ML17292B615
| ML17292B615 | |
| Person / Time | |
|---|---|
| Site: | Columbia |
| Issue date: | 05/26/1998 |
| From: | WASHINGTON PUBLIC POWER SUPPLY SYSTEM |
| To: | |
| Shared Package | |
| ML17292B614 | List: |
| References | |
| ME-02-98-04, ME-02-98-04-R00, ME-2-98-4, ME-2-98-4-R, NUDOCS 9904010222 | |
| Download: ML17292B615 (94) | |
Text
IvAININCTONfusLIC latvia 4l SUPPLY SYSTEM DOCUMENTTRANSMITTAL
, >~,,V.;<~am~@.W.ZVrWS~X,mWSee'O..BE,.COMPI a'Ep.a Y.ORIGINATOR@'~~ ~We.
~
x Wm
- 1. Transmittal No.
- 2. Page 1 of To W hi gt P bl' S pplySystem P.O. Box 968 Richland, WA. 99352 Attention: Records Mana ement MfD 964Y
- 9. Initiating Doc. No
- 21. Priority ps<a<'
<s'. F"'<<'
if'<<'
F'ry.'.'
r
, w:rgb";-.. +sejm.4!-t%ys~..i,~.-"rsv~;g '~r':
- 3. From
- 4. Purchase Order/Contract No
- 5. Supply Syste~mo ntzant E gineer
- 14. Receipt Acknowledged
- 6. Originator Remarks tQVa5 Submitted For ITEM NO.
DOCUMENTOR DRAWINGNO.
SHEET NO.
REV.
NO.
10.
DOCUMENTTITLEOR ITEM SUBMITTED yacforr2 NC-LC's L-VrLOdi A/I ad?. e.
Kt fe C~d
- 11. A P
P R
D V
E
- 12. R E
L E
A S
13.
I N
F D
15.
DFFIGUIL DISPDS.
- 16. Supply System Disposion Engineering Manager
- 19. REQ
- 20. RESPONSE Plant Technical Services Manager (ifrequired)
- 19. REQ
- 20. RESPONSE
- 6. Engr. Req. Response Date ACTION PARTIES
- 5. Cognizant Engineer
- 17. Component/System Anal.
- 17. Mechanical Engineering
- 17. Electrical/I/LC Enginoering
- 18. Overall Design Vorir.
- 18. Equip. Engineering Human Factors A
P P
R 0
V E
R E
V I
E W
A P
P R0 V
I 8
A P
P R
0 V
E SIGNATURE AND DATE ACTION PARTIES
- 18. Design ALARA
- 18. Penetrallons
- 18. ASME Code Compliance
- 18. Control Sys. Fadure
- 18. Pipe Break/M<ssrie
- 18. App. R/Electrical Sep.
- 18. Health Saloty/Fire Prot.
A P
P R
0 V
E R
E Y
I E
W A
P P
R 0
Y E
AA P s P
R 0 0 Y 7 E
ED D
I s
A P
P R
0 V
F SIGNATURE AND DATE mergency Prop.
- 18. Environmental
- 18. Security
- 18. Quality Assurance
- 18. MELInput Coord 90324 99040i0222 9
PDR ADOCK 08000397 j-'I-8 PDR 18 Project Engineer
A
WA58INOTON SU5LlC?OWER 4P KPPLY SYSTEM CALCULATIONCOVER SHEET BDC Page tP'e eNo MS-RPV-3 Project WNP-2 Discipline Page Calculation No.
ME-02-98-04 Cont>d on Page MATERIALAND WELDING Remarks Quality Class 1
Title/Subject FRACTURE MECHANICS EVALUATIONOF N1 SAFE END Purpose A fracture mechanics evaluation was performed to evaluate a planar indication found during in-service inspection of ISI weld number 24RRC(2)A-1. The indication is on the inside surface of the safe-end and is located at 5:00 o'lock when looking downstream.
The indication measures 3.52 inches in length and 0.29 inches deep in a pipe wail that is 2.0 inches thick. The indication exists in SA 336 Class F8 forged type 304 stainless steel safe-end.
The size of the defect exceeds the ASME Code Section XI Table IWB 3514-2 allowable and thus requires an evaluation per paragraph IWB 3640 of the Code. The following calculation provides a comprehensive presentation of the fracture mechanics model, lied loads (stresses),and Code evaluations.
I C~c e
No C IA 0 a.rut+
4<<>~~ j~"+@0"I?jÃcrg"r~ zi "<>;",<<>r>> >"s'4<
'< '"'sijsy"?g>/~vs: '<"
r
'a..o
'+s >.::'r<>>>()~i<(sj?>>< ":."':i>'0>'<r> ~ <'/Ãr'">><>>kl '
c.5i,.4~54.,~:e!.. Pm>P. >,-:.).A.":,.-..::..CALCU TfOM,REVISIONRECORDSiNC>rib'..2.,5
>.>'c,;:.wS.<..:,./@,~44 REV NO.
0 STATUS/
F,P,ORS F
Initial Issue REVISION DESCRIPTION INITIATING DOCUMENTS PER 298-0600 TRANSMITTAL NO.
@~g@<~~~g~mgINNjbjÃQYN'y'~i~"'+SMF~giN$%!IPERFORS!ANCENERIFtCATtOMIRECORD'INF~k@Nr'WP)VAFMRZ8%%'eXNMCy@
REV NO.
0 PERFORMED BY/DATE To
- Etwin, CJ VERIFIED BY/DATE APPROVED BY/DATE Study Calculations shall be used only for the purpose of evaluating alternate design options or assisting the engineer in performing assessments.
ses-58645 R4 (5/ss)
I
CALCULATlONPREPARTION rev.
1 Observer/Org:
Observed/Org:
Date:
Verifier.
Calculation No:
Requirements Based on Initial Submittal of Calculation for Verification Points Scored 0-10 Importance Factor Total Points Legibility(cianty, reproducible), Grammar, Spelling and use/definition of abbreviations de uate Detail in discussions understandablitit Clear statements of Pu ose, Methodolo, Out ut Summa Relies on previously approved analysis to reduce work and review requirements (Deduct 5 points ifpreviously approved analysis is re eated Inputs fullyreferenced or described, external references and internal cross-references are correct and Inputs/Outputs are properly identified on "Reference Cross-Index RMCS In ut Sheet" AII assum tions clearl stated and, as a ro rlate, ex lained Accuracy/Consistency of data and information throughout calculation units su lied and conversions of data correct Computer codes identified (names, revisions, V&Vstatus, source Listing as appropriate), Computer outputs included and readable microfiche is readable IfN/A, score as a 10 Anal sis corn lete and technicall ade uate EDP2.15 Re uirements Administrative Re uirements Satisfied Impacted calcs are properly identified on the "Calculation Output Interface Documents Revision Index" form Total of column Deduct one point for each item requiring correction Scoring: 7-8 considered acceptable, 5 major problem area 7
3 7
2 10 3
10 2
10 10 10 2
10 95 27 Percent Score (Total Points)*1 00 (Total Possible)"1 0 21 14 18 30 20 21 20 30 20 30 232 86 A:i-ME1D55.XLS
I> sUpprv mraM CALCULATIONINDEX Page V
Calculation No.
ME-02-98-04 Revision No.
0 Cont'd on Page o
ITEM PAGE NO. SEQUENCE Calculation Cover Sheet Calculation Index Verification Checklist for Calculation and CMR's Calculation Reference List Calculation Output Interface Document Revision Index Calculation Output Summary Calculation Method Sketches Manual Calculation 1.000-1.100-1.200-1.300-1.400-2.000-3.000-4.000 -.
5.000-
~. GG~
9.ooZ
- d. oi APPENDICES:
Appendix A
Pages Appendix B
Pages Appendix C
Appendix D
Pages Pages Appendix Pages Appendix Pages Appendix Appendix Pages Pages 968-25278 R2 ran)
E
WA5HINGTONtUlLICtOWSR IJ SUPPLY SYSIPM VERIFICATIONCHECKLISTFOR CALCULATIONSAPG) CMRs Page
/i Qbj4 Cont'd On page
/.3OO Calculation/CMR ME-02-98-04 verified using the following methods:
P Checklist Below Revision 0 was Alternate Calculations Checklist Item Clear Statement of purpose of analysis Methodology clearly stated and sufficiently detailed and appropriate to proposed application Logical consistency of analysis
~
Completeness of documenting references
~
Completeness of documenting and updating output interface documents Completeness of input Accuracy of input data Consistency of input data with approved criteria Completeness in stating assumptions Validityof assumptions Calculation sufficiently detailed
~
Arithmetical accuracy
~
Physical units specified and correctly used Reasonableness of output conclusion Supervisor independency check (ifacting as Verifier)
- Did not specify analysis approach
- Did not rule out specific analysis options
- Did not establish analysis inputs Initial
~
Ifa computer program was used:
- Is the program appropriate for the proposed application?
- Have the program error notices been reviewed to determine ifthey pose any limitations for this application?
- Is the program name, revision number and date of run inscribed on the output?
- Is the program identified on the Calculation Method form?
Ifso, is it listed in chapter 10 of the Engineering Standards Manual?
Other Elements Considered
~
Ifa separate verifierwas used for validating these functions or a portion of these functions, sign and Initial below.
Based on the foregoing, the calculation is adequate for the purpose intended.
VerifierSignature(s)/Date
'l Verifierinitials 968-25280 Rt (348)
e
~.
C
Q+p SUppLy SASSIER CALCULATIONREFERENCE LIST PAGE GO CONT'D ON PAGE CALCULATION NO ~
ME-02-98-04 REVISION NO ~
0 SEQUENCE NOo AUTHOR Failure Analysis Associates Supply System EPRI NRC ASME Burns 6 Roe ASME ISSUE DATEi EDITIONS OR REVISZO 2.23 5-14-98 1986 1988 1990 5/7/76 1989 TITLE NASCRAC Manual Ultrasonic Examination Data Sheet Evaluation of Flaws in Austenitic Steel Piping Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping ASME Section XI, Nonmandatory Appendix C
Hanford ZI 251" BWR Vessel Stress Report T9,S9,F9 Recirculation Outlet Nozzle ASME Section XI DO&IMENT NO ~
R-R13-031 NP-4690-SR NUREG-0313,Rev.2 Fig C-3210-1 T9,S9,F9 ZWB-3640 10 S.T. Rolfe J.M.
Barsom ASME Structural Integrity J.F.Harvey 1977 1986 March 1998 1985 Fracture and Fatigue Control in Structures ASME Section ZZI, Appendices The Effect of Radiation on the Fracture Toughness of Austenitic Stainless Steel Base and Weld Material Theory and Design of Pressure Vessels Appendix I Table Z-2.2 SZR-97 095 pg 61 44468 (I0189)
WA58INGTON FUlLIC?OWSR 43 SUPPLY SYSI'EM pared By/Date om Elwin CALCULATIONOUTPUT INTERFACE DOCUMENT REVISION INDEX Verified by/Date 23 5p fg Page
. 2goO Cont'd On Page Ado Calculation No.
ME-02098-04 Revision No.
0 The below listed output interface calculations and/or documents are impacted by the current revision of the subject calculation. The listed output interfaces require revision as a result of this'calculation.
The documents have been revised, or the revision deferred with Manager approval, as indicated below.
AFFECTED DOCUMENT NO.
None CHANGED BY (e.g., BDC, SCN, CMR, Rev.)
CHANGED DEFERRED (e.g., RFTS, LETTER NO.)
DEPT.
MANAGER'equired for deferred changes only.
558.25285 R 1 (3$8)
WAsmlliGTONtUlLICPOWRR k3 SUPPLY SYSIXM CALCULATIONOUTPUT
SUMMARY
Page e os Calculation No.
ME-02-98-04 Cont'd On Page od Revision No.
0 d to evaluate the indication in the N1 nozzle safe-end.
The first modeled th ussion of Results ree computer runs were use e
indication using the normal operational loads of the system.
The second model used three transients that could possibly occur in one year interval ~ These transients were the thermal discontinuity stress, OBE and SSE. This model was used to determine the crack growth expected from the fatigue loading at different crack depths allowing determination ofwhen the cracking would become a significant contributor to crack growth. This allowed the determination that the crack growth would only become significant at the end of the interval selected forthe next inspection.
The results of the computer runs are as follows:
The third model used the adjusted crack length (20:1 ratio) as required by NUREG 0313 Rev. 2 forthe end of the IGSCC crack growth at R 16 as input. The required fatigue cycles for OBE and SSE were than applied to this crack dimension to determine acceptability for the interval.
The indication willgrow to a depth of 1.068" by R 16 ifIGSCC is, active and the fatigue cycles are experienced, In comparing the results to the 1989 ASME Section XI Code Tables IWB-3641-5 and -'6. Indication is acceptable for continued operation until R 16.
Conclusions Taking into account the following conservatism's:
1.
The weld residual stress distribution used is for an as welded component.
The stainless steel safe-end to nozzle weld had MSIP performed on it during R 9.
The distribution should be compressive at the ID.
2.
The stresses are conservatively high due to the use of OBE stresses for steady state thermal. Also the pressure stress used is the hoop stress not the axial pressure stress.
3.
No faucet are evident during the weld examination that would indicate IGSCC is active.
It has been determined that WNP-2 may operate until R16 before reexamination of the nozzle to safe-end weld to occur. The evaluation demonstrates under the worst imposed loading conditions the flaw meets the eptance criteria of the ASME Section XI IWB-3641-5 and 3641-6. The main fracture mechanism that will opagate the fiaw is intergranular stress corrosion cracking. Ifthe IGSCC phenomena is active the indication willincrease in depth to 1.068 by R16. which is less than the ASME Code allowable.
868 18652 R2 (3/98)
WA58lNOTON NQLlc?OWSR k3 SUPPLY SYSILlM red By/Date
.Erwin Analysts Method (Chectt appropriate boxes C.'AI,C.'IJI,ATIONMFTHOD Verified by/Date Page Calculation No.
ME-02-98-04 Revision No.
0 Cont'd On Page Sr~ a H
Manual (As required, document source of equations in Reference List)
H Computer Q
Main Frame H
Personal H
ln-House Program Q
Computer Service Bureau Program 0
BCS 0
CDC 0
PCC 0
OTHER 2
Verified Program: Code name/Revision NASCRAC 2.23 Q
Unverified Program: Document in Appendix B Approach/Methodology Flaw Evaluation REV.
BAR roblem ing the performance of Inservice Inspection of the reactor vessel RRC A loop an indication was discovered in the heat affected zone of the 24 inch RRC suction nozzle IN1A) to safe-end weld 24RRC(2)A-
- 1. The indication is on the inside surface of the safe-end and is located at 5:00 o'lock when looking downstream.
The indication measures 3.52 inches in length and 0.29 inches deep in a pipe wall that is 2.0 inches thick. The indication exists in ductile SA 336 Class F8 forged type 304 stainless steel.
The design minimum wall based on faulted pressure is 1.01 inches.
The remaining ligament in the safe-end is 1.71 inches.
The indication has existed for some time.
Due to changes in the ultrasonic techniques and technology the ability to detect material variations and conditions has increased.
An example of this increase in sensitivity is demonstrated in this examination. The same weld was examined during the R9 outage and no indication was detected at that time. However, using the new GE ultrasonic data system the same data tape was reviewed from the R9 outage and it was determined that the same indication existed at that time. The new R13 data output and the R9 data output were compared and the indication shows no change in depth or length that is not within the inaccuracies of the equipment.
The indication has been in the system since at least R9 with no change in depth or length.
The indication is required to be evaluated as an IGSCC indication even though it shows no IGSCC cha ractreistics.
Flaw Evaluation The linear indication was evaluated using the NASCRAC computer code developed by Failure Analysis sociates.
This code usesstressfieldinfluencefunctions asthe basisforfiawpropagation.
The NASCRAC el selected is a shell element containing an elliptically shaped circumferential flaw. The model is identified as in the NASCRAC manual.
This particular model includes three crack growth degrees of freedom encompassing the respective circumferential and crack depth coordinates.
The evaluation was performed using conservative linear elastic fracture mechanics principles,
WA8$1NGTON PalLlc POWlk Q> SUPPTli sys~gg CALCULATIONMETHOD CONTINUATIONPAGE page Coned on page 3,+G I
3 rO'~W Calculation No.
ME-02-98-04 Revialon No.
0 NRC Generic Letter 88-01. The flaw was evaluated e modeling applies the requirements identified in as an tergranular stress corrosion crack using the crack growth rate equation provided in the generic letter. The weld residual stress distribution provided in the letter was also used even though the weld in question had Mechanical Stress Improvement (MSIP) performed on it in 1994.
The weld residual stresses are developed from room temperature yield for 304 material (30 ksi) as the normalization stress outlined in the generic letter. The flaw aspect ratio was reviewed and compared to the requirements of NUREG-0313, Rev. 2. The aspect ratio was determined to be 12:1 which requires correction in length as the crack grows until an aspect ratio of 20:1 is exceeded.
Therefore, the final crack growth aspect ratio was corrected manually to comply with the requirements of NUREG%313, Rev. 2. The correction for aspect ratio was performed at each Refueling outage time period based upon the computer output for the IGSCC model. These intervals were determined as follows:
R 14 willoccur in approximately 260 days, R15 willoccur 260 days, R16 will occur 500 days after startup from R15 based on 18 month reload.
The flaw length and depth from the R16 corrected value was then used as input into the fatigue model, The fatigue model used one year of expected upset and faulted conditions as required by the Code to assure that the crack willremain within the Code allowable limits and NRC requirements.
Three input files were used to perform the IGSCC and fatigue evaluations. These files were:
N1IGSCC.IN IGSCC for normal operations N1FAT.IN Fatigue including one year of OBE (300 cycles), SSE ( 1cycle) and thermal discontinuity ( 1cycle)
N1FAT1.IN Fatigue incorporating R16 corrected crack length The following assumptions and inputs were used in developing each of the models.
II Models: The flaw model used was 703 for a semi-elliptical (circumferential) surface crack in a cylinder.
(1) aw Dimensions N1IGSCC,IN The crack used was 3.52" long and 0.29" deep. The half crack was calculated taking 3.52" and N1FAT.IN dividing it by 2 to yield 1.76".
(2)
N1FAT1.IN The crack length for this model was the results of the 20:1 aspect ratio required by the NRC for IGSCC cracks. The value used is Rom the crack depth for 1020 days ofIGSCC growth that would occur by R16. The values used in the model were a length of19.14" and a depth of 0.957'. The halfcrack was determined by dividing the length by 2 that results in a value of 9.57'.
Crack Growth Laws N1IGSCC.IN The Paris equation used for IGSCC growth was that provided in NUREG-'0313 Rev. 2. The (4) equation used:
359E 8(~) 'n k niPin N1FAT.IN The crack growth rate for fatigue in BWR water environment was determined using the following N1FAT1 ~IN Paris equation:
(3) 6.155E-18(~)
in psi gin N1IGSCC.IN The tK~
value used was 10.0 or 10000 for the fatigue N1FAT.IN N1FAT1.IN 988-25291 R1 (Mia)
~ I
~ ~
<Jre~e~~ewi~
~ ~
~ ~
N O
Q I
~
~
Q
~
I O
I
. ~
I '
Q I
I I
~
I
~t
~
6 I
I
'I
~ '
II
~
I I
5-54 5
Cradle Geomet Model Libraryin NASCRAC Software 5.1.26 Semi-Elliptical (Circumferential) Surface Crack in a Cylinder Model Feature FORTRAN Option Variable Featured Model Index Number Number of Degrees of Freedom Crack Front Shape Finite Width Effects InQuence Function Variable Thickness Effects J-Integral Solutions KRKTYP KRKDOF IVTHIC
?03 3
Semi-Elliptical Yes Yes No No Data Input Description Input Description FORTRAN Variable Input Format Remarks Variable Thickness Initial Crack Size Body Widths Crack Position Crack Orientation Stress Input al a2 a3 Wg W3 r
Xc Yc cr(x)
~-(~ v)
IVTHIC AINITL(1)
AINITL(2)
AINITI,(3)
WIDTHS(1)
WIDTHS(2)
WIDTHS(3)
WIDTHS(4)
CENTER(l)
CENTER(2)
CRKANG Constant Constant Constant Constant Constant Constant Constant Equational Tabular Equational Tabular
) Terminate
) Analysis Only Tabular Not Applicable Constant Constant Constant
~K-II Limits: 1 < aq+ as/aq < 20; 0.0 < aq/t < 1.0 Accuracy: approximately 10/o for 0.0 < aq/t < 0.8 and 1 < a2+ as/aq < 12 Version 2.2 4$ sUEKiSiij,~
CALC:
-o4 8
PAGE ~~~s+~u BY:
DATE: S VERIFIED.
DATE:
f 8
5.I Libr ofK-and J-Solutions Model Descri tions 5-55 703 c
(x,y) s I
I I
I I
I I
x 2~/
a t
r a
a>
x XitilrnxantCmliC Vow-"i
~ "P. $
"- IP2$%$! $~y.,
~ i7~p CAP~". 4 ".OZ-etI-0 CORi GK o
eY:
, YERtFtE~:
DA,E:War NASCRAC User's Manual Version 2.2
k9 SUPPLY SYSIRM Prepared By/Date M. Erwin MANUALCALCULATION Verified by/0 e
Page eo Cont'd On Page
~era r Catculation No.
ME-02-98-04 Revision No.
0 FATIGUE CRACK GROWTH RATE BWRENVIRONMENT da/dn =C e E e S e (LK)',n
= Material constants, C =2.0 E-19,n = 3.302 S = R-ratio correction factor = (1.0 - 0.5 R')
E = Environmental factor (1.0, 2.0 and 10.0 for air,PWR, and BWR environments, respectively).
(3) dX = Kmax - Kmin, psi in Assume R-ratio =.7 C e E e S= 2.0E-19 e 10.0 [1.0-0.5 (.7) ]
= 2.0 E-18 e [1.0 - 0.5(.49)]
= 2.0 E-18 * [.755]
= 2.0 E-18 e 3.07
= 6.155 E-18 THEREFORE da/dn = 6.155 E-18 (dX)'or psi ~in
0 I
n
wASKIKCTCNtoaLtc towaa iS soppLy msrtsr ep dB /Da MAMJALCALCULATION Verified By/Date Page
-06 Cont'a On Page 5. ~ g~
REV.
BAR Calculation No.-e -e/
Revision No The purpose of the calculation is to determine the bounding stress in the Recirculation outlet nozzle N1 at safe end to nozzle weld.
Actual loads at the nozzle due to the pipe are lower than the allowable loads provided in the reference documents listed below. Actual pipe loads are available in calculation 8.14.107.
References:
- 1. Hanford II -251 " BWR Vessel Stress Report Sections T9,S9,F9 Recirculation Outlet Nozzle.
- 2. Drawing.732E143, Purchase part Reactor VesselMPL item No.
B13-D003
- 3. Drawing 761E716, Reactor Vessel Loadings Recirculation Outlet:
Maximum Allowable Nozzle Loads for Evaluation:
Design Mech. Load Dead Wt.
Seismic Pri Seismic RFE Thermal RFE H (kips) 0.0 58.50 164 164 292 M (inch kips) 5850 1580 2950 2950 7020 The above moments are applied at the end of the safe end. The weld of concern is the safe end to nozzle weld which is 9.75 inches +/- 1/16 inch from the load application point.
Nozzle Design Pressure:
1250 psi Nozzle Faulted Pressure:
1375 psi Nozzle Loads for Recirculation Outlet Nozzle from Calculation 8.14.107 which includes power uprate and snubber optimization of the recirculation piping.
Condition Primary Secondary Primary (Faulted)
Force - Ibs 5552 34431 25481 Moment - inch kips 167.408 1805.391 1066.453 968.18694 A1 i6/93)
~
o II ~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
I
~ ~ ~
~
~
~
g a ~
a
~
~
~
gig~
RSI RE RK IR
~
~
~
~
~
~
~
~
~
~ ~
~
~
~
~
~
~
~
~
<e '"
'e 1
C I
J W
~
wASNtNOTOM tuattc powla SUPPLY SYSTEM MANUALCALCULATION Pago 0
Cont'a On Pago Q,Oo5
<As Vodfiod By/Data Calculation No.
-- oQ-h'-o <
Rovislon No.
REV.
B/tR Mdwt.c
~ dwt '=
l mom o -dwt = 0.286 ksi Upset Loads including Thermal The GE load combination for RPV nozzles takes the maximum of eight different combinations which include thermal, obe, obe displacements, turbine stop valve closure, srv, and srv inertia.
M pbe
'= 1806 + 34 5'Z M pbe = 2.142 10 3 in - kips M pbe.c
~obe Ps l mom
< pbe = 2.76 ksi Faulted Loads:
The GE faulted loads combination does not include thermal bending on the nozzle.
Since the upset load combination includes thermal, it is conservatively added to the faulted loading without removal of the dynamic upset loads.
M sse
.= 1067 + 25.5.Z + M pbe M sse = 3.458 10 in - kip 3
Msse c
~ sse
'=
l mom o
= 4.455 ksi 966 16694 Rt {6/93)
C t
0 I
)
~ f 4
h, e
WA5HINOTONtuatlC toWaa SUPPLY SYSIZM
<~as MAXUALCALCULATION VeNied Sy/Date Page Cont'5 On 0 5 Paoa 5-oat'Calculation No
-OZ-4t Y- 0 Aavicion No.
Determine the discontinuity stresses due to the attachment of the stainless steel safe end to the carbon steel vessel nozzle. The vessel nozzle has a 3/8 in inconel butter on the surface and then is jointed to the safe end with an inconel weld. Thus there are three different materials to be evaluated for thermal growth.
Nozzle Forging - SA-508 CL 2 (3/4NI-1/2Mo-CR-V)
Coeffiecient of Thermal Expansion - Group A Materials at 550 F 7.34X1 0"-6in/in/F Modulus of Elasticity - 27.0X10"6 psi Safe End-SA-336 F8-(18CR-8Ni) Group G Coefficient of Thermal Expansion - Group 9.45X10"-6 in/in/F Modulus of Elasticity - 25.55X10"6 psi.
lnconel Weld Metal: SB-167 N06690 (58 Ni -29Cr - 9Fe)
Coeffiecient of Thermal Expansion - 8.13X1 0"-6in/in/F Modulus of Elasticity - 28.2X1 0"6psi Check nozzle to inconel thermal discontinuity.
Eab
'= 27.0 10
+ 28.2 10 E ab = 2.76 107 psl ua l= 7.34 10
-6 ab
'= 813'10 T a
.= 550 - 70
~tdis'= Eab'a Ta
~bTb Tb.
550 70 G tdis 1,047 104 psi Nozzle to safe end Check the inconel weld to safe end discontinuity.
Eab
'= 25.5 10
+ 28.2 10 E ab = 2.685 107 a a '= 9.45'10
-6 u b:=
8 13.10 968-18694 Rl i6/93)
WAanlNGTON tuaQC FOWaR 4% sUppLy svsreu MANUALCALCULATION Page C ooc Cont'a On Page
+is/
Verified By/Date A/w'alculation No.
oa-
-o 9 Revision No.
C5 REV.
8/tR Ta.
550- 70
+ tdis
.= E ab' a.Ta ub.Tb Tb.= 550- 70 cr td s = 1.701 10 safe end to inconelN/eld.
4 Thus the maximum discontinuity stress is between the stainless steel safe end and the inconel weld metal.
The original vessel stress report provided calculation of the stress concentration factors at the locations of tapered transitions in the nozzle.
There was no stress concentration listed for the joint that we are evaluating.
Since the weld joint between the safe end and the nozzle is a flush weld between two equivalent diameter cylinders, we can use the stress indices from a flush weld in table NB-3683.2-1. The table lists C3 as 1.0 and K3 as 1.1.
Thus for determining peak stress at the material discontinuity, the C3 and K3 indices are applied.
1
~ dis
'= '~ tdis 1000 G dis 18 713 ksi Summary of Safe end to nozzle stresses:
Design Pressure Stress = 7.790 ksi Deadweight Bending Stress a dwt = 0.286 ksi Upset Primary plus Sec. Bending Stress o obe = 2.76 ksi Faulted Bending Stress, includes thermal, deadweight, obe and sse.:
o sse = 4.455 ksi 966.16694 Rl <6/93i
0
.-4 8
II f
4$ SUPPLY SYSIXM MANUALCALCULATION Verified By/Date Page
. 00>
Cont'a On Page Calculation No.
--0 -9g-o</
Revision No.
Thermal Discontinuity Stress at the Carbon To Stainless Steel Intersection:
o'is 18 713 ksi Stresses classified as bending stresses above are based on the outer fiber stress to maximize the magnitude.
Bending stress on the inner wall is obtained by factoring the stress by 10.84/12.75.
Stresses though the wall thickness are linear between the minimum on the inner wall to a maximum at the outer wall.
968-16694 R1 i6/93)
I
I> supptv svstm Prepared By/Date T.M..Efwin MAMJALCALCULATION Verified by/Date Page Smog'ont'd pn Page cetculation No.
ME-02-98-04 Revision No.
0 Weld Residual Stress Calculation forthrough wall thickness based on NuReg 0313 Rev 2 methodology.
(4)
P Definition of terms:
S = polynomial coefficients e = percent ofthrough wall thickness x/t R = ratio of residual stress to room temperature yield of 30 ksi for stainless steel.
x = Point measured through wall from ID to OD.
t = Thickness of 2.00" o', = The room temperature yield strength ofstainless steel 30 ksi.
o'= The calculated residual stress at location x through wall err +R = cr.
$ o-1.0
-6.910 8.687
.480
-2.027 i:= 0...4 j:= 0...10 0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 I
R:=~s s
J'r
/
R = ~J at the% thickness, ref s above and crt 30 ksl.
/~r 1.0
- 0395,
-0.042
-0.321
-OA57
-0.47
-0.385
-0.232
-0.044 0.138 027 RES:= R 30 ksi RES is the weld residual stress
)i 1
k I Y
0
'-, -'E-;Nuclear Energy EXAMINATION
SUMMARY
SHEET REPORT NO.:
'K2 PROJECT:
1G 80 -
13 PROCEDURE'EV~
FRR:~fHP29i+2 SYSTEM:
WELD NO.:
CONFIGURATION:
REV~ ERR:~
REV'RR:~
EXAMINER:
EXAMINER:
EXAMINER:
LEVEL:~t LEVEL:~
LEVEL:
WELDVFPE:
CTMT OPT OUT QVT 8 CIRCUMFERENTIAL Q LONGITUDINAL OTHER DATASHEETNO.(S)'ALSHEET NO.(S):
During the automated ultrasonic examination of the above referenced weld, one (1) reportable ID connected planar indication was recorded with the "SMART2000" examination system utilizing a 45'hear wave, and 35', 45', and 60'efracted longitudinal (RL) wave search units.
This indication has the following parameters:
Ind.
Ind.
No.
Start Ind Stop OD ID Length Len th Dimension Li ament (Side ofWeld)
Thru Wall
'Remainin Flaw Location Indication Orientation 28.5 32.7" 4.20 3.52 0.29 1.71 DNST (Safe End )
Circumferential "Remaining ligament and thru-wall dimension information is documented utilizing the measured wall thickness (2.00 ) from the safe-end side ofthe configuration.
Indication length and thru wall dimension was determined utilizing the 45'hear wave search unit. A component ID/OD ratio of 0.839 was utilized for determination of ID length. This ratio is based upon a measured component circumference of 78.0 and a measured material thickness of 2.00".
Indication Characterization:
This indication provides substantial ultrasonic response from both the 45'hear wave and 45'efracted longitudinal wave (RL) search units. The signal characteristics observed are not indicative of typical IGSCC indications, however the axial position ofthe indication is distinctly within the heat affected zone (HAZ) ofthe safe end component.
Observable sound scattering prior to impingement at the inside diameter surface provides ultrasonic responses similar to a weld repair region.
g EXAMCOMPLETE Cl PARllALLYEXAMINED(EXPLAININ COMMENTS)
E~F EXAMCOMPLETE IN COMBINATIONWITH ADDlllONALDATASHEETS:
N/A COMPARED 'PSI NISI REPORTNO.ISl: R-R9%17 EXAMINA RESuL:
0 ACCEPTABLE No. OF RECORDABLEINDICATTONS~{ILD' NO CHANGE MNNACCBFTABLE NO OFNBFORTABIEINOICAOONB~
CODE COVERAGE OBTAINED:
'll UM BY
~E ~&~cd LEVEL DATE UTIUTYR IEW DATE GE REIIIBWEOEY
~
LEIIEL GATE ANIIREVIEW PAGE~OF:~
EGEBE MfEG EEV. ~
GE Nuclear Energy EXAMINATION
SUMMARY
CONTINUATIONSHEET REPORT NO.:
PROJECT:
SYSTEM:
WELO NO.:
CONFlGURATION:
The 60'L search unit provided limited ultrasonic response during the automated examination.
This can be partially attributed to the OD surface conditioning (machining) within the area ofthe required setback distance for this examination angle.
Manual 60'L re-looks in this area provided an increased but intermittent degree of detectability, and insufficient depth sizing information.
Supplemental manual examinations were also performed in the indication area utilizing 45'hear wave and 70'L (WSY 70) search units. The 45'hear wave search unit did not identify any flaw faceting or axially oriented components from the indication, and provided a rapid fall offin signal amplitude when skewed away from perpendicular.
The WSY 70 search unit did not provide meaningful information due to search unit contact inefficiencies.
The indication is observable in r~valuation of RFO9 automated inspection data utilizing an enhanced data analysis software (Tomoview). The indication shows no noticeable signs of growth in either the length or thru wall dimensions. See supplemental report R-R13431-S for additional information.
The 45'egree shear wave also recorded non-relevant indications from both sides ofthe weld, as well as root geometry and refiectors from the inconel weld/butter material that have been further characterized below from the downstream side ofthe weld.
The 35'L search unit recorded non-relevant indications from both the upstream and downstream sides ofthe weld as well as reflectors from the inconel weld/butter material that have been further characterized below from the downstream side of the weld.
The 45'L recorded non-relevant indications from both the upstream and downstream sides ofthe weld, along with the previously mentioned planar flaw indication from the downstream side of the weld.
The 60'L also recorded non-relevant indications from both sides of the weld, as well as reflectors from the inconel weid and buttering material that have been further characterized below from the downstream side of the weld.
The upstream examination was limited to a "N/'imension of 1.80" from weld centerline due to the nozzle configuration.
A liquid penetrant examination was performed prior to the ultrasonic examination utilizing procedure QCl 3-3 Revision 5. This examination resulted in (3) three recordable indications. For further information, reference WNP-2 Liquid Penetrant Examination Report Number 2RRP-012.
Inconel butter indications:
Ultrasonic reflectors were recorded from the area associated with the inconel weld/butter material. These indications do not display signal characteristics indicative of IGSCC and have been interpreted as non-relevant metallurgical (acoustical interface) or fabrication process (welding discontinuity) indications. This resolution is based upon review of component radiographs and system fabrication and modification records.
For additionai information refer to the ultrasonic data and indication plot sheets ofthis report.
UM YBY LEVEL DATE UTILITYRENEW 4P PAGE~ OF:~
GE REVIEWED SY LEVEL DATE II RENEW DA
.r I
'f
~ 0 ~
(II
~
~
I
\\
~
~
~ i
~
~
I I,I ggggg 5585I5 55IHE5 l555I5 m
~
~
~
~
)
~
0 I I I I I I 0
p ii fg/
ll
GE Nuclear Energy INDICATIONPLOT SHEET SITE:
NNP....
UNIT: 2....
PROJECT:
16WBQ =. Bf913 REPORT NO3 R-R13-031 SYSTEM:~CIBCUlhIIO COMPONENT IO NO.:. 24BBC(2S:1 CONFIGURATION: NOZZLE SB,fE END I
I I
I I
J I
L J
I I
I I
J I
I I
I I
I I
I I
I I
I J
I I
I I
L-J I
I I
I I
I I
I I
I J
I 1
J J
I I
I I
I I
1 1
I I
J I
I I
I I
I I
I I.
I I
I I
I I
I I
I I
I I
I I
L I
I I
I I-I I
I I
I I
I L
I I
I It I
I I
It I
I I
I I
I I
It I
I I
I I
I I
I I
I I
I I
I I
I I
I I I I
I I
I L
J I
I I
I I
I I
I I
I I
I I
I I
I It I
J I
I I
I 4
I I
I I
C
- I I
I I
I I
I I
I I
I I
I
-r I
I I
I J
L J
-l.
I I
I I
I I
~ 4c,'
I I
I I
I IJ I
I I
r I I
I I
E J
I I
I I
I I
I I
I I
I I
I I
I I
I I'
I-I I
I L
J L
I I
I I
I I
I 2
I I
I It I
--r I
L I
I I
I I
lCM I
I I
I I
I J
L J
L I
I I
tt I
I 4
I I
I I
I I
I I
I I
I I
J I
I 1
IJ I
I I
I J
Qr I I I
tj I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
~
I I'
~ t -
I i --I-~--
~ I----t-1--)--
I I
I I
A I
I I
I I
I I
I r-I I
I L
~I r
- I' I
I I
I I"
I I
I I
I I
I I
I I
I I
I I
I I
I I
J I
L J
2 I
I EJ
. k L
I J
L J
I I
J I
I I
I I
I I
I I
I I
I I
I I
I I
I I -
I I
I I
I I
I I
I I
I I
I "I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I /I I
I I
4 W
I.
I "IE.
P g
I q
I.
8 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
r t-I--r-I--'It-t ~--r-1--V r-1 r -t----
I I
I I
I I
I I
I I
I I
I J
I L-J---
E IN-L J
E I
L J
L J
I J
l.
J I
E I
I~ ~
t~
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I r
t 9
I I
t 9 ~t
-t 8
I-I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
J i
I L
J L
J L
J L
J L
J L
J I
J I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I L
I I
I I
I I
I I
I I
I I
I I
I I
I I
~--~r T~-r 1
--r-1 r 1-
-r-1--r-1" r
1 r-1
- l. = z'x -x~
2
~ - E- ~- -~4~4+-IILr~je I
I I
I I
I I
I I
I I
I r
I I
I I
I I
I I
I I
I I
I I
I I
I I
I D~
I I
I I
t I
I I
I I
I I
I
~ J---- J-- --L-J - -- -I -- --4 J----\\- J--L-J ----N-J J
I l
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
1--I--r 1- ~~t--r~~)r<1--s -4%-
m 1 -r-1----r-1--J-I I
I I
I I
I
~
I E
I M
4 I
4 I
I W
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
J I
I I
I I
I I
I I
I I
I I
I I
I I
I L
J I
I I
I r-1 I
I L
J I
I I
I I
I I
I I
I I
L J
I I
I I
I I
r I I
I I
I I
J I
r~l I
I I
I I
I I
8 I
I I
I L
J I
I I
I I
I r
I I
I I
4 I
I I
I I
I I
I I
I I
I I
r I
I I
L J
I I
I I
I I
I J
J I
L J
2 J
L I..
E-J-I -J--
L J--L I-1 I..I J
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I 1
I I
I I
I I
I I
I I
I I
I I
I I'
I I
L L
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I t -- r I
I L
L I
I I
I I
I L
I Ir It It I
It I
I I
I I
I I
I I
I I
I I
I L
I I
I I
I I
I I
I Il I
I I
I I
I I
I I'I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I 1
I I
I I
I IL-.
I I
I I
I.
I I
I I
I I
~
I I
I I
I Ir I
I I
I L
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I-r-I L
I I
I I
I I
LI I-r-I L
~
I I
I I
I I
L r -1 I
I L
J I
I I
I I
I I
I I
I I
L J
r-1 I
I L
J 1
t I
I L
I I '
I I
I 1
I 1'
I I
I L
I I
I It' I
J-I- L-I I
I I
I I
I I
I I
I
~
I I
I I
I I
I I
I r----r-1--I--r-I I
I I
I I
I I
I I.
I I
I It' I
I I
I I
I I
I I
I I
I I
I I
I t
I' l
L J
I L
I I
I I
I I
I I
I I
I I
I I
DRAW BY W/,O/qr GE REVIEWED BY LEVEL DATE aI 5/tO 8 PAGE:
4 OF:
22 IOEMMIEINEV11
Uce E Inspection Services
- .-.Tofi 6)'45S'Pal'.0 63 Pl,:=:
- PosItiudC.Kait 4%:Pl&
VC-'Side.t8j'.45RBBl",'0'63PlN 28.
28.
- 32. /
~
I 3l.2 a 33.8::
28.52.r
~ e Comments WNP2 RFO13 Weld 24RRC(2)A-1 N1A Nozzle to Safe End Weld Planar FlawiWeld Repair Indication ghlDIÃpon/ 4 I
~l
Lice(
c Illspecuoll oLlvlces Ca'.45S Pl'-Pl:0 63Pl;:
--:'-::::::-".-=.":-.::-':.:.'.'::"-.:..:::::::'-:'-.::::: :-::--=::.-'--:-=':==-=-==---':==-'ij
'.PiosihorTLC-StidK4%:P1ipl 5
i
?Ji.
- .VC-.Sxh.18)A5RP1$ Ht063P1='".
~
~
I r
1.6 in EhdQj 4%:P~]-,Pil!063 PltC~k;-.IRRKKRKRk-..:-'.k%X"",.
Comments WNP2 RF013 Weld 24RRC(2)A-1 N1A Nozzle to Safe End Weld Inconel Butter Indicatton moturrou 4 4-
Licen F Inspect(on Sennces
'A-8ca'n.45SPl%:0:63
.T.op fs I
10.
- VC S3ib (BJ45RPI&'.963Pl,.
8.1 in 31.7:I
.Eiid/0)"45S'.Q&!Q.G3;P1F",k gERRRRQRRk:
=
ÃvM",'omments WNP2 RFO13 Weld 24RRC(2)A-1 NIANozzle to Safe End Weld Inconei Weld Indications KA/QQ'@pe 4t. 3
~
I '
4
/
7 GF Nuclear Energy ULTRASONIC SCAN DATAPRINT SHEET (AUTOMATEDWITH Smart 2000) 0 n1a 1z28:Aq 455: P1+P1 Q~Q~
Tl'473'2 7 a,aeaaa
'a24ae 98 88 78 68 58 48 38 28 18 tII i~i I~V4~4/g~j t,r(e,le/rAPI r"'~r'"t'id I>
re"tji g 6.188 in Half Path Ag..22583 Ia1a 1225:Ca P,455: P14
@jeer XP~2237 214~5,573 aX~333e 47 I
aa~
'1, YP~47.221 771~55.ee3 aY~33.442 4 72.
Ia li'rr454 r(7"Irrr II.-P 58.857
~ a.
34 eaa Paar ea in
-1.899 15.895 in Half Path 45'hear Root Geometry SITE'NIT:
PROJECT NO.:~mtlIO REPORT NO.:~~31 WELDNO'ARCN UNIT:~EEAB INDICATIONNO.:~ PAGE:~ OF:~
204134 VT 13 ACV.I
INDlCATlONPLOT SHEET PROJECT:~
REPORT NOJ Mike SYSTEM:
COMPONENT ID NO:
CONFIGURATION I
I I
I 4
I I
I I
J I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I t
I r
I I
I l J L
I I
I I
I I
I I
I I
I I
I I
I I
I I
It I
I L
I I
L J I
I I
I I
I I
I I
I I
I I
I I
I J
I I
I I
I I
I I
I I
L J
L I
I I
I L
J -L I
I I
I I
I I
I I
I I
IL I
I I
I I
I KI L 4
I I
I I
I I
I I
r-t----r-w--r I
I I
I L
I I
I I
I I
I J
I I
I I
I I
I I
II-I I
I L
J I
I I
I I
I I
I I
I I
I I
I J
I-I I
I I
I I
I I
I I
I I
I I
I I-1 I
I I
I I
I I
J I
I I
I I
I I
I I'
I I
I I
I I
I I
I r
I I'
I I
I I.
I I
I I
I I
I I
I I
I I
I I.
I I
I I
I L J I
I I
I I
I 1
I 1'
L I
11 I
I I
I I
I I
L I
I I
I I
IJ---
I I1 I
I I
I I
I I
I I
I L
J l-I I
I I
I I
I I
I I
I I
~
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
r I
I I
I I
I I
I I
I I
t I
I I
I I
I I
I I
t I
I I
I I
I I
r 1 -
T-1--r I I
I 1
4 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
t I
I I
I I
l J L
I I
I I'I I
I 1
1 I
I 1
I I
I I
I I
I I
t I
I IJ I
I I
I I
I I
I I
I I
L I
I I
I r
1 r-T-I I
I I
I.
4 I
4 I
I I
I I
I I
I ~
r I
I L
J I
I I
I I
I I
I I
t I
I L l I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I'
t I
I 1
t I
Q I g t
1 I
I t
1 1
I I
I I
I I
I I
I I
I I
I I
I I
I L
J l J L
J J
I J $
L J L
L Jg L
J I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I 4
NI I
I I
I /I I. 4--
4 4
t 4
I 4
l 4
I I
I I
I I
I I/
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I'
'1 I
I 1
T I
I 1
0 I
1 I
'I ]
I 1
I I
I I
I I
I I
I I
I Q
I I
~
I I
I I
L J
I J L
J I J L
J 3
1.
J L
J J
L 1/1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I '
I I
I I
I I
I I
I I
I I
I I
~
I I
I I
t
+
4 I-
+
4 I
I
+
I I
I I
I I
I I
I I
'I I
I I
I I
I L
J l
I L
J l J L
J
-I.-J L
J L
J L l I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I
--T- - r 1
~a r
1 r
1 r
r 1
r I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
~ IT I
I I
I I
I I
I I
I I
I I
I I
I I
~el I
I I
I I
I I
I t
8 I t L
J l
I L
J l J KJ P
L J
L L
J L
J I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I J
I I
I I
I I
I I
I I
I I
I I
L J
L l I
L I
I I
I I
I L
I I
I I
I I
I I
I I
I I
I I
I I
I t
I I
I I
I I
J I
L L
J I
I I
I I
I I
I I
I I
I I
+
I I
I I
I I
~
I I
I I
I I
J I l I
L I
I I
I I
I I
I T
I I
I J
L I
I I
I I
I I
I I
I I
I I
I I
I L
J L l I
I I
I I
t----r I I
I IL I
I I
I I
I L
J I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I L
J I l L
J I
I I
I I
I I
I r
1 r
T I
I I
I I
I I
I I
I r
1 I
T I
I I
I I
I L
J I
I I
I I
I I
I I
I I
I I
L J
L. l I
I I
I' I
L J
I l.
L J
I I
I I
I I
I I
1 1
I T
I I
~
I I
J I
I I
I I
I I
I I
I I
I I
I I
I I
r I
I L
J I
I I
I I
I I
I I
I I
I r
1 I
I I
I I
I I
I I
I I
I
'I I
I L
J I
I I
I I
I I
I
--r r I
I I
I.
I I
I I
I I
I I
I t
I I
I I
I I
I I
I L
'It~II~A%3l~)
I I
I I
I I
r t-
-r-W--I--t---
I L
I L
I L
I L
I I
I I
I I
I I
I I
I I
I I
I L
I I
I I
I I
I Ir--
I L
I II I
4 I
I I
I I
I I
I I
IL I
I I
I I
I I
I I--r I
I I
L J
I I
I I
I I
I I
I I
I I
I I
I I
I I
I t
I I
I I
I I
L I
I I
I I
I I
I
-r-1--I--r I
I I
I L
J I
L I
I I
I I
I I
I t
I I
L J
I I
I I
---r-1--1"-r-I I
I I
I J
I I
I I
I I
I I
I I
I I
I I
I I
I I
1 I
1'AWN BY A/III/9P GE REVIEWED BY 2F E/o//f LEVEL DATE FAG¹ ~Q OF:~
SOIVIITIC Alt.11
h Inspection bennces
-'O'-Scen'45BLPM2;0 G3&=-.='==.::..::.-'.:
- -9:
T.op Position CrScari'458LP2-:
'I 31.r
- 31.I 31.1 in 31.7 i
- End
) '45RL'P2-RM63'Pl <"-'-::59QRKFaRKI;:
%he
~
aI 31.r Comments WNP2 RFO13 Weld 24RRC(2)A-1 N1A Nozzle to Safe End Weld Planar RawlWefd Repair Indication MAcavonl 4 /
I 2
GF Nuclear Energy ULTRASONIC SCAN DATAPRINT SHEET (AUTOMATEDWITH Smart 2000) 0 n1a 1':Aq45RL: P2+R2 Q~(jg
ÃpehThal
~ha6845 98 88 78 68 58 48 38 28 18 II%1,A lit II, v
8.888 a 2 4
'4
'aha 4IA ~
68 hit IlIL(~I "lI Ig II ((
IlIII)I'IP'0 'It III 5.684 in Half Path AE;. 6681
[g <<1a 122!l:C 8, 45RL: 82h [gP!] XX~2.386 XX~5.688 aX~3.382 5
2 22
'v~wa 8'a rg '!
",=~+el=+~~~.
88~8.hev v~ev.ee3 aV ~47.838 a
I P
5"
~eaA a
hhi~
hIoaI6 1
33 I ehh ahha 47.857 tn
-1.899 15.895 1 n Half Path 45'RL Root Geometry SITE:
UNIT:
PROJECT NO.:~ma REPORT NO.:
WELD NO'ARCNUNIT:~INDICATIONNO.:~ PAGE:~ OF:~
80266 VT 13 8 CV. I
INDICATIONPLOT SHEET SITE:
PROJECTMQEIIQ=
REPORT NOJ M&83L SYSTEM:
COMPONENT ID NO.
CONFlGURATION' L
I 4
I L
I I
I J
I I
I I
I I
I 1
I T'
L I
I I
J J
I I
I I
I I
I I
I J
J I
I I
I I
I I
'1 I
I I
I I
I I
J I
L I
I IJ I
I 1
I T
1
'T I
I I
I I
I L
4 J
I L-J I
I I
I I
I I
I I
I I
It I
I I
I I
I I
1 I
t
'1 I
I I
I I
I l.
J I
I I
I I
I J
I L
J J
I I
I I
I I-I I
I I
I I
I I
I I
I I
I I
I 4
A I
I I
I I
I I
I I
I I
4 L
4 I
4 I
L I
I I
I IJ I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
~
I I
I I
I I
I I
I I
t I
I t
I I
I t
I I
I I
I I
I J
J L
J J
J L
I I
4 I-L I
I I
I I
I I
I I
I I
I I
I I
I r-.--
I I
I J
L I
I I
I I
I I
--r-I L
I I
I I
I I
I I
I I
I I
I I
I I
J L
1 I
I I
I I
I I
I I
I I
I 04m t
I I
I I
I I
I I
I I
I I
I r
I I
I I
I I
I I
I I
I I
I I l I I
I I
I t
t 1
I 1
t I
I I
I L
J I
I L
J I
I L
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
+
I I
I I
I I
I I
+
I I
I I
I I
I I
I I
IJ L
J
'Q I
T-a--r-1--g-r I I
I I
I I
I I
L J
I I
I I
r"1----
I I
L J
T r-1 I
I I
I 4
4 L
4 I
I~
I I
I I
I I
I I
I I
I I
I I
L I
I
~t t
9 I-
+-8-'
1 I
I I
I I
L-J-J I
L J
I I
I I
I I
I I
I J
J L
J L J IL J
L J
I I
I I
I I
I I
T l I
I I
I I
I I
I r
1 r
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I T
1 r
Q~
I 8CGA.EL'LL~~
I I
I I
L J
L I
I I
I I
I I
I 1
'1 I
'T I
I I
I L
J -L J
I I
I I
I I
L J
J J
L J
I I
I I
I I
I I
r 1
r I
I I
I I
I I
T l I
I I
I I
I I
I r
I I
4 I
I I
I I
I I
I
~'
I I
L J
I I
I I
I I
I I
t I
I I
I I
I I
I I
I I I
I I
I I
I I
I O'
I I
L J I
I I
I I
I I
I I
I I
I I
't I
I L
1 I
I I
I I
I I
I 4
I I
I I
I I
I I
I I
I I
I I
I I
I I
L J
L 1
I I
I I
I I
I I
I I
I I
I
~
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
t N
I-t 8
I t
1 I
I I
I I
I I
I I
---I-4~
I s 6uQ I
I L
J I
I I
I I
I I
I I
I L
I I
I I
4 I
I I
I I
I I
I I
't I
I L
J I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I ~4 I
I I
I I
I I
I I
I I
I I'
I L
-I J--I--L I
I I
I I
I I
I I
I I
I I
I I
I I
4 I
I I
I I
I I
I I
I r-t I
I I
I L-J I
J I
I I
I I
I C
1 I
I I
I I
I I
I I
I I'
I I
I I
L L
I I
I I
'1 I
I I
J I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I t'
t I
t' I
I I
I L
L J
I L
I I
I I
I I
I' I
I I
I I
I I
I I
I
+
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
1.
I I
I II I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
4 I
I I
L I
I L
J I
I I
I I
I I
L J
I I
L 4
I I
I I
I I
I I
I-I I
I I
I I
I I
I I
I I
I I
L J
I L
I I
I I
I I
I
'I I
r----r-1--I--r-I I
I I
I L
L J
I L
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I 4
I I
I I
I I
I L
L J
I L
I.
(Qg ~~I I
I I
I I
I I
L I
4 I
I I
I I
I I
I I
I I
I I
I I
I I
I t
I-1 I
I I
I I
I I
I r- --r-1--I--r I
I I
I I
L I-4 I
L I
I I
I I
I I
I I
I I
I I
I I
I I
I I
r I
I I
I-r I
I I
I 4.
I I
I I
I I
I I
I I
I-L I
Ir I
I-I I
I Ir I
L I
I I
I L
J L
J I
I I
I I
L L
J I
L I
I I
I I
I r-1--
I I
I I
I I
I I
I I
I I
I I
I I
1--r r-I I
I I-I -I I
I I
I I
I I
I I
I' I
I L
I I
I I
I I
I I
I I
I I
I 1
I 4
I I
I I't I
J I
I I
I I
--r I
I I
I I
I I
I I
I I
I I
I I
I I
I t
t I
I I
It I
I I
L J
I r
-r T
I-r I
I I
I I
I GE REVIEWED BY LEVEL
~8/i6 ffL DATE PACE: M3 OF:~
SONIIIIT41NIV.It
GE.Nuclear Energy ULTRASONIC EXAMINATIONDATASHEET (AUTOMATED WITH Smart2000)
SITE:
UNIT:
PROJECT NO.:
PROCEDURE NO.:
REVISION NO.
FRR NO'EPORT NO.:
DATASHEET NO.'YSTEM:
WELDID'HERMOMETERS/N:~6(}
BATCHNO.'XAM START~k2Z EXAMEND:~~/
SCAN~10 SCAN DIRECTION~DhL GAIN(dB)~~ SCAN~9 SCAN DIRECTION'K2-GAIN(dB)~~
EXAMINATIONRESUI TS:
EXAMINATIONRESULTS:
RLENAME(S):
No RECORDED INDICATIONS
" ROOT GEOMETRY COUNTERBORE GEOMETRYL I( NON<ELEvANTLNoICAmoNs COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS 5
OTHER:
QI No RECORDED INDICATIONS IROOT GEOMETRY Q COUNTERBORE GEOMETRY 8 NONRELEVANTINDICATIONS COMMENTS:
Q Acousmc INTEI+ACE I
1 BISIDE SURFACE GEOMETRY Nr Not&GEOMETRICINDICATIONS II OTHBL SCAN:~.
SCAN OIRKCTION~(OE(- GAIN(SS)~4.0 SCAN~12 SCAN OIRECTION~OH GAIN(ES)~g EXAMINATIONRESUI.TS:
QE No RECORDED INDICATIONS
'OOT GEOMETRY v~ COUNTERBORE GEOMETRY I NONWELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q
INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS 5
omIER:
DISYJSIDE:
EXAMINATIONRESULTS:
Q No RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY g NONAELEVANTINDICAmoNS COMMENTS:
FILENAME(S):
- ACOUSTIC INTERFACE
- INSIDE SURFACE GEOMETRY
'ONNEOMETRIC INDICATIONS 5 omIEIL SCAN:~5 SCAN DIRECTION~QMt GAIN(dB)~~ SCAN:~Q SCAN DIRECTION~~g GAIN(dB)EL EXAMINATIONRESULTS:
Q Ho RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY IINONWELEVANTINDICATIONS COMMENTS:
FILENAME(S):
Q Acousmc INTERFACE Q INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS Q OTHER:
EXAMINATIONRESULTS:
Q No RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY INO~ELEVANTNDICATloNS COMMENTS:
FILENAME(S):
I ACOUSTiC INTERFACE Q INSIDE SURFACE GEOMETRY L
I NON<EOMETRIC INDICATIONS I omIEIL LEVEL CASE G
REVI D BY PAGE~ OF:~
GE'Nuclear Energy ULTRASONIC EXAMINATIONDATASHEET (AUTOMATED WiTH Smart 2000)
SITE:
UNIT:
PROJECT NO.:
PROCEDURE NO.:
REVISION NO, FRR NO,:
REPORT NO-'ATA SHEET NO.'YSTEM:
WELDID'HERMOMETERS/N:~gg BATCHNO.'XAM STARTMk2Z EXAMENDI~R@I I
SCAN~V I
SCAN DIRECTION~QP GAIN(dB)~~ SCAN~i SCAN DIRECTION~DE GAIN(dB):~Jl EXAMINATIONRESUI.TS:
Q NO RECORDED INDICATIONS g ROOT GEOMETRY v~ COUNTERBORE GEOMETRY Q NONAELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY IN NONNEOMETRIC INDICATIONS I) OTHER:
EXAMINATIONRESULTS:
Q NO RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY 0 NONAELEVANTIND)CATIONS COMMENTS:
FILENAME(S):
P ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NONWEOMETRICINDICATIONS NI OTHER I
SCAN:~31 I
SCAN DIRECTION~K%
GAIN(dB)EIELQ FILENAME(S):
EXAMINATIONRESULTS:
EXAMINATIONRESULTS:
RLENAME(S):
SCAN~32 SCAN DIRECTION~Q26L GAIN(dB)~J)
Q NO RECORDED INDICATIONS LJ ROOT GEOMETRY COUNTERBORE GEOMETRY I NONWELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS Q OTHE' NO RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY g NONRELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE P
INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS Q
OTHER:
SCAN:~S,'CAN DIRECTION~K GAIN(dB)~$
DISK/SIDE:
EXAMINATIONRESULTS:
SCAN:~$
SCAN DIRECTION~S GAIN(dB)~$
FILENAME(S):
EXAMINATIONRESULTS Q NO RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY Q NONWELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY P
NO%GEOMETRIC INDICATlONS Q OTHER:
Q NO RECORDED INDICATIONS Q ROOT GEOMETRy Q COUNTERBORE GEOMETRy Q NONWELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS Q OTHEIL B
RBill 0 BY lEVEL PAGE~ OF:~
GE Nuclear Energy ULTRASONIC EXAMINATIONDATASHEET (AUTOMATEO WlTH Smart 2000)
SITE:
UNIT'ROJECT NO.:
PROCEDURE NO.:
REVISION NO.'RR NO.:
REPORT NO
'ATA SHEET NO
'YSTEM:EXAMSTART~225 WELDID'HERMOMETERS/N:~~9 BATCH NO.'XAMINATION SURFACE~ COMPONENT:
EXAMEND:MEAL SCAN:~39 SCAN DIRECTION~KML GAIN(dB)~J)
SCAN~49 SCAN DIRECTION~KtE-GAIN(dB)~
EXAMINATIONRESULTS;
'o RECORDED INDICATIONS
'OOT GEOMETRY
'OUNTERBORE GEOMETRY I) NONWELEVANTINDICATIONS I
I ACOUSTIC INTERFACE
'NSIDE SURFACE GEOMETRY I
" NONWEOMETRIC INDICATIONS I)
OTHE'XAMINATION RESULTS:
Q Ko RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY 5 NON mSVANTINOICATIONS FILENAME(S):
Q ACOUSTIC INTERFACE P
INSIDE SURFACE GEOMETRY Q Nok+EOMETRIC INDICATIONS It OTHER:
COMMENTS:
COMMENTS:
SCAN:~$
SCAN DIRECTION~S GAIN(dB)~lb SCAN~LEI SCAN DIRECTION~K GAIN(dB)~$
EXAMINATIONRESULTS:
~i No RECORDED INDICATIONS P ROOT GEOMETRY
'OUNTERBORE GEOMETRY
'ok-RELEVANTINDICATIONS COMMENTS:
Q ACOUSTlc INTERFACE Q INSIDE SURFACE GEOMETRY P
NONZEOMETRIC INDICATIONS
'OTHER:
DISK/SIDE:
EXAMINATIONRESULTS:
Q ko RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMEIY Q NONWELEVANTINDICATIONS COMMENTS:
FILENAME(S):
Q ACOUSTIC NTERFACE Q INSIDE SURFACE GEOMETRY P
NONNEOMETRIC INDICATIONS Q
OTHEIL EXAMINATIONRESULTS:
FILENAME(S):
SCAN:~~.
SCAN DIRECTION~S GAIN(dB)~lb SCAN:~S SCAN DIRECTION~S GAIN(dB)~$
FILENAME(S):
EXAMINATIONRESULTS:
No RECORDED INDICATIONS ROOT GEOMETRY Q COUNTERBORE GEOMETRY P NOMRELEVANTINDICATIONS COMMENTS:
I ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NONNEOMETRICINDICATIONS I 'THER; Q No RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY Q NOMRELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMEIY Q NowcEOMEmlc IMDICATIOMS P
OTHEIL GE EVI D BY PAGE~OF:~
0 g1
":"GE Nuclear Energy ULTRASONIC EXAMINATIONDATASHEET (AUTOINATED WITH Smart 2000)
SITE:
UNIT'ROJECTNO-'ROCEDURE NO.:
REVISION NO.'RR NO.:
REPORT NO-'ATA SHEET NO:
SYSTEM:
WELDID'HERMOMETERS/N:~59 BATCH NO.'XAMINATION SURFACE~ COMPONENT:
EXAMSTART~
EXAMEND:MR45 SCAN~19 SCAN DIRECTION~DhL GAIN(dB)
EXAMINATIONRESULTS:
EXAMINATIONRESULTS:
FILENAME(S):
SCAN~A SCAN DIRECTION~~ GAIN(dB)'LQ I NO RECORDED INDICATIONS I ROOT GEOMETRY COUNTKRSORE GEOMETRY N NOHWELEVAHTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS Q OTHER Q NO RECORDED NDICATIONS g ROOT GEOMETRY Q COUNTERSORE GEOMETRY g NOHRELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMHRY g NOHWEOMETRICNDICATIONS Q OTHER SCAN:~~
SCAN DIRECTION UKH GAIN(dB)~2.9 SCAN~'CAN DIRECTION~DU GAIN(dB)~
EXAMINATIONRESULTS:
~ NO RECORDED INDICATIONS
'OOT GEOMETRY
~ COUNTERSORE GEOMETRY 8 NONWELEVANTLNOICATIONS Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q HONNEOMETRIC INDICATIONS Q
OTHER:
DISK/SIDE:
EXAMINATIONRESULTS:
Q NO RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERSORE GEOMETRY g HDNRELEVANTINDICATIONS FILENAME(S):
Q ACOUSTIC DITERFACE Q INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS Q OTHER COMMENTS:
COMMENTS:
SCAN:~39 SCAN DIRECTION~KM GAIN(dB)~QJ) l FILENAME(S):
EXAMINATIONRESULTS:
SCAN:~49 I
SCAN DIRECTION~GG GAIN(dB)~4.0 FILENAME(S):
EXAMINATIONRESULTS:
~ NO RECORDED INDICATIONS
~ ROOT GEOMETRY Q COUNTERSORE GEOMETRY g NOHRELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMEmY Q NOHNEOMETR)C INDICATIONS Q OTHER Q HO RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERSORE GEOMEIRY g NOHWELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS Q OTHER PAGE~OF:~
FINERMT470 EV.I0
GE Nuc/ear Energy ULTRASONtc EXAMINATtONDATASHEET (AUTOMATED WITH Smart 2000)
SITE:
UNIT'ROJECT NO.:
PROCEDURE NO.:
REVISION NO
'RR NO.:
REPORT NO.:
DATASHEET NO.
SYSTEM:
WELDID'HERMOMETERS/N:~~jg BATCH,NO.'XAMINATION SURFACE~ COMPONENT:
EXAMSTART~k2Z EXAMEND:M~
SCAN~13 SCAN DIRECTION~M GAIN(dB)E(2J)
SCAN~S SCAN DIRECTION~~ GAIN(dB)~$
EXAMINATIONRESULTS:
~I NO RECORDED INDICATIONS Q ROOT GEOMETRY I COUNTERBORE GEOMETRY g NONWELEVANTINDICATIONS COMMENTS:
~p Q ACOUSTIC INTERFACE
)Q INSIDE SURFACE GEOMETRY I NONWEOMETRIC INDICATIONS I OTHER:
EXAMINATIONRESULTS:
Q NO RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY
~ NONWELEVANTINDICATIONS COMMENTS:
FILENAME(S):
i l ACOUSTIC INTERFACE
. INSIDE SURFACE GEOMETRY
'ON<EOMETRIC INDICATIONS
~ OTHER:
SCAN:~lb, SCAN DIRECTION~I'AIN(dB)~IA(I)
SCAN:~$
SCAN DIRECTION~S GAIN(dB)~$
EXAMINATIONRESULTS:
l NO RECORDED INDICATIONS
+ ROOT GEOMETRY
~ COUNTERBORE GEOMETRY NONAELEVANTINDICATIONS COMMENTS:
Q ACOUSTICINTERFACE IQ INSIDE SURFACE GEOMETRY
~ NON<EOMETRIC INDICATIONS
'~
OTHER:
DISKISIDE:
EXAMINATIONRESULTS:
Q NO RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY
- NONAELEVANTINDICATIONS COMMENTS:
RLENAME(S):
) ACOUSTiC INTERFACE
! INSIDE SURFACE GEOMETRY
'ONNEOMETRIC INDICATIONS OTHER; SCAN:~!8 SCAN OIRECTION Ml8 GAIN(dE)~M SCAN:~LB I
SCAN OIRECTION~EGAIN(dS)~R EXAMINATIONRESULTS:
~ NO RECORDED DIDICATIONS
~ ROOT GEOMETRY
'~ COUNTERBORE GEOMETRY
( NONAELEVANTINDICATIONS COMMENTS:
FILENAME(S):
ig ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NONNEOMETRIC INDICATIONS Q OTHER:
EXAMINATIONRESULTS:
L I NO RECORDED IND'ICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY LJ NONWELEVANTINDICATIONS COMMENTS:
RLENAME(S):
'COUSTICINTERFACE
~( INSIDE SURFACE GEOMETRY I NONNEOMETRIC INDICATIONS
'THER G
REVI BY LEVEL ATE PAGE~ OFI~
SCSRS MTA)TREV. (0
e
GE Nucfear Energy ULTRASONlC EXAMlNATIONDATASHEET (AUTOMATED WITH Smart 2000)
SITE:
PROJECT NO.:
PROCEDURE NO.:
REVISION NO.'RR NO.:
REPORT NO.:
DATASHEET NO.
SYSTEM:
WELDID'XAMINATIONSURFACE~ COMPONENT:
lllthK EXAMSTART~ZZ EXAMEND:MRi9 I
SCAN~1Q SCAN DIRECTION~hL GAIN(dB)~Q SCAN~0 SCAN DIRECTION'KM GAIN(dB):~Q EXAMINATIONRESULTS:
P No RECORDED INDICATIONS Qi ROOT GEOMETRY Q COUNTERBOREGEOMETRY II NONWELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC INTERFACE Q
INSIDE SURFACE GEOMETRY Q NONWEOMETRIC INDICATIONS P
OTHER:
EXAMINATIONRESULTS:
Q No RECORDED INOICATIOHS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY I HON+ELEVANTINDICATIONS COMMENTS:
FILENAME(S):
P ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY P HONCEOMETRIC INDICATIONS It OTHER SCAN:l~,
SCAN OIRECTIOM~(OB GAIN(dS)~ILQ SCAN~~
SCAN DIRECTION~TH-GAIN(dB)~RLQ EXAMINATIONRESULTS:
g No RECORDED INDICATIONS LJ ROOT GEOMETRY COUNTERS ORE GEOMETRY N( NDNNELEVANTINDIcATIDNB COMMENTS:
FILENAME(S):
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NOHCEOMETRIC INDICATIONS P
OTHER:
DISlQSIDE:
EXAMINATIONRESULTS:
~ No RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMEIY g NONAELEVANTINDICATIONS COMMENTS:
FILENAME(S):
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY Q NONWEOMETRICINDICATIONS Q OTHER SCAN:~g SCAN DIRECTION~IADH GAIN(dB)(IQ~
DISK/SIDE:
EXAMINATIONRESULTS:
EXAMINATIONRESULTS:
FILENAME(S):
SCAN:~EIJ SCAM OIRECTIOM~(UE GAIN(dS)~
P Ho RECORDED INDICATIONS Q ROOT GEOMETRY P COUNTERBORE GEOMETRY Q NONWELEVANTINDICATIONS COMMENTS:
Q ACOUSTIC IHTERFACE P
INSIDE SURFACE GEOMETRY P
NONNEOMETRIC INDICATIONS P
OTHER:
P No RECORDED INDICATIONS Q ROOT GEOMETRY Q COUNTERBORE GEOMETRY Q NONWELEVANTINDICATlONS COMMENTS:
Q ACOUSTIC INTERFACE Q INSIDE SURFACE GEOMETRY NI NONWEOMEIICINDICATIONS Nt OTHER o
GE EVI 0 BY LEVEL A
PAGE~ OF:~
c T
4 E
I
O FW. II.W, AGE:Nuclear Energy ULTRASONIC SCAN PARAMETER SHEET (AUTOMATEDWITH Smart 2000)
SITE:
UNIT:
PROJECT NO.:
PROCEDURE NO
~
REVISION NO,:
FRR NO.:
REPORT NO.
DATASHEET NO.'ALIBRATIONSHEET NO.:
SYSTEM'ELDID'OTORSTEPS: CIR:~KGQCIO TRA:~XQRLirL WELD REFERENCE, (GE-ADM 1005): Lo:
SEARCH UNIT(S):
WO COMPONENTDQ'E WELDLENGTII:~ TRACKOIA~
ARMLENGTII:~ lllACKLOCATION:
SCAN PARAMETERS SCAM~
SCANDIRECNOW~D SKEW:~ SCAM~
SCAMOIRECIIOII;~lQH SKEW: AE ISEgfIE~
START:
~ START:
SIEE:
~9 OFFSET:
OFFSET:
RESOLUTION:~B~ ~1&8 TRA'ESOLUllON:~Z ~E~
TRA'OTOR OIRI MOBtd8I DHYHIEE ROT MOTOR DIR: MQBLIS UIbEBSE ROT'CRIM~
SCANDIRECNOID~IQB SKEFA~
SCRIM~
SCAIIDIRECllOID~OIHSKEW~
, EumEEI~ EIIIE~
START:
START: ~ ~Z OFFSET:
OR:
OFFSET:
aR'ESOLUllON:
~GAL ML1RH TRA:
MOTOR OIR: ~ERAL DHYEBSE ROT'ESOLUTION:~BI" ~B TRA'OTOR DIR: ~Bhlhl
~VERSE ROT'OAN:~
KDANCIREDNCW~ EKEw~
SCAIM~
SCANDIRECOON:~ SKEiM~
START:
OFFSET: ~~
CIII:
RESOLUDOID~~
TIIA'OTOR DIIL:~~ROT'lla OFFSET: ~~
all'IESOLIIIIOII:~~ TIIA:
IIOTOROIIL:~
~ROT'NER LEVEL DA E GER D BY LEVEL A
PAGEI~OF:~
~ I 0
GE.Nuclear Energy ULTRASONIC SCAN PARAMETER SHEET (AUTOMATEOWITH Smart 2000)
SITE:
UN)T:
PROJECT NO.:
PROCEDURE NO.:
REVISION NO.:
FRR NO.:
REPORT NO.'ATA SHEET NO.'ALIBRATIONSHEET NO.:
SYSTEM'ELDID'OTORSTEPS: CIR:M5ZI~Q TRA:~UI2Lia WELD REFERENCE, (GE-ADM-1005): Lo:
SEARCH UNIT(S)'o COMPONENT DIA:~K WELDLENGTNI~ TRACKDIAI~
ARMLENOTN:~
SCAN PARAMETERS SCAN~
SCAN DIRECllON:~ SKWR~
SCAW~
SCANOIRECNOII:~ SKEW~
EESEESIL3" EEIEZEELT START:
~ED-SIZE:
~Z
~BOZ START: ~
'EIEI OFFSET:
CIR'FFSET!
CIR'ESOLUTION:
~Z: MLLE TRA.
MOTOR DIIL: JEEBSF DI0tEBSE ROT:
RESOLUTION:~PL ~K MOTOR DIR.: ~IEBSF DEKfISE ROT SCAII:~
SCANDIRECllOII:MIGS SKEW:~
SCAW~
SCAII DIRECTIOII:~CEI SKEIW~
START:
START:
OFFSET:
OFFSET:
RESOLUTloN: MLDSSP ~5 MOTOR DIILI ~IISBSE USXfISE ROT'ESOLU11ON: ~ST
~ESP TRA'OTOR DIR.: ~HYEBSE
~LI'E ROT'CAN:~
SCAN DIRECNON:~Col SKEW~
SCAN:~
SCAN DIRECTION:~CC SKEW:~
START: ~ ~O EESEEL'tRZQ ISEEZIELX" START:
SIZF'JN
'LSZ OFFSET:
OFFSET:
CIR'ESOLUTION:
~3 ~F TRA'ESOLUTION:~ST
~SSF lRA:
MOTOR DIR.: ~MEILSK
~EBSF ROT:
MOTOR DIR.: ~IEBSE
~BSF ROT'E EWED BY LEVEL PAGE:~ OF:~
FOESIFTCEm IO
I r GE Nuclear Energy ULTRASONIC CALIBRATIONDATASHEET (AUTOMATEDWITH Smart 2000)
SITE:
UNIT:~
CALIBRATIONSHEET NO.:
PROJECT NO.:
LINEARITYSHEET NO.:
PROCEDURE NO.:
REVISION:~
FRR:
Instrument Search Unit Cable Calibration Standard Thermometer Couplant Manutacturer r Model Manutacturer Type Senal No.
Senal Na Serial N.
Matenat Batch No.
Syat<<n Senal No.
Size Freq.
tncaterff to wedge front No. ot Cnnnectora
~'F Tentp.
Measured Angle:
45.9'RIENTATION:
TYPE:
DEPTH:
AMPLITUDE:
SWEEP:
GAIN: (dBI L 'llME Q OEPTH METALPATH 3/BSDH: 2.079MP 35d8a(80%
5/BSDH: 3.517MP 35dBat60%
- 1. DELAY 2.
TIMEBASE'.
FREQUENCY: (MHz
- 4. RATE:/
- 5. UNITS:
Q DISTANCE (N HALFPATH C3 TIME 6.
VELOCITY'.
SAMPLES'EFLECTOR:
MAXAMPLlluDE:
SWEEP:
GAIN: (ds) 1.0" RADIUS 60%
1.003" 2.0" RADIUS 60%
2.006"
- 1. MODE: 0 PULSE ECHO t
I THRU-TRANSMISSION
- 2. PULEER~
TO RECEIVER:~
- 3. VOLTAGE:(v
- 4. WIDTH:(Ns)
)
TIME DATE INITIAL VERIFIED I VERIFIED I VERIFIED I
(
VERIFIED I FINAL I
oe.sa
'NS/ge I
OPER.
CONIP.
24RRC(2)A-1 24RRC(2)A.1 REPOR NO RA(343(
RA(343(
- 5. FILTER: I NONE 00.5-2MHz 01-5MHz 1 '2-10MHz C35-15MHz
- 6. RECTIFICATION: Q NONE
( "UNIPOLAR+ 0 UNIPOLAR-S BIPOLAR
- 7. SMOOTHING: D NONE 2 FAST 5 MEDIUM 2 SLOW LEVEL A E G
REV(
BY LEVEL A
PAGE~OF:~
GE Nuclear Energy ULTRASONIC CALIBRATIONDATASHEET (AUTOMATEDWITH SmaN 20DO}
SITE:
PROJECT NO.:
UNIT:~
CALIBRATIONSHEET NO.:
LINEARITYSHEET NO.:
PROCEDURE NO.:
REVISION:~
FRR:
Instrument Search Unit Cable Manutacturer / Modal Menure cturer Senal No.
System Senal Na Stre Freq.
AngleMode tnctdent to wedge bent Calibration Standard Thermometer Couplant Senal No.
Senal No.
Matanal eaton No.
Circ Scan Onttr
~'F Temp.
0RIENTAT(ON:
TYPE:
DEPTH:
AMPLITUDE:
SWEEP:
GAIN: (dB)
I llME Q DEPTH IIMETALPATH 1 ~
DELAY'.
TIMEBASE'.
FREQUENCY: (MHz
- 4. RATE:I
- 5. UNITS:.
Q DISTANCE IiHALFPATH C3 TIME 6.
VELOCITY'.
SAMPLES'EFLECTOR:
1.0" RADIUS MAxAMPUTDDE:
(
30%
2.0" RADIUS 80%
- 1. MODE:
PULSE ECHO 5 THRU-TRANSMISSION
- 2. PUIaEIU~
TO RECEIVER:~
SWEEP:
GAIN: ldei 0.999" 13.0 1.954" 13.0
- 3. VOLTAGE:(v VERIFIED I VERIFIED I TIME",'ATE OPER.
0220 Ii 05N698 COMP.
24RRCI2)A-1 REPOR NO Rkt13431
- 4. WIDTH:(Ns)
- 5. FILTER: Q NONE Q0.5-2MHz 01-5MHz Q2-10MHz QS-15MHz 6
RECTIFICATION: D NONE Q UNIPOLAR+ Q UNIPOLAR-5 BIPOLAR VERIFIED!
I VERIFIED I I
FINAL
)
oesy I
24RRCI2IA 1 R+13O31
- 7. SMOOTHING: Q NONE Q FAST 0 MEDIUM 2 SLOW LEVEL A
4eaa
~E' REVI E
BY LEVEI.
A PAGE~ OF:~
GE Nuclear Energy e
ULTRASONIC CALIBRATIONDATA'SHEET (AUTOMATEDWITH Smart 2QOO)
SITE:
PROJECT NO.:
uNIT:~
CALIBRATIONSHEET NO.:
LINEARITYSHEET NO.:
PROCEDURE NO.:
REVISION)~
FRR:
Instrument Search Unit Cable Calibration Standard ManuraCstaer IMotel Type System Senal No.
Senal No.
Size Freq.
Ant)telMooe tncatent IO weal)e <<cnt Thermometer Couplant Matenal Batch No.
Measured Angle:44.3F Temp.
ORIENTATION:
TYPE:
DEPTH:
AMPLITUDE:
SWEEP:
GAIN: (dB) i~ DEPTH IMETALPATH 1.
DELAY'.
TIMEBASE'.
FREQUENCY: (MHz
- 4. RATE: I
- 6. UNITS; 0 DISTANCE IIHALFPATH D TIME 6.
VELOCITY'.
SAMPI.ES'EFLECTOR:
MAXAMPUTt)DE:
SWEEP:
GAIN: It)a) 1.0" RADIUS 40%
1.010" 10.0 SIN:MhLHHObUK1 2.0" RADIUS 80o/o 1.965" 10.0
- 1. MODE: H PULSE ECHO 0 THRU-TRANSMISSION J
- 2. PULEER~
TO RECEIVER:~
- 3. VOLTAGE:(v TIME DATE OPER.
COMP.
REPOR NO
- 4. WiDTH:(Ns)
- 5. FILTER: QNONE Q0.5-2MHz 01-5MHz INITIAL VERIFIED VERIFIED VERIFIED VERIFIED FINAL oetse I, omsrpe 24RRCI2)A.1 R+1~1 24RRC12)A 1 R&13M1 C!2-10MHz G5-15MHz
- 6. RECTIFICATION: Q NONE 2 UNIPOLAR+
'NIPOLAR-IIBIPOLAR
V lEVEL 4LA PAGE~OF:~
GE;Nuclear Energy ULTRASONIC CALIBRATIONDATASHEET (AUTONlATEDWITH Smart 2000)
SlTE:
PROJECT NO.:
CALlBRATIONSHEET NO.:
UNEARITYSHEET NO.:
PROCEDURE NO.:
REVISION:~
FR R:
Instrument Search Unit Cable Sana)No.
Srateln Senal No.
Site Freq.
AnglerMode
)ncasent to wedge <<ont Calibration Standard Thermometer Coup!ant Senal No.
Batch No.
Measured Angle:44.3F Temp.
ORIENTATION:
TYPE:
DEPTH:
AMPUTUDE:
SWEEP:
GAIN: (dB)
N METALPAT)t
- 1. DELAY 2.
TIMEBASE'.
FREQUENCY: (MHz
- 4. RATE:I
- 5. UNITS:
Q DISTANCE N HALFPATH Q TIME 6.
VELOCITY'.
SAMPLES'EFLECTOR:
MAXAMPUTUBE:
SWEEP:
GAIN: (de)
S/N:
1.0" RADIUS 40%
1.010" 10.0 2.0" RADIUS 60%
1.965" 10.0
- 1. MODE: M PULSE ECHO N THRU-TRANSMISSION
- 2. PULEEE~
TO RECEWER:~
- 3. VOLTAGE:(v
- 4. WIDTH:(Ns)
INITIAL VERIFIED VERIFIED VERIFIED VERIFIED FINAL TIME," DATE
- 0Z22, 05l0$98 I
08:59 05IOSI98 OPER.
COMP.
REPOR NO 24RRCI2)A 1 R&134)31 24RRCI2)A.t R+134)31 5
FILTER Q NONE 0.5-2MHz 01-5MHz CI2-10MHz 25-15MHz
- 7. SMOOTHING:
I~ NONE 'AST 0 MEDIUM Q SLOW
- 6. RECTIFICATION: Q NONF 'NIPOLAR+ Q UNIPOLAR-N BIPOLAR EXA I
LEVEL A
G REV)
D BY LEVEL A
PAGE~ OF)~
~
'I
/
GE.Nuclear Energy ULTRASONlC CALlBRATlONDATASHEET (AUTOMATEDWITH Smart 2000)
SITE:
UNIT:~
CALIBRATIONSHEET NO.:
PROJECT NO.:
LINEARITY'HEETNO.:
PROCEDURE NO.:
REVISION:~
FRR'nstrument Search Unit Cable Manuiacttrer IModel Type System Senal Na Senal Na Size Freq.
AngisiMode Incident to wades cont Calibration Standard Thermometer Couplant Sensl No.
Senal No.
Matensl Batch No.
Measured Angle:57.8F Temp.
ORIENTATION:
TYPE:
DEPTH:
AMPLITUDE:
SWEEP:
GAIN: (dB)
I TIME Q METALPATH 1.
DELAY'.
TIMEBASE'.
FREQUENCY: (MHz
- 4. RATE: I
- 5. UNITS:
I I DISTANCE IIHALFPATH D TIME 6.
VELOCITY'.
SAMPLES'EFI.ECTORI MAXAMPUTUDE:
SWEEP:
GAIN: Ide) 1.0" RADIUS 40 1.055" 15.0 2.0" RADIUS 60%
2.054" 15.0 1 ~ MODE:
PULSE ECHO 5 THRU-TRANSMISSION E PULEER~
TO RECEIVER:~
- 3. VOLTAGE:(v
- 4. WIDTH:(Ns)
INITIAL VERIFIED VERIFIED VERIFIED VERIFIED FINAL TIME, DATE OPER.
2tk09 I
05O5/98 06:51 I
05I06l98 COMP.
REPOR NO 24RRC(2)A 1
RA)84)31 24RRcl2)A-1 R4)194' 5
FILTER: Z NONE Q 0.5-2MHz 5 1 -5 MHz
?. SMOOTHING:
E3 NONE Q FAST 0 MEDIUM Q SLOW 02-10MHz 05-15MHz
- 6. REC'nFICATION: Q NONE Q UNIPOLAR+ D UNIPOIAR-BIPOLAR G
R E)NEn aV LEVEL ATE PAGE~ OF:~
<,r
I GE Nuclear Energy SMART2000 indication Evaluation Data Sheet Project: WNP2 RFO13 Weld ID: 24RRC(2)A-1 Etiam report no.
R-R13431 Ind. Data Sheet:
EIDSC1 Indication:
1 Flaw Thruwall Dimension = 0.29 Flaw Length "I"= 3.52 Surface Separation "S" = 0.00 P nominal = 1.88
~measured-"
2.00 ASME Section XI, 1989 Edition, No Addenda TABLE!WB45'f4-2 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 Surface %
10.6 10.7 11.0 11.1 11.4 11.5 11.7 11.9 12.1 12.2 12.5 Subsurhce %
10.6Y 10.7Y 11.0Y 11,1Y 11.4Y 11.5Y 11.7 11.9 12.1 12.2 12.5 10.89 Q/ALUEI Surhce %
Subsurface %
Allowed 10.89 Allowed
¹VALUEl a =
0.290 a/l value =
. 0.082 Y =
0.000 Flaw is Surface Allowed a/t =
10.89%
a/t =
14 50%
Flaw is unacceptable by Table IWB-3514-2 Comments Flaw length is lD length Analys:
Levet:~
Dete: ~~~~/ P Reviewed By:
Level:
I
I
~
~
o
~
I ll
~
~
~
~
~
~ L
~
~
g ~ 4
~ 'O
~
~
~
I 'I
~
~ t
~
~
I
~
~
~
~
~
~ I ~
t
~
It
~
'I
~ I
~
'I
~
~ \\
~
l I
~
~
~
~
~
1
~
~
~
I ~
~
lll I.
I I.
~
~
I
~
~
I '
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ I
~
I
~
~
~
~
~
II ~ '
~
~
~
I
~
~
~
I ~
~ I
~
~
~ ',
~
II ~ ~
~
~
~
~
~
~
~
~
~
~ '
I '
~ '
~ '
~
~
~
~
~
~
~
~
II
~
~ \\+
~
~
~
~
~
~
I
~
~
I I I
~
~
I
~ '
~
~
~
~ 9
~
I
~
I
~
~
~
~
~ ~
I
~
~
~
~
~
'I
~
~
~
~
~
~
~
~
~
~
I
~
~
~
I
~
~
~
I I
~ 9
~
~
~
I
~
~
~
~
Qg
~
~
~
~
~
~
~
~
~
~
~
~
~ '
~
~
~ I
~
~I
W I
~4
- ~~".=;-"-';=:";.-~~GE:Nuclear Energy EXAMINATION
SUMMARY
CONTINUATIONSHEET REPORT No.:
PROJECT:
SYSTElN:
WELD NO.:
CONFIGURATION:
Statistical Information:
RFO9 Ind. 'nd.
OD ID
~Thm Wall
'Remaininu Flaw Location Indication No Sto Len Len Dimension Li ent Side ofWeld Orientation 28 5" 32.7" 4.20" 3.52" 0.26" 1.74" DNST Safe End Circumferential RFO13 Ind.
Ind.
No.
Start Sto Len Len OD ID
<<Thru Wall
'Remainin Dimension Li ament Flaw Location Side ofWeld Indication Orientation 28.5" 32.7'.20" 3.52" 0.29" 1.71" DNST Safe End Circumferential
'emaining ligament and thru wall dimension information is documented utilizingthe measured wall thickness (2.00") f'rom the safe end side ofthe configuration.
Indication length and thru wall dimension was determined utilizingthe 45'hear wave search unit. A component ID/OD ratio of0.839 was utilized for determination ofID length. This ratio is based upon a measured component circumference of78.0" and a measured material thickness of2.00".
Technical ustification for deviation in fiaw thru wall dimension.
The ultrasonically determined thru wall dimension ofan indication is primarily a function ofsystem sensitivity and resolution. These factors, along with precision ofdisplay, identify a precise number that is reported as the flaw dimension. In order to produce the exact same (2 and/or 3" decimal precision) result from a previous examination, the same equipment, search units and calibration arid examination parameters would need to be utilized. As a result ofthis, it is assumed that an anticipated accuracy margin of approximately 2 0.050" can be
,expected.
In comparison, the demonstrated qualification criteria for sizing uncertainty (RMS) ofpiping examinations is typically2 0.125".
==
Conclusion:==
Based upon the information available Rom the RFQ9 and RFO13 examination data, it is concluded that the indication has not exhibited any noticeable signs ofindication growth in either the length or thru wall dimensions.
5~
LEVEL DATE 5-](l8 UM GE REVIEWED BY LEVEL DATE C
ANII PAGE~OF:~
fOOIIP IO AtY. ~
0
r Il III Qllllm-4
<<re ra
~
r
~
Il~
~ I
~
I
~ )
I I ~
, ~ I
~
I
~ ~
a I
IC t = ~
[r-j I
Ill/'ll ae'
~a.
l!L!tlrHJiMQur.e!'IRK64alIIIVM
'll!irLI!r)I!rgl IGIII!gLre I XIILI!a!ILL!iM itesXrg fir<<ala!IIX'>>s)Iargy)rL'Lpga el) M@rrhqraeKPgqwigia~e!LIILIir+illai~lag.
.H~ I !all)gl e!XI II+5)'pl\\IllZlfettt)I~L!Ol!ILIIIII I'@Ail tl "IX!IILIIFI!r~W I~~ II&II I jI !IIIllllqll
'I'i ec 't tP f~:
~'
el
~ ~
fn-.
Ii~
I
~
te!L lg YJ I
~'. Q re:.III L*
~
II
~
1 I II <>lei <<i I'II ianna."IIPiiAI<<litfA'I'iilali Ai fV I
)
4
~
t
<<re I I
),
N
~fi
~, few p
~,
. 4, i
~
tq
~ p 0
Lrce
'e rnspecnon 6ennces 0rn 1.71 Qi".
+ r:.
IX4L tAI 30
+:+i-'
i art i
I
)EM(!9'458tP~lsPI10$ 3:El!'%~~A>>-.;:""'.!!ll!
28.
32.r It~frtttgtWt LQY@PI 1.71 Comments WNP2 RFQ13 Weld 24RRC(2)A-1 Indication thru wall dimension 0.29" (1.71" remaining ligament)
Report R4113431%
Page4of6
J 0
Uce GE Inspection Services P.
8.
- 32. r
- 28. 32.r Comments WNP2 RF09 Weld 24RRC(2)A-1 Indication Length 26.5" -32.7" (4.2")
Report R+1$431%
Page5of6
I
~
r I
r I'
LL' Il~ !
tt Le I AA I
llI
>>LL'IWC t3 et"
~ I I
I
~ ~
~
I ~
I I
t
~
~
~ \\
L."
isa<<
3.I.L
'Le.~
~ YJ ggtJJ L!
LeJ h=',
I,II I,
L
~
~
~
~
IIvrt O
Iee
~t ILI N
'F) i II)=
I dereAh rr Jt ~
e ~
"I
~.e Y
k
~ Ie
,~
~ I
~ ~ ~ III~ ~ ~
I ~ ~ I je ~ I ~
~ IIII~ I ~ I 'tlYijlIJII'ittel ~ ~ II
~ ~ ~ II ~ I ~ ~
I
~
I 1t I ~ III~ ~ ~ ~
~ ~ ~ ~ I ~ ~ ~ ~
~ ~ ~ ~ I ~
L LL
+K~3 VTL~~"
VrX:tt'iF"",'~IMP'jYte II&AI I CQ kltieke e \\
j!I.rI:
I*.. ', '< I'
~
I
'e I
~
A~V!gg:I:3/lgj<CJ!e4.b'F3 $ @WILbLe.gee!b le
~L 1
~ I >>'I~~
5 Illtetet S' tILI ~ ILI r ct" I.
Ip>>
~
J I
~
3
~
I Y
I C
~
~
I
~
~
~
I
~
~
Y,
~h