ML17292B615
ML17292B615 | |
Person / Time | |
---|---|
Site: | Columbia |
Issue date: | 05/26/1998 |
From: | WASHINGTON PUBLIC POWER SUPPLY SYSTEM |
To: | |
Shared Package | |
ML17292B614 | List: |
References | |
ME-02-98-04, ME-02-98-04-R00, ME-2-98-4, ME-2-98-4-R, NUDOCS 9904010222 | |
Download: ML17292B615 (94) | |
Text
f IvAININCTON usLIC latvia 4l SUPPLY SYSTEM DOCUMENT TRANSMITTAL F"'<<' if'<<' F'ry .'.' '
, >~,,V.;<~am~@.W.ZVrWS~X,mWSee'O..BE,.COMPI ps<a<' <s'. r a'Ep.a Y.ORIGINATOR@'~~ ~We.
, w:rgb"; -.. +sejm~ .4!-t%y x s~..i,~.-"rsv~;g Wm '~r':
To W hi gt P bl' S pplySystem 1. Transmittal No. 2. Page 1 of P.O. Box 968
- 9. Initiating Doc. No 21. Priority Richland, WA. 99352 Attention: Records Mana ement MfD 964Y
- 3. From 4. Purchase Order/Contract No
- 5. Supply Syste~mo ntzant E gineer 14. Receipt Acknowledged 6 . Originator Remarks tQVa5 Submitted For
- 10. 11. A 12. R 13. 15.
P I E
ITEM DOCUMENT OR SHEET REV. DOCUMENT TITLE OR ITEM SUBMITTED P N DFFIGUIL L
NO. DRAWING NO. NO. NO. R E F DISPDS.
D D A
V S E
yacforr2 NC- LC's L-VrL Odi A/I ad?. e. Kt fe C~d
- 16. Supply System Disposion Engineering Manager Plant Technical Services Manager (if required)
- 19. REQ 20. RESPONSE 19. REQ 20. RESPONSE
SIGNATURE V P P P P s ACTION PARTIES R I R A AND ACTION PARTIES R I R R A AND 0 70 R 0 0 E 0 P DATE 0 E 0 P V W V OT P V W Y Y P DATE E VE R E E ED 0 E E ED R 0
V V E F
- 5. Cognizant Engineer 18. Design ALARA
- 17. Component/System Anal. 18. Penetrallons
- 17. Mechanical Engineering 18. ASME Code Compliance
- 17. Electrical/I/LC Enginoering 18. Control Sys. Fadure
- 18. Overall Design Vorir. 18. Pipe Break/M<ssrie
- 18. Equip. Engineering 18. App. R/Electrical Sep.
Human Factors 18. Health Saloty/Fire Prot.
mergency Prop. 18. Security
- 18. Environmental 18. Quality Assurance
A
BDC Page WA58INOTON SU5LlC?OWER CALCULATIONCOVER SHEET 4P KPPLY SYSTEM tP'e eNo Project Page Cont>d on Page WNP-2 Discipline Calculation No.
MS-RPV-3 ME-02-98-04 MATERIALAND Quality Class WELDING 1 Remarks Title/Subject FRACTURE MECHANICS EVALUATIONOF N1 SAFE END Purpose A fracture mechanics evaluation was performed to evaluate a planar indication found during in-service inspection of ISI weld number 24RRC(2)A-1. The indication is on the inside surface of the safe-end and is located at 5:00 o'lock when looking downstream. The indication measures 3.52 inches in length and 0.29 inches deep in a pipe wail that is 2.0 inches thick. The indication exists in SA 336 Class F8 forged type 304 stainless steel safe-end. The size of the defect exceeds the ASME Code Section XI Table IWB 3514-2 allowable and thus requires an evaluation per paragraph IWB 3640 of the Code. The following calculation provides a comprehensive presentation of the fracture mechanics model, lied loads (stresses),and Code evaluations.
I C~c e No C IA 0 a.rut+
.4~54.,~:e!..>"s'4<
'< '"'sijsy"?g>/~vs: '<" ' '
4<<>~~ j~"+@0"I?jÃcrg"r~ zi "<>;",<<>r>>
r 'a ..o '+s .::'r<>>>()~i<(sj?>>< ":."':i>'0>'<r> ~ <'/Ãr'">><>>kl '
c.5i, Pm>P. >,-:.).A.":,.-..::..CALCU TfOM,REVISION RECORDSiNC>rib'..2 >
.,5 .>'c,;:.wS.< ..:,./@,~44 REV STATUS/ REVISION DESCRIPTION INITIATING TRANSMITTAL NO. F,P,ORS DOCUMENTS NO.
0 F Initial Issue PER 298-0600
@~g@<~~~g~mg INN jbjÃQYN'y'~i~"'+SMF~giN$%!IPERFORS!ANCENERIFt CATtOMIRECORD'INF~k@Nr'WP)VAFMRZ8%%'eXNMCy@
REV VERIFIED BY/DATE PERFORMED BY/DATE APPROVED BY/DATE NO.
0 To Etwin, CJ Study Calculations shall be used only for the purpose of evaluating alternate design options or assisting the engineer in performing assessments.
ses-58645 R4 (5/ss)
I CALCULATlONPREPARTION rev. 1 Observer/Org: Observed/Org:
Date: Verifier. Calculation No:
Requirements Points Based on Initial Submittal of Calculation for Verification Scored Importance Total 0-10 Factor Points Legibility (cianty, reproducible), Grammar, Spelling and use/definition of abbreviations de uate Detail in discussions understandablitit 7 3 21 Clear statements of Pu ose, Methodolo, Out ut Summa 7 2 14 Relies on previously approved analysis to reduce work and review 18 requirements (Deduct 5 points if previously approved analysis is re eated Inputs fully referenced or described, external references and internal 10 3 30 cross-references are correct and Inputs/Outputs are properly identified on "Reference Cross-Index RMCS In ut Sheet" AII assum tions clearl stated and, as a ro rlate, ex lained 10 2 20 Accuracy/Consistency of data and information throughout calculation 21 units su lied and conversions of data correct Computer codes identified (names, revisions, V&Vstatus, source 10 20 Listing as appropriate), Computer outputs included and readable microfiche is readable If N/A, score as a 10 Anal sis corn lete and technicall ade uate 10 30 EDP2.15 Re uirements Administrative Re uirements Satisfied 10 2 20 Impacted calcs are properly identified on the "Calculation Output 10 30 Interface Documents Revision Index" form Total of column 95 27 232 Deduct one point for each item requiring correction Percent Score Scoring: 7-8 considered acceptable, 5 major problem area (Total Points)*1 00 86 (Total Possible)"1 0 A:i-ME1D55.XLS
Page Cont'd on Page CALCULATIONINDEX V o I> sUpprv mraM Calculation No.
ME-02-98-04 Revision No.
0 ITEM PAGE NO. SEQUENCE Calculation Cover Sheet 1.000-Calculation Index 1.100-Verification Checklist for Calculation and CMR's 1.200-Calculation Reference List 1.300-Calculation Output Interface Document Revision Index 1.400-Calculation Output Summary 2.000-Calculation Method 3.000- ~. GG~
Sketches 4.000 -. 9.ooZ Manual Calculation 5.000- d. oi APPENDICES:
Appendix A Pages Appendix B Pages Appendix C Pages Appendix D Pages Appendix Pages Appendix Pages Appendix Pages Appendix Pages 968-25278 R2 ran)
E WA5HINGTON tUlLIC tOWSR VERIFICATIONCHECKLIST FOR Page Cont'd On page IJ SUPPLY SYSIPM CALCULATIONSAPG) CMRs /i Qbj4 /.3OO Calculation/CMR ME-02-98-04 Revision 0 was verified using the following methods:
P Checklist Below Alternate Calculations Checklist Item Initial Clear Statement of purpose of analysis Methodology clearly stated and sufficiently detailed and appropriate to proposed application Logical consistency of analysis
~ Completeness of documenting references
~ Completeness of documenting and updating output interface documents Completeness of input Accuracy of input data Consistency of input data with approved criteria Completeness in stating assumptions Validity of assumptions Calculation sufficiently detailed
~ Arithmetical accuracy
~ Physical units specified and correctly used Reasonableness of output conclusion Supervisor independency check (if acting as Verifier)
- Did not specify analysis approach
- Did not rule out specific analysis options
- Did not establish analysis inputs
~ If a computer program was used:
- Is the program appropriate for the proposed application?
- Have the program error notices been reviewed to determine if they pose any limitations for this application?
- Is the program name, revision number and date of run inscribed on the output?
- Is the program identified on the Calculation Method form?
If so, is it listed in chapter 10 of the Engineering Standards Manual?
Other Elements Considered
~ If a separate verifier was used for validating these functions or a portion of these functions, sign and Initial below.
Based on the foregoing, the calculation is adequate for the purpose intended.
Verifier Signature(s)/Date Verifier initials
'l 968-25280 Rt (348)
e C
~ .
PAGE CONT'D ON Q+p SUppLy SASSIER CALCULATIONREFERENCE LIST GO PAGE CALCULATION NO ~
ME-02-98-04 REVISION NO ~
0 ISSUE DATEi SEQUENCE DO&IMENT NOo AUTHOR EDITIONS TITLE NO ~
OR REVISZO Failure 2.23 NASCRAC Manual Analysis Associates Supply System 5-14-98 Ultrasonic Examination Data R-R13-031 Sheet EPRI 1986 Evaluation of Flaws in NP-4690-SR Austenitic Steel Piping NRC 1988 Technical Report on Material NUREG-Selection and Processing 0313,Rev.2 Guidelines for BWR Coolant Pressure Boundary Piping ASME 1990 ASME Section XI, Nonmandatory Fig C-3210-1 Appendix C Burns 6 Roe 5/7/76 Hanford ZI 251" BWR Vessel T9,S9,F9 Stress Report T9,S9,F9 Recirculation Outlet Nozzle ASME 1989 ASME Section XI ZWB-3640 S.T. Rolfe 1977 Fracture and Fatigue Control in J.M. Barsom Structures ASME 1986 ASME Section ZZI, Appendices Appendix I Table Z-2.2 10 Structural March The Effect of Radiation on the SZR-97 095 Integrity 1998 Fracture Toughness of Austenitic Stainless Steel Base and Weld Material J.F.Harvey 1985 Theory and Design of Pressure pg 61 Vessels 44468 (I 0189)
WA58INGTON FUlLIC?OWSR CALCULATIONOUTPUT INTERFACE Page Cont'd On Page DOCUMENT
. 2goO Ado 43 SUPPLY SYSI'EM REVISION INDEX Calculation No.
ME-02098-04 pared By/Date Verified by/Date Revision No.
om Elwin 23 5p fg 0 The below listed output interface calculations and/or documents are impacted by the current revision of the subject calculation. The listed output interfaces require revision as a result of this'calculation. The documents have been revised, or the revision deferred with Manager approval, as indicated below.
CHANGED BY CHANGED DEFERRED DEPT.
AFFECTED DOCUMENT NO. (e.g., BDC, SCN, CMR, Rev.) (e.g., RFTS, LETTER NO.)
None MANAGER'equired for deferred changes only.
558.25285 R 1 (3$ 8)
Page Cont'd On Page WAsmlliGTON tUlLIC POWRR CALCULATIONOUTPUT
SUMMARY
e os od k3 SUPPLY SYSIXM Calculation No.
ME-02-98-04 ussion of Results Revision No.
0 ree computer runs were use d to evaluate the indication in the N1 nozzle safe-end. The first modeled th e indication using the normal operational loads of the system.
The second model used three transients that could possibly occur in one year interval These transients were
~
the thermal discontinuity stress, OBE and SSE. This model was used to determine the crack growth expected from the fatigue loading at different crack depths allowing determination of when the cracking would become a significant contributor to crack growth. This allowed the determination that the crack growth would only become significant at the end of the interval selected for the next inspection.
The third model used the adjusted crack length (20:1 ratio) as required by NUREG 0313 Rev. 2 for the end of the IGSCC crack growth at R 16 as input. The required fatigue cycles for OBE and SSE were than applied to this crack dimension to determine acceptability for the interval.
The results of the computer runs are as follows:
The indication will grow to a depth of 1.068" by R 16 if IGSCC is, active and the fatigue cycles are experienced, In comparing the results to the 1989 ASME Section XI Code Tables IWB-3641-5 and -'6. Indication is acceptable for continued operation until R 16.
Conclusions Taking into account the following conservatism's:
- 1. The weld residual stress distribution used is for an as welded component. The stainless steel safe-end to nozzle weld had MSIP performed on it during R 9. The distribution should be compressive at the ID.
- 2. The stresses are conservatively high due to the use of OBE stresses for steady state thermal. Also the pressure stress used is the hoop stress not the axial pressure stress.
It has been determined that WNP-2 may operate until R16 before reexamination of the nozzle to safe-end weld to occur. The evaluation demonstrates under the worst imposed loading conditions the flaw meets the eptance criteria of the ASME Section XI IWB-3641-5 and 3641-6. The main fracture mechanism that will opagate the fiaw is intergranular stress corrosion cracking. If the IGSCC phenomena is active the indication will increase in depth to 1.068 by R16. which is less than the ASME Code allowable.
868 18652 R2 (3/98)
Page Cont'd On Page WA58lNOTON NQLlc?OWSR C.'AI,C.'IJI,ATION MFTHOD Sr~ a k3 SUPPLY SYSILlM Calculation No.
ME-02-98-04 red By/Date Verified by/Date Revision No.
.Erwin 0 Analysts Method (Chectt appropriate boxes H Manual (As required, document source of equations in Reference List)
H Computer Q Main Frame .
H Personal H ln-House Program Q Computer Service Bureau Program 0 BCS 0 CDC 0 PCC 0 OTHER 2 Verified Program: Code name/Revision NASCRAC 2.23 Q Unverified Program: Document in Appendix B Approach/Methodology REV.
BAR Flaw Evaluation roblem ing the performance of Inservice Inspection of the reactor vessel RRC A loop an indication was discovered in the heat affected zone of the 24 inch RRC suction nozzle IN1A) to safe-end weld 24RRC(2)A-
- 1. The indication is on the inside surface of the safe-end and is located at 5:00 o'lock when looking .
downstream. The indication measures 3.52 inches in length and 0.29 inches deep in a pipe wall that is 2.0 inches thick. The indication exists in ductile SA 336 Class F8 forged type 304 stainless steel. The design minimum wall based on faulted pressure is 1.01 inches. The remaining ligament in the safe-end is 1.71 inches.
The indication has existed for some time. Due to changes in the ultrasonic techniques and technology the ability to detect material variations and conditions has increased. An example of this increase in sensitivity is demonstrated in this examination. The same weld was examined during the R9 outage and no indication was detected at that time. However, using the new GE ultrasonic data system the same data tape was reviewed from the R9 outage and it was determined that the same indication existed at that time. The new R13 data output and the R9 data output were compared and the indication shows no change in depth or length that is not within the inaccuracies of the equipment. The indication has been in the system since at least R9 with no change in depth or length.
The indication is required to be evaluated as an IGSCC indication even though it shows no IGSCC cha ractreistics.
Flaw Evaluation The linear indication was evaluated using the NASCRAC computer code developed by Failure Analysis sociates. This code usesstressfieldinfluencefunctions asthe basisforfiawpropagation. The NASCRAC el selected is a shell element containing an elliptically shaped circumferential flaw. The model is identified as in the NASCRAC manual. This particular model includes three crack growth degrees of freedom encompassing the respective circumferential and crack depth coordinates. The evaluation was performed using conservative linear elastic fracture mechanics principles,
page Coned on page WA8$ 1NGTON PalLlc POWlk CALCULATIONMETHOD 3,+G I 3 rO'~W Q> SUPPTli sys~gg CONTINUATIONPAGE Calculation No.
ME-02-98-04 Revialon No.
0 e modeling applies the requirements identified in NRC Generic Letter 88-01. The flaw was evaluated as an tergranular stress corrosion crack using the crack growth rate equation provided in the generic letter. The weld residual stress distribution provided in the letter was also used even though the weld in question had Mechanical Stress Improvement (MSIP) performed on it in 1994. The weld residual stresses are developed from room temperature yield for 304 material (30 ksi) as the normalization stress outlined in the generic letter. The flaw aspect ratio was reviewed and compared to the requirements of NUREG-0313, Rev. 2. The aspect ratio was determined to be 12:1 which requires correction in length as the crack grows until an aspect ratio of 20:1 is exceeded. Therefore, the final crack growth aspect ratio was corrected manually to comply with the requirements of NUREG%313, Rev. 2. The correction for aspect ratio was performed at each Refueling outage time period based upon the computer output for the IGSCC model. These intervals were determined as follows:
R 14 will occur in approximately 260 days, R15 will occur 260 days, R16 will occur 500 days after startup from R15 based on 18 month reload. The flaw length and depth from the R16 corrected value was then used as input into the fatigue model, The fatigue model used one year of expected upset and faulted conditions as required by the Code to assure that the crack will remain within the Code allowable limits and NRC requirements.
Three input files were used to perform the IGSCC and fatigue evaluations. These files were:
N1IGSCC.IN IGSCC for normal operations N1FAT.IN Fatigue including one year of OBE (300 cycles), SSE ( 1cycle) and thermal discontinuity ( 1cycle)
N1FAT1.IN Fatigue incorporating R16 corrected crack length The following assumptions and inputs were used in developing each of the models.
II Models: The flaw model used was 703 for a semi-elliptical (circumferential) surface crack in a cylinder. (1) aw Dimensions N1IGSCC,IN The crack used was 3.52" long and 0.29" deep. The half crack was calculated taking 3.52" and N1FAT.IN dividing it by 2 to yield 1.76". (2)
N1FAT1.IN The crack length for this model was the results of the 20:1 aspect ratio required by the NRC for IGSCC cracks. The value used is Rom the crack depth for 1020 days ofIGSCC growth that would occur by R16. The values used in the model were a length of 19.14" and a depth of 0.957'. The half crack was determined by dividing the length by 2 that results in a value of 9.57'.
Crack Growth Laws N1IGSCC.IN The Paris equation used for IGSCC growth was that provided in NUREG-'0313 Rev. 2. The (4) equation used:
359E 8(~) 'n k ni Pin N1FAT.IN The crack growth rate for fatigue in BWR water environment was determined using the following N1FAT1 IN ~ Paris equation: (3) 6.155E-18(~) in psi gin N1IGSCC.IN The tK~ value used was 10.0 or 10000 for the fatigue N1FAT.IN N1FAT1.IN 988-25291 R1 (Mia)
~ I
~
~ ~
~ ~
<Jre~e~~ewi ~ ~
N O Q I ~ ~
Q ~ I O I . ~ I' Q
I I I
~ I
~ t ~
6I I 'I
~ '
II
~ I I
5-54 5 Cradle Geomet Model Libraryin NASCRAC Software 5.1.26 Semi-Elliptical (Circumferential) Surface Crack in a Cylinder FORTRAN Option Model Feature Variable Featured Model Index Number KRKTYP ?03 Number of Degrees of Freedom KRKDOF 3 Crack Front Shape Semi-Elliptical Finite Width Effects Yes InQuence Function Yes Variable Thickness Effects IVTHIC No J-Integral Solutions No Data Input Description FORTRAN Input Input Description Variable Format Remarks Variable Thickness IVTHIC Tabular Not Applicable Initial Crack Size al AINITL(1) Constant a2 AINITL(2) Constant a3 AINITI,(3) Constant Body Widths WIDTHS(1) Constant Wg WIDTHS(2) Constant ) Terminate W3 WIDTHS(3) Constant ) Analysis Only r WIDTHS(4) Constant Crack Position Xc CENTER(l) Constant Yc CENTER(2) Constant Crack Orientation CRKANG Constant Stress Input cr(x) Equational Tabular
~-(~ v) Equational Tabular
~K-II Limits: 1 < aq+ as/aq < 20; 0.0 < aq/t < 1.0 Accuracy: approximately 10/o for 0.0 < aq/t < 0.8 and 1 < a2+ as/aq < 12 4$ sUEKi Siij,~
CALC: -o4 8 Version 2.2 PAGE ~~~s+~u BY: DATE: S VERIFIED. DATE: f 8
5.I Libr of K- and J-Solutions Model Descri tions 5-55 703 c (x,y) s I
I x a2 I
I
~/
t r a> x I
I a I
Xitilrnxan tCmliC Vow-"i
~ "P. $ "- IP2$ %$ ! $ ~y., ~
i7~p CAP~". 4 ".OZ-etI-0 CORi GK o eY:
, YERtFtE~: DA,E:War NASCRAC User's Manual Version 2.2
Page Cont'd On Page MANUALCALCULATION eo ~era r k9 SUPPLY SYSIRM Catculation No.
ME-02-98-04 Prepared By/Date Verified by/0 e Revision No.
M. Erwin 0 FATIGUE CRACK GROWTH RATE BWR ENVIRONMENT (3) da/dn =C e E e S e (LK)',n
= Material constants, C =2.0 E-19,n = 3.302 S = R-ratio correction factor = (1.0 - 0.5 R')
E = Environmental factor (1.0, 2.0 and 10.0 for air,PWR, and BWR environments, respectively).
dX = Kmax - Kmin, psi in Assume R-ratio = .7 C e E e S= 2.0E-19 e 10.0 [1.0-0.5 (.7) ]
= 2.0 E-18 e [1.0 - 0.5(.49)]
= 2.0 E-18 * [.755]
= 2.0 E-18 e 3.07
= 6.155 E-18 THEREFORE da/dn = 6.155 E-18 (dX)'or psi ~in
0
' n I
Page Cont'a On wASKIKCTCN toaLtc towaa iS soppLy msrtsr MAMJALCALCULATION -06 Calculation No.
Page 5. ~ g~
ep dB /Da Verified By/Date
-e -e/
Revision No REV.
BAR The purpose of the calculation is to determine the bounding stress in the Recirculation outlet nozzle N1 at safe end to nozzle weld.
Actual loads at the nozzle due to the pipe are lower than the allowable loads provided in the reference documents listed below. Actual pipe loads are available in calculation 8.14.107.
References:
- 1. Hanford II -251 BWR Vessel Stress Report Sections T9,S9,F9 Recirculation Outlet Nozzle.
- 2. Drawing.732E143, Purchase part Reactor VesselMPL item No.
B13-D003
- 3. Drawing 761E716, Reactor Vessel Loadings Recirculation Outlet:
Maximum Allowable Nozzle Loads for Evaluation:
H (kips) M (inch kips)
Design Mech. Load 0.0 5850 Dead Wt. 58.50 1580 Seismic Pri 164 2950 Seismic RFE 164 2950 Thermal RFE 292 7020 The above moments are applied at the end of the safe end. The weld of concern is the safe end to nozzle weld which is 9.75 inches +/- 1/16 inch from the load application point.
Nozzle Design Pressure: 1250 psi Nozzle Faulted Pressure: 1375 psi Nozzle Loads for Recirculation Outlet Nozzle from Calculation 8.14.107 which includes power uprate and snubber optimization of the recirculation piping.
Condition Force - Ibs Moment - inch kips Primary 5552 167.408 Secondary 34431 1805.391 Primary (Faulted) 25481 1066.453 968.18694 A1 i6/93)
~ o II ~ ~ ~
~ ~ ~ ~ ~
~ ~
~ ~ ~
~ ~ ~ I ~ ~ ~ ~ ~ ~
g a ~ a
~
gig RSI
~ ~ ~
RE RK IR
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~
<e '" 'e 1 ' C I J W ~
Pago Cont'a On wASNtNOTOM tuattc powla SUPPLY SYSTEM MANUALCALCULATION 0 Calculation No.
Pago Q,Oo5 Vodfiod By/Data
-- oQ- h'-o <
<As Rovislon No. REV.
B/tR Mdwt. c
~ dwt '=
o -dwt = 0.286 ksi l mom Upset Loads including Thermal The GE load combination for RPV nozzles takes the maximum of eight different combinations which include thermal, obe, obe displacements, turbine stop valve closure, srv, and srv inertia.
M pbe '= 1806 + 34 5'Z M pbe = 2.142 10 3
in - kips M pbe.c
~obe Ps l < pbe = 2.76 ksi mom Faulted Loads:
The GE faulted loads combination does not include thermal bending on the nozzle.
Since the upset load combination includes thermal, it is conservatively added to the faulted loading without removal of the dynamic upset loads.
M sse .= 1067 + 25.5.Z + M pbe 3 -
M sse = 3.458 10 in kip Msse c
~ sse '=
o = 4.455 ksi l mom 966 16694 Rt {6/93)
C t
I 0
) ~ f 4 h, e
Page Cont'5 On WA5HINOTON tuatlC toWaa SUPPLY SYSIZM MAXUALCALCULATION 0 5 No Paoa 5-oat'Calculation VeNied Sy/Date
-OZ- 4t Y- 0
<~as Aavicion No.
Determine the discontinuity stresses due to the attachment of the stainless steel safe end to the carbon steel vessel nozzle. The vessel nozzle has a 3/8 in inconel butter on the surface and then is jointed to the safe end with an inconel weld. Thus there are three different materials to be evaluated for thermal growth.
Nozzle Forging - SA-508 CL 2 (3/4NI-1/2Mo-CR-V)
Coeffiecient of Thermal Expansion - Group A Materials at 550 F 7.34X1 0"-6in/in/F Modulus of Elasticity - 27.0X10"6 psi Safe End- SA-336 F8-(18CR-8Ni) Group G Coefficient of Thermal Expansion - Group 9.45X10"-6 in/in/F Modulus of Elasticity - 25.55X10"6 psi.
lnconel Weld Metal: SB-167 N06690 (58 Ni -29Cr - 9Fe)
Coeffiecient of Thermal Expansion - 8.13X1 0"-6in/in/F Modulus of Elasticity - 28.2X1 0"6psi Check nozzle to inconel thermal discontinuity.
27.0 10 + 28.2 10 7 Eab '= E ab = 2.76 10 psl
-6 ua l= 7.34 10 ab '= 813'10 Ta .= 550 - 70 Tb. 550 70
~tdis'= Eab'a Ta ~bTb 4
G tdis 1,047 10 psi Nozzle to safe end Check the inconel weld to safe end discontinuity.
25.5 10 + 28.2 10 7 Eab '= E ab = 2.685 10
-6 aa '= 9.45'10 u b:= 8 13.10 968-18694 Rl i6/93)
Page Cont'a On WAanlNGTON tuaQC FOWaR 4% sUppLy svsreu MANUALCALCULATION C ooc Page No.
Verified By/Date A/w'alculationoa- -o 9
+is/ Revision No.
C5 REV.
8/tR Ta. 550- 70 Tb .= 550- 70
+ tdis .= E ab' a.Ta ub.Tb cr = 1.701 10 4 safe end to inconelN/eld.
td s Thus the maximum discontinuity stress is between the stainless steel safe end and the inconel weld metal.
The original vessel stress report provided calculation of the stress concentration factors at the locations of tapered transitions in the nozzle.
There was no stress concentration listed for the joint that we are evaluating.
Since the weld joint between the safe end and the nozzle is a flush weld between two equivalent diameter cylinders, we can use the stress indices from a flush weld in table NB-3683.2-1. The table lists C3 as 1.0 and K3 as 1.1.
Thus for determining peak stress at the material discontinuity, the C3 and K3 indices are applied.
~ dis '= '~ 1 tdis 1000 G dis 18 713 ksi Summary of Safe end to nozzle stresses:
Design Pressure Stress = 7.790 ksi Deadweight Bending Stress a dwt = 0.286 ksi Upset Primary plus Sec. Bending Stress o obe = 2.76 ksi Faulted Bending Stress, includes thermal, deadweight, obe and sse.:
o sse = 4.455 ksi 966.16694 Rl <6/93i
0
.-4 8 II ! f
Page Cont'a On 4$ SUPPLY SYSIXM MANUALCALCULATION . 00> Page Calculation No.
Verified By/Date
--0 -9g- o</
Revision No.
Thermal Discontinuity Stress at the Carbon To Stainless Steel Intersection:
o'is 18 713 ksi Stresses classified as bending stresses above are based on the outer fiber stress to maximize the magnitude. Bending stress on the inner wall is obtained by factoring the stress by 10.84/12.75. Stresses though the wall thickness are linear between the minimum on the inner wall to a maximum at the outer wall.
968-16694 R1 i6/93)
I Smog'ont'd Page pn Page MAMJALCALCULATION I> supptv svstm cetculation No.
ME-02-98-04 Prepared By/Date Verified by/Date Revision No.
T.M..Efwin 0 Weld Residual Stress Calculation for through wall thickness based on NuReg 0313 Rev 2 methodology. (4)
P Definition of terms:
S = polynomial coefficients e = percent of through wall thickness x/t R = ratio of residual stress to room temperature yield of 30 ksi for stainless steel.
x = Point measured through wall from ID to OD.
t = Thickness of 2.00" o', = The room temperature yield strength of stainless steel 30 ksi.
o'= The calculated residual stress at location x through wall err + R = cr .
0.0 0.1 0.2 1.0 0.3
-6.910 0.4
$ o- 8.687 i:= 0...4 j:= 0...10 05
.480 0.6
-2.027 0.7 0.8 0.9 1.0 J'r R:=~s I
s/
R = ~J at the% thickness, ref s above and crt 30 ksl.
/~r 1.0 0395,
-0.042
-0.321
-OA57
-0.47 RES:= R 30 ksi RES is the weld residual stress
-0.385
-0.232
-0.044 0.138 027
)i 1
k I Y
0
REPORT NO.:
EXAMINATION
SUMMARY
SHEET 'K2
'-, -'E-;Nuclear Energy PROJECT: PROCEDURE'EV~ FRR:~fHP29i+2 1G 80 - 13 SYSTEM:
WELD NO.:
CONFIGURATION:
REV~
REV'RR:
ERR:~
~
EXAMINER:
EXAMINER:
EXAMINER:
LEVEL: ~t LEVEL: ~ WELD VFPE:
CTMT OPT 8 CIRCUMFERENTIAL OUT QVT NO.(S)'AL Q LONGITUDINAL LEVEL: OTHER DATA SHEET SHEET NO.(S):
During the automated ultrasonic examination of the above referenced weld, one (1) reportable ID connected planar indication was recorded with the "SMART 2000" examination system utilizing a 45'hear wave, and 35', 45', and 60'efracted longitudinal (RL) wave search units.
This indication has the following parameters:
Ind. Ind. Ind OD ID Thru Wall 'Remainin Flaw Location Indication No. Start Stop Length Len th Dimension Li ament (Side of Weld) Orientation 28.5 32.7" 4.20 3.52 0.29 1.71 DNST (Safe End ) Circumferential "Remaining ligament and thru-wall dimension information is documented utilizing the measured wall thickness (2.00 ) from the safe-end side of the configuration.
Indication length and thru wall dimension was determined utilizing the 45'hear wave search unit. A component ID/OD ratio of 0.839 was utilized for determination of ID length. This ratio is based upon a measured component circumference of 78.0 and a measured material thickness of 2.00".
Indication Characterization:
This indication provides substantial ultrasonic response from both the 45'hear wave and 45'efracted longitudinal wave (RL) search units. The signal characteristics observed are not indicative of typical IGSCC indications, however the axial position of the indication is distinctly within the heat affected zone (HAZ) of the safe end component.
Observable sound scattering prior to impingement at the inside diameter surface provides ultrasonic responses similar to a weld repair region.
g EXAM COMPLETE Cl PARllALLYEXAMINED(EXPLAIN IN COMMENTS) E~F EXAM COMPLETE IN COMBINATIONWITH CODE COVERAGE ADDlllONALDATA SHEETS: N/A OBTAINED:
No. OF RECORDABLE INDICATTONS~{ILD' COMPARED 'PSI NISI REPORTNO.ISl: R-R9%17 NO CHANGE
'll OE EXAMINA RESuL: 0 ACCEPTABLE MNNACCBFTABLE NO OFNBFORTABIEINOICAOONB~
~E ~&~cd LEVEL DATE UM BY UTIUTYR IEW DATE PAGE~OF:~
GE REIIIBWEO EY ~ LEIIEL GATE ANII REVIEW EGEBE MfEG E EV. ~
REPORT NO.:
EXAMINATION
SUMMARY
GE Nuclear Energy CONTINUATIONSHEET SYSTEM:
PROJECT:
WELO NO.:
CONFlGURATION:
The 60'L search unit provided limited ultrasonic response during the automated examination. This can be partially attributed to the OD surface conditioning (machining) within the area of the required setback distance for this examination angle. Manual 60'L re-looks in this area provided an increased but intermittent degree of detectability, and insufficient depth sizing information.
Supplemental manual examinations were also performed in the indication area utilizing 45'hear wave and 70'L (WSY 70) search units. The 45'hear wave search unit did not identify any flaw faceting or axially oriented components from the indication, and provided a rapid fall off in signal amplitude when skewed away from perpendicular. The WSY 70 search unit did not provide meaningful information due to search unit contact in efficiencies.
The indication is observable in r~valuation of RFO9 automated inspection data utilizing an enhanced data analysis software (Tomoview). The indication shows no noticeable signs of growth in either the length or thru wall dimensions. See supplemental report R-R13431-S for additional information.
The 45'egree shear wave also recorded non-relevant indications from both sides of the weld, as well as root geometry and refiectors from the inconel weld/butter material that have been further characterized below from the downstream side of the weld.
The 35'L search unit recorded non-relevant indications from both the upstream and downstream sides of the weld as well as reflectors from the inconel weld/butter material that have been further characterized below from the downstream side of the weld.
The 45'L recorded non-relevant indications from both the upstream and downstream sides of the weld, along with the previously mentioned planar flaw indication from the downstream side of the weld.
The 60'L also recorded non-relevant indications from both sides of the weld, as well as reflectors from the inconel weid and buttering material that have been further characterized below from the downstream side of the weld.
The upstream examination was limited to a "N/'imension of 1.80" from weld centerline due to the nozzle configuration.
A liquid penetrant examination was performed prior to the ultrasonic examination utilizing procedure QCl 3-3 Revision 5. This examination resulted in (3) three recordable indications. For further information, reference WNP-2 Liquid Penetrant Examination Report Number 2RRP-012.
Inconel butter indications:
Ultrasonic reflectors were recorded from the area associated with the inconel weld/butter material. These indications do not display signal characteristics indicative of IGSCC and have been interpreted as non-relevant metallurgical (acoustical interface) or fabrication process (welding discontinuity) indications. This resolution is based upon review of component radiographs and system fabrication and modification records. For additionai information refer to the ultrasonic data and indication plot sheets of this report.
UM YBY LEVEL DATE UTILITYRENEW 4P PAGE~ OF:~
GE REVIEWED SY LEVEL DATE II RENEW DA
$ .r I
'f
~ 0
~ (II ~ ~ \ ~ I
~ ~ I
~
I,
~ i I
~ ~ ) ~
ggggg 5585I5 0 I I 55IHE5 ~ ~ II l555I5 m II 0
p ii fg/
ll
GE Nuclear Energy INDICATION PLOT SHEET SITE: NNP PROJECT:
16WBQ =. Bf913 UNIT: 2.... REPORT NO 3 R-R13-031 SYSTEM: ~CIBCUlhIIO COMPONENT IO NO.:. 24BBC(2S:1 CONFIGURATION: NOZZLE ........ SB,f E END I I I I I I I I I I I I I I I I I I J
I E lCM I I I I C - I 2 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
t I I I
I I
I I
II I
I t
I I
I
-r I I
I I I I
I I
I' I
I I I-I t
I
--r I
I I I I
I I I I
I I
I' I
I I
I
'I I
I I
I I
I I I I I I I J I L J L I L J J J L J -l. J L J L L J L J L I L L I L-.
I I I I I I I I I I I I I I I I I I I I I I I I
I I
I-I I
I I
I I
I I
I I
I I
4
~ 4c,'
I I I
I r
I I
I I I I I
tt 4
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I.
tjI I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ~ I I I J
I
~
I I
I I
I I
I' I
L J I
I 2
I I I
~
I t
A I
- I EJ I
i --I-~-- I----t-1--)--
. k I
I L
I I
I I
I
~
J I
I I
I L
I I
J -
I I
I I
rI I
J I
I I
I' I
I I
I J
r-I I
L ~
I I
I I
I I"
I I
I I
I 1
I I
I I
I I
I I
I I
r I
L I I I I I I I I I I I I I I I I I I I I I I I I I I I - I I I I I I I I I I I I I I I "I I I I I I I I I I. I 4 I
I W
I I
I I
I.
I I
I I
I I
I I
I "I E. P I
I g
I I
I I
I q I
I I
I I.
/I 8
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I J L J I I I I I I I I I I
~ ~ ~
I I I I I I I I I I I I I I I I I I I I I I
1 I I I rI I
I t- I--r- I--'It-t ~--r-1--V r-1 r -t---- r-1 I I I I I I
I t -- I r r -1 I I -r-I J
I I
I J
I I I
J I
I J
I I I I
I L-J--- E IN-L tI J E I
I I
I L
I J
I I
I L J I
I I
I J
I I
I l.
I J
I I
I I
I I
E I
I L
I J
I I
I I
I I
L J I I I
I L
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
I I I
I I
I I I r I t
I 9
I I
I I
I I
I t
I 9
I I
~t I I
-tI I
8 I
I I
I-I I
I I I I
I I
I I I I
I I
I I
I I I
I I
I L- J I I L J I
I I I J
I iI I I
L I
J I
L I
J I
L J I I L
I J
I L J I I L
I I
J I
L I
I I
J I
I I
L J I
I I
L I
L I I '
I L J I I I
I I
L I
~--~r I I T~-r I I I 1
I
--r-1 r I I I I 1- -r-1--r-1" I I I I I r 1 I
r-1 I I I rI II I I I 1 I I I
I 1' r-1 I I -r-I Qr l. = z'x -x~ ~ - E- ~- - ~4~4+-IILr~jer J I I I I L J I I I
~
I 2 I I I L I L ~
I I I I I I I I I I I I I I I I r~l I I I I D~
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I t t I 8 I tI I t' 1 tI I I J
I I I
I 1 J I
J I I I
I l
I I
J---- J-- --L- - -- -I -- --4 J----\- J--L-J ----N- J I
I I I I J
I I I I I I I I I I
I I
I I
I J
I I
I L J I
I I
I I
t I
I L
I J-I I- L-I L
I I I I
L I
1 1 1--I--r 1- ~~t--r~~)r<1--s -4%- m 1 -r-1----r-1--J- I I I I I rI I I I t I r I r----r-1--I--r-I I I I I I I I I I I I I I I I I I I I I I I ~ I E I M 4 I 4 I I W 1 I 4 I I I I ~ I I I I I.
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I lI I I I I I
t I r
I I
I I I t' I tII I I'
I I
J I
I I
J I
J I
I I
I I I L
I J
I I
2 I
I J
I I
L I
I I
I I..
I I
E-J-I I
I I I I
-J-- L I
J--L I I I-I 1
I I..I I I J
I I
L I
J I
I I
I I I
L I
I I
I I
I I l L I
I J
I I
I I
I L
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I DRAW BY W/,O/qr GE REVIEWED BY aI LEVEL 5/tO 8 DATE PAGE: 4 OF: 22 IOEMMIEINEV11
Uce E Inspection Services
.-.Tofi 6)'45S'Pal'.0 63 Pl,:=: :PosIt iud C.Kait 4%:Pl&
VC-'Side.t8j'.45RBBl",'0'63PlN 28.
28.
- 32. /
~ I 3l.2 a 33.8::
28.52.r
~ e Comments WNP2 RFO13 Weld 24RRC(2)A-1 ghlDIÃpon/ 4 I N1A Nozzle to Safe End Weld Planar FlawiWeld Repair Indication
~l
Lice( c Illspecuoll oLlvlces Ca'.45S Pl'-Pl:0 63Pl;: :::": :"-.:..:::::::'-:'-.:::::
--:'-::::::-".-=.":-.::-':.:.'.': :-::--=::.-'--:-=':==-=-==---':==-'i
'.PiosihorTLC-StidK4%:P1ipl 5
i
?Ji.
- .VC-.Sxh.18)A5RP1$ Ht063P1='".
~
~ I r 1.6 in EhdQj 4%:P~]-,Pil!063 PltC~k;-.IRRKKRKRk-..:-'.k%X"",.
Comments WNP2 RF013 Weld 24RRC(2)A-1 moturrou 4 4-N1A Nozzle to Safe End Weld Inconel Butter Indicatton
Licen F Inspect(on Sennces
'A-8 ca'n.45SPl%:0:63 .T.op 10.
fs I
- VC S3ib (BJ45RPI&'.963Pl,.
8.1 in 31.7:I
.Eiid/0)"45S'.Q&!Q.G3;P1F",k gERRRRQRRk: =
ÃvM",'omments WNP2 RFO13 KA/QQ'@pe 4t. 3 Weld 24RRC(2)A-1 NIA Nozzle to Safe End Weld Inconei Weld Indications
~
I '
4
/ 7 ULTRASONIC SCAN DATA PRINT SHEET GF Nuclear Energy (AUTOMATEDWITH Smart 2000) 0 n1a 1z28:Aq 455: P1+P1 Q~Q~
98 88 78 68 58 48 38 28 Tl'473'2 18 tII 'id j t,r(e,le/rAPI 7 a,aeaaa
'a24ae i~i I~V4~4/g~ r"'~ r'"t I> re"tji g I a1a 1225:Ca P,455: P14 @jeer I
XP~2237 214~5,573 aX~333e 6.188 in Half Path Ag..22583 YP~47.221 771~55.ee3 47 aY~33.442 aa
~
'1, li'rr454 r(7"Irrr II.-P 4
Ia 72.
~ a.
34 eaa Paar ea 58.857 in -1.899 15.895 in Hal f Path 45'hear Root Geometry SITE'NIT: NO'ARCN PROJECT NO.:~mtlIO INDICATION NO.:~ PAGE:~ OF:~
REPORT NO.:~~31 WELD UNIT:~EEAB 204134 VT 13 ACV. I
REPORT NOJ INDlCATlONPLOT SHEET PROJECT:~ Mike SYSTEM: COMPONENT ID NO: CONFIGURATION I I I I I I I I I I I I I I I I I I L I J I I J I I I I I I I I I I I I I I I I I I I I I I I I I I I I' I I I I I I I I I I I I I I
I I
t I I
I I
rI I tI I r-t----r-w--r I I I I I I I I- 1 I I I
I I I I I
I I r I I I
I I'
I J
I I I I l
I I
J I
L I
L I
J I
I L
I J
I I
I
-LI I I L
I J
I I
I L
I I
L I
J I
I I
I I
I I
I L J I
I I I I
I I
I I.
I I I I I I I I I I I I I I I I I I I I I I I I I I
I 4
I I
I I
I I
I I
I I
I I
I I I I
I I
I I
I I
I I
I L 4 I KI L I
I I
I I
I I
I- I I
I I
I I J I
I I-I I
I I
I I
I I.
I I I I I I I I ~ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I' tI I I 1 t I Q I g t 1 I I t 1 1 I I I
I I
tI I I
I-- r I
L J I I L
I J
I I
l I J
I I
I L
I J
I I
I I
J I
I I
I J
I I
$ L I
I J
I I
I L
I I
I I
L I
I Jg I
I L J I
I I
J I
I I
I I
L I
J I
I I
I I
L I
I L J I
I I
I L
I L J I
I I
I I
I I
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
I I.
I 4--
I 4
I I
4 I
I I
tI I
I I I 4
I I I 4 4 NI l 4 I I I
I I
I /I< I I I
I I
I I
I I
I I
I I
I +
I I ~
I I
I I
I I I
I t I
I I
I I
I I
I I I I I/ I I I I I I I I
I I I I I I
I I I I I I I I I I I I L J I
I L
I l
I I
L I
J I I I l I "'
I I
I I
I I
I I
L I
1 I I I
I 1'
I I'
I I
'1 I I I
I I
I I
1 T I
I I I
1 0 I I
1 I 'I I
] I I
I 1
I I
I I
I I
T I
I t----r I I I
-r-1--I--r I I I I L L J I
I I J
I L J I
I J I
L J I
3 1.
I JQ L J
~
J I
L I I L J I
L I I L
I L J I I L
I L J I I I
I L
I 11 I I I I I I I I I I I 1/1 I I I
I I I I I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I I I I I I I I I ' I I I I I I I I I I I I I I I I I I I I I I
I I
t I
+ 4 I-I
+
I 4 I I I ~ I I I
I
+
I I I I I I I
I I
I t
I I I I I I I I I l
'I I I I I I L
I J
I l I I
I I
I L
I J
I l
I J
I I L J I
-I.-J I I L J I I L
I J
I L
I l
I I I L
I J
I I
I L
I I
I I
L I
J I
I I
I lI I L J I I L J I
I I
I I
--T- - Ir 1 I
~a I I I r 1 I
rI 1 I I r I I r
I 1
I I
I r I I
I r 1 I
r I I T
I rI 1 I
I I
I T I
---r-1--1"-r-I I I I I I I I I I I I I I I L J L I J I I I
I I
I I
I I
I I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
~ IT I
'It ~II~A%3l~) I I
I I
I I
I I
I I
I I
I I
I I
I I
I
~el I I I I tI 8
I I tI r t- -r-W--I--t---
I I I I I I I I I I I I I I I 1 I I'
I I I
I L
I J---
I L
I J
I l I I
I L
I J
I l
I J
I KJ I I P L I
J I
L I I L
I J
I L J I I I
L I
J I
I I
L.
I I
l I
I L
I J
I I
I I
I l.
I L J I I L
I I
I I
I L
I 1
I I r
I I
I I
r 1 I
- T-1--r I I
I I
I I
I 1
I I
1 I
I I
rI 1 I
I r-T-I I
I I
I 1
I 1
I I
I I
I T
I I
rI 1 I
I
--r I
I I
r I
I I
I I
I I
I I ~ I I I 1 4 I 1 I. 4 I 4 I J I I I I. 4 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I " I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
I I
I t I I tI I
I I I
I I
I t I I
I I
I
'I I
tI I I
I I
I r
I ~ I I tI I r I I I I I 'I I I I
I tI I I
I I I r--
I I
L J I
l-I I I l I
I J
I I
I L
I I I J
I I
I L
I I
I I
L I
J I
I I
L I
lI I I I I
L I
J I
I I
L I
J I
I I
I I I I
L I I L
I I I
I I
I L
1'AWN I
I I I I I I I I I I I I I I I I I I I I I I I I BY A/III/9P GE REVIEWED BY 2F LEVEL E/o//f DATE FAG¹ ~Q OF: ~
SOIVI ITIC Alt. 11
h Inspection bennces
-'O'-Scen'45BLPM2;0 G3&=-.='==.::..::.-'.: -..:.--. T.op Position CrScari'458LP2-:
- -9:
'I 31.r
- 31.I 31.1 in 31.7 i
) '45RL'P2-RM63'Pl <"-'-: 59QRKFaRKI;:
~
- End :
%he aI 31.r Comments WNP2 RFO13 Weld 24RRC(2)A-1 MAcavonl 4/
N1A Nozzle to Safe End Weld Planar RawlWefd Repair Indication
I 2 ULTRASONIC SCAN DATA PRINT SHEET GF Nuclear Energy (AUTOMATEDWITH Smart 2000) 0 n1a 1':Aq45RL: P2+R2 Q~(jg 98 88 78 68 58 48 a 2 4
'4 38 'aha
,A 4IA ~
68 28
ÃpehThal 18 II%1 lit II, v hit IlIL(~ I "lI Ig II IlII I)I'IP'0 'It III
~ha6845
((
8.888 5.684 in Half Path AE;. 6681
[g <<1a 122!l:C 8, 45RL: 82h [gP!] XX~2.386 XX~5.688 aX~3.382 5 2 22 88~8.hev v~ev.ee3
'v~wa aV ~47.838 8'a rg '!
",=~+el=+~~~ .
hhi~
a I P hIoaI6
~eaA 1 33 I 5" a ehh ahha 47.857 tn -1.899 15.895 1 n Half Path 45'RL Root Geometry SITE:
WELD NO 'ARCN UNIT:~ UNIT: PROJECT INDICATION NO.:~ma NO.:~ PAGE:~ OF:~
REPORT NO.:
80266 VT 13 8 CV. I
SITE: REPORT NOJ INDICATIONPLOT SHEET PRO JECTMQEIIQ= M&83L SYSTEM: COMPONENT ID NO. CONFlGURATION' I I I I I I I I I I I I I I I I I I L 4 I
4 I
I A
I I
I I
I I I I I
I I I
I I I
I 4
I L 4 I
I I
4 I
I I
---I- I 4~ I I I I I
I I
I
~4 I
I I
I I
I I
I I I
I I
I I
I I
I I
I I
I I ~
I I
I I
I I
I I I I
I I
I I
I s 6uQ I I
I I
I I I I I I I I I I I I tII I
I I
I I
I I
I tI I
I I
I I
I I
I I t I I I
r- .-- --r-I I
I I I I I I
I I
I I
I I I I I
I
't I
I I I
I I I I' I J I L I
J J I L I
J I
J J L J J J L L I
J I
L I
L I
J I
L I
1 I I L
I J
I L
I L J I
I I
L -II J--I--L I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
I-I I I I I 4
I I I-I 04m t I I
I I
I I I 4
I I
I I I
I I
I 4
I I
I I
I I
I I
I I I I I I I I I I I I I I I I I I I I I I I
I I
I I
I r
I I
tI I l I I I
tII I
I 1
I I
I 1 I
I I
tI I
I I
I I
r-t I
I I
I I
C 1 I
I I
I I
I I
I' I
I I
I
'1 I
I I
I I
t' I
I I
I tI I
I I
I I
t' I I I I I I I I I I I I I I I I I I I I I I I L J - J I I I I L
I J
I I I L J I I L
I L-J I I I
I' J I
I L L J I L L J I L I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I + I + I I I I + I I 1. I I 4 I I I I I I I I I I I I I I I I I I I J I J J I L J I I J L J 'Q I L J L J I L I I I I I I I I I I I I I I
~
1 I I I
I T'
I I
'1 I
I r" 1----
I I T r-1 I
T-a--r-1--g-r I I r----r-1--I--r-I I 'I I I I I I I I I I I I I I I I I I I I I L L J 4 4 L 4 L L J L 4 I L L J I L I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ~t I I I I I I I I I I
+-8-'
I I I tI 9 I-I I I I I- I 4 I I I I I I 1 I I I I I I I I I I I I I I J I L J I
L-J-I I J
I I
I L
I J
I J
I J
I L
I J
I L
I J
I IL I
J I
L I
J I
L I I L L J I I I
I L
I I I r
I r- --r-1--I--r Q~8 CGA.EL'LL~~
I I I I I I I I I I I I I I I I I I I I 1 I I
T I
1 I
'T I I T 1 r T l r 1 I I I I I
I I I I I I I
I L 4 I. I L I 4 I L I- 4 I L I
I I
I I I I I I I I ~ I I I I I I (Qg ~~I I I
I I
I I
I I
I I
I I I I I I
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I t
I I
I I
I I tI N
I I-I I tI 8 I
I I I tI 1 I
I I
I I I I
I I
tI I-I 1
I I
I I
rI I I
I I I J I L-J I I
L J J I
J L I
J I
L I
J I
-LI J L I
J L -LI L J L J L L J I L I I I I I I I I I I I I I I I I I I I I I I I I I I I I T I
I I
lI I I I r I rI 1
I r
I I I 1 '1 I
I I
I I
'T I
rI 1--r I I I r-I I
I r-1--I I I r -r I T
I I I- rI 4
I I I I I I
I 4 I I I
I
- 4. I-I I I
I-I I I
I I I 4 I I I -II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1
I I
I tI I
'1 I
I
~
I I
I I
t I I
I I II I O'
I I
I I
I I
I
't I I I
I I I I
I I
I
-rI I I
I I
I rI I I
I I
I t t I
I 1
I I
I I
I tI
--r I
't I
I I
I I
I' I
I l. J L J L J L 1 L J L 1 L L J I J I L I I I I I I I I I I I I I I I I I I I I GE REVIEWED BY LEVEL
~8/i6 ffL DATE PACE: M3 OF: ~
SONII IIT41 NIV. It
ULTRASONIC EXAMINATIONDATA SHEET GE.Nuclear Energy (AUTOMATED WITH Smart2000)
SITE:
UNIT:
'EPORT PROCEDURE NO.:
REVISION NO.
NO.:
DATA SHEET PROJECT NO.: FRR NO NO.'YSTEM:
WELD ID'HERMOMETERS/N:~6(} BATCH NO.'XAMEND:~~/ EXAM START~k2Z SCAN~10 SCAN DIRECTION~DhL GAIN(dB)~~ SCAN~9 SCAN DIRECTION'K2- GAIN(dB)~~
R LENAME(S):
EXAMINATIONRESUI TS: EXAMINATIONRESULTS:
No RECORDED INDICATIONS ROOT GEOMETRY COUNTERBORE GEOMETRYL Q
Q Q
ACOUSTIC INTERFACE INSIDE SURFACE GEOMETRY NONNEOMETRIC INDICATIONS I
QI No RECORDED INDICATIONS ROOT GEOMETRY Q COUNTERBORE GEOMETRY Q Acousmc INTEI+ACE I
Nr 1
BISIDE SURFACE GEOMETRY Not&GEOMETRIC INDICATIONS I( NON<ELEvANT LNoICAmoNs 5 OTHER: 8 NONRELEVANT INDICATIONS II OTHBL COMMENTS: COMMENTS:
SCAN:~. SCAN OIRKCTION~(OE(- GAIN(SS)~4.0 SCAN~12 SCAN OIRECTION~OH GAIN(ES)~g DISYJSIDE: FILENAME(S):
EXAMINATIONRESUI.TS: EXAMINATIONRESULTS:
QE No RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q No RECORDED INDICATIONS : ACOUSTIC INTERFACE
'OOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY : INSIDE SURFACE GEOMETRY I
v~ COUNTERBORE GEOMETRY NONWELEVANTINDICATIONS Q
5 NONNEOMETRIC INDICATIONS omIER:
Q COUNTERBORE GEOMETRY g NONAELEVANTINDICAmoNS 5
'ONNEOMETRIC INDICATIONS omIEIL COMMENTS: COMMENTS:
SCAN:~5 . SCAN DIRECTION~QMt GAIN(dB)~~ SCAN:~Q SCAN DIRECTION~~g GAIN(dB)EL FILENAME(S): FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
Q Ho RECORDED INDICATIONS Q Acousmc INTERFACE Q No RECORDED INDICATIONS I ACOUSTiC INTERFACE Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q COUNTERBORE GEOMETRY II COMMENTS:
NONWELEVANTINDICATIONS Q
Q NONNEOMETRIC INDICATIONS OTHER: I Q COUNTERBORE GEOMETRY NO~ELEVANTNDICATloNS COMMENTS:
L I
I omIEIL NON<EOMETRIC INDICATIONS LEVEL CASE G REVI D BY PAGE~ OF:~
ULTRASONIC EXAMINATIONDATA SHEET GE'Nuclear Energy (AUTOMATED WiTH Smart 2000)
SITE: PROCEDURE NO.: REPORT NO-'ATA UNIT: REVISION NO, SHEET PROJECT NO.: FRR NO,:
NO.'YSTEM:
WELD ID'HERMOMETERS/N:~gg BATCH NO.'XAM STARTMk2Z EXAM ENDI~R@I GAIN(dB)~~ SCAN~i I
SCAN~V I SCAN DIRECTION~QP SCAN DIRECTION~DE GAIN(dB):~Jl FILENAME(S):
EXAMINATIONRESUI.TS: EXAMINATIONRESULTS:
Q NO RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q NO RECORDED INDICATIONS P ACOUSTIC INTERFACE g ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY v~ COUNTERBORE GEOMETRY IN NONNEOMETRIC INDICATIONS Q COUNTERBORE GEOMETRY Q NONWEOMETRIC INDICATIONS Q NONAELEVANTINDICATIONS I) OTHER: 0 NONAELEVANTIND)CATIONS NI OTHER COMMENTS: COMMENTS:
I SCAN:~31 I SCAN DIRECTION~K% GAIN(dB)EIELQ SCAN~32 SCAN DIRECTION~Q26L GAIN(dB)~J)
FILENAME(S): R LENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
Q NO RECORDED INDICATIONS Q ACOUSTIC INTERFACE NO RECORDED INDICATIONS Q ACOUSTIC INTERFACE LJ ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY P INSIDE SURFACE GEOMETRY I COUNTERBORE GEOMETRY NONWELEVANTINDICATIONS Q
Q NONNEOMETRIC INDICATIONS OTHE' Q COUNTERBORE GEOMETRY g NONRELEVANTINDICATIONS Q
Q NONNEOMETRIC INDICATIONS OTHER:
COMMENTS: COMMENTS:
SCAN:~S,'CAN DIRECTION~K GAIN(dB)~$ SCAN:~$ SCAN DIRECTION~S GAIN(dB)~$
DISK/SIDE: FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS Q NO RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q NO RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRy Q INSIDE SURFACE GEOMETRY Q COUNTERBORE GEOMETRY P NO%GEOMETRIC INDICATlONS Q COUNTERBORE GEOMETRy Q NONNEOMETRIC INDICATIONS Q NONWELEVANTINDICATIONS Q OTHER: Q NONWELEVANTINDICATIONS Q OTHEIL COMMENTS: COMMENTS:
B R Bill 0 BY lEVEL PAGE~ OF:~
ULTRASONIC EXAMINATIONDATA SHEET GE Nuclear Energy (AUTOMATEO WlTH Smart 2000)
SITE: PROCEDURE NO.: REPORT NO REVISION SHEET NO
'ATA NO.'RR UNIT'ROJECT NO.: NO.:
EXAM START~225
'YSTEM:
WELD ID'HERMOMETERS/N:~~9 BATCH EXAM END:MEAL SURFACE~ COMPONENT:
NO.'XAMINATION SCAN:~39 ! SCAN DIRECTION~KML GAIN(d B)~J) SCAN~49 SCAN DIRECTION~KtE- GAIN(dB)~
FILENAME(S):
EXAMINATIONRESULTS; RESULTS:
'o RECORDED INDICATIONS OTHE'XAMINATION I I ACOUSTIC INTERFACE Q Ko RECORDED INDICATIONS Q ACOUSTIC INTERFACE
'OOT GEOMETRY 'NSIDE SURFACE GEOMETRY Q ROOT GEOMETRY P INSIDE SURFACE GEOMETRY
'OUNTERBORE GEOMETRY I
" NONWEOMETRIC INDICATIONS Q COUNTERBORE GEOMETRY Q Nok+EOMETRIC INDICATIONS I) NONWELEVANTINDICATIONS I) 5 NON mSVANTINOICATIONS It OTHER:
COMMENTS: COMMENTS:
SCAN:~$ , SCAN DIRECTION~S GAIN(dB)~lb SCAN~LEI SCAN DIRECTION~K GAIN(dB)~$
DISK/SIDE: FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
~i No RECORDED INDICATIONS Q ACOUSTlc INTERFACE Q ko RECORDED INDICATIONS Q ACOUSTIC NTERFACE P ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY
'OUNTERBORE GEOMETRY P NONZEOMETRIC INDICATIONS Q COUNTERBORE GEOMEIY P NONNEOMETRIC INDICATIONS
'ok-RELEVANTINDICATIONS 'OTHER: Q NONWELEVANTINDICATIONS Q OTHEIL COMMENTS: COMMENTS:
SCAN:~~. SCAN DIRECTION~S GAIN(dB)~lb SCAN:~S SCAN DIRECTION~S GAIN(dB)~$
FILENAME(S): FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
No RECORDED INDICATIONS I ACOUSTIC INTERFACE Q No RECORDED INDICATIONS Q ACOUSTIC INTERFACE ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY Q INSIDE SURFACE GEOMEIY Q COUNTERBORE GEOMETRY Q NONNEOMETRIC INDICATIONS Q COUNTERBORE GEOMETRY Q NowcEOMEmlc IMDICATIOMS P NOMRELEVANTINDICATIONS I 'THER; Q NOMRELEVANTINDICATIONS P OTHEIL COMMENTS: COMMENTS:
GE EVI D BY PAGE~OF:~
0 g1
ULTRASONIC EXAMINATIONDATA SHEET
":" GE Nuclear Energy (AUTOINATED WITH Smart 2000)
SITE:
NO-'ROCEDURE REVISION NO.'RR NO.: REPORT NO-'ATA SHEET NO:
UNIT'ROJECT NO.:
SYSTEM: EXAM START~
WELD ID'HERMOMETERS/N:~59 BATCH EXAM END:MR45 SURFACE~ COMPONENT: NO.'XAMINATION SCAN~19 SCAN DIRECTION~DhL GAIN(dB) SCAN~A SCAN DIRECTION~~ GAIN(dB)'LQ FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
I NO RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q NO RECORDED NDICATIONS Q ACOUSTIC INTERFACE I ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY g ROOT GEOMETRY Q INSIDE SURFACE GEOMHRY COUNTKRSORE GEOMETRY Q NONNEOMETRIC INDICATIONS Q COUNTERSORE GEOMETRY g NOHWEOMETRIC NDICATIONS N NOHWELEVAHTINDICATIONS Q OTHER g NOHRELEVANTINDICATIONS Q OTHER COMMENTS: COMMENTS:
SCAN:~~ SCAN DIRECTION UKH GAIN(dB)~2.9 SCAN~'CAN DIRECTION~DU GAIN(dB)~
DISK/SIDE: FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
~ NO RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q NO RECORDED INDICATIONS Q ACOUSTIC DITERFACE
'OOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY
~ COUNTERSORE GEOMETRY Q HONNEOMETRIC INDICATIONS Q COUNTERSORE GEOMETRY Q NONNEOMETRIC INDICATIONS 8 NONWELEVANTLNOICATIONS Q OTHER: g HDNRELEVANTINDICATIONS Q OTHER COMMENTS: COMMENTS:
l SCAN:~39 SCAN DIRECTION~KM GAIN(dB)~QJ) SCAN:~49 I SCAN DIRECTION~GG GAIN(dB)~4.0 FILENAME(S): FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
~ NO RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q HO RECORDED INDICATIONS Q ACOUSTIC INTERFACE
~ ROOT GEOMETRY Q INSIDE SURFACE GEOMEmY Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q COUNTERSORE GEOMETRY Q NOHNEOMETR)C INDICATIONS Q COUNTERSORE GEOMEIRY Q NONNEOMETRIC INDICATIONS g NOHRELEVANTINDICATIONS Q OTHER g NOHWELEVANTINDICATIONS Q OTHER COMMENTS: COMMENTS:
PAGE~OF:~
FINER MT47 0 EV. I 0
ULTRASONtc EXAMINATtONDATA SHEET GE Nuc/ear Energy (AUTOMATED WITH Smart 2000)
SITE: PROCEDURE NO.: REPORT NO.:
REVISION NO DATA SHEET NO.
UNIT'ROJECT 'RR NO.: NO.:
SYSTEM:
WELD ID'HE RMOMETER S/N:~~jg SURFACE~
BATCH,NO.'XAMINATION COMPONENT:
EXAM START~k2Z EXAM END:M~
SCAN~13 . SCAN DIRECTION~M GAIN(dB)E(2J) SCAN~S SCAN DIRECTION~~ GAIN(dB)~$
FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
~I NO RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q NO RECORDED INDICATIONS i l ACOUSTIC INTERFACE Q ROOT GEOMETRY )Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY . INSIDE SURFACE GEOMETRY I COUNTERBORE GEOMETRY I NONWEOMETRIC INDICATIONS Q COUNTERBORE GEOMETRY 'ON<EOMETRIC INDICATIONS g NONWELEVANTINDICATIONS I OTHER: ~ NONWELEVANTINDICATIONS ~ OTHER:
COMMENTS: COMMENTS:
~p SCAN: ~lb, SCAN DIRECTION~I'AIN(dB)~IA(I) SCAN:~$ SCAN DIRECTION~S GAIN(dB)~$
DISKISIDE: RLENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
l NO RECORDED INDICATIONS Q ACOUSTICINTERFACE Q NO RECORDED INDICATIONS ) ACOUSTiC INTERFACE
+ ROOT GEOMETRY IQ INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY ! INSIDE SURFACE GEOMETRY
~ COUNTERBORE GEOMETRY ~ NON<EOMETRIC INDICATIONS Q COUNTERBORE GEOMETRY 'ONNEOMETRIC INDICATIONS NONAELEVANTINDICATIONS '~ OTHER: : NONAELEVANTINDICATIONS OTHER; COMMENTS: COMMENTS:
SCAN:~!8 . SCAN OIRECTION Ml8 GAIN(dE)~M SCAN:~LB I SCAN OIRECTION~E GAIN(dS)~R FILENAME(S): RLENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
~ NO RECORDED DIDICATIONS ig ACOUSTIC INTERFACE L I NO RECORDED IND'ICATIONS 'COUSTICINTERFACE
~ ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY ~( INSIDE SURFACE GEOMETRY
'~ COUNTERBORE GEOMETRY Q NONNEOMETRIC INDICATIONS Q COUNTERBORE GEOMETRY I NONNEOMETRIC INDICATIONS
( NONAELEVANTINDICATIONS Q OTHER: LJ NONWELEVANTINDICATIONS 'THER COMMENTS: COMMENTS:
G REVI BY . LEVEL ATE PAGE~ OFI~
SCSRS MTA)T REV. (0
e ULTRASONlC EXAMlNATIONDATA SHEET GE Nucfear Energy (AUTOMATED WITH Smart 2000)
SITE: PROCEDURE NO.: REPORT NO.:
REVISION DATA SHEET NO.
NO.'RR PROJECT NO.: NO.:
SYSTEM: lllthK EXAM START~ZZ WELD EXAM END:MRi9 ID'XAMINATIONSURFACE~ COMPONENT:
I SCAN~1Q . SCAN DIRECTION~hL GAIN(dB)~Q SCAN~0 SCAN DIRECTION'KM GAIN(dB):~Q FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
P No RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q No RECORDED INOICATIOHS P ACOUSTIC INTERFACE Qi ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY P
Q COUNTERBOREGEOMETRY II NONWELEVANTINDICATIONS P Q NONWEOMETRIC INDICATIONS OTHER: I Q COUNTERBORE GEOMETRY HON+ELEVANTINDICATIONS It HONCEOMETRIC INDICATIONS OTHER COMMENTS: COMMENTS:
SCAN:l~, SCAN OIRECTIOM~(OB GAIN(dS)~ILQ SCAN~~ SCAN DIRECTION~TH- GAIN(dB)~RLQ FILENAME(S): DISlQSIDE: FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
g No RECORDED INDICATIONS Q ACOUSTIC INTERFACE ~ No RECORDED INDICATIONS Q ACOUSTIC INTERFACE LJ ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY COUNTERS ORE GEOMETRY Q NOHCEOMETRIC INDICATIONS Q COUNTERBORE GEOMEIY Q NONWEOMETRIC INDICATIONS N( NDNNELEVANTINDIcATIDNB P OTHER: g NONAELEVANT INDICATIONS Q OTHER COMMENTS: COMMENTS:
SCAN:~g . SCAN DIRECTION~IADH GAIN(dB)(IQ~ SCAN:~EIJ SCAM OIRECTIOM~(UE GAIN(dS)~
DISK/SIDE: FILENAME(S):
EXAMINATIONRESULTS: EXAMINATIONRESULTS:
P Ho RECORDED INDICATIONS Q ACOUSTIC IHTERFACE P No RECORDED INDICATIONS Q ACOUSTIC INTERFACE Q ROOT GEOMETRY P INSIDE SURFACE GEOMETRY Q ROOT GEOMETRY Q INSIDE SURFACE GEOMETRY P COUNTERBORE GEOMETRY P NONNEOMETRIC INDICATIONS Q COUNTERBORE GEOMETRY NI NONWEOMEIIC INDICATIONS Q NONWELEVANTINDICATIONS P OTHER: Q NONWELEVANTINDICATlONS Nt OTHER COMMENTS: COMMENTS:
o GE EVI 0 BY LEVEL A PAGE~ OF:~
c T
4 E I
FW.
O II.W, ULTRASONIC SCAN PARAMETER SHEET AGE:Nuclear Energy (AUTOMATEDWITH Smart 2000)
SITE: PROCEDURE NO ~
REPORT NO.
UNIT: REVISION NO,: DATA SHEET SHEET NO.:
NO.'ALIBRATION PROJECT NO.: FRR NO.:
SYSTEM'ELD ID'OTOR STEPS: CIR: ~KGQCIO TRA:~XQRLirL WELD REFERENCE, (GE-ADM 1005): Lo: WO SEARCH UNIT(S):
DQ'E LENGTII:~ TRACK OIA~ ARMLENGTII:~
~
COMPONENT WELD lllACKLOCATION:
SCAN PARAMETERS SCAM SCANDIRECNOW~D SKEW:~ SCAM~ SCAMOIRECIIOII;~lQH SKEW: AE ISEgfIE~
START: ~ START:
SIEE: ~9 OFFSET: OFFSET:
RESOLUTION: ~B~ ~1&8 TRA'ESOLUllON:~Z ~E~ TRA'OTOR OIRI MOBtd8I DHYHIEE ROT MOTOR DIR: MQBLIS UIbEBSE SCANDIRECNOID~IQB SKEFA~ SCRIM~ SCAIIDIRECllOID~OIH ROT'CRIM~
SKEW~
START: START:
~
EumEEI~ EIIIE~
~Z OFFSET: OR: OFFSET:
~GAL ML1RH ROT'ESOLUTION:~BI" ~B TRA:
aR'ESOLUllON:
TRA'OTOR MOTOR OIR: ~ERAL DHYEBSE DIR: ~Bhlhl ~VERSE KDANCIREDNCW~ EKEw~ SCAIM~ SCANDIRECOON:~
ROT'OAN:~
SKEiM~
~~ ~ ~
START:
OFFSET:
RESOLUDOID~
DIIL: ~~ ~ ROT'lla CIII:
TIIA'OTOR OFFSET:
IIOTOROIIL: ~ ~ TIIA:
all'IESOLIIIIOII:~
~ROT'NER LEVEL DA E GER D BY LEVEL A PAGEI~ OF:~
~ I 0
ULTRASONIC SCAN PARAMETER SHEET GE.Nuclear Energy (AUTOMATEOWITH Smart 2000)
SITE: PROCEDURE NO.: REPORT NO.'ATA UN)T: REVISION NO.: SHEET SHEET NO.:
NO.'ALIBRATION PROJECT NO.: FRR NO.:
SYSTEM'ELDID'OTOR STEPS: CIR:M5ZI~Q TRA:~UI2Lia WELD REFERENCE, (GE-ADM-1005): Lo:
SEARCH UNIT(S)'o
~K LENGTNI~ TRACK DIAI~ LENOTN:~
~
COMPONENT DIA: WELD ARM SCAN PARAMETERS SCAN SCAN DIRECllON:~ SKWR~ SCAW~ SCANOIRECNOII:~ SKEW~
START:
SIZE:
EESEESIL3"
~ED-
~Z EEIEZEELT
~BOZ START: ~ 'EIEI OFFSET: CIR'FFSET!
~Z: MLLE TRA. RESOLUTION: ~PL ~K CIR'ESOLUTION:
MOTOR DIIL: JEEBSF DI0tEBSE ROT: MOTOR DIR.: ~IEBSF DEKfISE ROT SCAII:~ SCANDIRECllOII:MIGS SKEW:~ S CAW~ SCAII DIRE CTIOII:~CEI SKEIW~
START: START:
OFFSET: OFFSET:
RESOLUTloN: MLDSSP ~5 ROT'ESOLU11ON: ~ST ~ESP
~LI'E TRA'OTOR MOTOR DIILI ~IISBSE USXfISE DIR.: ~HYEBSE SCAN DIRECNON:~Col SKEW~ SCAN:~ SCAN DIRECTION:~CC ROT'CAN:~
SKEW:~
START: ~ ~O START:
SIZF'JN EESEEL'tRZQ ISEEZIELX"
'LSZ OFFSET: OFFSET:
~3 ~F TRA'ESOLUTION:~ST ~SSF CIR'ESOLUTION:
lRA:
MOTOR DIR.: ~MEILSK ~EBSF ROT: MOTOR DIR.: ~IEBSE ~BSF ROT'E EWED BY LEVEL PAGE:~ OF:~
FOESIFTCEm IO
I r ULTRASONIC CALIBRATIONDATA SHEET GE Nuclear Energy (AUTOMATEDWITH Smart 2000)
SITE: UNIT:~ CALIBRATIONSHEET NO.:
PROJECT NO.: LINEARITYSHEET NO.:
PROCEDURE NO.: REVISION:~ FRR:
Instrument Serial Manutacturer r Model Syat<<n Senal No.
Search Unit Manutacturer N. Size Freq. tncaterff to wedge front Cable Calibration Standard Type Senal No. Matenat No. ot Cnnnectora
~'FTentp.
Thermometer Senal Na Couplant Measured Angle:
Batch No.
45.9'RIENTATION:
- 1. DELAY TYPE:
- 2. TIMEBASE'.
DEPTH:
FREQUENCY: (MHz AMPLITUDE: 4. RATE:/
SWEEP: 5. UNITS:
Q DISTANCE (N HALF PATH C3 TIME GAIN: (dBI
- 6. VELOCITY'.
L 'llME Q OEPTH . METALPATH 3/BSDH: 2.079MP 35d8a(80%
5/BSDH: 3.517MP 35dBat60%
SAMPLES'EFLECTOR:
MAXAMPLlluDE:
SWEEP:
GAIN: (ds) 1.0" RADIUS 60%
1.003" 2.0" RADIUS 60%
2.006"
- 1. MODE:
- 2. PULEER~
- 3. VOLTAGE: (v 0 PULSE ECHO t TO RECEIVER:
I
~
THRU-TRANSMISSION
- 4. WIDTH: (Ns)
TIME DATE OPER. CONIP. REPOR 5. FILTER: I NONE 00.5-2MHz 01-5MHz
) NO INITIAL 1 '2-10MHz C35-15MHz 24RRC(2)A-1 RA(343(
VERIFIED I
- 6. RECTIFICATION: Q NONE ( "UNIPOLAR+ 0 UNIPOLAR-VERIFIED I S BIPOLAR VERIFIED I (
VERIFIED I
- 7. SMOOTHING: D NONE 2 FAST 5 MEDIUM 2 SLOW FINAL I oe.sa 'NS/ge I 24RRC(2)A.1 RA(343(
LEVEL A E G REV( BY LEVEL A PAGE~OF:~
SITE:
PROJECT NO.:
GE Nuclear Energy UNIT: ~ ULTRASONIC CALIBRATIONDATA SHEET (AUTOMATEDWITH SmaN 20DO}
CALIBRATIONSHEET NO.:
LINEARITYSHEET NO.:
PROCEDURE NO.: REVISION:~ FRR:
Instrument Manutacturer / Modal System Senal Na Search Unit Menure cturer Senal No. Stre Freq. AngleMode tnctdent to wedge bent Cable Calibration Standard Senal No. Matanal
~'FTemp.
Thermometer Senal No.
Circ Scan Onttr Couplant eaton No.
0RIENTAT(ON:
1 ~
DELAY'.
TYPE:
TIMEBASE'.
DEPTH: FREQUENCY: (MHz AMPLITUDE: 4. RATE: I SWEEP: 5. UNITS:.
Q DISTANCE Ii HALF PATH C3 TIME GAIN: (dB)
- 6. VELOCITY'.
I llME Q DEPTH II METALPATH SAMPLES'EFLECTOR:
MAx AMPUTDDE:
SWEEP:
GAIN: ldei
(
1.0" RADIUS 30%
0.999" 13.0 2.0" RADIUS 80%
1.954" 13.0
- 1. MODE:
- 2. PUIaEIU~
- 3. VOLTAGE: (v PULSE ECHO TO RECEIVER: ~
5 THRU-TRANSMISSION
- 4. WIDTH: (Ns)
TIME",'ATE OPER. COMP. REPOR 5. FILTER: Q NONE Q0.5-2MHz 01-5MHz NO Q2-10MHz QS-15MHz 0220 Ii 05N698 24RRCI2)A-1 Rkt13431 VERIFIED I 6 RECTIFICATION: D NONE Q UNIPOLAR+ Q UNIPOLAR-VERIFIED I 5 BIPOLAR VERIFIED! I
- 7. SMOOTHING: Q NONE Q FAST 0 MEDIUM 2 SLOW VERIFIED I I FINAL oesy I 24RRCI2IA 1 R+13O31
)
4eaa ~E' LEVEL A REVI E BY LEVEI. A PAGE~ OF:~
e GE Nuclear Energy
~ ULTRASONIC CALIBRATIONDATA'SHEET (AUTOMATEDWITH Smart 2QOO)
~
SITE: uNIT: CALIBRATIONSHEET NO.:
PROJECT NO.: LINEARITYSHEET NO.:
PROCEDURE NO.: REVISION) FRR:
Instrument ManuraCstaer I Motel System Senal No.
Search Unit Senal No. Size Freq. Ant)telMooe tncatent IO weal)e <<cnt Cable Type Calibration Standard 44.3F Matenal Temp.
Thermometer Measured Angle:
Couplant Batch No.
ORIENTATION:
- 1. DELAY'.
TYPE:
TIMEBASE'.
DEPTH: FREQUENCY: (MHz AMPLITUDE: 4. RATE: I SWEEP: 6. UNITS; 0 DISTANCE II HALF PATH D TIME GAIN: (dB) 6.
i~ DEPTH I METAL PATH VELOCITY'.
SAMPI.ES'EFLECTOR:
~
SIN:MhLHHObUK1 1.0" RADIUS 2.0" RADIUS 1. MODE:
J H PULSE ECHO 0 THRU-TRANSMISSION MAX AMPUTt)DE: 40% 80o/o
- 2. PULEER~ TO RECEIVER:
SWEEP: 1.010" 1.965"
- 3. VOLTAGE: (v GAIN: It)a) 10.0 10.0
- 4. WiDTH: (Ns)
TIME DATE OPER. COMP. REPOR 5. FILTER: QNONE Q0.5-2MHz 01-5MHz NO INITIAL C!2-10MHz G5-15MHz 24RRCI2)A.1 R+1~1 VERIFIED
- 6. RECTIFICATION: Q NONE 2 UNIPOLAR+ 'NIPOLAR-VERIFIED II BIPOLAR VERIFIED
- 7. SMOOTHING: 2 NONE ' 'AST 0 MEDIUM Q SLOW VERIFIED FINAL oetse I, omsrpe 24RRC12)A 1 R&13M1 GE REIII 0 V lEVEL 4LA PAGE~OF:~
ULTRASONIC CALIBRATIONDATA SHEET GE;Nuclear Energy (AUTONlATEDWITH Smart 2000)
SlTE: CALlBRATIONSHEET NO.:
PROJECT NO.: UNEARITYSHEET NO.:
PROCEDURE NO.: REVISION:~ FR R:
Instrument Srateln Senal No.
Search Unit Sana)No. Site Freq. AnglerMode )ncasent to wedge <<ont Cable Calibration Standard 44.3F Temp.
Thermometer Senal No.
Measured Angle:
Coup!ant Batch No.
ORIENTATION:
- 1. DELAY TYPE:
- 2. TIMEBASE'.
DEPTH: FREQUENCY: (MHz AMPUTUDE: 4. RATE:I SWEEP: 5. UNITS:
Q DISTANCE N HALF PATH Q TIME GAIN: (dB)
- 6. VELOCITY'.
N METALPAT)t SAMPLES'EFLECTOR:
~
S/N:
1.0" RADIUS 2.0" RADIUS 1. MODE: M PULSE ECHO N THRU-TRANSMISSION 40%
MAXAMPUTUBE: 60%
- 2. PULEEE~ TO RECEWER:
SWEEP: 1.010" 1.965"
- 3. VOLTAGE: (v GAIN: (de) 10.0 10.0
- 4. WIDTH: (Ns)
TIME," DATE OPER. COMP. REPOR 5 FILTER Q NONE 0.5-2MHz 01-5MHz NO INITIAL CI2-10MHz 25-15MHz 0Z22, 05l0$ 98 24RRCI2)A.t R+134)31 VERIFIED
- 6. RECTIFICATION: Q NONF 'NIPOLAR+ Q UNIPOLAR-VERIFIED N BIPOLAR VERIFIED
- 7. SMOOTHING: I~ NONE 'AST 0 MEDIUM Q SLOW VERIFIED I
FINAL 08:59 ! 05IOSI98 24RRCI2)A 1 R&134)31 EXA I LEVEL A G REV) D BY LEVEL A PAGE~ OF)~
~ '
'I
~
/ ULTRASONlC CALlBRATlONDATA SHEET GE.Nuclear Energy (AUTOMATEDWITH Smart 2000)
SITE: UNIT: CALIBRATIONSHEET NO.:
PROJECT NO.: LINEARITY'HEETNO.:
PROCEDURE NO.: REVISION:~
FRR'nstrument Manuiacttrer I Model System Senal Na Search Unit Senal Na Size Freq. AngisiMode Incident to wades cont Cable Type Calibration Standard 57.8F Senal No. Matensl Temp.
Thermometer Sensl No.
Measured Angle:
Couplant Batch No.
ORIENTATION:
- 1. DELAY'.
TYPE:
TIMEBASE'.
DEPTH: FREQUENCY: (MHz AMPLITUDE: 4. RATE: I SWEEP: 5. UNITS:
I I DISTANCE II HALF PATH D TIME GAIN: (dB)
- 6. VELOCITY'.
I TIME Q METALPATH
~
SAMPLES'EFI.ECTORI 1.0" RADIUS 2.0" RADIUS 1 ~ MODE: PULSE ECHO 5 THRU-TRANSMISSION 40 MAXAMPUTUDE: 60%
E PULEER~ TO RECEIVER:
SWEEP: 1.055" 2.054"
- 3. VOLTAGE: (v GAIN: Ide) 15.0 15.0
- 4. WIDTH: (Ns)
TIME, DATE OPER. COMP. REPOR 5 FILTER: Z NONE Q 0.5-2MHz 5 1 -5 MHz NO INITIAL 02-10MHz 05-15MHz 2tk09 I 05O5/98 24RRcl2)A-1 R4)194' VERIFIED
- 6. REC'nFICATION: Q NONE Q UNIPOLAR+ D UNIPOIAR-VERIFIED BIPOLAR VERIFIED
?. SMOOTHING: E3 NONE Q FAST 0 MEDIUM Q SLOW VERIFIED FINAL 06:51 I 05I06l98 24RRC(2)A 1 RA)84)31 G R E)NEn aV LEVEL ATE PAGE~ OF:~
<,r SMART 2000 indication I
GE Nuclear Energy Evaluation Data Sheet Project: WNP2 RFO13 Etiam report no. R-R13431 Weld ID: 24RRC(2)A-1 Ind. Data Sheet: EIDSC1 Indication: 1 Flaw Thruwall Dimension = 0.29 P nominal = 1.88 Flaw Length "I"= 3.52 ~measured-" 2.00 Surface Separation "S" = 0.00 ASME Section XI, 1989 Edition, No Addenda TABLE !WB45'f4-2 Surface % Subsurhce % Surhce % Subsurface %
0.00 10.6 10.6Y 0.05 10.7 10.7Y 10.89 Q/ALUEI 0.10 11.0 11.0Y 0.15 11.1 11,1Y 0.20 11.4 11.4Y 0.25 11.5 11.5Y 0.30 11.7 11.7 0.35 11.9 11.9 0.40 12.1 12.1 0.45 12.2 12.2 0.50 12.5 12.5 Allowed Allowed 10.89 ¹VALUEl a= 0.290 a/l value = . 0.082 Y= 0.000 Flaw is Surface Allowed a/t = 10.89%
a/t = 14 50%
Flaw is unacceptable by Table IWB-3514-2 Comments Flaw length is lD length Analys: Reviewed By:
Levet:~ Dete: ~~~~/ P Level:
I
~ ~ I o ~ ~ ~
ll ~
I
~ ~ ~ L
~ ~ g ~ 4 ~ 'O
~
~
~ I 'I ~ ~ t ~ ~ I ~ ~ ~ ~ ~ ~ I~ t ~ It ~ 'I ~ I ~ 'I ~ ~ \
~
l I
~ ~
~
~ ~
1 ~
lll ' I. I
~ ~ ~ I ~ I. ~
~ I
~ ~ I ' ' ~
~ ~
~ ~ ~
~ ~
~ ~ ~ ~ ~ ~ ~ I ~ I ~ ~
~ ~ ~ II ' ~
~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ' ~
I ~ ~ II ~ ~ ~ ~
' ~ ~ ' I ' ~ ~
~ I ~ ~ I
~
~
~ ~ I I
~ ~ ~ ~ ~ ~ II ~ ~ \+ ~ ~ ~ I ~
I '
~ ~ I ~
' ~ ~
9 ' I ' ' '
~ ~ ~ I ~ ~ ~ ~ ~ 'I ~ ~ ~ ~ ~ I ~ ~ ~ I
~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I
~ 9 ~
~
~ I ~
~
~ ~ Qg ~ ~
~ ~ ~
~ ~ ~ '
~ ~ ~ ' ~ ~
~ I ~
~ ~
~ I
W I
~4
REPORT No.:
EXAMINATION
SUMMARY
- ~~".=;-"-';=:";.-~~GE:Nuclear Energy CONTINUATION SHEET SYSTElN:
PROJECT:
WELD NO.:
CONFIGURATION:
Statistical Information:
RFO9 Ind. 'nd. OD ID ~Thm Wall 'Remaininu Flaw Location Indication No Sto Len Len Dimension Li ent Side of Weld Orientation 28 5" 32.7" 4.20" 3.52" 0.26" 1.74" DNST Safe End Circumferential RFO13 Ind. Ind. OD ID <<Thru Wall 'Remainin Flaw Location Indication No. Start Sto Len Len Dimension Li ament Side of Weld Orientation 28.5" 32.7'.20" 3.52" 0.29" 1.71" DNST Safe End Circumferential
'emaining ligament and thru wall dimension information is documented utilizing the measured wall thickness (2.00") f'rom the safe end side of the configuration.
Indication length and thru wall dimension was determined utilizing the 45'hear wave search unit. A component ID/OD ratio of 0.839 was utilized for determination of ID length. This ratio is based upon a measured component circumference of 78.0" and a measured material thickness of 2.00".
Technical ustification for deviation in fiaw thru wall dimension.
The ultrasonically determined thru wall dimension of an indication is primarily a function of system sensitivity and resolution. These factors, along with precision of display, identify a precise number that is reported as the flaw dimension. In order to produce the exact same (2 and/or 3" decimal precision) result from a previous examination, the same equipment, search units and calibration arid examination parameters would need to be utilized. As a result of this, it is assumed that an anticipated accuracy margin of approximately 2 0.050" can be
,expected. In comparison, the demonstrated qualification criteria for sizing uncertainty (RMS) of piping examinations is typically 2 0.125".
Conclusion:
Based upon the information available Rom the RFQ9 and RFO13 examination data, it is concluded that the indication has not exhibited any noticeable signs of indication growth in either the length or thru wall dimensions.
UM LEVEL 5~ DATE 5-](l8 C PAGE~OF:~
GE REVIEWED BY - LEVEL DATE ANII fOOI IP I O AtY. ~
0 r
Il III Qllllm- <<re ra ~ r ~ 4
'I'i ec 't tP Il~
f~:
~ '
el
[r-j Ill/'ll
~
~
I ae'
~a.
, ~ I
~ I ~ a I I ~ ) I IC
~ I ~ ~ t= ~
l!L!tlrHJi MQur.e!'IRK64alIIIVMitesXrg fir <<ala!IIX'>>s)I argy)rL'Lpga el) M@rrhqraeKPgqwigia~e!LIILIir+illai~lag.
I~ .H~ I !all)gl e!XI II+5)'pl\IllZlfettt)I~L!Ol!ILIIIII I'@Ail tl "IX!IILIIFI!r~W I~~ II&II I
'll!irLI!r)I!rgl IGIII!gLre I XIILI!a!ILL!iM jI !IIIllllqll
) 4 ~ ~ fi L*
fn-.
t <<re I I i~
I ~
I te!L
- ),
lg ~ II ~
YJ N
I 1
~ '. Q re:.I
~ few p ~, . 4, i ~
II I II <>lei <<i I'II ianna."IIPiiAI<<litfA'I'iilali Ai fV I
tq
~ p 0
Lrce 'e rnspecnon 6ennces 1.71 0rn Qi".
+ r:.
IX4L tAI 30
+:+i-'
i art i
)EM(!9'458tP~lsPI10$ 3:El!'%~~A>>-.;:""'.!!ll!It~frtttgtW
t LQY@PI
- 28. 32.r I
1.71 Comments WNP2 RFQ13 Weld 24RRC(2)A-1 Indication thru wall dimension 0.29" (1.71" remaining ligament)
Report R4113431%
Page4of6
J 0
Uce GE Inspection Services P.
8.
- 32. r
- 28. 32.r Comments WNP2 RF09 Weld 24RRC(2)A-1 Indication Length 26.5" -32.7" (4.2")
Report R+1$ 431%
Page5of6
I
~ r I r Il~ ! Le I AA I llI >>LL'IWC t3 et" I'
LL' tt
~ \
~
I L."
I isa<<
3.I.L
'Le. ~
I ~ YJ ggtJJ
~ ~ L!
Le J
~
t
~
I~ h=',
~ I, II I I I, L
~ ~ ~
~
LL L
+K~3 A~V!gg:I:3/lgj<CJ!e4.b'F3 $ @WILbLe.gee!b le VTL~~" VrX:tt'iF"",'~IMP'jYte IIvrt O dereAh rr II&AI I CQ kltieke e \ j!I.rI: ~ L 1 ~ I >>'I~~ 5 Illtetet S' tILI ILI r ct" I.
~
I !
~ I Iee 1 t
~ t Jt ~ e ~
I*.. ', '<
I' Ip>>
ILI N
"I I
'F) i ~
J ~
'e
~ .e ~
I ~
Y 3
I II)= Y k I
~ Ie ,~ C I ~
I ~ I ~ ~ ~ III~ ~ ~ I ~ ~ I je ~ I ~ ~ IIII I I 'tlYijlIJII'ittel II
~ ~ ~ ~ ~ ~ ~ II ~ I~~ I ~ III ~ ~ ~ ~ ~ ~ ~ ~
I ~ ~ ~ ~ ~ ~ ~ ~
I~
~ ~ ~ I ~ ~
I
~ ~
Y,
~ h