'I "~
\\
1
'I
4 C)
C) 03 COOK, OLD BASE CASE
+ O.
Q Q f/}
M
'l4 ai Q$
O 0
C)o
'000.0 4400.0 4800.0 MOO.Q 6600.0 6000.0 6400.0 8800.0 72QQ.Q 760Q.Q 8000.0 TIME (SEC)
CaseiB Figure 3
0 ll t
8 p
CI COOI<, OLD BASE CASE o
cA o
< o.'
M N I-4 o
r~ 0-g o
~l oI rn o X ad p
O oo 4000.0 4400.0 4800.0 5200.0 6600.0 6000.0 6400.0 6800.0 7200.0 7600,0 8000.0 TIME (SEC)
Case B
Figure 3.0-12
~
F
.g
~0 Q
~ iA.
Ol COOK, OL BASE CASE sn C) u3 C?o 4000.0 4400.0 4800.0 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case B - Figure 3.0-.13
C)O COOK, OL ASE CASE O
Q i1g
/
~8 I
C)
CQ C)
I 02
= DASEl EE2
= CHHDASEL EE20 = CENDOT 4000.0 4400.0 4000.0 5200.0 6600.0 6000.0 6400.0 8900.0 7200.0 7600.0 6000.0 TIME (SEC)
Case B
Figure
- 3. 0-14 A
I'LOT 14 tb.Jtt tel 4J Jtltt, tuud Jt>u-ttttLtttttt.,
utut ttttt.t ttu~ l.u ul vt ti u.r.
Oo COOf<, OLD BASE CASE tA O
olO 0 +-
O Og I
o Olo I
lA C3o 02
= SOLED N2
= DASEI EE2
= CfENDASEE EE20 = CEINDOT O
~
tQ O
I 4000.0 4400.0 4000.0 5200.0 5600.0 6000.0 6400.0 8800.0 7200.0 7600.0 8000.0 TIME (SL'C)
I I
Case B
Pit >>re
- 3. A-1 4
- 40. p. lU I aal 44
.saaaaa Isas4 esas-asssaaa
~ ssa.
asaa>>.sass<
s asssv s.as as ~ vv
. ~ ~
~ a.ss v.
Cio COOK, OLD BASE CASE In.
IOo o
o ln IO fl, o gio.
0 +-
o Ii
~ I I a
I Ii ll i(
I I II \\ Ii~
( i
)
Wi (
~
h ii li Ii I
~ I I'I li9 ls (Il
~ I I
(
~
Ig s,(a I g
ia. Ii I ~l
@o
>o 0 in
+ o I
in C9 CI 02
= SOLID N2
= DASIf fl2
= CFINDASEI
.II20 = CEINDOT CI IOo I
4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
I )
~
Case 5,.- Piguxe 3.0-15 s
oo COOK, OLD HASE CASE iQ tQo o.
o f,3 I-l
~
z J I
g il J ill l l
ll Ir ll 1
J J ski Illl,I il Vl' II ill I
(
J-'r go Oo lg foal o.
Xo-0 e.
0 I'2
= SOLID N2
= DASll I12
= CHNDASFI ll20 =CllNDO'l'W Kl9 o
LQo I
4000.0 4400.0 4800.0 5200.0 6600.0 6000.0 6400.0 0800.0 7200.0 7600.0 8000.0 TIME (SEC)
I f
~
Case B
Figure 3.p-y6
Et ~ &VI
~ ~
~ l ~ ~
V
~
oo COOK, OLD BASE CASE aA.
Clo o
E.o Oo
<o-Xo O u) 0 I
02
= SOLID N2
= DASH H2
= CHNDASII H20 = CFINDOT C)
LOo 4000.0 4400.0 4000.0 g )
~
6200.0 5600.0 6000.0 6400.0 6000.0 7200.0 7600.0 0000.0 TIME (SEC)
Case B
Pi'gure 3.0~,17
OO
- COOK, OLD BASE CASE lA 03O O
O A
1 L
O O Xo raO ao
~1OeO I
O O
I 02
= SOLID N2
= DASH H2
= CHNDASH H20 = CHNDOT O
I O
IOOI" 4000.0 4400.0 4800.0 5200.0 5600.0 6000.0 6400.0 6000.0 7200.0 7600.0 0000.0 TIhIE'SEC)
Case 9
Figur'e 3.0-]8
o
- COOK, OLD BASE CASE o
I lg go g~ 0 0 ~'
E~
f4 o 44 4 Oeo I
lQ o
I o
lOo I
02
= SOLID N2
= DASH II2
= CHNDASH H20 = CHNDOT 4000.0 4400.0 4000.0 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
I Case 3
Pigur'e 3.,0-19
r 1
CSoO Ol O6 COOK, BASE CASE O
Ql CO OO CA CO 0.0 000.0 1800.0 2400.0 3200.0 4000.0 4800.0 56QQ.O 8400.0 7200.0 0000.0 TIME (SEC)
Case C Figure 3.0-26
I
C?Oo COOK, BASE CASE COo Wg Q co N<o Ol C9
Ãg.
y O
Ãg S4 Wg o
oo C9 600.0 1600.0 2400.0 3200.0 4000.0 4800.0 5600.0 6400.0 7200.0 0000.0 TiMv (sec)
Case C Figure 3.0-21',
I 5:
IJ. I/.17
'Rl IG JAN, 1502 JOU-IINNIZH, CYBCIBKT NOS 1.0 OISSPLll VE
~
~
CSoO CQ C)
COo CO
/
COOI<, BASE CASE S
.:, Ao-CQ o
- P CD
~ Ã P
.,~DI j
o 0.0 800.0 200.0 8000.0 2400.0 3200.0 4000.0 4
1600.0 800.0 5600,0
...6400.0 7
TIME (SEC)
Case C Filuxe 3.0-22 I
i
'I
Cl CS 4D Ol COOK, BASE CASE O
~Q N~O A
O ~.
XQ CI W
A Wo-O CO O
0.0 800.0 1600.0 2400.0 3200.0 4000.0 4000.0 5600.0 6400.0 7200.0 8000.0 riMz (iLc)
I Case C Figurh,3.0-23
t J. lu -
I tie lu
'll(tp lJv 'UQ Ilki.tlllllp blUt i(itt I ltd J l U
IJl Jbr'Ltl VL
~ 4 0
i O
03 COOI<, BASE CASE
~O C9 P4~O A
~ Ol I:l O
ÃR g 0 X C-A~ O O
cd C9 O
OO CD 0.0 800.0 1600.0 2400.0 3200.0 4000.0 4800.0 5600.0
'6400.0 7200.0 8000.0 TIME (SEC)
~
I Case C Figure'.0-24
C 0
oo C) 03 oo CO Ol COOK; BASE CASE o
CO Ol oo o
Ol oo 0.0 800.0 1600.0 2400.0 3200.0 4000.0 4800.0 5600.0 6400.0 7200.0 8000.0 TIME '(SEC)
C'use I, Figure 3.0-25
COOK, BASE CASE 4 o QQ Ol f4 Cxl p 0 M
M@o I-l O
0.0 000.0 1600.0 2400.0 3200.0 4000.0 4000.0 6000.0 0400.0 7200.0 B000.0 TIME (SLFC) 1)s Case C 'F1guse 3.C-26
OO C9 COOK, HASE CASE:
C?.
CO Ol O
CO Ol
+ O.
W M cu 0
M M@o Q ad P
O O '
0.0 000.0 1600.0 2400.0 3200.0 4000.0 4000.0 6600.0 B400.0 7200.0 6000.0 TIME (SEC)
I I
Case C Fj.eiire 3.5 27
oO C9
- COOK, SE CASE
<o M cu
'f4 0
M CQRo
+ cd P
~ o
~
O o
o 0.0 000.0 1600.0 2400.0 8200.0 4000.0 4000.0 6600.0 8400.0 7200.0 6000.0 Trm (sj."c)
Case C
1'lpure 3.0-28
- COOK, E CASE 0
N Q
cQ M
M@o f4 4-P 0.0 800.0 i600.0 2400.0 3200.0 4000.0 4800.0 6600.0 6400.0 7200.0 8000.0 TIME (SEC) 0 1
=c Case C Figure 3.0-29
,~
COOK, BE CASE cD
<o.
M 0?
IA~'
M
à cd 0
O cD QI CD cD 0.0 000.0 1600.0 2400.0 3200.0 4000.0 4800.0 5600.0 6400.0 V200.0 6000.0 TIME (SEC)
Case C Figure 3.0-30 M
<o' 0.0 000.0 1600.0 2400.0 8200.0 4000.0 4800.0 6600.0 8400.0 V200.0 0000.0 TIME (SEC}
Case C Figure 3.0-3l
P l
COOK, BASE CASE CI U3 ~.
M
~
M o X cd P
O O
0-0.0 000.0 1600.0 2400.0 8200.0 4000.0 4800.0 5600.0 6400.0 7200.0 8000.0 TIME (SEC)
I Case C Figure 3.0&1
COOK, BASE CASE Od 0.0 000.0 1600.0 2400.0 3200.0 4000.0.
4800.0 5600.0 6400.0 7200.0 0000.0 TIME (SEC)
Case C - digure 3.0<32
oo
)
COOI<, BASE CASE 93o o
lO.
IQo R o O+0 C3 W o-.
>o-Q o 0 g)
I lO o
I o
tDo I
I lll\\
\\
I I
I I
r/II I
I 02
= SOLID N2
= DASII II2
= CIINDASFI H20 = CHNDOT I
~it 0.0 800.0 j.600.0 2400.0 8200.0 4000.0 4800.0 5600.0 6400.0 7200.0 8000.0
. TIME (SEC)
Case C 5'figure '3.0~33 I
0 COOK, BASE CASE g O, 0+O O
II f I 1111 111 I
I a
I I
gqy+A
~o
>>11 I
1
~
J
~
(
II pI (L)I Ill~
Il I\\
I II I~]
all 411 W
I ll wl I
< a I>>go hl I>>
~
~
3 I
02
= SOLID N2
= DASII II2
CI-INDASII H20
CHNDO'I'A o-C)
I 0.0 800.0 1600.0 2400.0 0200.0 4000.0 4800.0 6600.9, 6400.0 VROQ,O 8000.0 TIME (SEC)
Case C Figure 3.Q-34
COOK, BASE CASE
~ ~l<)))
"'))
))
u r~f )
)g,i fI NLI 02
= SOLID N2
= BABE(
H2
= CHNDASH E$20 = CEINDOT 800.0 1600.0 2400.0 3200.0 4000.0 TIME (SEC) 4800.Q 6600.0 8400.0 7200.0 8000.0 Case C ;Figure,3.$ -35 pygmy
~ yp wT p P +> %%~ 'C
~pl ~ &I
0O COOK, BASE CASE o
O
~ tD g O.
Q g 02
= SOLID N2
= DASH H2
= CHNDASH H20 = CHNDOT lO.
O 0.0 800.0 f600.0 2400.0 3200.0 4000.0 4800.0 6600.0 6400.0 7200.0 8000.0 TIME (SEC)
I Case C Figure 3.0-36
COOK, erSE CASE Ct E.O C:l o
Oe.
C?
I 02
= SOL1D N2
= DASII H2
= CIINDASII EI20 = CHNDOT I lv~r~
0.0 800.0 1600.0 2400.0 3200.0 4000.0 4800.0 5600.0 6400.Q V200.0 8000.0 TIME (SEC) t Case C Figure 3.0-37 I
C3
- COOK, ASK CASE>>,
O.
Ct l4 ci A
R Q.
O 1
I v
~
r~
c) 3, I
C3 I
02
= SOLID N2
= DASII EI2
= CHNDASH EI20 = CHNDOT 0.0 800.0 MOO.O 2400.0 MOQ.Q 4000.0 4800.0 6600.0 6400.0 7200.0 8000.0 TIME (SEC)
Case C Picture 3 0-37 t
I-'
O C3 COOK, BASE CASE 0+O D
X c)
Oe.
I 02
= SOLID N2
= DASEI EI2
= CHNDASEI EI20 = CEINDOT 0.0 000.0 1600.0 2400.Q 3200.0 4000.0 480Q.O 5600.0 6400.0 7200.0 8000.0 TIME (SEC)
,Case C Figure 3.0;38
4
4.0 Parametric Anal ses Further analyses have been performed to assess the effects of variations of ignition criteria in general and within different compartments, and the effect of a variation in flame speed.
These analyses are meant to supplement analyses performed for other plants and to verify that the results of such parametric analyses are applicable to the Cook Plant, The results of the analyses indicate that for all cases analyzed the containment pressure remains well within the structural capability of the Cook Plant containment.
An analysis, Case D, has been performed using a hydrogen ignition limit of 10% and a burn completion fraction of 1005.
This analysis is similar to Sequoyah sensitivity run "1B" described in TYA's Report
"-Containment Response to Degraded Core Events" (Attachment No, 3 to Reference 5).
The results of the Case D analysis are sumnarized in Tab'le 4.0-1 and shown in Figures4.0-1 through 4.0-19.
Case E investigated the effects of varying the hydrogen ignition limits in different regions of the containment.
Specifically, a hydrogen ignition limit of 8 v/o with a 85K burn completion factor was used for the lower compartment, inlet plenum, upper plenum, and fan/accumulator rooms while an ignition limit of 6 v/o with a 605 burn completion factor was used for upper compartment and dead-ended regions.
Use. of'the lower hydrogen ignition limit -in the upper compartment and dead-ended regions resulted in the pre-diction of three burns in each of those areas.
Ho combustion was predicted to occur in the fan/accumulator rooms during this transient.
This analysis is similar to Sequoyah's sensitivity run "1E" described in the above referenced TVA report.
The results of the Case E. analysis are summarized in Table 4.0-2 and shown in Figures 4.0-20 through 4.0-38.
Case F investigated the effects of a reduced flame speed with hydrogen ignition limit and burn completion fraction values of 8 v/o and 855 r espec-tively.
This analysis is similar to Sequoyah's sensitivity run "IG" described in TVA's "Containment
Response
to Degraded Core Events" report.
The changes in the input values.for the burn times -necessary to reflect the
'ecreased flame speed are given in Table 4.0-3.
The results of the analysis are summarized in Table 4.0-4 and shown in Figures 4,0-39 through 4.0-57.
Further discussions of the effects of varying key input parameters to CLASIX and a discussion of the accident sequences considered for operation of the Distributed Ignition System are contained in Section 5.0 of this Attachment.
TABLE 4.0-1
SUMMARY
OF RESULTS CASE D
NUMBER OF BURNS PREDICTED LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMULATOR ROOMS PEAiC ATMOSPHERIC TEMPERATURE
( F)
LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMULATOR ROOMS PEAK PRES'SURE '(PSIG)
LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMULATOR ROOMS 1
0 31 0
0 0.
~ - -.
1294 540 1813 202 313 272
- 17. 8 16.4 16.9 11.
7'8.3 18.5
- HYDROGEN CONCENTRATION FOR IGNITION IS ASSUMED TO BE 10 'V/0 AND THE BURN FRACTION ASSUMED TO BE 100%.
REMAINING INPUT PARAMETERS -ARE THE SAME AS THOSE USED FOR THE CASE C ANALYSIS.
TABLE 4.0-2
~
SUMMARY
OF RESULTS CASE E
NUMBER OF BURNS PREDICTED LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED ~VOLUME FAN/ACCUMULATOR ROOMS PEAK ATMOSPHERIC TEMPERATURE '( F) 5 0
20 3
3 0
LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMULATOR ROOMS PEAK'RESSURE (PSIG)
LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMULATOR ROOMS 1008 476 1191 615 688 375 14.8 17.4 19.2 19.8 14.1 14.3
- HYDROGEN CONCENTRATION FOR IGNITION IS ASSUMED TO BE 8 V/0 AND THE BURN FRACTION ASSUMED TO BE 85%
FOR THE LOWER COMPARTMENTS INLET PLENUMi UPPER PLENUMi AND FAN/ACCUMULATOR ROOMS.
THE HYDROGEN IGNITION LIMIT AND BURN FRACTION FOR THE UPPER COMPARTMENT AND THE DEAD-ENDED REGIONS WERE 6 V/0 A'4D 60%,
RESPECTIVELY.
'EMAINING INPUT PARAPMTERS ARE THE SAME AS THOSE USED FOR THE CASE C ANALYSIS.
(1)
COMPARTMENT TABLE 4.0-3 CLASIX INPUT PARAMETERS CASE F BURN PARAi~TERS BURN TIME (SECONDS)
LOWER COMPARTMENT (LC)
LOWER PLENUM (LE')
UPPER PLENUM (UP)
UPPER COMPARTMENT (UC)
DEAD-ENDED VOLUME (DE)
FAN/ACCUMULATOR ROOMS (F/A)
(2)
JUNCTION LC-IP IP-UP UP-UC UC-LC DE-LC F/A-LC 22.80 26.16
, 10.80 58.20 14.52 15.48 PROPAGATION DELAY TIME (SECONDS) 22 '..80 32.88 6.60 58.20 22.80 22.80
- ALL OTHER INPUT PAEQZIETERS ARE THE SAME AS THOSE USED FOR THE CASE C ANALYSIS.
TABLE 4. 0-4
SUMMARY
OF RESULTS CASE F NUMBER OF BURNS PREDICTED LOWER COMPARTMENT
,LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMULATOR ROOMS
" PEAK ATMOSPHERIC TEMPERATURE
( F)
LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD.-ENDED. VOLUME FAN/ACCUMULATOR ROOMS PEAK PRESSURE (PSIG)
LOWER COMPARTMENT LOWER PLENUM UPPER PLENUM UPPER COMPARTMENT DEAD-ENDED VOLUME FAN/ACCUMULATOR ROOMS 7
0 27 0
0 0
567 537 1132 148 178 159 8.7 8.7 9.0 8.6 8.8 8.8
~
o
~
eoua
~ ~ U Uld>l' tf0 d ooo Ol O '
CO COOK, 10K, 100ro, BURN C$
CO-O6S-CQ
~
ooO 0.0 800.0 1800.0 2400.0 0200.0 4000.0 4800.0 6800.0 8400.0 7200.0 8000.0 TIME (SEC)
Case D Fig4re 4.0-l,'
<< ~
~ 4II II 4 ooO COOI<, 10K, 100K., BURN
~
CQ Ao'd fI, co.
g 0 f4 go-E ol.
o C9 0.0 000.0 1800.0 2400.0 3200.0 4000.0 4800.0 6600.0 6400.0 7200.0 6000.0 TIME (SEC)
Case DiPigure 4.0-2 I
I I
~
s I,>>~ ~ioii, guuc
~iu-tuutctla,"
UIOI:ltttLT ttOS I.O DISSP R
0.2 C3 CS C)
Ctol
- COOK, 10@:,
100%, BURN o
'O CO
+ui' CI6 C9 0.0 000.0 1600.0 2400.0 3200.0 4000.0 4000.0 6600.0 8400.0 7200.0 0000.0 TIME (SEC)
I
~
~ ~
~
e se ~ see ess
~
~
~ essa
~
Se ulJJI I II l
ll 4
~e O6O CO
- COOK, 10%,
100%, BURN
~O Q.
~O A
cd
~ cu.
in g O P
W co-O 0$
CA OOl 0.0 000.0 1600.0 2400.0 8200.0 4000.0 4800.0 6600.0 6400.0 V200.0 8000.0 TIME (SEC)
Case D figure 4.0-.4
P
- COOK,
$0%, 0%,
BURN C)
CD CO 60) 0.0 600.0 1600.0 2400.0 3200.0 4000.0 4800.0 6600.0 6400.0 7200.0 6000.0 TIME (SEC)
.Case 0 Figure 4.0-5
ooo Ql o
CD CD-03
- COOK, 10%%u, 100%%u, BURN
~o r
o-'
m.
Ao A+ co.
R CD-cd LQ
'M o
o CD 0.0 000.0 1600.0 2400.0 3200.0 4000.0 4800.0 6600.0 6400.0 7200.0 6000.0 TIME (SEC) h Case D Figure 4.0-5
PLOT 0 l9.14.47 PRl 15 Jflfl, l902 J00-flHZRlZK p CYBERRET NOS l.0 OISSPL 0.2 OOO
- COOK, 10%,
100%, BURN OO O
O'O-Ol
~O Wg Q co.
AO l4 O XQ g O f4 a)-
xg-OO OOO '.0 6600.0 6400.0 7200.0 Case D Figure 4.0-6~
800.0 1600.0 2400.0 3200.0 4000.0 4800.0 8000.0 TlME (SEC)
0
, ~ ~
. ~
p v,,
ea
~ IIVJ
~ u UlJJI l Il 0 4 C)
O COOK, 107., 100'.,
BURN 5I Ro Pm O
O '.0 800.0 1600.0 2400.0 3200.0 4000.0 4800.0 6600.0 8400.0 V200.0 8000.0 TIME (SEC)
Case D Figure 4 0 7,
0
rwuL u Ls. ls. lO
<'Rl 15 JAll, l902 JOO-AIIZRI?K, O'IOLRtCT HOS l.0
'Ol VER 0.2 oo
- COOK, 10%,
100%, BURN o
M
'O.
<o M co 0
C4j f4 o.
lQ M
M g O.
~ 0$
(3 o
CD>>
od '.0 800.0 1600.0 2400.0 3200.0 4000.0 4800.0 5600.0 6400.0 7200.0 8000.0 TIME (SEC)
Case D Figure 4.0-8 ',
I l
~
- COOK, 10%,
100%, BURN w ~~
p) a P
Ng.
O O.
c$
0.0 000.0 1600.0 2400.0 3200.0
'000.0 4800.0 6600.0 B400.0 V200.0 8000.0 TIME (SEC)
Case D F'Equate 4.0-9 I
I t
au, su,Dc c tel lb JllHp VJ02 JOB-ANZRIRK, CUBI:RNI:I IIOS I.O DISS R
8.2
- COOK, 10%,
100%,
BURN t6.o, Ol o
cDM o.'n 5
0 M
M
@ o.
f4 cd-,
I-4
~ o O
oo 0.0 800.0 1600.0 2400.0 3200.0 4000.0 4800.0 6800.0 6400.0
=- 7200.0 8000.0 nME (szc)
Case 0 Figure 4.0-10, I
~ t ul
~ ~
IU, Ou I ul lb Jllug tuua tutt-ttttlHIZK, GNI.RtKT HOS l.O DISS ER 8.2 COOK, 10K, 1007.,
BURN I~.
P tD l4 ai Ol IR 5Fi R o.
p PI D
C7 c5 0.0 800.0 1600.0 2400.0 3200.0 4000.0 4000.0 6600.0 6400.0 7200.0 6000.0 TIME (SEC)
Case D figure 4.0~11 I )
~
I
I I< I I5 JoH~
IQIIa JOO-AIIMIZK, CNDIIILT.t(OS f.8 0l SSP ll
- 8. 2 COOK, 10'., 1008, BURN
+ 0-p)
C9 f4 r~ ~.
O CI-cd>>
0.0 000.0 1600.0 2400.0 3200.0
4000.0 4800.0 '800.0 6400.0 7200.0 6000.0 TIME (SEC)
P Case D Figure 4.0-12
COOK, 10%,
100%, BURN M ~
rn Q C3-gd 0
O4-0.0 BOQ.O 1600.0 2400.0 8200.0 4000.0 4BQO.Q 6600.0 6400.0 7800.0 0000.0 TIME (SEC)
Case D Figure 4.0-13
o COOK, 10K, 100K, BURN LA 6)ci C) ci tA M ci g O.
0 +-
0 D
X ci I
\\
I I
/III I
I il gh O g).
+ 8 A
8ci I
0.0 02
= SOLID N2
= DASII II2
= CHNDASH II20 = CHNDOT 000.0 1600.0 2400.0
~
3200.0 4000.0 4000.0 5600.0 6400.0 7200.0 6000.0 TIME (SEC)
I Case D Pigure 4.0"14
C)o COOK, 10'.,
100K, BLJRN Cl O
in
'l, o
~~aw
~I 4
~ (L ll~gt~gl l
~ o a
~
~ t ~i~(
. E>),(i(
hl ~ ~
02
= SOLID N2
= DASH H2
= CHNDASH II20 = CHNDOT 0.0 000.0 1600.0 2400.0 3200.0 4000.0 4000.0 6600.0 6400.0 7200.0 8000.0 viwz (szc)
Case D Piguxe 4.0-15
Jr rr-rrrrcrttcg, t;Itit:ttttt:T tttls I,Q OI5spLA= r tt,2 OO COOK, 10%,
100%, BURN E.O tl cltt'r Kc.
go-Ou).
02
= SOLID N2 - DASH EE2
= CFINDASEE E)20 = CFENDOT a
lO O
I 0.0 000.0 1600.0 2400.0 0200.0 4000.0 4800.0 6600.0 6400.0 7200.0 0000.0 TIME (SEC)
I /
~
Cise D Figuie 4.0-16
COOI<, 10'., t)F.,
BURN O
E.O
~
lpga g O o".
f4 0 e.
02
= SOLID N2
= DASH F12
= CHNDASH FI20 = CHNDOT I
Q.
O I
0.0 000.0 1600.0 2400.0 3200.0 4000.0 4800.0 6600.Q 640Q.Q V200.0 0000.0 TIME (SEC)
Case 9 Figure 4.0-17
~
~
C)
Cl COOK, 10'., 100'.,
BURN PgO Cl O
in Oo g O.
o~
E-iO~in.
go 0 in,
+
C?
I 02
= SOLlD N2
= DASFI H2
= CHNDASH H20 = CHNDOT C) lO CS I
0.0 800.0 f600.0 2400.0 0200.0 4000.0 4800.0 6600.0 6400.0 7200.0 8000.0 TIML~ (SEC)
Case D Piguxe 4.0-17
0
ss>ec,>is t.n
~
4lu4llw I flub I u u>>SrUI 0.2 COOK, 10%,
100%,
BURN EA CDO o
K ci A
0 0
08 02
= SOLID N2
= DASH II2
= CEiNDASII IE20 = CIINDOT 0.0 800.0 1600.0 2400.0 3200.0 4000.0 4800.0 6600.0 6400.0 7200.0 0000.0 TIME (SEC)
Qase 9 <Figure 4.0-18 I
I )
~
PLOT l9 l9 lS nial lS JAtt, 1982 JO RtKT tIOS l.O OISSPL 8.2
- COOK, 10%,
100%, BURN 0+
Lt l-4 n
@o.
XQ-On CI I'2
= SOLID N2
= DASH H2
= CHNDASH H20 = CIIHDOT C) lA c5 I
0.0 800.0 1600.0 2400.0 3200.0 4000.0 4800.0 6600.0 6400.0 7200.0 8000.0 TIME (SEC)
Case D Plghre 4.0-19 I l
~
I
~u-(ucu<l rH, t:98t:RNCT NOS l.O OISSP oono-M O
cooK, 6(, oo( BuRN rN Uc,DE o
02-O
'o go
~O oB.
g Q f4-0d CO OO OoO 4000.0 4400.0 4800.0 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 V600.0 6000.0
- TiME (SLC)
Case E Figure 4.0-20
~
DDD lQ D '
cD COOK, 6(, 60(
O
~O.
NQ Q n.
D l-I l4 ci
à g.
g D 5.
P
~
~
bl q-D Cl DD DDD 4000.0 4400.0 4800.0 5200.0 5600.0 6000.0 6400.0 6800.0 720Q.O 760Q.O 8000.0 TIME (SEC)
Case E Figure 4.0-21
c5ooel COOK, 6(, 60( RN IN UC,DE 0-CQ o
'O o-CO r 9 Ao.
oH-o g o
~ Ol-.
E o
oo 4000.0 4400.0 4000.0 6200.0 6600.0 6000.0 6400.0 6800.0 7200.0 V600.0 0000.0 TIME (SEC) gape E Figure 4.0-22 I
( Y I
~
II
~
~
~
~ S ~
~ <<<<<<
i ~i ~
i ~ a
~ I ~
p VIVII'l1e4 ~ IIVJ I ~ U UlJDI I I'L Q,C odO
'O Ol o
0-g3 COOK, 6(, 60( BURN IN UC,DE COO-CO, r 5 A
p 8:
o
'O.
>~ o 5"
g8-
~
CO o
~
O
~
4000.0 4400.0 4000.0 5800.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 0000.0 TIME (SEC) gase E Figure 4.0-22
PLOT 4
2 6
PRl 22 JAIl, 19B2 JOB-AHZRlYH, CIBLR)KT flBS I ~ 0 DlSSP B.2 OOO COOK, 6(, 60( BURN IN UC,DE OO OO '
lQ
~
P g Q io.
IR 0 '
O
'O'g f4~O.
~~5 o
OO CO O
4000.0 4400.0 4000.0 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case E'igure 4.0-23
rLul 9 20.~"
9 tRt 22 JAtt, l982
.N8-llllZRlYtt, CY8ERttt:T ttOS l.0 OISSI'LA 0 2 C?o COOK, 6(, 60( BURN IN UC,DE oo C?o
~C?
g 0 Aoo o
Ro X~
>o Wg oo oo o
C3 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.0 8800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case E Pigure 4.0-24 l
~
I.OI I'Rl 22 JAtt, ISO2 JOB-AttlRI'III, CYOI:RIKT IIOS I.O OISS oo COOK, 6(, 60( BURN IN. UC,DE oot CO o
g 0 c9 l
t o
~o'Q R o.
l-4 Q q o
+~5 p%
oo CO oo ooo 4000.0 4400.0 4800.0 6200.0 6600.0 600Q.Q 6400.0 6800.0 7200.0 7600.0 0000.0 TIME (SEC)
Case H Figure 4.0-25 I
~
PLOT 7 VRI 22 JAtt, t982 JOO-AIIZRITtt, CYOLRtKT AOS l.O OISSP 0.2 COOK, 6(, 60( BURN IN UC,DE
< o.
M ol p O M
M@o f4 (d p
+ C?
~
o O.
4000.0 4400.0 4000.0 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 0000.0 TIME (SEC)
I I
~
~v <wewcs ttl ~
UIUt.tttttT NOS I.O OISSI'I 8.2 C)
CS COOI<, 6(, 60( BURN IN UC,DE Cl CO
+ O
~
M 03 0
O O
CO 4000.0 4400.0 4000.0 5200.0 5800.0
. 8000.0 6400.0 6000.0 7800.0 7600.0 0000.0 TIME (SEC)
Case H Figure 4.0-27 '
t
.. ~.u~
sais cc
~isa<,
)~us tuo-lRINIYD, CYDfRNCT HOS ].D DlS ER 0.2 C)
O COOK, 6(, 60( BURN IN UC,DE 0')
co 0
0 ClO
'000.0 4400.0 4000.0 5200.0 5800.0 8000.0 8400.0 8800.0 7200.0 7800.0 0000.0 TrME (sgc)
Case H Figure 4.0-28
PLOT IO
'I. It FRI 22 JAN, I902 JOO-AIIZRITII, CTOERIKT NOS 1.0 DIS R
8.2 O
~o, M~
>e Q ol M
MRo Xg-l-4 O
oo 4000.0 4400.0 4000.0 6200.0 6800.0 8000.0 8400.0 8800.0 7200.0 7600.0 0000.0 TIME (SEC)
PLOT II
. IS Nl 22 JAtt, I902 JOO-fttQRITII, GYDERttL'T ttOS I.O OISSP COOK, 6(, 60( BURN IN UC,DE'o' U3 co P
g 0 Q OI M
M@o
à cd-o 4000.0 4400.0 4000.0 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 V600.0 0000.0 TIME (SEC)
Case H Figure 4.0-30 I
PLOT 12
.41.19 PRt 22 JAtt, l902 JOB-AtQRlltt, GOBI:RtKT ttOS 1.0 O
Vt R 8.2 o
CO COOK, 6(, 60( BURN IN UC,DE' 5.
<i o
~ N 0
SB-M M@o.
A O
o oo 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 8400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case E Figure 4.0 31 I li
r
PLOT 13 I,
CYBI:RIKT HOS I.O OIS COOK, 6(, 6Q( BURN IN UC,DE Q 0
~
Pl ri o
~
Wo o.
o 400Q.Q 4400.Q 480Q.O 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME SEC Case F. F.figure 4.0-32
~
~ ~ ~
~ ~ ~ ~
s aa ~ asa s ~ aaa
~
aaW
~ ~ SS tS IJJI i I ii~
a.'OOK, 6(, 60( BURN IN UC,DE CO k.
CS in C3 ci
@o-I 02
= SOI.ID N2
= DASII H2
= CIINDASH II2O = CHNOOI C) lA CiI" 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.Q 680Q.Q 7200.0 7600.0 8000.0 TIME (SEC)
I /
~
Caae E Figure 4 0-33
I'LUI I5 Jll O'J.ll I'Rl 22 Jllil, IBB2 JBB-RIIZRIIII, BIBBRIIBT BtlS I.B SISS C)
C)
COOK, 6(, 60( BURN IN UC,DE in Io c9 In C4 ci h
h h
Ii li IS I LII I I ii IIII IR I
~l O
0+
n p<
0 In 02
= SOI.ID N2
= DASII 112
= CIINDASH 1120 = CIINDOT C)
IO 4000.0 4400.0 4000.0 5200.0 5600.0 6000.0 6400.0 6000.0 7200.0 7600.0 0000.0 TIME (SEC)
Case E Figure 4.0-34 2 (B
<<.az s ~
~ ac I ill 44 Jllll~ IJot JOU IINZIII IN p OYOLII)KT NOS I 0 DlSSP Oe 2 n
CI COOI<, 6(, 60( BURN IN UC,DH n
n gII
)
I I I )I II
$ ~ I S ]ac'L
~
O oo 0
02
= SOLID N2
= DASII H2
= CIINDASH II20 = CIiNDOT n
IDn I
4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case E Figure 4.0-35
I'LOT t7 20.43.02 rRI 22 Jmt, 1902 J00-fltQRITN CTOLRttt:T tlOS t 0 OiS COOK, 6(, 60( BURN IN UC,DE EA COo o
o Oo 0
Oo
@o M o t~
0 IO.
o I
o IS 02
= SOI.ID N2
= DASII II2
= CFINDASFI II2O = CFINnO'r 4000.0 4400.0 4000.0 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME SEC
'asa E F1<pure 4.0-36 i t
~
t
(
PLOT 18 COOK, 6(, 60( BURN IN UC,DE LA R ci A
4Z4 O 0+0 Q lA K
lxl o.
Oe.
02
= SOLID N2
= DASH H2
= CIINDASII II20 =,CHNDOT 40000 44000 4800.0 5200.0 5600.0 6000.0 6400.0 6800.0 72000 7800.0 8000.0 TIME SEC Case E Figure 4.0-37, 4 )
~
p
l4ljl lJ u.Wa. III IIII 22 JEIII, IBB2 JOB-NIZRIN, CNEREKT IIOS 1.0 0
VN 8.2
~s oo COOK, 6(, 60( BURN IN UC,DE E.O l~,
I/
IO Q O o
Ql o
02
= SOLID N2
= DASH H2
= CFINDASH H20 = CFINDOT O
4000.0 4400.0 4000.0 5200.0 6600.0 6000.0 84DO.O 8000.0 7200.0 7800.0 0000.0 TIME (iEC)
I
ciui.We.'I lid l.0 OlS II 8.2 OO CO
- COOK, 1 FT/SEC OO
'n in OO0in AOo
'O 0O OOln OOO 4000.0 4400.0 400 0
6800.0 7200.0 V600.0 8000.0 5200.0 6600.0 6000.0 0.0 8400.
TIME (SEC)
Case F Figure 4.0-39
g
\\ I vL lalol
~ IIUJ i ~ V UibbV II~ 2 oo
- COOK, 1 FT/SEC ooin-ln ooo
~O Aoo P
o X g.
oo ooin oo 4000.0 4400.0 4000.0 5200.0 5800.0 6000.0 6400.0 8800.0 7200.0 7600.0 0000.0 TIME (SEC)
Case F Figure 4.0-40, I I
0
Z IKT HOS I.O OISS C)oo
- COOK, 1 FT/SEC o
CO r 9 Ao o.H Q o
~
5~
E cD o
o 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case F Figure 4.0-41, I Ie
~
a ~
asses~
~ vs@
~u->ittkalHl p I:IIII.RIKTHOS l.o DISS 8.2 C?O C)
Ol
- COOK, 1 FT/SEC Cl CS Q)
~O W ci
~Q A
~ Q)
NclQ C4 KR OO 4000.0 4400.0 4000.0 6200.0 6600.0 6000.0 6400.0 6800.0 7200.0 7600.0 0000.0 TIME (SEC)
Case F Fipote A.0-4'P
~
PLOT 5 39 TIIl 22 JAN, l982 JOO-AlQRIHT, CTBCRNLT NOS l.O DISSP 8.2 O
Ct0 CQ
- COOK, 1 FT/SEC
~Q W
c'O A 6 C-l ClO O
O 000.0 7200.0 7800.0 8000.0 4000.0 4400.0 4000.0 5200.0 6600.0 6000.0 8400.0 6
TIME (SEC)
Case F Figure 4.0-43,
rLOr B 2a
~ 02 f'Rl 22 JAtl, lBB2 JOB-AtQRlHT CYBLR<KT llOS l ll BISSPl ooo
- COOK, 1 FTjSEC oo (A
oo
~O,
~O A o r+
y 0 0O oo Ooo 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.0 6800.0 VPOO.O 7600.0 8000.0 nME (sEc) l
~
Case F Figure 4.0-44',
PLOT 7 0.16 1'Rl 22 JRll, 1SO2 JOO-AIQR1HT, GIOERtlLT HOS 1.0 015 0.2
- COOK, 1
FY/SERAC
<o.
M N.
P l4 YiQQ-M M o.
Ki ad-O O
O.
0O 4OOO.O
<<OO.O 4OOO.O eaOO.O 6OOO.O 6OOO.O 64OO.O eeOO.a VaOO.O V6OO.O OOOO.O T1ME (SRC)
Case F Figure 4.0-45,
PLOT 8 SO FRI 22 JAtt, t982 A)B-AtQRlHT, OTOt:RttLT ttOS l.O OlSS 8.2 oo
- COOK, 1 FT/SEC M
M@o t-t ai-o o
4000.0 4400.0 4800.0 5200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 nME (sKc)
Case P Pig'ure 4.0-46
I'LUI J 4.S'S f'Rl 22 Jfitt, l982 WB-AtIZR(tt'C, CY8t:RtKT HOS l 0 C36 C9
- COOK, 1 FT/SEC CO
+ O.
M U3 cu 0
MRo f4 ~
C4 D
O O
OO 4000.0 4400.0 4800.0 520Q.Q 6600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case I'igure 4.0-47,
P
(
I'I.UI IU
- 40. I1.57 fTll 22 JAN, l982 JOB-AtQRlHT /
BTBt:RttET tlOS 1.0 DISS R
8.2
\\
CI6 CQ
- COOK,
~ rT/Sec Ct CO Ol o.'l a
0 go
~
Q$ -
O O
CtO 0
8000.0 4000.0 4400.0 4800.0 6200.0 66QO.O 6000.0 6400.0 6800.0 7200.0 7600.
TlME (SEC)
Case F Figure 4.0-48 I
r C
l I
~ ~
~ 4 V
- COOK, 1 FT/SEC
<o.
VM 0 l4 p O M
M@o.
X ai f4 s-lpg O
O O
Q 0.0 TIME (SEC)
Case F Pigure'.0-49
)
~
4000.0 4400.0 4800.0 5200.0 6600.0 6000.0 6400.0 6800.0 7200.0. -
7600.
800
C)
COOI<,
1 FT/SEC
<o.
M ol P
r~~
ga M
M o O
O 4000.0 4400.0 4800.0 6200.0 6800.0 8000.0 8400.0 8800.0 7200.0 7800.0 8000.0 TIME (SEC)
Case F Figure 4.0-50
- COOK, 1 FTjSEC o
Qo P-I 8 I 1 o
lA o
4000.0 4400.0 4000.0 5200.0 6600.0 6000.0 6400.0 6800.0 '200.0 7600.0 8000.0 TIME (SEC)
Case F Figure 4.0-51
48 t'ttl 22 Jtttt, 1983
'OB-jtttZRIIIT, CNCRtKT ttOS I.O OISSPL 8 2 Cl C)
- COOK, 1 FT/SEC R g.
0 08 CI I
l 02
= SOLID N2
= DASH II2
= CHNDASH H20 = CHNDOT 4000.0 4400.Q 4000.0 620 Q.Q 6600.0
'6000.0 8400.0 6000.0 7200.0 7600.0 0000.0 TIME (SEC)
Case P 'Figure 4.0-52
OO
- COOK, S FT/SEC O
o 0
O O
O O n f4 o
)
%) I \\
)l)
))
~~ ) l)
) lip ry 1~) l I
~ )l Il
< )l),l l ) W)
On O
O I
02
= SOLID N2
= DASH H2
= CHNDASH EI20 = CHNDOT on 4000.0 4400.0 4800.0 6200.0 5600.0 6000.0 6400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case F Figure 4.0-53
~
~
J VlU4l\\Ill I IIII'
. II U Iibt' t}.2
- COOK, 1 FT/SEC C)
O III I
I l
II
~->>j I ill 1
)I
) ll I
I J
I ll II
~
g I
g ci O
Xc 03 02
= SOLlD N2
= DASH Ii2
= CEINDASH H20 = CHNDOT 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.0 6800.0 7200.0 7600.0 0000.0
-TIME (SEC)
Case 0 Figure 4'.0-54 I
l
~
r J
0
0 oo
- COOK, 1 FT/SEC, IA COo o
o Oo g O.
o~
O Xc Ro Oe o
I 02
= SOLID N2
= DASII I12
= CFINDASFI II20 = CIINDOT o
o I
4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 8400.0 6800.0 7200.0 7600.0 8000.0 TIME (SEC)
Case F Figure 4.0-55 I
/
~
t
~
At, 1
At R HT p
GTBERHET HOS l 0 I
8.2 oo
- COOK, 1 FT/SEC E.o in.
Xo A
Ro%0
@o.
Og I
o.
o I
02
= SOLID N2
= MSII H2
= CHNDASH II20 = CHNDOT o
4000.0 4400.0 4000.0 6200.0 6600.0 6000.0 6400.0 6800.0
7200.0 7600.0 8000.0 TtMz (szc)
Case P Pigure 4.0-56 it ~
0
VLUI lJ
'0-b4 tt(l 44 Jlltt, lSU4 Attt-litt'le/Hf~
GNEtttKT tlOS l.O OISSP
'tt 8,2 C)D
- COOK, S FV/SEC O
l l~/
Q ci D
0 3' C)-
02
= SOLID N2
= DASH II2
= CHNDASH H20 = CHNDOT 4000.0 4400.0 4800.0 6200.0 6600.0 6000.0 6400.0 6800.0 7200.0
'7600.0 8000.0 TIME (SEC)
Case
'F Figure 4.0-57
5.0 Additional Parametric Studies and Evaluation of Event Se uences Additional parametric analyses have been performed by TVA and Duke Power Company using the CLASIX computer code for the Sequoyah and McGuire Stations.
These analyses included parametric variation of the flame speed, ignition limit, burn completion fraction, hydrogen source term, steam source term, equipment availability, ice inventory, and redUced igniter effectiveness.
The results of these analyses are contained in the TVA "Containment
Response
to Degraded Core Events" report (Attachment No.
3 to Reference
- 5) and in Section 4.6 of Volume 3 of the McGuire "Red Books" (Reference 10).
l<e,have reviewed these analyses and have concluded that the results of the analyses are, in general, applicable to the Cook Plant, thus making performance of similar Cook-specific analyses unnecessary.
These analyses provide further evidence in support of the distributed ignition system as a viable means of
'ontrolling post-accident hydr'ogen levels following a degraded core cooling accident.
This approach is consistent with our response to Item 8 of Mr. S. A. Varga's letter of July 15, 1981 (see Attachment No.
1 Reference 11).
The distributed ignition system has been effectively evaluated for a
"spectrum of accidents" by performance of the above cited parametric studies.
C 0
0
References for Attachment No.
1 to AEP:NRC:00500H (1)
Offshore. Power Systems Document No. OPS-07A35, "The CLASIX Computer Program for'the Analysis of Reactor, Plant Containment
Response
to Hydrogen Release and Deflagration", Revi'sion 1, January
- 1982, G.
M. Fuls.
(2)
AEP:NRC:OOSOOE, dated July 12, 1981.
(3)
Reactor Safety Study - An Assessment of Accident Risks in U. S.
Comnercial Nuclear Power Plants; HASH-1400 (NUREG-75/014),
- USNRC, October 1975.
(4)
Reactor Safety Study Methodology Applications Program:
Sequoyah Unit No.
1 PWR Power Plant, NUREG/CR-1659/1 of 4, Sandia National Laboratories.
(5)
Letter dated December 1, 1981, L. M. Mils (TVA) to E. Adensam (NRC).
(6)
"Determination of Ignition Performance Characteristics of Glow Plug Hydrogen Ignitor", Fenwal Inc., Report No. PSR-914, November 10, 1980-Subm'itted by Duke Power Company as Appendix 2A 'to Reference 10 below.
(7)
"Determination of Ignition Performance Characteristics of a Glow Plug Hydrogen Ignitor and the Effect of Exposure of Equipment to Hydrogen Burns",
Fenwal Inc., Report No. %SR-918, December 3, 1980 - Submitted by Duke Power Company as Appendix 2B to Reference l0 below.
(8)
"Combustion Behavior Study of Glow Plug Ignitor in Hydrogen-Air-Steam Mixtures:
Interim Progress Report"- December
- 1981, K. K. Shiu, et al.-
Submitted as Attachment No.
4 to Reference ll beloved.
(9)
"Final Results of the Hydrogen Igniter Experimental Pr'ogram",
Lawrence Livermore Laboratory, NUREG/CR-2486, W.
E. Lowry, et al.,
February 1982.
(10)
"An Analysis of Hydrogen Control Measures at McGuire Nuclear Station",
Duke Power Company, 3 volumes - October
- 1981, as amended and supplemented (The "Red Books" ).
(11)
AEP:NRC:00500G, dated February 17, 1982.
~ '
~
~
ATTACHMENT NO.
2 TO AEP:NRC:00500H DONALD C.
COOK NUCLEAR PLANT UNIT NOS.
1 AND 2 HYDROGEN MITIGATION AND CONTROL STUDIES CORE RECOVERY ANALYSIS
SUMMARY
CORE RECOVERY ANALYSIS In response to guestion (7h) of the Attachment to Mr. S. A. Varga's letter of July 15,
- 1981, Westinghouse Electric Corporation (W) has performed an analysis to investigate the effects of core recovery on hydrogen and steam production rates.
The W analysis, conducted with the WFLASH and LOCTA computer codes, serves to verify the conservatisms inherent in the hydrogen and steam production time histories used for. containment'esponse analyses and to verify that the hydrogen and steam generation rates do not "spike" during the core recovery phase of the accident.
The accident analyzed was a break in the pressurizer vapor space of a size equivalent to a pressurizer safety valve.
Following a reactor trip, the accident is modeled to include no active emergency core cooling (ECC) injection and no auxiliary feedwater.
The accumul'ators, while modeled in the analysis, did not inject during the course of the transient.
Approximately ten minutes into the accident the auxiliary feedwater system is assumed to begin delivery of water to the steam generators.
- However, ECC injection is not restored until the core mixture level is at or below the bottom of the active core region.
Shortly after activation of the
- ECCS, the core mixture level begins a steady rise until the core is completely covered.
The results of the analysis indicate that if the ECCS is initiated shortly after the core mixture level drops below the active core region, the total zircaloy-water reaction is l.imited to less than 40% of the total core zircaloy.
Additionally, the rate of hydrogen generation is less than approximately 112 lb/min at its peak generation point.
The maximum steam generation rate during the period of hydrogen production is less than 30 lb/sec.
ATTACHMENT NO. 3 TO AEP:NRC:00500H DONALD C.
COOK NUCLEAR PLANT UNIT NOS.
1 AND 2 HYDROGEN MITIGATION AND CONTROL STUDIES UPPER PLENUM IGNITER SPACING EYALUATION AND
SUMMARY
OF IGNITER TESTI'NG
l.
Ice Condenser=
U er Plenum I niter Covera e
In response to guestion (14) of the Attachment to Mr. S. A. Varga's letter of July 15, 1981, an evaluation has-been performed of the adequacy of the igniter coverage provided in the ice condenser upper plenum.
The evaluation was based on a single train of seven igniters assumed to be uniformly spaced in the upper plenum.
As stated in guestion (14), the intent of the evaluation was to verify that the amount of hydrogen exiting the upper plenum into the contai.nment upper compartment is conservatively less than that amount predicted by analysis using the CLASIX computer code.
The evaluation has indeed verified the conservatism of the CLASIX analysis insofar as hydrogen introduction into the upper compartment is concerned.
In order to be consistent with the assumptions used in the base case CLASIX analyses presented as Cases A, 8, and C in Attachment No.
1 of this submittal, the evaluation focused on a range of upper plenum hydrogen concentrations prior to the onset of ignition, between 7.5 and 8.5 volume percent (v/o).
An upper. limit condition of 10 v/o hydrogen in the upper plenum, corresponding to the Case D CLASIX analysis presented in Attachment No. 1, was also performed.
Ignition at upper plenum hydrogen concentrations below 7.5 v/o were not considered due to the lower burn fractions and temperature and pressure transients associated with combustion of such lean mixtures.
In addition, Table 2 of this attachment clearly shows that the average concentration of hydrogen in the mixture leaving the upper plenum increases as the hydrogen concentration required for ignition increases, thus making analysis of ignition levels below 7.5 v/o unnecessary.
The key factors in the analysis were the flame speed, burn time, combustion model, and the assumed level of mixing within the upper plenum.
The flame speed was varied monotonically from approximately 2 ft/sec to approximately 14 ft/sec for hydrogen concentrations between 7.5 and 10 v/o in the upper plenum.
Burn times were computed based on the maximum distance traversed by two.independent flames initiating from adjacent igniters on the same train using both buoyant bubble rise and spherical propagation combustion models.
As expected, the buoyant bubble rise model consistently predicted a greater burn time at a given hydrogen concent'ration and thus conservatively predicted higher input rates into the upper compartment than were predicted using the spherical flame propagation model.
Two types of.
mixing were considered within the upper plenum, a homogeneous mixing model and a model considering distinct burnt and unburnt gas regions.
Comparison of the results indicates a minimal effect of the mixing model on the average value of the hydrogen concentration in the gas entering the upper compartment following an upper plenum burn.
The results of the analysis, summarized in the attached tables, clearly indicate that seven igniters provide adequate igniter coverage in the ice condenser upper plenum.
TABLE 1 UPPER PLENUM IGNITER EVALUATION COMPARISON OF BURN TIMES FOR BUOYANT BUBBLE
AND SPHERICAL DEFLAGRATION COMBUSTION MODELS+
Volume Percent "Burn '.
. H ~ For.Ignition
'Fraction Flame"Speed
(ft/s'ec)
Burn Time Buoyant Bubble Spherical
=
Model Deflagration Model
" '= (sec.)
(sec.)
7.5 76 80-81 2.11 3.23 4.38
~ 16.4-9.45 6.53 8.68 5.67
- 4. 18 10
... 100 14 1 1.79 1.30 Assuming Seven Igniters,Operable
TABLE 2 UPPER PLFNUM IGNITER EVALUATION SVblhQ,RY OF BUOYANT BUBBLE MODEL RESULTS AND EFFECTS OF MIXING'ASSUMPTIONS'*
Volume Percent HZ For Ignition Calculated Time Between Burns (sec)
Average H2 Concentration of Upper Plenum Exhaust Gases Between'Burns Uniform Mixing Non-Uniform Model Mixing Model (v/o)
(v/o) 7.5 66.3 5.2 5.4 8
8.5 70.5 5.8 6.3 5,,7 6.1 10 52 6.5, 6..1 Assuming Seven Xgniters Operable
2.
In Situ I niter Testin Results The glow plug igniters installed in Unit No.
1 were recently tested to verify system operability.
All igniters were verified operable in accordance with proposed Technical Specification Surveillance Requirements contained-in Attachment No.
2 to our AEP:NRC:OOGOOC letter dated May 29, 1981.
In addition, igniter temperature measurements were taken using a portable radiometer.
The average igniter temperature measured was approximately-198O'F:.
r.
1