ML17266A484
ML17266A484 | |
Person / Time | |
---|---|
Site: | Saint Lucie |
Issue date: | 08/04/1981 |
From: | UHRIG R E FLORIDA POWER & LIGHT CO. |
To: | EISENHUT D G Office of Nuclear Reactor Regulation |
References | |
L-81-334, NUDOCS 8108100005 | |
Download: ML17266A484 (1666) | |
Text
DOCKE>>T"¹05000389NOTESREGUIATORY<FORMATIONDISTRIBUTIONS>EM(RIDS)ACCESSIONNBR;8108100005DOC~DATE:81/08/04NOTARIZED:NOFACIL~:50-389St;LuciePlantiUnit2<FloridaPower8LightCo~'UTH",NAMEAUTHORAFFILIATIONUHRIGrR.EDFloridaPower8LightCo,~RECIP~NAME<'ECIPIENTAFFILIATIONE>>ISENHUT'<D.G.DivisionofLicensing4."QBJECT:ForwardsresponsestoNRCre'questforaddi'nforeFSAR.ResponseswillbeincorporatedintoFSARinfutureamendsDISTRIBUTIONCODE:B001SCOPIES-RECEIVED:L>>TR~ENCL~SIZE;g~,,C/8ITLE'.PSAR/FSARAMDTSandRelatedCorrespondenceRECIPIENTIIDCODE/NAMElACTION:-'/DLICENSNGLICBR¹3LAINTERNALS:ACCIDE>>VALBR26'HEMENGBR11COREPERFBR10.EMRGPRPDEV35EQUIPQUALBR'13GEOSCIENCES28HYD/GEOBR30,IEE>>06LICQUALBR32MECHENGBR18NRCPDR02"OPLICBR34PROC/TSTREV20RAS8R22'G.-FILE01NGBR25COPIES'LTTRENCL'01011111111332222331111111111111111RECIPIENTIDCODE/NAMELICBR¹3BCNERSESiV~04AUXSYSBR27CONTSYSBR09EFFTRSYSBR12'MRGPRPLIC36FEMA-REPDIV39HUMFACTENG40ILCSYSBR16ICQUIDBR33MATL>>ENGBR17MPAOELDPO'IEGERSYSBR19QABR21REACSYSBR23SITANALBR24COPIES"LTTRENCL'0111111.11>>3111111111110,1011111>>11EXTERNAL>>:ACRSNSIC4105161611LPDRNTIS03111P;sb'hA~AUGi<gy~TOTALNUMBEROFCOPIESREQUIRED:LTTR62ENCL57()
I'gI L~,gO~yCV~FLORIDAPOWER&LIGHTCOMPANYAugust4,1981L-81-334OfficeofNuclearReactorRegulationAttention:Mr.DarrellG.Eisenhut,DirectorDivisionofLicensingU.S.NuclearRegulatoryCommissionWashington,D.C.20555
DearMr.Eisenhut:
4~Re:St.LucieUnit2DocketNo.50-389FinalSafetyAnalysisReportReuestsForAdditionalInformationAttachedareFloridaPower8LightCompany(FPL)responsestoNRCstaffrequestsforadditionalinformationwhichhavenotbeenformallysubmittedontheSt.LucieUnit2docket.TheseresponseswillbeincorporatedintotheSt.LucieUnit2FSARinafutureamendment.Verytrulyyours,E.UhrigVicePresidentAdvancedSystems5TechnologyREU/TCG/ahAttachmentscc:J.P.O'Reilly,Director,RegionII(w/oattachments)HaroldF.Reis,Esquire(w/oattachments)g@(~see8i08i000058i0804PDRADQCK05000389APDRPEOPLE...SERVINGPEOPLE I1I1't~k,'qP11"r~gI~1/
AttachmentL-81-334ListofAttachmentsResolutionofHutchinsonIsland.Fault/FoldResponsestgquestions451.01thru451.08Responsestoquestions31,1.1and311.2ResponsestounnumberedChapter6questionsfromJune6,1981meeting.Revisedresponse.toquestion410.19Responsecommitmenttoquestion491.2ResponsetoaninformalNRCrequesttoprovidejustificationonthelackofdetailedwriteupsforthehigh8lowCEAwith-drawalandthesinglepartlengthCEAdropanalysis.Revisedresponsetoquestion490.1whichincludesthenewFSARsection4.2writeup.ResponsestotheopenitemsdiscussedintheMEBSERreviewmeetingonJuly28,29,30,1981.ResponsestoHureg0737itemsResponsestoquestions430.3,430.66thru430.74Responsestoquestions410.32thru410.38Responsestoquestions420.01thru420.58ResponsestounnumberedCBSquestionsfrommeetingonJune9,1981.Resolutionoftwooutofthreeopenitemsforthecontainmentfracturetoughnessreview.ResponsestounnumberedquestionsconcerningthePostAccidentSamplingSystems.Responsestoquestions460F1thru460.23Responsestoquestions220.1,thru220.37 00 Request,:The,applicantwasrequestedtoperformali'teraturesearchtoconcludethatthereisnonewinformationthathasbeenproducedthatdescribesanynewgeologicconcernswiththeHutchinsonIslandarea.~Resense:Aliteratureserachhasidentifiedasingleunpub-lishedsourcethatimpliedtheexistanceofafaultonHutchinsonIsland.ThispaperisacollegethesisbyanindividaulnamedArmstrong.TodisprovetheexistanceofanyfaultsonHutchinsonIslandaprogramofmarinere-fractionprofilingofIndianRiver,BigMudCreekandtheAtlanticOceanwasperformed.ITherefractionprofilingintheIndianRiver,BigMudCreekandtheAtlanticOceanwascompleted.Thefieldinterpretationofthedataisthatthefaultpro-posedbyArmstrongdoesnotexist.Thereisindicationsoffoldingbutnotfaulting.ThisfoldinghaspreviouslybeenidentifiedbyearlierstudiespreparedbyUnit1.
NRCuestionsonSt.LucieFSAR.451.01Updatethediscussionsofthesevere'weatherphenomenabyexaminationofeventsthathaveoccurredsince1963forhurricanesandsince1972and1973fortornadoesandwaterspouts.TheupdatetotheFSARdiscussionsofhurricanes,tornadoesandwaterspoutswasdevelopedfromthereferencessitedattheendofthisresponse.BecausetheavailabledataforthisperiodwerenotascompleteasthatprovidedintheFSAR,justthepertinentandsignificantissuesareupdatedinthisresponse..HurricanesDuringtheextendedperiodof1899-1980,theFloridaPeninsulahasbeenaffectedby95tropicalcyclones.Ofthese,39wereclassifiedashurricanes,40astropicalstormsand16astropicaldepressions(Neumann,C.J.,et.al.,1978andU.S.DepartmentofCommerce,1978-1980).ThemonthlyandannualdistributionoftropicalcyclonesaffectingtheFloridaPeninsulaispresentedinTable451.01-1.RoughlyhalfthestormsineachcategorypassedcloseenoughtotheSt.Luciesitetoaffectitwithstrongwindsand/orheavyrainfall.,IXHurricaneshaveoccurredmostfrequentlyinSeptemberandOctoberinthesitearea.Takingcognizanceofthehurricanedatasince1963,thefollowingpresentshurricanesinthesiteareaofgreatintensityduringrecenttimes:.,"Hurricane(unnamed)17September1947-ThecenterofthestormreachedtheFloridacoastatFt.Lauderdaleatabout',1130ESTon17September.Thehighestwindspeedrecordedwas155mphatHillsboroLightnearPompanoat1256EST.(U.S.Dept.ofCommerce,1947)Hurricane(unnamed)26-27August1949-ThecenterofthestormreachedtheFloridacoastatDelrayBeachatabout1800ESTon26August.Thehighestwindspeedreportedwas,153mphatJupiterLighthousebeforetheanemometerfailed.(U.S.Dept.ofCommerce,1949)8108100005 HurricaneKing,17-18October1950-Thecenterofthe.stormpasseddirectlyoverMiami,Floridanearmidnightof.17October,.withacalmcenterofabout5milesindiameter.WindsatMiamiWeatherBureauOfficereachedaspeedof97mphfromthenorth-eastfora5-minuteperiodasthe.centerapproachedand122mphfromthesouthfora1-minuteperiodabout50minuteslater.{U.S.Dept.ofCommerce,1950)HurricaneCleo,27-28August1964-Cleomovednorth-northwesttonorthwestduring27-28Avgustwiththecenterofthestormremainingapproximately10-20milesinlandandcloselyparallelingtheFloridacoastline.Themaximumsustainedwindswereestimatedat100-110mph,withguststo135mphinsections-ofMiami.AtMestPalmBeachWeatherBureauStationthemaxi-mumsustainedwindswere86pmhwithguststo104mph.(U.S.Dept.ofComerce,1964)HurricaneDavid,3-4September1979-ThecenterofthestormmadelandfallatmiddaynearJupiterIsland,Florida,alittlePnorthofPalmBeach.Movingnorth-northwestat10to12mph,David'seyepassedoverthecoastalsectionsofMartin,St.Lucie,IndianRiverandBrevardcounties.ThestrongestwindsrecordedkainFloridaweregustsat95mphattheFortPierceCoastGvardIIStationinSt.LucieCounty,.(U.S.Dept.ofCommerce,1979)Table451.01-2presentsasummaryoftheworsthurricanesinrecenttimesthatmayhaveaffectedthesitearea.TheworststorminrecentyearsaffectingthesitecontinuestobethehurricaneofAugvst1949.Thepreviouslydevelopedmeteoroloqicalparametersandwindfieldoftheprobablemaximumhurricane(PMH)remainapplicabletothissite.PTornadoesandMatersouts~t'he.dataontornadoesandwaterspoutspresentedintheFSARarestillapplicabletotheSt.Luciesite.Thisresponseprovidestheadditionalupdatetothesereportedconditionsbasedonthedataacquiredfortheperiod1968through1980.TheaverageseasonalandannualfrequencyoftornadoeswhichhaveoccvrredinthestateofFloridaduringtheperiodfrom1968-1980areasfollows:(U.S.Dept.ofCommerce,Jan.-Dec.1980andU.S.Dept.ofCommerce,1968-1980).Minter~Sr<nSumnerFall11.8~22.524.49.51-2-Annual68.2 Tables451.01-03presentsthedistributionoftornadoesbyyear.Thistablerevealsthatthemorerecentyearsduringthe1968-1980pe'riodhadagreaternumberofreportedtornadoes.Theannualmaxi-mumnumberofoccurrenceswasreportedas117in1980andtheminimumnumberof46in1970.Theaveragenumber'oftornadoesisaboutdoubletheaveragepreviouslyreportedfortheperiod1955-1967.AssumingthisdoublingoftheaveragenumberoftornadoesinthestateofFloridaisalsotrueofthenumberwithina'onedegreelatitude-longitudesquareinwhichthesiteislocated,thentheprobabilityofatornadostrikingapointintheone-degreesquareinwhichthesiteislocatedisabout0.00363peryearorarecurrence'intervalof275'year's.Fromthereviewoftheintensitiesoftornadoesduringthecurrentupdateperiod(U.S.Dept.ofCommerce,1974-1980),noaindicationthatachangeintheDesignBasisTornado(DBT)forthesiteareawasrevealed.Therefore,theDBTpresentedinthe'SARisstillapplicablefortheSt.Luciesite,Themonthlydistributionofwaterspoutsoccurringwithin25milesoftheSt.Luciesitefortheperiodofrecord1974to1980aregivenbelow:MONTHLYDISTRIBUTIONOFWATERSPOUTSMITHIN25MILESOFST.LUCIESITEMonthTotalJanuaryFebruary.MarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecemberTotal1030223300018Ref:U.S.Dept.ofCommerce,1974-1980,StormData,NOAA,EnvironmentalDataService.13
Allofthesereportedoccurrencesappearedtofallintothe"weaktornado"cat'egory.Table451.01-4presentsthemonthlydistribu-tionofwaterspoutswithin25milesoffshoreforthetotal1952through1980period.Theannualaverageforthefullperiodisabout6.8,adecreaseofabout1.3whencomparedto1952-1973dataperiod.,Thehefrequencyofoccurrenceofwaterspoutsandtheintensityofthesestormsislessthantornadoes.Therefore,theparametersassociatedwiththetornadoesarethepertinentparameterstobeusedintheconsiderationofthedesignandoperationforanuclearpowerplantinthisregion.i(g'i!<;I1iILet'wPJ'.k'IKhe%MAL'~aw&%4t"wWrAA(I'ctM
TABLE451.01-1MONTHLYDISTRIBUTIONOFTROPICALCYCLONESAFFECTINGTHEFLORIDAPENINSULA*1899-1980MonthJanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecemberAnnualHurricanes0000021510039TropicalStorms000'01241TropicalDeressions00000-016Total0001696'
Reference:
Neumann,C.J.etal,1978,TroicalCclonesoftheNorthAtlanticOcean,1871-1977,U.S.Dept.ofCommerce,NOAA,NWS,EnvironmentalDataService.U.S.Dept.ofCommerce,1978-1980,Cliat1ic1Dt,NationalSummar,NOAA,EnvironmentalDataService.*Center(Eye)ofstormwithin100milesofsite.
TABLE451.01-2MORSTHURRICANESINRECENTTINESTHATAYHAVEAFFECTEDTHESITEAREAStormNo.YearNonthSite'AreaHihestCateor*5319471949August195019601'9641965OctoberSeptemberAugustSeptemberFL3SEFL3SEFL4SMFL2SEFL3SESeptemberFL4SE4NoName3NoName**3King4Donna2Cleo3Betsy*CategoryScale(mph)2=Mindsof96-1103=Mindsofill-1304=Mindsof131-155**ReportedAlreadyinFSAR 4TABLE451.01-3AVERAGESEASONALANDANNUALFREQUENCYOFTORNADOESINFLORIDA1968-1980YearWinter~SrinSummerFallAnnual196891216155219691510.221158197019711272504618236591972103224.11,771973122553'519749281615419752230,311497197653224667197783204351978,1919791236322918791278919806286419117Total153293317124887Average11.8.22.524.49.568.2~
References:
U.S.Dept.ofCommerce,Jan-Dec1980,StormData,NOAA,EnvironmentalDataService.U.S.Dept.ofCommerce,1968-1980ClimatoloicalData,NationalSummar,NOAA,Environme'ntal.DataService.IncludesTornadoes,WindStormsandWaterspouts7
TABLE451.01-4MONTHLYDISTRIBUTIONOFWATERSPOUTSWITHIN25MILESOFFSHOREMonthJanuaryFebruaryMarchAprilMayJune=JulyAugustSeptemberOctoberNovemberDecemberTotalTotal161854223417196
Reference:
U.S.Dept.ofCommerce,1952-1980,'StormData,NOAA,EnvironmentalDataService.
REFERENCESNeumann,C.J.etal,'978,TroicalCclonesoftheNorthAtlanticOcean1871-1977,U.S.Dept.ofCommerce,1978NOAA,NWS,Environ-mentalDataService.=U.S.DepartmentofCommerce,1978-1980,ClimatoloicalData,National~Summar,NOAA,EnvironmentalDataService.U.S.DepartmentofCommerce,Sept.1947,MonthlWeatherReview,'ol.75,HeatherBureauNo.1502.U.S.DepartmentofCommerce,Aug.1949,MonthlWeatherReview,Vol.77,WeatherBureauNo.1542.U.S.DepartmentofCommerce,Oct.1950,MonthlWeatherReview,Vol78,WeatherBureauNo.15.U.S.DepartmentofCommerce,1964,'Climatdloical'Data,National~Summer,Yol.15,NeatherBureauNo.13.U.S.DepartmentofCommerce,Sept.1979,StormData,NOAA,Environ-mentalDataService.U.S.DepartmentofCommerce,1968-1980,ClimatoloicalData,NationalSummar~NOAA,EnvironmentalDataService.U.S.DepartmentofCommerce,Jan.-Dec.1980,StormData,NOAA,Environ-mentalDataService.aioI
NRCguestions.onSt.LucieFSARquestion451.02Theoccurrenceoftheseabreezecirculationis.discussedverybrieflyinSection2.3.1.InformationpresentedinTable2.3-11indicatesapronouncedwinddirectionreversalfromwesttoeastaround10a.m.(basedonanexaminationoftwoyearsofonsite~data)whichistypicaloftheonsetoftheseabreeze.Theter-raincorrectionfactorspresentedinTable2.3-102arealsosug-gest,iye.oflocalairflowconditionswhichexhibitsignificantspat'ialandtemporalvariations.ProvidefurtherelaborationofoccurrencesofseabreezecirculationinthevicinityoftheSt.Luci'e~,siteincludingfrequencyofoccurrence,depthofpenetra-tion,fumigationalongthetransitionzone,andspatialandtemporalvariationsinseabreezecirculation.Discussthemeteorologicalconditionsconducivetoestablishingseabreezecirculationinthevicinityofthesiteandindicatewhichmeteorologicalparametersareconsiderednecessarytocharacterizetheseabreeze.Incoastallocations,especiallyontropicalcoastsandontheshoresofrelativelylargelakes,thewinddirectionundergoesadiurnalflowpatterncalledseabreezeandlandbreeze.'hisphenomena=isrepresentedbytheestablishmentofaseabreezeafewhoursaftersunriseand,thecontinuationoftheonshoreflowthroughouttheday-lightho'urs'.'ftersunsettheonshoreflowdissipatesandaland,breezede'velops.Suchacirculationpatternisdevelopedinresponsetothedifferenceintheland/waterheating.Onclear,warmdayswhenthesolar;"heatingisatamaximum,thedifferencebetweenthelandandwatertemperaturesprovidestheimpetusforthedevelopmentofthecirculatioii'attern.~Duringthenighthoursoncleareveningstherreversetemperatureconfigurationisestablished,duetoradiativecoolingdi'fferentialbetweenthelandandwater,generallywithlessintensity.,Asthesolaranglebecomesless,thedifferentialheatingbecomesless'andtheseabreeze/landbreezephenomenonbecomeslessintenseandfrequent.Asameteorologicalphenomenon,theseabreezehasreceivedcon-siderableattentionandstudy.Thesestudies-havebeenbothobserva-tionalandtheoretical.IntheUnitedStates,therehavebeenseveral
observat'ional-studiesofseabreezecirculations,mostlyconcentratedalongtheNortheastAtlanticcoastlineandalongtheGreatLakes.Thesestudiesrevealaweaksynoptic-scalepressuregradientandlarg'etemperaturedifferentialbetweenthemaximumsurfaceairtemperatureinlandandtheseasurfacetemperatureasconducivetoestablishingaseabreezecirculation.BiggsandGraves(1961)givethefollowingobservationalrelationshipnecessaryforlakebreezeformationalongtheGreatLakes:max<3where:[vi)=magnitudeoftheaveragewindvector,irrespectiveofdirection,inmeters/second;and~Tmax=TL-TSin'CandaTmaxpositivewhereTListhemaximumsurfacetemperatureinlaridandTSistheaveragewatersurfacetemperature.Althoughthisempiricalrelationshipisdimensionallyinconsistent,itdemonstratestheimportanceofaweaksynoptic-scalewindsoasnottodisruptorhindertheseabreezeformation,andalargetemperaturegradientbetweenlandandseanecessarytoestablishtheseabreezecirculation.Thisrelationshiphasbeensupportedbysubsequenttheoreticalinvestigationsintoseabreezecirculation(Walsh,1974).Thedirectionofthegradientflowisnotconsideredinthegivenempiricalrelationship.However,observationalresearchshowsthetypeofseabreezeformationishighlydependentonthedirectionofthegradientflow.Withgradientflowreinforcingtheseabreeze(movingfromseatoland),theseabreezecirculationbeginsearlyinthedayandpenetratesupto50kilometersinland.Fisher(1960),conductingobservationalresearchonRhodeIslandinAugust,detectedtheinitialformationoftheseabreezeat1100ESTwhichsubsequentlymovedonlandby1200EST.Theseabreezereachedamaximumdepthofabout900meterswithmaximumhorizontalvelocitiesof15msataheightofapproximately200meters.
~"'
FrizzolaandFisher(1963)conductedsimilarobservationalstudiesintheNewYorkCityareainearlyJuneof1960andfoundthattheseabreezereachedthecoastat1100EST,withaninitialverticalextentof150to2?0metersandsubsequentlypenetratedpastastation45kilometersinlandat1500to1700EST.Duringtheeveninghours,theseabreezediminished,inintensityandretreatedtowardsthecoast.Temperature.anddewpointchangesweregradual,althoughlocalwindchangeswerefoundtobeabrupt.Whentheoverallgradientflowopposestheseabreeze(blowsfrom'landtosea),theseabreezecausesmoreradicaltemperature,dewpoint,andwindchangesinland.Subsequently,thistypeofseabreezeismanytimestermedaseabreezefront.FrizzolaandFisher(1963),studyingonedaywithopposinggradientflow,foundthattheseabreezeformedlaterinthedayandhadasmallerverticalextentwithlessintensewindspeedsthanfoundunderlight,reinforcinggradientflow.FrizzolaandFisherfurthernotedthatopposinggradientflowsgreaterthan'7to10ms~wi11,inmanycases,hinderpenetrationofthe,seabreeze'pasttheimmediatecoastline.Alloftheobservationalandtheoreticalresearchnotesageneralclockwiserotationoftheseabreezewithtimeasmeasuredatonelocation.Thisclockwiserotation,duetotheCoriolisforce,causestheseabreezetobecomealmostparalleltothecoastlinebyearlyevening.TheoccurrenceofseabreezesatSt.Lucieisconsideredtobesignificantbasedonboththeavailableliteratureandfromonsiteandoffsitedata..Theclimaticsu+naryforFloridanotes(NOAA,1972):"During-thewarmseason,seabreezesarefeltalmostdailywithin.severalmilesofthecoastandoccasionally20to30milesinland."Asstatedearlier,theoccurrenceofseabreezesisdependentonthemagnitudeofthegradientwindandthetemperaturedifferencebetweenthemaximumsurfaceairtemperatureandtheseasurfacetemperature.Windspeedsoflessthanapproximately5ms~and
7-10ms1andtemperaturedifferencesofgreaterthan3Cand6Careconsiderednecessaryforseabreezeformation(William,1974;FrizzolaandFisher,1963)..To:estimatethefrequencyofseabreezeconditionsatSt.Lucie,valuesoftheseparameterswereobtainedfromavailablerepresentativesources.The,.meanmaximumdailytemperaturerecordedatFt.Pierce{NOAA,1964),6.8milesNWofSt.Lucie,wasconsideredtobeindica-tiveofmaximuminlandsurfaceairtemperaturesinthevicinityofSt.Lucie.Theseasurfacetemperaturesarebasedonsix.yearsofdatawforthecoastofFloridafromCapeKennedytoPalmBeach(Williams,1974).ThewindspeedfrequenciesforOrlando,Florida(approximately35milesfromthecoast)forthehoursof0800to1000{NOAA,1963)wereconsideredrepresentativeofthemeangradientwind,uncontamin-atedbyseaorlandbreezeflow.Thesedata,inmonthlysummaries,arepresentedinTable451.02-1.ThedatashowthatthemeanmaximumdailytemperatureinthevicinityofSt.Luciecanbeexpectedtoexceedtheaverageseasurfacetemperatureduringanymonthoftheyear.Therefore,itisreasonabletoexpectthat,onasingleday,theprobabilityofthemaximuminlandtemperature'exceedingtheseasurfacetemperaturebyatleast3C(6F)isquitehigh.i']lb~Theoccurrenceofalightgradientwind,indicativeofasmallpressuregradient,isalsonecessaryforseabreezecirculation.SincetheprevailingclimatologyofSt.LucieisdominatedbythepresenceoftheAzores-Bermudahighpressuresystemduringmostoftheyear,thiscriterionwouldbeexpectedtobemetduringmuchoftheyear,especially,duringthesummermonths.ThedataforOrlandotendtoconfirmthis,fact.Therefore,itisconcludedthattheprobabilityofseabreezes.duringanymonthoftheyearisquitehigh.Further,thedatatendtoindicatethatthesummermonthsarethemostconducivetoseabreeze
formation{i.e.,largetemperaturedifferentialandfrequentoccurrenceoflightgradientwinds).fOfthemeteorologicalparametersmeasuredbytheonsitemeteorolo-gical.tower,thewinddirectionandspeedatthetwolevelsarethemostindicativeoftheoccurrenceofaseabreezecondition.Inaddi-tion,thefrequencydistributionofstabilitiesforonshore(NNM-N-SE)andoffshor'e(SSE-S-NM)(seeTable451.02-2)indicatethatunstableconditionswithoffshoreflowisnotcommon.Therefore,stabilitymeasuredby"thedifferentialtemperaturesmayalsobeuseful,combinedwithwind'direction/speed,asanindicatorofseabreeze.OnsitedatapresentedintheFSARshowdiurnalvariationsofbothwindspeedanddirectioncharacteristicofseabreezeflow(Table2.3-11).Theoff-shoreflowduringtheearlymorninghoursshowscharacteristicsoflandbreeze.At1000EST,thewinddirectionquicklyreversestoonshoreflow,acharacteristicoftheonsetofaseabreeze.Atapproximately1400,theseabreezereachesitsmaximumspeeds.Ouringtheearlyevening,theseabreezedirectionbeginsaclockwiserotation,apatternoftemporalwindchangesatasinglelocationthathasbeennotedinalloftheobservationalstudiescited.Sincethe'epthoftheseabreezehasbeenshowntobetypicallydeeperthantheheightofthetower,itisconcludedthattheonsitetowermeasurestheseabreezeasitoccursattheSt.Luciesite.However,nosingletowercancharacterizetheseabreezeintermsofinlandpenetrationorthemeteoroloqicalconditionsoutsidetheseabreezecirculation.Placementofsecondarytowersoutsidetheseabreezecirculationtodelineatethehorizontalscaleoftheseabreezewouldbedifficultduetothelargepenetrationinlandofmanyseabreezes(fromtheimmediatecoastto50kminland).Theexpectedchangeinambienttemperatureanddew-pointtempera-turesarenotexhibitedbytheSt.Luciemeteorologicaldata.Norapidchangeinambienttemperaturenordew-pointtemperatures,typicalofseabreezeonset,isfoundintheFSARmeteorologicaldata.Therefore,giventheaboveconsiderationsandconditionsofseabreezeformation,~-4f,4,,4gh
themeteo'rologicalconditionsnecessarytocharacterizeseabreezeformationareashiftinwinddirection,asmeasuredatbothlevelsontheSt.Lucietower,toQar'dsonshoredirectionsinearlytomid-morning.Thiswinddirectionconditionmustbecombinedwithoccur-renceduringthewarmseasonsoftheyearandsynopicconditionsofclearskyaridweakgradientflows.Thefinalconsiderationisastabilityclassthatisunstableorneutral.I
TABLE451.02-1MonthMeanMaximumDailyTemperatureatFt.Pierce(F)AverageSeaSurfaceTemperature('F)PercentageofWindsatOrlandolessthan12mph(5.4ms-1)from0800to1000January73.06969FebruaryMarchAprilMayJune.JulyAugustSeptemberOctoberNovemberDecember73.477.380.884.487.289.189.587.683.278.274.16568747780818182807572626374838681807977
TABLE451.02-2DISTRIBUTIONINPERCENTOFTOTALOBSERVATIONSStabilitClassABCDEFGOnshore(NW-N-SE)8.752.86'.7415.2922.571.330.18Offshore(SSE-S-NM)3.270.971.2214.1922.142.741.15Calm0.000.000.020.090.390.090.00Total12.023.833.98.29.5745.104.161.33DISTRIBuTIONINPERCENTBYSTABILITYCLASSStabilitClassOnshore(NNW-N-SE)ABC72.8474.53.68.70DEFG51.7250.0531.8213.76Offshore(SSE-S-NM)Calm27.1625.4730.8447.9949.0866.1386.240.000.000.460.290.872.050.00 REFERENCESBiggs,W.G.,andGraves,M.E.,"ALakeBreezeIndex,"Journalof.Alied'Meteoroloqy,Volume1,No.4,May1961.Defant,F.,"LocalWinds,"CompendiumofMeteorolo,Malone,T.F.,ed.,AmericanMeteorologicalSociety,Boston,Massachusetts,1951,pp.655-662.Fisher,E.L.,"AnObservationalStudyoftheSeaBreeze,"JournalofMeteorology,Volume17,No.12,December1960.Frizzola,J.A.,andFisher,E.L.,"ASeriesofSeaBreezeObservations,intheNewYorkCityArea,"JournalofAppliedMeteorolo,Volume2,No.12,December1963.Keens,C.S.,andLyons,W.A.,"Lake/LandBreezeCirculationsontheWesternShoreofLakeMichigan,"JournalofApliedMeteoroloq,Volume17,No.12,December1978.NOAA,"SummaryofHourlyObservations,Orlando,Florida,1956-1960,"ClimatoraphyoftheUnitedStatesNo.82-8,1963.,"ClimaticSummaryoftheUnitedStates-Supplementfor~hth1660."011I1h0I6tt.86-6.1964.,"ClimateofFlorida,"ClimatoraphoftheUnitedStates~6.0-8,01,J.T.,JIWalsh,J.E.,"SeaBreezeTheoryandApplications,"Journalof6161,131,N.JJ,IHWilliams,O'.T.,"PredictingtheAtlanticSeaBreezeintheSoutheasternUnitedStates,"Weatherwise,June1974.
~ttRCQuestionsonSt.tiueiaPlantFSARQuestion451.03AsdiscussedinSection2.3.2.1.3,annualaverageprecipitationatWestPalmBeachisalmostdoubletheannualprecipitationmeasuredattheSt.Luciesitefor'thetwo-yearperiod9/V6-8/VS.MeanannualprecipitationexpectedfortheSt.Luciesiteisnearly60inches.DiscussthelargedifferencebetweenexpectedannualaverageprecipitationattheSt.Luciesiteandthemeasuredprecipitationfor>>theperiod9/V6-8/VS.Ifthistwo-yearperiodisconsideredanomalouswithrespecttoprecipitationattheSt.Luciesite,discusstherepresentativenessofothermeteorologicalpara-metersmeasuredduringthesameperiod.Itiscommonlyrecognizedincoastalenvironmentsthatstationssomewhatremovedfromtheshorelineexperiencemoreprecipitationthanthosestationsdirectlyonthecoast.Thisismainlyattributabletotheconvectiveliftingofthecool,moistairbeingtransportedinlandbytheseabreeze,orgeneralonshoreflow.ItwasshownbyGentryandMoorein1954thatonshoreflowevenatnightwillproduceappreciablymorerainfallinlandthanontheshoreline.WiththestrengtheningoftheBermudaHighinthesummermonths,thesoutheastFloridacoastexperien'cesonsh'oreflowalmostexclusively.And,asTable2.3-79shows,thepreponderanceofrainfalloccurswithwindsfromthesoutheastquadrant.Tables2.3-52and2.3-53showprecipitationdataforWestPalmBeach(PBI)andSt.Lucie(PSL),respectively.WhenmeantotalrainfallisseparatedintoWinter(November.throughApril)andSummer(MaythroughOctober)groupings,thefiguresshowinefollowing:xasMEANMONTHLYRAINEALLBYSEASONWINTLR(NOV-APR)PBIPSL'",2.V92.31IiSUMMER(MAY-OCT)PBIPSL7.562.9VAscanbeseen,virtuallynoanomalyisevidentduringthecoolermonths,butthedifferenceisverypronouncedwhenonshoreflowisprevalent.Othercomparisonsalsoshowthattheprecipitationincreasesinland.YeroBeachisapproximatelyhalfthe.distancefromtheshorelineasWestPalmBeach(3milesversus5kmiles),andhasshownannualaveragerainfalltobe48.63inchesover.thepastfouryeats(47.01milesfor1977-78).MiamiBeachaverageannualrainfallis48.29inchesoverthe1,stfouryears,whilethatofMiamiInternationalAirportis57.06inches.ThetwoyearsofdatasubmittedintheFSARisconsistentwithsubsequentmeasure-mentsatSt.Lucie.Averageannualrainfallfor1979and1980were39.86inchesand32.93'nches(1979figuresreflectthepassageofHurr,'caneDavid).Wefeeltherainfallmeasure-'.mentsatSt.Luciesitearerepresentativeoftheseconditionsinthatvicinity.
uestion451.03(Continued)REF:Gentry,RobertC.andMoore,PaulL.,1954:RelationsofLocalandGeneralWindInteractionNeartheSea'CoasttoTimeandLocationofAir-MassShowers.J.Meteror.,11,507-511.
NRCuestionsonSt.LuciePSARQuestion451.04Onpage2.3-10ofthePSAR,thestatementismadethatthelocationofthemeteorologicaltowerisin"relativelyflatterraincharacterizedbymangrovetreesintherangeof8to10feetinheight."Providethedistanceanddirectiontothenearestman-grovetreesanddiscusspossibleinfluencesofthetreesonlowerlevelsensorsonthemeteorologicaltower.Thereisastandofmangrovetreesgenerallytothenorthwest.ofthemeteorologicaltower;theclosestpointbeingatthesourthernendofthestand,some60feetdistantatabearingof250o.Thetreesare100feetawayat330o,thenfallawayto480feetat360o.Thestandisfairlydense,asischaracteristic'fmangroves,butthetopsaregenerallylowandofconsistentheight.It'isconceivabletherewouldbesomeinterferenceonthelow-levelwindsensorswithwindsi'rom250o-330o(wherethetreesarewithin100feetofthetower).However,wewouldexpectthistobeminimalbecauseofthecharacteristicsdescribedabove,andwewou'dexpectimpactstobeminimal,sinceallwindswouldbeoffshore.Inaddition,thefoursectorswhichgenerallydepictthedirectionswhichwouldbeaffectedbythegrowth(NSN-NW)accountforlessthan19percentofthemeasuredlow-levelwinds.Sincethesectorsthemselvescomprise25percentofacircle,thefrequencyofwindfromtheaffecteddirectionsissomewhatlessthannormal.Nefeelthelocationofthelow-levelwindequipmentpermitsthemeasurementofrepresentativewinddataforSt.Lucieplant,andthatanyinterferencefromnearbyfoliageisinsignificant.l.
NRCQuestionsonSt.LueiePSARQuestion451.05?dentifythcfrequencyofthecalibrationandmaintenanceproce-duresdiscussedinSection2'.3.3.5AllproceduresdiscussedinSection2.3.3.5areperformedsemi-annually.Sincemorethan90%datarecoveryisaccomplishedattheSt.Luciesite,thisschedulemeetstherequirementsofRegulatorGuide1.23.Purthermore,"asfound"conditionsareconsistentlywithinallowablelimits,furtherindicatingthatthisscheduleisadequatetomaintaintheintegrityofthesystem.
NRCQuestionsonSt.LuoieFSARQuestion4S1.06DiscussthestatusoftheonsitemeteorologicalmeasurementsprogramsinceAugust,1978andindicateifmorerecentdataare'vailable.DatahasbeencollectedcontinuouslysincetheinceptionofthemeteorologicalprogramatSt.Lucie,andisnowavailablethroughthefirstquarterof1981.
NRCuestionsonSt.LucieFSARuestion451.07gThecalculationsofshort-term(accident)diffusionestimatespresentedinSection2.3.4usethedirection-dependentatmos-phericdispersionmodeldescribedinRegulatoryGuide1.145includingconsiderationofincreasedlateralplumespreadduringstableconditionsaccompaniedbylowwindspeeds.However,theapproachdescribedinRegulatoryGuide1.145toaccountforthisincreasedlateralplumespreadisnotbasedondispersioninacoastalenvironmentsuchasSt.Lucie,andclearlydoesnotapplytoatmosphericdispersionoverwater.DiscusstheappropriatenessoftheuseoftheRegulatoryGuide1.145methodologytotheSt.Luciesiteconsideringatmosphericdispersionprocessesinthecoastalenvironmentingeneralandover-watertrajectoriesinparticular.llinddirectionmeanderreferstoanatmosphericconditioninwhichthelateralspreadofapollutantplumeorcloudislargelyorprimarilyduetoslowfluctuationsofwinddirectioninanotherwisesteady,lowspeedflow.Thisphenomenaoccursunderneutralorstableatmosphericstabilityconditions.Meanderhastheeffectof.increasinglateraldisper-sionofapollutantcloudbeyondthatnormallyassociatedwiththeexistingatmosphericstability,therebydecreasingpollutantconcentrationsanddoseassessments.ThecurrentNRCmethodoftreatmentofmeanderin;thecalculationofshort=termconcentrationsinvolvestheconditionaluseofthreeequations'forhourlyaverageground-levelrelativeconcentra-tions(RegulatoryGuide1.145).Underunstableconditionsorwindspeedsequaltoorgreaterthan6m/s,nomeanderisconsideredandtheequationusedincludesabuildingwakecorrectiontermthatisproportionaltothebuildingcross-sectionalarea.(Theeffectofthebuildingwakecorrectiontermontheconcentrationislimitedtoafactorofthree(3)orless.)Underneutralandstableatmosphericconditionswithwindspeedslessthan6m/s,eitherthebuildingwakecorrectionequationoranequationthathasasinglefactor,giventhesymbol'ytexpressingtheenhanced'lateraldispersionofacloud,duetomeanderorwakeeffectsorboth,isusedintheassessment.Eydependsupondistance,thelateraldispersionfactora,andtheatmosphericstabilityclassinamannerprescribedinAppendixAofRegulatoryGuide1.145.This
p/~gx(y8,(/~n~-~rmethodisanempirica'1formulationbasedonNPCstaffanalysisofresu'itsfromanatmosphericdispersionexperimentperformedataninlandnuclearelectricgeneratingsta'tion(NOAA,1977).ToaddressthisquestionasearchoftheliteraturewasmadewithparticularattentionpaidtotheexperimentalresultsusedtojustifytheNRCtreatmentofmeander.Inaddition,amoregeneralexaminationofthescientificliteratureappraisingstudiesperformedsubsequenttotheworkcitedinRegulatoryGuide1.145wasmade.ThecriticalreviewoftheliteratureofdiffusionmethodsatcoastalsitesprovidedbyRaynor,Michael,andSethuRaman(1980)greatlyfacilitatedthiseffort.Theliteratureofcoastaleffectsonmeanderformationisextremelysparse.MewerenotabletoidentifyanypublicationsonthistopicthatwerenotincludedinthereferencelistofRaynoretal.,1980.Theobserva-tionsthathavebeenmadewereatsitesfrontinglargebodiesofwatersuchastheAtlanticOceanorLongIslandSound.Theseobservationsindicatethatlargebodiesofwatermayreducethemagnitudeofmeander.However,theseobservationswereonlyanotedeventofinterest,andsystematicstudiesde-signedtoverifyandquantifytheobservationshaveyettobeperformed.Raynoretal.,1980presentedthefollowingrecommendationsconcerningthemeanderappliedtodispersionfromcoastalsites:"...itisrecommendedthatcurrentproceduresforusingmeandertoreducecomputedconcentrationsatwindspeedsabove1msshouldbeconsideredtentativeandsubjecttorevisionifadditionaldatashowthemtobeinsufficientlyconvervative...",'Thishas"h'ee'nconsidered'true,intheinterimperiod,forplumetransportedover-water,aswellasthatover-landareas.Themeanderforover-waterplumetransportconditionss'houldhavethesamecharacteristicsasthatforlandareasbecausethemeanderhasbeengeneratedover-landandshouldrequire,becausemeanderisalongwavelengthphenomenonascomparedwithturbulence,agreaterdistancetochangecharacteristics.Therefore,the800metersdistance'IinwhichRegulatoryGuide1.145appliesameanderadjustmentterm.isapplicabletoover-watertransport.Forover-landtrajectoryofasourcelocatedonthecoastline,theappli-cationoftheRegulatoryGuide1.145meanderenhancedlateralspreadoftheplumeislesscertain.Thefactthatcoastalonshorewindsaregenerallyofhigherwindspeedandoccurduringmoreunstableatmosphericconditionsshouldmake
theapplicationofRegulatoryGuide1.145meandercorrectionlesssignifi-cantfortheonshorewinds,thereforesupportingtheuseofthepresentmeandermethodologyduringtheinterimperiod.Wefindtherecommendationoftheuseofthecurrentproceduresforthemeanderreductionofconcentrationsreasonableinlightofcurrentlyavailabledataonthesubjectand,therefore,applicablefortheFSARshort-term(accident)diffusionestimates.
References:
RegulatoryGuide1.145,AtmosphericModelsforPotentialAccidentConsequenceAssessmentsatNuclearPowerPlant,U.S.NuclearRegulatoryCommission,OfficeofStandardsDevelopment,RegulatoryGuide1.145,August1979.NOAA,1977,RanchoSecoBuildingWakeEffectsonAtmosphericDiffusion,G.E.Start,J.H.Cate,C.R.Dickson,N.R.Ricks,G.R.Ackerman,J.F.Sogendorf,NationalOceanicandAtmosphericAdministrationTechnicalMemorandumERL-ARL-69,AirResourcesLaboratories,IdahoFalls,Idaho,November1977.Raynor,G.S.,MichaelP.,andSethuRaman,S.,1980,"MeteorologicalMeasurementMethodsandDiffusionModelsforUseatCoastalNuclearReactorSites,"NuclearSafety,Volume21,No.6,Novermber-December1980.
NRCuestionsonSt;LucieFSARuestion451.08TheterraincorrectionfactorspresentedinTable2.3-102indicatethatthestraight-lineannualaverageatmosphericdispersionmodelmaynotadequatelyrepresenttheregularspatialandtemporalvariationsinairflowinthevicinityoftheSt.Luciesite.However,thepuff-advectionmodelonwhichthesecorrectionfactorsarebasedismostusefulwhenmeteorologicaldatafrommultiplesourcescanbeusedtodescribespatialandtemporalvariatiorisinairflow.Identifythemeteorolgicaldatausedasinputtothepuff-advectionmodel,anddiscusstheappropria'tenessandreasonablenessofcorrectionfactorsatdistancesof7.5milesand-beyond..Thepuff-advectionmodel{MESODIF)wasusedontheFSARanalysestodevelopsite-specificterrain/recirculationcorrectionfactors.Theseadjustmentsweredevelopedforapplicationtothestraight-lineairflowmodeltoaccountfor,onanannualbasis,theairflowcharacteristicsintheSt.Luciesitevicinitythataffecttheatmospherictransportanddiffusionconditions.FortheSt.Luciecoastalsite,theseconditionsconsistofseaandlandbreezecirculations.Theterrain/recirculationcorrectionfactorsweredevelopedfromtheratiooftherelativeconcentrationscalculatedusingthepuff-advectionmodelandstraight-linemodelforthemeteorologicaldataperiodofAugust1977throughAugust1978{8760validobserva-tions).Althoughitistruethatthepuff-,advectionmodelcanberunandismoreusefulwithmultiplesourceinput,sucharunconfigura-tionisofmoreimportanceinareasofcomplextopographyand/orforlargedistancesfromthereleasepoint.FortheSt.Lucieapplication,.theonestationpuff-advectionanalysisshouldbeappropriatefordistanceslessthan7.5milesastheonsitemeteorologicaldatawillcontainthelandandseabreezecirculations.Topographicmodifica-tionswithinthisrangeshouldnotbeofsignificance.Theappropriate-nessofthisapplicationisfurthersupportedbythefactthatseabreezecirculationshavebeenfoundtopenetrateupto50kilometers
inlandandthattheexpectedreleasesfromtheSt.Luciesiteareatgroundlevel.Therefore,thedataasmeasuredattheonsitetowershould,inapplicationinthepuff-advectionmodel,berepresentativeofthe7.5mileradiusinland.Ofadditionalconcernistheuseoftheresultsofthepuff-advectionanalysisforflowsoffshore.Thefactthatmeteorologicaldataarenotavailableovertheoceanand.onobservationsofotherinvestigatorsindicatingtheslowadjustmentofmeteorologicalpara-meterstooverwatertrajectory,theapplicationoftheone-stationpuff-advectionanalysistotheoverwatertrajectorieswithin7.5milesisappropriateandreasonableforthissite.Itshouldbenotedthatterrain/recirculationfactorsofmagnitudelessthanoneforlargedistancesfromasourceareexpectedandappropriateduetothephysicalprocessesinvolvedandthenatureofthetwomodels.Also,becauseofthelackofmajorterrainconsiderationsandthegeneralpersistenceoftheseabreezecirculationsatcoastalsitesinFlordia,aone-stationpuff-advec-tionanalysismaybemoreappropriateattheSt.Lucielocationthenatotherswithoutsuchambientmeteorological/terrainconditions.Butbecauseofthelimitationofthepuff-advectionanalysistotheuseofone-station,the'terrain/recirculationcorrectionvaluecalculatedatlargedistancesaremoreuncertainthanthevaluescalculatedclosertothesourceofthemeteorologicaldata.Therefore,theuseoftheterrain/recirculationcorrectionvaluescalculatedatlargedistancesfromtheSt.Luciefacilityshouldbemadewithdiscretion.~fl~JAIII 311.lt(2.l.1.2)Jnconjunction~vithFP""-L'controloialllandand'vateruseinsidetNeiproper~i,pleaseveriy'bydocumentation~2~-Lsovmershipoia11~feralrightsandeasementstothect.Lucieproperty.~~4.gouge'Nehaverevie.'.=elourrecordsontheapproximatelyl,l32acresoflandacquiredortheSt.LuciePlant;andaccordingtoourlawyer'sopinionsoftitle,it,appearsthatFPListheownerofall.o'l,gas,andmineralrights.I.Thereis,howver,anoutstandingeasementtotheStateofFloridahav'-ng-'".=-right.toexcavatewithin250feetoneachsideofthecen="o"thechanneloftheXntxacoastalNaterwayandtodre"gema==ialsforconstructionandmaintenancewithin1,250=eat",achsideofthecenterline.Additionally,byherec.nt==:"..-"-=:nceofaninteresttoTheOrlandoUtilitiesComa=:ssioninb.".'-".:o.2,aneasementwasalsogran'cedtheCo-.:=...ss-o.";-===-.=-adjoining388.3acresforuseofcommonfacities=-==.i=.==ressandegress.
311.2~a.1..1)PleserevisetheSt.Lucieunit;-",2documentsbyazven&ng='"-eaporooriaisectionstoclary'theezclusionareaandlowpop-ulat-'onzonebounaarydesi@.ationsasaeAlBraunes(ZBC)teleconivith'vier.-rrolDotson(FPE:L)on5/PaulGrossnian("oaco)on5/19/Sl.1l/S',ana'vier.
~questionTheblowdownofadoubleendedguillotineruptureofthesteamlineinthesubcompartmentanalysiswasderivedfromtheRELAP3code.Appendix3.6Aisreferredforthisanalysis;however,itcontainsonly"tobesubmittedlater."Provideassumptionsandmodelsofthemassaridenergyreleasecalculationforthismainsteamlinerupture.~ResonsePleaseseeAppendix3.6AwhichhasbeensubmittedinAmendment3(June1,1981).Y<+ired0.<0'><csin~~.
questionFSARexplainsthereasonwhythemaximumsafetyinjectionflowsardconservativeforcalculatingthecontainmentpeakpressureresponsebyreferringtoCESSARSection6.2.1.HoweverCESSARSecion6.2.1,ContainmentFunctionalDesign,containsmanysubseCtionsandmorethan100pages.Providethe~secificsubsectionwhichdirectlyexplainsthereasondescribedabove.Response:explanationofthereasonformaximumsafetyinjectionfl..wsbeingconservativeisprovidedinCESSAR-P~paragraph6.2.1.1.2(a),atthetopofpage6.2-7.Thepeakcontain,entpressurefollowingacoldlegLOCAisbasicallyafunction'.thefollowingvariables:Hass/energyreleaseduringblowdo.n,ECCSflowrates,cortainmentactiveandpassiveheatremovalrates,andNSSSprimarysidehydraulicfactors.igo'gSt.Lucie2plant"specificanalyseswereconductedusingbothmaximumandminimumECCSflowratesinordertodeterminethemostconservativecase.ItwasfoundthatmaximumECCSflowwasconservative.ThereasonforthisisprovidedinCESSAR-P,namelythatmaximizingthecorefloodingratehasmaximizedthesteamreleaseratetothecontainmen..
SL2-FSARLOCAAnalseswithMaximumSafetyInjectionAcontainmentpressure-temperatureanalysisisperformedfortheLOCAassumingmaximumsafetyinjection.flow."ForthepurposeofthisLOCAanalysis,theECCSandtheContainmentHeatRemovalSystemsareassumedtooperate.inthemodethatmaximizedthecontainmentpressureresponse.iFortheSafetyInjectionSy'tem,maximumsafetyinjectionflowsarecon-servativeforcalculatingthecontainmentpq~kpressureresponse.%M~+~5+PJ.*."..ff'FortheContainment)lentRemovalSystem,minimumsystemcapacityisconservativeforcalculatingthecontainmentoeakpressureresponse.Therefore,theContainmentHeatRemovalSystemisassumed'obe,affectedbythemostconservativerestrictivesinglefailurewhichisassumedtobealossofonecontainmentspraytrain.Onespraytrainisselectedbecausetheheatremovalcapabilityofonesprayisgreaterthanthecapabilityof-twocontain-mentfancoolers-Thelossofonedieselgeneratortrainisnotthemostrestrictivesingleactivefailuresincefull,safetyinjectionflowsarenotavailable..Conservativetripetpointsof11psig(CSAS)and6psig(SIAS)areutilized.Theanalysissetpointconsidersa1.15secondtimedelayafterreceiptofthetripsetpointtoaccountforanyequipmentuncertaintyorcircuitrytimedelay.ThefollowingdescribestheconservativeassumptionsmadewithrespecttoESFsystemoperationsandparameters(seeTable6.2-6)fortheLOCAmax-imumpressureandtemperatureanalyses:a)Foradischargelegbreak,thecontentsofthreesafetyinjectiontanksdischargeintothereactorvesselwhenReactorCoolantSystempressuredopsbelowtankpressure.Thefourthtankisassumedtoinjectintothebrokenlegandout.tothecontainment.Forasuctionlegbreak,allfoursafetyinjectiontanksareassumedtoinjectintotheReactorCoolantSystem.b)AllECCSpumpsoperateatapproximatelyrunoutflow(i.e-ECCSflowisassumedtobethat'correspondingtotheinstantaneousReactorCoolantSystempressure)untiltbestartofrecirculation,with100percentoftheflowreachingtbecore.c)Onecontainmentspraypumpoperatesandsprays2,650gpmofwaterintothecontainmentuntilthestartofrecirculation(tbefailureofonecontainmentspraytrain)atamaximumrefuelingwatertanktemperatureof100F..Oneshutdowncoolingheatexchangeroperatesduringtherecircula-tionmodeofoperationtocooltbecontainmentspray.TheassumedllAoftheheatexchangerislowerthantbedesignminimumtominimizeremovalfromthecontainment,andtheheatexchangeris6assumedtobesuppliedwithcoolingwaterflowingat2e41x10ibm/hrwiththemaximumrecirculationcomponentcoolingwatertem-,perature105F.6.2-8AmendmentNo.0,(12/80) 00 SL2-FSARThesteamgeneratorandpressurizerareenclosedbyheavilyreinfrreedcon-creteshieldwallsinasinglelargecompartmentbelowelevation6'2ft.SeeFigures6.2-LStn,21fordetailsnfthearrangementofsubcompartmentsinthisregion.Pressurereliefisprovidedbyopeningsinthesecondaryshieldwalltotheannularareas,betweenthesecondaryshieldwa'llandthecontainment,andbyflnwthroughtheoperatingflnorwherethesteamgeneratorspassthrnughthefloortotheuppercontainment.TheLowerpressurizerandsurgelinepipingareopentnthisregionandventin'stoanupperenclosedvolumeaboveelevation62ft.Pressurereliefinthisuppervclumeisprovided,byadoorwayatthefloorlevel.SubcaxapartmentfreevolumesandventareainformationisdiscussedinSub-section6.2.1.2.3.5.2.1.2.3DesignEvaluationThemodifiedCKFLASH4computercodewasusedtocalculatethemassandenergyreleaseratesfrompostulatedReactorCoolantSystempiperuptures.ThiscodeisthesameastheonecontainingthecombinationHenry-Fauske/HoodycriticaLflowsubroutine,describedinSubsection6.2.1.1.5oftheArkansasNuclearOneUnitTwoFSAR(DocketNo.50-36'3)~TheReactorCooLantSystemnodalizationschemeisshownonFigure6.2-22.Thisnodalizationschemeismndifiedforthepressurizersurgelinebreakbyaddinga-fournodesurgelinemodeL.xesEI'r8~~ThesubccmpartmentpressurizationeffectsaredepenLentontheblcwdnwnenergyreleaserates.Inordertoprovideadequateconservatismfordesign-evaluation,thefolLowingmethodologyisusedtogenerateshortdurationmassandenergyreleaserates,a)SubcooledandlowqualitybreakflowarecomputedusingtheHenry-Fauskecorrelationwithadischargecoefficientof1.0.b)Breakflowwithqualityaboveapproximately6,.0percentisccmputedusingtheHoodycriticalflowcorrelationwithadischargecoeffi-cientof1.0.c)ThemomentumfluxtermsareomittedwhensolvingtheconservationofmomentumequaJ:ionforflowswithintheReactorCoolantSystem.d)InitialReactorCoolantSystemnominalfullpowerconditions.conditionsareat102percentofe)ReactorCoolantSystemvolumesareincreasedovernominalvalues.f)ThepressurizerwaterlevelisassumedtobeabovethenormalfullpoweroperatingwaterleveL.Themethod,usedtocalculatethemassandenergyreleasesissimilartotheonedescribedinSubsection6.2.1.1.4ofCESSAR(approved'ecember,1975).6.2-14 0
guestionResponse:The"modifiedCEFLASH4"computercodewasused.tocalculatethemass-and-energyreleaseratesfrompostulatedReactor'oolantSystempiperupturesforsubcompartmentanalysis.Isthis"modifiedCEFLASH4"thesameoradifferentcode.astheCEFLASH-4AwhichwasusedforthesamepurposeintheapprovedCESSARPSAR?'ftheyaredifferent,identifythedifferencebetweentwocodesasrelated.totheblowdownmassandenergy'el'eases.*~5EThe"modifiedCEFlASH-4"'codeisdifferentfromtheCEFLASH-4Acodeusedin'theapprovedCESSAMPSAR.However,the"modifiedCEFLASH-4"codeproducesthesamemassandenergvreleasesas'heCEFLASH-4Acode.ThedifferencebetweenCEFLASH-4A'andCEFLASH-4(notmodified)isdiscussed.inCESSAR-PSAR..Inthe"modifiedCEFLASH-4"thereisthesamemethodforcalculationofcriticalmassfluxasthereisinCEFLASH-4A.Forthisreason,CEFLASH-4Aand"modifiedCEFLASH-4"producethesameblowdownreleaserates.The"modifiedCEFLASH-4"codewasusedbecauseinputdatawereavailablewhichsatisfiedinputrequirementsofthatversionofthecode.CEFLASH-4Ainputhasadif,erentformatandviouldhaverequiredre-workingtheinoutdatawhichviouldhavebeentimeconsuming,vihiletheblovidownreleaserateswouldnotbechanged.
guestionResponse:Thereasonfornotexplicitlyanalyzingafailurescenarioinvolving.theAuxiliaryFeedwaterSystem('AF',IS)isgivenasthattheadditionalwaterinventoryandenergyinvolvedarelessthantheadditionalinventoryandenergyassociatedwiththetlFIVfailurecase.Clarifythisstatement.HhyistheadditionalwaterinventoryinvolvedfromafailureofAFlISlessthanthatfromtheHFIVfailurecase.HhatistheAFMSfailure;howdoesitfail.Wn/wzTheAFHSfailurereferencedinthequestionwouldbeanyfailureoftheAFlISwhichallowedauxiliaryfeedwatertobfedtotheafectedsteamgeneratorduringaHainSteamLineBreak(HSLB).TheinventorycomparisonwiththeadditionalinventoryassociatedwiththeHFIVfailurecaseisasfollows:ThemaximuminventoryratethatcouldbeaddedtotherupturedunitatAF!ISpumpran-outflowsisQoGuGPI<.Sincethetimetopeakcontainmentpressureistypically1minute,thecorrespondingmaximumAr~;ISinventoryadditionis0'GPgallons,orapproximatelyP>',fOoibm.Bycontrast,for>heNFIVfailurecase>anadditionalinventoryof414ft(p.l,booibm)wasavailabletotherupturedunit.SincetheAFlISsuppliedadditionalinventorywouldbelessthanthatviatheHFIYfailure,andsincetheAF';Iiscoldwaterrelativetotheheatedmainfeedwater,therowasnoneedtoexplicitlyanalyzeanAF';ISfailuresince'amoreconservativfailure(HFIVfailure)hasbeenanalyzed.Additionally,thefollowingfactsshouldbenoted:1)ThesafetygradeAFIStobeinstalledinSt.Lucie2',nresponsetopostTHIrequirementsisdesignedsuchthatnosinglefailure.willresultindeliveryoffeedwatertoarupturedgenerator.2)TherevisedmainfeedwatersystemprovidestwosafetygradeHFIV'sinseriesineachline,sothatisolationofmainfeedwaterw'ithoutadditionalinventoryconsiderationswilloccurevenifoneoftheHFIV'fails.3)TheEFASlogicandtheAF!ISwillfeedauxiliaryfeedwater(asrequired)totheintactsteamgeneratorduringahSLB.TheadditionofthiswatertotheintactunitwasomittedfromallHSLBmass/eneroyreleaseanalysessincetheadditionofcoldwatertotheintactunit,ifconsidered,wouldcooltheIlSSSandhencewouldprovideslowersteamingratesfromtherupturedunittothecontainment.
SL2-FSAR'enerator.ClosureoftheoperationalMSIVprovides,isolationoftheintactsteamgenerator.TheMFIVsandbothcontainmentheatremoval~trains(tvocontaihmentsprays.andfo>>rcontainmentfancoolers)func-tionforthiscase.'hesteaminventoryEromthefaultedsteamgenera-tor'ptotheclosedtiSIVontheintactsteamgeneratorexpandsintothe'containment.Thefeedvaterinventorybetweenthefaultedsteamgenera-torand.itsHSIVisass'il~edtoflowintothesteamgeneratorandisreleasedtothecontainment.Case3-HFIVFail~ireAsinglefailureofoneMFIV'uring'apostulatedmainsteamI'inebreakaccidentisaccommodatedbyclosureofthebackupfeedwaterisolationvalvesuponreceiptofa.'iSISorSIASsignal.TheMSIVsandbot'hcon-tainmentheatremovaltrains(tvocontainmentspraysandfourcontain-mentfancoolers)are,postulatedtooperate.TheMFIVnearesttothefaultedsteamgeneratorispostulatedtofail.Steanin'hesteamlinebetweenthebreakandthenearestMSIVexpandsintothecontainment.Thefeedwaterinventorybetveenthefaultedsteamgeneratorand.the".feedwaterbackupvalveflashesintothecontainment.Thefeedwaterflowatestothefaultedsteamgeneratorarecalculatedforvariouspowerlevelandsingleactivefa'ilurecasesusngthecalculatedfaultedandintactsteamgeneratorpressureresponses,thefeedwaterpumpcharacteristicsandtheEeedwaterisolation,orregulatingvalveflowco-efficients(seeFigure6.2-34).AfailurescenarioinvolvingtheAuxiliaryFeedvaterSystemisnotex-plicitlvanalyzedsincetheadditionalwaterinventoryandenergyinvolvedarelessthantheadditionalinventorvandenergyassociatedwiththe".iFIVfailurecase.vtnerv-e,sincetheP.auxiliaryFeedverSystemxsmanuaznxtzatedxtwouldavetobeassedthatduri.amainsteainebreakaccidenthecontrroomoperatnotonlys~ttsallthreeuxiliayfeedwerpimps~mediately,b.talsoopenspneisolationalvestothfauedsteaneneratorandrosstiestheauxiliaryfe~uwatertrain2An2BtogetprviavalveI-MV-09-13anI-Wi-09-14Basedonthabove,isnot~cessarytoep1.icitlyanalzeaHS1.BidentandsusequenttartoEtjieAuxiliarveeedvaterSvstmOffsitepoverisassumedtobeavailablefortheanalysis.Availabilityofoffsitepoverallowsthecontinuationofreactorcoolantpumpandfeed-vaterpumpflow.MaintainingreactorcoolantandEeedwaterpumpflowmaximizestherateofprimarvtosecondaryheattransferwhchmaximizestherateofmass/energyrelease.6.2-25 I~S{9.2.2)fnaccordancewiththeFSAR,theStLucie2designincorporatesanautomaticreactortrip10minutesaftexlossofthecomponentcoolingwater(CCA)to,thereactorcoolantpumps(RCP).TheCESARalsostatesthatthetripisdesignedtoTEZE279-1971requirements.TheRCP'swouldbetrippedmanuallyonlossofCC'A.The.portionoftheCQIsystem'upplyin~coolingwatertotheRCP'sisnotsafetygrade.RegardinglossofcoolingtotheRCP,providethefollowinginformation:0~a)Statevhethetheinstrumentationthatalertstheoperatorsinthecontro3.roomofthecauseor".thereactortripdiscussedaboveissaf'etygrade.')Provide:testdataorotherinformationto.demonstxatethatthePCP'scan.operatewithoutCVrfflowfora;period'ofti=ecompatiblewithoperatoracti.ontotxiptheRCP's.c)AssumingthereactorisinhotstandbyviththeRCP'stripped,howlongvillthepumpseals.performtheirfunctionwithoutCC'Jflow'Resonse410.19O.a)Thereactortxipuponaloss.of,componentcoolingwatertothereactorcoolantpumps'snotrequiredforreactorprotection.The.reactor'ripuponlossozcomponentcoo3.ingwaterisdelayedfo-~ten(10)m5+utesa"teritreachesthe,presetsetpoint.Pour-channelsofClassZEindication,ofcomponentcoolingwatertota3.flowfrereallxeac"orcoolantpumpsispxovided'ontheRTG.3oaxdTheinstrumentationthata3.erttheoperatorsinthecontxolxoo~of-thecauseofthereactortripconsistof'afetygradeinstrument&*contxo3devices.Safetygradeisolation.device"axealsoprovidedtoisolateignalsgeneratedbysafety-gradeequipmenttoanon-safetygradestationannuciatoxsandsequenceofeventsrecorder.~~b)SaiiOnofreUnits2and3ReactorCoolantPumpshavebeenoperationallytestedtodemonstratesatisfactorysealperformancewithsealcoolingwatershutofffor30minuteswiththepumpoperating.Basedonthe30minuteoperationaltest,itwasdemonstratedthatthesealswouldnotlosefunction(i.e.,grossleal;age)butthesealassmbliesdidrequirerefurbishmentfollowingthetest.ItisthejudgemntofCombustionEngineeringthattheRCPsealswouldnotlosefunctionfollowingalossofpowertwohoursinduration.Basedonthesetestresults,thesimilarityofthesepumpswiththoseforSt.LucieVnit2,andtheinformationavailabletotheoperator(seeFSARsec-tion9.2.2.3.1),theoperatorisexpectedtohavesufficienttimeto~tripthereactorcoolantpumps;
TheSanOnofreUnits2and3pumpswerealsooperationallytestedtodemonstratesatisfactorymotorbearingperformancewithcoolingwatershutoffandwiththepumpoperating.Thecoolingwaterwasshutofffor23minutes'andapost-'testexaminationshowedthebearingstobeinexcellentcondition(i.e.,noobservabledamage).Analysisoftestresultsindicatedthatthepumpmotorcouldrun(30minuteswithoutcoolingwaterandremainoperable.4~l~tThemotorbearingsfortheSt.LucieUnit2pumpsareofthesamedesignasthoseintheabovementionedtest.Therefore,acceptableperformanceoftheSt.LucieUnit2bearingsafteralossofcom-ponentcoolingwaterwasdemonstratedbythetestoftheSanOnofrepumps.Inaddition,therehavebeentwooccurrencesoflossofcomponentcoolingwateratSt.LucieUnit1(LicenseeEventReports335-77-23and335-80-29).Thepumpbearingshaveperformedsatis-factorilysincetheseincidents',indicatingtheacceptableper-formanceofthebearingsafterlossofcomponentcoolingwater.NoFSARchangeisrequired.c)TestshavebeenperformedtosimulatethelossofcomponentcoolingwatertotheRCPswhileathotstandbywiththeRCPstripped.Afterapproximately50hoursatcoolantconditionsof550Fand2250psig,theRCPsealcartridgestillperformedsatisfactorilywiththepumpidle.Somesealdamagewasobservedduringthepost-testinspection;however,themaximumsealleakageduringthetestwasonly16gph(
Reference:
'FPSLletterL-81-107,March10,1981).Q~/st
SL2-FSA)(iAglE15.0-1(Cont'd)C5.Rettuct.ionofShutdownCoolingEffcctivcncss"Opcnin~ahutdowncoolingflowcontrolvalveaboverequire-linwaterlineLeakinanon-essentialcomponertcoo~~ngwaLeakinanessential.component:coolinwaterlincC6.PartialLosso.:ormasf4'1VeedwaterandReactorCoolantFlowsLossofanon-aCct:y6.9l:VbusC7~l.ossofOffs5.tePowr.Lossof'rid'tivityandPowerDistributionAnomaliesD.Reactvtyan~ertionDl.Uncont:ro).lcdPo'sitiveReactxvityIneSequentialCEAwithdrawalSinglepartlengthCEAdx'opPartlengthC)'.Asubgroupdx'op'ingleCEAwithdrawalCGAsubgroupwititdrawalCEAgroupw5.thdrawalD2.SlowPositiveReactivityInsertionClosureof'oronflowcontrolvalveMalfunctionofmakupcont:rollerD3.Uncontrolledt'egativeReact:ivityInsex'tion-SingleCEADropS5.ngleCEAdropDh.UrcontrollcdHegativeReact:5vityInsertion"OtherSequentialC)!AinsertionCBAubgroupdropSinglepartlengthCEAcIropPart:lengt)tCEAsubgroupdropCEAgroupdrop~~~cbv",Bra-o047t;~~g-BrokenCEA~D5-CEAEjectionPuptureofaCED:)nozzleorhousing'D6.SlowYegativcReactivityInsertionXnadvertentboxationE.Increase5nReactorCool.antSystemXnventoryEl.PrimarySystem~LtasAdditionPartialclosureofthcletdowncontrolvalveClosureoftheletdowncontrolvalve.Partialclosureofaletdownisolationvalve.ClosureofaletdownisolationvalveStartupofchargingpu.p(s)Prepsur5zcrlevelsignalfa'l."loworlow-lowF.DecreaeintheReactorCoolantSystemInventoryFl.DecreaseinprimarysyternmasEOpeningthclc'downcontrolvalveaboverequirementslationvalve~Closureoft:hevolumcontroltankdischargeisoatonClosureofachargingcontrolvalve.Presurizer1evclsignalfailshighRegcncrativchetexc)iangert.uberupture15.D-23AmendmcntV'o.2,(5/."'1)
~cap~~l7l"1I"lwfz'Ip<<SL2-FSAR15e4.1,4Theonly>foaerateFrequencyeventresultinginareactivityandpowerdistributionanomalyshowninTable15.4.1-1doesnntapproachtheaccept-anceguidelineonthelossofshutdownmarginpecifiedinTable15.6-4.15,4.2IhFREQuF.:aEYEt~1S154,2,1.Linitin.Offsit.eDoseEventNoneoftheInfrequenteventsresultinginareactiv.tyardpowerdistribu-tionanomalyshowninTable15.4,2-1releaseasignifcantamountofradio-activitytotheatmosphere,Theoffsitedoseswhichwouldnccurduringthemostadverseoftheseeventsarewellw:thintheacceptanceguidelinespecified'n'lable15,0-4,15e4e2e2IimitinReactorCoolantSystempressureEventboneoftheInfrequenteventsresultinginareactivityandpowerdistribu-tionanomalyshnwninTable15,4,2-1produceaRCSpressuregreaterthanthatproducedbytheUrcontrnlledPositiveReactivityInsertonwithalossnfoffsitepowerasaresultofturbinetripevent,descrbedinSubsect.on15.4.4.2,Therefore,theconclusionsofSubsect'on15,4,4e2,whichmeettheacceptanceguidelineforInfrequentevents,al.soapplytothissectnn'e15e4.2.3ibmitijoupleyer!creancepvent-Uncontro!le;!Poe.'.I:iveReactivityInsertnn15.4e2a3.1Identifi.catinnofEventandCausesAlloftheInfrequentevertgroupsfromthereactivityandpowerdistribu-tionanomalieseventtypeandtheInfrequenteventcomb'nationsshnwnin~Table15.4.2-1werecomparedto'findthe,lim:tingfuelperformanceevents'lheuncontrolledPositiveReactivityInsertionwasidentifiedasthelimit-.ingevent,IThe.eventgroupsandeventcombinatinnsevaluatedandthesignifmcancenftheapproachtothefuelperformanceacceptanceguidel:neforeacharein-dicatedin'lable15,4.2"1~Alleventsindicatedass'gnmficant(S)produceafuelperformancewithintheacceptanceguidelineeTheuncnntrnlledpositivereactivityinsertinneventgroupismorelim'tingthantheuncontrnl'lednegativereactivitynsert'oneventgroupbee~usetheuncontrolledpos'ivereactivity'nsert.oneventgroupcombinessignif'cantpowerdistort'onswitharap:dincreaseinoverall.power,whiletheuncon-trollednegatvereactvityinsert'nneventgroup.scharacterzedbysimi-larpowerdistnrt.nns,butiscombinedwitharapidpowerdecreasefollowedbyareturntothe'ntia'!paver!eva!.Qn-'thceod.&:o--~'~m~'~,....~~yr=~4-~bu~nm~~~~~i~s=-~r,nTCen~~~Wg~~j~t'e'nuncontrol-led.p:rs='~~~~~.'~y'ns~15.4-28AmondmontNo,2,(5/81)
~al~~~~~~S1.2-FSARAnuncontrolledpositivercacLivityinsertioncanbe.cause'dby.asequentialCEA<<ithdrawal,t.hewithdrawalofa'ingleCEA,CEAsubgroup,orCEAgroupgorthcdropofasinglepart.lengthCEA~part.1cggthCEAsubgrouper-pact'br'2~~.ThepartLengthCEA(PLCEA)p.;roupdropist.hemostlimitinginitiat.ingevent.intheuncontrolledpositivereact.ivityinsertion,,5<<tpeventgroupbecausethePl.CEA]roupdropresultsint.helargest.powerdist.ortions,mostrapidpoweriricrease,andlargestdecreaseinD'ORofalleventsint.hisgroup.15.4.2.3.2SequenceofEventsandSystemsOperationTahlr15.4.2,3"1presentsachrono]otiea~]]istandtimingofsystemactionswhichoccurfollowingapartlengthCEAp~roupdrop.RefertoTable]3,4.2.3-]whilereadingthi"andthefollowino.section.Thesuccesspa:hsreferencedarethosegivenonthesequenceofeventdiagram(SED),Figure'5,4.2,3-1.Thisfigure,togetherwithTablL5.0-6,d>ichcontainsaglosaryofSEDsya]bolsandacronyms,maybeusedtotracetheactuationandint.eractionofthesyste]nsusedtomitigatetheconsequencesofthis'vent,ThetimingsinTable15,4.2.3"1maybeusedtodeterminewhen,aftertmleinitiatingevent,eachactionoccurs.Thesequencepresenteddenorlstrat.esthattheoperatorcancooltheplant.downt:ocoldshutdownduringtheevent~Xfthemalfunctionwhichcausestheevent.initiatorcanberepairedwithout:violat.ingtheTechnicalSpecificat.ions,thentheoperatormayelect.insteadtostabilizetheplantinamodeothert.hancoldshutdown,Allactionsrequiredtostabilizetheplalltandperformtherequiredrepairsarenotdescribedhere.'Thesequenceofeventsandsystemsoperationsdescribedbelowrepresent.'sthcwayinwhichtheplant.'asassumedtorespondtotheeventinitiatorsHanyplant.responsesarepossible,however,certainresponsesarelimiting-withrespecttotheaccept'.anceguideli.nesforthissection.OftheLimit-ingresponses,themostlikelyonetobefollowedwasselected.Table15.4,2.3-2containsamatrixwhichdescribestheextenttonallyoperatingplantsystemsare,assumedtofunction-duringtheTheoperationofthesesystemsisconsist:entwiththeguidelinestion15.0,2.3.whichnortransi.ent~ofSubsec-Table15.4,2.3-3contai'nsamatrixwhichdescribestheextenttowhichsafetyareassumedtofunct.ionduringthetransient.Thesuccesspathsinthesequenceofeventsdiagram,Figure15.4.2.3-1,areasfollows:-ReactivityCont.rol:Areact.ortripsignal{RTS)isautomaticallygeneratedbytheReactorPro-tectiveSyst.e'monanighpowerlevel.TheRTSopensthereactortripcircuitbreakerstode-energizingthcontrolelementdrivem.chanism(CED'1)powersupplybuswhichinterruptpowertotheCED'.fholdingcoilsallowingthecontrolclemntasseslbliest,ofallintothecore.gfcooldownisnecessary'heoperatoladjuststheR"ctorCoolantSyst.em(".;CS)boronconcentrationtothecoldshutdownconcelltrat.ionpriortoplant,cooldownby15.4-29Amendmnntho.2,(5/8l)
S1.2"FSARRCSvolumeshrinkage.RCSprqssureisgraduallyreduceypdbtheressurizersprayvalves.Theoperatormayalsoactuatethepressurizerheatersduringcooldown,topermitusingahighersprayrateandobtainbetterpressurecontrolan'dmixingoffluidinthepressurizer,Duringcooldown,thecharg).ngpumps]n).~raya.sull.tkesuctionfromtheboricacidmakeuptankBAHTuntiltheRCShasbeenincreasedtothecoldshutdownboronconcentration,whi,chtimethechargingpumpsuetonisrealignedtotherefuelingwaterAtheRCSpressureisreduced,theoperatorblocksthesafetyin-3ecticnactuationsignaltopreventitsinadverten"actuation~The.yinjectiontanksaredepressurizedbydraining.orventingandthenareisolatedtopermitfurtherdepressurization.oftheRCS.Afterthereactorl.soatecoolantpumpshavebeenstopped,theoperatorusestheauxzlaaryspraytoreducepressurizerpiessure,Haint:enanceofACPowe'r:Uponloss.ofpowertotheunitau'xiliarytransformers,theirloadsaretransferredtothestartuptransformersbyafast-deadbustransfer,15,4,2,3,3AnalysisofEffectsandConsequences~.)llathematical>lodelsSuL).o-'(TheNSSSresponsetothePLCEA~~DropwassimulatedusingtheCESI"CddescribedinSubsection15.0.4.ThetransientminimumcoeCE-1DllBR.valueswereca.'culatedusingtheTOj<CcodewhichusestheCHFcorrelationdescribedinSubsection.15.0.4.InputParametersandInitialConditionsc)TherangeofinitialconditionsconsideredarepvenxnSubsectionleOo3~'able15-4givestheinitialconditionsusedinthisanalysis,Haximumcorepower,highestcoreinletcoolanttempera-teloestcoremassflowrateandlowestpressurizerpressureuxpwj<RareusedsincethesevalueshavethemostadverseimpactonDtBTheleastnegativeDopplercoefficientandthesmallestscramCEAworthmaximizestheheatfluxincreaseafterareactortripoccurs,vingalowrminimumDHBR.ThemoderatortemperaturecoefficientissetatthemostpositivevaluethatisallowedbytheTechnxcaSpecificationswithpartlengthCEAsinthecore.Forthisanalysis,thethermalmargin/lowpressureandhighlocalpowerdensitytripsareassumednottofunction.ResultsThedynamicbehaviorofimportantNSSSparametersfollowingapart1ChCEA7rouodropispresentedonFigures)5,4,2.3-2toS.1softhisTable15.4.2.3-1summarizessomeoftheimportantresultsofeventand.thetimesatwhichtheminimumandmaximumparametervaluesdiscussedbelowoccur.4~015.4-31AmendmentNo.2,(5/81)
SL2"FSAR\~s~~ThcPLCFAf~gpdropcausesapositivereactivityinsertionresultinginarapidincreaseincorepower.sshownonFigure15.4.2.3-2.Thepowerandheatflux,continuetoincreaseuntilthenegativereactivityfromthehighpowertripoffsetstheinitial2positivereactivityinsertion.(SeeFigures15.4.2.3-2and-3).ThePLCgAf;;coupdropalsoresultsinanincreaseinradialpeakingfactorandamoretop-peakedaxialpowerdistribution.TheincreaseinheatfluxandintegratedradialpeakcausealargedecreaseinminimumDNOR.TheminimumDNBRvs.timeisshownonFigure15.4.2.3-7.ThenegativeCEArcactivityinsertedafterthereactortripcontinuestherapidpowerdecreaseandreversestheDtiBRdecrease.arnot~-o-e~~~-3;'3-aa4Afterreactorandturbinetrip,andwiththesteambypasscontrolinmanual,thesteamgeneratorpressurerapidlyrisestotnemainsteamsafetyvalvesetpointandthenthecyclesaroundthisvalvesetpointinresponsetothesafetyvalveoperati.ngcharacteristics(Figure15.4.2.3-7)untiltheoperatoractuatestheSBCS.~~15.4.2.3.4ConclusionsThisevaluationshowsthattheducesafuelperformancewhichspecifiedinTable15.0-4.plantresponsetoaPLCEAQ;roupdroppro-iswellwithintheacceptanceguideline,~~a15.4-32AmcndmcntNo,2,(5/8.)
SL2-FSAft~~LISTOVEVI'.NT(IIOUI'SACRIDI'.YEtl7CROItPCO'.IBItlATIO.'lSI'.VAI.UATED)IITIIEIhi'('I'P:~'I'/~"'ACTIVITi'.'.I)I'(~'.EI'ilS'I'!'!O'."IIO'iAttOI'lAli1LSI'IA'I'RIPI'..'<EtiTCVt'APEDTOACCEITA.iCaCUIDLIttESAccetanccGuidelines"OffsiteEventCrnusandFventGrounCombinationsDoseRCSFuelPres-Perform"sureance=lossofShut-downHarr.in).),UncontrolledPositiveReactivityInsertion2)SlowPositiveReactivityInsertion3)UncontrolledNegativeReactivityinsertion-SingleCEADrop(CEADrop)+.IlighSteamGeneratorTubeLeakageRate('IL)~>)CEADrop+LowProbabilityInde-pendent"Occurrence5)UncontrolledhegativeReactivityInsertion-Other(UiNRI)6)UhRX+TL~xa~e-e-I~M'~'&8H+5+-r-6M@4.B~7}SlowNegativeReactivityInsertionS-Significantapproachtoacceptanceguideline.I-Insignificantapp.oachtoacceptanceguide'ine.15.~i-33Amendmcnti'o.2,(5/61)
~~~ITh))hf',15.(i.2.3-1SEQUENCE'FEVENTS,CORf'O'.S)'ONf)INCTIl!~"'"DSf!ff~fARYOFfKSUL'l'SFOR'AfEPARTLENGTffCfCA&c1".DliOPs~OCA~fSL2"f'SARSuccessPat.hsTiflicSecEventAnalysisSet:Po>.ntorValue4J01J01Jaro00p1JtpCJ0af-:QCl6CJ1JVlM4JCjJ4cc00Q1JMMP.V1JOlGQ1JcjQ1J4gP<MŽUUCfPJQOZ40.0Part1.engthCEAI!groupdrop0.630,9(fReactortripsignalgeneratedonhighpowerlevel,%Haximumpower,ll71(f0.62.3TurbinetriponlossofpoweronCED,'fpowersupplybusesFasttransi'erofpowersupplybu.,es1faximumRCSpresure,psia22726.7%fainsteamsafetyvalvesopen<,psig975*HSSVcycleopenandclosedunt:iloperatoractuatestheSPCS.l~r(f-3(fAmendment!!o,2,{5/81)
I1)
ISL2-I'SARTAIILIi15,4.2.3-1.(Cont'd)SESQUI'.NCEOFEYI'.NTS,CORRI,"iPOiiDIiiGT1~KSAihDSU'Ii'DRY01'MUSULTSFORTIII'.PAIUZLEiIC'I.'llIACiMv'WDROPSCROG.Roeg"SuccesspathsTimeSecFventAnalysisSetPointor.Val.e~'i04JQJJSJiJ0CCO~H0v0a600grEJiJJJVlM0oJJoCQ6USJC)4Jac4c=iJgQOJ0o1800'.Operatorboratestocoldshutdownconcentration2.OperatoractuatessteambypasscontrolsystemtocomnencecooldownofRCS3.HSSVsclose,psig4.OperatoractuatesAFIREX5.OperatorclosesHSRblockvalvesXOperatorblocksHSIS,psia>585Inpreparationtobreakcon-'enservacuum,operator;l.Opensatmospheric'umpvalve2.Closessteambypassvalves3~ClosesmainsteamisolationvalvesSteamheaderprcssure,psia>40013,600shutdowncoolinginitiated,F/psia350/275XTotalsteamreleasedtotheatmospherethroughi~ISSVsandADVs,ibm898,00015.4-34aAmendmi~ntLao~2~(5/8
~~ulbrvalIiL)iiUl'iUlu'tt'iLL7Ut~:n(pc~i'n(sl'~lÃllh'I'iii'.PAINT-U'CTilCiA-&iio4&!)(lOPAOISYSTEl<l.t!ainFeednaterSystem2.Turbine-GeneratorControlSvstem3.SteamBypassControlSystem4.PressurizerPressureControlSystem5.PressurizerLevelControlSystern6.ControlElemen'~DriveNchanismControlSystem7.ReactorPeoulatingSystem8.ReactorCoolantPumps9.Chemicaland~!olumeControlSvstem)0.CondenserE,acuationSystem11.TurbineGlandSealingSystem)2.'ComponentCoolingHaterSystem13.Turbine.CoolingPaterSystm14.IntakeCoolingHaterSvstem15.CondensateTransferSystem)6.Circulating';laterSystem17.SpentFuelPoolCoolingSvstem18-A.C.Power(Yon-Sazeev)19.'.C.Power(Safety)20.D.C.Power21.Po;verOperatedReliefValves22.InstrumentAirSvste...23.Hastetianaoement-LiouidXXXX'XXX~+TES:1.Systemhaseoautomaticmode.15.4-35Amend:nentNo.2,(5/S~)'-s
eTAIII.I15.4.2.3-3UTll,I7AT1'0'I01:SAI'I",I'L'YS'I'I~I~FOJ(Till'.PART-I,I:.I'i'llCl;h4~~~2l)IIOP$~8&iZotr7aM8/CaptQ"OSL2"J."StsR0r43eitAgCO0q5QnPC/7(ONItATuOO0IV)Ml.lteactorProtectionSvstem2.EngineeredSafet~FeaturesActuationSvstems3.DieselGeneratorsandSunoortSvstemslteactorTri.QritchGear5.HainSteamSafetyValves6.PressurizerSafetvValves7.HainSteamTsolat:ionValves8.1~iain7eedvaterIsolationValves9.Auxilia).FeecvaterSvstem10.Safet:TnectionSvst:em11.Shutdo>mCoolinSvstemCCl&ICE12.htmoshericDumoValveSvst:em13.ContainmentXsolationSystem15.TodineRemovalSvstem16.ContainmentCombustibleGasControlSystem17.ContainmentCoolinSstemXX2NOTES:*1ianuallyactuatedduri.ngnormalcooldovn1.PermissiveblockofSIASandilSXSaremanua11yactuatedtopermitshutdo~~depressurization.2~Norma3.1yoperatingsystem(innonsafetymode)SystemsnotcheckedarenotutilizedduringI:hisevent.15.4-36AmendmentNo.2,(5/81)
SL2-FSAR,TABlZ15.4.2.3-4XWPUTPARA'.";TERSA,':DI.'/ITIALCONDITIO.'JSASSlNED:ORO'RTLEGT!lC,":A-7....';;DROPA.'cALYSISSANG(-'o~fParameterPowerLevel"NtAssumedValue2630CoreInletCoolantTemperature,F551Core.Flowrate,gpn370,000RCSPre"sure,psiaPressurizerMaterVolume,Xlevel2150'52.7AxialShapeIndexSteamGeneratorMaterLevel,%ofnarrowrangetapspanDopplerCoefficientYiultiplier-4ModeratorTemperatureCoefficient,10gp/FCEAMorthforTrip,10.-.3070O.S5-0.5-5.5~~0e15.Ci-37',AmendmentNo.2~(5/'I>
0'I klvATIae3EVKHTPAR.LKROTHCEA4ABvsOROP~~NCOCCIPARTLEROTHCKA~CROPppa/5(i/Cl/>>IC15.4.2.3~,2/3REACTIVITTCOHTROC'I~,P/P.,eaI/PP/IIAAeAeAe////PPetV/IAI/llPIP/PAVI/IAAVeaALAV,AeAeVep.VAa,,PAAeAV,eAePP/IIa)74TIfMe~QITl~~MV'eIO:0~UfOl,l(llrIalg/9zUzrPMaS.PefIITXf5ARTASLK15.0)RPSI/a/LP2/3A8eiei!ICFSARTelaFa2alaKS,P,;VARIABLECRRISSRTS2/2AOIC2/4:;::IOTEITHEREA>KFOVRPAIRSOFCIRCOII::CREArlRS/eTu0C'AIRSeONEIHEACHPC'"RCIl"OIT~AREPKCBIRKO10lhIERRLPTPCVKRTC'C,':.~THECLO".s.:s"OPE'5RBC~TRIPCIRCOITCRIQAKRS10CEEPKRS:ICCKOI53$F5'EI5"PI1lh'A"PTIHO0PO'a,RTOCE<<NIC3'IROCOaLS~[3.34SKCOROS]fSAllFa2al.l.5fSAR15.0.2.2CRAYITTIRSKRTIO/IOFCEABP,56SE(050$fOR905'.l{IER110eQ,FARl5,0.2e2CEAPr'Ih::cS,F,:'FS/J4abale44/RPEAPII'lll(TRIP)'.Cr.l:,~..p.PeP/PP/P,veVVAeAapa'Pl<<P'PVpe/Ia/PAaalaaeAV'I/IaVPI:.'.EverI/II/2ÃROCv.ETEROR5'v'LfhO~e~BCSQeSSCICHTOAVTW'LECTAPPIl0PR'IATKQ!AaaltlfA53fL~/PATECI2"9"l10AaaAIhCOLOS.3XriCCR-CERIRAIIOR.FSAR7,4.1e2a7T.lelafaSe3a4fcofECSV.IEHRole"AflcA:LTcPEstFtccccchlloVIVE(FCV-22IOf)Af5.$lxi'.AO0/BAR>>TideAVOCL0$!Sehl5VA'EAlEhbCfBORAIIOX.STARTSBA'CPeOPKXBORICACIOaSOPPLTVALVETOVCT(V2$I2)~f$AR9.3.4
UA~~I/2~~CA"T~COth~sORATER<<r/ILY>fSAR9>S>42CI/I"I/ISAVP'IASOR'CA'L>hTIO.'lO."EhC'AV'IY~VALYC!ICS(VINSORY-2SC'!)IOOISvhACIEVA'VE(VISO'L)I/2:.:)M'9.9.4.2RoNICOA,"lrITERORQyt"I:!S1/2CYCS(0'>sheIRS)5LEIS)hI/!FAR9.2,4.5C!hROIRSP~PSFEEOCOthTEOk)TERTORCS,OIYERYLET>~MhFLO!CTO):4(V>25CO)~CYSTAtI/2-f..'.fSAR9.54,S:::)'-.~'IRtcrhIED)!ATERSl!FILYsYI1III7I~I)XCR)s!~lfIrlo~ClfC=O~,I:II~Irlmz0mzz0MCRS'VSI/2S>P.SCC'5!uICC'NCOKRCO!>CERIYAIICRRI/ILCRSLRSRECEIYESLETCO!ChFLSI,AOI/2FSARI!>1'>2I/2,':.(::I.'CMKRCS2OsRCOv~v12hIICRIOCNOSW~YLEVELCYREP.P'1%ACSYCLu'I5+!ALAI,CVvS(C!NRI!4i)h5RPIksFSAR9>$.4.2tcSFSARM,I,I.7..ti!IS5'cITNTOAOTOvhTICP)OESETYOCOLOSNIOOMhCCRORCORCERIfhTIO!I~I/INYETSISIfhALLAJTv!!ATICALLYCEACULTEOOhLhfLEIfLlhVCT,CO'llCAC!0IL.PISIAI&PYICPJYSRV!C!FI!ROYLEVELIhYCTRE/>>!!ESN<'tSlYFGIhf!5~LEYO.~:GIVERS!OhVALVEFlhCEOIhg>IO.(V-ISOO)s!./'ILv9J.A2!r.,cr'A.:r(r!:r!!!lo!Irov>lIvAvoovvrorv!rosh!!I.'.i':Ivr,'llvI!I!I>s>A'rlrr>rrrrplr!IAMRAvv!IAvAQUAIv!AIIIII.'M"..'!A;I/!I!ALII!I!i::)"..,::'.Vr'rriov'oosorro!.kw:osoiiRsv>AGri:!I!I>%vol!I'I"'o'INAVAVI>'rIoorsvrrsvhi'I!Av!'!virA;rsiovrrowarorrvlO>vri'iAAIIA'Rii!IVI!EiRjIo'~AEA'I'!!ITCAssCOL
RrrCTCRHEATf~PW.;Fr,rsJisrsJsJJrsJssJsrrJsssiJvVs~Rvrrrrarl')JrrrlwrriarwvvarJaaarhaaarJr,ararArrrvrrrirpoahahassavhsrrahrraar!Jav.JraaavPFCRCKOCIRC(I.XTK'ORCFRKACTaCRHSF.CSCCO&aaYFr'CVESHEATfRO!ICOREahBC0AbfSAR5.1~)/2:.ig,":fSARS,S5.4.1v.g..:::..V':.;;.::;;;...';.:;..:~t'AIL'RALCIR'UTaORCfREACTORCOO(/Ã'~"YESIrIATffaCISCORE,~~~FRIYARYTOSKCOrC)(RYHEATTRLVSFKRaAbI/2:,::.:.FSAR5.1,5.4.2~~RKACIORI!EATRKPOTALTIQ20COA=~VImI)parIfxC~AQ(3psZC3rrsz0laSCa1IaSCRrrr.Yc)1/4RCPABIC04/4i',i:.FSRR5.4.1Yc)1/41/4i2)5PsthFSARa5,4.7,2.6HO)EtIIC!I)SKRTOEH)OREh)~i)0fAb:iIrhR)/2:(:.'..>.4.T,'6.).3.4'RKACIORIrLAThtrs!vh'IIIIOOI"I)AYA)BALKAbI/2:".']:;FSAR9,2,2CPA'RAMaPASRECKSSAR'feAIVA'.VKSEI~v)45laSS)TOSYPrLYCOO'CRAT@TOSOCHX~A'C'I'LPSIFORSINOO'ACOOL)HO~CLOILI'SiJCTaO'.ITORZTLINKSV)i)2,VSI(4)>~0VhLVESTOCSV31bl,3(ratPivotLOOPA~V)551V)SJ2~V.4>JfRIRILOP11OP(NSv(blVh(VISVi'rt/~I')a)!raI')65)iV)650V)45rtAROl!(V)5)t.SIARFLPStPgl'5t4)IE:CORthtlarttttSPRAY)5ROT'Vhllhb;Kht)(R5($ISP(h((0IROP(PA'IIOV, 2CRCRNSAff!RYI"YRREACTORCe<hVZ(CECtt}TR'PP92/3S,P.s450psS9FSARTN.'LE15.0%ES>>ASl555A5{C~2/3,:"::fSAR7,3CR15TTSV4f&%77,1+1.10TCCSfc!nCLOSEmRZ!e$70PAV3'F5AR7.'7,1.4~lb.ZLII2/4PERSSCORIPOL'1ALVES.I/2AC0,(0.215Co)HSFRSCLCSESFYLV{FCY90!I~902!)~aI/2IFax7.7.1.1.4"CRHSI5I/21IIao:EHSIVs(r~~:!J.IS)~PSts(IPl<3LAItA62/2:~.tf>%7.3.1~I.SItr-~CLCI!HF!vs(T-PCV~.IA.r!S.2A,25)~.A07r'3:!el.S-!15TTSI/IAH$FRSFSAR7.7,1.3o1CLOSERCY(FCY9011,9021)LIVI2/4PERSCSaP.s90rCfP.LRROY$IA~~ETAPSPARRSHl)t2/2F5AR77II4$05ff>>~AT>>RPL"1/$C,"5>>$AEE-"RSSERP~Pb!SCRARCEVALVES(IW'Mi9!,2)~17ZlTlf~8A>>)~n>TIO~OfC=OA~ft1Upo~fwQrA-'Q'UQmzz0tOLscs!IS~FRSI/1AOPERCTPASSVALVES(IC'/900$ILVO900$)TOAPRESETPOSIT!bitTO5"PPLYACETATEFLCVTOSCsFORCCOLtCctt,ISITEiIFOTPASSVAIVE(s)00Is377,7.1.1.4CPLVAf)tVILLC>>R!tfIIR>>O,CLOSEIJIYs{IPCY49Ih>>Ib,ZA,23)>>FMAFEEC>>tATERStlfiigA2/22/ZICR/HSRSI'PSVPPLIESFEECNTERTO5bs~fERSCIV4ITSAR7.3.I,I,Slb.4.7COaFS/JIlb.4.1 ga~~ttSSVSPs899)Sps)98/lf:::FMt10589101$ps)9I.:,:.~L)i)s)SYOPEYTOLÃTSXOesT.>arS~<vI>YCRfASKAM)Oi)rIPATK)3KAToCLOSEASPAE>>L>AKOECREASQ>1/1>>gI/1A~(>sf~<,6,8,101.r4/<fSAR10.)rrrrr>raVA!rr>!VrhWV!hahW!hW>>hV'r!rr>>>>AV!rrr!!rrrrr!!r!r!r!!r!rnuaaV>;V>>!rha>eWyhWr>>!r>>h>!Vr>>r>>>>>>>>>>rreF-'::.')rhasisvavhw~AI\whwv(rhOvrhrrvYhlhvvvhrhsvhhkhvh4'e'hah>salglrhvra>9h')Rv>'ri'7ARsvlhr';aaC'OiK)15KCLCCRYALTKS8~9)$ps)9ld/36:>:/SAR10,089974ps19~s')'aSKC.STS.Phi$/LKYEl8KATS<<rCC!ITRQL~'~aaamcaeewe>.'"""""""~'"aTa'W"'aaa>>'"""'"'"""""""""~~'s9-8s98-ACRNSTfI/ZCRST)A)PestTOSS<CRSTARgcM'10FIC.Pa4el91/4PERSSSTOPptstPi&5Z/2:,>:i/SAR10,4,1I~~STARTf'Nt$A'0@~aArL'.YK'r)ItsYALYES(Im"9910>11~IE)~.FSN9.4.1.),10,4,9TESAS8hYKrrCSCAPACITYY'.AÃIYBP~wt)AYSC1$3%iCAPACITYSTIONNTESI.Sl"sCR.'VC1)SOSIS~STD.",~A>iYYSLYES(I'r/4.)~LR,l)))S)ST8KC~i<0eCST/us)LIARTFEECsrATERAPPLY.fSARSated~1049~~/jD
'sNTclNSstSBCSKAssPPPAVVPAVs~~~snsAslPPP~sPsPPPPPPPPPPNsnssWVAaaVQV(i((so(Vns(l/PAs(CkaPPPPPAvvl(rrr!svrr(rrÃ:nvn(:Prnrrlpnvnv4rvrnvnhvA444(rrnl'Nvrrrpnv,'aaPss(0Ccs(tresLstaakaBYPASSVA'V:5'.0".PSTfr(MTOCONOENSE'RTOCOOLRCS.A5C0I/5FSART.T,IO.C.C::?:,t(OIK(TI(TRKAPKFOLA0("(PVALVESIPCVNM,3,45S}((IT!(CAPACIZGfCOSANO0!(EBzPASSVALYK(PCYRA~I)NIINACAPACITY:::OF5$.:C.(NSCOICUSINNFORSBCSAt}43TKIIf5'CSI'STAYA(LASLKA"YS(4ILLCEVSEO.RELC(tC03psla2/2:I""'.S.:CRlCMo/4PER5C'05KNSIYsfI~WIA,IS)INPREPAPATIC(4TOCAEAZ.Zh'~4,F5AR10.3~IO,C.T2/2FSARIcsC.I~~CRSLLI/1CTSNSCONTPOLVALVELCY:2SaCO."Oaa(SATE&~PSTPANSfERSIATERfJY44CCNCssENSER'f0CSTONNICNLKYELa~~aI~C.CSKMfIVstlat<IA,IB,2h,25)~FSARIO.Col,:r;2/5fSARPs3slsSTIIpCpnftlX-xE=n0z(((z0C3MCR'/I59I/1MAS.p,tS'5pst9~/CPERMISSIVEBLCCrCFSaPPESSVRESIGNALSTONSISTOPKRNITS(QT~Ok(NCEs.(TSSVRIIATIO!ICFSECORONZSZSfLM.EtfAS5C0:'.:FSART.S,I.I.SNOTETIfSYSTEMf'RESSVRKRISESABOVEBLOCZSETPOI!iTTHEBLOCKISAVTBQTICA'LYRo'VLOs59PTclCRSLP59BELOICCOpsta2/4CPI!IhkpCGkTAOLTO(P/kPSTD.'{TOAIHOSJ"".I!IELAOCOX,RCS(.".(TIL$(CJIX/VELVA,.'NGENTRYCQNOITIONSAACRtsSC(!EO,ACVS0C0V.:i:.:fSARTsCoI.C~10.3NOTKZTJIERE/AKTac50CAP/CITY...,....-~-"A(vrsPf((.ST.'P.",Gfkl(h.V44SEC.SVS,PAS/tpl/J($CCVspLLO.(ilItJLk
~~PRIMARYSYSIITIIHIICRIITPZRASSISTSIHCOHIPOI.OFPCSPRESSV'RE4IOYCLLNECiÃCESTSAR5.4.10,5.5.10.1PRII'%RTSYSIIIItRESSILEVILEOSIROL0\CRILPPCSHS15PRAY5)A01/ZCORJPOLSPRAYSIOREOVCEPIR!'RfSSVRE,'SAR1.7.1.1.ZHOIE!RCPIs)VJSYEEAYAIlASLEIOVSESPRAYS.IF5IRAYSARE'HOIAYAILASLE,A'J!ILIARTSPRAYVILLSEVSEO.'~0AlhENDIiSENTNO.2'5/81}FLORIDAPO'iVER8:LIGHTCOl'Pr'!lST.LUC!6P,LP.!3TOHIT2SL($3&AALTIPAPISTLEHGTI!CEA~:-~rDROPFIGURE1S.4.2.3-1g LPI/5CitSLNSP'SSihtfA>>0STOPCital)asFC>>PPS'l0}%(IJPPCSVCLt"s(S>>AINrA>>E~ACRSCALF'tcAa1-L,LETOJkTOPASPJPRCS)/5Li.ciz)VCLL'NK~m)VFACKI/2YCII~si>>i>>>>Vtaizf(V>>>>AI)P.bh"ICLAY!TZf(K"VALVES(zis"5ps)V-')<<'szSKCP(aCt5"PIwCPE(A"vTOF((0Caht:iasP.PS.(V>>5ik(044RSISi)6L(twas)I/IFSAR9,5.CftOTEtS>>hta(h>0FltList!$0v'.'4LEIGCx:Sa)tAzh:LA!LE.>>iisiiiisJ4ipJi1>>sJiL>>sssssiisss>>5s>>>>Sk)TCkP'CSTOattt3'AttCVCSKOK,AOZJSTLEV(LSKT'PC'A>CINCPcllttASRIQJ'REO~I/5AAPFSAR5.4.10,7.7.)~'1.$I/3:;."..:f$4A9,5.heh(ANCEOiA'tCfNOAVOL(105".lTONtttftJPRCSVCLCNKSNR)attACK,I/IfSAR7!741.1.5.9.5.4..-:C'.;..";:::',::::::::."::.:,',;."...,':,!.',,,":::,',',;:.'::,,"'..,,::,".,',:g,'",:::.:::,".,:,."'::.:.."'::.:.-,;;.':;::..,;.,::::.,:.',:::.::,:.:..:':.;.':;;:.'::::::.".:I/OO'Elt.hl(RSTOAOPJSTPAfKCFOK(%EASECFPIRPRESSVRK.(EITNERPROPCRTICW.ORbhci-i.:):",piplipN(AT(RSPAT0US0)~FSAR77))2NOTEtl!EAT(RSARENOTRE@I)REO-!I:i:.t>>JRI!iCCMLOO"N~I/4AsOPERhv5CLOSKACRIL)ARTSPPATCCNTRO>>LVA'VESTOR(Q.iAIEP(I-SECZC),04),fSAR9'.5>>hi)tet(ttts(CfALtILIARZSPRATRL>>50EFFKCTSR($IMZEN'.CRZC%ttC.~0MiICiM-I,'Ti~tJVCl050TII0>>0~U0C=O0~~rz)~A0M0iCCYCSI/OftOPLVVALVESIY<7)509(LOCAL)h5V2504FA(rtPtrt10CtitRCINO.f'>>'>>P5.CLOSEehktCRI'VITYfEEO>>LINKVALVES(V2508hi5V)$09)~S.p.tCIP.OSttt!TOOL(CCRCR(0.'r((athht:CV(RbsistI/2CRPLI/II/OiS.p.s1650Pst~FSAR6.2iIthTKRSLPPLT'ORCHARS)l5PJ'S,RttIFSAR6,5iZ,Z,C(1PERNISSIYKO'O'.RCFIKSSJRIZERESFASPR(sst;REINPJTTOSIASTOPE"ktT>>7'tQ'rcvNCKPPESS'JRflhftCNOFR(ACtORCXM'<tSZSt(k.NOI(sIFT!t(Szst(kPRESS".RER)>>SESASOYE::t5/4I;fshh75)I~ISLO(tts(ttONtTNEeLOCRIsAJTO-!'.>sattrht4zFtt~iroCAIL.LLPI/ODI/4OtVERTfLCVTOAUTIL!ARTSPRATbZCLOSI!i~CPA45ths(OSIPOLVALVES(I$(42-0I.CZ).Cz(sN(tCWSllisACfsha6.).2.2.1OEPRESS'JR)ZINCPD<<625Dsl9)SOLATIONP<<Ztspst~D11i~C.PP.SSJRtSlfsbz5ttP"Rh'V,'10A,'i0CI0-ls".tat(T>>bl.4/4"i)fshh.:)'I6.).2,2.1OEPR($$5RIZ)as>>P<<625PsfttDISCLATICNP<<Ztspsts-'i:-RIN.Szs.P($$/t(VLL(>>VtP"'Lg.Cl(r>>2/2':::FAR9.5.4CRILNsPpU0PRSSLRIIESitsbzVallaA'i0ISCLAlETNEH.:j:..AbC0 YoctRTEtLY'ECFACPOKRif:.'-;:...;."';;4';::::-::;::"';;:::""'::;;:":.":'-;-':-.":"':.:;;.;;:::::;:'::-;;:(..hvhielhPPPPAWPPPhwhe,IPPIIPAVPPhe,e,whlllP~eee,WePVPVererrrrrlrilrreveile~AWleWPIPIWiV,'VPliv,ehWPAWPPPllllVllWP<<htVhvVhPrhe.VPv'evIYo%'YwhhwAnIrrrdvrrrieio)~iYIAchile'hvrhv'ev'Yhvl~errlfevhveetederrrvinirrrri<sihvrrrrIIVeoneri'llvvi:'Aonvvl~v'(1::I"..CRCE~rsYsuTLZ/2~I/RS4.16XY0/~tSFERAXlJtSil??'Zf~OATTOSUTeVt.44fI/I(4.ICKY)FSATdelelele2I/I;!I",FART<<4.O.S<<1<<lelAS.l.te't.hI/2SOTNSZACISIIiPOlER5'JPPLYCttLOSSOF?FIJITONT<<8f5?R8.5.1.1<<iIN5I/ISTARTSI/I::,ii?SAR8.5I~I.lfO.S552.15S.S.S~~SAFETrO/5Ctrt'-llt'/1ZhtA>ERSSIIEOAILLCM~'r.e.lle-ifre'l'niXSOYe.'e'rn4aIIC(irrefihli;Wr)PIIPPlirnvnOvvrfirrWihvrAee<<'.iI/Ii<<if~o8Selelelehi:f.::.eTSTTfTIozI=c>rQ4(Tl~ALIr4)fIEeTTI0IerifAt=ofrtfTI7JpoWP)f~AOIJISmzCIlrl7Z0hPRSYI.C?J52/2.I/2e'I'e"Ylelehrrnvl'eY'YfleV"l%YPPPevlYe'eYl'oVi'Ye'YÃPlevhd"Y'Irrrp'>>TRANSFERiOIERQJPPLY(6SOP)(7FMHLATTOdeJT,h3I/2f$'Q8.5.1.1<<'2I'AINIEXIYCOrAC?OYERo4r.Ei44fYCLI/ILS;:r..,:I"I/I:::I';Z44FLI/1LOPOREOJIqEOESFLCAOSfL"V>>:Y;ISCLAIICSCf4.16KYYJS?NCChhtctICRCr<<Ae?SAR8.).l.l.lf,O.S.I.I.Z.hISSEC.TOLCAO4'.LSAfElfLOAN.fSARTA~~E8.1ZIKITEITI'EA&YEPATII1$TYPICALCfTIeSTART!vlh'KJLCAOPtOfC>>sÃ,ShftTr5CLOSEW0;".mTw~AKERaCtitollCO<YECT0"TO4.ICKYSAIEFrfRIATIRSCOS~(10SECC.'CSFACPISTARTCfN).I/I'(FSARdelelel2h 2.01.7~~1.31.2'l.0.847e3-4TlViE,SECONDS~F~~FLORIDAPOWERZLIGHTCO.'IPAI:ST.I.UCIF.PlAHTUtIIT2ulNluu..(OWBRVS.TI.AEFIGURE15.4.2,3-7
SL2-FSARh<<uncontrolledposit'ivcreactivityinsertioncanbecausedbyasequent.ialtCEAwithdrawal,t.hewithdrawalofasingleCLA,CEAsubgroup,orCEAgrouprpY'rtiredropofasinglepart;lengthCEAqpartlengthCEAsubgroupm~~t1~atrh-rplpp~~<~'1'hepart'engt;hCEA(PLCEA)~,roupdropist.hemostlimitinginitiatingeventintheuncontrolledpositivereactivityinsertion5teuevent'roupbecausethePLCEApr:roupdropresultsinthelargestpowerdistortionsmostrapidpowerincrease,~andlargestdecreaseinDNBRofalleventsinthisproup(S'u>>.Qpr!eoi:>>/!!!Q~>>~gnur~~tror~r..~tr15.4.2a3.2SequenceofEventsandSystemsOperationTable15,4.2.3-1presentsachronologicallistandtimingof.systemactionsuhiehOaaurPalia!!inoaPart!entthCdhrbrauPdrOP.RefertOTable(t(gA>>15.4.2.3-1whilereadingthisandt'.hefollowingsection.Thesuccesspathsreferencedarethosegivenonthesequenceofeventdiagraro(SED),Figure15.4.2a3-1,Thisfigure,t;ogetherwithTabLe15.0-6,whichcontainsaglossaryofSEDsymbolsandacronyms,maybeusedtotracetheactuationandinteractionofthesystemsusedtomit.igatetheconsequencesofthisevent.ThetimingsinTable15.4,2,3-1maybeusedtodeterminewhen,aftertheiniliatingevent,eachactionoccurs~Thesequencepresenteddemonstratesthattheoperatorcancooltheplantdowntocoldshutdownduringtheevent,IfthemalfunctionwhichcausestireeventinitiatorcdnberepairedwithoutviolatingtheTechnicalSpecifications,thentheoperatormayelectinsteadtost:abilizetheplantinamodeotherthancoldshutdown.Allactionsrequiredtostabilizetheplantandperformtherequiredrepairsarenotdescribedhere.'IThesequenceofeventsandsystemsoperationsdescribedbelowrepresentsthewayinwhichtheplantwasassumedtorespondtotheeventinitiat:or~Hanyplant.responsesarepossible,however,certainresponsesarelimitingwithrespecttotheacceptanceguidelinesfortlrissection.Ofthelimit-ingresponses,themostlikelyonetobefollowedwasselected.Table15.4.2,3-2containsamatrixwhichdescribestheextenttowhichnor-mallyoperatingpl.antsystemsareassumedtofunctionduringthetransient.TheoperationofthesesystemsisconsistentwiththeguidelinesofSubsec-tion15.0.2.3.Table15.4.2.3"3containsamat.rixwhichdescribestheextenttowhichsafetyareassumedtofunctionduring,thetransient.ThesuccesspathsinthesequenceofeventsdiagrampFigurc15.4.2.3-1,areasfollows:ReactivityCont:rol:Areactortripsignal(RTS)isautomaticallygeneratedbytheReactorPro-tectiveSystem'onahighpowerlevel.TheRTSopensthereactortripcircuitbreakerstode-energizingtirecontrolelement:drivemechanism(CED.'I)powersupplybuswhi;chinterruptspowert.otheCHDhlholdingcoilsallowingthccont:rolelementassembliestofallintothecore,Ifcooldownisnecessary,tireoperaloradjuststheReactorCoolantSyst:em(RCS)boronconcent.rationtothecoldshutdownconcentrationpriortoplantcooldownby.15.4>>29AmendmentNo,g',(5/81)
Su-PSARAPPENDIX15CANALYSISOFFUELASSE~~1BLYNISI.OADING>e'pcEpewr~gzwpoem~rron/15C-iAmcndmcntNo.3,(6/81)
SL2-FSARCIIAPTER15TABLEOFCOtiTEt<TS(Cont'd)ec.tl,on15C15C.1/~K15D15D.l159.215D,3.15D.415D.515D.6'5D.715D.815D,9Title84FBFhir:urer'yT=iV.rO('mt.l<WNhH.iS.'3$:-OF-ITUI:I~-ASSFtsBLYIfIJTO.".t'DING-OFADVERTENT.LOADINGzHAFUELASSEMBLYAPD~l~W34LFAFOPpff87-ZO~F4'i'GAPl>5~PZPj)7~;~~ESL'C~gtyg~~pl3T.CP~orgi3Ii3,,~INTRODUCTIOiVPRI>iARYCOOLANTTHE1UfAL-HYMAULICtfODELPRESSURIZERREACTORKINETICSHEATTRANSFERMITHINTHECORESTEANGENERATORMODELCHARGINGANDLETDOMNREACTORPROTECTIVESYSTEMTRIPSSAFETYINJECTIONSYSTEM15c-l15c-l15D-115D-115D-1,'15D-215D-315D-315D-415D-715D-715D-815D.1015D.11'RITICALFLOMMODELSTEAMLINEBREAKVERSIONOFCESEC15D.11.1RCSTHEFTfAL-HYDRAULICS15D.11.2CLOSUREHEADMODE~e15D.11,3FLOfdl'10DEL1SD~11.4PRIMARY-TO-SECONDARYHEATTRANSFER15D-915D-915D-915D-10,15D-1015D-1315D.11.5SAFETYINJECTIONTANK15D.11.6THE3-DREACTIVITYFEEDBACKMODEL15D15D-1415D-14a15D-15l5-ivAmendment:No.3,'(6/Sl) 4ItJ SL2-FSARAPPENDIX15C15C15C.1ANALYSISOFFUELASSEHBLYHISLOADIPG.OFINADVERTENTLMDIGA'UELASSF.HBLYThefuelenrichmentwithinafuelassemblyisidentifiedbyacodedserialnumbermarkedontheexposedsurfaceofthetopendplateofthefuelas-sembly.Thisserialnumberisusedasameansofpositiveidentificationforeachassemblyintheplant.Atagboardisprovidedinthemaincontrolroomshowingaschematicrepresentationofthereactorcore,spentfuelpooland~new1'uelstoragearea.Duringtheperiod'ofcoreloading',thelocationofeachCEA,fuelassembly,andsourcewillbeshownonth1stagboardbyatagcarryingits1dentificat1onnumber.3491.4Thetagboardinthemaincontrolroomwillbe'constantlyupdatedbyadesig-natedmemberofthereactoroperationsstaffwheneverafuelassemblyisbeingmoved.Hewillbeinconstantcommunicationwitheachareawherethisisoccurring~Also,alicensedoperatorwillbepresentintheareawherefuelassembliesarebe1nghandledtoensurethattheassembliesaremovedtothecorrectlocations.Fuelassemblieswillnotbemovedunlesstheselinesofcommunicationareavailable.Inaddit1ontotheseprecautions,periodicindependentinventoriesofcomponentsinthereactorcore,spentfuel,andnewfuelstorageareaswillbemadetoensurethatthetagboardiscorrect.Also,atthecompletionofcoreloading,theexposedsurfacesofthetopendplatesareinspectedtoverifythatallassembliesarecorrectlylocated.Theseprecautionsareincludedinthecoreloadingprocedureswhicharetobereviewedby'appropriate.plantpersonnel.If,however,inspiteoftheseprecautionsitisassumedthatanassemblyisplacedinthewrongcoreposition,thenmanypossibilitiesexist~TheworstsituationwouldbetheinterchangeoftwoassembliesofequalBOCK~,butdifferent.poisonrodloading,aswillbeshownbelow.If,inspiteoftheextremeprecautionsdescribedabove,itispostulatedthatafuelassemblyismisloaded,severalsituationsmaybepostulated.Themisloadingofafuelassemblymayeffectthecorepowerdistributiononlyslightly,forexample,izassembliesofsimilarenr1chmentsandreactivitiesaremisloaded.Alternatively,thecorepowerdistributionmaybeaffectedenoughsothatcoreperformancewouldbeaffectedifassemblieshav1ngdifferentenrichmentsorreactivitiesaremisloaded.Intheunlikelyeventthattwoassembliesofdifferentenrichmentswouldbeinterchanged,somemisloadingswouldbedetectedusingex-corestartupde-tectorsandthereactivitycomputerduringthelowpowerphysicstesting~InthistestingasymmetrycheckisperformedinwhichthereactivityworthsofsymmetricallylocatedCEAsarecomparedagainstoneanotherwiththeaidoftheex-corestartupdetectorsandthereactivitycomputer.-Intheseeventsofassemblymisloading,thischeckwouldindicatesignificantlydifferentCEA15C-1AmendmentNo.3,(6/81)
SL2-FSARworthsbetweensymmetricallylocatedCEAs.Thisasymmetrywouldbecorrobora-tedbysymmetrychecksperformedforother.symmetricrodgroupsthereby5~catingafuelmisloading.Table15C-1showstheworthsoftwosymmetric-al~locatedCEAsinsertintothecoremisloadedby.a)InterchangingatypeAandTypeBassemblynearthecorecenter.b).InterchangingaTypeBandTypeCassemblynearthecoreperiphery~1'igures15C-1and15C-2showtheloadingpatternsforthesemisloadingsandthelocationsofthetwosymmetricallylocatedCEAs~Table15C-1clearlyshowsthatdetectabledifferencesexistintheworthsofTwosymmetricallylocatedCEAsforeachofthesemisloadingsandthereforedemonstratesthedetectabilityofthemisloading.Znaddition,themisloadingcouldbedetectedbyeithertheex-coredetectors:directlyorthein-coredetectorchannelswhichbecomeoperableduringthemowergeneratingmodeofoperation.Figures15C-3and15C-4showthecoreowerdistributionsfortheabovemisloadingsforanunroddedcoze.Asshownabove,manyofthefuelassemblymisloadingsthatcanbepostulated:areeasilydetectablebothduringtherodsymmetrychecksandduringpowermangeoperation.However,onecanpostulateasmallnumberofmisloadingswhichareundetectableduringtherodsymmetrytestingorevenearlyinthecyclewithin-coreinstrumentationduringpowerrangeoperation.Ofthis.smallclasscertainlytheworstcasethatcanbeenvisionedistheinterchangeo~shimmedassemblywithanunshimmedoneatthecenterofthecore.Thisc~maynotbedetectableatBOL,butmaystillcauselocalpowerpeakingas;zheshimsburnout.TwocasesofthistypeofmisloadingaccidntareshownXnFigures15C-5and15C-6.ThemaximumpinpowerpeaksoccurringwiththeseisloadsarepresentedinTable15C-2.TheminimumDIERassociatedwiththispowerdistributionis1.61fortheworstcase(Figure15C-6)~Sincethisis.greaterthanthe1.19DIERlimit,nocladdamageispredicted.Furthermore,J.tisveryprobablethatthesemisloadingswillbedetectedearlyinthecycle=beforethesemaximumpinpeaksareattained.Certainlythereactoroperatorwouldbealertedtothepossibilityofafuelassemblymisloadingbythe:watherlargepowerperturbations(eg,tiltsontheorderofeight-nine-percent)whichwouldbegintoappearearlyinthecycle,whichshouldbeetectablebythein-coreinstrumentation.Tiltamplitudesarenormallyexpectedtobetwopercent~Znviewoftheforegoing,itisnotexpectedthatthesemisloadswouldsigni-icantlyaffectreactorsafetyorresultinoffsiteconsequenceswhicharea-measurablefractionof10CFR100guidelines.ge5ER715C-2AmendmentNo,3,(6/81)
/~t"-AgDn=OPHL.Xe'Fd~r'Mrr~iUP'OP-CadN~~p><A~SOB/'r."-RES~asacr-~ai-".2.3Analysisofthefollowingthreeuncontrolledpositivereactivityinsertioneventswasperformed:SinglepartlengthCEAdrop'SPLD)2.'Sequentialrodwithdrawal{highandlowpower)3.Partlengthsubgroupdrop(PLSD)ThelimitingfuelperformanceeventwasfoundtobethePLSD..PePLSDispresentedinFSARsection15.4.2.3,Thereasons.thattheothertwoeventsn.mlesslimitingarediscussedbelow.ygg,~,fSinlePartLenothCEADro:SiqnificantdifferencesexistinthemethodofthermalmarginprotectionfortheSPLDasopposedtothePLSD.ThePLSDwillcauseareactortrip,whereastheSPLDwillnot.SufficientmarginexistsduringsteadystateoperationsuchthattheSPLDvillnotsignificantlyapproachthermalmarginlimits.TheTechnicalSpecifi-cationswillstipulatetheappropriatetimeperiodforoperatorresponsetoretrieve.therodorreducecorepowertopreventaviolationof]Ac.~~.Fce.d:accept-hi~~iJmv~l;iw;9Qia>0~BRw.'-ie).ThePLSDproducesmorelimitingfuelperformanceresultsforthefollowingreasons:~Ra4.4'u~+ot4,o'pLo~l.j,4ePLSDresultsinagreaterhotchannel30powerdistributionincreaseintheregion~herc.theminimumDHBRoccurs,fA-~l2.ThePLSDcausesagreaterincreasein/corepowerduetoagreaterreactivityincreasethantheSPLD.ThetwoaboveeffectsresultinthepartlengthCEAsubgroupdropexperiencingalargerdecreaseinDNBRthanthesinglepartlengthCEAdrop.Thus,thepartlengthCEAdrophaslessadversefuelperformancethanthepartlengthCEAsubgroupdropwhichispresentedinSection15.4.2.3.
4geouen".ia'IRodWithdrawal(hihandlowower):Similarly,analysisofthesequentialrodwithdrawal(highpowerandlowpower)slowsa1thtitisalsonotas.limitingasthepartlengthCEAsubgroupdrop.Thed;~Mt-~sequentialrodwithdrawalhasmuchlessofaradialandaxialpoF~'er~distortionthanapartlengthCEAsubgroupdrop.Thesequentialrodwithdrawalactuallyflattenstheplanarradialpowerdistribution'atthecoreheightsintheareaswhererodsarebeingwithdrawn.At'thercoreheights,theradialpowerdistributionwillremainthesame.At'opositionaxiallywilltheplanarradialpowerdistributionbecomemorepeaked.Thechangeintheaxialpowerdistributiontoamoretoppeakedshape,occursveryslowlyduetotheslowwithdrawalrate,ascomparedtothepartlengthCEAsubgroupdrop.Theconcurrentincrease.incorepoweralsooccursveryslowly.Thus,thedegradationinDNBRmargin'occursslowly.~o~~t-c560.assthermalmargindeg'radation~(foraslowertransientsincetheDf<BRmargindegradationbebop'eentimeoftripandtimeofminimumDHBRlessthanthatforafastertransient.Therefore,thepartlengthCEAsubgroupdropproducesmoreadversefuelperformanceresults~boththepartlengthCEAdropandthesequentia'ICEAwithdrawal{highpowerandlowpower).Thus,thepartlengthCEAsubgroupdropwaspresentedastheinfrequentcategorylimitingfuelperformanceeventinFSARSection15.4.2.3.
I SL2-FSARWeurgeyoutoprovidetheinformationthatwouldbeneededtodemonstratecompliance'withtheSRPatyourearliestconvenience.TohelpyouanticipateanimminentrevisiontoSRP-4.2,thefollowingcommentsareprovided'evision1-ThisrevisionwasissuedinOctober1978andcontainsallofthe'basicrequirementsthatyouneedtoaddress.Itwillnotbechangedsignificantlybytheplannedrevision.Revision2-ThisrevisionisplannedforApril1981andisthe.revisionalludedtointhenoticeofproposedrulemakingonSRP'compliance.InSRP-4.2thisrevisionwill(a)addacceptancecriteriaformechanicalresponsetoseismicandLOCAloads,and(b)makeeditorialchangeslargelyconfinedtoaddingandcorrectingcitationstoregulationsandregulatoryguidesthatarealreadyaddressedinRev1.Theacceptancecriteriaformechanicalresponsewere.recentlyimplementedaspartoftheresolutionofUnresolvedSafetyIssue,TaskA-2andaregivenin.,AppendixEofNUREGW609.Therefoie,youcanbaseyourFSAR,revisionsonSRP-4.4Rev1(currentversion)plusAppendixEofNUREG-0609,andlast~inutechangesinreferencingcanbemadei'nAprilpriortoyoursubmittaloftheadditionalfuel-relatedinformation.RecentTechnicalIssuesThefollowingisalistofcurrenttechnicalissuesthathave'requentlybeennotedasoutstandingissuesinrecentSERsandthatshouldbegivenspecialattentioninyourFSAR.liSupplementalECCSanalysiswithNUREG&630.2~CombinedseismicandLOCAloadsanalysis.3~Enhancedfissiongasreleaseana1ysisathighburnups4~Fuelrodbowinganalysis.5.Fuelassemblycontrolrodguidetubewearanalysis.6~Fuelassemblydesignshouldergapanalysis.7~End-of-lifefuelrodinternalspressureanalysis.ResponsefleYcdPne~.icf45'gj~~iyreused"a~Iispe<i~~l<.ppfAEVLcLJ(gqotA.Rev'AcceptanceCriteApplicableFSARSubsectioA.DesignBases1.FuelSystemge(a)Stsstrainlimits(atiguec)Fretting4.2.F1.1.2.1/4.2.1.44.2.1.1.1/4.21.42.1.2.1(g)/4.2.1.4/490,1-2AmendmentNo.3,(6/81) 0 SRP-4.2ev1AeptanceCriteriaSL2-FSARSI2ApplicableFSARSubsectionhsignBases(Cont'd))Oxidation,hydriding,crud(eB'owing/irradiationgrowth(f)nternalgaspressure(g)B+ddownCapability(h)Conrolrodreactivity2,,FuelRodFailure(a)Overheaeing(1)Clad'-.temperature(2)Fuelihlting(b)PCI(1)Cladstrain(2)Fuelmelting(c)Hydriding(d)Claddingcollapse'e)Bursting(f)Mechanicalfracring(g)Pretting3.PuelCoolability(a)Claddingeprittlement(b)Violentexpulsionoffuel(c)Generalizedcladdingmelting(d)Structuraldeformation(e)FuelrdballooningBDescriptionendDesignDrawingsC.DesignEvuation.l.Opetingexperience2Pototypetesting3.AnalyticalPredictions(a)FuelTemperatures~(b)Densificationeffects(c)Fuelrodbowing(d)Structuraldeformation(e)Ruptureandflowblockage(f)Fuelrodpressure(g)Metal/waterreactionrate(h)Fissionproductinventory4.2.3.2.34.2.3.1/4.2.3.2.5/4.2.4.2.1..1/4.2.1.F14.2..14.1.4.24.2.1.2'(refersto4.4.1)4.2.1.F1(b)4'.1.2.1(refersto4'4'1.24.14'.1.2.5.3(a)(2)421.2.64,21.2.1(a)4e2olo2el(g)6'.3.115.4.5.1.3ee(a)2.3.1.2/4.2.3o1.36..3.1402024.2.10H/A4.2'1~1542.1.2642.3.2.54'.3.1.34'.3'.12/4.2.3.2.442.3.2.262.1.3.86~2~1.3.9~4490.1-3AmendmentNo.3,(6/81) 0 SL2-FSARSRP-4.2ev1AcceptanceCriteriaD.Testing,InspectionandSurveillancePlansSL2ApplicableFSARSubsection1.Testingandinspectionofewfuel4.2.42.Oninefuelsystemmonitoring3.Postirradiation'surveillanceRelativetothe3,istofrecenttechnicalinformationisofred:9.3.2/4.2.4.44..1.5ssues,thefollowingIssueRemarks,1.SupplementalECCS"alysiswithNUREG&630Thisanalysiswillbeprovidedinanamendent.2.CombinedseismicandLanalysis'eerevisedFSARSubsectio4'.3.1.2.4-3iEnhancedfissiongasreleaseanalysisathighurnupsSeeFSARSubsection421.2.1(f)4'uelrodbowianalysisSeeFSARSubsection2325CEisaitingNRCreviewofRefence53(CENPD-225-P)andisupplementswhichisexpetedbytheFall19le5~Fueassemblycontrol.rodguidetewearanalysisSeereviseFSARSubsectio42'.1.1.6.FuelassemblydesignshouldergapanalysisSeeFSARSubsecon4.2.3.1.47..Fnd-of-lifefuelrodinternalpressureanalysisSeeFSARSubsection42121(f)490.1-4AmendmentNo.3,(6/Sl)
Aendix490.1-ReformattedSection4.2 ITheoriginalresponsetoquestion490.1wassubmittedinformallytotheNRConApril23,1981.FormalsubmittalwasincludedaspartofAmendment3(June1,1981).AtameetingwiththeNRConHay5,1981,theNRCaskedthatSection4.2oftheFSARberewritten,followingtheformatpresentedintheMCAP-9500SafetyEval-uationReport(SER).Thereformattedversionof4.2inthisappendixcloselyfollowstheformatoftheMCAP-9500SER.However,twosectionswereadded:HaterialProperties(4.2.Z.5)andFuel'BurnupExperience(4.2.2.6).Allinfor-mationinSection4.2oftheFSARisincludedinthereformattedversion.Inaddition,bothSection4.2andthereformattedversionhavebeenrevisedtoincluderelevantinformationromresponsestoNRCquestionsontheSONGS{dockets50-361and50-362)andllSES-3(docket50-382)FSARs.Thereformattedversionof4.2hasbeenreviewedforconsistencywithSection4.2oftheFSARandisprovidedhereforinformativepurposes.Section4.ZoftheFSARremainsthequalityassuredcontroldocumentandwillbeupdatedaccordingly>asnecessaryinthefuture.
fy
~P~Q.EL5STE~Q=sigyS~~Thefuelassembliesarerequiredtomeetdesigncriteri"foreachdes'gnconditionlistedbelowtoassurethatthefunctionalrequirementsaemet.Exceptwherespecificllynoted,thedesignbasespresentedinthissectionareconsistentwiththoseusedforpreviousdesigns.Ca+eh:fc'o~~a)g'onOperationandNormalOperationCondit'onT.situationsaretho'sewhichareplannedorexpectedtooccurinthecourseofhandling,initialshipping,storage,reactorservicingandpoweroperation(includingmaneuveringofthe.plant).ConditionIsituationsmustbeaccommodatedwithoutfuelasscriblyfailureandwithoutanyeffectwhichwouldleadtoarestrictiononsubsequentoperationofthefuelassembly.TheguidelinestatedbelowareusedtodetermineloadsduringConditionIsituations:l)?landlingandFreshFuelShipping'oadscorrespondtothemaximumpossibleaxialandlateralloadsandaccelerationsimposedonthefuelassemb'ybyshippingcndhandlingequipmentduringtheseperiods,assumingthatthereisnoabnoo<<alcontactbetweenthcfuelasscm1)andanysurface,noranyequipmentmalfunction.Irradiationeffectsonmaterialpropertiesareconsideredwhenanalyzingtheeffectsofhandlingloadswl~ichoccurdu=ingrefueling.Additionalinformationregardingshippingandhandlingloadsisconceine4inSob=eccion4.2.3.1(A).2)StorageLoadsonbothnewandirradiatedfuelassembliesreflectstor-ageconditionsoftemperature,chemistry,meansofsupportanddurationofstorage.3)ReactorServicingLoadsonthefuelassembl;reflectthoseencounteredduringrefuelingandreconstitution.4)PowerOperationLoadsarederivedfromconditionsencounteredduringtransientandsteady-stateop=ationinthedesignpowerrange.(??otoperationaltesting,svstcmstartup,hotstandbv,cperatorcontrolledtransientswit?)inspecifiedratelimitsandsystemsnutdownare'ncludadinthiscatciory.)4,2-1 5)ReactorTripLoadscorrespondtothoseproducedinthefuelassemblybyco'ntrolelementassembly(CZA)motionanddeceleration.b)ConditionII:UpsetConditionConditionIIsituationsareunplannedeventswhichmayoccurwithmoderatefrequencyduringthelifeoftheplant.Thefuelassemblydesignshouldhavethecapabilitytowithstandanyupsetconditionwithmargintomechanicalfailureandwithnopermanenteffectswhichwouldpreventcontinuednormaloperation.Incidentsclas-sifiedasupsetconditionarelistedbelow:I1)Operatingbasisearthquake(OBE)2)Selectedmoderatefrequencyevents(SeeTable15.0-2)c)ConditionIII:EmergencyConditionsConditionIIIeventsareunplannedincidentswhichmightoccurveryinfrequentlyduringplantlife.RodmechanicalfailuremustbepreventedforanyConditionIIIeventinanyareanotsubjecttoextremelocalcondit'ons(e.g.,inanyrodnotimmediatelyadjacenttotheimpactsurfaceduringfuelhandlingaccident).TheConditionIIIincidentslisted.belowareincluddasacategorytoprovideassurancethatundertheoccur:.enceofaConditionIIIevent,roddamageisminimal.1)Selectedinfrequentevents(SeeTable15.0-2)2)Hinorfuelhandlingaccident(fuelassemblyandgrappleremainconnected).d)ConditionIV:FaultedConditionsConditionIVincidentsarepostulatedeventswhicharenotexpectedtooccur,butareanalyzedanywaybecauseoftheirpotentialforreleaseofsignificantamountsozradioactivematerial.Hechanicalfuelfailuresandreactorcoolantsystemdamagearepermitted,buttheoperationoftheengineeredsafetyfeatures(ESF)aridreactorprotectionsystemstomitigatetheconsequencesofthepostu."atedeventmustnotbeimpaired.ConditionIVincidentsarelistedbelow:1)Safeshutdownearthquake(SSE)2)Selectedlimitingfaults(Table15.0-2)3)Hajorfuelhandlingaccident(fuelassemblyandgrapplearedisengaged)4,2-2Amendm:.ntiso.0,(12/SO)
Thefuelcladdingisdesignedtosustaintheeffectsofsteadystateandexpectedtransientoperatingconditionswithoutexceedingacceptablelevelsofstressandstrain.Exceptwherespecificallynoted,thedesignbasespresentedinthissectionareconsistentwiththoseusedforpreviouscoredesigns.Thefuelroddesignaccountsforcladdingirradiationgrowth,externalpressure,differentialexpansionoffuelandclad,fuelswelling,fueldensification,cl"dcreep,fissionandothergasreleases,initialinternalheliumpressure,thermal."-tress,prcssureardtemperaturecycling,andflowinducedvibrations.'1'heburnablepoisonroddesignaccountsforexternalpressure,differentialexpansionofpelletsandclad,pelletswelling,cl"dcreep,heliumgasre-lease,inir'alinternalheliumpressure,thermalstress,andflowinducedvibrations.Exceptwherespecificallynoted,thedesignbasespresented~nthiss"ctinnaeconsi.ste>itwiththoseusedforpreviousdesigns.Iz(~74SP4'e'xceptwherespecificallynoted,thdesignbasesare,consistntwiththoseusedforpreviousdesigns.Themechanicaldesignoithecontrolelementassembliesxsbasedoncompz.-ancewiththefollowingfunctionalrequirements,a)Toprovidefororinitiateshorttermreactivitycontrolunde"allnormalandadverseconditionsexperiencedduringreactor.startup,normaloperation,shutdown,andaccidentcondition".b)HechanicalclearancesoftheCEAwithinthefuelandreactorinter-nalsaresuchthattherequirementsforCEApositioningandreactortripareattainedunderthemostadverseaccumulationoftolerances.c),StructuralmaterialcharacteristicsaresuchthatradiationinducedchangestothcC=Amaterialswillnotimpair.thefunctionsofthereactivitycontrolsystem.
Foreachofthedesignconditions,therarecriteriawhichapplytothefuelassemblyandcomponentswiththeexceptionoffuelrods.Thesecriteriaarelistedbelowandgivetheallowablestressesandfunctionalreuirementsfcreachdesigncondition.DesinConditionsIandII~pm-SmmbsmUndercyclicloadingcondiions,stressesmustbesuchthatthecumulativefatiguedamagefactordoesnotexceed0.8.Cumulativedamagefacto"isdefinedasthesumoftheratiosofthenumbercfcyclesatagivencyclicstress(orstrain)conditiontothemax-imumruaiberprm'ttedforthatcondition.Theselectedlimitoi0.8isusedinplaceof1.0(wh'chwouldcorrespondtotheabsolutemaximumda...agefactorpermitted)toprovideadditionalmargininthedesign~Daflectionsmustbesuchthattheallowableinsertiontimeofthecontroielementasser.bliesisnotexceeded.DesignConditionIII,P<1.5S+Pb<1'FSDefi..ctionsarelimitedtoavalueallowingtheCEAstotrip,butnotnecessarilywithintheprcscri.bedtime.DesignConditionIV'm-mmb-swhereS~sma1lervs1>>eof2~4Sor0~7Smmu')Iftheequivalentdiameterpipebreal<intheLOChdoesnotexceed0.5squarefoot,thefuelassemblydeformationshallbelimitedtoavaluenotexceedingthe,deformatonwhichwouldpreciudesatiractoryinertionofthcCEAs.2)Forpipbrcaksitesgratertl.an0.5squarefoot,drfo~"tionofstructuralco;;iponentsislimitedtomaintainthefuelinacoolabl"a=ray.CEAinsertionisnotrequiredfortheseeventsast1.appropr,nrr.":aret..~<<>,.'iv.-.sdo:o.'a!.cr:r'itforC"A
Nomenclature.Thesymbolsusedindefiningtheallowablestresslevelsareasfollows.'Calculatedgeneralprimarymembranestress~Calculatedprimarybendingstress~DesignstressintensityvalueasdefinedbySectionIII,AS."2~llinimumunirradiatedultimatetensilestrength~ShapefactorcprrespondingtotheparticularcrosssectioncinanalyzSm~DesignstressintensityvalueThedefinitionofS'sthelesseriscontainedintheASIDEBoilerandSectionIII,AppendixF-1323.1.forfaultedconditionsavalueofP4Saad0.7SPressureVecseT'ode(1974)Mherenotesa,bandcaredefinedas:(a)PandPbaredefinedbySectionIll,ASIACode.m(b)Miththeexceptionofzirconiumbasealloys,thedesignstressintensityvalues,S,ofmaterialsnottabulatedbytheCodearedeterminedintiesamei."armerastheCode.'Ihe,designmstressintensityor,zirconiumbasealloysshallnotexceedtwo-thirdsoftheunirradiatedminimumyieldstrengthattemper-ature.Ba"ingthedesignstressintensityontheunirradiatedyieldstrengthisconservativebecausetheyieldstrengthofzircaloyincreaseswithirradiation.Theuseofthetwo-thirdsfactorensures50percentmargintocomponentyieldinginre-sponsetoprimarystresses,This50percentmargintogetherwithitsapplicatibntothenonimumunirradiated'propertiesandthegeneralconservatismappliedintheestablishmentofdesignconditionsissufficienttoensureanadequatedesign.(c)Theshapefactor,F,,isdefinedastheratioofthe"plastic"moment(ailfibersjustatthevieldstress)totheinitialyieldanount(e:.tremefiberattheyieldstressandallothe-fibersstre.ssedinproportiontotheirdistancefromtheneutralaxis)".Thccapabilityofcrosssectionloadedinbend-ingtosusainmomentsconsiderablyinexcessofthatreq~i~edtoyieldtheoutermostfibersisdiscussedinTimoshenko.
Fue).HandlingandShippingDesignLoadsThreespecificdesignbaseshavebeenestablishedforshippingandhandlingloads.Theseareasfo'iowa:Thefuelassembly,whensupportedinthenewfuelshippingcon-tainer,shallbecapableofsu..tainingtheeffectof5gaxial,lateraLnrverticalaccelerationwithoutsustainingstresslevelsinexcessofthoseallowedfornormaloperation.The5gcriterionwasoriginallyestablishedexperimental,ly,anditsadequac~iscon-tinuallyconfirrnedbythepresenceofimpactrecorders~b)Thefuelassemblyshallbecapableofsustaininga5000poundaxialloadappliedattheupperendfittingbytherefuelinggrapple(andrear'stedbyanequalloadattheLorrerendfitting)withoutsus-tainingstresslevelsinexcessofthoseallowedfornormalopera-tion.Tue5000poundloadwaschoseninordertoprvideadequateliftcapbilityshouldanassemb~lbecor.elodged.,c)ThefueLassenrblyshallbecapableofwithstanding~O.i25rn.de-flectioninanydirectionwheneverthefuelassemblyisraisedorloweredfromahorizontalpositionwithoutsustainingapermanentdeformationb'yondthefuelassemblyinspectionervelopc.
~~eDuringnormal,operatingandupsetcondid'tions(ConditionsIandII),themaximumpr...arytensilestressin'ytheZircaloycladshallnot-dtwo-thirdsoftheminimumunirradiatedyieldstrengthoftheexceetwo-iirdsondinli.i.tmaterialattheapplicabletemperature.ThecorrespIII)isthematerialyieldunderemergencyconciitions{Conditionsstr~~c.thTheuseoftheunirradatedmaterialyieldstrengthas~,cbeba-isforaiiowablescreei."sconan-.varisabncau-"erbeyreidstr-ngthofzircaloyincreaseswithirradiation.Theuseoftwo-thirdsfactorensures50percentmargintocompon<<htyieldin"inresponsetoprisiary.",tresses.This50percentmargin,togetherwith.tsapplicationtotheminimumunirradiatedproprtiesandtl.egeneralconservatismappliedinthee"tablish-,.ientofdesignconi-tionsissufficienttoensureanadequatedesign..Yieldstrengthintlienon-irradiatedconditioc.isshcwnonFigure.4.2-20of.Rr.ference13..m<8ThecladdingstresslimitsWbasedon'aluestalcenfrcmtheminimumyieldstrengthcuveattheappropriatetemperatures.Thelimitsareappliedovertheentirefuellifetime,duringconditionsofreacorheatupandcooldown,stracystateoperation,andnormalpowercycling.Undertheseconditions,claddingtemperaturesandfastfluencescanrangefrom70to750Fandfrom0to1x10nvt,respectively.2Duringnormaloperatingandupsetconditions(ConditionsIand11),themaximu:aprimarytensilestressintheZircaloycladshallnotexceedtwo-thirdsoftneminimumunirradiatedyieldstrengthofthematerialattheapplicabletemperature.Thecorrespondinglimitunderemergencyconoitions(ConditionIII)isthematerialyieldstrength.
E(~'~~~KThestresslimitsfortheIncone'IAlloy625,claddingareasfollows:~~DesignConditionsIandII(YonOperation,NormalOperation,andupsetConditions)Pd'mP+Pb<FSmbsmDesignConditionsIII(EmergencyConditions)P<1.5SP'+Pb<1.5FSmb'mDesignConditionsIV(FaultedConditions)Pamm,P+Pb<FS'sthe"nailerof2s4Sor0.7SmmuFordefinitionofP,P,S,S',S,andF,seeSubsection4.2.1.1(A).Fortnelnccnel625CLA.l-dd.'ns,ti:evalueoiSnistvo-thirdsoftneminimumspecifiedyieldstren~;thattemperature.lForInconel625,thuspecifiedminimumyieldstrength'is65,0001b/in.2at650F.~hp!t5ywhereMpisthebendingmomentrequiredtoproduceafullyplasticsectionandHyistheb"ndingmomentwhichfirstproducesyie]ding.attheextremefibersoftheeros"section.ThecapabilityofcrosssectionsloadedinbendingtosustainmomentsconsiderablyinexcessofthatrequiredtoyieldtheoutermostfiberisdiscussedinReferencel.FortheCEAcladdingdimensions,F~1.33.TheCEAsaredesignedforatenyearlifetimebasedonestimatesofneutronabsorberburnup,allowableplasticstrainoftheInconel625claddingandtheresultantdimensionalclearancesoftheelementswithinthefuelassemblyguidetubes.
Netunrecoverablecircumferentialstrainshallnotexceedonepercentaspredictedbycomputationscon"ideringcladcreepandfuel-cladinteractioneffects.DatafromO'Donnelland'l0eberwereusedtodeterminethe(4)(s)presenorepercentstrainlimit.O'DonnelldevelopedananalyticalfailurecurveforZircaloycladdingbaseduponthemaximumstrainofthenmateri1atitspointofplasticinstabi'ity.O'DonnellcomparedhisanalyticalcurvetocircumferentialstraindataobtainedonirradiatedcoextrudedZr-UmetalfuelrodstestedbyWeber.Thecorrelationwsgood,thussubstantiatingO'Donne!.1'sinstabilitytbeoty..SinceG'Gonnellpe~i~pe))j!anali"ie,additionaldat.".havebeenderivedatBettisandhECL41)(~0$ThesenewdataareshowninFigure4.2-1,alongwithO'Dcnnell'scurveandHeber'sdata.thiscurvewasthenadjustedbecauseofdifferencesinanisotropy,stressstatesandstrainrates;andthedesgnlimitwassetatonepercent.,Theconservatismofthecladstraincalculat'nsisprovidedby,theselectioncfadverseinitialconditionsandmaterialbehavioras-sumptions,andbytheassumedop"ratinghistcry.Theacceptabilityofthe1.0percentunrecoverablecircumferen'1strainlimitisdemonstratedbydatafrem:rradiatedZircaloycladfuelrodswhichshownocladdingfa'lures(duetostrain)atorbelowthislevel,asillustratedinFigure4.2-1.sUniformtensilestrainint!ienon-irradiatedconditionisshownonFigure4..2-22ofReference13.Uniformtensilestraiginthe..irradiatedconditionap!iroacticsonepercentat6x10nvtandremainsrelativelycontant(Sub-section4.2.!.2.1).sThestrainlimitsforthecladdingarelimitedtovalueswhichwillpermittheCEAstotripwithintheallowabletime.Thevaluesofunifomaandtotaareestimatedtobeasfol!ows1elongationofInconelhlloy625claddingFluence(E>1!I"v),nvt1Uniformelongation,3Totalelongation,I6]0223102213 0
Netunrecoverablecircumferentialstrainshallnotexceedoneper-centaspredictedbycomputationsconsideringcladcreepandpoisonpellets"ellingeffects.
~,
Cumulativestraincyclingusage,definedasthesumofthcratiosofthenumber'ofcyclesinagiveneffectivestrainrange(d,)tothepermittednumber(W)atthatrange,astaksnfromFigure4.2-2,willnotexceed0.8.ThecyclicstrainlimitUesigncurveshownonFigure4.2-2,i~)~sadupontheHethodofUniversalSlopesdevelopedbyS.S.Hansonandhasbeenadjustedtoprovideastraincyclemarginfortheef-fectsofuncertaintyandirradiation.Thereultingcurvehasbrencorn~aredwithknowndataonthecyclicloadingofZircaloyandhas'eenshowntobeconservative.SI.pjfically,itencompassesallthedataofO'Donnel)andLanger.~-P 0
- .(4).i~el'i~(A~~(~ice[~3c4~.Thedesi>limitsofthefuelrodladding,withrespecttovibra---tioncnsiderations,are'.withinthefuelassemblyde-signltisarequirementthatthespacergridintervals,incon"junctionwiththefu..lrodstiffness,besuchthatCuelrodvibra-tion,asaresultofmechanicalorflowinducedexcitation,doesnotresultinexcessivewearofthe'fuelrodcladdingatthespacergridcontactareas.-
(e)OxidationandCrudBuildupDuringnormaloperatingandupsetconditions{designconditionsIandII)oxidationandcrudbuilduphavenotbeenobservedasaproblem(seethefollowingsection4.2.3).Therefore,nospecificcriteriahavebeendefined.
Experiencehasproventhatanyspecificcriteriononallowabledeflect.ions(bowing),withrespecttotheeffectswhichsuchdeflectionsmighthaveonthermalhydraulicperform.nce,isnotnecessarybeyondtheinitialfuelrodpositioningrequirementsrequiredofthegrids.Thisvariationinspacingisaccounted,forinthermal-hydraulicanalysisthroughtheintroductionofhotchannelfactorsincalculatingthemaximumenthalpyriseincalculatingD'OR.Thisadjustmentiscalledthepitch,bowing,andcladdiameterenthalpyrisefactor,whichisconservativelyappliedtosimulateareducedflowareaalongtheentirechannellength.ThcvalueofthisfactorisgiveninTable4.4-landitsapplicationisdiscussedinSection4.4.ThesubjectoffuelrodbowingisdiscussedinReference53~l~,g~~ad-,k~WMR~Thereisnospecificlimitonlateralfuelroddeflectionforstruc-turalintegrityconsiderationsexceptwhichisbroughtaboutthr)ughapplicationofcladdingtresscriteria.Theabsenceofaspecificlimitonroddeflectionisjustifiedbecauseitisthefuelassemblystructure,andnottheindividualfuelrod,thatisthelimitingfactorforfuelassemblylateraldeflection.
{g)AxialGrowthFuelRodsandguidetubesaredesignedwithadequateclearancetotheupperfuelassemblyendfittingsuchthattheclearanceismaintainedthroughouttheex-pectedlife(burnup)ofthefuel.Also,thespacergridsaredesignedtoallowIIaxialgrowthwithoutinducingunacceptablerodbowing.Thereisnocriterionforaxialgrowthperse;however,thefuelrodupperplenumisdesignedtoaccomodateaxialgrowthofthefuelwithoutexceedin'gthepressureci4terioninitem(h);
Fuelrodinternalpressureincreaseswithincreasingburnupandtowardendoflifethetotalinternalpressure,duetothecombinedeffectsoftheinitialheliumfillgasandthereleasedfissiongas,canapproachvaluescomparabletotheexternalcoolantpressure.Themaximumpredictedfuelrodinternalpressurewillbeconsistentwiththefollowingcriteria.g~Theprimary'"tressinthecladdingresultingfromdifferentialpressurewillnotexceedthestressLimit<sspecifiedearlierinthissection.4~Theinternalpressurewillnotcausethecladtocreepoutwrdfromthetuelpelletsurfacewhileoperatingatthedesignpeaklinearhetrarefornormaloperation.Indeterminingcom-pliancewiththiscriterion,internalpressureiscalculatedforthepeakpowerrodinthereactor,includingaccountingforthemaximumcomputedfissiongasrelease.Inaddition,thepelletswellingrate(towhichthecalculatedcladcreeprateiscompared)isbasedontheobservedswellingrateof"restr".ined"pellets(i.e.,pelletsin'contactwithclad),ratherthanonthegreaterobservedswelLingbehaviorof.pelletswhichrefreetoexpand.Thecriteriadiscussedabovedonotlimitfuelrodinternalpre"suretovalueslessthanthereactorcoolantpressure,andtheoccurrenceofpostivedifferentialpressureswouldnotadverselyaffectnormaloperationifappropriatecriteriaforcladdingstress,strain,andstrainrateweresatisfird.
(i)-AssemblyLiftoff.AsdescribedinSection4.2.2;theupperendfittingofafuelassemblyisdesignedsuchthatanetdownwardforceonthefuel,assemblywillbemain-tainedfornormalandanticipatedtransientflowandtemperatureconditions.
(j)ControlMaterialteachingAcriterionforcontrolmaterialleachinghasnotbeenspecifiedsinceleachinghasnotbeenobservedasaproblem(seeSection4.2.3).
.(k)CladdingOverheatingDamageduringnormaloperationandanticipatedoperatioI,occurrencescladdingoverheatingisavoidedviaspecificationandimplementationSpecifiedAcceptableFuelDesignLimit(SAFDL)onDNBRinaccordanceGeneralDesignCriteria10,20,.25,26,and29of10CFR50AppendixHowever,violationofthisSAFDLdoesnotnecessarilyresultinfuelduetoofawithA.damage.TheSAFDLonDNBRisthattheminimumDNBRissuchvalueastoprovide'atleast95percentprobabilitywith95percentconfidencethatdeparturefromnucleateboiling(DNB)doesnotoccuronafuelrodhavingthatminimumDNBRduringsteady-stateoperationandanticipatedoperationaloccurrences.Avalueof1.19usingtheCE-1correlationcoupledwiththeTORCcodeprovidesatleastthisprobabilityandconfidence.TheCE-1correlationisdescribedfurtherinSection4.4.2.2oftheFSAR.
(l)FuelOverheat>>gtDamageduringnormaloperationandanticipatedoperationaloccurrencesdueto"fueloverheatingisavoidedviaspecificationandimplementationofaSpecifiedAcceptableFuelDesignLimit(SAFDL)onfueltemperatureinaccordancewithGeneralDesignCriteria10,20,25,26,and29of10CFR50AppendixA.How-ever,violationofthisSAFDLdoesnot"necessarilyresultinfueldamage.TheSAFDLonfueltemperatureisthatthepeaktemperatureofthefuelislessthanthemeltingpoint(5080Funirradiatedandreducedby58Fper10,000NWD/MTUduringsteady-stateoperationandanticipatedoperationaloccurrences.
Anumberofreportedfuelrodfailureshaveresultedfrnmexcessivemnisture'availableinthefuel.Undernperatinn,thismoisturenxidizestheZircaloy.Thehydrngen,whichifasnotabsorbedduringnormaloxidation,wouldthenbeadsorbedintntheZircalnythrnugha.scratchinthenxidefilm.ThisLocalizedhydrogenabsorptionbythecladdingwouldshortlyresultinalocalizedfuelrodfailure.WorkperformedattheTnstituteforAtnmenergi,HaldenNorway,nfwnichC""isaaeaher,de...oa..trarad"hatathraahoidva(gofaeteraoiatareiarequiredfo:hyd:idcsunburst-stnoccur.Throughaseriesofinpileexperiments,thelevelofthisthrshnldvaluewsestablished.ThallowablehydrcgenLimi~intheEueJthisrequirement,ensuringthathydrideXunburstswil'rnpliesvithnntnccur.W~oa(propr~)Duringnperatinnofthereactorvithexposuretohightemperature,highpressurewater,Zircaloy-4claddingviLlreacttoformaprotectiveoxidefilminaccordancewiththefnllnwingequation:Zr+2H0-+Zr0+22Approximately20percentofthehydrngenisabsorbedbytheZircalny.BasedondatadescribedinWAPD"ldRP-107,thecladdingwouldbeexpectedtocontainupto250ppmhydrogenfollowingthreeyearsnfexposure.AseriesofbursttestswereperfnrmedonZircalnyteatubescnntaining340ppmand450~pmofhydrn~e<7precipl4dtfedgsbylrideplateletsinacircumferentialmanner~Bursttestsat660Fshowedthatthebursttestspecimnsvith340pramnadnnrmaLburstductilityof12percent.Therefore,hydrngennormallyabsorbeflinZF-4tubingvillnntprnvpdeleter'nustothecladdingintegrity~spa.;A~d~r)ho~adr.ff~AhfdLrp,SOafO=p 0
I~I~s~~Earlyworkperformedat'ECLhasshownthathydridesbecomeductileonheat-ingto390F,andatthattemperature,andinconcentrationsupto250ppm(theexpectedconcentrationafterthreecycles),theirpresencehaslittleeffectonductility.lnaddition,bursttestsat600Fand725Pforhydro-genconcentrationsbetween200and400ppmdidnotshowasignificantde-pendencebetweenburstductilityandhydrogenconcentrationororientation.Thepotentialeffectsofhydrideorientationandconcentrationabove725PhavenotbeenspecificallyevaluatedbyC-E;but,providedconcentrationsdonotexceedtherangetestedsofar,wouldnotbee~~ectedtobesigni-ficant.~~1 Thecladwillbeinitiallypressurizedwithheliunitoanauountsufficienttoprventgrosscladdeformationunderthecombinedeffectsofexternalpressureandlongtencreep.'l'hecladdesignwillnotrelyonthesupportoffuelpelletsortheholddoasprin.topreventgxossdeConbation.OI5~Tl.ecladwillbeinitiallypressurizedwithheliuntoananountsuf-fici'nttopreventgrosscladdefor;.ationunderthecombinedeffectsoiexternalpressureandlongterncreep.Thecl"ddesignwillnotrelyonthesupportofpelletsortheholddownspringtopreventgrossdeformation.
~c~QgcyI.occurrenceofDHBdoesnotnecessarilyleadcladdingfailure,radioactivegasreleasefrcmthefuel-cladng'gapandfuelrodgas,.plenumisconservativelyassumedtooccurwhenDNBispredictedtooccur,TheprobabilityofDNBoccurringsafunctionoftheDNBR.ThetotalnumberofrodswhicharepredictedtoexperienceDNBisasummationoverthereactorcoreofthenumberofrodswithaspecificDNBRtimestheprobabilityofDNBatthatDNBRThismethodisFu~)g~,lS-.oq.'f.+MFSIR~~
(d)OverheatingofFuelPelletsTheimplementationoftheDHBRandfueltemperatureSAFDLs(seeitems(k)and(1)intheaboveSection4.2.1.1)precludestheneedforaspecificfailurethresholdonfueltemperature,withtheexceptionoftheCEAEjectionevent.FortheCEAejection.event,radioactivegasesareassumedtobereleasedfromthefuelpellettothecoolantduringtheeventiffuelmeltingispredicted(Reg-ulatoryGuide1.77,Nay1974).Thethresholdforfuelmeltingisassumedtobe4940F(250caloriespergramatthefuelcenterline)forallfuelrodburnups.ThistemperatureisobtainedbyreducingthemeltingpointsuggestedinRegulatoryGuide1.77(5150F)toaccountforamaximumexpectedburnupofabout35,000NMd/T.
(e)Pellet-CladdingInteractionDamagecriteriapreviouslyspecifiedforcladdingstrain(1~)andfuelpelletoverheatingminimizetheprobabilityoffailureduetopellet-claddinginter-action.
'{f)CladdingRuptureInECCSanalysis,anempiricalmodelisusedtopredicttheoccurrenceofcladdingrupture.Thefailuretemperatureisexpressedasafunctionofdifferentialpressureacrossthecladdingwall.PredictionsofcladdingruptureareusedinECCSanalysistoshowthatthecoregeometryremainsamenabletocooling.Therefore,therearenospecificdesignlimitsassociatedwithcladdingrupture.TherupturemodelisaportonoftheECCSevaluationmodeland'sdiscussedinSection6.3.3.1oftheFSAR.
Fuelcoolabilityismaintainedsuchthat.continuedremovalofdecayheatisensuredforallanticipatedoperationaloccurrencesandaccidents.Exceptasdescribedbelow,theneedforspecificcriteriaforcorecoolabilityisprecludedbythedesignbasesdamagecriteriadiscussedabove.Themain-tenanceofcorecoolabilityisdiscussed.furtherinSection4.2.3.3.{a)Zt86%9'b)YiolentExpulsionofFuelMaterialFortheCEAejectionevent,theradiallyaveragedenergydepositionatthehottestaxiallocationislimitedtoavaluelessthan280cal/gm{Reg-ulatoryGuide1.77,May1974)topreventfuelroddispersaldue.otherapidreactivityinsertion.{c)CladdingBallooningandFlowBlockageForECCSanalysis,claddingswellingandrupturearepredictedtoensuremaintena'nceofaeoolablecoregeometry.ThesemodelsandcriteriaaredescribedfurtherinFSARSection6.3.3.
Insert0h(a)Fragmentationof'mbrittledCladdingForECCSanalysis,limitsof2200Fonpeakcladdingtemperatureand17$onmaximumcladdingoxidationareused(seeSection6.3.3.1).
(d)StructuralDamagefromExternalForcesThefuelassemblydamagecriteria(Section4.2.1.1above)areusedintheanalysisofLOCAandthesafeshutdownearthquaketoensurethatstructuralintegrityandfunctionaremaintained.
'L2-FSAR4e2.2DESCRIPTIONANDDLFSIG'lDPAM1NGSThissubsectionsummarizesthemechanicaldesigncharacteristicsofthefuelsystemanddiscussesthedcignparameterswhichareofsignificancetothe'performanceofthereactor.Asummaryofmechanicaldesignpara-metersispresentedinTable4.2-1.Thesedataareintendedtobedescrip-tiveofthedesign;limitingvaluesoftheseandotherparameterswillbediscussedintheappropriatesections.4.2.2.lFuelAssembl~i0Thefuelassembly(Figure4.2-6)consistsof236fuelandpoisonrods,fiveguide'tubes,lluelrodspacergrids,upperandlowerendfittings,andaholddowndev'ce.Theouterguidetubes,spacergrids,andendfittingsformthestructuralframeoftheassembly.lSTnefuelspacergrids(Figure4.2-7)maintainthefuelrodarray>provid-ingpositivelateralrestrainttothefuelrod>butonlyfrictionlre-strainttoaxialfuelrodmotion.ThegridsarefabricatedfronpreformedZircaloyorInconelstrips(thebottomspacergridmaterial(i~n;Inconel)interlockedinaneggcratefashionandweldedtogether.Eacficellofthespacergridcontainstwoleafspringsandfourarches.Theleafspringspresstherodagainstthearchestorestrictrelativemotionbetweenthegridsandthefuelrods.Theperimeterstripscontainfeaturesdesignedtopreventhangupofgridsduringarefuelingoperation.ThenineZircaloy-4spacergridsarefastenedtotheZircaloy"4guidetubesbyvelding,andeachgridisweldedtoeachguidetubeateightlocations,fourontneupperfaceofthegridandfouronthelowerfaceofthegrid,vherethespacerstripscontacttheguidetubesurface.Thelowestspacergrid(Inconel)"isnotweldedtotheguidetubesduetomaterialdiffer-ences.ItissupportedbyanInconel625skirtwhichisweldedtothespacergridandtotheperimeteroftheloverendfitting.4.2-31 SL2-PSAI<Theupperendfittingisanassemblyconsistingoftwocast304stainlesssteelplates,fivemachinedpostsandfivehelicall>>cc>>elX"750springs,whichat(achestotheguidetubescoserveasanalignmentandLocatingdeviceforeachE>>eIassemblyandhasfeaturestopermitliEting'fthefuelassembly.ThelovercastplateLocatesthetopendsoftheguidetubesandisdesignedtopreventexcessiveaxialmotionofthefuelrods.J7ii'6.RolTheInc>>>>el!(-750springsareofconventional(coildesignhavingameandiameterof'"in.,awirediameterof~in.,andactivcoils~.Inconel&750wasselectedforthisappLicationbecauseofitsprevioususeEorcoilspringsandgoodresistancetorelaxationduringoperation.Theuppercastplateoftheassembly,calledtheholdovnplate,togetherwiththehelicalcompressionsprings,comprisetheholddrvndevice.Theholddovnplateismovable,actsontheundersideofthefuelalignmentplateandisloadedbythecompressionsprings.Sincethespringsarelocatedattheupperendoftheassemb)y,thespringloaac~nuineswiththefuelassemblyweighttocounteractupwardhydraulicforces.Thede-terminationofupwardhydraulicforcesirzludesfactorsaccountingforflowmaldistribution,fuelassemblycomponenttolerances,crudbuildup,dragcoefficientandbypassflow.Thespringsaresizedandthespringpreloadselected.uchthatanetdownwardforcewillbemaintainedforallnormalandanticipatedtransiertflowandtemperatureconditions.ThedesigncriteriaLimitthemaximurlstressundert'e,mostadversetoleranceconditirnstobelowyieldstrengthofthespringmaterial.Themaximumstressoccursduringcoldconditionsanddecreasesasthereactorheatsup.Thereductionin'tressisduetoadecreaseinspringdeflectionresultingErnndiffererl:iaithermalexpansionbetweentheZircaioyfuelbundlesandthe'tainlesssteelinternals.Duringnormaloperation,aspringvillneverbecnnpressedtoitssolidheight.However,ifthefuelassemblyvereloadedinanabnormalmannersuchthataspringwerecompressedtoitssolidheight,thesprinwouldcontinuetoserveitsfunctionwhentheloadingccnditionreturnedtonor-maL.TheLoverendfittingisastainlesssteeLcastingconsistingofaplatewithflowllolesa>>dfoursupportLegswh'chalsoserveasalig>>mentposts.Precisiondrill'edholesinthesupportleg..matew'hfourcoresupportplatealignaentpins,therebyproperlylocatirgtheiovrendofthefuelassembly.Thefourouterguidetubeshaveawidenedregionattheupperendvhichcontainsaninternalthread.ConnectionviththeupperendfittingismadebypassingtheexternaLLythreadedendoftheguidepoststhrnug!>holesintheLowercastflowplateandintotheguidetubes.Whenas-sembled,theflowplateissecuredbetweenElangesontheguidetubesandontheguideposts.TheconnectionviththeupperendEil.tinislockedvithamechanicalcrimp.Eachouterguidetubehas,.atitsLowerend,aweldedZicalcy-4fitting.ThisfittinghasathreadedportionwhichpassesthroughaholeintheE<ie,'ssemblyLoverendfittingandis.secnreJhyaZircaloy-4nut.ThisjointissecuredwithastainlessrteelLockingringtackweldedlotheLowerendfittinginfnurplaces.4.?-32 SL2-FSAR3)Thecentralinstrumentationguidetubeinsertsintosocketsin.theupperandlowerendfittingsandisthusretainedlaterallybytherelatively.,mallclearanceattheselocations.Theupperendfittingsocketiscreatedbythecenterguidetubepostwhichisthreadedintothelower'astflowplateandtackweldedintwoplaces.Thelowerendfittingsocketismachiriedoutofthelowerendfittingcasting.Thereisnopositiveaxialconnectionbetweenthecentralguidetubeandtheend.fittings.Thefiveguidetubeshavetheeffectofensuringthatbowingorexcessiveswellingoftheadjacentfuelrodscannotresultinobstructionofthecontrolelementpathway.Thisissobecause:a)Thereissufficientclearancebetweenthefuelrodsandthe,guidetubesurfacetoallowanadjacentfuelrodtnreachruoiurestrainwithoutcontactingtheguidetubesurface.b)Theguidetube,havingconsiderablygreaterdiameterandwali=thick-ness(andalso,beingatalowertemperature)thanthefuelrod,isconsiderablystifferthanthefuelrodsandwould,therfore,remainstraight,ratherthanbedeflectedbycontactwiththesurfaceofanadjacentfuelrod.Therefore,the'owingorswellingoffueLrodswouldnotresultinobstruc-tionofthecontrolelementchannelssuchascouldhinderCEAmovement.Thefuelassemblydesignenablesreconstitution,i.e.,removal.andreplace-mentoffuelandpoisonrods,ofanirradiatedfuelassembly.Thefuel.andpoisonrodlowerendcapsareconicallyshapedtoensureproperinsertionwithinthefuelassemblygridcagestructure;theuppe"endcapsarede-signedtoenablegrapplingofthefuelandpoisonrodEnrpurposesnfre-movalandhandling.Threadedjointswhichmechanicallyattachtheupperendfittingtothecontrolelement:guidetubeswillbeproperlytorquedandlockedduringservice,butmayberemovedtoprovideaccesstothefuelandpoisonrods.Loadingandmovementofthefuelassembliesisconductedinaccordancewithstrictlymonitoredadminstrativeproceduresand,atthecompletionofEuelloading,aniiidependentcheckastothelocationandorientationofeachEuelassemblyinthecoreisrequired.Harkingsprovide'donthefuelassemblyupperendfittinoon~h>csverifica-tionofEuelenrichmentandorientationofthefuelassembly;Theserialnumberisalsoprovidedonthelowerendfittingtoensurepreservationoffuelassemblyidentityintheeventofupperendfittingremoval.Addi-tionalmarking>>areprovidedonthefuelrodupperendcapsasaseccndarychecktodistinguishbetweenfuelenrichmentsandburnablepoisonrnds,ifpresent.Ouringthemanufacturingprocess,thelourendcapofeachrodismarke~pIidtoprovideameansofidentifyingthepelletenrichment,pelletlotand'ueIstackwight.Inadditinn~aqualityccntrnlprogramspeciEicationrequiresthatmeasuresbeestablishedEnrtheidentificationandcnntrnlofmaterials,components,andpartiallyfabricatedsubassemblies.These4.2-33 SL2-FSAR)'l~meansprovideassurancethatnniyacceptableitems<<reusedandalsopro-videamethodnfrelatinganitemorassemblyfrominitialieceiptthroughfabrication,installation,repair,ormodificationtoanappiicabLE'raw-inv,specification,nrotherpertinenttechnicaldocument.aroundwireType302stainlesssteelcompressionspring,andanalum'spacerdisclocatedateachendofthefuelcolumn,allencapsulatedwithinaZircaloy-4tubeseat.weldedwithZircaioy-4endcaps.Thefuel.rodsareinternallypressurizedwithheliumduringassembly.Figure4.2-8depictsthe.fuelrodde.;ign.EachfuelrodassemblyincludesbothaserialnumberandavisuaLidentifi-cationmark.Theserialnumberensurestraceabilityofthefabricationhistoryofeachfuelrodcnnponent.Theidentificationmarkprovidesavisualchecknnpelletenrichmentbatchduringfuelassemblyfabrication.ThefuelcladdingiscoldworkedandstressreliefannealedZircaioy-4tubing0.025inchesthick.Theactualtubeformingprocessconsistsofaseriesofcoldworkingandannealingoperations,thedetailsnfwhichareselectedtoprovidethecombinationofandpropertiesdiscussedinSubsectionTheUOpellets,aredishedatbothendsinordertobetteraccommodaterma2expansionandfuelswelling.ThedensityoftheUOintpeLLetsis10.38g/cm,whichcorrespondsto94.75percentofthel0.96gCia./catheoreticaldensity(TD)ofUO.However,becausethepellet2dishesandchamfersconstituteaboutthreepercent~fthevolumeofthepelletstack,theaveragedensityofthepelletstackisreducedto10.06g/cm.Thisnumberisreferredtoasthe"stackdensity".~/VSgg&HHThecompressionspringlocatedatthetopofthefuelpelLetcolumnmain-tainsthecolumninitsproperpositionduringhandLingandshipping.Thealuminaspacerdiscatthelowerendofthefuelrodreducesthelowerendcaptemperature,whiLetheupperspacerdiscpreventsU02chips,ifpre-sent,fromenteringtheplenumregion.ThefuelrodplenumwhichisLo-catedabovethepeLletcolumn,providesspaceforaxialthermaldifferen-tial.expansionofthefuelcolumnandaccommodatestheinitialheliumioadsngandevolvedEisssognases.(geegubsacsions..-..dl.g.Z.l(i,)account,includingthecalculationoftemperaturesforthega"containedwithinthevarioustypesofrodinternalvoidvolume,isdiscussedinReference14.4.2.2.3BurnablePoisonRodFixedburnableneutronabsorber(poison)rods,Figure4.2-9willbein-cludedinselectedfuelassembliestoreducethebeginning-nf-lifemEgdera-torcoefficient.TheywiilreplacefuelrodsatselectedLncatinns.ThepEis>>nrddswillbemechanicallysimilartofuelrods,butwillcontainacnluainofburnablepoisonpellotsinsteadoffuelpellets.Thepoisnnmaterialwillbealuminawithuniformlydispersedboroncarbideparticles.4.2-34 (a)'b)(c)(e)CladdingI.Q.roughnessis.000021in.Dishdiameteris0.233in.;depthis0.017i'n.Chamferwidthis0.020in.;lengthis0.0065in.BOLcoldvoidvolumeisI;fgtginchNosorbedgasesareassumedinperformanceanalyses.Fuelrodlengthtoleranceis0.065in.(f)BOLcoldshouldergapisg'fq7in.(g)Typicalgridspacingis.IS'%Lin.
SL2-FSARThebalanceofthecolumwi.llconsistnfaluminapellets,withthetotalcolumnlengththesameasthecoLumnlengthinfuelrods.Theburnablepoisonrodplenumspringisdesignedtoproduceasmallerpreloadonthepelletcolumnthanthatinafuelrodbecauseofthelightermaterialinthepoisonpellets.Fachburnablepf5isonrodassembl.yincludesaserialnum)>erandvisualiden-tificationmark.TheseriaLnumberisusedtorecordfabricat'ioninforma-tionforeachcomponentintherodassembly.Theidentificationmarkisuniquetopoi..onrodsandprovidesavisualcheckonthepelletboroncon-tentduringfuelassemblyfabrication.4.2.2.4ControlElementAssemblvDescritionandDesipnDrawinTheStLucieUnit2reactorcontainsatotalof91CEAsofthreedifferenttypes.ThesearedistributedamongthefuelassembliesasshowninFigure4.2"10.Thefulllengthfiveelement,fulllengthfourelement,andpartlengthf'veelementCEAsareshownonFigures4.2-3through4.2-5respec-,tively.ALLfiveelementCEAshavefourcontro)elementsarrangedina4.050inchsquarearrayplusoneelementatthecenteroft.ut=array.ThefourelementCEAshavetheirfourcontroLelementsarrangedina4.05')x4.130array.EachCEAinterfaceswiththeguidetubesofonefuelas-sembly,viththeexceptionofthefour'lementCEA,whichstraddlestwoadjacentfue).assemblies.PartLengthCEAsaredifferentiatedframfulllen"thCEAsbythefollowingidentiEyingfeatures:CEATyjeEngravedIdentificationNumber(onSider)GroovesonControlRodFulllength1,2,3,etc.(I-in.None,smoothhigh)ODPart,lengthA,B,C,etc.(1-1/2-in.high)OneperrodThecentralelementsefafulllengthCEAfccnsistt'fanlncnnel625tubeLoadedwithastackofcylindricalabsorberpellets.Theabsorbermaterial~consistsof73percentTDboroncarbide(B4C)pellets,withtheexceptirnnfthelowerportionofthecornerelement4s,whichcontainsi)ver-indium-cadmium(A),-In-Cd)alloycyLinders,a)CEACladdingDimensionalStabilityBecauseofitshighductilityandLovstrength,theAg-In-Cdvi)).notdeformtheCEAcladding.BufferingoftheCEAfollowingscram,whichoccurswhenthecornerelementtipsenterareduceddiameterportionofthefuelassembLyguidetubes,isnotdevradef)with)ongtermexposureoftheCEAtoreactor.operatingconditions.I4.2-3'i SL2-FSARAdequateCEAWnrthAlthoughsnyereductioninCEAwnrtharisesbecauseofthesubsti"ofB"CwithAg-In-Cd,theeffectissmallandisaccountedfor.AbnvethepoisoncolumnisaplenumwhichprovidesexpansionvolumefnrheliumreleasedfrommtheB4C.TheplenumvolumecnntainsaType302stainlesssteelhnlddownspring,whichrestrainstheabsnrbermaterialagainstlongitudinalshiftingwithrespecttnthecladwhileallnwingfordifferentialexpansionbetweentheabsorberandtheclad.Thespringdeve-l(pssaloadsufficienttomaintainthepnsitinnoftheabsnrbermaterialduringshippingandhandling.Eachful.llengthcontrolelementissealedbyweldswhichjointhetubetnanIncnnel625nosecapatthebottom,andanIncnnel.625endfittingatthetop.Theendfittings,inturn,arethreadedandpinnedtnthespiderstructurewhichprovidesrigidlateralandaxialsupportfor-thecontrolelemen's.ThespiderhubboreisspeciallymachinedtnprnvideapointofattachnentfortheCEAextensionshaft.Eightnfthe91CEAsrepartlengthCEAs.ThecontrnlelementsofapartlengthCEAconsistofsolidInconel625overthebnttnm50percentnftheirlength,anIncnnel625tubeopentothereactnrcnolantoverthenext40'er'centandasealedchambercnntaining73percentTDBCpelletsinthetnp10percent.Aholddnwnspring,similartothespringinthefulllengthrods,maintainstheorientationoftheB4C.TheCEA/PLCEApatternisshowninFigure4.2"10,Eachfulllengthnrpart-lengthCEAispositionedbymagneticj"ckcontrnlele,sentdrivemechanism(CEDE)mountedonthereactorve.sel.closurehead~TheextensionshaftjoirswiththeCEAspiderandconnectsthe"".AtntheCDM.Fullardpart'lengthfiveelementCEAsmaybecnnnectedtnanyex"ten~ionshaftdependingoncontrnlrequirements.MechanicalreactivitycontrolisachievedbypnsitinninggroupsnfCEAsbytheCEDHs.Intheoutletplenumreginn,allCEAs/PLCEAsareenclosedinCEAshroudswhichprnvideguidanceandprotecttheCEA/PICEAandextensionshaftfromconlantcrnssflow.Withinthecore,eachelementtravelsinaZircalnyguidetube.Theguidetubesarepartofthefuelassemblystructureandensurepropernrientatinnnfthecnntrnlelementswithrespecttnthefuelrnds.MientheextensionshaftisreleasedbytheCEDH,thecombinedweightnftheshaftandCEAcausestheCEAtninsertintnthefuelassembly~4.2<<36
~~,~~C~SL2-PSARThelowerendsofthefourouterfuelassemblyguidtub"saretaperedgraduallytoformaregionofreduceddiameterwhich,inconjunctionwiththeoutercontrolelementontheCEA,constitutesaneffectivehydraulicbufferfo-reducingth"decelerationloadsattheendofatripstroke~ThispurelyhydraulicdampingactionisaugmentedbyaspringandplungerarrangementontheCEAspider.Vhenfullyinserted,five~elementCLASandPiCEAsrestonthecentralposofthefuelassemblyupperendfitting,thefourelementCEArestsonthefuelassemblyupperendfittingflowQgp~$+g+54gM~55~[@4ThecapabilityoftheCEAstoscramwithintheallowabletimeisdemon-stratedaspartoftheflowtestingdiscussedinSubsection~MQ.2-Q.fJ~~
ThefuelassemblygridcagestructureconsistsofnineZircaloy-4spacergrids,oneInconel625spacergrid(atthelowerend),fiveZircaloy-4guidetubes,twostainlesssteelendfittings,andfiveInconelX-750coilsprings.Zircaloy-4,selectedforfuelrodcl'adding,guidetubesandspacergrids,hasalow'eutronabsorptioncrosssection,andhighcorrosionresistancetoreactorwaterenvironment.Alsothereislittlereactionbetweenthecladdingandfuelorfissionproducts.AsdescribedinSubsection4.2.3,Zirc'aloy"4hasdemonstrateditsabilityasacladding,CEAguidetube,andspac'ergridmaterial.ThebottomspacergridisofInconel625andisweldedtothelowerendfitting.Inthisregionoflocalinletturbulence,Inconel625wasselectedratherthanZircaloy-4toprovideadditionalstrengthandrelaxa-tionresistance.Inconel625isaverystrongmaterialwithgoodductil-ity,corrosionresistanceandstabilityunderirradiationattemperaturesbelow1000F.~~Thefuelassemblylowerendfittingisofcast304stainlesssteel{GradeCF-8)andtheupperendfittingassemblyconsistsoftwo.caststainlesssteelplatesandfiveType304stainlesssteelmachinesalignmentposts.Thismaterialwasselectedbasedonconsiderationsofadequatestrengthandhighcorrosionresistance.Also,Type304stainlesssteelhasbe~nusedsuccessfullyinalmostallpressurizedwaterreactorenvironments,includ-ingallcurrentlyoperatingCEreactors.
SL2-FSARJ.,~g~gWg<oSo9FuelAssemblGuideTubesAllfuelassemblyguidetubesaremanufacturedinaccordancewith~ASTMB353-7QWroughtZirconiumandZirconiumAlloySeamlessandWeldedTubesforNuclearService,withthefollowingexceptionsand/oradditions:a)ChemicalProperties,Additionallimitsareplacedonoxygen.b)Mechanic'alPropertiesFlare:Asectionofannealedtube,betweentwoandfourinchesin'engthshallbeflaredwithatoolhavinga60degreeincludedangleuntiltheoutsidediameter,hasincreasedby15percent.Theflaredtubeshallshownocrackingwhenexaminedwiththeunaidedeye.c)DimensionalRequirementsDimensionPermissibleTolerance(in.)ODID+0.003+0.005IZircaloy-4BarStockI,~/AllZircaloy-4barstockisfabricatedinaccordancewithGrade-RA-2,'(ASTMB351,Hot-RolledandCold-FinishedZirconiumandZirconiumAlloyBars,RodandWireforNuclearApplication,withthefollowingexceptionsand/ora4-ditions:Ca)ChemicalPropertiesAdditionallimitsareplacedonoxygenandsiliconcontent,b)MetallurgicalPropertiesGrainSize:Themaximumaveragegrainsizeisrestricted.Zircaloy-4StripStockAllZircaloy-4stripstockisfabricatedinaccordancewithGradeRA-2,ASTMB352,ZirconiumandZirconiumAlloySheet,StripandPlateforNuclearApplication,withthefol)owingexceptionsand/oradditions:
SL2-FSARa)ChemicalPropertiesAdditionallimitsareplacedonoxygenandsiliconcontent.b)MetallurgicalPropertiesGrainSize:Themaximumaveragegrainsizeisrestricted')MechanicalPropertiesBend'achsampleshallbebentusingathreepointtype,guidedbendtestfixturesimilartothatdescribedinMAB-192-M,EvaluationTestMethodsforRefractoryMetalSheetMaterial,Paragraph5.2.2,publishedbyDivisionofEngineeringandIndustrialResearch,NationalAcademyofSciences,NationalResearchCouncil,April22,1963.Thesampleshallbebent180degreesusingahandanvilwitharadiusequaltotwicethesheetthick-ness,Afterbending,eachspecimenshallbeliquiddyepenetrantinspectedtoassurefreedomfromcracking..Ifcrackingoccursonanypartofthebendsamples,thecoilsrepresentedshallberejected.d)CoefficientofThermalExpansionAxialdirection"seeReference2e)IrradiationProperties:Theyieldandtensilestrengthsareenhancedbyirradiation.Thestressrelaxationwithirradiationandoperatingtemperaturesproceedsatarapidrateunti)~earlycouplers.Theirradiationinducedgrowthxsdocumented.3rMStainlessSteelCastingsAl1stainlesss'teelcastlngsarefabrica'tedinaccordancewithGradeCF8pASTMA296,withthefollowingaddition:ChemicalPropertiesCobaltcontentislimited.StainlessSteelTubingAllstainlesssteeltubingisfabricatedinaccordancewithASTMA269,withthefollowingaddition:
SL2-FSARChemicalPropertiesCarboncontentislimitedontubingtobewelded.Cobaltcontentislimited.InconelX-750HelicalSpringsAllInconelspringsarefabricatedinaccordancewithAMS5699B,withthefollowingaddition:ChemicalPropertiesCobaltcontentislimited.Passivationprohibited.Inconel625BottomSacerGridStriMaterial1Inconelspacergridstripmaterialisprocuredinaccordancewiththespeci-ficationfornickel-chromiummolybdenumcolumbiumalloyplate,sheet,andstrip,specificationASTM443-72,withthefollowingadditionalrequirements:ments:a)ChemicalPropertiesCobaltcontentislimitedtoonepercentmaximum.b)Special'TestsAcheckanalysisandabendtestarerequired.
tModu'usofElasticity-6'lhevalueofYoung'sModulusx10isspecifiedinReference13.Poisson'sRatioINisthevaluespecifiedinReference13.'1'hermalCoefficientofExpansionDiametraldirectionisthevaluespecifiedinReference13.YieldStrengthXHI5Ep7Yieldstrengthinthenon-irradiatedconditionisshownonFigure4.2-20ofReference13.ghncladdingstressiinitsidentifiedinSubsection4.2.1.t(garebasedonvaluestakenfromtheminimumyieldstrengthcurveattheappropriatetemperatures.Thelimitsareappliedovertheentirefuellifetime,duringconditionsofreactorheatupandcooldown,steadystateoperation,andnormalpowercycling.Undertheseconditions,claddingtemperaturesandfastfluencescanrangefrom70to750Fandfrom0to1x10nvt,respectively.UltimateStrength~gus.a/~WVgUlt)matetensilestrengthinthenon-irradiatedconditionisshown'"onFigure4.2-21qfReference13.UniformTensileStrainWPygp7-KxUniformtensilestraininthenon-irradiatedconditionisshownonFigure4.2-22ofReference13.gniforntensilestrai~inthe~irradiatedconditionapproachesonepercentat6x10nvtandremainsrelativelyconstant(Sub-section4.2.1.$(ig.FlareAsectionofannealedtube,approximatelytwotofourinchesinlengthisflaredwithatoolhavinga60degreeincludedangle,untiltheoutsidediameterhasincrdasedby15percent.Theflaredtubeistoshownocrackingwhenexaminedwiththeunaidedeye.
ErradiationLsassumedintheZircalostrainLimitPLimit~~sinceSt,lowerstheallowab'levalue~Anrcaoycalculationsinvolvingpermanentstrainusethisbasis,unlesstheyareaDOLsituation.XrradiatedvaluesforZircaloyyieldstrengtharidultimate~strengtharenotusedinanydesigncalculations.Thisiscon-servativesinceallowablestresseswouldincreaseifirradiationwereaccountedfor.:-----
SL2-FSARh)HydrostaticBurstTestThecladdingspecificationrequiresthattwosamplesfromeachlo'tofcladdingbesubjectedtoroomtemperaturehydrostaticbursttests.Tobeacceptable,theburstpressuremustexceedaminimumvaluebasedonthecladdinggeometryandspecifiedtensileproperties,andthecircumferential"'ustexceedST~i'Ac-'4c.n+IZ$~,.DimensionalRequirementsa)Tubestraightnessislimitedto0.010in./ft,andinsidediameterandwallthicknessaretightlycontrolled.b)Ovalityismeasuredasthedifferencebetweenmaximumandminimuminsidediametersandisacceptableifwithinthediametertoler-ances.c)d)Outsidediameterisspecified.as0.382+0.002inchesInsidediameterisspecifiedas0.332+0.0015inchese)Eccentricityisdefinedasthedifferencebetweenmaximumandminimumwallthicknessatacross-section,andisspecifiedas'0.004inchesmaximumf)Wallthicknessisspecifiedas0.023inchesminimum(thenominalvaluereportedinTable4.2-1isbasedonthenominalODandID).%%5Kg7-DDa)HydrideOrientationArestrictionisplacedonthehydrideorientationfactorforanythirdofthetubecrosssection(inside,middle,oroutside).Thehydrideorientationfactor,definedastheratioofthenumberradiallyorientedhydrideplateletstothetotalnumberofhydrideplatelets,shallnotexceed0.3.Theindependentevaluationofthreeportionsofthecrosssectionisincludedtoallowforthepossibilitythathydrideorientationmaynotbeuniform.acrosstheentirecrosssection.~:~j;-~UP<~ggoSoq*B353-P7$WroughtZirconiumandZirconiumAlloySeamlessandWeldedTubesforNuclearService,exceptadditionallimitsareplacedonoxygen,siliconandironcontent.-
ItshouldbenotedthattnetoLeranceslistedabovearetakenfromdesigndrawings.Ttisstandardpracticetoobtainas-builtcladdingmeasure-mentsofoutsidediameter,wallthickness,andovality;andthesemeasuredvaluesareoccasionallyusedtoreduceuncertaintiesinfinalanalyses.
AllZircaloy-4barstockisfabricatedinaccordancewithASTMB351-P,HotrolledandColdFinishedZirconiumandZirconiumAlloyBars,RodandWireforNuclearApplication,withthefollowingexceptionand/oradditions:a)ChemicalPropertiesAdditionallimitsareplacedonoxygen.andsiliconcontent.b)MetallurgicalPropertiesThemaximumaveragegrainsizeisrestricted.StainlessSteelCompressionSpringsAllstainlesssteelspringsarefabricatedinaccordancewithAMS5688,RevisionF.Thedimensionsofthesespringsare:FreelengthOutsidediameterWiresizeActivenumberofcoils'pringconstant9.429in.0.312in.0.063in.6820.6lb/in.ChemicalCompositionSalientpointsregardingthestructure,composition,andpropertiesoftheUOfuelpelletsarediscussedinthefollowingsubsections.Wheretheef)ectofirradiationonaspecificitemisconsideredtobeofsufficientimportance,towarrantreflectioninthedesignoranalyses,thaterfectisalsodiscussed')Chemicalanalysesareperformedforthefollowingconstituents:1)TotalUranium2)Carbon3)Nitrogen,4)Fluorine5)ChlorineandFluorine6)Iron7)Thorium SL2-FSAR8)Nickelb)Limitsareplacedontheoxygen-to-uraniumratio.c).Thesumofthecalcium,aluminumandsiliconcontentsshallnotexceed300ppmbyweight.d)Thesumofthecrosssectionsofthefollowingimpuritiesshallnotexceedaspecifiedequivalentthermalneutroncapturecrosssectionofnaturalboron:l)Boron2)Silver3)Cadmium4)Gadolinium5)Europium6)Samarium7)DysprosiumIe)Thetotalhydrogencontentoffinishedgroundpelletsisrestricted.f)Thenominalenrichmentofthefuelpelletsvillbespecifiedandshallbeheldvithin+0.05wtpercentU-235.G
SL2-FSARa)ThepelletfabricationprocessMillmaximizetheporecontentofpelletsinaspecifiedrange.Acceptableporositydistributionvillbedeterminedbycomparisonofapprovedvisualstandardswithphoto-micrographsfromeachpelletlot.b)Theaveragegrainsizeshallexceedaspecifiedminimumsize.Densitya)Thedensityofthesinteredpelletaftergrindingshallbebetween93.5and96a0percentoftheoreticaldensity(TD),basedonanU02theoreticaldensityof10.96g/cm.TheinpilestabilityofthefuelisensuredbytheuseofanNRC-approvedoutofpiletestduringproduction.Thedetailsofthistest,andtheassociatedrationale,arepresentedinReference14.c)TheeffectsofirradiationontnedensityofsinteredUOpelletsarediscussedinReference14.ThermalPropertiesa)ThermalExpansionThethermalexpansionofU02j~>j(~g~ibedbythefollowingtemper-aturedependentequations:-2-4ZLinearExpansion=(-1.723x10)+(6.797x10T)+{2.896x10T)fpsasg5g~'to2200C-72ZLinearExpansionŽ0.204+(3x10T)+(2x10T)+(10T)above220GC.whereT~temperature,C.b)ThermalEmissivityAvalueot0.85isusedforthethermaleyj~~i~jg~f)0peiiatsoverthetemperaturerange800to2600K.O'tl/5ERXccc)NeltingPointandTherma1ConouctivityThevariationofmeltingpointandthermalconductivitywithburnupisdiscussedinReference14.
ego)TheearlierdataonemissivityofUOwerethoseofClaudsonandofEhlertandMargrave,asreportedbyBelle.Claudsonreportedthattheemissiv<<itydecreasedfrom0.85at1000Kto0.37at2200K.EhlertandMargravemeasuredthespectralemissivityofthepolihheds'urfaceofU02tobeapproximately0.40inthetemperaturerangeof2100-3000K.Thesedeter-minationsweremadeinthelate1950sbyanindirecttechniquethatcomparedtheluminanceofatungstenfilamentandthatofUO2atidenticaltesten-vironments.Inasubsequentinvestigation,Cabannas,et.altI(referenceg)-directlymeasuredthereflectanceofUO2upto2200Kasafunctionofwavelength.Inthevisibleregion,theemissivity'increasedfrom0.86to0.94between300and1600K.Atlongerwavelengths,theeffectoftemperatureonemissivitywasevenless,andthevalueapproached1.0ata20pmwavelength.ThisincreaseinemissivitvwithtemperatureconflictswiththedataofClaudson-anofEhlextandMar-grave(>),andasourceoferrorinthetechniqueemployedintheearlierworkisdiscussedbyCabannes,et.al.Intheiropinion,thelowluminanceoftungsteninthetemperaturexangeoftheearlierinvestigationsisanimportantsourceoferrorandcaneasilyleadtothediscrepancyobservedbetweentheirdataandthedataofClaudsonandofEhlertandMargrave.Themostrecentdete~nationofemissivityofU02wasdonebyHeldand-"Wilder(reference19),Hemisphericalspectralemit-tanceofU02pelletswasdeterminedinthecompositionrangeofU0195toU0229,inthedensityrangeof73to97%TDandinthetemperaturerangeof450to2480K.Theemittancewashighinallcasesandrangedfromabout0.7to0.95.Nodecreasein"emittance'wasobservedwithin-creasingtemperature;instead,itincreasedslightly.Theseauthorsalsoreviewedtheearlierdataandbasedonmechanisticconsiderationsoffered.rationalefortherelativeinsensitivityofemittancewithtemperatureasobservedinthemorerecentinvestigations.CgAreviewofthemorerecentsourcesofemissivitydatadescribedabovethusshowsthe'alues'of0.82to0.86at300K(reference17andl)8>0;86to0.94between300and1600K(mference18)'ndarandomscatterofvaluesbetween0.70and0.95(reference19)~.forvarioustemperatures(450,1000,and1800-2550K),den-sitiesand0/U-ratios.Nodefinitivetrend,therefore,isnoticedwith,variationsintemperature,density,0/Uratioorsurfacefinish.Basedontheseconsiderations,avalueof0.85isusedforthethermalemissivityofU02pelletsoverthetemperaturerangeofintexestof800to2600K.'.el
'
SL2"FSARd)SpecificHeatofUO2ThespecificheatofU02jy0)escribedbythefollowingtempera-turedependentequations.T~2240'F/0C~4967+2.2784x10T-P(T+460)Tz2240F-42-83C-126.07+0.262T-1.399x10T+3.1786x10TP'-2.48x10Twhere:C~specificheat,BTU/ft-F3PT~temperature,FllechanicalPropertiesYoung'sModulusofElasticityThestaticmodulusofelasticityofunirradiatedfuelof97pe~~~nt"1TDanddeformedunderastrainrateof0.097hrxsgivenbyE~14.22(1.6715x10-924.4T)where;E~modulusofelasticityinpsi,T~temperatureinCinthe'angeof1000to1700C.b)Poisson'sRatioThePoisson'sRatioofpolycrystallineU02hasavalueof0.32at25.CbasedonReference66.Thesamereferencenotesa10percentdecreaseinvalueovertherangeof25to1800C.Assumingthedecreaseislinear,thetemperaturedependenceofthePoisson'sRatioisgivenbyv~0.32<<1.8x10(T"25)where;v~Poisson'sRatioT~temperatureinCintherangeof25to1800C.Attemperatureabove1800Caconstantvalueof0.29isusedforPoisson'sRatio.
- ~-
BurnablePoisonRodCladdingPropertiesCladdingtubesforburnablepoisonrodsarepurchasedunderthespecifica-tionforfuelrodcladdingtubes.Therefore,themechanical,metallurgi-cal,chemical,anddimensionalpropertiesofthecladdingareasdiscussedinSubsection~tbSb.p.5pe)03D4CUurnablePoisonPelletPropertiesThe~l)0304CburnablepoisonpelletsusedinCEdesignedreactorsconsistofarelativelysmallvolumefractionoffineB4Cparticlesdis-SL2FSARpersedinacontinuousAl03matrix.TheboronI'oadingisvariedby23.adjustingtheBC'oncentrationin'therangefrom0.7to4.0vtX(1to6.0v/o).ThebulkdensityoftheA120-b3Cpelletsisspecifiedtobegreaterthan93pezcentofthecalcu)atedtheoreticaldensity.Typicalpelletshaveabulkdensityofabout95percentoftheoretical.Hanyprop-ertiesofthetwo-phaseA1203'-BCmixture,suchasthermalexpansion,thezmalconductivity,andspecificheatareverysimilartothepropertiesoftheA1203majorconstituent.Incontract,propertiessuchasswel-)ingheliumrelease,meltingpoint,andcorrosionaredependentonthepresenceofBC.Theoperatingcenterlinetemperatureofburnablepoisonislessthanf150F,vithmaximumpelletsurfacetemperaturescloseto1090F.Thermal-PhysicalPropertiesa)ThermalExpansionThei~~~~nthermalexpansioncoeff1c1entsofA1203and6(24').(0B40from0to1850Fare4.9and2.5in./xn.Fx10respectively.ThethermalexpansionoftheA120-bCtvo-23.phasemixturecanbeconsideredtobeessentially'tiesameasthevalueforthecontinuousA1203matrixsincethedispersedB4Cphasehasaloverexpansioncoefficientandoccupiesonly5v/ooftheavailable'volume.The.lowtemperature(8Gto250F)thermalexpansioncoefficientotA120>irradiatedat480,tIl[iand1300Fdoesnotchangeasaresultofirradiation.The.expensionofasimilarmaterial,berylliumoxide,uptol900P)q~alsobeenreportedtoberelativelyunchangedbyirradiation.ItisthereforeapIrr~~riatetousethevaluesofthermalexpansionmeasuredforA1203fortheburnablepoisonpellets:2TemperatureRange(Ffrom70Fto)LinearExpansion(Z)40060080010000.120.230.300.40b)heltingPoint'ThemeltingpointsofA1203(3710F)andB4C(4400F)(28)(29)arehighertlianthemeltingpointoftheZz-4cladding.NoB4Cburnsup,thelithiumatomsformedoccupyinterstitialsitesrandomlydistributedyj)hintheBClattice,ratherthanformingalithiumrichphase.ThesolisolutionoflithiuminBCshouldnotappreciablyinfluencethemeltingpointoftheAl63-B<CPell<<spasonlyasmallquantityoflithiumcompounds(0.)wtd')formsduringirraaiation..ItisconcludedthatthemeltingpointofA1203B40wi1Iremainconsiderablyabovethemaximum.1I50Foperatingtemperature.
SL2"FSARc)ThermalConductivityThethermalconductivity.ofAl0-B4Cwascalculatedfromthemeasuredval~g~)forAl03and4usingtheMaxwell-Euckenrelationshipforacontinuousmatrixphase(A1203)with23sphericaldispersedphase(BC)particles.Becauseofthehigh4'Al0contentofthesemixturesandthesimilarityinthermalconductivity,theresultantvaluesforA120-B4Cwereessen-23tial)ythesaneasthevaluesforA1203.emeasured,unirradiated'aluesofthermalconductivityat750Pare0.06cal/s-cm-kforBCand0.05cal/s-cm-kforAl03.4..23ThethermalconductivityofAl0afierirradiationdecreasesrapidlyasafunctio~~fburnup)ovaluesofaboutone-thirdtheunirradiatedvalues.2TheirradiatedvaluesofA1203-BCcalculatedfromtheaboverelationshipsaregivenbelowas4afunctionoftemperatures..Temperature(F)ThermalConductivity(cal/s-cm"k)40060080010000.0150.0130.0100.008d).SpecificHeatThespecificheatoftheA120-BCmixturecanbetakentobeessentiallythesameaspur~ellt%>sincetheconcentrationcfB4Cislow(6.0v/omaximum).lnaddition,theeffectofirradia-tiononspecificheatisexpectedtobesmallbasedonexperimentalevidencefromsimilarmaterialswhichdonotsustaintransmutationsasafunctionofneutronexposure.$g~564lPE.~"~(&)(M)ThevaluesforA1203measuredonunirradiatedsamples~aregivenbelow;Temperature(p)~cal/m-P2504508001000andabove0.120.130.140.15IrradiationPropertiesa)SwellingA120-'BCconsistsofB4Cparticlesdispersedinacontinu-ous16>matrix,whichoccupiesmorethan95percentofthepoisonpellet.TheswellingofA120-B4CdependsprimarilyupontheneutronfluenceonthecontinuousA1203matrixand, C>>)(~~)Thepropertiesofspecificheatandthermalexpansionarecloslyrelatedastheybothincreasewithtemperature(atexpectedopera.igmperatures,<1000F)primarilyduetoincreasesinlatticevibrations.Thatis,changesinspecificheatwithtemperaturenavebeenshowntobeprimarilyduetothesamephysicalprocessesaschangesinthermalexpansionwithmaterial'ssuchasAl0>andBeO.Theconclusionthattheeffectofir-radiationonthespecificheatofAl03-BCissmallisbasedonmeasure-2.q.234mentswhicQ~howthatthespecificheat.ozBeOdoesnotchangewithir-raiation"'~andmeasuremetsthatshowthethermalexpansioncoefficientofAl0.doesnotcnangeduetoirradiation.SincemeasurementsofthethermalexpansioncoefficientofirradiatedA1203haveshownnochangedue23toirradiationandsincespecificheatandthermalexpansionarebothde-pendentuponlatticevibrations,itisexpectedthatspecificheatisalso"notsignificantlyaffectedbyirradiation.ThespecificheatoftheAl0-B'mixture,canbetakentobeessentiallythesameasAl0sincetheconcentrationofB4Cisamaximumof3.7w/o234BC,andthespecificheatofBCatoperatingtemperatureisclosetothe23.4valueofA1203.TheDebyetemperatureofAl0determinedbymeasurementisabout904K.ThereisnoeffectoftheBCparticlesintheAl0matrixontheDebye234~temperature.
SL2-FSARsecondarily,ontheBburnupofthedx.spersedB<Cphase~10Recentmeasurementsperformedonmaterialc~IItainxngabouttwowtXBCirradiatedina~EPMR.to100percentBburnupatafluenceof2.4x10nvt(E&0.8MeV)revealedadiametralswel-lingofaboutonepercent.PelletssimilartotheburnablepoisonusedinCEreactorswithuptothreewt4BCals~p~stainedabout100percentBburnup.ExperimentadataonA120310~f3revealadiametralswellingofabout0.7percentatafluenceof2.4x10nvt(E~O.&MeV).SwellingofA120increases21linearlygathfluencetol.&percentdiametralafteranexposureof6x10nvt(Ei0.8MeV).ThesedatashowthatA120-BCswellssomewha(lmorethanAl0uptoaburnupof)l@$4C(about2x10nvt,E$0.8Me+VTheCEdesignvalueofA1203-B4Cswellingrateforfluenceslessthan2x102jsgreaterthantheswellingrateofA1203,whileafter2x10fluencetheswellingrateforA1203B4CisconsideredequaltothatofA1203.Thedataandconsiderationspresentedaboveresu/[inbestestimatediametralswellingvaluesatendoflife(7x10nvt,E>0.8MeV)ofabouttwopercentforA1203andfromtwotothreeper-centforA1203-B4Cloading.HeliumReleaseExperimentalmeasurementsrevealthatlessthanfi~epercentoftheheliumformedduringirradiationwillbereleased.ThesemeasurementswereperformedonA1203-B4Cpelletsirradiatedattemperaturesto500Fand,subsequently,annealedat1000Fforfivedays.Theheliumrelease.inaburnablepoisonrodwhichoperatedforonecycleinaCEPMRwascalculatedfrominternalpressuremeasurementstobelessthanfivepercent.Thedesignisbasedonareleaseofthreeto15percentoftheheliumgenerated.Thedesignoftheburnablepoisonrodwillnotbelimitedbyheliumpressuredespitetheconservativeuseof15percentrelease.ChemicalPropertiesA1203-B4CCoolantReactionShouldirradiatedB4Cparticlesbeexposedtoreactorcoolant,theprimarycorrosionproductsthatwouldbeformedareboric'cid(whichissolubleinwater),hydrogen,freecarbonandasmallamountoflithiumcompounds.Thepresenceoftheseproductsinthereactorcoolantwouldnotbedetrimentaltotheoperationoftheplant.ObservationsofAl03/B4Cpoisonshimshaverevealedthatlongtermexposureoft"isma4terialtoreactorcoolantcanresult,ingradualleakingoutofBoronandeventualerodingawayofthe03matrix.However,therateofreactionissuchthatany23
.SL2-FSARresultantchangesinreactivityareverygradual.ChemicalCapabilityChemicalcompatibilitybetweentheAlp384CpelletsburnablepoisonrodcladdingduringlongtermnormaloperationhasbeendemonstratedbyexaminationofaburnablepoisonrodfromtheMaineXankeereactor.Therodhadbeenexposedtoanaxialaveragefluenceinexcessof2x10nvt()0.821Hev).NoevidenceofachemicalreactionwasobservedonthecladdingI.D.Shorttermchemical-compatibilityduringupsetandemergencycondi-tionsisdemonstratedbythefactthatconditionsfavorabletoachemicalreactionbetweenZr-4andA1203arenotpresentattemperaturesbelow1300F.ThistemperatureishigherthanthatwhichwilloccuratburnablepoisonpelletsurfacesduringCon-ditionIIandIIIoccurrences(Subsection4.2.1PThereactiontweenZr-4andA1203describedbyIdahoNuclear.wasob-(37)'servedtooccurrapidlyonlyattemperaturesinexcessof2500F,wellabovethepeakZr-4temperaturesexpected.I'
1Thermal-PhysicalProertiesofAbsorberMaterialTheprimarycontrolrodabsorbermaterialsconsistofboroncarbidepellets(gC)andsilverindiumcadmiumbars(Ag-In-Cd).InconelAlloy625isalsousedasaweakabsorber.overaportionofthepart-lengthrods.Refer)0toFigures4.2-3,4.2-4,and4.2-'5forthespecificapplicationandorien-ftheabsorbermaterials.Thesignificantthermalandphysicalpropertiesusedinmechanicalanalysisoftheabsorbermater@asareiseinTable4.2-2.1 CompatibilitofAbsorberandCladdinMaterialsThecladdingmaterialusedforthecontrolelementsisInconelAlloy625.Theselectionofthismaterialforuseascladding.isbasedonconsidera-tionofstrength,creepresistance,corrosionresistanceanddimensionalstabilityunderirradiationandalsoupontheacceptableperformanceofthismaterialforthisapplicationinotherCEreactorscurrentlyinoperation.a)B4C/Incone1625CompatibilityStudieshavebeenconductedbyHEDLonthecompatibilityofType316stainlesssteelwithB4C,underirradiationforthousandsofhoursattemperaturesbetween1300and1600F.Carbideformationtoadepthofabout0.004inchinthe316stainlesssteelwasmeasuredafter4400hoursat1300F.Similarcompoundformationdepthswereobservedafterex-reactorbenchtesting.Aftertestingat1000F,only0.001in./yrofpenetrationwasmeasured.SinceIn-conel625ismoreresistanttocarbideformationthan316stainlesssteel,andtheexpectedpellet/cladinterfacialtemperatureinthestandarddesignisbelow800F,itisconcludedthat94Ciscom-patiblewithInconel625.CladdingStress-StrainLimitsThestresslimitsfortheInconelAlloy625claddingareasfollows:DesignConditionsIandII(NonOperation,NormalOperation,andUpsetConditions)CSmmP+Pbd-FSmbsmDesignConditionsIII(EmergencyConditions)Pc1~5SP+P15FSmb'mDesign.ConditionsIV(FaultedConditions)pm-mP+P(FSgmb-smwhereSisthesmallerof2.4Sor0.7SImmuFordefinitionofp,Pb,S,S',S,andF,seeSubsection4.2.1.1(ltfPor.thelnconel62562Acladding,thevalueof5istwo-mthirdsoftneminimumspecifiedyieldstrengthattemperature.ForInconel625,thespecifiedminimumyieldstrengthis65,000lb/in.at650F,4.2-25 0
F~hp/MywhereHpisthebendingmomentrequiredtoproduceafullyplasticsectionandHyisthebendingmomentwhichfirstproducesyieldingattheextremefibersofthecrosssection.ThecapabilityofcrosssectionsloadedinbendingtosustainmomentsconsiderablyinexcessofthatrequiredtoyieldtheoutermostfiberisdiscussedinReferencel.FortheCEAcladdingdimensions,F~1.33.ThestrainlimitsforthecladdingarelimitedtovalueswhichwillpermittheCEAstotripwithintheallowabletime.4.2-26
.
SL2"FSARThevaluesofuniformandtotalelongationofInconelAlloy625claddingareestimatedtobeasfollovs:Fluence(E>'1Mev),nvt1x10223x1022Uniformelongation,X31Totalelongation,X'63IrradiationBehaviorofAbsorberMaterialsa)BoronCarbideProperti.es1).Swelling:ThelinearswellingofB4Cincreaseswithburnupaccordingtotherelationship:XhL~(0.1)BBurnup,a/o10Thisrelationshipvasobtainedfrom~rgrimentalirradiationsonhighdensity(>90percentTD)wafersandfy~)lg~)withden-sitiesrangingbetween71and98percentTD.Dimensionalchangesveremeasuredasafunctionofburnup,afterirradiatingattemperatureexpectedinthedesign.2)ThermalConductivity:Thethermalconductivityofunirradiated73percentdenseBCdecreaseslinearlyvithtemperaturesfrom4300to1600F,accordingtotherelationship:A~1cal/cm-K-s2.176.07+~T)0.0l'7Thisrelationshipvasobtainedfrommeasurementsperformedonpelletsrangingfrom70to98percentTD.TharelationshipBetweenthethermalconductivityofirradiated73percentTDB0pelletsan[~mperaturegivenBelowwasderivedfrommeasuredvalueson))jgherdensitypellets'rradiatedtofluencesoutto3x10nvt(E)1MeV).gg1cal/cm-K-s2.17(38+.T)Q0>5whereTtemperature,K3)Thermalconductivitymeasurementsof17BCspecimenswithdensitiesrangingfrom83to98percentT5,irradiatedattem-peraturesfrom930to1600Fshowedthatthermalconductivitydecreasedsignificantlyafterirradiation.Therate'fdecreaseishighattheloverirradiationtemperatures,butsaturatesrapidlyvithexposure.HeliumRelease:HeliumisformedinBCasBburnuppro-104gresses.Thefractionofheliumreleasedfromthepelletsisimportantfordeterminingrodinternalgas"pressure.There-lationshipbetweenheliumreleaseandirradiationtemperature'.2-27 SL2-FSARgivenbelowwasdevelopedatORHLtofitexperimentaldata(42)obtainedfromthermalreactorirradiations.XHerelease~(C"185D)RTeewheresC~Constant,6.69forpelletsD~Fractionaldensity,0.73forCEpelletsg~Activationenergycontant,3600cal/moleR~Gasconstant,1.98cal/moleKT~Pellettemperature,K'hisexpressionbecomes-18202Herelease.208e2+54)whentheaboveparametersaresubstituted.Inthisform,'designvaluesforheliumreleaseasafunctionoftemperaturearegen-erated.'hefivepercentheliumreleaseallowance(thelasttermintheexpression)wasaddedtoensurethatdesignvalueslieaboveallreportedheliumrel,easedata.Calculatedvaluesofheliumreleaseobtainedfromtherecomftgfe+fsjgexpressionlieaboveallexperimentaldatapointsobtainedonB4Cpelletspecimensirradiatedinthermalreactors.PelletPorosity:Experimentalevidenceisavailablewhich(45)showsthatforpelletdensitiesbelow90percent,essentiallyallporosityisopenatbeginningoflife.Irradiationinducedswellingdoesnotchangethecharacteristicsoftheporosity,,butonlychangesthebulkvolumeofthespecimens.Therefore,theamountofporosityavailableatendoflifeisthesameasthatpresentatbeginningoflife.b)Inconel6251)Swelling:AvailableinformationindicatesthatInconel625ishighlyresistanttorafjationswelling.ExposureofInconel625toafluenceof3x10nvt(E)0.1Mev)atatemperatureof'4000IjPF)shovednovisiblecavitiesinmetalloBraphicexamina-tionssothatswelling,ifany,wouldbeveryminor.DirectmeasureggntsmadeafterexposureofInconel625toafluence5x10nvtQ>0.1Mev)asLMFBRconditions~(owednoevidenceofswelling.Furtherexposureto6to10nvt(E>0.1MeV)at500C(932F)showedessentiallynoswellingasmeasuredbyimmersiondensity,butdidshowsmallcavities.Thus,Inconel625afterfluencesof3x10nvt(E01Mev)isnotexpectedtoswell.2)Ductility:TheductilityofInconel625decreasesafterirradia-tion.ExtrapolationoflowerfluencedataonInconel625and500indicatesthatthevaluesofuniformandtotalelongationof4.2-28 SL2-FSARInconel625after1x10nvt(E'P1Mev)arethreeandsix22percent,respectively.3)Strength:ThevalueofyieldstrengthofInconel625increasesafterirradiationinthemannertypicalformetals.However,nocreditistakenforincreasesinyieldstrengthinthedesignanalysesabovethevalueinitiallyspecified.c)Silver-Indium-CadmiumProperties1)Swelling.'MeasurementsperformedonAg-In"Cdrods'irradiatedatfluencesupto6.2x10nvt(EP06Mev)wereemployedto2developthefollowingexpressiontopredictthevolumetricswell-ingforsilver"indium-cadmiumalloy:~VX~034121where4~fluence,nvt(E>0.6Mev).Linearswellingisapproximatelyonethirdofthevolumetricswelling.2)TnermalConductivity:Theincreaseincadmiumcontentfromfivetoperhaps10wtpercent,andtheformationoftwotothreewt.percenttinaresultoflongtermexposures,isegg~tedtode-creasethethermalconductivityfromtheacceptedunirradi"atedvalues.PublisheddataforunirradiatedAg"Cdbinaryalloysshowsthatthermalconductivity.wasdecreasedbyabout20p~~~~ntbyincreasingthecadmiumcontentfrom5.010.0wtpercent.SinceirradiatedAg-In-Cdisexpectedtoperforminmuchthesamefashion,similarlytheunirradiatedvaluesofthermalconduc-tivityaredecreasedby25percenttoaccountforirradiation.3)LinearThermalExpansion:Thecoefficientoflinearthermalex-panaionforonirradiatedAg-In-Cdnateria1tpj2.5x10in/in.Foverthetemp(g~)urerangeof70to930F.Publisheddata7onunirradiatedAg-Cdbinaryalloysrevealthatacadmiumin-creaseoffivepercentwillresultinaboutafivepercentin-creaseinthermalexpansioncoefficient.Thesmallchangesinindiumandtincontentdonotinfluencethethermalexpansioncoefficien)appreciably.Forsimplicity,irradiatedvaluesof1'3.1x10jn./in.-Fisusedinalldesigncalculations.4)MeltingPoint:Themeltingpong)ofunirradiatedAg-In-Cdhasbeenmeasuredas1470F+30F(800C+17C).Theformation)ofthreewtpercenttinduetothetransmutationofindiumandtheincreaseincadmiumcontenttoabout10wtpercenttothetransmutationofsilvermayresultinasmalldecreaseinthemeltingpoint.4,2-29
FuelBurnupExperienceTheCEfuelroddesignis.basedonanextensiveexperimntaldatabaseandbyanextensionofexperimentalknowledgethroughdesignapplicationofCEfuelrodevaluationcodes.TheexperimntaldatabaseincludesdatafromCEorCE/Kraft'kUnion(KWU)jointirradiationexperiments,fromCEandU~Uoperatingcommercialplantperformanceandfrommanybasicexperi-mentsconductedinvariousresearchreactorswhichareavailableintheopenliterature.Eachoftheseinformationsourceswillbediscussedbelow.EvidencecurrentlyavailableindicatesthatZircaloyandUO~fuelperformanceissatisfactorytoexposuresinexcessof55,000Mwd/Mtu2.a)PublicInformationGeneralfuelperformanceinformationavailableinthe.openliter-aturehasprovidedpartoftheCEfuelroddesigndatabase.Particularexperimentsthathavebeensitedinthepast-skeyreferences,theyinclude:1)DeterminationoftheeffectoffuelcladdinggaponthelinearheatratingtomeltingofU02fuelrods,conductedintheWestinghousetestreactor.2)ShippingportIrradiat'ionExperience3)SaxtonIrradiationExperience4)CombinedVallecitosBoilingltaterReactor(VBWR)DresdenIrradiation.5)LargeSeedBlanketReactor(LSBR)RodExperience6)JointU.S.-EuratomResearchandDevelopmentProgramtoevaluatecentralfuelmeltingintheConsuiacrsPowerCo.BigRockPointReactor.Sincetheinformationfromtheseprograzisisavailableintheopenliterature,theywillnotbedescribedhere.However,detailsastothesignificaiiceoftheresultstoCEfuelburnupexperiencearepresentedinReference59.b)CE/KWUTechnicalExchangeCEenteredintoatechnicalagreementwithKWUb..ginn'ngin1972forthecompleteexchangofinformationandtechnoloiyrelatinptopressurizedwaterreactorsyste..sincludingfuel.'lliisagreementmakesavailablctoCEthetotalexperienceof10yearssuccessful8108100005'
'4 v~~~*KCMSkP.operationofcommercialPWR-fuelinsystems,designedandfabricatedgabyKMUandismostadvancedofitstypeintheworld.Anessentialpartofthisbroddbasedexchangeinvolvesjointsponsorshipofnumerousfueltestingprograms.OperatingFuelExperienceCEandKMUhavefabricatedapproximately750,000Zircaloycladfuelrodsbothinternallypressurizedandunpressurizedoverthelast10years.,Ofthistotal460,000rodsremaininoperation(220,000CErods)withaverageburnupsinexcessof36,000Hwd/Mtu.Theremaining290,000rodshavebeendischargedwithaverageburnupsto36,000Bwd/5ftu.Overallperformanceofthisfuelhasbeenexcel-lent.Thefuelrodreliabilitylevel,estimatedfromcoolantactiv-itiesis)99.98percent.Thishighreliabilityleveliscontinual"lyvalidatedbyextensivepoolsidefuelinspecti'onprogramsconduct-edbybothCEandKWUatreactorsitesduringrefuelingshutdowns.FuelIrradiationProgramsCEisinvolvedindiversifiedfuelirradiationtestprogramstoconfirmtheadequacyoftheCEfuelroddesignbasesandmodelsbyexperimentalmeans.Someoftheseprogramsinvolvesafetyrelatedresearchwhileotherprogramsprovideconfirmatorydataonper-formancecapabilityorevaluatedesignandfaoricationvariablesormethodswhichmayimproveandextendourcurrentknowledgeoffuelrodperfonnance.hanyoftheprogramsinvolvedjointCE/VJiUspon-sorshipp.Someofthekeyfuelperformanceevaluationprogramsthatwillbesummarizedbelowinclude:FueldensificationexperimentsattheBattelleResearchReactor(BRR)JointCE/K4UfueldensificationexperimentsincludingtestsintheHZFR,reactoratKarlsruhe,VestGermany,andtheEEIexperimentsintheGeneralElect'ricTestReactor(GETR).DirectparticipationintheHaldcnProjectinNorwaywithaccesstoallHaldenbaseprogramfueltestdata.Irradiationofspecialinstrumentedfuelrodstoobtain.dynamicin-reactormeasurementsinHaldenexperimentalrigs.Ramptestprogramsonfuelrodstoevaluatefuelload-followcapa-bilitiesandthepelletcladinteraction/stresscorrosionpheno-menoninboththeStudsvikandPettentestreactors.Otherin-reactorexperimentshavebeenconductedintheObrigheimpres"urizedwaterrector.IrradiationofspecialtestandurveillanceassembliesinoperatingCEreactors.
CEFuelDensificationExperiments~~~CEhasconductedseveralexperimentswhichprovideddataonthexn-reactorden"ificationbehaviorofvariousUO2fueltypes.TheseincludetheBRR,EEI,andHZFRdensificationexperiments,asdis-cussedbelow.BRRFuel-DensificationExperimentTheobjectofthisprogramwastoexaminetheinpiledensificationbehaviorofvariousfueltypesandmicrostructuresfabricatedwithandwithoutporeformers..The.nonporeformerfueltypeshadinitial,densitiesof93percentto94percenttheoreticalwithagrainsizeoflessthan6micron"withalargefractionofporeslessthan4micronsin:diameter.Theporeformerfueltypeshadiniti"1densitiesof93percentto95percentandwerecharacterizedbyacombinationoflargegrainsizeand/orlargepore"ize.Fuelpelletsofeachexperi-entaltypewereirradiatedinsixBRRcap-sulesatlinearheatrating"between2.8and4.6kw/ftforperiodofupto1500hours.Post-irradiationexaminationoftheBRRre-sultsshowedsignificantdifferencesinthedensificationbehaviorbetweenporeformerandnon-poreformerfuel.'1'heporeformerfuelshowedlittlechangeindensity(highstability)whilethenon"poreformerfueldensifiedrapidly.Atrendtowardsincreaseddensifica-tionwithlowerinitialdensitywasapparentinthenon"poreformerfuel.ItwasconcludedthattheUO2microst-uctureplayedadominant"roleinthekineticsande2xtentofinrdactordensifica-tion.Consequently,fuelexh'bitingthedesirablemicrostructuralfeatures'toreduceinreactordensification(i.e.,largefractionoftheporevolumeinthelargeporesizerange)becamepartof'hestandardCEfueldesign.gCE/KWUFuelDensificationExperiment(HZFR)Asafol)ow-ontotheCEexperimentintheBRR,ajointCE/KWUprog'ramhasbeenconductedintheGermanl)ZFRtoevaluatetheper-formanceofseveralnon-densifyingfuelypesathigherpowerlevelsforlongertimesandtohigherburnups.Sixteenfulllengthfuelrodseachcontainingadifferentfueltypewereirr'adiatedatpowersupto11kw/ftforburnupsupto4000Hwd/Mtu.IncludedintheserodsareU02andUO-PuOfuelsmostofwhichwasfabricatedusingtechniquesin3ende3tominimizeden-sification.SixrodsemployedCEfabricatedUOfuels,fiveofwhichincludedporeformeradditivesandonefaBricatedwithoutaporeformertoserve,asareferencablecontrolsample.EightrodswerefabricatedusingKVUexperimentalfuelrepresentingawiderangeofsinteringtimesandtemperatures,initialdensitiesandenrichments.TheremainingtworodswerefabricatedusingUO~-puOfuelsoftwodifferentdensities,withaudwithoutaporGform2eradditive.Eachofthefuelpellettypesandfuelrod"wasextensivelycharacteri"cdpriortotestingtopermitcociparisonwithsimilarpostirradiationmeasurcmcnts.
Theresultsofthepostirradiationexaminationshowedthatfueltypesfabricated'withporeformers(similartocurrentproductionfuel).experiencedsignificantlylessinpiledensificationcomparedtotliosefabricatedwithoutporeformers.Thedataalsosupportuseofastandardizedoutofpileresintering'estdevelopedbyCEtocharacterizeexpectedinpiledensificationatthetimeoffabrica-tion.ThissimulationtesthasbeensubmittedtotheNRCandapprovedforusebyCEinLOCAcalculations.EEIFuel,DensificationExperimentTheprimeobjectiveoftheEEIFuelIrradiationTestProgramcon-ductedintheGeneralElectricTestReactor(GETR)wastoisolateandcharacterizetheinreactordensificationbehaviorofporeformer,(orstable)fueltypes.CEandKilUwereamongelevenparti-cipantsintheprogram.ThisprogramentitledCEtoobtaindensificationdataonninebaseprogramfuelpellettypeswithvaryingmicrostructures.Anaddi-tionalfourfueltypeswerefabricatedbyCEandKbU.Thesein-cludedCEfueltypes,twowithandonewithoutaporeformeraddi-tiveandaKMUstandardproductionfuel.Thepelletsintheprogramwerewellcharacterizedpriortoirradiation.Fourofthefueltypeswereirradiatedinonepressurized(53atmospheres)capsule.Twoofthefueltypeswerealsoirradatedinaseparatenon-pressurizedcapsule(oneatmosphere).Eachofthecapsulescon-tainedtherŽocoplestocontinuouslymonitorcapsulepowergenera"tionduringirradiationtoassurethatthedesiredoperatingcon-ditions-weremaintained.Postirradiationexaminationofthesetestcapsulesconfira:edthatUO2fuelwithspecificrangesofmicrostrictural-characteristics,suchasproducedbyporeformeradditives;arestablewithrespecttodensification.Thelargestinreactoidensitychangesoccurredforthosetypeshavingacombi-nationofthesmallestporesize,thelargestvolumepercentofporositylessthanfourmicronsigthesmallestinitialgrainsizeandtl>elowestinitialdensity.BaldenPiogramParticipationTheexperimentalfacilitiesandprogramsoftheOECD11aldenReactorProjectinNorwayrepresentoneofthemostadvancedeffortsinquantifyingtheeffectsandinteractionofthevariousdesignparametersofZircaloycladfuelrodsthroughmeasurementsmadeinreactor.CEhasbeenamemberoftheProjectsince1973.CEreviewsthedatageneratedbytheprojectinconsiderabledetailandutilizestheresultsinvariousfueldevelopmentprograms.The11aldentestreactorhasuniquecapabilityformeasuringfuelrodoperationduringirradiation.ThiscapabilityhasbeenutilizedbyCEwithspecificexperimentstoprovideinformationinthefollow-ingareas:
Fueldnsificationphenomenonincludingmeasurementsoftherateof'fuelcolumnshorteningasafunctionoftheinitialfueldensity,power'evelandfuelfabricationprocess.Fuelcladmechanicalinteractioninvolvingstudiesoftheeffectsofpelletdesign(shapeanddensity)andoperatingparametersonclad-dingdeformation.Modelingo'ffuelrodbehaVior,withemphasis.onheattransferchar-acteristics.Thefir'stthreetestassembliessponsoredjointlybyCEandKWVcontained24well-characterizedfuel'ods.Theseassembliesin-cludedthefollowingrangeofdesignandoperatingparameters:Heliumfillpressuresfrom22to35atmospheres.Initial"fueldensitiesfrom91-96percentTD.Linearheatratingsto15kw/ft.Uenrichmentsfromsixto12percent;ninerods.fabricatedwithmaxed-oxidefuel.235Theobjectivesofthesetestsweretodeterminethe'dynamicchangesinfuelrodinternalpresure,fuelcenterlinetemperatureandfuelstacklengthduringoperationasafunctionofburnup.Twooftheseassemblies(sixtest'odseach)wer'edischargedfromthereactorafterreceivingapeakburnupof~24,000Mwd/Mtu.Thethirdrig(12rods)willbeevaluatedtoburnup"intherangeof35,000-40,000Mwd/Mtu.'heobjectivesofafourthsix-rodtestassemblywereto'valuatetheffectsofsuchdesignvariablesaspel)et-cladgap,fill-gas'composition,andlinearheatrating(to15kw/ft)onheattransfercharacteristics.Thisexperimentalsoprovidedgapcon-ductan'ce'dataonV02andmixed-oxidefuel.Thistestwasdis-chargedf"'.cmtnereactorafterreachingapeakburnupof4000Mwd/Mtu.Instrumentationusedtomeasurefuelbehaviorduringirradiationin-cludescenterlinethermocouples,internalpressuretransducers,linearvariabledifferentialtransformers(LVDTs)forfuelcolumnlengthchangesandfluxmonitorsforaxialandradialpowerpro-files.liotcellexaminationofthethreedischargedtestassembliesisinprogress.FuelcolumnlengthchangedataobtainedsupportsdatageneratedbytheEEI,BRR,andMZFRexperimentsandconfirmstheinreactorstabilityofCEporeformerfueltypes.Inaddition,theintern"1pressuremonitorsandcenterlinethermocoupledatahaveconfirmedtheadequacyoftheCEthermalperformancedesignmodels.
Inaddition,totheseCE/K)lUtestassemblies,CEhasdesignedandirradiatedthreerodsintheHaldenhightemperature,highpressurelooptosimulatePHRcoolanttemperatureandpressureconditions.Irradiationofthethirdrodisstillinprogresstoanexpectedburnupatdischargeofapproximately4000L)wd/Htu,Thepurposeoftheseexperimentsistodistinguishtheeffectsofpelletconfigura-tionontheformationofcircumferentialridgingandontheelonga-tionoftherods.Eachrodcontainedthreepellettypeswithonetypeasastandard.ThisprogramincombinationwiththeresultsofotherexperimentsgivesCEafirmbasisuponwhichtooptimizefuelroddesignwithrespecttodimensionalchangesandtoimprovefuelperformancemodelsdevelopedtopredictroddimensionalstability.PowerRampProgramsCEandEMUareparticipatingintheStudsvikandPathfinder/Pettenprograms"toevaluatefuelrodperformanceunderrampconditionstopowerlevelsnotrecentlyattained.Thesecanoccureither'fterrefuelingorafterextendedperiodsoflowpoweroperationorduringcontrolrodmaneuvers.Theeffectsofvariousfuelroddesignvariablesonpowerramplimitsisalsoinvestigatedasameanstofurtheroptimizedesign.ThePetten/Pathfinderprogramwhichbeganin1973isbeingconductedjointlybyCEand)"v'UintheObrigheimP1vRreactorandPettentestreactorfacilities.Onespecialtestassemblyhasbeenirradiatedeachyearsince1973intheObrigheimreactor.Includedinthisas"embly,whichisdesignedtofacilitatefuelrod-removalandreplacement,arewell-characterizedsegmentedrodsor"rodlets"whichareaxiallyconnectedtoformacompletefuelrod.Theserodletsae"preirradiated"intheObrigheimreactorforone,two,orthreeoperatingcycles,andthenseparatedandirradiatedin.atest,reactortoevaluateperformanceunderrampconditions.Todate,approximately500rcdletshavebeenirradiatedinObrigheim.FortythreeoftheserodletshavebeendischargedandrampedinPetten.Anadditional24rodletsarebeingsuppliedtotheStudsvikOverrampprojectforrcmptestingintheR-2reactor,atStudsvik.RamptestsoneightoftheseroclctshavethusfarbeencompletedatStudsvik.Post-irradiation,hotcellexaminationpro-gramsformanintegralpartofboththePetten/PathfinderandStuds-vikexperimentstocharacterizefuelrodbehavior,particularlywithrespecttodimensionalstabilityandfissionproductrelease.Thesetestprogramsaredesignedtodistinguishbetweenfuelrodpowerrampswhichoccuronstart-upandthosewhichmightoccurduringreactorpowermaneuveringoperations.Operatingflexibilityofaplantrequiresthatthefuelrodsmain-tain~integrityduringperiodicchangesinpower.PowercyclingtestsofthistypehavebeenjointlyconductedbyCE/A'UinObrigheimandPetten.InthePettentest,asingleunprcssurizedfuelrodwaspowercycledbetweenninekw/ftand17kw/ftatapowerchangerateofaboutthreekw/ft/min.Thefuelrodsuccessful)ycompleted400cyclesandachievedaburnupof8000)lwd/iltu.PowelcyclingtestswerethenconductedinObrigheimonei,,htshort pressurizedandunpressurizcdfuelrods.Thetestfuelrodswercattachedtoacontrolroddrivemechanismanddrivenfromthelowpowertoahighpowerpositiononanominalcycle.Powerchangesfrom50percentto100percentatratesof20percentperminuteforBBOcycleswereincluded.Aftersuccessfullycompletingtheexperiment,thetestrodsachievedapeakburnvpof,30,000Mwd/Mtuwithoutsubstantialcladdingdeformationorfuelrodperforation.k)Fu'elSurveillanceProgramsCEhasconducted'numberofafuelsurveillanceprogram"onfuelinoperatingplants.Thusfar,atotalof16poolsidefuelin-spectionprogramsofvaryingdetailhavebeenperformedbyCE(seeTable4.2"4).Over368assemblieshavebeenvisuallyexamined,anddirensionalmeasurementshavealsobeenobtainedonalargenumberoftheseassemblies.Fuelbundledisassemblyoperationshavebeenconductedeithertoobtaninformationofparticularaspectsofperformanceofinterestoras'partoftestassemblysurveillanceprogrms.TheresultsoftheCEpoolsideinspectionprogramhavebeenusedtoverifyfuelassemblyoperationandprovidedatainsupportofdesign.Apre-irradiationcharacterizationhasbeencompletedonCE'sfirst16x16fuelforArkansasNuclearOne,Unit2.Anexaminationofthisfuelatthespentfuelpoolwillextendthedesignverificationtothe16x16designwhichwillbeusedforSt.LucieUnit2.
~~~~~~The~guidetubesevaluatedforstructuraladequacyusingthecriteriagiveninSubsection4.2.1.1inthefollowingareas:a)Steadyaxialloadduetothecombinedeffectsofaxialhydraulicforcesandupperendfittinghnlddo~aforces.b)FornormaLoperatingconditions,theresultantguidetubestresslevelsareexpectedtobeLessthan50percentofthetwothirdsyieldstresscriterion.Shor'ttermaxia'oadduetotheimpactofthespringLoad>'dCEAspideraga'nsttheupperguidestructuresupportplatesattheendofaCKAtrip,Fortripsoccurringduringnormal.poweroperation,solidim~"ctisnotpredictedtooccurduetothekineticenergyoftheCEAbeingdissipatedinthehydraulicbufferandbytheCEAspring.c)Shorttermdifferentialpressureloadoccurringinthehydraulicbufferregionsoftheoutergu'detubsattheendofeachtripstroke.,~hach~4~grt:4:ca~tty)cled~+~$4r~('~Rtaa~eZ+.~l>-/>.Thebuffer.regionslowstheCEAdtripstroke.Theresultantdifftubeint?iisregion~s.setocircumferentialstresses;ringthelastfewinchesoftherentiaLpressureacrosstheguidegives'R~+c.tripisassuedtoberep.ateddaily.HowvertheresultantstressistoosmaLLtohaveasignificanteffectonfatigueusage.ForconditionsotherthannormaLoperation,theadditionaLmechanicalloadsimposedonthefuelassemblybyaSafeShutdownEarthqake(SSE),operat-ingbasisearthquake(OBE)equivalenttnonehaLfSSE,andlargebrekLOCAardtheirres"LtanteffectnntnecontrolcLementguidetubesarediscussedinthefoLLowingsubsections:
v~OperatingBasisEarthquake(OSE)DuringthepostulatedOBE,thefuelassemblyissubjectedtolateralandaxialaccelerationswhich,inturn,causethefuelassemblytodefLectfromitsnormaLshape.ThemethodofcalculatingthesedefletionsisdescribedinSubsection3.7.3.14.ThemagnitudeoftheLateraLdeilectionsandresultantstresses=reevaLuatedforacceptability.ThemethodforcaLcuLatingstressesfromdeflectedshapesisdescribedinReference50.ThefuelassemblyisdesignedtbbecapableoEwithstandingtheaxiaLloadswithoutbucklingandwithoutsustainingexcessivestresses,Theaxial,hardlateralloadsanddeformationsustinedbythefuel<ssemhlyduringapostulatedSSEhavethes".eoriginasthosediscussedabovefortheOBE,buttheyarisefrominitialgroundacceLerctionstwicethoseI~assumedfortheOHK.TheanalyticalmethodsusedEnrtheSSLareidenticaltnthoseusedfortheOl>E.LossofCoolantAccident(LOCA)IntheeventofaLargebreakLOCA,therewilloccurrapidchange~inpres-sureandELnwwithinthereactorvessel.Asrnciatedwiththetr'ansientarerelativelylargeaxial.andlateral.Jnadsonthefuelassemblies.Theresponseofafuelassemblytothemechani.ca!lnadsproducedbyaLOCAisconsideredacceptableiEthefueLrndsaremaintainedinacnn)ablearray,i.e.,acceptablylnwgrid.crushing.Themethodsusedforanalysisnfcombined,seismicandLOCAloadsandstressesisdescribedinReference50.~SGP-7Tnqualifythe.cnnpletefue)assembly,ful)scalehntLnrptestingwascnn-ducted.Thetestsweredesignedtnevaluatefrettingandwearnfnmpn-nents,refueLingprncedures,fuelassemblyupliEtEnrces,hnlddnvmperfnr-PmanceandcompatibilitynitheEuelassemb)ywithinterfacingreactorin-ternals,CEAsandCEDHsunderccnditinnsoEreactrwaterchemistry,E)nwvelncity,temperature,andpressure.Thetestassemblywasa)6x16fiveguidetubedesign,ThetestwasrunEnrapprn>imately2000hours.Thetestsresultsdemnnstratedtheacceptab)Litynfthedesign.~lt'<(4Hechanicaltestingnfthe)fuelassemblyanditscnmpnnents.isbeingper-formedtnsupportanalyticalmeansnfdefiningtheas.embly'sstructuralcharactertst~cs.Thetestprogramconsistsnfstaticanddynamictestsnfspacergridsandstaticandvibratorytestsnf"fullsize/fuelas-sembly.lkbt~~5~;g;~pt~--z.-L.ocA.ItisnotconsideredappropriatetocombinethestressesresultingfromtheSSEand,-LOCAevents.ltevertheless,forpurposesofdemonstratingmargininthedesign,theImaximumstressintensitiesforeachindividualeventwillbecombinedbyasquarerootofsumofthesquares{SRSS)method.Thiswillbeperformedasafunctionoffuelassemblyelevationandposition,e.g.,themaximumstressintensitiesforthecentergee~tubeattheupoergridelevation{asdeterminedintheanalysisdis-cussedin~aragraphsgo~5'sp~L<c8willbecombinedbytheSRSSmethod.ftisexpectedthattheresultswilldemonstratethattheallowablestressedescribedinparagraph'.2.1.1arenotexceededoranyoositionalongthefuelas-;r';..-j..-d'e'g:ri.i,-'sr-v:ddb-li'3lri('i,i~=,'r 0
InsertMAsdemonstratedinReference69,anadditionalsafetyfactorontheLOCAimpactloadsduetoapostulatedpressurepulseassociatedwithsteamflashingisun--necessary.Therefore,itwasnotincludedintheanalysis.
Thefunctionofthespacergridsistoprovidelateralsupporttofuelandburnablepoisonrodsinsuchamannerthattheaxialforcesarenotsuffi-cienttobuckleorbowtherodsandthatthewearresultingatthegrid-to-cladcontactpointswillbelimitedtoacceptablysmallamnuratsaItisalsoacriterionthatthegridbecapableofwithstandingthelaterallf3adsimposedduringthepostulatedseismicandLOCAevents.'Fuelassembliesaredesignedsuchthatthecf3mbinatinnoffuelrodrigid-ity,gridspacing,andgridprelnadwillnotresultinsignificantfuelroddeformationunderaxialloads,andtheinng-termeffectsnfcladcreep(reductionincladOD),thereductionofgridstiffnesswithtemperatureandthepartialrelaxationofthegridmaterialduringoperationensurethatthiscriterionisalsosatisfiedduringalloperatingconditions.Moreover,inspectionnfirradiatedEuelassembliesfromtheMaineYankee(14x14),CalvertCliffs(14x14)Palisades(15x15)andFt.Calhoun(14x14)reactorshasnotshownsignificantbowingofthefuelrods.Inviewnfthesefactorsandthesimilarityofthesedesignstf3theStLucieUnit2(16x16)design,itisconcluded.thattheaxialforcesappliedbythegridsnnthecladdingwillnotresultinasigniEicantdegreenfEuelrndbnu.FuelmdlateraldaflectlnnlsdiscussedfurtherinSubsection4.2.3.t.~dEThecapabilityofthegridstosupportthecladwithoutexcessivecladwearwasdemonstratedbyout-ofpileflowtesting,asdescribedabove,nnthestandard16x16assemblydesignandbytheresultsofpostirradiationexaminationofgrid-to-clad.contactpong[~inMaineYankeefuelassemblieswhichshowedonlynegligiblecladwearThecapabilityofthegridtowithstandthelateralloadsproducedduringthepostulatedseismicandLOCAeventsisdemonstratedbyimpacttestingthereferencegriddesign,bothatroomtemperatureandatoperatingtem-perature,and,comparingthetestresultswiththeanalyticalpredictionsoftheseismicandLOCAload's.TheZircaloy-4spacergridmaterialisoEthesamecompositiouasthefuelrodsandguide,tubeswithwhichitisincontact,therebyobviatinganyproblemofchemicalincompatibil.itywiththosecomponents'orthesamereason,adequateresistancetocorrosionfranthecoolantisassured(seeSulssectinarr.2.3.f(8).foradditionalinformationrelativetothecorrosionresistanceofZircaloy&inthereactorcoolantenvironment).TheInconel-625materialusedforthelowestspacergridisincontactwiththecoolant,the304stainlesssteellowerendfitting(tnwhichitiswelded),theZircaloy-4fuelrods,thepoisonrods,andtheZirca-loy-4guidetubes.ThemutualchemicalcompatibilityofthesematerialsinareactorenvironmenthasbeendemonstratedbyCEsuseofthesematerials1nfuelassembliesthathavebeenoperatedinotherCEreactorsandforwhichpostirradiationexaminationhasyieldednoevidenceoEchemicalre-actionbetweenthesecomponents.Inaddition,experimentshavealsobeenperformedatCEonInconeltypealloysandZircaloy"4whichshowedthateutecticreactionsdidnotoccurbelo~2200F,atemperaturefarinexcessofthatanticipatedatthelowergridlocationintheeventofaLOCA.
CpImpact"recordersareincludedwitheachshipmntDichindicateiflnadinginexcessof5garesustained.Areccrdcfshipin~loadsinexcessof5gindicatesanunusualshippingoccurrencein>bichcasethefuelassemblyisinspectedfordamagepriortoreleasingitforuse.The~~-ial~hippingloadpathisthrougheitherendfittingtntheguidetubes.A5gaxialloadproducesacompressivestresslevelintheguidetubeslessthanthetwothirdsyieldstresslimitthatisallowedfnrnnrmalconditionevents.Thefuelasser;.blyispre-ventedfrnmbucklingbybeingclampedatgridlccations.Forlat-eralnrverticalshippirgloads,thegridspringtabshaveanini-tialprelnadwhichexceedsfivetimesthefuelrodweight.There-fnre,thespringtabsseenoadditionaldeflectionasaresultof5glateralnrverticalaccelerationoftheshippincontainer.Inaddition,thesideloadonthegridfacesprnducedbya5glateralorverticalaccelerationislessthanthemeasuredimpactstrength.ofthegrids.~Fuelhandlingproceduresrequiredtheuseofastrongbacktojimitthefu'elassemblydeflectiontnamaximusof0.125in.inanydirectionwheneverthefuelasrer>blyisraisednr'loweredtnahorizontalposition.Thisl.i>ai.tsthestressandstrainimposeduponthefuelasser:.blytovalueswellbeirwthelimitssetfornormalnperatin>>rond:ticns.Th>>adequacynftl>e0.125in.criterionisbasedontl>einclusionnfthis1imitaticninsp'cificationsandprece!uresfnrfuelh"ndlingaequipreot,whichistl>erebuscons>".;.ineitopr~videsupport...>>chthatlateraldeflectionisd.fm;g.~
AfueLrodcladdingstressanalysisisconductedtodeterminethecircum-ferentialstresandstrainresultingfrannormaL,upset,andemergencyconditions.Theanalysis.includesthecalculationofcladdingtempera-turesandrodinternalpressuresduringeachoftheoccurrenceslistedinSubsection4.2.l.ThedesigncriteriatobeusedtoevaluatetheanalyticalresultsarespecifiedinSubsections..Fuelrodstressesresulting'romseismiceventsarecalculated,usngthemethodologydescribedinReference50.
Apoisonshimcladdinganalysiswillbeperformedtodeterminethestressandstrainresultingfromthevariousnormal,upset,andemergencycondi-tionsdiscussedinSubsection4.2.i.l.Specificaccountingwillbemadefor.differentialpressure,differentialthermalexpansion,claddingcreep,andirradiationinducedavailingofthe.A10BACburnablepoisonmater-ial.Ouingtoeheveryloulinearhea)generationrntes.intheserods(maximumlocalislessthanl.5kM/ft),thestressanalysescanbeaccom-plishedusingconventionalstrengthofmaterialsformulae,exceptfordeterminingcl~II'collapseresistancewhichwillbedoneusingtheCEPANcomputermodelh\
0 TheprobabilityforafunctionalfailureoftheCEAisconsideredtobeverysmall.Thisconclusionisbasedontheconservatismusedinthedesign,thequalitycontrolproceduresusedduringmanufac-turingandontestingofsimilarfull-sizeCEA/CEDMcombinationsundersimulatedreactorconditionsforlengthsoftravelandnumbersoftripsgreaterthan'thatexpectedtooccurduringthedesignlife.TheconsequencesofCEA/CEDMfunctionalfailurearediscussedinChapter15.ApostulatedCEAfailuremodeiscladdingfailure.Intheeventthatanelementisassumedtopartiallyfillwithwaterunderloworzeropowerconditions,thepossibilityexiststhatuponreturningtopower,thepathofthewatertotheoutsidecouldbeblocked.Theexpansionoftheentrappedwatercouldcausetheelementtoswell.Intests,specimensofCEAcladdingwerefilledwithaspacerrepresentingthepoisonmaterial.Allbutninepercentoftheremainingvolumewasfilledwithwater.Thesealedassemblywasthensubgec(edtoatemperatureof650Fandanexternalpressureof2250lb/in.followedbyarapidremovaloftheexternalpressure."Theresultingdiametralincreasesofthecladdingwereontheorderof15to25milsandwerenotsufficienttoimpairaxialmotionofthCEA,whichhasa0.084diametralclearancewiththefuelassemblyrnoeguidetubes.Thistestresult,coupledwiththelowprobabilityofacladdingfailureleadingtoawaterloggedrod,demonstratesthattheprobabilityforaCEAfunctionalfailurefromthiscauseislow.AnotherpossibleconsequenceoffailedcladdingisthereleaseofsmallquantitiesofCEAfillermaterials,andheliumandlithium(fromtheneutron-boronreactions).However,theamountswhichwouldbereleasedaretoosmalltohavesignificanteffectsoncoolantchemistryorrodworth.
Afuelrodcladdingstressanalysisisconductedtodeterminethecircum-ferential'tressandstrainresultingfromnormal,upset,andemergencyconditions,Theanalysisincludesthecalculationofcladdingtempera-tu'esandrodinternalpressuresduringeachoftheoccurrenceslistedinSubsection4.2.1..ThedesigncriteriatobeusedtoevaluatetheanalyticalresultsarespecifiedinSubsectionFuelrodstressesresultingfromseismiceventsarecalculatedsingthe=methodologydescribedinReference50.
0 BurnablePoisonRodyItiPoisonrodstrainfornormaloperationandanticipatedoperationaloccurrencesisdiscussedunderitem(a)above.Thepotentialforwaterloggingruptureinpoisonrodsismuchlowerthanthatinfueledsbecauseofthesmallerthermalanddimensionalchangesthatoccurinapoisonrodduringreactorpowerincreases.RefertoSection4.2.3.2fbelowforadiscussionofthepotentialforwaterloggingruptureinfuelrods.
ControlElementAssemblSeeitem(a)intheabovesection,DesignStress.
ifatigueanalysisisperformedtodeterminethecumulativefatiguedamage'ffuelrodsexposedtolieftimepowercyclingconditions.Thefatiguecycleisdeterminedbyconsideringcombinationsofnormallyanticipated'ventsthatwouldproduceconservativeestimatesofstrainintheclad.Someofthemajorconservativeassuptionsareasfol,lows:Hotspotfuelradi'reusedinthecalculations.Themostadversetoleranceconditionsonthefuelandcladdingdimensionsarechosentoproducemaximuminteractionsandhencemaximumcladstrains.Thechoenfatiguecyclerepresentsdailyoperationatbothfull"ndre-ducedpower.Cladstrainsarecalculatedfromtheprimarycreeprateofthecladandusedtocalculatetheeffectivestrainranges.Tnecumulative"-fatiguedaagefractionis.determinedbysurvivingtheratiosofthenumberofcyclesatagiveneffectivestrainrangetothepermittednaberatthat'rangeastakenfromthefatiguecurvepresentedonFigure4.2-2.\+lefatagueca1culatconmethodincludestheeffectofcladcreeptored;icethepellettocladdiametralgapduringthatportionofopera'ionwhenthepelletandcladarenotincontact.Thesamemodelisusedforpredictingcladfatigueasisusedforpredictingcladstrain.Therefore,theeffects'ofcreepandfatigueloadingsareconsideredtoetherindeterminingendoflifecladstrain.i'moreover,thecurrentfatigue'amage'calculationmethodincludesafactoroftwowhichisappliedtothecalculatedstrainbeforedeterminingtheallowablenumberofcyclesassociatedwiththatstrain.This,in.combinationwiththeallowablefatigueusagefactor0.8ensuresaconsiderabledegreeofconservatism(seeFigure4.2-2).
rehephenomenonof'retting,corrosion,particularlyinZircal>ycladfuel~~rodssupportedby"Zircaloyspacergrids,hasbeenextensivelyinvestigated.,.Sinceirradiationinducedstressrelaxationcausesareductioningrid.springload,spacergridsmustbedesignedfnrendcfLifeconditionsas.wellasbe"inningoflifeconditionstcpreventfrettingcausedbyflowinducedtubevibrations.ExaminationofZircaioycladfuel.rodsafterthreecyclesofexp<sureatFt,~Calhoun,twocyclesofexposureatCalvertCiiffsandonecycLeofex-posureatMillstonepoint',Haine,Yanl;ee,andStLuceieUnitlhavesholem,.littlefrettingandn<fuelcladdingperforationsfrfrfthefretting.3>asedfbnthf'nnbinatinnoftheex-reactortestsandthein-reactfbrsurveii!ancethefuelintheAtfo-2,plant,StL'ucieUnit2is'not~xp~c>>>tfex-perteneefretting.beherinr.~~f,LHOWg---pgpd-.-ThecapabilityoftheSt.Lucie216'x16fuelassemblytosustaintheeffectsofflow-inducedvibrationwithoutadverseeffectshasbeendemonstratedinadynamicflowtestoerformedinCE'sTF-2flowtestfacility.Thetestutilizedprototypical16x16reactorcomponentsconsistingofa16x16typefuelassembly,aCEAshroud,controlelementdrivemechanism,andasimu'lationofsurroundingcoreinternalssup-portcomponentsandwasperformedunderextremeflowandtemperatureconditions.Thesuccessofthistest,similarprevioustestsof16x16fuelassemblies,andtheoperationofCE'sAHO-2plant,demonstratethatflow-inducedvibrationwillhavenoadverseeffectsontheSt.Lucie2fuelassemblies.CorrosionZircaioy<<4fuelrodtubinghasbeenvisuallyexaminedinthespentfuelpool'afterthreereactorcyclesatFt.Calhoun,tworeactor.cyclesatCalvertCliffs,andreactorcycleatNilLston>>,StLucieUnitlandNaineY"nlee.Inadditionoxidethicknessesweremea-suredinthehotceilafteronecycleatMaineYankee.Inailin-stancestheoxideapoearanceandoxidethicknessmeasuredsimilartoautoclavebehaviorforthattimeandtemperature.
>PSFPTI2Foursourcesofperiodicexcitationarex'ecognizedinevaluatingtlefuelassemblysusceptibilitytovibrationdamage.Thesesourcesareasfollows:a)ReactorCoolantPumpBladePassingFrequencyPrecriticalvibrationmonitoringonpreviousCEdesignedreactor.indicatesthatpeakpresurpulsesaroexpectedatthe'pumpbladepassingfrequency('z),andalesserbtstillpronouncedpeakattwicethisfrqucncy.b)CoreSupportPlateHotionExperiencewithearlierCEdesignedreactorsindicatesthatrandomlateralmotionofthecoresupportplateisexpectedtooccurwithanamplitudeof0.001to0.002inchandafrequencyrangeofbetweentwoand10Hz.c)FlowInducedFuelAssemblyVibrationFlowinducedfuelassemblyvibrationresu'tingfromccolantflowthroughthefuelassembly'sexpectedtoresultinvibrationamplitudesof0.004in~or1ess~d)FlowInducedCon";olElementVibrationThStLucieUnit2reactorvesselintox'nelsandfuelassemblydesignincorporatesdesignfatursthatensuresthatthevibrationciCEAsissuchastoproducenosiunificnntwearintheguidetubes~
Coolantchemistryparametershavebeenspecifiedthat.ninimizecorrosionproductreleaseratesandtheirmobilityintheReactorCoolantSystem.Speci"ically,theprrcorehotfunctionalenvirrinmentiscontrolled(pHandoxygen)toprovideathin,tenacious,adherent,-protectiveoxidefilm.Thisapproachminimizescorrosionproductreleaseandassociatedinventorynn'initialstartupandsubsequentoperation."'uringoperation,thereco".imendedlithiumconcentrationrange(0.2-1.0ppm)effectsachemicalpotertial<radientordrivingforcebetwe'enhotandcoolersur,faces{fueLcladdingandsteamgene-ratortubing,respectively)suchthatsoluhLeironandnickelspe-cieswillpreferentiallydepositonthesteamgeneral.rrsurfaces.TheassociatedplialsominimizesgeneralcorrosionproductreleaseIratesfromRe"ctorCoolantSystemsurfaces.Hore~ver,thespecifiedhydrogenconcentrationsrarge(10-50cm/kSŽP).3'ginsuresreducingconditionsinth..core,therebyavoidinlowsolubilityFe.AdditinnalIy,dissolvedhydro,cnpromoesrapidrecombinationofoxidizi.ngspecies.(Recall,oxidizingspeciesandafastneutronfluxaresynergisticpr~~~q!~i~it~stoacceleratedZircaloy-4corrosion).rDuringoperationlithium,dissolvedoxygen,anddissolvedhydrogenvillbemonitoredatafrequencyconsistentwithmaintainingtheseparametersvit.hintheirspecificatinns.Post-opera(ionalexaminationsoffuelcladdingthathasoperatedwithinthesespecifications,hasshownnosignificantchemicalorcorrosiveattackoftheZircaloycladding.Crudlayersonzirconiumoxidefilmsareusuallyporousandnr>n-'insulating.Asanex"mple,heavy,butnrn-insulatingcrudlayershavebeenfoundinYankeeRove(WCAP-3317-6094,YankeeCoreEvaluationProgram,FinalReport,1971).Withporouscrud,waterisfreetoflowthroughthecrudandprovideheattransferby.convection.Undertheseconditions,crudenhancedcorrosionshouldnotoccur.3ecauseofrigorouswaterchemistrymonitoring,heavybuildupofcrudhasnotoccurredinCEreactors.Materchemistrymonitoringisacontinuousprocessandshouldensurenodensecrudbuildup.
Thefunctionofthespacergridsistoprovidelateralsupporttofuelandburnablepoisonrodsinsuchamannerthattheaxialforcesarenotsuffi-cienttobuckieorbowtherods,Experiencehasproventhatanyspecificcriteriononallowabledeflections(bowing),withrespecttotheeffectswhichsuchdeElectionsmighthaveonthermalhydraulicperformance,isnotnecessarybeyondtheinitialfuelrodpositioningrequirementsrequiredofthegrids.'hisvariationinspacingisaccountedforinthermal-hydraulicanalysisthroughtheintroductionofhotchannelfactorsincalculatingthemaximumenthalpyriseincalculatingDiRBR.Thisadjustmentiscalledthepitch,bowing,andcladdiameterenthalpyriseEactor,whichisconservativelyappliedtosimulateareducedflowareaalongtheentirechannellength.ThevalueofthisfactorisgiveninTable4.4-1anditsapplicationisdiscussedin'Section4.4.ThesubjectoffuelrodbowingisdiscussedinReference53
'VThefunctionofthe'pacergridsistnprovidelateralsupporttnfuelandb'urnablepnisnnrodsinsuchamannerthattheaxialfnrcesa'enntsuffi"cienttobucklenrbnwtherodsandthatthewearresultingatthegrid-tn-cLadcnntactpoints-villbelimitedtnacceptablysmallamnunts.Itisalsoacriterinnthatthegridbecapablenfwithstandingthelateral,lnadsimpnsedduringthepostulated'eismicandLOCAevents.~~radiationStabilityof.fuelg.odCladdingThecombinedeffectsof'fastfluxandcladdingtemperatureareconsideredinthreev"ysasdiscussedbelow:gCladdingCreepRateThein-pilecreepperformanceofZircaloy-4isdependentuponboththelocalmaterialtemperatureandthelccalfastneutronflux.ThefunctionalformofthedependenciesispresentedinReference14forgapconductancecalculations,.artdinReference22forcladdingcollapsetimepredictions.CladdingHechanicalPropertiesTheyieldstrength,ultimatestrength,andductilityofZircaloy-4aredependentupontemperatureandaccumulatedfastneutronfluence.ThetemperatureandfluencedeoendenceisdiscusseningubsectionUnirradiatedpropertieswereuseddependin"uponwhichismore,restrictiveforthephenomenonbeingevaluated.IrradiationInducedDimensionalChanges'A--%Zircaloy-4hasbeenshowntosustaindimensionalchanges(intheunstressedcondition)asafunctionoftheaccumulatedfast.fluence.Thesechangesareconsideredintheappropriateclearar;cesbetweenthevariouscorecomponents.Theirradiationinducedgrowth.correlationmethodisdiscussedinRefererce3..Zircaloy-4fuelcladdinghasbeenut:'lizedinpressurizedvaterreactorsattemperaturesandhurnupsanticipatedincurrentdesignswithnofailuresat:t.ributabletoradiat'ondamage..')echanicalpropert.yte.-(onZi.rcaloy-4claddinge.;posedtoneutronirradittt:ionof4.7x10nvt(E)1HeV)(stimat..d)hav..revea)cdthatthecladcingret:ai:1sasignific"ntamountot.d.tctilit:y(innx<<esso.'orc'.nt.clou~;ation,.Typicalresultsare.hnvninTabl>>4.2-3.ltisbeliever)tt1att!1efluencuof4.7x10"nvt.()>1)la'v)iss'tt:u1'atio<',ut)lalgoltt'u6:xno'urltn1"\1')l..tionvi'nn"c):sn;;e 0
ZircalnyccxnpnnentsfaredesignedtoaLLow'fnrdimens'innaLchangesresultingfrcnirradiation-inducedgrowth.Extens'vean'ysesofin'ilegrowthdctagchaveb%!~~performedtnformulateacomprehensivemodelofinpilegrowth~TheinpilegrowthequatinnsareusedtndeterminetheminimumaxialdifferentiaLgrowthallnwance<<%ichmustbeincludedintheaxialgapbet-eenthefuelrodsandtheupperendfittings.Fordeterminingthenec-essaryfuelrndgrowthaLLnwance,thegrowthcnrrelationsforfuelrndandguidetubegrowtharecombinedstatisticaLLysuchthattheminimuminitiaLgapisadequatetoaccommodate.theupper95percentcnnfidencelevelofdif-ferentialgrowthbetweenfuelrodsandguidetubesinthepeakburnupfuelassembly.Forthepurposenfpredictingaxialandlateralgrowthofthe'fueLassemblystructure(therebyestablishingtheminimuminitialclearancew!thinterfacingcrnr~nents),theequationsareusedinaconservativema!!nertoensureadeq.ate:argir:stnnterferencearemaintained.TnemannerinwhichtheinpiLe,;row:hequatinnsaredescribedinReference,.65.~~~~Fuelswellingdue'oirradiation(accumulationofsolidandgaseousfissionproducts)andtherm1expansionresultsinanincreaseinthefuelpelletdiameter.Thedesignmakesprovisionforaccommodatingbothformsofpellet~grotth.Thefuelcladd'metralgapismorethansufficienttoaccommodatethetr!ernalexpansionofthefuel.Toaccom..odateirradiationinducedswelli'ng,itisconservativelyassurredthatthefuelcladgapisusedupbythet.i!ermalexpansionandthatonlythefuelporosityandthed'shesoniat.ead!endofthepelletsareavailable.Thermalandirradiationinducedcreepoftherestraine<lfuelresultsinredistributionoffuelsothattheswellingduetoirradiationisaccommodatedbythefreevolume(8.2percent'fthefuelvolume).Forsuchrestrainedpellets,andatytotalfissionproductinducedswell-in"rateof0.7percentdV/Vper10fiss/cm,0.54percentwouldbez0.saccommodatedbythefuelporosityanddishesthroughfuelcreep,and0.16percenwouldincreasethefueldiarreter.Assumir.gpeakburnup,thiswouldcorrespondtousingupavoidvolu...eequalto7.4percentofthefuelvolumeandincreasingthefuelroddiameterbyamaximumof0.002inch((0.7percentcl"dstrain).lichenthesenumberswerecomparerltothnmini-mumavailab)evolumeandthemaximumailowablest:rain,itwa"concludedthatsufficientaccommodationvolu:oehasbeenprovidedevenunderthemostadverseburnupandtoleranceconditions.Des!'onstrationofthemarginwhichexistsisseeninthelargeseedblanketreactor(LSBR)irradiation.Tworodswhichoperatedinthe(9-))~IIp(~f)theHTkofferaninterestingsimulationforcurrentPh'Rdesignbothrodswerecomprisedof95percenttheoreticaldensityp;.lletswithdishedends<<!ndcladinZircaloy.Tnefirstof)hese,No~79-21,wasoperatedsuccessfullytoaburnupof12.41x10fiss/cm(48,000"ll)')glTU).T<~es"condfuelpin,Idio.79-25,operatedsuccesfullyto15.26xIO.Eiss/crr,(60i0005!lcD/HTL').Th.!linearheatratingrangedfrorr7.1toIb.0ki,/ft.'1'h.wa11thicknessfolthcIatterpinwa.".0.0:.0-inchasco:!paredwith0.016inch'orthofo..:!er.AII.otherparameters,wereu:>sentis1lvidal!tiesI~Thetwororiswereassembled.)yshrinkingt.!e<<laddingontothefue'I.Ther,.a.primumdiametralincreaserr.:!suredattl'eridgeheiglitsfn.rorl79-21w..s0.0",5'nch,iihiii'twaslessthan0.00lorrod79-25.Frn"..post"irraiiatinnexaminat'io:!,itwnscone1<<d.dap'iroxir>;'1y<<'ipur:<<ntoft.h~totali!eI'~!.1in;:wnsaccommniat,iililia~~'i~r
ofthecladandridgingatpelletinterfaces.Theseresultsindicatethatacomparableirradiati'onofthefuelelementsforthe16x.16fueldesign(colddiametralgap0.007inch,wallthicknessof0.025inch,density94,75percentTD)wouldallowadequatemarginforswellingaccommodation.TheuccessfulcombinedVBMR-DresdenirradiationofZircaloy"claduraniumddsoeidpelletsprovides'eddicionelconfidencevi(reoyer,cocbel,dI)designconditionsforthefuelrodsforthiscore,klinety-eightrodswhichhadbeenirradiatedinVBWRtoanaverageburnupofabout10.7CO~iield/YTUwereassembledinfuelbundlesandirradiatedinDresdentoapeal;burnuogreaterthan48,000lQd/slTU.Thereportedmaximumheatratingforthese~33dsis17.3kM/ftwhichoccurredinVBVR.Post-irradia-tionexaminationrevealedthatdiametralincreasesinthefuelrods(rangedfrom0.001to0.003-inchmaximum.Themaximumdiamef~alchang~3correspondsto1.42percenthV/V(or0.12percents/Vper10fiss/cm)for'these0;424-inschdiameter'rods.'lnerelevantfuelparametersarelistedbelow:FuelDensity(XTD)ColdDiametralGa(in.)PeakBurnup(ln'~d/aTU)VBl)R-DresdenLSBR-slTRC"Edesign959594.750.004to0.0080AS,0000.00150,000;61,0000.00755,000Acomparisonofth'edesignparametersabove,relative"'othetestresults,providesade--.onstrationofthecladstrainsresultingfromswellingoffuel.s=.-"-~-~~~p~~AX~8~a~45ccth'eepossibleeffectoXAtransientswouldbetocad"eanaxialexpansionofthepelletcolumnagainsaflattened(collapsed)sectionnfthe'lad.Howver,thfuelroddesignincludesspecificprovisionstopreventcladflattening,and,therefore,suchinter-actionswillnotoccur.
000
Fuelrodsareinitiallypressurizedwithheliumfortworeasons:--a)Precludecladcollapseduringthedesignlifeofthefuel.Thein-ternalpressurization,byreducingstressesfromdifferentialpres-sure,extendsthetimerequiredtoproducecreepcollapsebeyondtherequiredservicelifeofthefuel.b)Improvetlietherfnalconductivityofthepellettocladgapwithinthefuelrod.Heliumha..ahighercoefficientcfthermalconductiv-itythantnegaseousfssionproducts.Inunpressurizedfuel,theinitiallygoodheliumconductivityi=eventuallydegradedthroughtneadditionofthefissionproductgasesreleasedfromthepellets.Theinitialheliumpressurizationresultsinahighheliumtofissionproductsratiooverthedesignlifeofthefuelwithacorrespondingincreasein,thegapconductivityandheattransfer.Theinitialheliurfillpressurewillbe360+15psig.Thisinitialfillpressurew'llbesufficienttopreventcladcollapsediscussedin'Subsec-tion4.2.2.f(g.andwillproduceama-imuuHObinternalprcaure"-cone;"tootwiththac-.iteri"ofgub.eccion4.2.l.fg,Theca'culationalmechogl"em-ployedtogenerateinternalpressurehistoriesarediscussedinReference.14..CapacityforFiss-'onGasInventoryThegreaterportionnfthegaseousfissionproductsremaineitherwithinthelatticeorthemicroporosityortheU02fuelpelletsanddonotcon-.....tributetothefuelrodinternalpressure.)lowever,afractionofthefis-siongasisreleaseafromthepelletsbydiffusionandporemigrationandthereaftercontributestotheinternalpressure.acneTherodpres-sureincreasel!richresultsfromthereleaseofagivenquantityofgasfrqsithefuelpellf.tsdependsupontheamountofopenvoidvoluf.".eavailablewithintheffielrodandthetemperatursassociatedwiththevariousvoidvolumes.lnthefuelroddesign,thevoidvolumesconsider"dincomputingintf'malpressureare:a)Fifelrodupperendplenumb)c)FuelcladannulusFuelpelletenddishesandchamfers d)FuelpelletopenporosityTne:evolumesarenotco'natantduringthelifcofthefuel.Themodelused........forcomputingtheavailablevolumeasafunctionofburnupandpowerlevelaccountsfortheeffectsoffuelandcladthermalexpansion,fuelpelletdensification,cladcreep,cladgrowthandirradiationincucedswellingofthefue)pellets.FuelRodPlenumDesi~.Thefuelrodupperendplenumisrequix'edto.servethefollowinfunctions:....a)Prov'despaceforaxialthermalexpansionandburnupswellingofthepelletcolumn.b)Containtnepelletcolumnholddownspring,c)Actasaplenumregiontoensureanacceptablerangeoffuelrodinternalpressure.Ofthesefunctions,listingCisexpectedtobethemostlimitin"con-straintonplenumlengthselection,sincetherangeoftemperaturesinthefuelrod,togetherwiththeeffectsofswelling,thermalexpansion,andfissiongasreleasecan,produceawiderangeofinternalpressureduringthelifeofthefuel.Thefuelrodplenumpressurewillbeconsistentwiththepres.uri"ationandcladcollapsecriteriaspecifiedinSubsection42ik(Q),~+~8'&'p7sIROutlineof'rocedureUsedToSi"eTheFuelRodPlenuma)Aparame'teicstudyoftheeffectsnfplenumlengthonmaximumandminimumrodinternalpressureisperformed.Becausethecriteriapertainingtomaximumandminimumrodinternalpressurediffer,thestudyisdividedintotwosections:I)HaximumInternalPressureCalculationMaximumfuelrodpressureislimitedbythestresscriteria.Naximumendoflif>>pressureisdeterminedforeachplenumlengthbyincludingthefissiongasre'eased,selectingcon-servativevaluesforcomponentsdimensionsandprop-rties,andaccountingforburnupeffectsoncomponentdimensions.Theprimarycladdingstz'essproducedbyeachmaximumpres-sureisthencomparedtothestresslimitstofindtnemarginavailablewithe"chplenumlength.StresslimitsarelistedinHubsc:ion4.2.1.)f5),~x&sceTAR2)HinimumInternalPressure/CollapseCalculationminimumfuelrudpressurei"limitedbythecriterionthatnorodwillbesub.ji'cttocollapseduringthedesignlif"time.fheminimumprissur.'istoryforeachplenur>lengthisd~l':r-minudbyne"1rct.ingfissiongasrelease,si!ectingacons-r-sTheeffectofheliumprepressurizationonfissiongasreleaseisnotcon---sideredtobedirectlyduetothe-gaspressure.Theimportanteffectsofprepressurizationonfissiongasreleasearetheimprovementingapgas------conductivityandgapconductanceandthedesensitizationofgapconductancetogasreleaserates.Fuelrodswithlowheliumprepressuri,zationaremuch"-------moreresponsivetoevensmallincreasesinfissiongasreleasesathighburnup.Gapconductance,insuchrodssignificantlydecreases,leadingto----significantincreases,infueltemperaturewhichleadtoeverincreasingfissiongasrelease.ThiseffectiswelldocumentedbyReferen'ce(1).-----Highprepressurizationwithheliumgreatlyreducesthisfeedbackeffect,andtherefore,significantlychangestheresponseoftherod.Itmustbe------concludedthatanempiricalburnupenhancementwouldbeconsiderablydifferentforlowandhighheliumprepressurizations.'C-Eisactivelyseekingandexaminingsourcesofgasreleasedataat-burnupsgreaterthan20000hMd/HtU,foruseindeterminingvalidityorextentofburnupenhancedfissiongasrelease.AlthoughCEbelievesthemethodtobe.inappropriate,themaximumcalculatedELpeakinternalfuelradpressurehasbeenredoneusingtheNRCburnupenhancementfactor.Toleranceswerebiasedtomaximizeinternalpressure.UndertheseconditionsthemaximumEOLinternalpressureiscalculatedtobelessthanthenominalprimary.systempressure.II'S~~It'snotafo'rmalcriterionthatfuelrodinternalpressurebelessthantheprimarycoolantpressurebecausenoadverseeffecthasbeenidentifiedwhichhas,asitsthreshold,theoccurrenceofanetinternalpressureact-ingonthacladding.Honorer,thedesignofthefuelrodissuchthattheinternalpressuresproducedduringnormaloperationaretg(pan+~tore-mainbelowtheprimarycoolantpressureforthedesignlifeofthefuel.
.,~Jvaivecombinationofcomponentdimensionsandpropiartii'.s,andaccountingfordimensioncliangesduringirradiation,inc}udingtheefEeetsofcladdingcreep,claddinggrowtli,pellotdensifi,-ca'tion,pelletswelling,andthermalexpansion.Eachmi~jgg~mpressurehistoryisinputtothecladdingcollapsemodeltoestablishtheacceptabilityoftheassociatedplenumlength.b)Foreachplenumlength,thereisaresultantrangeofacceptableinitialfillpressures.TheoptimumplenumlengthisgenerallyconŽsideredtobetheshortestwhichsatisfiesallcriteriarelatedtomaximumand'inimumrodinternalpressureincludingarangesuffi-cienttoaccommodateareasonablemanufacturingtoleranceoninitialfillpressure.,.c)Additionalinformationonthosefactorswhichhaveabearingonde-terminationoftheplenumlengtharediscussedbelow:.I)Creepanddimensionalstabilityofthefuelrodassemblyinflu-encethefissiongasreleasemodelandinternalpressurecalcu-1'ations,andareaccountedforintheprocedureofsizingthefuelrodplenumlenth.Creepinthecladdingisaccountedfo".inachangeincladinsidediameter,<<hichinturninflue-ncessthefuel/cladgap.Thegapc!g!evariestbegapcon-ductanceinthepntgg'c'ociputarcodeuithresultingchangeinannulustemperature,internalpressure,andfissionpasr.".-lease.inaddition,thechangeincladinsidediametercausesachangeintheintern"lvolume,withitsresultingeffectontemperatureandpressure.Dimensionalstabilityconsiderationsaffecttheinternalvolumeofthefuelrod,causingchangesininternalpressureandtemperature.Fuelpelletd'nsificationreducesthestackheightandpelletdiarieter.Irradiationinducedradialandaxia1swelling,ofthefuelpelletsdecreasestheinternalvolumewithinthefuelrod.Inpilegrowthofthefuelrodcladdingcontributestotheinternalvolume.Axialandradialelasticdeformationcalculationsforthecladdingarebasedonthedifferentialpressurethecladdingise..posedto,resultingininternalvolumechanges.Thermalrelocation,aswellasdifferentialthermalexpansionofthefuelrodniate-rialsalsoaffectthein"ernalvolumeofthefulrods.~~2)The".maximumexpectedfissiongasreleaseinthepeakpowerrodiscalculatedusing,theFATEScomputercode.Rodpowerhistoryinputtothecodeisconsistentwithth>>designlimitpeaklinearheatratesetbyLCCAconsiderations,andthe.efnrethngas'releaseusedtosizetheplenumrepresentsanupperlimit.becauseoftimevaryinggapconductance,fueltemperatureanddepletion,andexpectedfuelmanagement,thereleaseratevarid'.sasafunctionofburnup.Afu=lrodcladdingstressanalysisisconductedtndeterminethecircum-ferentialstressandstrainresultingfromnnrmalgupset,and..",iergencyconditions.Theanalysisincludesthcalcul;.tionofcladdingtempera-turesandrodinternalpressuresduringeachoftheoccurrenceslistedinSubsection4.2.l.Thedesigncrteriatob"usedtoevzlu"tetheanalyticalresult:arespecifiedinSubsections...Fuelrodstressesresultingfromseismiceventsarecalculated,u.'ngthemethndogi~gydescribedinReference50.
Iuel'odthermdltransienteffectsarebasicallymanifestedasthechangeininternalpressure,thechangesincladthermalgradientandthermalstresses,andthedifferenti"1thermalexpa..sionbe-tweenpelltsandclad.ar'-.~~~~tg<Sod-'IExperimentalmeasurementsrevealthatlessthanfi~~~percentofthe---'eliumformedduringirradiationwillbereleased.ThesemeasurementswereperformedonA120'3-B4Cpelletsirradiatedat-----"-"--.'.--.temperaturesto"500Fand,subsequently,annealedat1000Fforfivedays.Theheliumreleaseinaburnablepoisonrodwhichoperated'oronecycleinaCEPMRwascalculatedfrominternalpressuremeasurementstobelessthanfivepercent.Thedesignisbasedona.releaseofthreeto15percentoftheheliumgenerat..d.Thedesign.oftheburnablepoionrodwillnotbelimitedbyheliumprcssure.......,despitetheconservativeuseof15percentrelease.Apoisonshimcladdinganalysiswillbeperformedtodeterminethestresssa~~~~~andstrainresultingfromthevariousnormal,upset,andemergencycondi-tionsdiscussedinSubsect'on4.2.1.Specificaccountingwillb"mad"fordifferentialpressure,differentialthrmalexpanion,clacdingcreep,andirradiationinducedswellingoftheAl03',4Cburncblcpoisonnatcr-ial.Owingtotheverylowline"rheai~enerationraresintheserods(maximumlocalislessthan1.5kM/ft),thestressanalysescanbeaccom-plishedusingconventionalstrengthofmaterialsformulae,exceptfordeterr..inin~clastcollapseresistancewhichwillbedoneusingtheCEPAYcomputermodel~VTheCEAsaredesignedforatenyearabsorberburnup,'llowableplast'csttheresultantdinensionalclearancesasses>bly.guidetubes.lifetimebasedonestimatesofneutronrainoftheInconel625claddingandofthe.elementswithinthefuelThevaliseofinternalpressureinthecontrolelementsisdepend.dentonthefollowingparameters:1)Initialfillgaspressure2)Gastemperature3)Heliumgeneratedandreleased4)Ava'iablevolumeincluding8Cpr>rosity OftheabsorbermaterialsutilizedintheCEA.design,onlytheB,Ccontributestothetotalquantityofgaswhichmustbeaccommodatedwithinthecontrolelement.Theheliumisproducedbythenuclearreactionn+B~Li+2He,andthefraction110~74\oftheuantiteneradwhichisactuallyreleasedtotheplenum0~5istemperaturedependent.~'~~l~
ThereleaseofheliumfromtheBpCpelletsisunderstoodtobeprincipallydependentondiffusion,asindicatedbythestrongtemperaturedependenceintheequationusedtocalculatereleasefractionfor~$L~0&2Xreleased~208e>>1820/T+5CalculationofheliumreleasefromBgCpelletsisbasedonthemaximumtemperaturespredictedfornormaloperation.Whileitistruethatsev-eraloftheanticipatedoperationaloccurrences(AOO's)produceheatgen-erationrates(inthoseCEA'swhichremaininserted)greaterthanthemax-imumpredictedfornormaloperation,suchoverpowerconditionsneverper-sistformorethanabout60secondsandwouldnotbeexpectedtoraisethepellettemperaturebymorethanabout200fahrenheitdegrees.Temper<<atureexcursionsofthismagnitudeanddurationwouldnotbeexpectedtoinfluenceadiffusioncontrolledheliumreleasemechanismtoanyapprecia-bleextentandsoarenotincludedinthedesignbasisforCEAinternalpressurecalculations.WithrespecttotiansientswhichcouldleadtoCEAplenumtemperaturesinexcessof1000F,therearenone.TheCEAplenumisalwayslocatedabovetheactivecoreregion,andthetemperatureofthegasthereinisprinci-pallydependentonthetemperatureofthesurroundingcoolantandgammaheatingoftheplenumspring.SincenoneoftheAOO'sproducessubstan-tialincreasesineitherthegammaheatingrateintheplenumorthelocalcoolanttemperature,itisnotexpectedthattheplenumtemperaturewouldincreas'esignificantlyabovethenormaloperationrangeof600Fto700F.
'(i)AssemblyLiftoffTheanalysisandtestingforfuelassemblyliftoffisreportedindetailinSection4.4.4.2.2.ThecoreflowrateforSt.LucieUnit2islessthanthatwhichwouldcause,assemblyliftoff.
1possibleconsequenceoffailedc"ddingisthereleaseofquantitiesofCEAfillermaterials,andheliumandlithium(fromtheneutron-boronreactions).However,theamountswhichwouldbereleasedaretoosmalltohavesignificanteffectsoncoo'lantchemistryorrodworth.TheprobabilityforafunctionalfailureoftheCEAisconsideredtobeverysmall.Thisconclusionisbasedon.theconservatismusedinthedesign,thequalitycon'trolproceduresusedduringmanufac-turingandontestingofsimilarfull-si"eCEA/CEDE!combinationsundersimu'atedreactorconditionsforlengthsoftravelandnumbersoftripsgreaterthanthatexpectedtooccurduringthedesignlife.TheconsequencesofCEA/CEDilfunctionalfailurearediscussedinChapter15.ApostulatedCEAfailuremodeiscladdingfailure.Intheeventthatanelementisassumedtopartiallyfillwithwaterunderlowor"eropowerconditions,theposs'bilityexiststhatuponreturningtopew<r,thepathofthewatertotheoutsidecouldbeblocked.ITheexpansionoftheentrappedwatercouldcausetheelementtoswell.Intests,specimensofCEAcladdingwerefilledwithspacerrepresentingthepoisonmaterial.Allbutninepercentoftheremainingvolumewasfilledwithwater;"'Ibesealedassemblywasthen-----subjected'oatemperatureof650Fandanexternalpressureof2250lb/in.followedbyarapidremovaloftheexternalpressure.Theresulting-diametralincreasesofthecladdingw<!reonth~orderof15to25milsandwerenotsufficienttoimpaira::ialmotionoftheCEA,whichhasa0.084diametralclearancewiththefuelassemblguidetubes.'hitestre.,ult,coupledwiththe!owprobabilityofacladdingfailureleadingtoawaterloggedrod,demonstratesthattheorobabilitvforaCPAfunctional.failurefromthiscauseislow.ShouldirradiatedB4Cparticlesbeexposedtoreactorcoolant,theprimarycorrosionproductsthatwouldbeformedareboricacid(whichis.solubleinwater),hydrogen,freecarbonandasmallamountoflithiumcompounds.Thepresenceoftheseproductsinthereactorcoolantwouldnotbedetrimentaltotheoperationoftheplant,ObservationsofAl03/B4Cpoisonshimshaverevealedthatlongtermexposureoft"iismterialtoreactorcoolantcanresultingradualleakingoutofBoronandeventualerodingawayoftheA1203matrix.However,therateofreactionissuchthatanyresultant"changesinreactivityareverypr~d,
{k)CladdingOverheatingCladdingoverheatingisavoidedfornormaloperationandanticipatedoperationaloccurrencesbyspecificationofNSSSdesignrequirements,operationallimitations.(technicalspecifications),fueldesignbases,andtheSAFDLonDNBR.Themethodologyfor,predictionofDNBRisdiscussedindetailinFSARSections4.4.2.2-4.4.2.10.'DNBRanalysisandevaluationisdescribedinSection4.4.4.ForanticipatedoperationaloccurrencestheanalysisinChapter15showsthattheDHBRSAFDLismet.Foraccidents,itisnotarequirementthattheDNBRSAFDLbemetsinceitisassumedthatthecladdingfailsifDHBoccurs{see4.2.1.1,kandsinceasmallamountoffuelfailuresacceptableaslongasradiologicaldoseandcorecoolabilitycriteriaaremet.
SteadystatefueltemperaturesaredeterminedbytheFATEScomputerpro-gram.Thecalculationalprocedureconsiderstheeffectoflinearheatrate,fuelrelocation,fuelswelling,densification,thermalexp"nsion,fissiongasrelease,andcladdeformations.ThemodelforpredictingfuelthermalperformanceisdiscussedindetailinReference14.Twosetsofburnupandaxiallydependentlinearheatratedistributionsareconsideredinthecalculation.Oneisthehotrod,timeaveraged,dis-tributionexpectedtopersistduringlongtermoperation,andt<<eotheristheenvelopeofthemaximumlinerheat.rateateachaxiallocati.on.Thelongtermdistributionsareintegratedoverselectedtimeperiodstodetermineburnup,whichisinturnusedforthevariousburnupdependentbehavioralmodelsintheFATEScomputerprogram.Theenvelopeaccountsforpossiblevariationsinthepea!clinearheatrateatanyelevationwhichmayoccurforshortperiodsoftimeandisusedexclusivelyfor.fissiongasreleaseclculations.Thepowerhistoryusedassumescontinuous100percentreactorpowerfrombe'inningoflife,Usingthishistory,thehighestfueltemperaturesoccuratbeginningoflife.Ithasbeenshownthatfu"1temperaturesforagivenpowerlevelatanyburnupareinsensitivetotheprevioushistoryusedtoarriveatthegivenpowerlevel.Fuelthermalperformanceparametersarecalculatedforthehotrod.Theseparametersfcranyotherrodinthecorecanbeobtainedbyusingtheaxiallocationinthehotrod,w'ioselocalpowerandburnupcorrespondstothelocalpowerandburnupintherodbeingexaminee.Thisprocedurewillyieldconservativelyhighstoredenergyinthefuelrodunder,considera-tion.
~e~,yJ'talltimesitisintendedthatthepowerdistributionbecontrolled(bydesignanduseoftechnicalspecifications)suchthatfueloverheatingdoesnotoccurandthefueltemperatureSAFDLisnotviolated.ControlofthepowerdistributionisdiscussedindetailinSection4.3.2.2.WAn~~~'~Wf~~isZeydi(r~le~:'II)Theanalysisofanticipatedoperationaloccurrencesisdescribedin'Chapter15.Resultsshowthatfuelmeltingdoesnotoccurforanyanticipatedoperatiorialoccurrence(i.e.,theSAFDLisnotviolated).TheanalysisofChapter15alsoshowsthatthefueltemperatureSAFDLismetformostaccidentseventhoughitisnotrequiredthatthis'SAFDLbemetforaccidents.TheCEAEjectionevent(15.4.5)doesshowthatsomefuelmeltingoccurs;however,radiologicaldosesarewellwithinlimits.
4.2.3.2FuelRodFailureEvaluation(a)HydridingInternalFailureduetointernalhydridingisavoidedbycontrollingthemoisturecontentofthefuelduringmanufactureofthefuelpellets(seeSection4.2.1.2,item(a)).ExternalFailureduetoexternalhydridingisnotexpecteddurtothelowamountofhydrogenabsorbedbythecladding(seeSection4.2.1.2,item(a)).
Acladdingcollapseanalyisisperformedtoensuretoensurethatnofuelrod.inthecoreuiIj~ollapseduringitsdesignlifetinn.Thacladcalculationmethoditselfdoesnotincludearbitrarysafetyfactors.However,thecalculationinputswillbedeliberatelyselectedtoproduceaconservativeresult.Forexample,thecladdimensionaldataarechosentobeworstcasecombinationsbasedeitherupondrawingtolerancesor95per-centconfidencelimitsonasbuiltdimensions;theinternalpressurehistoryisbasedonminimumfillpressurewithnoassistancefromreleasedfissiongas;andthefluxandtemperaturehistoriesarebasedonconserva-tiveassumptions.
(c)OverheatingofCladdingAsdiscussedaboveinSection4.2.3.1k,claddingoverheatingisavoidedfornormaloperationandanticipatedoperationaloccurrences.'TheanalysesinChapter15accountsforcladdingoverheatingduringaccidentsbyconservativelyassuminga-breachofthecladdingifDNBoccurs.TheECCSanalysisinFSARSection6.3.3showsthatcladdingtemperaturesareacceptable(<2200F)forLOCAs.
(d)OverheatingofFuelPelletsAsdiscussedaboveinSection4.2.3.1$,fueloverheating,isavoidedfornormaloperationandanticipatedoperationaloccurrences.TheanalysisofChapter15alsoshowsthatthefueltemperatureSAFDLismetformostaccidents(i.e.,fuelmeltingdoesnotoccur).TheCEAEjectionin15.4.5doesshowasmallamount(0.05Ã)ofcenterlinefuelmelting;however,radiologicaldosesarewellwithinlimits.
0
,~(e.)Y~Anindepthpostirradiationexaminationhasbeenconductedwhereinfuelcladdingchemicalreactionswereamongthoseitemsstudied.Thisstudyconcludedthatearlyunpressurizedelementscontainingunstablefuelweremoresusceptibletostresscorrosionattackthanarethecurrentdesignthatutilizesstablefuelandpressurizedcladding.Bycarefullymonitoringthereactorcn~!antactivityofoperatingreactnrs,ithasbeenconcLudedthatthecurrentfueldesignsarenotsusceptibletnstresscorrosion(nrothertypesnfcorrosion)duringnormalplantoperation.SincestresscorrosionattackistheresultofacombinationofstressesimposedbythefuelonthecLaddingandthecorrosivechemicalspeciesavailabletnthecLadding,irradiationprogramsarebeingpursuedtndefinetheconditionsunderwhichpelletcladinteractionwiLLdamagethecladding.TheseprogramsarecurrentlyunderwaybothatHaLdenandinthePathfindertestprogrambeingconductedjointlywithKWUintheObrigheimandPettenreactors.CEandKWUareparticipatingintheStudsvikandPathfinder/Pettenprogramstoevaluatefuelrodperformanceunderrampconditionstopowerlevelsnotrecentlyattained.Thesecanoccureitherafterrefuelingorafterextendedperiodsoflowpoweroperationorduringcontrolrodmaneuvers.Theeffectsofvariousfuelroddesignvariablesonpowerramplimitsisalsoinvestigatedasameanstofurtheroptimizedesign.ThePetten/Pathfinderprogramwhichbeganin1973isbeingconductedjointlybyCEandKWUintheObrigheimPWRreactorandPettentestreactorfacilities.Onespecialtestassemblyhasbeenirradiatedeachyearsince1973intheObrigheimreactor.Includedinthisassembly,whichisdesignedtofacilitatefuelrodremovalandreplacement,arewell-characterizedsegmentedrodsor,"rodlets"whichareaxiallyconnectedtoformacompletefuelrod.Theserodletsare"preirradiated"intheObrigheimreactorforone,.two,orthreeoperatingcycles,andthenseparatedandirradiatedinatestreactortoevaluateperformanceunderrampconditions.Todate,approximately500rodletshavebeenirradiatedinObrigheim.FortythreeoftheserodletshavebeendischargedandrampedinPetten.Anadditional24.rodletsarebeingsuppliedtotheStudsvikOverrampprojectforramptestingintheR-2reactoratStudsvik.Ramptestsoneightoftheserodletshavethusfarbeen~completedatStudsvik.Post-i'rradiation,hotcellexaminationpro-gramsformanintegralpartofboththePetten/PathfinderandStuds-vikexperimentstocharacterizefuelrodbehavior,particularlywithrespecttodimensionalstabilityandfissionproductrelease.Thesetestprogramsaredesignedtodistinguishbetweenfuelrodpowerrampswhichoccuronstart-upandthosewhichmightoccurduringreactorpowermaneuveringoperations.0-Operatingflexibilityofaplantrequiresthatthefuelrodsmain-tainintegrityduringperiodicchangesinpower.PowercyclingtestsofthistypehavebeenjointlyconductedbyCE/KWUinObrigheimandPetten.InthePettentest,asingleunpressurizedfuelrodwaspowercycledbetweenninekw/ftand17kw/ftat=apowerchangerateofaboutthreekw/ft/min.Thefuelrodsuccessfullycompleted400cyclesandachievedaburnupof8000Mwd/Mtu.PowercycL'nrtestswere<<henconducte"inO'erg'~e'.moneightshort 0
pressurizedandunpressurizedfuelrods.Thetestfuelrodswereattachedtoacontrolroddrivemechanismanddrivenfromthelowpowertoahighpowerpositiononanominalcycle.Powerchangesfrom50percentto100percentatratesof20percentperminutefor880cycleswereincluded.Aftersuccessfullycompletingtheexperiment,thetestrodsachievedapeakburnupof30,000Mwd/Mtuwithoutsubstantialcladdingdeformationorfuelrodperforation.Ananalyticalcode]t~evaluat'laddinroaponaetopellet-cladinteractionhasbeendevelopd.Thasanalysiswhichisbasedonanadv-needver-sionoftheFATEScomputercode,considersgeneralizedplane-strainofaunitsectionoffuelandc'ad.Alloithephysicalpheromd'nacalculationmethodsandinputvaxisol-so'hepresentFAT"Sprogram(1(p)arein-cduCedinthenev,version;ancinadoitlnn,modelsareincludedorelasticandplasticstressesandstra'nsinthecladandfuel,a.dfuelcreep.Acompatibleinterfacemodeledbetweenthefuelandcladensuresthatinter-actionisaccuratelyaccountedfor.~\Thetreatsientofpowerhistory,axialpowershapesandotheroperatingparaaictersishandledsimilartothecurrentFATESversionwiththeexcep--tionthatpowerra."..pratesandcyclingcanbccon"iderud.Yneresponseofthe'fuelaridcladiscalculatedthroughaniterativeprocess,andtheinteractionbetweenthefuelandcladisestablished.Theresultinganalyticalpredictionsoftemperatures,stresses,strainsandgeometricconfigurationarethusmadeavail"bleforuseinconjunctionwithoperatingexperienceandirradiationtestresultsindemonstratingtheacceptabilityofthevariousoperatingconditionstowhichthefuelmaybesubjected.Adetaileddiscussionor"themethodsandcapabilitiesofthepellet-cladinteractionmodelid-containedinReference6S.
Thepotentialforwaterloggingruptureisconsideredremote.Basically,thenecessar'yfactors,orcombinationoffactors,includethepresenceofasmt".11openinginthecladding,timetopermitfillingofthefuelrodwithwater,andfinally,arapidpowertransient.Thesizeoftheopeningnecessarytocauseaproblemfallswith'afairlynarrowband.Aboveacertaindefectsize,therodcanfillrapidly,butduringapowerincreaseitalsoexpelsw"te>.orsteamreadilywithoutalargepressurebuildup.Defectswhichcouldresultinanopeningincladdingarescrupulouslychec):edforduringthefuelrodmanufacturingprocessbybothultrasonicandheliumleaktesting.CladdefectswhichcoulddevelopduringreactoroperationduetohyQridingareisocontrolledbylimitingthosefactors'.p.,hydtoten.centnto'eelpallet)oh:.cbcor."ib'.t"tohkyiidn.tTh"uostlikely,timeforawaterloggingruptureincidentwouldbeafter'anabnormallylongshutdownperiod.Afterthistime,however,thestartuprateiscont:oiledsothatevenifafuelrodwerefilledwithcoolant,itwould"bakeout",thusminimizingthepossibilityofadditionalcladdingrupture.Thecombinationofcontrolandinpectionduringthemanufactur-ingprocessandthelimitsontherateofpowerchangerestrictthepotentialforwaterloggingrupturetoaverysmallnumberoffuelrods.TheUOfuelpelletsarehighlyresistanttoattackbyreactorcoolantintheeventcladdingdefectsshouldoccur.Exten"iveexperimentalworkandoperatingexperiencehaveshownthatthedesignparameterschosenconserva-tivelyaccountforchangesinthermalperformanceduring,operationandthatcoolantactivitybuildupresulti'ngfromcladdingrupture'islimitedbytheabilityofuraniumdioxidetoretainsolidandgaseousfissionproducts.
Intheeventthatafuelroddoesbecomewaterloggedatloworzeropower,itis.possiblethatasubsequentpowerincreasecouldcauseabuildupofhydrostaticpressure.Itisun-likelythatthepressurewouldbuilduptoalevelthatcouldcausecladdingrupturebecauseafuelpinwiththepotentialforrupturerequiresthecombinationofaverysmalldefecttogetherwithalo>>gperiodofoperationatloworzeropower.Testswhichhavebeenconductedgin~intentionallywaterloggedfuelpins(capsuledrivecoreatSPERT)showedthattheresultingfailuresdidejectsomefuelmaterialfrcmtherodandgreatlydeformedthet~stspecimens.However,thesetestrodswerecompletelysealed,andthetran-sientratesusedwereseveralordersofmagnitudegreaterthanthoseallowedinnormaloperation.Inthoseinstanceswherewaterloggedfuelrodshavebeen'observedincom-mercialreactors,ithasnotbeenclearthatwaterloggingwasthecause,andnotjusttheresult,of,associatedcladdingfailures;andCE'nasnotobservedandisnotawareofanycaseinwhichmateria'asexpelledfromwaterloggedfuelrodsorinwhichthefuelcladdingwassignificantlyde-formedinanormalpowerreactor.Itisthereforeccncludedthattheeffectofnormalpowertransientsonwaterlogged~fuelrodsisnotlikelytoresultincladdingruptureandevenifrupturedoesoccuritwillnotproducethesortofpostulatedburstfailureswhichwouldexpelfuelmaterialordamgeadjacentfuelrodsorfuelassemblystructuralcomponents.
~~~4.2.3.3FuelCoolabilityCriteria(a)Se@rE(b)ViolentExpulsionofFuelMaterialTheCEAEjectionanalysisofSection15.4.5showsthat,forallcases,the280cal/gmlimitismet.ThemathematicalmodelandanalyticalresultsarepresentedinSection15.4.5.1.3.
InsertE(a)FragmentationofEmbrittledCladdingTheanalysisofSection6.3.3showsthatthe2200Fcladdingtemperature0and17%claddingoxidationcriteriaaremetforallcases.
.Anexperimentalandanalyticalprogramwascond'tedtodeterminetheeffectsoffuelassemblycoolantflowaldisributionduringnormalreactor.operat:on.Intheexperi:,".cntalphase,velocityandstaticpressuremea-surementsweremadeincold,flowingwaterinanoversizemodelofaCE..14x14fuelassemblyinordertodeterminethethree-dimensionalflowdistributionsinthevicinityofseveraltypesofflowobstruction.Theeffectsofthedistributionsonthermalbehaviorwereevaluated,wherenecessary,with(hguseofapreliminaryversionoftheTORCthermalandhydrauliccode~Subjectsinvestigatedincluded:6~)a)Theassemblyinletflowmaldistributioncausedbyblockageofacoresupportplateflowhole~Evaluationoftheflowrecoverydatain-dicatedthateventhecompleteblockageofacoresupportplateflowholewouldno"produceaH-3Dl]BRoflessthan1.0eventhoughthereactormightbeoperatingatapowersuffic'enttoproduceaDND'Rof1.3withoutthebloc!cage.
b)T)eflowmaldistributionwithintheassemblycausedhycompleteblockageofonetoninechannels.Flowdistributionsweremeasuredatpositionsupstreamanddownstreamofablockageofonetoninechannels.Theinfluenceoftheblockagediminishedveryrapidlyinthcupstreamdirection.Analysisofthedatafora.".inglechannelblockageindicatedthatsuchablockagewouldnotproduceaii-3D!lS!<oflessthan1.0downstreamoftheblockageeventhoughthereactormightbeoperatingatapowersufficienttoproduceaDAB'f1.3withouttheblockage.Theresultspresentedabovewereobtainedthroughflowtestinganoversizemodelofastandard14x14fuelassembly.Becauseofthegreatsimilarityindesignbtween16x16assembly,andtheearlier14x14array,theseteatresultsalsoconstituteanadequatedemonstrationoftheeffectsthatflowblockagewouldnaveontire16x"16assembly.Thisconcl.usionisalsosupportedbythefactthatthc16x16as"cmblyhasbeendemonstratedtohav'greaterresistancetoaxialf'owt:hanwouldoccurwiththc14x14array.TheffectofthehighrflowresitancetoproducemorerapJdflowrecovery,i.e.,morenearlyvniformflow,isanalogoustothecommonuseofflowresistancedevices(screensorperforatedplates)tosmooChnon-uniformvclo"ityprofilesinductsorprocessequipment.~I~
(d)StructuralDamageFromExternalForcesTheanalysisshowingthatthefuelassemblycanwithstandtheassumedstructuralforceswil'lbepresentedinSection4.2.3.1a.
(~)Vendorproductcertifications,processsurveillance,inspections,tests,andmaterialcheckanalysesareperformedtoensureconformityofallfuelassemblyandcontrolelementassemblycomponentstothedesignrequirementsfrommaterialprocurementthroughreceivinginspectionatthepl..ntsite.Thefollowingarebasicqualityassurancemeasures~erichareperformed.FuelAssenblAcomprehensivequalitycontrolplanisestablishedtoensurethatdimen-sionalrequirementsofthedrawingsaremet.Inthosecaseswnerealargenumberofmeasurementsarerequiredand100percentinspectionisim-practical,theseplansprovideahighstatisticalconfidencethatthesedimensionsarewithintolerance.Sensitivityandaccuracyofallmeasuringdevicesarewithin+10percentofthedimensi.onedtolerance.onebasicqualityassurancemeasureswnichareperformedinadditiontodimensionalinspectionsandmaterialverificationsaredescribedinth.followingsections.WeldQulitvAssurancemeasuresTheweldedjointsusedinthefuelassemblydesignarelistedbelowinaseriesofparagraphswhichdescribethetypeandfunctionofeachweld,andincludeabriefdescripticnofthetesting(bothdestructiveandnon-destructive)performedtoensurethestructuralintegrityofthejoints.Thewaldsarelistedfromtoptobottominthefuelassembly.TheCEAguidetubejoints(betweenthetubeandthreadeduvperandlowerends)arebuttweldsbetweenthetwoZircaloysubcomponents.Theweldsarerequiredtobefullpenetrationweldsandmustnotcauseviolationofdimension='rcorrosionresistancestandards.Theupperendfittingcenterguideposttolovercastflowplatejointhasathreadedconnection'ichispreventedfromunt.hreadingbytackweldingthecenterguideposttothebottomofthelovercastpl,.teusingthegastun"stenarc(GTA)pro"ess.Eachweldisinspectedforcompliancewithavisualstandard.
VI00 ThespacergridweldsattheintersecitonofperpendicularZircaloy-4gridstripsaremadebytheCTAprocess.Eachintersectionisweldedtopandbottom,andeachveldisinspectedbycomparisonwithavisualstandard.ForthespacergridtoCEAguidetubeweld(bothcomponentsZircaloy-4),eachgridisweldedtoeachguidetubewitheightsmallwelds,evenlydividedbetweentheupperandlowerfacesofthegrid.Ecchveldisre-quiredtobefreeofcracksandburnthroughandeachveldisinspectedbyco..parisontoavisualstandard.Also,sufficienttestingofsampleweldsisrequiredtoestablishacceptablecorrosionresistanceoftheweldregion.EachguidetubeisinspectedafterweldingtoshowthatweldinghasnotaffectedclearanceforCEAmotion.Thelowerspacergridveldsatspacerstripintersectionsandbetweenspacerandperimeterstrips(allcomponentsInconcl625)havethesamecon-figurationas,fortheZircaloyandareallinspctedforcompliancewithappropriatevisualstandards.Theloverspacergrid(Inconel)toInconelskirtweldismadeusingtheGTAprocess.Eachweldisinspectedtoensurecompliancevithavisualstandard.TheInconelskirttolowerendfitting(304stainlesssteel)weldismadeusingtheGTAprocessandeachweldisinspectedtoensurecompliancewithavisualstandard.TheloverendfittingisfastenedtotheZircaloyuidetubesusinghreadedconnections.Theconnectionsarepreventedfromunthreadingby~stainlesssteellockin~ringswhichaeweldedtothelo::erendfitting.Eachringistackveldedtotheendfittinginfourplacesusing'theGTAprocess,andeachveldisinspectedforcompliancewithavisualstandard.Theinspectionrequirementsandacceptancestandardsforeachoftheveldsareestablishedonthebasisofprovidingadequateassurancethattheconnectionswillperformtheirrequiredfunctions..2OtherQualitAssuranceYeasuresAllguidetubes,areinternallygagedensuringfreepassagewithinthetubesincludingthereduceddiameterbufferregion.Eachupperendfittingposttoguidetubejointisinspectedforcompliancewithavisiblestandard.ThespacergridtofuelrodrelationshipiscarefullyexaminedteachgrdlocationoAnalphasmeartestisperformedontheexteriorsurfaceofthefuelrods.Eachcompletedfuelassemblyisinspectedforclesn'nuss,wrappedtopreserveitscle"nlinessandlo"drdv'.thins.lip~>ingcontainerswhicharelaterpurgedandfilledwithdryair.
Visualinspectionoftheconveyancevehicle,shippingcontainer,andfuelass'emblyareperformedatthereactorite.Approvedproceduresareprovidedforunloadingthefuelassemb'ies.Followingunloading,exteriorportionsofthefuelassemblycomponentsareinspectedforshippingdamageandcleanliness.Ifdamageeisdetected,theassemblymayberepairedon-siteorreturnedtothemanufacturingfacilityforrepair.Intheeventtherepairprocesswereotherthanonenormallyusedbythem"nufacturingfacility,orthattherepairedassemblydidnotmeetthestandardrequire-ment'sfornewfuelthespecificprocessorassembly'wouldbereviewedbe-fore(heprocessorassemblywouldbeaccepted.FuelRod~A'DlFuelPelletsDuringtheconversionofUF6toceramicgradeuraniumdioxidepower,theU0powerisdividedintolotsblendedtoformuniformisotopic,chemical,andphysicalcharacteristics.Twocontainersareselectedfromthetotalnumberofcontainersineachlotforcertificationsampling.Samplesareremovedfro-eachofthetwoselectedcontainersandsub-~.e.ssstt).Pelle"sare.dividedintolotsdur'ngfabr'cationwithallpelletswithinthelotbeingprocessedunderthesameconditions.Representativesamp'esareobtainedfromeachlotforproduc"acceptancetests.Totalhydrogencontentoffinishedgroundpelletsisrestricted(Subsection'+aas4).Thepelletdiametersare100percentinspected;allotherpelletdimensonsrecta90/90confidencelevel.D.nsityrequirementsofthesinteredpellet,Suesartione.2Q.5(6),mustmeata95/95confiden-alevel.Lontltudinalsectionsoftwosamplepelletsfromeachpelletlotarepreparedrormetal-'lographicexaminationtoensureconformancetonicrostructurerequi:emerts(Subsection4.2.$.5$4i)Surfacefinishofgroundpelletsisrestrictedto63microinchesorless(arithmeticaverage)whenme"suredinaccordancewithASKSpecification846.1-1962;andshallmeeta90/90confidencelimit.Pe1lesurfacesareinspectedforchipscracRsandfisuresinaccodane>>.withapprovedstandards.CladdingLotsareformedfromtubingproducedfromthesameingot,annealedinthesamefinalvacuumannealingchargeandfabricatedusingthesamepro-cedures.Samplesrandomlyselectedfromeachlotoffinishedtubingarechemicallyanalyzedtoensureconformancetospecifiedchemcialrequire-ments,andtoverifytensilepropertiesandhydrideorientation.Samplesfromeachlotarealsousedforflaretests,metallographicte'.sts,andbursttests.Eachfinishedtubeisultrasonicallytestedover.itsent.rele".nethforinternalsondness;visuallyinspectedforcleanlislesandtheeab"enceofacidstains,surfac'edefect,anddtufo=-.ration;nndinsp.ct"dforinsidedimensionandwallthicknes.Thefolio:ingsummarizesthersquirements
Thespacergridoutsidedimensionisspecifiedas8.130+0.015-inchessquare,andallgridsarecheckedtoverifycompliancewiththisrequire-mentpriortotheirassemblyintofuelassemblies.Fuelrodchannelspacingiscontrolledindirectlybyplacingrequirementsonthetruepositionofindividualgridcellsandonthestraightnessofindividualrods.Nospecificchannelmeasurementsaremadeonproductionfuelbecausemeasurementsmadeforinformationshowedessentiallynomorevariationthanwouldbeexpectedfromgridcellpositiontoleranceswhicharealreadyconsideredinthermalperformanceanalyses.
1)ChemicalAnalysisIngotanalysisisrequiredfortop,middle,andbottomofeachingot.Finishedproductistestedforhydrogen,nitrogen,carbon,andoxygenperASTME146-68.2)TensileTestatRoomTemperature(ASTHE8-69)3)CorrosionResistanceTest(ASTHG2-67)4)GrainSize(AS'112-63)5).FlareTest(Subsection6)HydrostaticBurstTest(Subsection7)SurfaceRoughness8)VisualExamination9)UltransonicTest10)MallThickness11)Straightness12)InsideDiameterFuelRodAssemblyImmediatelypriortnloading,pelletsmustbecapableofpassingapprovedvisualstandards.Eachfuelpelletstackisweighedtowithin0.1percentaccuracy.Theloadingprocessissuchthatcleanlinessanddrynessofallinternalfuelrodcomponentsaremaintaineduntilafterthefinalendcapweldiscompleted.Loadingandhandlingofpelletsiscarefullycontrolledtominimizechippingofpellets.Thefollowingproceduresreusedduringfabricationtoassurethattherearenoaxialgapsinfuelrods.StackLengthGageTheoperatorstackspelletsontoVtrough"thataregagemarkedtotheproperfuelcolumnheight.Mhenpellet'st"ckingiscompleted,allcolumnheightsareovercheckedbyQualityControl.Thepelletsaresubsequentlyloadedintotubes.Afterloading,thedistancefromtheendofthetubetotheendofthepelletcolumnischeckedwithagage.Finishedfuelrods,priortobeingloadedintobundles,a:efluoroscopedtoensurethatnosignificantgapsexistinthefuelcolumn.
0 Loadedfuelrodsareevacuatedandbackfilledwith'heliumtoaprescribedlevelas'eterminedforthefuelbatch.Impuritycontent:ofthefillgas"shallnotexceed0.5percent.Thefuelrodendcaptofuelrod'claddingtubeweldsarebuttweldsbetweentheZircalcy-4claddingtubeandtheZircaloy-4endcapmachinedfrombarstock.Theveldprocessismagneticforcewelding(VtFM).Qualityassuranceontheendcapveldisasfollovs:a)Destructiveexaminationofasufficientnumberofveldsamplestoestablishthatthemaximumallowablepercentofunbondedwallthickness(15percent)and-themaximumallowablecontinuousunbondedregion(10percent)arenotexceeded.b)'isualexaminationofallendcapweldstoestab'ishfreedomfromcracks,seams,inclusionsandforeignpariclesafterfinalmachiningoftheweldregion.c)HeliosleakcheckingWIEa)1endcapacidstoestablishthatnoleakrategreater-than10cm/sispresent.d)Corrosiontestingofasufficientnumberofsamplestoestablishthatweldzonesdonotexhibitexcessivecorrosioncomparedtoavisualstandard.Weldsmustbecapableofpassingacorrosiontest(ASG2-67)withnb~referential.oxidationattheweldinwaterat.650F,2200lb/in.for3.5days.Allfinishedfuelrodsarevisuallyinspectedtoensure'propersurface,finish(scratch..sgreaterthan0.001inchindepth,cracks,slivers,andothersimilardefectsarenotacceptable),Eachfuelrodismarkedtoprovide,ameansofidentification.BurnablePoisonRodBurnablePoi'sonPelletsB4CpowerissampledtoverifyparticlesizeandvtXboronrequirement:spriortoitsuseinpelletproduction.Finishedpelletsare100percentinspectedFordiameterandmustsatisfya90/90confidencelevelonotherdimensions.SamplesaretakenfromeachofthepelletlotsandexaminedforuniformdispersionoftheB4CinA120.Conformancewithdensityrangerequirementsisdemonstratedata93/95confidencelevelandwithB4Cloadingrequirementsata90/90level.Samplesaredrawnfromeachlottoverifyacceptableimpuritylevels.Finally,allpelletsareinspectedforconformancewithsurfacechipandcrackstandards.'laddinTh>>testingandinspectionplanforburnablepoisonrodgladdingisident-icaltothatforfuelrodcladding(Subsection4.2.4.f(bg.
Themoisturecontentofpoisonpelletspriortoloadingislimitedtovaluesbelowthatwhichwouldberequiredtoproduceprimaryhydridepenetrationofthecladding.Totalmoistureinventoryiscoy~a~abletothatwhichhasbeenshowntobeacceptableinfuelrods..Thefbricationprocessissuchthatallstepsfromcomponentdryingthroughfinalweldingarecarefullycontrolledsoastominimizethepossibilitiesforexcessivemoisturepickup.Finalverificationofpelletdrynessismadebydestructiveexaminationofonepoisonrodfromeachgroupofrodsfromthesamedryinglot.Thefollowingprocedureisusedduringfabricationtoassurethattherearenoaxialgapsinpoisonrods.TheoperatorstackspelletsontoVtroughsthataregagemarkedtothepropercolumnheight.Kenpelletstackingiscompleted,allcolumnheightsareover-checkedbyQu"lityControl.Thepelletsaresubsequentlyloadedintotubes.Afterloading,thedistancefromtheendofthetubetotheendofthepelletcolumnischeckedwithagage.Loadedpoisonrodsareevacuatedandbackfilledwithheliumtoaprescribedlevel.Impuritycontentofthefillgasmustnotexceed0.5percent.EndcapweldintegrityandcorrosionresistanceisensuredbyaQualityControlplanidentic"ltothatusedinfuelrodfabrication(Subsectiontf2t.l(L).Eachpoisonrodismarkedtoprovideameansofidentification.4"4-.4--ControlElementAssembliesCTheCEAsaresubjectedtonumerousinspectionsandtestsduringmanufactur-ingandafterinstallationinthereactor.Ageneralproductspecificationcontrolsthefabrication,inspection,assemblycleaning,packaging,andshippingofCEAs.AllmaterialsareprocuredtoAHS,ASTsh1orCEspeci"fications.Inaddition,variousCEAhardwaretestshavebeenconductedorareinprogres.Duringmanufacturing,thefol'owinginspectionsandtestsareperformed:a)TheloadingofeachcontrolelementiscarefullycontrolledtoobtaintheproperamountsandtypesoffillermaterialsoreachtypeofCEAapplication(e.g,,fulllengthorpartlength).b)Allendcapweldsareliquidpenetrantexaminedandheliumleaktested.Asamplingplanisusedtosectionandexamineendcapwelds.c)d)Eachtypeofcontrolelementhasuniqueexternalfeatureswhichdistinguishitfromothertypes.S~sef'ouicicleEachCEAhasunioueSeeFigures4.2-3through4.2-5P.
0 e)FullyassembledCEAsarecheckedforproperalignmentoftheneutronabsorberelementsusingaspecialfixture.Thealignmentchecken-suresthatthefrictionalforcethatcouldresultfromadvers~tolerancesisbelowtheforcewhichcouldsignificantlyincreasetriptime.Inadditiontothebasicmeasuresdiscussedabove,themanufacturingpro-cessincludesnumerousotherqualitycontrolstepsforensuringthattheindividualCEAcomponentssatisfydesignrequirementsformaterialquality,detaildimensions,andprocesscontrol.Afterinstallationinthereactor,butpriortocriticality,eachCEAistraversedthroughitsfullstrokeandtripped.Asimilarprocedurewillalsobeconductedatrefuelingintervals,Therequired90percentinsertiontimeforCEAsis3.0secondsunderworstcaseconditions.VerificationofadequacywillbedeterminedbytestingintheGETF-2flowtestfacility.Thisfacilitywillcontainproto-typical16x16reactorcomponentsconsistingofafuelassembly,CEAshroud,controlelementdrivemechanism,andasimulationofsurroundingcoreinternalsupportcomponents.Thetestconditionssimulatetheworstpossiblecorepressuredifferentialatreactortemperatureandpressureconditions,inadditiontoadversecontrolelementassemblyalignment.
0 4.2.4.2On-LineFuelSstemMonitorinThePrimarySamplingSystem(Section9.3.2)isusedtoobtainprimarycoolantsamplesandanalyzethemforboronconcentration,fissionandcorrosionproductconcentrations,chlorideconcentration,reactorcoolantpHandconductivitylevels.TheSecondarySamplingSystem(Section9.3.2)isusedtoanalyzethesecondarysystemcoolantforcationconductivity,pH,hydrazineanddissolvedoxygen.TheSteamGeneratorBlowdownSystem(Section10.4.8)isusedinconjunctionwiththeChemicalFeedandSecondarySamplingSystems(seeSections9.3.2and10.3.5)tocontrolthechemistryofthesecondarysidewaterandmonitortheactivityinthesecondarysidewater.
0 Highburnupperformanceexperience,asdescribedinSubsection'asprovidedevidencethatthefuelwillperformsatisfactorilyunderdesignconditions.Thecurrentcoredesignbasesdonotincludeaspecificre-quirmentfortestingofirradiatedfuelrods.However,thefuelassemblydesignallowsdisassemblyandreassemblytofacilitatesuchinspections,shouldtheneedarise.~,Afuelrodirradiationprogramhasbeendevelopedtoevaluatetheperform-anceoffuelroddesignedforuseinthe16x16"fuelassembly.Thepro-gramincludestheirradiationofsixstandard16x16assemblies,twoeachfor1,2,and3cycles,respectively,intheArkansasNuclearOne-Unit2reactor(AHO-2):Eachssemblywillcontainaminimumof50precharacter-ized,remov"blrodsdistributedwithintheassemblytoobtainaspectrumofexposurelevelsforevaluationpurposesintheinterimandterminalexaminations.interimexaminationofallsixassembliesisplannedduringrefuelingshutdownsaftereachcycle.TheAVO-2fuelrodsandspecificcompcnentsofthefuelrod"haverece'vedadetailedpre-characterization.Theprogramcallsforsubstantialclad-dingcharacterizationtoincludemechanicalproperties,texture,hydrideorientationandoutofreactorlowstrainratebehavior.1nadd'tiontotheIDandODdirensionaldatanormallyobtainedonthecladtubingm"terial,aminimumof300fuelrodswillbemeasuredtoobtainasloadeddimensions.Sufficientfuelrodswillbeprofiledtoobtaindiameterandovalitymeasurementssuchthatchangsinthesepar-meterscanbetrackedbysimilarmeasurementsduringinteriminspections.Also,arandomselec-tionofapproximately100UOpelletsfromeachlotperbatchusedwillbecharacterizeddimensional)yandthedensitydistributionwillbedeter-mined.Aboutonehalfofthespelletswillbeplacedinknownaxiallocationsinselectedfuelrodswhiletheremainderwillbesetasideasarchives.....'Apoolsidenon'estructiveexamine"ionwillbemadeduringeachofthe>firstthreerefuelingSatAtlO-2.Tnesix16x16assemblieswithchar"cter-izedrodswillberemovedfromthereactorateachrefuelingandmovedtothespentfuelpoolforleaktesting(iffailedfuelisinthecore)andforvisualinspection.Thelengthoftheassemblyandperipheralrodswillbemeasured.Duringtheshutdown,'atargetof20pre-characterizedrodsperbatchwillbescheduledforexaminationandmeasurement.Atsometimeaftertherefuelingoutage,pre-characterizedrodsretainedindischarged*assembliesvillbemeasured.Atargetof100rodswillbeeddvtestedaft~eachshutdo>>~.ApostirradiationfuesurvexlanceogramforStLucieUnit2isbeing'lanned.Spec'ficrequirementstheplanwillbedeterminedbasedonti'eresultsoftheANO-2r".am.HoweverF!'<Lcurr.ntlvlansto"r-torm.i!aspection~whenthetuela."semblicsareremovedfromthecoreandp]acedinthespentfuelstoragepool.I' TherearetwotypesoftestswhichcanbeperformedforcheckingtheworthofCEA'sandCEAgroupsfollowingrefuelingoutages.ThefirstisarodsymmetrytestinwhichthereactivityworthofeachsymmetricallylocatedCEAinaparticulargroupiscomparedwiththatofotherCEA'sinthatgroup.ThesecondisacheckonthegroupreactivityworthofseveraloftheCEAgroups.Thesensitivityoftheindividualrodsymmetrycheckissuchthatasub-.stantiallossofboronfromanysingleelementofastandardfive-elementCEAwouldprobablybereflectedinthetestresults.ThegroupworthtestissufficientlysensitivetorevealmultipleelementfailureswithinagivenCEA.III$es4~J 0
An.unexpecteddegradationofguidetubesthatareunderControlElementAssemblies(CEAs)wasrecentlyobservedinirradiatedfuelassembliestakenfromoperatingCombustionEngineeringre-actors.Apparently,coolantturbulenceisresponsibleforinducingvibratorymotionsinthenormallyfullywithdrawncon-trolsrods.Whenthesevibratingrodsareincontactwiththeinnersurfaceoftheguidetubes,a~earingoftheguidetubewallhastakenplace.SignificantwearhasbeenfoundtobeconfinedtotherelativelysoftZircaloy"4guidetubebecausetheInconel-625claddingonthecontrolrodsisarelativelyhardwearsurface.Theextentoftheobservedwearhasappearedtobeplantdependent,buthasinsomecasesextendedcompletelythroughtheguidetubewall.TheproblemofguidetubewearhasbeenaddressedonoperatingCEreactorsthroughtheuseofstainlesssteel,chromeplatedsleevesintheguidetuberegionssubjecttolongtermcontactwiththecontrolrods.Sleevesarealso'tobeused-initially[gW+:~leP:"-":'naddition,hardwaremodificationshavebeenmadeinthe".egionwhereflowexitsfromthefuelassemblyandenterstheCEAshroud.Sincesleevesalonehavebeenshowntobeeffectiveonotherplants,thecombinationofsleevesandthereducedflowexcitationofthecontrolrodsprom'sestoprovideacceptableoperation.a)DiscussionofHard-areHodifications1.FlowChannel'Extensions-Theflowchannelextensionsusedon5f,aresimilarto"hoseinstalledinCE'sAXO-2plant~inSanOnofre2and3.Flowchannelextensionsareinstalledinthefivee'ementCEAcavitiesinthefuelalignmentplatetoextendtheflow.channelsoftheC~>)shroudtothebottomofthefuelalignmentplate(seeFigure~g-)~Theextensionsaredesignedtominimizeflowturbulencenearthecontrolrodtipsbyisolatingtheinteriorofthecontrolrodshroudfromflowexitingthefuelassembly.2.FlowBpassInsert-Aflowbypassinsert(FBPI)hyp,Penin-stalledineachofthefourelementCEAshroudson~SEC/+.pirsThefunctionoftheFBPIisthesameasthatoftheflowchan-nelextensions,namelytodirectthemajorityofthefuelassemblyflowawayfromthecontrolrodsandthe'nteriorofthe'our';e-...entC"=A~"roud.TieFBPIisac'1'"-"ricalcasti-.einstailedinthebotto:i"c~efou.-ale-entE,ls,ruds.
castinghasarightangleflowtubethroughits,centertodirectflowtotheoutletplenumagkgperipheralthroughholesfortheCEAfingers(seeFigure>'hefourelementCEAhasbeenmodifiedtoaccommodatetheFBPI,anditsspidersitsontopoftheFBPIwhentheCEAisfullyinserted.~Lb)Out-of-PileDemonstrationProgramTwoseparate250hourflowtestshavebeenconductedusingthehard-'aremodificationsdescribedabove.Fullsize16x16fuelassem>>blieswereusedineachcase.Thefuelassemblyguidetubeswerenotsleeved.Hardwaretolerancesandflowconditionswerepurposelychosentoreflectadverseconditions.Theresultsofthesetestsshowedthatadramaticreductionincontrolrodvibrationcharacteristicshadbeenachieved,comparedtotheoriginalhardwareconfiguration,andthatverylittleguidetubewearwouldbepredictedoverthecourseofthefuellifetime.c)In-PileDemonstrationTestTheuseoftheout-of-pileteststopredictthe,in-reactorrateofguidetubewearisjustifiedbyademonstrationprogramrecentlcompletedintheCalvertCliffs2reactor(Referencesjgand).Theresultsshowedthatthewearratepredictedbyout-of-piletestingisconsistentwiththatoccurringinlongtermreactoroperation.A:L~rc.~gBecausetheabovedemonstrationprogramwasperformedforgeometriesguidetubesleevesinthefuel,whichwillbeaderCEAS,asinin-terimmeasure.untilasimilardemonstrationprogramplannedforCycle1ofSanOnofre2hasbeencompleted.SafetAnalsisSleevingofthefuelassemblieswillnotresultinCEAscramtimesinexcessofthoseusedintheexistingsafetyanalysis.Therefore,.nochangesarerequiredfortheanalysesinvolvingtheanticipatedoccurrences.CTheuseofthin-wallstainlesssteelsleevesinthe16x16assemblydesignwasjustifiedpreviouslyfortheArkansasNuclearOne,Unit2reactor,(Reference).ThepresenceofthesleevesdoesnotproducechangesinthestructuralpropertiesofthefuelassemblyforseismicorLOCAanalyses.
0 SL2-FSARSECTION4.2:lU'.1ERENCESTimoslie>>ko,S.,Stre>>ythofHaterials,PartIIChapterIX,D.VanNostrandCo.,Inc.,NewYork,1956.2~"HighTemperaturePropertiesofZircaloya'ndU02foruseinLOCAEvaluationHodels,"CombustionEngineering,Inc.,CFNPD-136(Propri-etary).3~4,"ZircaloyGrowthInReactorDimensionalChangesinZircaloy-4FuelAssemblies,"CombustionEngineering,InceE'CENPD-198P(Proprietary),December1975.~JO'Donnel,W.J.,"Fracture,ofCylindricalFuelRodCl.addingduetoPlasticInstability",WAPD-Ts!-651,April1967.5.Weber',J.H."PlasticStabilityofZr-2FuelCladding,EffectsofRadiationofStructuralHetals,"'ASTHSTP425,Am.Snc.TestingMats.,pp653-669,1967.6.Engle,J.T..andHeieran,H.B.,"PerformancetoFuelRodsHabing97Percent.,TheoreticaldensityUOPelletsSheathedinZircal,oy-4andIrradiatedatLowThermalRatings,"WAPD-TH-631,July1963.2Duncombe,E.,Heyer,J.E.,andCoffman,W.A.,"ComparisontswithExperimentofCalculatedDimensionalChangesandFailureAnalysisofIrradiatedBulkOxideFuelTestRodsUsingtheCYCLO-jComputer,Program,"MAPD-TH-503,September1966.8.lfcCauloy,J.E.,etal.,"EvaluationofthoTrradiationPerformanceofZtres!oy-4CladTestRodCon:aininEAnnularUOPuelPellets.(Rod79-19),"WAPD-TH-595,December1966.29.Notley,H.J.F,Bain,A.S.,andRobertson,J.A.L.,"TheLongi-tudinal.-andDiametralExpansionofUOFuelElements,"AECL-2143,November1964.10.Notley,H.J.F.,"TheThermalConductivityofColumnarGrainsinirradiatedUOFuelEtsmeats,"TCCL-1822,July1F12.13.HanSOnyS~SPFatigue:ACnmplCcXSubjeCt-SOmeSimpleApprOXima-tions,"ExerimentalHecha>>ics,Vol..22,No.2,pp1'33-226,July196'5.rO'Donnel,W.J.a>>dLanger,B.F.,"FatigueDesignBasis*forZircaloyComponents,"Nuc.Sci.Ento,'Vcl20,pp1-12,1964.~atCESSAR;ProprietaryAppendix,Docket50-470.14."CEFuelEvaluationHndelTopicalReport,"CombustionFngineering,Inc.,ClVPD-139(Proprietary),CENPR-139R'.v.01(Nion-Proprietary)CENPO-139S>>>>ilementi,Rev.Gl(Non-proprititary),Julyl)74.4.2-68 SL2-FSARSECTION4.2:Rl'.FEliENCES(Cont'd)15.Conway,J.B.,"TheThermal,ExpansinnandHeatCapacityofUO2200C"CE-NMPD-TM-63-6-6.16.I'7-Chrxstensen,J.A.,"ThermalExpansionofUO,"HW-75143,1962.Jnnes,J.H.,etal.,"OpticalPrnpertiesofUraniumOxides,"Nature,205,663-65,l965.Cabannes,F.andStora,J.P.ReflectionandEmissionFactnrsnfUOatHighTemperatures,"C.R.Acad.Sci.,Paris,Ser.B.264(1)45~48,1967.19.Held,P.C.andWilder,D.R."HighTemperatureHemisphericalSpectral,EmittancetnUraniumDioxideat0.65and0.70m,~"J.An.Cer.Snc.,Vol52,No.4,1969.20;21.Brassfield,H.C.,"RecommendedPrnpertyandReactionKineticsDataFnr.UseinEvaluatingaLightWaterCooledReactorLoss-of-CoolantIncidentInvoke.yingZircaloy-4or324-53CladCO,"GEMP-482,1968eBeals,R.J.,"HighTemperatureMlechanicalPropertiesofOxideFuels,"ANL-7577,April-Hay1969,Page160.22."CEPAV,MethodofAnalyzingCreepCollapseofOvalCladding,"Com-bustionEngineering,Inc.,CENPD-187P-A,March1976.23.24."STRIKIN-II,ACylindricalGeometryFuelRodPeatTransferProgram,"CombustionEngineering,Inc.,CENPD-135P(Proprietary),CENPD-135(nnn"Proprietary),August1974.Dauerall,J.ErtLA-2669UEAEC,Vut62,1954.25.Rudkin,R.L.,Parker,J.W.,andJenkins,R.J.,ASD-TDR-62-24,Vol1,p20,1963.26.Thorne,R.P.andHnward,V.C.,"ChangesinPnlycrystallineAlumina-"'L"'7.Simnad,H.T.andMeyer,R.S.,"BeOReviewnfPropertiesforNuclearReactorApplications,"Proceeding:snftheConferenceonNuclearAlicationsofNdnfissionableCeramics,pp209-210,AHay9-11,1966.23.29.Rason,N.S.andSmith,A.W.,"NAA-SR-862,"Vhl37(AD85006),1954.Saba,W.G.andSterret,K.F.,"J.Am.Chem.Snc.,"Vol.79,pp3637-38.30."FuelsandMaterialsDevelopmentquarterlypr05grcssReport,"pp38-'58,ONRL-TM-3703,December31,19/1.Kinger>,Q.D.,"Intrndu<<tinntnCeramics,"3ohnWiley5Sons,pp486-504.
0 l>cLAK SECTIONSI.2-FSAR4.2:REFERENCES(Cont'd)(>7aa"'-"Solidlfaterials,"Vol4and5,'HacHillan.33.Hnore,G.E.andKelley,K.K.,"J,Am.Chem.Snc.",Vol69,pp309-16,1947.Keslhnltz,G.W.,Moore,R.E.,andRnbitson,H.E.,"EffectsnfHxghBornnBurnupsnnBCandZrBDispersionsinAl03andZirealoy-2,"BHl"1627,April24,1963.ZFNBurianpRJ~9Fromm,E.O.,andGates,J.E."EffectnfHighBoronBurnupsnnBCandZrBDispersinnsinAl03andZircalny-2"Bi't1-1627,Apttl24,l9d3.Qg'rCunninBhms,G.N.t,t"CompatibilityofNatalsand,.Ceramics,"Prnceed-inasofNuclearAnplications'nflionfissionabler.'o.ramirs,pp279-289,Hay196697-Graber,H.J.,"AMetallurgicalEvai,uationofSimulatedBWREmergencyCore.CnnlingTestsp"IdahnNuclearCnrnratinn,IN-1453,March1971'.38.Pitner,A.L.,"The'WDC-1-1instrumentalIrradiatinnnfBoronCarbineinaSpectrum-HardenedETRFlux,"HEDL-TW-73-38,April1973.39.Gray,R.G.andLynam,L.R.,"IrradiationBehaviorofBulkB4CandB,C-SiCBurnablePnisonPlates,"WAPD-261,October1963.40."HEDL(quarterlyTechnicalReportfnrOctnber,NnvemberandDecember1974,"Vol1,HEDL-T~IE-74-4,ppA-51toA-53,January1975.41.Mahagan,D.E.,"BoronCarbideThermalCnnductivity,"HEDL-TthfE-73-78,September1973.42.Hnman,F.J.,"Performance.'fndelingofNeutronAbsnrbers,"Nuclear-*'"'K'3.Patner,A.L.andRusscher,G.E.,"IrradiatinnnfBoronCarbidePelletsandPowdersinHanfnrdThermalReactors,"wliAN-FR-24,Decelnber1970.44,Pitner,A.L.andRusscher,G.E.,"AFunctinnnnPref>ictLHFBRHeliumReleaseBoundonBornnCarbideIrradiationDataErnmThermalRea<<tnrs,"HEDL-THE-71"127,September30,1971.45.HEDL-73-6,"MaterialsTechnnlngyPrngramReportforOctober,N<bvefriber2andDecember1973,"PPA-69tnA-72.46.Cohen,I.,"DevelopmentandPrnpertiesnfSilver-BasedAllnysasControlRndifaterialsFnrPressurizedWatrRead:tnrs,"WAPD-"..14,Deceftiber1959.
Sl'.CrIONSL2-FSAR4.2:!UFERENCES(Cont'd)(gQ47.Tipton,C.Reg"ReactorHandbook,"Vnl,1,Materials,Interscience,p827,1960.48."NationalAlloyDevel:npmentProgramInformationMeeting,"pp39-63,TC-29L,itsy22,1975.49."QuarterlyProgressReport-IrradiationEffectsnnStructuralMaterials,"HEDL-TEM-161,ppGE-5-GE-10.50."Structural,AnaLysisofFuelAssembliesfnrCnmbinedSeismicandLossofCoolantAccidentLnadings,"CombustionEngineering,Inc.,CENPD-178,August1976.51,"JointCE/EPRIFuelPerformanceEvaluationPrngram,TaskC,Evalua"tinnofFuelRndPerformanceonMaineYankeeCoreI,"CombustionEngineering,Inc.,CENPD-221,December1975.52."PressurizedWaterReactnrProjectPeriodJanuary24,1964tnApriL23,.1964,WAPD"MRP-108.53."FueLandPoisonRodBowing,"CombustionEngineering,lncttCENPO-225-P(Proprietary),October1976.54,55.Caye,T.E."SaxtnnPlutnniumPrnject,QuarterlyPrngressRepnrtfnrthePerindEndingMarch31,1972,WCAP-3385-31,November1972.Berman,R.M.Heieran,H.B.,andPatterson,P.,"IrradiatinnBehaviorofZircalnyCladFuelRodsCnntainingDishedEndUO~Pellets,"(LWBR-LSBRDevelopmentProgram),WAPD-TML-629,July"1967.C56.Baruch,S.Jttetaltt"ComparativePerformanceofZircaloyandStainLessSteelCladFuelRodsOperatedtoLO,CO)tgid/LTOintheVBWR,"GEAP-4849,April1966.57.Megerth,F.H.,"Zircaloy-Cl.adUOFuel.RndEvaluatinnPrngram,"QuarterlyProgressReportNo.S,august1969-October1969.CEAP-10121,November1969.58.Megerth,F.HcB"Zircaloy-CladUOFuel.RndEvaluationProgram,"QuarterlyProgressReportNo.1,lovember1967-January1966,OEAP-5598,March1968.59.Ana1sisReort,Volume-9,pages4.2-59-4.2-61.60.Brite,D.W.etal,"EEI/EPRIFuelDensificatinnProgramFinal.Report,"BattellePacificNorthwestLaboratories,March1975.61.Stephan,L.Aeg"TheResponsenfWaterlnggedUOFuel.RndstoPowerBursts,"IDO-ITR-105,April1969.62.Step;an,L.A.,"TheEffectsnfCladdingMaterialandHeatTreatmentnnt!LeRespnnsenfWaterlnggedUOFuelRodstoPnwerBurst,"IM-ITR-111,January1970.s SL2-'FSARSECTTON4.2:RFFFRFNCES(Cont'd)63."TORCCode:AComputerCodeforDeterminingtheYhcmalMarginnfaReactorCore,"CombustionEngineering,Inc.,CEHPD-151-P,<Propri-etary)July1,1975.64.Jonn,K.,"PrimaryHydrideFailurenfZircaloyCladFuelRods,"ANSTransactions,Vol15,No.l.~~Y65."A'pplicationofZircaloyKdiationGrowthCorrelationsfortheCalculationnfFuelAssemblyandFuelRodGrowthAllowances'upplement1toCENPD"19GP,(Proprietary),December1977.IMarlowe,Mo.0.,"High1'emperatureIsothermalElasticMnduliofUO"JournalofNuclearMaterials,Vol.33(1969),pages242"244.266.67.Pickman,D.0.,"PropertiesofZircaloyCladding,"NuclearEngineer-68."CEThermo-StructuralFuelEvaluationMethod,"CombustionEngineer-ing,Inc.,CENPD-179,April.1976.AaM1'18I.r'D~MTr<<~~WJ$rAv(wufScg.~p~W~rFo.~[~Co~4('4o',Cn~s4.~E'~p<'~a~g,X~c:,~Ceu-I5f(s3-P,~gDataofT.T.Claudson'7~~gpoyngice,Mashington,D.C.19on,.S.961.Pages196-197.?4untrodlt~uctiontoCett469-471.eramics",~.D.angengery,JohnVileygSonsSimnaeVSons,1960pp7g+tNoTo~gfeRea,to,rApplicatio"p'rons,Proceedinsof/gThorneReramics,May9-11,1966,clearAl.i-'ne,R.P.,HowardPP193-206.astNeutrC~pChronIrradiationgPolcr441445ponminab7,February196.oedinsofh7.teBritish
7$.CRN-101(R),"CalvertCliffeUnitIICycle2ReloadRub"mittal,Update".August21,1978.7+CEN-118(B),"ResultsoftheCEAGuideTubeInspectionProgram".CalvertCliffsUnitNo.2DocketNo.50-318;November8,1979.CEN"96(A),"ArkansasNuclearOne-Unit.2,ReactorOperationwithModifiedCEAGuideTubesandLengthenedUpperGuideStructurePlowChannels,June9,1978.
SL2-FSARTABLE4.2-1HECllANICALDESIGNPARr'91ETERS(gdCoreArrangementNumberoffuelassembliesincore,totalNumberofCEAsNumberof.fuelandpoisonrodlocationsSpacingbetweenfuelassemblies,fuelrodsurfaceto"surface,in.Spacing,outerfuelrodsurfacetocoreshroud,in'ydraulicdiameter,nominalchannel,ft.Totalflowarea(ex~ludingguidetubes),ftTota1corearea,ftCoreequivalentdiameter,in.Corecircumscribeddiameter,in.Totalfuelloading,KgUTotalfuelweight,lbUOTotalweightofZircaloy,lbFuelvolume(includingdishes),ft2179151,2120.2080-2140-039454.8101.113614381.7x103204.4x1059,008325FuelAssembliesBatchABCClNo.ofAssemblies738040816Enrichment(wtZ)U-235No.ofPoisonRodserAssemhl01601216FuelRodarraysquare16x16FuelRodPitch,in.0.506GpacerGrid(P/gg]):TypeLeafspringMaterialNumberperassemblyWeighteach,lbZircaloy"4BottomSpacerGrid:TypeMaterialNumberperassemblyLeafspringInconel6254,2-73AmendmentNn.0,(12/80) 0 SL2-FSARTABLE4.2-1(Cont'd)FuelAssemblies(Cont'd)Weighteach,1bWeightoffuelassembly,lbOutsidedimensions:2.61303Fuelrodtofuelrod,in.7;972x7.972FuelRod:Fuelrodmaterial(sintered'-pellet)Pelletdiameter,in.Pelletlength,in.Pelletdensity,g/cm3Pellettheoreticaldensity,g/cmPelletdensity(Xtheoretical)Stackheightdensity,g/cmCladmaterialCladID,in.'ladOD,(nominal),in.Cladthickness,(nominal),in.Diametralgap,(cold,nominal),in.Activelength,in.Plenumlength,in.U020.3250.39010.3810.9694.7510.061Zircaloy-40.3320.3820.0250.007136.78i$58ControlElement(CEA)FullLenthPartLenthNumberAbsorberelements,No.perassy.Type835,4CylindricalrodsCylindricalrodsCladmaterialInconel625Inconel6254'-74
ControlElement(CEA)Cladthickness,in.CladOD,in.Diametralgap,in.CenterElement(a)PoisonmaterialPoisonLength,in.OutsideElementsPoison!faterialPoisonLength,in.B4CPelietDiameter,in.SL2-FSARTABLE4.2-1(Cont'd)FuelAssemblies(Cont.'d)FullLenpth0.0350.8160.009ggP)-Xn-dJ1/p.s//as-B4C/Ag-In-Cd/aa//a.s.0.737PartLcath0.0350.8160.009Inconel/B4Ca<,s/iqInconel/B4Cd8Sjly0.737Density,%of)heoreticaldensityof2-52g/cmWeightZboron,minimum7377c57377.5BurnablePoisonRodAbsorbermaterialPelletdiameter,in.Pelletlength,in.,minPelletdensity(Ztheoretical),minTheoreticaldensity,A1203g/cm3Theoreticaldensity,B4C,g/cm3CladmaterialA1203-B4C0.3070.500933.902.52Zircaloy"4tarotApplicableforFour-ElementCEAcrso~-8eatenQ~~PIaa~/b)F;.~4.2-75AmendmentNo,0,(12/80) 0 SL2-FSARTABLE4.2-1(Cont'd)BurnablePoisonRod.nt'd)CladID,in.CladOD,in.Cladthickness,(nominal),in.Diametralgap,(cold,nominal),1n~8ups0.3320.3820.025Activelength,Plenumlength,in.Ln.g,(5-y4,2-76 SL2-FSAR.TABLE4.2-2ABSORBERMATERIALS-THERMALANDPHYSICALPARAMETERS1)BoronCarbide(B4C):ConfigurationOutsidediameterin.Rightcylinder0.737+0.001Pelletlength,in.nominalEndchamferDensitygm/ccMeightXboron,minimumXopenporosityinpelletThermalconductivity(cal/cm-s-C):0.03"x45CHAMF1.8477.527IrradiatedUnirradiated.800F1000FMeltingpoint,FXthermallinearexpansion2)Silver-Indium"Cadmium(Ag-In-Cd):Configuration0.D.in.I.D.in.8.3x1028x107.9x1024x104,4400.23X91000FCylindricalbarswithcentralhole0.734+.003Lengthofbar,inchesnominalDensity,lbe/in.Thermalconductivity(cal/s-cm-C)121/20.367IrradiatedUnirradiatedat300Cat400CMeltingPoint,FLinearTnensalExpansion~.i/nsap0.140.1820.1480.1961,47012.5x104.2-77 SL2-FSARTABLE4.2-2(Cont'd)3)InconelAlloy625(Ni-Cr-Fe):Configuration(asabsorber)Outsidediameter,inchesInsidediameter,inchesLengthofcylinder,inchesDensity,lb/in.UltimatetensileStrength,lb/in.Q70FSpecifiedm-'nim<<myieldstrength9650F,kisElongationin2inches,percentYoung'smodulus,lb/in.Cylindricalbar0.816+0.002Solid697/8(PartlengthCEA)0.305120-150x1036530at70Fat650F29.7x106627.0x20Thermalconductivity,Btu/hr-ft-F70F'5.7600FLinearthermalexpansion,in./in.-F8.27.4x10(70to600F)4.2-78 SL2-FSARTABLE4.2-3TENSILETESTRESULTSONIRRADIATEDSAXTONCOREIIICLADDINGFluence(>1MeV)4.7x1021n/cm2(estimated)RodIDBOBORDRD%8QHQFSGLLocationFromBottan(in.)11"1726-323-912-1812-1828-34,28-3412-18TestingTe:Op(oF)6506506506506756756756750.2'4YieldStress(lb/in2x103)61.458.162.260.570.466.057.260.5UltimateTensileStrength(lb/in.2x103)65.668.970.065.477.475.171.471.5UniformStrainIn2-in.GageLength(!)2.22.42.01.71.91.63.92.4gITnta1StrainIn2-in.GageLength6.811.34.25,86.16.212.99.3 00 SL2-ESARTABLE4.2-4POOLSIDEFOELINSPECTIONPPOCRAMS1DNARYReactorPalisadesMaineYankeeFt.Calho<<nSh<<tdovnDate/CvcleA<<g<<st1973/IAJune1974/IHay)975/IAApril1977/Core2CycleIJ<<ly1978/Core2CycleIIFebr<<ary1975/IOctober'1975/IISeptember1977/IIICycleAverageBurn<<(MMd/Mtu)6,8004,45017,4009,00010,9007,700InsectionProramScoeVisualExam,Camma-Scanning,CrudSamplingVisualVisualV1s<<alVis<<alExam,Exam>Exam,ExamVisualExamVisualExam,CrudSamplingVisualExamSipping,Disassembly/SingleRodExams,CrudSanplingSippingDisassembly/SingleRodExansCalvertCliffs-IDecember1976/IJan<<ary1978/IIApril1979/Il17,0008,3009,500VisualExan,VisualExam,Vis<<alExam,CE/EPRITestBundleDisassembly,SingleRodCE/EPRITestBundleDisassembly,Singl,eRodCE/EPRITestBundleDisassembly,SingleRodExamExamExanMillstone-II11ovcmbcr1977/IMarch1979/II15,1009,200VisualExamSt.L<<cie"IJu/y1976/IMarch1978/IACalvertCliffs-IISeptember1978/I80012,40016>200VisualExamVisualExam>Vis<<alExamVis<<alExamDisassemblyandSingleRodExans
020MILCLADQ25hllLCLAD430h'IILCLADQ34MILCLADCOEXTRUDEOZr/UhIETALELEMENTSJ.W.WEBERASTIASTP4261962WAPOTM631ANOWAPDTM583QROO7922FAII.EOCIRCUhl.'2.2x10NVTROO291636OWEO6x1020NVT~THEORETICALFAILURECURVF.BASE0ONO'OONNEL'SANALYSISlWAPDTM6511IC/IILxJ3OROD7962~2x1020NVTHEROD19'l9SPLIT'APD3.3x1020NVTJŽ5950OOgOESI4NSTRAINSFORPRTR,HW15261ADJUSTEDCURVERODSOFLOFhlDFN10001300MWOrTONNEUAECL1822Q6NOTE:SOLIDSYh!BOLSDENOTEFAILEDRODS0Q+p~OESGNSRNSz--600'IlfCEDESIGNLliVIT0i52003004005006M700SMTftilPfRATURf,F90010"0l100FLORIDAPOP:ER8LIGIITCOr'IPANYST.LUCIEPLAIIT0IIT2.CIRCUiVFFREI'ITIAL~TRAIIIVSTEVIxLRATURF.Flr"1I,lRI.rl..";1 EFFECTIVESTRAINRANGE0.1700FDESIGNCURVE0.010.001110100PERMITKOCYCLES,N10,600FLORIDAPO')YER8LIGHTCOi",..ANYST.LUCIE)"LANTUNIT2DESIG'ICURVEf'RCYCLICS)RAINUSAGEOFZlRCAI-OY-0AT700f'IGUREiI.2-2 (goSPIDERVPITHl'JUK1EiRICALIDENTIFICATIONSPRINGII~~~~II'ISPRINGRETAINERENDFITTING.I.j'jlHOLDDO'<ANSPRINGPLENUMSTAINLESSSTEELSPACnI1QllB4CPELLETS=126"B4CS-1/2"INCONELs/s-12-1/2"SPACERfbuO&THRduaHdu7.SILVERINOIUI'<1-CADP1IUIASPACERFLORIDAPOWER8iLIGHTCOMPANYST.LUCIEPIA;3TLINIT2FULL-LQIGTIICOIITROLELE.'RENTASSLMDLY(S.ELFWCNT)I=,IGU"(I".0?-3 XVSPRING~~~'I~~ENDFITTINGS'~+~PE78rnlEgPLEi5Ui'i'IHOLDDOWNSPRINGSPACER84CPELLETS-SPACERAG-liN-D-~SPACERI~CdealNOSECAPFLORIDAPOY,'ERiiLIGI-ITCOh,.AllYST.LUCIEPLANTUNIT2rFULL-LENGTIICOidTROI.C!El)I:NTASSL'ViCtLY(')~ELE/8t.I'IT)
~~~--1(IPl'"to,~SPIDERVJITH'LPHABETICAL.IDENTIFICATEONSPRINGSPRINGRETAINER0-14"~52.3/4"ENDFITF'.NGWITHPART.LENGTHRODIDENTIFICATIONGROOVEHOLDDOM/NSPRIflGPLENUiViSTAIiNLESSSTEEISPACER84CPELLETSSTAINLESSSTEELSPACERVENTHOLESWATR0VENTHOLESINCOINIEL625NOSECAPFLORIDAPO'4/ER5LIGIITCOMPANYST.LUCIEPLANTU,"IIT2PART-LENGTIICONTROLELEMENTASSEtIDLYFlGURE4.2-5 Q0 ALIGI"iHENTPOSTuppEBIrISPACERGRIDENDFITTINGI-eEAiu"6050a':>0ilGUIDETUBEASSEIViBLYTOPVIEW158$"OVERALLFUEIROD136.7"ACTIVFFUELLENGTHsvilQ4'QU~CDbvll/)BOTTOMVIEWLOWERENDFITTINGFLORlDAPO'6'ER8.L~GI<TCOtiiPANYST.LUCIEPLAthTUlllT2FUELASSEt'BLY 0
~Pil(~>}=~~/(~t'I)L~~/'gJ-WELDLOCATIONSTOPK80TTOM0";SPACERGRID/"(lli)]))3i.,GRIDSPRINGSTRIPGRIDPERIMETERSTRIPCEAGUIDETU8ELOCA1IONFUElRODFLORIDAPPb'E!'.LIGHTCPa',PA;lYST.LUCIEPLANTUNIT2FUELSPACERGRIDF(G~Ji~iE4.2-7' S
UPPEPiENDCAP1~qSPRINGSPACER-C-rFUELPELLETS136.7"ACTIVEFUELLENGTH~FUELCLADDING-SPACERLOWERENDCAP'FLORIDAPOWER8LIGIITCOI'IP"IYST:LUCI=PL/4TUHIT2FUFLROD'lcunr<.2-S 1E UPPERENDCAf'PRII"G-SPACERPELLETSPOISONPELLE'IS122.7POISONSHN'ILENGTHCLAODING-LOlNERENDCAPFLORI'P05'ERALIGHTCOMPANYST.LUCIEPLANTUNIT2DURNABLL'OISONRODFIGURE4.2-9
~lQE5ELEA~iENTFULLLENGTHCEA's795ELE&)ENTPARTLENGTHCEA's4ELEMENTFULLLENGTHCEA's.TOTAL91CEA'sFLORIDAI'09'LsR8LIUlITCQ.'IPAttYST.LUCIcPLANTUt'IIT2COI'ITRO!I.LI.".S!LIITAs':Et>OLYLOCAtION;-II-IGflt':='..!-IA S
5ELEMENTCEASHROUDFLOlNCHANNELCEASHROUDBASEFUELAL1GNMENTPLATEFLOVJCHANNELEXTENSIONFLOYICMANNELEXTENSIONS 00 FLOIIBYPASSINSERTCEAGUIDEHOLE(4)BYPASSFLOmt4ELEMENTCEASHROUDCEASHROUDBASEFUELALIGNMENTPLATE4ELEMENTCEASHROUDFLOWBYPASSINSERT 0
guestion1Detailsoftheactuallimiteddisplacementbreakflowareaandtheactualbreakseparationtimeatanycircumferentialbreaklocationareneededforthisspecificplant.lt~DetailsoftheactuallimiteddisplacementbreakflowareaandtheactualbreakseparationtimeatanycircumferentialbreaklocationareprovidedinrevisedFSARSection3.6.2.
uestion2ItmustbedemonstratedthatSt.L'ucieplantanalysissystempara-metersfallwithinthedesignenvelopeofCENPD-168,Revisionl.Thesyst:emparametersoftheSt.Lucie2plantfallwithinthedesignenvelopeofCENPD-168,Revision1.SeeattachedproposedFSARamendmentto3.6.2.1.1.
3-6.2DETEPAIsNTIOWOFBREAKLOCATIOlISAtsDDYtlAHICEFFECTSASSOCIATEDWITHTHEPOSTULATEDRUPTUREOFPIPIIIG3.6.2.1CriteriaUsedtoDefineBreakLocationsforPipeMhi~Analsis3,6.2.1.1HighEnergyPipingSystemsThissectionprovidesthecriteriausedtodeterminepostulatedpipingfailurelocationsforhighenergypipingsystemsbothinsideandoutsidecontainh.nt.o)ReactorCoolantSystemthinLoopPiping1)AtresssurveyoftheSt.Lucie2Reactor,CoolantSystemldainLoopPipin~performedinaccordancewiththemethodsdescribedinCE<IPD16BA(Reference1)YheSt.Lucie2ReactorCoolantSystemgeometriesandtransientswere'employeditheanalysis.TheresultsofthisanalysisarepresentedinFigure3.6-4.InaccordanceiiiiththecriteriaspecifiedinReference(l)circumferentialtypepipebreaksarepostulatedtooccuratallterminalendsandpipebreaksarepostulatedatallintermediatelocationsthroughoutthepipingsystemwherethek;,,rangeofprimaryplussecondarystressintensityexceeds2a4Smorthecumulative)usagefactorexceeds0.10.Mhereallintermediatepipebreaklocationswouldbeconsideredunlikelybecause1thestressesandcumulativeusagefactorscalculatedforaparticularrunofpipingbetweenterminalendsareeverywherelessthanthestressandfatiguelimitsstatedabove,thetwointermediatelocationsofhighestcumulativeusaoeafactorarechosenasthemostlikelybreaklocationsforpipingrunslongerthan10diameterstotallength,andforpipingrunshavingmorethanonechangeindirectionthrough-outtherun.2)TheresultspresentedinFigure3.6-4confirmthebreaklocationandtypes3)ofReference(I)forthemainlooppipe.Forthepartialareaguillotinetypepipebreaksatthereactorinletandoutletnozzlesandthesteamgeneratorinletnozzles,themethodsofReference(1)<>ereemployedtocalculatethefIowareasandopeningtimesofthebreakattheselocations.Thestiffnessys,luesaxeprovidedinTable3.6-2andFigure3.6-5~
TheresultantbreakcharacteristicsareshowninTab1e3.6-1.ThepipewhiprestraintatthereactorvesselinletisshowninFigure3.6.3.A11otherguillotinebreakshavebeenassumedtoopentofu11area.Th=breaklocationsforRCSareshowninFigures3.6C-2.1and3.6C-2.2.
Pl'ICOUTE4FQP1P=~7p57)FpgK55~TuPPl&"NR,cC'p~z6";oP+~~pgoo3%Tcpga,2,.+TOpgeoQ->TlFFNPS54K/<z)g,Mi2Bl3Q;$g,)OBsC.2.~tozx'L.C<t+8j$.2.~io+g.gxto~eigX/0g(.gxIo)g,oK30XfS2X2.8<lSG6'7~lo'f.o<i~pl.gXle4),gxlogg.gxia5<lO'Z'Zf,oXlopl)3"<o48S~>o4a.9xlC+1<lo)f,o~(o'p~/VgvlNJ
~~PO5'7OLRTED~ornrFaBw~A.w~avAgw~('g~z)W/S~77hfE'(WcCuShCCWDspgV007LE76D'/LOOT/HEZO,~~
I0I IaQlJgglVlFVCB-8DKTAlLP~p>CAlpl.ACE.S~O~Cg~O'l{pRZC>0g0p.SvoPwo.Rl3iQl>JANl~~0~DE'%AllVIE.VlA-A~o
QRgc.oZ~,WAgqqIE'4lb>.cog'1,>$Qq-K~lo<.bb~<l4<<lQ'ggoog>-~abQ4llgqM.oo>~<l.Wl~~Q'lIo,o00<>4aMo%X)i5IEAR'IGENERATOR2ArfryQ(~+o,.o~sl,l.t,VS=)Mgo,~to,(WX)a~>lo,.born,l.ceo~o0lgliba%g~~X>.ooR,q'.l6qgJ~~(wqfobboo]l'>36K.I'>g'40,,ocao,(Xl>Ralamo<.tal4,<l,>>o+:~Cs?,.>~el.l>R>"'v5Sgolx,lg'R)oI1I,'PUf>>P'0h<(~'Xt<obDc'0l,4oog)l.W:1;.ocEo>lgggy)>>,bbV<.~~I+~%aer~'.PUMP'6oo<.045+4.l~5boa)obli~P.il4gggLgoOt.ooN1.4rol$I(~lro.ooQ,(.b)tqc~~'l"-'-~oll4lh+~)oooily(qg~S4>~ool'l(l.3(<lt->>-l.iXq,l.qZ;Sj~l'4o,.oboe,'L.'4o'5o}Q%~i4>$%85~)6~>>co'\>l.Ql4lIle).<<lip+AX>gC.~~o<>4,lhtgy~~l36h,,~o~,k.ht,l.a>~lifo,.oooo,l,~(g)t5~o"coqQ,l.kit='lVY,.ooso,w,yycq)IllCo,.coco,l,topazg~tip(oo~~)l.ElBJ>La,.o>i,l,~sa6IQ3X,icoXlwablgje8078~DATAPOIkiT.Ã0,;VshGBFACTOR(C,UF,)NldSn/SaareJndicatcdJnthcparenthcscso~~r0~eXsn:m..ICS.:ET'EACTORI(O'A.oui'liA3R)0LT~.c,ox+l:lpgaClMQATIl.USAGEFhCMRQiOVOR~Q,IZ=OFRI>SPYPLYaalu,'GL'L'svLTsFnSEIs~ccLohox~c(/c~c><xA)S.Cn"OA"..YSI:t.aoIiiW>>ITY 0
(LAo,aaWw.ipse~/Fr~aggg'Lo.boo0,y~e,m1gyqgobbcb>KP,'4W)0~46,Q'Kb)~~"l~~.bbqa,>.otal'L~eo(KMO,.<<oo,'LNS+W)0STEA1.1GENER!ATOD28I..>ikI~Co>.ob.L,(.33+qh+~lb~ooDZL\~$4iX'tb>.oo~,(A,c;q~+~%~iAthgll$+Q~<%!).bob',~l~cJh4X(!.bc3%,+loil<~b,.co~i\-6&3'PUiVtP'j,zestj~63M>.oo(4,>pO'L)5~),obh>$,3)bg>DX'>,oo4>p.,"qth~+i>>Ad,.ob~b-,a'lb',swq((3(bo$q(+lac>.oobO<yyq-3)J',pUj:!Pl2B2(tlCX>.bbb.b,y,~6~}(-'g5c,.ooN,~q~6g)60.obQCI~~4.t"~).ooN,LA(6t~~b~)oo~h,4Ab~os';(s<MI,p~i36cb,~b$c/P..~Qbo6ct]+oblong(adQoC4iN<.bon,i3etq}(h3l0>qb~$(4qqq)Q5l%b,.boy(p6gq)~~~-pyro,.oaigp)Qbb>,.bolt,(5Q)~o"t<tlti.al(',REACTOR~~I(P'oQ,,ota,w.\oqg)tSV>~>.co~3>a,iaoq)NOTE:DATAPOINT2:O.,USAGEFACIE(C.U.F.)andSn/Smateindicatedintheparentheses%SO~K'IRICgPET+~\~'~OCUT'fi&1TIVHUSACEPAfORJClQNCR1DLIZ:.DP..IE'DYPLUSSEKC'D.-+YS~ciRAlX:ERESULTSFGRSBIS:tICLOADINQ(L.C"C>P28)~~PtCyVN$HH.TgefP lSTEAMGENERATORSYk1,80LS:-C@CIRCUMFIRENTIALBREAKLLONGITUDINALBREAK(PUMgPSUCTIONLEGCrrLDISCHARGELEGtPUMjPSUCTIONLEGHOTLEGDISCHARGELEGiNOTES:J..CORRESPONDINGBREAKSAREPOSTULATEDINOTHERHALFOF.SYSTEM(NOTSHOIfNFORCLARITY)REACTORC-cjC-mbvsfionFnolnecringkc.DESIGNBASISPIPEBREAKSTYPESANDLOCATIONS1-4Figure N)),Se)QA)C)MIO)gfCC"')RA)<HFAPN)0R)OPCRHALFINCHFaf)QFRRWI)YECCHY090HAOCWMO.A,et4'flA00LJ~ef)Pkf'fffw~kw~s.keg)!~<~LA)~pyggogeyuAy)jl);rkqr.)1~~la'gyp'Q'Iiqa4ftkw~~f~~))fAggJA)Lgl0if)a)Jiltt}tOA4~lk<11444~tikiIii)fitii1tfIts!<i).'i)i)))is!isijai)t)At)~~~I<~0)II~~~~~)I)s~~I~04~~~Isle01~~~0)R.ViA55%,.6"!HIt,~~~I)isislII)ia~~~~IIIIIai1l~llrllj!.I:ltt'"))))')'~)""~~1JJ~0)~~~~LLL~11~4a~Uouaksf)kkfkaffgkfefdakktukaf~01igki)0,0-')aa0f.~i4)ff0~Loof44I~ukkla\~J~~~LJ~4f/'o~QLWkkk~4kakk~lkl4l<ALIL~~lie~1)~~~~"i/i'i"i~~\~i'!IseI~I~Iia~1I~~~~~~~fI'iiLB'!Ili!iljiIti"'iii't)I'I!'ii}~~I~~ll~~'IJ~}~~t)').'Istlf0)tl')~o4JUJUJWLuketkkILL<ALioJikt<Al~~<$1.LkoLUMLLuktJJJ~UA)~~~410A~4~~~loak)I~)lI~440)Ll~0041~~~~Lie~~4<JA~tLa~~0A.liall~04~<JoM~4~Ll~4~4~~04~~01~LLI1~4114ALkuLkl1ikk~~~I~I~4A~~1~~1~~~t~~~~~~~<lal~1kl~~~~olf~14~Li~1)A~~~I~Lt*~L~II4IILL0JII~~~I~41t1104141I1LMI00~/JJUAUAJ~4ksakJ~44\0Jka~~~~io11g)l)1))i)'igii'I~I~fS~~0A~~IIIilI~~~eko~lauA~0k<Alka~~~~L~4~IJk4II144~I1IU,<JILII4~iIJ1IAokklkfkkaaAoLL<lLa~ukakkk~4UajaI~iIi~I1~~~La~LI0kako~01II~01~~.4Lt~L~4440~a<4~1k<LIJJL~.ULsIJlikkLLlAs'~!E)ii4akA<AlkitkJalII~4ka~LUa<AItL<41Ls1kjf0<LllJ0~LL~Likelk11LJLJ~LIJJLI0AatAJ~144~Ltitie)II4I~1~gkkko44glk01IjNCQ0~~~LekJLka10Jkfok0~Lf~1~~1'L)r'L~~&~~ia~~safou'ugw.tii'fAeJ<peas)ouff'I.kfILtaklala'~s'I'ttIll)J.\4U~~~1~~~~~~I~IJJA~~Lll~~IIILsflfl11~I<f104~4g~)it/I)i'ef:4LlklLU<ki~okkkkJAL.~~s~t~UokLUALkekkkUke~akakkk4444ok04110~I~al0\JkLeALLUkkl.1kLUoA<LUl4ulk<JWI~~JJ1okA~41kku~LIALL<Lkaek~l.+4~LfoA1lkel11AJ~1~~1LLUekWUWLW<~ieJ4li.'IIL'llli))i"'aIlII~I~~Iii~~Ils~)0I0~.~f0La0i"i'gifu)L)Iff~~~~~lAI10~~1~.I14Ukkkka*La~1I441~fk)AJ\Jk~~~1.1Llkkl~Uul4LI~ao~LLLJJIUJJJAJUWI~kkakkkkIJJUA4L'-'tLf4~1~~f~I~f~~~ttsI~)I~~LIIff)fIssjtfs~tf)I~~~JI~)lIII."'Lliillj)sa<~~II14~II~.~~tftl'11)aSIii~Ibilli)'ij}li'~I~)is~Isilil'e~I~I~Iti"~~1,)IIs))JII.f.)ttIJl~~i)s)I'ill.I))i~A~It,isit~I<I~ftf~It'i')>i!1~0re~~IIs~~~I~~~~~~I~~11~I~~I~II~~~~~~is)~s~f~~)~~ll1~~Itffs~iItsLULL).'I'~~~Lkl~~skuJ~~~efe~0~LUAU<IJltlf"~44~0~ftswILL'JAJAIf11jtIl<LLltfI~Lk401414~~LL4L<wu~keA1~I1!IL4LI0~J.<AIfA~wa~4<~~4,~~L~lf~Lkgf~~IfLi~I.!H~L1I~~~ifL4ILI~1t))st~.))ft~4~~~IiI~LStoI1~ia~0(IjJ~ftiflot)ss~IIl.,44~II~~~~)III.~1ILLel~1tJA~JALLLWW1JJA<Alo~4~~0~~4ae<AALLULWUAatoU4~aklka0fakelkk4ft)1~g~44ukuuut"LaiLaskkkkko~~~11I~4~414u411~.114)Us~tfLoLfL~~~~~0~0~~~I<OA+~illy)2h"'4~~,isIAai<~LILeo!JJAABLIAfLi<t~I1114I~.'II)1JLL11a~~4~Lk4~1~1A~IJk0liltI4~<LA~LL\~1Le<AlLl~ke4I0\kWULJkke)koJUL0~QLLW)kg<)ffLik~IlkJ~Uekkao~W1WUALkkku10Ae~tkkik~La~~~0L14L41Jel1'))~1klL~1~~.~I~~I~II~~ttkli'fg<f>g'La)~asU~41L44s~4~AS~I~~a~}iiti~IIoe.lall1~~)I~~)~t0~~I~)1~<~f~ILf)IIf't))"'4'I'I~I~It~I~IJ~leI0~IIIII)IIIill'I'i~9i'I)'iIt.II~IiI~~~))~~~~~)ll~~li<i'ii~~~~I~~~~I)'I"'"~~)~L)~~ISliii'!lit'+Qgi~~!IIIIIIIII',J,'j)lllIIJJj)~1~I~I~<tlg~~aii~~IlealiiI~I~~~l'I'fLut1~ie<~Lil~~~0Lef4I~au1af4tu.L441tt~4~)40101)~~<AI4akflk~ukLl}Jl@l'3UkulkkkLkas..),Ii~II~~A0~0~~.LLI~~1~~',tati~~f~~~0siLaf~QL~~tLl'autu"4.~Zst)~.1uIlkJJAA~1I~~44411444AJAa'~~~LlLLUA1I4UI~0ALI~~~~~sfiIaawU444~Q<~~Lkkaa~~o~~)fjAL<lfg)f4)~~Lf)~~~I~II<IIIII')~~IiltI~UfullL)~l4,Lff'.s~A)~0~~I~Is<4lI'ijQ~m~~~~II~~~U14~IfIQII~~~~~LIW<L~IL4<lt'~~~JetfH"al<la<ailI~~I:tlltiff}4I~Qai1)at1~I~kkLfu'a~ItjI1t'4~~~Okkk~'LlLlL4~I1<J~gl~~AtI!aff1I~0JAJQJo1Li"tlteaJLL~~~kit4ll41~.~~<AJ<IAJAI~tft)fta'a~~I~Sar:ft);~r~j~~)~))!)))tssI'ft~~~uij~~ll'4thk~1')sue.II)A1)1tlWI44tltI~~t~~~~lao~44<'f)2'if'fffu')400AA0UJ~~O~1sita~LtLIas~~~We~If'ilg)af)agI~.~f)I~~)I~~<JJ1LW<IUALlLL<1I~~Lllf))Iij>)t)TaI')~~~11~~)~~Il)fasts"tf~ds.tfls~~i~-~~~~LokI~414~~~L~~0tufLa4I])Ji~l)g~~~~4)Uts'.If'll0<)tltaJJ4~I1.<kILtfeiI)'~~I~~~~~II'Js'I~LL~<J~~Iil'jj!IilIft.))fbii1)I~)a)}I~~~~III~~~100IIII)i~~~~II')siI~ILetaI~~)II!~li~I~~)I~~~I~II)<is))!i)plliles~~I)}slilast)sill~)I)~Ij",i'liI~~~~}slI~~~~el~tif~)i!i!ifILjl[~illIL)<lI1sttl~~~~III~IJilli'I~IIj}lla)i4~~~~~~~~1jj~ILILIIIIj)~0~~~I~~)~~~11)I~40Ue~Jf~1Ifk"tafI)1~~IS~~')l<!if))iOA4~~ok10jidÃlL~4~t.~)4'tf'aLIItutfts'I~li:LIB'~i~~4IIk)It'fiL~'1)44)~~J~~~I~~~fi~oggffi'L'!VL!Z}~Illj)1l't}ps))i)l}slt's)tsi)'~~1~I.6IIjAfI~)I~)JLII'll"I'Ii'I!li~~~~)II,'i'llil".'):)s',ksihII'~~~I~~I)i'i'."'il}li}'i'I'!}~~III~e'er)~II~~~IIsl
SL-2QuestionNoRAssuranceshouldbeprovidedthatthecriteriausedtopredictbreaklocation,asreferencedtoCENPD-168A,Revision1is.usedforreactorcoolantsystempipingonly.Xfthiscriteriaisused.forpipingotherthantheHCS,additionaljustificationmustbeprovided.~ResonseCENPD-16BA,Revision1isusedtopredictbreaklocationsforReactorCoolantlooppipingonly.Forallotherhighenergypiping,asindicatedinSection3.6.2.1.1(e),pipewhipanalysisisperformedbasedon"breakanywhere"criteria,andjetimpingementanalysisisperformedforbreakspostulatedinaccordancewiththecriteriagiveninSection3.6.2.2.1(b),(c)~and3.6.2.2.2. )I uestion4AdditionalitemsnotcoveredbyCENPD-168,andwhichshouldbeprovidedforthereactorcoolantsystemoftheplantarethepipewhiprestraintparameterssuchasstiffnessvaluesandgapsizes.Resonse4Thepipewhiprestraintparameters(i.e.stiffnessvalues)areprovidedinrevisedFSARSection3.6.2.].Gapsizesforreactorvesselinletbreakwillbeprovided. QuestionsNo.5-10TheapplicanthasmadeacommitmenttoprovidethefollowingitemsinafutureamendmenttotheFSAR.5-HighEnergypiperuptureanalysisinsidecontainment.(Appendix3.6A).6-HighEnergypiperuptureanalysisoutsidecontainment(Appendix3.6B).7-Pipewhiprestraintsandbreaklocation(Appendix3;6C).8-Structuraldetailsofthepipewhiprestraints(Appendix3.6D;9-l4ainSteamandfeedwaterdynamicanalysis(Appendix3.6E).10-moderateEnergyanalysis'(Appendix3.6F).R~esonseAllinformationrequestedabovehasbeensuppliedinAmendment3oftheStLucie2FSAR(issuedJune81). cationNo.TheFSARSection3.6,2.2shouldbeclarifiedtoshowthattherequirement.of0.8(Sh+SA)isbasedonthesumof,,Equations(9)and(10)ofParagraphNC-3652oftheASMEB&PVCode,SectionIIIandnotEquation(9)and(10)in-dividually.~ResonseThestresscriteriaof0.8(Sh+SA)iscomparedagainstthesumofEquations(9)and(10)ofparagraphNC-3652andND-3652oftheASMECodeSectionIIItodeterminebreaklocations.RefertorevisedFSARSubsection3.6.2.2.1(c)(2). .00 u"stionNo.12~IProvidecriteriaforpostulatedpipebreaksinbothhighandmoderateenergypipingsystemsinthecontainmentpenetrationarea.~ResonseHighenergypipebreaksandmoderateenergyleakagecracksarepostulatedbasedonthecrite".iaofSubsections3.6.2.2.1(c),3.6.2.2.2and3.6-2-4forpipinglocatedinthepenetrationarea.Thepiperuptureanalysisdoesnottakecreditforanybreakexclusionregion.Refertorevised'FSARSubsection3.6.2.5.1 uestionNo.13Providethebasisforthe0.8SAcriteriaforexpansionstresseswhichisstatedinSection'3.6.2.2.2(2)oftheFSAR.Re~senseThebasisfor0.8SAcriteriaforexpansionstressesstatedinSection3.6.2.2.2(2)oftheFSARisasperAppendixB(Giambussocriteria)toBTPAPCSB3-1item2.(b).(2). tQuestionNo.14providealistingofthehighenergysystemsthatareconsideredforpiperuptureanalysis.IhadditionprovideasummaryoftheresultsofI:heanalysesofthesesystemstodemonstratethatessentialsystems,components,andsupportswillnotbeimpairedasaresultofhighenergypipebreaks.ResponseHighenergysystemconsideredforpiperuptureanalysisare:XnsideContainment1.HainSteamandFeedwater2.ReactorCoolant(includespressurizersurge,sprayandrelief).3.Safety.infection(alllinespressurizedbythesafetyinjectiontanks).4.ShutdownCoolding(highenergyportiononly)5.Chemicalandvolumecontrol(letdownandcharging).6.Steamgeneratorblowdown.OutsideContainmentl.HainSteamandFeedwater2.ChemicalandVolumeControl(letdownandcharging)3.St'earngeneratorblowdown.4.,AuxiliarySteamSystem5.Auxiliaryfeedwatersystem6.SteamsupplytoAuxiliaryFeedwaterpump.TheresultsoftheanalysesofthesesystemsarepresentedinAppendices3.6Aand3.68. QuestionNo.1SN>enlongitudinalbreaksarepostulated,assurancemustbeprovidedthattheyarechoseninthelocationthatislikelytocausethemaximumdamage.~ResonseLongitudinalbreaksarepostulatedtooccuratanylocationaboutthecircumferenceoftnepipe.Thismethodidentifiesthelocationthatcausesthemaximumdamage.RefertoSubsection3.6.2.3(b)(2)oftheFSAR.
0es6oQ~So.f6Thefollowinginformationisrequiredasitpertainstothesubsystemanalysisbeforeourreviewcanbecompleted.(l)ThemethodfordeterminingthatanadequatenumberofdegreesoffreedomwereusedinthedynamicmodelingtodeterminetheresponseofallCategoryXandapplicableNon-CategoryXstructuresandplantequipment.~ResenseForpipingsystems,adequatemasspointsandcorrespondingdynamicdegreesoffreedomareselectedanddistributedtoprovideforappropriaterepre-sentationofthedynamiccharacteristicsofthesubsystem.Asindicatedin3.7.3.1.1.2,themaximumspacingofthemasspointsdoesnotexceedonehalfthedistanceforwhichthefrequencyofasimplysupportedbeamwouldbe20H.Eachmassprints,exceptforpointsindicatedasrestrainedinagivendirection,have3lineardegreesoffreedom.Therefore,thedegreesoffreedomexceedstwicethenumberofmodewithfrequencieslessthan33H.ThedynamicmodelsofthecabletrayandHVACductwiththeirrespectivesupportstructureswereconstructedwithanadequatenumberofmasspointsinordertosimulatethedynamicbehaviorofthesubsystem.Thenumberofmasspointsinthedynamicmodelisadequatebecausethenumberofdegreesoffreedomexceedstwicethenumberofmodeswithfrequencieslessthan33H.NSSSvendorsuppliedsubsystemsaremodeledwithsufficientmasses(dynamicdegreesoffreedom)suchthatinclusionofadditionaldegreesoffreedomresultsinlessthana10%increaseinresponses(Analysisofthepressurizer,surgeline,andspraylinealsomeetsthealternatecriteriathatthenumberof.degreesoffreedomisgreaterthantwicethenumberofmodeswithfrequenciesless'han33Hz). 0 P~<>'Justificationthatasufficientnumberofmodeswereconsideredtoassureparticipationofallsigriificantmodesiswg"'~<ResponseThecriterionforsufficiencyinnumberofdynamicmodesisthattheinclusionofaddi,tionalmodesdoesnotresultinmorethan10%increaseinresponse.Ingeneral,thiscanbesatisfiedbyincludingallthedynamicmodesbelow33H,ifthehighestmodecalculatedbelow33Hhas2alreadyfallenintotheflatrigidresponseregionofthecorrespondingresponsespectra,theeffectoftheremaininghighmodesaretakencareofbya'ddingthedynamicagalysisresultwithanequivalentstaticsolutioninSRSSsummation.tDynamicanalysisofcabletray/HVACduct-supportsystemshascombinedallmodesintheflexibleregiontogetherwithresidualtermsaccountingforhighermodesintherigidregion.CriterionusedtoassurethatsufficientmodesareincludedintheanalysisofVASSSvendorsuppliedsubsystemsisthattheinclusionofadditionalmodesresultsinlessthana10%increaseinresponse.AnalysisofthecoupledcomponentsoftheRCSincludedallmodeslessthan50Hz(Section3.7.3.1.2.3(b)). 00 0~-,ThemethodsusedtohandletherelativedisplacezentsofCategoryIsupports.~esonsa:(1)Thefollowingisasummaryofthemethodusedtohandletherelativeseismicdisplacementofsupportinpipingsystems,a.Therelativeseismicdisplacmentsbetweensupports/restraintsinstalledonthesamebuildingstructurearenormallynegligibleinthestressanalysis.b.Therelativeseismicdisplacementsbetweensupports/restraintslocatedintwobuildingsonseparatematsaretobederivedfromthecombinationofco-directionalmaximumabsoluteseismicdis-placementofthetwobuildingsatthesupportingelevationbySRSS(squarerootofthesumofthesquares)metnod.4c.Therelativeseismicdisplacementsbetweensupports/restraintslocatedintwobuildingsonacommonmatorattachedtotwostructureswithinthesamebuildingaretobederivedbytakingthesquarerootofthesumofthesquaresofeachrelativeseismicdisplacement,towardsacommonreference.d.Forpipingconnectingtoequipmentsorprimarypipingsystemofwhichtheavailablemaximumseismicdisplacementsarerelativetothebasesupportofthema)orequipments,thebasesupportsarctobeselectedasthecommonreference.Themaximumseismicdisplacementofthesubjectpipingrestraintsystemaretobeconvertedintorelativedisplacementstowardsthebasesupportofconnectingnozzleandthepipingrestraintsystemarethentobederivedbytakingabsoluteadditionofthetworelativeseismicdisplacementswhichinturnarerelativetothebasesupportoftheequipment.e.Thepipingsystemwillbeanalyzedseparatelywithrelativeseismicdisplacementinputineachofthethreeorthaganalcoordinatedirections.Theresultantresponse(suchaspipestress,moment,force,etc)areobtainedbytakingSRSSoftheresponsecorrespondingtoeachcoordinatedirection.(2)Relativedisplacementamongsupportslocatedatdifferentflooreleva-tionsarenotconsideredincabletrayandHVACductseismicanalysis.Ductsareprovidedwithflexiblepointstoaccommodaterelativedis-placementofthesupports. 0 Forthecouple'dcomponentsoftheRCStherelativesupportdisplacementsareapplieddirectlyinthetimehistoryanalysismethodsdescribedinSection3.?.3.1.2.3.'ForNSSSvendorsuppliedmultiplysupportedsub-systemsanalyzedbyresponsespectrummethods,relativesupportdisplace-mentsareappliedstaticallyinthemostunfavorablemanner. Provideinformationonhowsignificanteffectssuchaspipinginferactions,externallyappliedstructuralrestraints,hydrodynamicloadsandnonlinearresponsesareaccountedfor.Re~sonsaTheeffectsofpipinginteractionsandhydrodynamicloadsareconsideredintheanalysisofsafetyClassl,2and3components.Thesafetyrelatedequipmentisdesignedtowithstandthepipinginteractionloadsthatcouldbeimposedonthesecomponents.Theseloadsarecombinedwiththeotherplantloadinginaccorda'ncewithFSARTable3.9-6.Theequipmentisanalyzedtoassurethatundertheseloadingstheoperabilitywillbeassured.ThesummaryofresultsfortheseactivecomponentsisprovidedinFSARAppendi..3.9A.Interacti.onoftheRCSmainlooppipingandthemajorcomponentsisaccountedfordirectlyinthetimehistoryanalysisofthecompositecoupledmodel.Treatmentofhydrodynamiceffectsandnon-linearresponseofthereactorinternalsandfuelisdiscussedinSection3-7.3.14.
Question20Iftheequilalentstaticloadmethodwasused,Justificationmustbeprovidedthatthesystemcanberepresentedbyasimplemodelandthatthcrelativemotionbetweensupportpointsisaccountedfor.ResponseThepipingsystemstressanalysisdoesnotutilizetheequilivantstaticloadmethod.HThispipinganalysisutilizesthemodifiedequivalentstaticloadmethodwhichisdescribedintheresponsetoquestion23.CabletrayandHVACductseismicsupportsweredesignedinthefollowingmanner:Aseismicresponseanalysiswasperformedona3-Dmodel,whichrepresentedatypicalmultiplespanofcabletray(HVACduct)anditssupports.Eachtray(duct)supportinthemodelwasassignedafundamentalfrequencyof]6to]8Hzinthreedirections.Theresultsofthisanalysiswasanamplicationfactorwhichwasthenusedtodeterminethestaticequvalent"g"valuesfordesignofindividualcabletray(HVACduct)supports.,Eachsupportisde-signedto.haveafundamentalfrequencyof]6to]8Hz.Regardingconsiderationsofrelativemotionbetweensupportsseediscussionfor(]8)above.ForNSSSvendorsuppliedsubsystemstheequivalentstaticloadmethodislimitedtoanalysisofcomponentswhichcanberealisticallyrepresentedassingle-degreee-of-freedomsystemsorbysimplebeamorframetypemodels.Formultiplysupportedcomponentstherealtivemotionbetweensupportsareappliedinthemostunfavorablemannerusingstatic"analysisproceduresandresponsesareaddedtothoseduetoinertialeffectsbytheabsolutesummethod.
Question21ThecriteriaandproceduregivenforthemodelingoftheseismicsystemsandthecriteriafordeterminingwhetheracomponentisanalyzedaspartofasystemorindependentlyrequiresamplificationandinclusionofallinformationrequiredbytheSRP.Beforeourreviewcanbecompletedonthissection,thecriteriaandproceduresactuallyusedmustbedescribed.ThisshouldincludethemodelingproceduresusedandthecriteriafordecouplingasoutlinedinSRPSection3.7.2,paragraphIXI.3.J~eoonseThecriteria-cndprocedureforthemodelingofthese5.smicsystanarestatedinFSARSection3.7,2.3.For.thereactor,bii3din,",inparticular,studiesusingseismicmo'dclswithandwithoutsubsystemaremadetoensurethccoupl'ngefeetisminimal.Modelswithmajor'equipment(suchasstcamg"neratorsandreactorvessels)andthesupportingstructure.(i.e,theintern"1structure)modeledep"ratelyandmodeledtogetheraceconstructedandthe.ComputerCodeSTAl&YYi""isem-ployed.Dynamicrespon"essuchas~requencies,'accelerations,andreponsespectraarcompared.Th-differencesareicundnegligiole.Thereactorinternalstructureresponsespectra.asshowninFigure3,7-.15illustratesthat.thepeakaccelerationoccursapproximatelyat3Hz,TheRCSloophasafundamentalof10Hz,TherebythecouplingeffectbetweenthereactorbuildingandtheRCSloopisinsignificant,IIIt 00 estion22Adiscussionofthemethodsactuallyusedindeterminingthefunda-mentalfrequenciesisrequiredinthisFSARSection.Alsoexplainhowthethreerangesofequipment/supportbehavior(rigid,flexible,resonant)aelineatedarehandledintheanalysis.Astatementorstatementsisrequiredastohowthesemattersareconsideredintheanalysis.Forpipingsystemswhichareanalyzedbyeithermodalresponsespectramethodormodifiedequivalentstaticloadmethod,thefun-damentalfrequenciesaredeterminedbythestiffnessmatrixmethodofnaturalmodeanalysisasdescribedinFSAR3.7.3.1.1.2.2.Forpipingsystemswhichareanalyzedbysimplifiedseismicanalysismethod,theexactvaluesoffundamentalfrequenciesarenotcalculated.AsdescribedinFSAR3.7.3.1.1.C,thepipingarerestrainedtohavefundamentalmodeperiodslessthan70percentofthefirstmodeperiodofthesupportingstructure.Thiswasaccomplishedbycomparingandmodifyingtherestraintspacingindesignwiththatofasimplysupportedbeam.Mherefeasible,thepipingsystemarearrangedtobeintherigidregion(i.e.,thefundamentalfrequenciesaremorethantwicethedominantfrequenciesofthesupportstructure.Ifthefundamentalfrequencyofthepipingsystemislessthantwicebutmorethan1.43ofthedominantfrequenciesofthesupportstructureimodifiedEquivalentStaticLoadMethodasdelineatedin~SAR3.7.3.l.lbisused.TheNodalResponseSpectraMethodisnormallyusedforpipingsystemsintheflexibleorresonantregion.FrequenciesforthereactorcoolantsystemandreactorinternalsarecalculatedinaccordancewiththeproceduresdescribedinSubsection3.7.3.).2.3(b)and3.7.3.)4,respectively.Thethreerangesofequipment/supportbehavior(rigid,fl'exible,resonant)arenotdelineatedforNSSSvendorsuppliedsubsystems.(CurrrentSection3.7.3.4describesproceduresforNSSSvendorsuppliedsubsystems). 00 uestionNo.23Justificationhasbeenprovidedfortheuseoftheequilalentstaticloadmethodforpipingsystems.SimiliarJustificationisneededforallequip-mentforwhichthismetho'd'wasused.Alsoprovideclarificationonhowthemodifiedequivalentstaticloadmethoddiffersfromtheequivalentstaticloadmethod.~ResenseThemodifiedeqivalentstaticloadmethodasdescribedinFSARSubsection3.7.3.1.1.b,isafrequencybasedstaticanalysis.Itisapplicablewhenthepipingsystemisprovedtobeintherela'tivelyrigidsideofthedominantfrequencyofthesupportingstructure.Atfirst,thefundamentalfrequencyofthepipingsystemisdeterminedby,thesamestiffnessmatrixmethodofnaturalmodeanalysisdescribedinFSARSubsection3.7.3.1.1.a.2,thenastaticanalysisisperformedusinganaccelerationvalueof1.5timesthemaxiumvalueoftheapplicablefloorresponsesectrumintheperiodrangeequaltoorlessthanthefirstmodeperiodofthepipingsy'tem.Theequivalentstaticloadmethod,asweinterpretfromSRP3.7.3SectionII,bdoesnotrequiredemonstrationofthefundamentalfrequencyofthepiping,system,equipmentect.afactorof1.5isappliedtothepeakaccelerationoftheapplicablefloorresponsespectrumtoobtaintheequivalentstaticload.AsindicatedinFSARSubsection3.7.3.1.1,theseismicanalysisofNon-NSSSpipingisdonebyusing.oneofthethreefollowingmethods:a)NodalResponseSpectraMethod-Thismethodisbasedontheclassicalmodalanalysiswhichinvolvesthecalculationofallthesiunificantnaturalfrequenciesandtheirmodeshapevectorsandtheresponsecombinationofthesemodesofvibration.,b)ModifiedEquivalentStaticLoadMethod(Simplifieddynamicanalysis)Thismethodinvolvesthecalculationofthefirstmodeperiodofthepipingsystemtodeterminetheapplicablevalueofaccelerationswhichinturnisused'intheequilaventstaticanalysis.c)SimplifiedStaticMethod(chartmethod)--Thismethodinvolvesthedevelop-'entofreferencerestraintspacingbasedonpresetvalueoffundamentalpipingperiodtoprecludethepossibleresonancewiththesupportstructure.Thelocationofrestraintonthepipingsystemisdeterminedbycomparingtheindividualselectedrestraintspacingwiththereferencerestraintspacing. 00 uestionNo.74Discusstheapproachforcombiningtheloadscorrespondingtothethreecomponentsofearthquakemotionwhenthetimehistorymethodofanalysisisused.~ResenseForNSSSvendorsuppliedsubsystemsanalyzedbytimehistorymethods,maximumcomponentsofreactionatalldesignpointsarecalculatedforeachseparatedirectionofseismicexcitation.Maximumco-directional,responsesresultingfromeachofthethreeorthogonaldirectionsofgroundexcitationarethencombinedbythesquarerootofthesumofthesquares(SRSS)method.Theresultantsixloadcomponentsareappliedsimultaneouslyincomputingthestressesforeachcomponentorstructure.(SeeSection3.7.3.1.2.4).
ication25Thecriteriatobeusedintheanalysiqofmultiplesupportedequip-mentand.componentsmeetthestaffrequirementsasoutlinedinNRCStandardReviewPlan3.7.3SectionII-9withtheexceptionthatacommittmentbemadetocombinethesupportdisplacementsinthemostunfavorablecombinations.Resonse25Forcombinationofsupportdisplacementsofthepipingsystem,seeResponseto3.7.3.1(3),Question18.ForNSSSvendorsuppliedmultiplesupportedcomponentsanalyzedbytheresponsespectrummethod,thesupportdisplacementsareimposedonthesupportediteminthemostunfavorablecombina'tionusingstaticanalysisprocedures.Theresponsesduetotheinertialeffectandrelativedisplacementarecombinedbytheabsolutesummethod.(SeeSection3.7.3.1.2.3(d)forsurge(andspray)lineanalysis).TheanalysisofthemultiplesupportedcoupledcomponentsoftheRCSareanalyzedusingtimehistoryprocedureswiththerelative'upportdis-placementsapplieddirectlyasdescribedinSection3.7.3.1.2.3.Note:FSARSection3.7.3.9(c)currentlyprovidescommitmentrequestedbydraftSER. 00 7/29/81Thissectionconcerningthe'interactionofotherpipingwithseismicCategoryIpipingadequatelydefineshowthesepipingsystemsarehandledwhentheyareapartofthesamesystem.However,informationisrequiredastohowNon-Category,Ipipingsystemsareanalyzedand/orisolatedfromCategoryIpipingwhenthesystemsareincloseproximitysothatafailureoftheNon-CategoryIpipingwouldnotdamagetheCategoryIpiping.piping..~ResonseAsrequiredfor.safe'plantshutdown,non-categoryIpipingisr.~ismicallvsuooortedwhereitpassesoverseismicCategoryIpiping,valvesandvalv'eoperators. 7/2)QIBuriedseismicCategoryIpipingisassumedtobedistortedinthenamefashionastheearth,henceastraightrunofpipingwouldassumeaainu-soidalwaveshape.AllburiedseismicCategoryIpipingislocatedinC)ass1fillMichprovidesamediumnfcontinuoussupportandrestraintjthusprecludingunacceptableseismicdisplacement.TheundergroundductbankscontainingClasslEelectrical'cablesarescismicallyanalyrcd.3.1.3.13XnteractionofOtherPiinwithSeismicCateorIPiinXngeneralallnon-scismicCategoryIpipingsystemsaredesignedt'obeisolatedfrnn'nyseismicCategoryIpipingsystem.HhereseismicCategoryXpiping.systemsareincloseproximitytonon-seismicsystems,theexcessivemovementofthenon-seismicCategoryIsystemdueto'seismicinducedeffectsisrestrainedsothatnnfailurenftheseismicCategorygpyatemoccurs.cuh4[p~4tXfnotisoltedbyabarrier,theadjacentnon-seismicCategoryIpipingisanalyzedaccordingtothesameseismiccriteriaasapplicabletotheseismicCategoryXpipingsystem.UhereseismicCategoryXpipingisdirectlycnnectedtononseismicpiping,theseismiceffeetsofthenonseismicpiping~preventedfrombeingtrans-ferredtotheseismicCategoryIpipingbyplacinganchorsorcombinationsofrestraintsbeyondtheinterface.Theportionuptotheanchorisin-=eludedinthedynamicmodelingof'theseismicCategoryIpiping.Theattachednon-seismicCategoryIpiping,uptothefirstanchorbeyondtheinterface,isalsodesignedin'uchamannerthatduringanearthquakeofSSEinte~sityit,doesnotcauseafailureoftheseismicCategoryInwping.Noa-seismicIinesareseismicallysupportedwherethey.>assoverseismicCategoryIpiping,valvesandvalveoperators.
WEsTIONgg~.(Section3.7.3.14)Adescriptionofthelinearverticalanalysisandnonlinearho<izontalanalysisisprovided.Verifywhetherornotaverticalnonlinearanalysisisusedintheeventthatthelinearverticalanalysisindicatesthattheresponseofthecoremaybesufficientlylargetoliftoffthecoreplate.Ineaseitisused,provideadescriptionoftheanalysis.Response:Alinearanalysishasbeencomp)eted.Becauseofthelowlevelofexcitation,thefueldoesnotliftoffthecoresupportplate.Therefore,anonlinearanalysisisnotrequired./VESTIOi9gfProvideacommitmentthatcloselyspacedmodesare(Section-3.7.3.14)consideredasperRegulatoryGuide1.92,intheanalysisofthereactorinternalsandthecore.0Response:Intheanalysisofreactoriiternalsandthecore,closelyspacedmodesarecons',deredinaccordancewithRegulatoryGuide1.92. 0 QuestionNo.303.9.2.1PiinPreoerationalandStartuTestinProram4Pipingvibration,thermalexpansion,anddynamiceffectstestingwillbeconductedduringtheStLucieplant'spreoperationalandstnrtuptestingprogram.Thepurposeofthesetestsistoconfirmthatthepiping,components,restraints,andsupportshavebeendesignedtowithstandthedynamicloadingsandoperationaltransientconditionsthatwillbeencounteredduringserviceasrequiredbytheASMESectionIIICodeandtoconfirmthatno.unacceptablerestraintofnormalthermalmotionoccurs.Nehaveidentifiedthefollowingopen'issuesinourreview.TheissuesareidentifiedbysectionsoftheFSAR.ManyoftheitemsrequiredbytheStandardReviewPlan(SRP)Section3.9.2ar'ecoveredonlybrieflyornotat.allinthissection.TneSRPAcceptanceRequirementsII.lathroughfanditemsathroughdofthereviewproceduresshouldbeaddressedbeforethisFSARSectioncanbeconsideredacceptable.Thestaffrequiresacommitmenttotest,allhighenergypipingandallseismicCategoryImoderateenergypiping,includingsupportsandrestraintsfor'hermalexpansion,steadystatevibration,dynamicandtransientloads.ResponseSRPSection3.9.2AcceptanceRequirementsIIathroughfandReviewProcedureitemsathroughdareaddressedintherevisedFSARSubsection3.9.2.1.Atthetimeofthisresponsethelistofsnubbers(reg.wire)bySRP3.9.2AcceptanceCriterial.dandlistofdeflectionpointsrequiredbySRP3.9.2AcceptanceCriteria".carenotcomplete.Theseitemswillbefurnishedinalaterammendment.
SL2-PSAR3.9.2DYNAMIC'SYSTEMANALYSISANDTESTING3.9.2.1PreoerationalVibrationThermalExansionandDnamicTestin~onP9.inPipingvibration,thermalexpansionanddynamiceffecttestingwillbecon-ductedduiingpreoperationalandstartuptesting.Thepurposeofthesetestsistoconfirm,byobservationormeasurement,asappropriate,thatthepipingsystems,restraints,componentsandsupportsarecapableofwithstandingtheflow-induceddynamicloadingsundersteadystateandanticipatedtr'ansientoperatingconditions.In'addition,thermalmotionswillbeobservedormoni-toredasappropriatetoverifymovementspredictedbyanalysisandensurethatadequateclearancesexisttoallowtherequirednormalthermalmovementofsystems,componentsandsupports.ThistestingprogramisdesignatedtofulfilltherequirementsofRegulatoryGuide1.68,Revision2.ThefollowingpipingisincludedintheTestProgram:-ASMECodeClass1,2and3Systems-OtherhighenergysystemswithinseismicCategoryIstructures-Highenergyportionsofnon-safetysystemswhosefailurecouldreducethefunctioningofanyseismicCategoryIplantfeaturetoanunacceptablelevel-SeismicCategoryIportionofmoderateenergypipingsystemslocatedbothinsideandoutsidecontainment.Certainlineswhichfallinthecategoriesabovewillbeexemptedfromtestingforthefollowingreasons:-Lineisrarelyused,orwhenused,isnotrelatedtoplantshutdown-Lineisbothisolatedfromsourceofvibrationandhasalowmomentumflow-Lineiscontinuouslysupported(e.g.,buriedlines)-Linecannotbetestedundertheoperationalconditionsforwhichitisdesignedduringpreoperationalorstartuptesting(e.g.,containmentsprayingheaders).Testboundariesofeachsystemsubjecttotestwillbemarkedonisometricsaswellascorrespondingallowablevibratoryandthermalmotionforpointswhicharetobeobserved.3.9.2.1.1VibrationalTesting0Thevibrationtestsareperformedduringthosesystemoperatingmodeswneresignificantvibratoryresponseisanticipated,basedonoperatingexperiencewithsimilarsystemsinnuclearpowerplants.Priortoimplementationofthetestprogram,atestprocedurewillbewrittenwhichwillcontaina
3.9.2.1.1(cont'd)descriptionofthetests;'acompletelistingofthesystemstobetestedandofthevariousmodesofoperationsunderwhichtheyaretobetestedandtheacceptancecriteriaforeachtest.Forexample,Table3.9-15givesasummarylistingofpossibletestingmodesforselectedsystems.Theyaredividedintotwocategories:areoperating,whichoccurforrelativelylongperiodsoftimeduringthenormal'plantoperations;Tran'sient-Vibrationswhichoccurduringrelativelyshortperiodsoftime.Examplesaresingleandmultiplepumpstart,rapidvalveopeningorclosingandsafetyreliefvalveoperation.Tosimplifythetestingefforts,four(4)levelsoftest(basedontheirsophisitication)areidentified:3.9.2.1.1.1Level1-VisualObservationTestThepurposeofthistestistovisuallydeterminetheacceptabilityofthevibrationforthepipingsubjecttotest.TestingatLevel1isjudgedsufficienttodeterminetheacceptabilityofsteadystateandtransientvibrationformanycases,basedonindustrialexperiencewithsimilarsystems.Thisflexibilityresultsinhighallowablepeak-to-peakdisplacementswhichmightbeeasilyobservedvisually.Locationshavingallowablepeak-to-peakdisplacementsinexcessof20milswillbeclearlyobservablevisuallyandrequirenospecificdefinitionoftheirlocation.Alllocationswithallowablepeak-to-peakdisplacementslessthan20milswillbemarkedupontheisometricsaswellastherespectivedistancesfromwhichthesevibrationsmustbeimperceivabletobeacceptable.Thedistances,markedupontheisometrics,willbederivedbydeterminationofavisuallyobservablemaximumamplitudewhichwouldresultinadynamicstresslessthanorequalto50percentofthealternatingstressamplitudeat106cyclesa'shownintheASMF.Code.Inadditiontomarkedpoints,specialattentionwillbepaidtoobserving:a)Elbowspansandspansadjacenttoelbows;b)Spanswithlumpedmassessuchasvalvesandflanges;c)Vents,drains,andinstrumentationlines.Simplecharts,whichquicklyandconservativelydetermineallowablepeak-to-peakdisplacementforanypipingspanconfiguration,willbeprovidedforthispurpose.ShouldtheLevel1testprocedureleadtoinconclusivere'suits,aLevel2testistobeperformed.3.9.2.1.1.2Level2-HandHeldAmplitudeTestThepurposeofthistestistodeterminethevibratorydisplacementofthosepipingsegmentsforwhichLevel1visualobservationsareinconclusive. tl 3.9.2.1.1.2(cont'd)ThisTestProcedureisapplicableforbothsteadystateandtransientcondi-tions.ALevel2Test,utilizingahand-heldvibrationindicatortomeasurepeak-to-peakdisplacement,willbeperformedatprescribedlocations.Thelocationswillbechosenonthebasisofdividingthepipingsystemsintoaseriesofrepresentativ'espans.Aspanisdefinedasanypartofapipingsystembetweentwoconsecutiverestraintswhichfunctioninthesamedirection,or'-acantilever.Instructiononhowtobreakdowneachpipingsysteminto'differentspanconfigurationswillbeprovidedaspartofthetestprocedure.Themeasurementlocationsandacceptablecriteriaforthedifferentspancon-figurationswillbe'ivenintheTestProcedure.Stressamplitudesdue'tovibrationwillbeconsideredacceptableiftheydonotexceed50%ofSaand106cyclesasshowninFiguresI-9oftheASlKB&PVCode,SectionXXI1971editionuptoandincludingtheSummer1973addenda.Forlowcycle(4106cycles)transientvibrations,theacceptancecriteriaispredicatedonthefollowing:a)Ifobserveddisplacementsaresuchthatthemaximumdynamicampli-tudestressdoesnotexceed50%ofSaat106cyclesasshowninFiguresI-9oftheASNEB&PVCode,SectionIXI1971editionuptoandincludingtheSummer1973addenda,thenthevibrationisacceptable.b)Xfmeasureddisplacementsare'largerthana)above,then:1)AcumulativeusagefactorUviscomputedfromUviNNiALwhere:NiNiALSimnumberoftypeitransientstimestheeffectivenumberofcyclesforeachtypeitransient,andallowablenumberofcyclesfortypeitransientcorres-pondingtothealternatingstress,Si,wherethemaximumalternatingstressproducedbythetypeitransient.ThevibrationisacceptableifUvO.l.InstrumentationRequirementsforLevel2testaregiveninTable3.9-16.IfthetestresultsdonotmeettheLevel2acceptance'riteria,thenaLevel3,HandHeldAmplitude/FrequencyTestwillbeperformedforcasesofsteadystatevibrationandLevel4,Instrumentation-StressTestforcasesoftransient-vibrations. e 3.9.2.1.1.3Level3-HandHeldAmplitude/FrequencyTestThepurposeofthi.testistodeterminethevibratoryandrespectivepeak-to-peakdisplacementsofpipingsegmentsforwhichtheresultsoftheLevel2testingareinconclusive.Portableinstrumentsareusedforthistest.Acceptancecriteriai'nco'rporatedinthesame"chartsusedforLevel2testsand/or'computeranalysisusedtodeterminedynamicstresses,basedonthemeasurementresults,willenableafinalconclusionregardingtheacceptabilityof.steadystatevibration.3.9.2.1.1.4Level4-Instrumentation-StressThistestwillbeperfo'rmedforthosetransienteventsforwhichtheresultsofLevel3testingareinconclusive.AtimehistoryanalysisofthepipingsystemresponsetothetransientswillbeperformedutilizingthecomputerprogramPLAST.Thelocationofmaximumstresspoints,maximumdisplacementpointsandmaximumrestrainedloadswillbecalculated.Theresultsvillgiveallnecessaryinformationtoestablishacceptancecriteriaandtoselectpropertestingsensors.Fluidparameterswillbemeasuredifrequired.Adataacquisitionsystemwillbeusedtorecordinformationduringtesting.Inaddition,Level4Testingmaybeusedforshockorpulsetypetransients.Acomputertimehistoryanalysisofthepipingandsupportsystemresponsetothepulseisgeneratedtooptimizetransducerlocations.Duringthetest,realtimedataisrecordedforlateranalysis.3.9.2.1.1.5CorrectiveActionIXntheunlikelyeventthatthepipingvibrationexceedstheacceptancecriteriaforLevel3or'4tests,thencorrectiveactionswillbeinitiated.Possiblecorrectiveactionincludes:(1)identificationand,reductionoreliminationoftheoffendin'gforce,(2)detuningofresonantpipingspansbyappropriatemodificationstotherestraintsystem,(3)additionofbracingtostiffenthesystem,'nd(4)changesinoperatingprocedurestoeliminatetroublesomeoperatingconditions.Followingcorrectiveaction,additionaltestingshallbeperformedtodetermineifthevibrationshavebeensufficientlyreducedto'satisfytheacceptancecriteriaandthepipingstressanalysisshallberevisedtoincludethecorrectivemeasures.CorrectiveactionwillbedocumentedinpreoperationaltestproceduresasrequiredandwillbeavailableforNRCreview.ThemethodologydescribedaboveissummarizedintheGeneralFlowChartinFigure3.9-19.3.9.2.1.2ThermalExpansionTestingThermalexpansiontestingwillbeperformedtoverifythatthemeasuredmovementsatparticul'arlocationsareapproximatelyequaltothosepredictedbyanalysisandtoensurethatthepipingisnotrestrainedduetointer-ferenceswithothercomponents.Priortotheimplementationofthetestingprogram,atestprocedurewi11bewrittenidentifyingsystems'tobetestedandexpectedmovementsatthosechosenpoints.Arationalewillbeprovidedforthechoiceofmeasurementpoints. 3.9.2.1.2(cont'd)XnformationconcerninginspectionandtestingofsnubbersiscontainedintheanswertoQuestion44.Subsection14.2.12.1.10.T,oftheFSARcontainsadescriptionof'thetestprogram. SL2-FSARTABLE3.9-15LISTOFVIBRATIONTESTINGMODESFlowModesforPreoperationalVibrationTestingPipingSystemsSteadyStateestLevel'ransientTestLevelInstrumentationRequired1MainSteamfromSteamGeneratorstoMSIV'sMainSteamtoAuxi-.'liaryFeedwaterPumpTurbine1002PowerPullflowthoughatmosphericdumpvalves,allvalvesopenRunatfullpumpflowTurbinetripatlOOXpowerHoneAFHturbinetripatfullpumpflow(tobeadded)NonePeedwaterandAuxi-liaryPeedwaterSingleAPWPumpOperationforPumps2A,2B,2C;recirculationmodePumpstart,recircu-lationmodeFMregvalveNoneIntakeCoolingMaterPumpsDischargePipingComponentCoolingMaterPump(s)OperatingPump(s)OperatingHoneHoneNoneNoneDieselOilTransferPumpDischargePipingSteamGeneratorBlowdownPump(s)OperatingFlowatnormalrateFlowatmaximumrateNoneInitiateflow,systemcoldNoneNoneNone
SL2-rSARTABLE3.9-15cont'dLISTOFVT",RATIONTESTIhQMODESPlowModesforPreoperationalVibrationTestingPipingSystemsSteadyStateTeatLevelTransientTestLevelInstrumentationRequiredReactorCoolantMainLoopSingleandMult-iplePumpOpera-tionPump(s)startsandstopsPressurizerSprayValveCyclingNoneHand-HeldVibrationAmplitudeMeterReliefValveDischargePipingChemical6VolumeControlSystemLetdownflowmodesBoricacidmakeuppumps2Aand2BPORVoperationNoneNone(tobeadded)LowPressureSafetyIn)ectionChargingPumps2A,28and2CSingleandMultiplepumpoperationLPSIPumps2Aand20operatinginminimumrecircula-tion-mode2SingleandMultiplePumpstartsandstopsNone2Hand-HeldVibrationAmplitudeMeterShutdownCoolingmodeNoneHighPressureSafetyIn)ectionHPSIPumps2Aand28operatinginminimumrecircula-:tionmodeNoneSafetyin]ectionmodeNone 0 SL2-FSARTABL'E3.9-15cont'.d~~~LISTOFVIBRATIONTESTIGMODESFloeModesforPreoperationalVibrationTestingPipingSystemsSteadyState.TestLevelTransientTestLevelInstrumentationRequiredFuelPoolCoolingPump(s)2Aand2BoperatingNoneContainmentSprayPumps2Aand2BinminimumrecirculationmodeNoneHydrar.ineIn)ectionPumps2Aand2BoperatingPump(s)startandstopNone SL2-FSARTABLE3.9-16INSTRUMENTATIONREUIREKNTSFORLEVEL2TESTToperformtheLevel2Test,thefollowinginstrumentsareneeded:1.Transducers(Accelerometers)Rangeofamplitudesupto500milsRangeoffrequencies:5-1000HzNaximumoperatingtemperature:600F0Hand-heldtransducersmaybeusedforsteadystatevibrationmeasure-mentsiftestingtemperatureislessthan250P.Temporarilymounted0transducersarerecommendedfor:(a)steadystatetests,ifpipingtemperatureexceeds250P;(b)allLevel2transienttests.Clamped0~bracketsormagneticbaseswillbeusedtomounttransducers.2.Hand-HeldVibrationIndicatorsforSteadStateTestinEachinstrumentshallhavethefollowingrangeofscales:(a)0-10mile(d)0-100mils(b)0-20mila(e)0-300mils(c)0-40mils(f)0-600mils3.Hand-HeldPeakHoldIndicatorforTransientTestRequiredrangesofdisplacementarethesameasforsteadystatetestinginItem(2)above. LEVEL0-VISUALOBSERVATIONPOSITIVERESULTSSIGNQFFINCONCLUSIVELEVEL2-HANDHELDAMPLITUDEINDICATORSIGNRFFPOSIT(VEINCONCLUSIVF.RESULTSSTEADYSTATEVIBRATIONSTRANSIENTVIBRATIONSLEVEL4-INSTRUMENT/STRESSTESTING(EXAMPLESOFMODES!MSTURBINE':STOPVALVECLOSUREPORVCYCLINGINCONCLUSIVELINESLEVEL3-AMPLITUDE/FREQUENCYINDICATORSPOSITIVENEGATIVEPOSITIVERESULTSNEGAIVESIGNAFFCORRECTIVEACTION,AE-TESTSIGNA)FFCORRECTlYEACTION,.RE-TESTGENERALFLOWCHARTFORPIPINGVIBRATIONTESTINGFigure3.9-19 14~1.12.1.10.TPIPINGTHERMALEXPANSIONANDRESTRAINTI.~Obacl:iveToverifythatpipingsystemswithinthetestboundaries(e.g.,mainsteam,feedwater,safetyinjection,CVCS)arefreetoexpandthermally,thatspringhangersdonotbottomoutorunload,thatsnubbersdonotrestrictthermalmovements,andthatthesemovementsarewithindesignallowances.'a)Verifythattemporarystructuresandrestraintsthatcouldinterferewithsystemexpansionareremoved.b)Pre-serviceinspectionofsnubbersincludedinthis,testhasbeencompletedwithinsixmonthsofthestartofthetest.c)Allotherhangersandrestraintsaffectedbythistesthavebeeninspectedforcorrectinstallationandadjustment.TestMethoda)VerifyexpectedpipingthermalexpansionatRCStemperatureplateausduringhotfunctionals.b)Forsafety-relatedsystemswhosenormaloperatingtemperatureexceeds250'"thatareexpectedtoattainoperatingtemperaturedur'inghotfunctionals,verifyexpectedsnubberthermalmovementandswingclearanceatRCStemperatureplateaus.c)Forsafety-relatedsystemswhosenormaloperatingtemperatureexceeds250'thatdonotattainoperatingtemperatureduringhotfunctionals,verifybyobservationand/orcalculationthatsnubberswillaccormnodatetheprojectedthermalmovement.d)Monito'rpipingandsnubbermovementduringcooldown.AccetanceCriteria')Thereisnoevidenceofinterferencewiththermalexpansionofanysystempipingorcomponentotherthanbysupportsshownonthepipingisometric.b)Measuredthermaldisplacementsofpiping,springhangers,andsnubbersiswithin+20%or1/4inch(whicheverisgreater)ofthedisplacementpredictedbythestressanalystsfromthestressisometricdrawings.c).Snubberswingclearancesareacceptable(i.e.,snubbermovementenvelopesarefreefromobstructions).d)Systempiping,springhangers,andsnubbersreturntotheircoldpositionfollowingsystemcool-down. uestion31-1Justifydecouplingthehorizontalandvertical'omponentsoftheresponsestoblowdownloads.Re~soeseTheaxialandlateralinternalsmodelswereuncoupledtoprovidemorespatialdetailtoaccountforimportantstructuralcharacteristicsintheseparatemodels.Thereisaseparationintheaxialandlateralnaturalfrequencies,sothattheresponsecharacteristicsintheseparatedirectionsarenotcoupled.Typicallate'ralnaturalfrequenciesforSt.Lucil+angefrom2to25hertz.Typicalverticalnaturalfrequenciesrangefrom25hertzto200hertz.Theresultsoftheanalysesshowthelateraldisplacementstobesmalland,whencombinedwiththemaximumaxialloads,thebeamcolumneffectsarenegligible.TypicalpeakhorizontalrelativedisplacementsforSt.Lucie82are.100inches.Typicalpeakverticaldisplacementsareapproximately1/10ofhorizontal.
uestion31-2Justifytheuseofresultsoflinearanalysisfortheinherentnonlinearproblem'.~ResonsaThehorizontalandverticalmodelswhichwereusedtodeterminetheLOCAstructuralresponsesofthereactorinternalswerenonlinear.TheCESHOCK(referencesg,2,3)codewasusedtocalculatethemaximumcomponentloadsthatresultedfromthepostulatedhotandcoldlegbreaks.Theseanalysesconsiderednonlinearitiessuchasgaps,damping,friction,hysteresisandcoefficientofrestitution.
References:
"TopicalReportonDynamicAnalysisofReactorVesselInternalsUnderLoss-of-CoolantAccidentConditionswithApplicationofAnalysistoC-E800MweClassReactors,"CombustionEngineering,2.Gabrielson,V.K.,"SHOCK,AComputerCodeforSolvingLumped-MassDynamicSystems,"SCL-DR-65-34,January1966.3."StructuralAnalysisofthe16x16FuelAssemblyforCombinedSeismicandLoss-of-Coolant-AccidentLoadings,"CENPD-178P,CombustionEngineeringProprietyReport,October1976. Presentadiscussionoutliningtheeffectsofsystemflowuponmassandflexibilityproperties.~ResenseTheeffectsofsystemflowonthedynamicresponseofreactorvesselinternalsaresecondary.Thehydrodynamiceffectofthesecomponents~isdominatedbyhydrodynamiccouplingandhydrodynamic-addedmass.Bothoftheseeffectsareconsideredinthedynamicresponseanalysesofthesecomponents.AdetacheddescriptionofCEmethodologyforhydrodynamicmassispresentedinCENPD-178-PREV1,"StructuralAnalysisofFuelAssembliesforSeismicandLoss-of-Coolant-AccidentLoading"tobereleasedinAugust1981.Additionalreferenceswhichdescribethishydrodynamicmassmethodologyarelistedbelow.1.Fritz,R.J."TheEffectofLiquidsontheDynamicMotionsofImmersedSolids,"JournalofEngineeringforIndustry,PaperNo.71-VIB-100.2.McDonald,D.K."SeismicAnalysisofVerticalPumpsEnclosedinLiquidFilledContainers,"ASMEpaperNo.75-PVP-56. uestion32Mefindthisprogramacceptableprovidedtheapplicantsubmitsacorrelationo".theSt.LucieUnit2observedvibrationalcharacteris-ticswiththeresultsfromtheprototypereactors.XfthecomparisonoftheobservedvibrationalcharacteristicsofSt.Luciewiththoseoftheprototypeplantsindicatetheneedforanycorrectiveaction,thestaffwillreviewtheapplicant'sproposed'correctiveactionforSt.LucieUnit2andprovideitsevaluationinasupplementtothisSER.~ResesseDuringthepreoperationaltestprogram,theinternalsaresubjectedtothesignificantflowmodesofnormalplantoperation.Beforeandaftertheseflowtests,theinternalsarefullyexaminedtodetermineanyevidenceofexcessivevibrations.Theobservedvibrationalcharac-teristicsofSt.Lucie2willbecomparedtothoseoftheprototypeplantsasdescribedinSubsection3.9.2.4.Aseparatereportwillbesentto'theNRCafterthefinalexaminationthatwillcontaintheresultsoftheprogramaswellasidentifyanyneedsforcorrectiveaction. 0 uestion33ThediscussionofplantconditionsinSubsection3.9.3.1oftheFSARrequiresclarification.TheLoadingCombinationMethodofresponsecombinationandallowablelimitsshouldbeprovidedforallASMEClass1,2and3componentsandtheirsupportsforeachdesignandservicecondition.~ResesseTheplantconditionsconsideredfortheseismicqualificationofthemechanicalcomponentsarenormal,upset,emergencyandfaulted.TheDesignLoadingCombinationforeachplantconditionisprovidedonFSARTable3.9-5whilethecorrespondingallowablestresslimitsareprovidedonFSARTable3.9-6and3.9-7.Whendynamicloadingsarepresent,themethodologyofcombiningresponsesmettherequire-mentofNUREG0484,Revision1,datedMay1980.AsillustratedintheNUREGasummationofthestaticloadsarecombinedbytheabsolutesummethodwiththecombineddynamicloads.FSARAppendix3.9Aprovidestheseismicloadingcriteriaandtheresultsofanalysiswhichillus-tratesthattheactualloadsencounteredarelessthantheASMEallowables.TheloadingcombinationsanddesignstresslimitsforASMEcodeclassandNSSScomponents(exceptvalves)arepresentedinTable33-1and33-2.Theloadingcombinationsandstresslimitsforvalves,pumps,andallotherclass2and3componentsarepresentedinTables33-3through33-8.Note.:TheuseofemergencylimitsinTable3.3-1forotherthantheATWSeventisundergeneric.discussionwithrespecttoprobabilityofoccurrenceofspecificevents.ReferItem55. 0 TABLE33-1'FLOADINGCOMBINATIONSASMECODECLASS1'NSSSCOMPONENTSEXCEPTVALVES(TABLE3.9-1)ConditionDesignLoadingCombination'(a)DesignNormal(b)Upset(b)EmergencyFaultedPDPO+DWPO+DM+OBEPO+DH+DEPO+DV+DBE+DFLegend:PD~designpressurePODHOBEDBEDEDFoperatingpressuredeadweightoperatingbasisearthquakedesignbasisearthquakeDynamicsystemloadingsassociatedwithi:theemergencycondition(5cyclesofcompletelossofsecondarypressure)Dynamicsystemloadingsassociatedwithapostulatedpiperupture'(LOCA)orsteamlinebreakAsrequiredbyASMECodeSection'II,DivisionI,otherloadssuch(b)as.thermaltransient,thermalgradient,andanchorpointdisplacementportionsoftheOBErequireconsiderationinadditiontotheprimarystressproducingloadslisted.Methodofcombination:NUREG04S4 00 TABLE33-2STRESSLIMITSFORASMECODECLASS1NSSSCOMPONENTSEXCEPTVALVES(TABLE3.9-1)ConditionStressLimits~~Normaland'psetEmergencyFaultedNB3223andNB3654NB3224andNB3655NB3225andNB3656AsspeciiiedinASMESectionIII,1971andapplicableaddenda.
TABLE33-3LOADINGCOHBINATIONSFORNSSSVALVESCLASS1,2and3Condition~LoadfnDesignNormal(l)Upset(2)EmergencyPDPO+DW+SSE+TPO+DW+SSE+TPO+DW+SSE+T(l)JamesburysuppliedvalvesonlyFischersuppliedvalvesonly(2)PO-OperatingPressurePD-DesignPressureDW-DeadWeightSSE-SafeShutdownEarthquakeT-TransientsNote:Allloadsareabsolutelysummed
TABLE33-4DESIGNSTRESSLIMITSFORNSSSVALVESCLASS1,2and3ConditionDesignNormalUpsetEmergencyStressSmF1Sm1.2SmorSy(1)Limits.(2)(~nn.OlOg.~1.5Sm1.5Sm1.65SIQ1.8SmNotes:(1)Greaterof1.2SmorSyFor.Class2and3valvesSmisreplacedbyS(2) 0 TABLE33-5LOADINGCOMBINATIONSFORNSSSPUMPSCLASS2AND3Design~DP+DW+NL+SSEDP~designpressureDW~deadweightNL'ozzleloads(includepipingimposedthermalexpansion,deadweightandseismic)SSE~safeshutdownearthquakeNote:Allloadsareabsolutelysummed.
TABLE33-6DESIGNSTRESSLIMITSFORCODECLASS2AND3NSSSPUMPSlater 0 TABLE33-7tLOADINGCOMBINATIONSFORNSSSASMECODECLASS2AND3COMPONENTSOTHERTHANVALVESANDPRPSVESSELANDSUPPORTSConditionDesignNormalUpsetFaulted~DesinLoadinCombinations(a)PD+NLPO+DW+NLPO+DW+OBE+NLPO+DW+SSE+NLLegend:PD=designpressurePO=operatingpressureDW=deadweightOBE~operatingbasis'arthquakeSSE~safeshutdownearthquakeNL~nozzleloads(includespipingimposedthermalexpansion,deadweightandseismic)Nozzleloadsareincreasedby50%forthefaultedloadingcondition.(l)The50%increaseforfaultednozzleloadsisconfirmedtobeacceptablebythepipinganalysis.Note:Allloads'areabsolutelysummed. TABLE33-8DESIGNSTRESSLIMITSFORCODECLASS2&3NSSSCOMPONENTSOTHERTIIANVALVESAi&PUMPS(VESSELS6SUPPORTS)ComonentsSafetyInjectionTankCondi.tionNormalStressLimits~r~Žohio)0'oSm1.5SmUpsetFaultedSm2.0Sm1.5Sm2.4SmPressureVesselsNormalUpsetEmergency'aultedASMEIIINC3300orND3300(ŽoE1.1S1.65S1.5S1.8S2.0S2.4SSupportsAllASMEIII,NF~~~ TABLE3.9-5DESIGNLOADINGCOMBINATIONSFOR~EUALITYGROUPSBANDCCOMPONENTS(VESSELSPUIIPSVALVESPlant0eratinConditionDesinLoadinCombinationNormalUpsetEmergencyFaulteda)PO+DWb)PO+DWc)PO+DWd)PO+DWe)PO+DW+DBE+DBE+RVO+DBE+FVC+DBE+FCa)PO+DWa)PO+DW+OBEb)PO+DW+OBE+RVOc)PO+DW+OBE+FVCd)PO+DW+IN@a)PO+DW+OBE+RVO+FVCNotationPODWOBE-RVO-FVC-DU-DBE-FCoperatingpressureandtemperatureliveanddead"weight(includingnozzleload)operatingbasisearthquake(inertiaportion)reliefvalveoperation(includingopenorclosed,asapplicable)fastvalveoperation(asapplicable)otherdynamicsystemloadingassociatedwithplantupsetconditionsdesignbasisearthquake(inertiaportion)dynamicsystemloadingsassociatedwithplantfaultedconditions(*).TheseloadsarecombinedinaccordancewithNUREG0484,Rev.l. TABLE3.9-5ADESIGNLOADINGCOMBINATIONSFORAEUALITYGROUPSBANDCPIPINGPlant0cretinConditionNormalDesinLoadinCombinationsa)PO+DWb)TOUpseta)PO+DWb)PO+DWc)PO+DW~d)PO+DWe)TI+OBE+OBE+RVO+OBE+FVC+DQEmergencyFaulteda)PO+DWb)PO+DWc)PO+DWd)PO+DWe)PO+DW+DBE+DBE+RVO+DBE+FVC+FC*+DBE+FCa)PO+DW+OBE+RVO+FVCNotationPO-operatingpressureandtemperatureDW-liveanddeadweight(includingnozzleload)OBE-operatingbasisearthquake(inertiaportion)RVO-reliefvalveoperation(openorclosedasapplicable)FVC-fastvalveoperation(asapplicable)DU-otherdynamicsystemloadingassociatedwithplantupsetconditionsDBE-designbasisearthquake(inertiaportion)FC-dynamicsystemloadingsassociatedwithplantfaultedconditionsTO-thermalloadsTI-restrainedthermalexpansionandtherelativemovementofanchorpointsproducedbytheOBE(fc)TheseloadsarecombinedonthebasisofSRSSinaccordancewithNUREG0484,Rev.1. \uestion34ThemethodsofcombiningresponsestothevariousloadslistedinSections3.9.3.1oftheFSARarenotdefined.UewillrequireadescriptionofthemethodsusedforthecombinationsofresponsestoalldynamicloadsforallNSSSandBOPsuppliedASMEClass1,2and3equipment,componentsandtheirsupports.OurpositiononthisissueisoutlinedinNUREG-0484,"MethodologyforCombiningDynamicResponses,"Revision1datedMay,1980.1~ResonseSeerevis'edloadingcombinationsinquestion33. TheresponseofcertainreactorcoolantsystemcomponentsandtheirsupportstopostulatedasymmetricLOCA1oadsneedstobeaddressedinaccordancewithNUREG-0609;~)\a8onseTABLEIprovidesthestatusoftheevaluationofcomponents,structures,andattachmentstotheRCSwhensub)ectedtoasymmetricloads.Wheretheevaluationhasbeencompleted,theresultshavebeenshownacce'ptable. TABLE1:AssessmentofStructures/AsymmetricLoads~~~4Component/StructureAssessmentStatusEvaluationBasisReferenceCommentsReactorPressureVesselSteamGeneratorsReactorCoolantPumpsReactorVesselSupportsSteamGeneratorSupportsCompletePlantSpecificAnalysisFSAR3.9.1.4-1CompleteReactorCoolantPumpSupportsBiologicalShieldWallFSAR6.2.1.2,SteamGen.,RCPumpCompartmentWallRCSMainPipingCompletePlantSpecificAnalysisFSAR6.2.1.2 TABLE1:.AssessmentofStructures/AsymmetricLoadsComponent/StructureAssessmentStatusEvaluationBasisReferenceCommentsECCSPipingInProgressPlantSpecificAnalysisFSAR3.9.1.4.5Preliminaryanalysespredictacceptableresults.FSARAmendmentNov.1981.ECCSPipingSupports&RestraintsInProgressCEDMSInProgressFSAR3.9.1.4.3ReactorInternalsInProgressFSAR3.7.3-14FSAR3.9.2.5AnalysisnearlycompleteResultstodateareacceptable.FuelInProgressAnalysesexpectedtobecompleted3/82.
~~~I~IIIIIIIIIII~~~ ST'.LUCIE2CEDf't~GEOftETRYANDf00f1ENTCAPABILITYSIMILARTOPALOVERDEPIPEBREAK+SSEHEADVELOCITIESLOWERTHANTHOSEFORPALOVERDESINCEPALOVERDEHASBEENDEMONSTRATEDACCEPTABLE,ST.LUCIE2CEDNAREEXPECTEDTOBEDENONSTRATEDTOBEACCEPTABLE~ANALYSISISEXPECTEDTOBECOMPLETEDSYSEPTENBER1,1981 ~PihS,K0.2<~~a~~OLE'VBLU)lX~zy(go%P4<l-ic>~~4.liibtg'4>0 ST.LUCIE2ECCSPIPING'PRELININARYCALCULATIONSINDICATETHATLINES1AAND18ARFTHEHOSTSEVERELYLOADEDk~COHPARISOf'IOFINPUTNOTIONSMITHOTHERECCSLIf'JESPREVIOUSLYANALYZEDINDICATETHATj.)PLASTICANALYSISISREQUIRED,2)RESULTSAREANTICIPATEDTODENONSTRATEACCEPTABILITY.~ANALYSISISEXPECTEDTOBECONPLETEDBYSEPTEfSER30,1981 ~~rI/I//IIl~IIItll1'll~~0~~4II1IIIII~~0IrrrrrrSUCTIONiL.BONTOTALCISP.RTf1lDOLESŽiCTION---8Rt&l~eL-s'HRPe'ppgg~eg$HHPE'xAa~a~7ecQVApRevCF' 3.9.1.4-ConsiderationfortheEvaluationoftheFaultedCondition3.9.1.4.1SeismicCategoryINSSSItemsThemajorcomponentsofthereactorcoolantsystem(RCS)aredesignedto~withstandtheforcesassociatedwiththedesignbasispipebreaksdiscussedin~ection3.6.2,incombinationwiththeforcesassociatedwith.theSafeShutdownEarthquakeandnormaloperatingconditions.SeeSections3.9.1.1and3.9.3ior-discussionorloadingcombinations.Theforcesassociatedwiththepostulatedpipebreaksincludepipethrustforcesatthebreaklocation,resultantsubcompartmentdifferentialpressurizationforces,andinternalasymmetrichydraulicforcesactingonthereactorinternals.Thepipebreak,thrustforcesaredeterminedbythemethodsdiscussedinSection3.6.2.6-1-ThetimeandspatiallydependentasyranetrichydraulicloadsactingonthereactorinternalsaredeterminedbythemethodsdiscussedinSection3.9,2.5.Adynamichon-lineartimehistoryanalysiswasperformedtogeneratereactor.~vesselloadsandmotionsduetotheforcesassociatedwiththepartialareapipebreaksatthereactorinlet'andoutletnozzlesandthesteamgeneratorinletnozzles{SeeSection3.6.2.1.1.3).TheanalysisusedtheDAGScodetoperforma'irectintegrationofthecoupledequationsofmotion,inwhichthesystem,.characteristics"areupdatedateachintegrationsteptoaccountforlocalnon-linearities.'hesenon-linearitiesincludeinitialgapsandpreloadsatsystemrestraintsorlocalplasticresponsewhichmayoccurfo11owingapipebreak.TheFORCE'codepost-processesDAGSresponse.outputinordertoprovidethe1oadsandmotionsatpre-specified1ocations..TheanalysisuSedalumpedparametermodelincludingdetailsofthereactorvesselandsupports,majorconnectedpipingandcomponents,andthereactorinternals(Figures3.9-19through3.9-22).Thismathematicalmodelprovidesathree-dimensionalrepresentationofthedynamicresponseoftheRCSmajorcomponentssubjected.to'thesimultaneoustimevaryingpipebreakforcingfunctions.ThismodelisdefinedmathematicallyintermsoftheICESSTRUDLIIcomputercodetodevelopappropriatematricesfortheelementsofthethree-dimensionalspaceframemodel. 7heresuitsgeneratereactorvesselandsupportloadsandtimehistorymotionsotRCSpipingatECCSpiping$unctur'epoints,andRVshellmotionsatinternalsandCEONsupportpoints.Ttlesemotionsprovideinputexcitations.forthepipebreakanalysesofthereactorinternals,fuel,CEAS,CEDARSandECCSpiping.eYhecomponentandsupportloadsfortheSteamGenerator,ReactorCoolantPump,andPressurizerweredeterminedbyequivalentstaticanalyses.4loadfactorequalto2.0onthecalculatedthrust,jetimpingement,andsubcompartmentpressureloadsisemployedtoaccountforthedynamicresponseEofthestructure.ThemodelemployedforstaticanalysiisshowninFigure3.9-18Yhesystemorsubsystemanalysisusedtoestablish,orconfirm,loadswhicharespecifiedforthedesignofcomponentsandsupportsisperformedonanelasticbasis.sIMhenanelasticsystemanalysisisemployedtoestablishtheloadswhichactoncomponentsandsupports,elasticstressanalysismethodsarealsoused$nthedesigncalculationstoevaluatetheeffectsoftheloadsonthecomponentsandsupports.Inparticular,inelasticmethodssuchasplasticinstabilityandlimitanalysismethods,asdefinedinSectionIIIoftheASHECode,arenotusedinconjunctionwithanelasticsystemanalysis.'Analysesofthereactorcoolantsystemcomponents(reactorvessel,steamgenerator,reactorcoolantpump,pressurizer,.andreactorcoolantpiping)andtheirsupportshave.beenperformedinaccordancewiththemethodsdescribedabove.Foreachcomponentandsupportmember,thecalculatedloads,incombinationwiththeseismicloads,arebelowtheloadsspecifiedfordesign,andthestresses(pipingruptureincombinationwithSSE)arebelowthoseallowedbySectionIIIoftheASMEB&PYIcodeforServicetevelD. 3.9.l.4e2ReactorInternalsSeeSections3.7.3.14end3.9.2.53.9.1.4.3ControlElementDriveMechanisms(CEDMs)Thecapabilityofthecontrolelementdrivemechanisms(CEDMs)towithstandtheeffectsofdesignbasispipebreaksincombinationwithsafeshutdownseismic(SSE)loadingsisevaluatedbyanalysis.ThisdynamicloadingisexperiencedbytheCEDMsviathemotionofthereactorvesselhead.Thereactorvesselhead/CEDNmotionsduetopiperuptureandseismicloadingsarecalculatedusingthemodelsdescribedinsection3.9.1.4.l. 3.9.1.4.3.1MethodofAnalysistPreviousstudiesonotherCEplants(Reference1)have'indicatedthatthereactorvesselasynmetricloadaspectsofahypotheticalguillotinebreakproducemotionswhichresultinstresseswhichexceedtheASMECodeLevelDallowablestressesforelasticcalculation.ElasticplasticdynamicanalyseshavedemonstratedforthoseplantsthatthestructuralintegrityoftheCElNsisnotimpairedbytheseloadingsandthattheASMECodeLevelDallowablelimitsforelasticplasticcalculationarenotexceeded.InordertodemonstratethattheintegrityoftheCEDHsarenotimpairedbypipebreakandSSEloads,.elastic-plasticdynamicanalysesareperformed.Intheelasticplasticanalysis,themotionsoftheRVareinputtothefiniteelementmodeloftheCE{N.Momentsanddeformationarecomputedasafunctionoftimeduringtheevent.Themomenttocauseplasticinstabilityofthemostseverelyloadedsectioniscomputedbyelasticplasticstaticanalysis.Theactualmomentsduringthedynamiceventarethencomparedtotheplasticinstabilitymomentinordertoevaluateintegrity.3.9.1.4.3.2ModelsDynamicanalysisfinitee'lementmodelsarepreparedforCEDHsnearthecenteroftheRVheadandneartheouteredge.ThemodelsaremadeupofbeamtypeelementsThemodelofthecalculationoftheplasticinstabilityloadismadeupofshellelementsinordertoconsidertheeffectsofovalizationofthecylindricalsection.'henozzleattheRYheadisusuallythemostseverelyloadedsection.3.9.I.4.3.3MaterialPropertiesRecentlythematerialpropertiesnecessaryforelasticplasticanalysishavebeendevelopedbytheCEHetallurigicalandMaterialsLaboratory.ThesepropertiesareavailableforallofthematerialsatallofthetemperaturesthattheGEOMnormallyexperiences.3.9.1.4.3.4LoadingTheeffectsofpipebreakandSSEaretransmittedtotheCEDHbythemotionofthereactorvesselheadresultingfromtheanalysisofSection3:9.1.4.1. Aresponsespectrumis'alculatedforthemotionofthereactorvesselheadresultingfromtheprimarysystemdynamicanalysisforpipebreakloads.ThisresponsespectrumiscombinedwiththeSSEresponsespectrumbytakingthesquarerootofthesumofthesquares(RSS)oftheordinatesofthetwospectra.,AnartificialtimehistoryofmotionisthendevelopedfropthecombinedaccelerationspectrumandusedastheinputtothedynamicCEDNanalysis.IAccelerationspectraresultingfrompiperuptureattheRVinletnozzle,theRVoutletnozzle,andatthesteamgeneratorinletnozzlearecomparedinordertodeterminethemostsevereloadingcondition.Ifoneloadingconditioncanbeidentifiedasthe,mostseverecase,onlythatloadingconditionisusedinthedynamicCEDManalysis.Otherloadingsarealsousediftheyarenotclearlyenvelopedbythemostsevereone.3.9.1.4.3.5ResponseThemodels,materialpropertiesandRVheadmotionhistoryareusedintheNRCfinite,elementprogramforanalysis.TheAHSYSprogrammayalsobeused.Theresultsofthedynamic'nalysisincludemoments,strains,stressesand-deformationasafunctionoftime.TheseresultsarepresentedgraphicallyforcriticalregionsoftheCEDM.Thesamematerialpropertiesareusedinthestaticanalysisfortheplasticinstabilitymoment.3.9.1.4.3,6Evaluation3.9.1.4.3.6.1AcceptancecriteriaTheCEDMsarenotrequiredtooperateforsafeshutdownafteralossofcoolanteventresultingfromthedesignbasispipebreaks.InordertocomplyWithexistingECCSanalysismethods,however,theintegrityoftheCEDMsmustbemaintainedandleakagemustbeprevented.TheASMEBoilerandPressureVesselCodeSectionIIIDivision1AppendixFlistsanumberofcriteriawhichassurethatthepressureboundarywillnotbeviolated.Thesecriteriaincludeaninstabilitylimitforcomparisontoelasticplasticanalysisresults.Theintegrityofthepressureboundaryisassurediftheappliedloadsdonotexceed70~oftheplasticinstabilityload. 3.9.1.4.3.6.2EvaluationofIntegrityTheresultsofeach'dynamicanalysisarecomparedtotheresultsofthestaticplasticinstabilitymomentanalysis.IntegrityoftheCEOMsisazurediftheacceptancecriteriaaresatisfied.BasedonReference(1)sMdies,itisexpectedthatresultsoftheseanalyseswilldemonstratetheintegrityoftheCEDMs.ResultswillbesubmittedinaNovember,1981amendment.REFERENCES1."ReactorCoolantSystemAsymmetricLoadsEvaluationProgramFinalReport",CombustionEngineering,Inc.,July1,1980.3.9.1.4.4Thecomponentsnotcovered.bytheASMECodebutwhicharerelatedtoplantsafetyinclude:(1)fuel,(2)nonpressureboundaryportionsofcontrolelementdrivemechanisms(CEDMs)and(3)controlelementassemblies(CEAs).Eachofthesecomponentsisdesignedinaccordancewithspecificcriteriatoinsuretheiroperabilityasitrelatestosafety.
3.9.1.4.5EMERGENCYCOBE'COOLINGSYSTEN+ECCS)PIPINGANDSUPPORTSThecapabilityof'heemergencycorecoolingsystem(ECCS)pipingandsupportstowithstandtheeffectsofdesignbasispipebreaksareevaluatedbyanalysis.ThecapabilityoftheECCSpipingandsupportstowithstandthecombinedeffectsofpipebreakandsafeshutdownseismic(SSE)loadingsarealsoevaluated.PiperuptureloadingsareexperiencedbytheECCSpipingviathemotionoftheprimarysystempiping,andtheSSEloadingsareexperiencedbytheECCSpipingviathemotionoftheprimarysystempipingandtheECCSpipingsupports.Theprimarypipingmotionsduetopiperuptureloadingsarecalculatedusingthemodelsdescribedinsection3.9.1.4.1.Theseismicloadingsareprovidedfromthecodestress'nalfsisoftheECCSlines.3.9.1.4.5.1MethodofA~nalsisPreviousstudiesonotherCEplants(Reference1)haveindicatedthatthemotionoftheprimarysystempipingattheECCSinjectionnozzleduetopiperupture'load:containsfrequencieswhichareintherangeofthenatura'IfrequenciesoftheECCSpiping.TheECCSpipingresponse,therefore,issensitivetosmallgeometryandinputfrequencychanges.Becauseofthissensitivitytheanalysisofapipesystemmayrequireeitherelasticorelasticplasticanalysis.EachECCSpipelinetobeevaluatedwillbeanalyzedbytraditionaldynamicelasticanalysisandevaluatedaccordingtoappropriateelasticstresslimitsforASIDELevelBandLevel0conditions.ForpipelineswhereLevelDlimitsarenotsatisfied,adetailedelasticplasticanalysistodemonstrateintegrityandfunctionabilityofthepipingwillbeperformed.3.9.1.4.5.2ModelsTheelasticdynamicanalysis>If11beperformedbyusingdistributedmassmodelsandtheappropriateECCSnozzlemotionhistory.TheNARCfiniteelementprogramwillbeusedfortheelasticdynamicanalysisforpiperuptureloads.Theprogram0willdeterminethemotionhistoryoftheECCSpipelineandthe'loadsinthesupportsbyperformingthetimehistoryanalysis. CiiQ Elasticplasticdynamicanalysis,ifrequired,willalsobeperformedwiththeINRCfiniteelementprogram.Adetailedanalysisofatypicalpipeelbowandatypicalstraightsectionwillbeperformedtodetermine.themomentcarryingcapability,orplasticinstabilitymoment,oftheelbowandpipe.rThisanalysisalsoprovidesane'lasticp'Iasticstiffnessoftheelbowtobe.usedinthepipelinedynamicanalysis.Thef'initeelementmodelusedf'rtheelasticplasticdynamicanalysisisrouladeupofpipeelementswithmodifiedstiffnessatelbowstoincorporatetheovalizationeffectsobservedinthedetailedplastic'elbowanalyses.ThestiffnessandloadcarryingcapabilityofthesupportsinputtotheanalysisPiscomputedbyelasticorelasticplasticanalysis.3.9.1.4.5.3NaterialsThemateria'IusedfortheECCSpipingisASI/ESA376GRT316stainlesssteel.Theelasti'cpropertiesrequiredforanalysiswillbetakendirectlyfromtheASNECode.TheelasticplasticpropertieswillbeestablishedbyscalinostressstraindataavailablefrompreviousCE-teststothespecifiedcodeyieldandultimatestressvalues.3.9.1.4.5.4Loadin<OTheeffectsofprimarysystempipebreaksaretransmittedtotheECCSpipingbythemotionoftheprimarypiping.Fortheevaluationofpipe.breakloadsonly,thedisplacementtimehistoryoftheprimarypiping(attheECCSinjectionnozzle)willbeapplieddirectlytoeachdynamicECCSpipelineanalysis.Thedisplacementtimehistoryisobtainedfromadynamicanalysisofthereactorcoolantsystemforpostulatedpipebreaksat'hevesselinlet,outletnozzlesandsteamgeneratorinletnozzle.3.9.1.4.5.5~Resonse~Thenaturalfrequencyofal'1ECESpipelineswillbedetermined.Theresultsoftheprimarysystemdynamicanalysisforpiperuptureagthereactorvesselinletnozzle>>illbecomparedtothepipelinefrequenciestodeterminewhichhotleginjection andwhichintactcoldleginjectionlineisloadedmostseverely.Themostseverelyloadedpipelinesareanalyzedforcoldlegpiperuptureloads.Theresultsoftheprimarysystemdynamicanalysisforpiperuptureatthereactor'essel.outletnozz1eandsteamgeneratorinletnozz'lewillalsobecomparedtothepipelibefrequencies.'hiswillenabledeterminationofthecoldleginjection.linewhichisloadedmostseverely.',Themostseverelyloadedcoldleginjectionlineandtheintacthotleginjectionlinewillbeanalyzedforthemostseverehotlegpiperuptureloads.Theanalyseswillresultinmotionsandstressesinthepipingandpipesupportloads.I'lastic-plasticanalyseswillinaddition,resultinplasticstrainsanddeformationinthepipeande1bows.3.9.1.4.5.6Evaluation3.9.1.4.5.6.1AcceptanceCriteriaTheintegrityandfunctionabilityoftheECCSpipingmustbedemonstrated;IntegrityandfunctionabilityareassurediftheLevelB(upsetcondition)limitsoftheASMEIBoilerandPressure,VesselCodeSectionIII,Division1,arenotexceeded.IftheLevel8limitsareexceeded,thenLeveTDorfaultedlimitsmaybeusedtodemonstratethatintegrityismaintained.Functionabilitymaybeassuredbydemonstratingthatthedeformationsofthepipingareacceptable.3.9.1.4.5.6.2EvaluationofIntegrityandFunctionabilityTheevaluationoftheeffectsofpipebreakloadsandSSEloadscombinedwhenbothloadingsproduceonlyelasticstressesisbythecomparisonofthesquarerootofthesumofthesquaresofthestressescausedbythetwoloadingswiththeelasticstressallowable.TheelasticdynamicstressresultswillbecomparedtotheLevelBstresslimitsoftheASMECode.Intheevent,thatthesestresslimitsarenotsatisfied,LevelDlimitswillbecomparedfordemonstrationofintegrity.IfLevelDelasticlimitsaremet,functionabilitywillbeevaluatedbyassessingtheextentofdeformationofthe'pipe. 0 Theevaluationof'theeffectsofpipebreakloadsandSSEloadscombinedinthecasewheresignificantplasticityexistsinthepipe'isconductedbycomputingthesumof'hestrainsduetothetwoloadingsandcomparingthesumtothestrainat705oftheplasticinstabilityload.Integrityisdemonstrated'iftheappliedmaximummomentislessthan70Ãoftheplasticinstabilitymomentorcorrespondinglyiftheappliedstrainislessthanthe4strainat70Ãoftheplasticinstabilitymoment.NFunctionabilitywillbe.evaluatedbycomparingtheextentofdeformationatthemaximumloadingtothe,deformationrequiredtosignificantlyaffectECCSflo.v.ResultswillbesubmittedinaNovember1981amendment.REFERENCESl."ReactorCoolantSystemAsymmetricLoadsEvaluationProgramFinalReport,CombustionEngineering,Lnc.July1,1980. 0l 3.9.2.5~DnamicSstemAnalsisoftheReactorInternalsUnderFaultedConditionsynamicanalysesareperformedtodetermineblowdownloadsandstructuralresponsesofthereactorinternalsandfueltopostulatedLOCAloadingsandtoverifytheadequacyoftheirdesign.Abriefdescriptionofthesemethodsisprovidedbelow.TheLOCAmaximumstressintensitiesinthereactorinternals'aredeterminedusingthecombinationsoflateralandverticalLOCAtime-dependentIoadingswhichresuItinmaximumstressintensities.ThemaximumLOCAstressesandthemaximumstressesresultingfromtheSSEarethencombinedusingtherootsumsquaremethodtoobtainthetotalstressintensi,ties.3.9.2.5.1DnamicAnalsisForcinFunctionsThehydrodynamicforcingfunctionsduringapostulatedLOCAresultfromtransientpressure,flowrate,anddensitydistributionsthroughouttheprimaryreactorcoo'lantsystem.3.9.2.5.1.1HdraulicPressureLoadsThetransientpressure,flowrateanddensitydistributionsarecomputedforthesubcooledandsaturatedportionsoftheblowdownperiodduringaLOCA.Thecomputercodeutilizedisbasedonanode-flowpathconceptinwhichcontrolvolumes(nodes)areconnectedinanydesiredmannerbyflowareas(flowpaths).Acomplexnode-flowpathnetworkisusedtomodeltheReactorCoolantSystem(RCS).Themodelingprocedurehasbeencomparedtoalargescaleexperimentalblowdowntestwithexcellentagreement.Thelawsofconservationofmass,energyandmomentumalongwitharepre-sentationoftheequationofstatearesolvedsimultaneously.Thehydraulictransientofthereactoriscoupledtothethermalresponseofthecorebyanalyticallysolvingtheone-dimensionalradialheatconductionequationineachcorenode.Pre-blowdownsteadystateconditionsintheRCSareestablishedthroughtheuseofspecifiedinputquantities.PTheblowdownloadsmodelusesanonequi]ibriumcriticalflowcorrelationforcomputingthesubcooledandsaturatedcriticalfluiddischargethroughthebreak.3.9.2.S.l.2~DLAbreakintheprimarycoolantsystemwillresultinlargelocalpressure'ifferencesacrossvariousreactorvesselinternalcomponentsandanaccel-erationofthelocalfluidvelocityinvariousregions.Theaccelerationofthelocalfluidvelocitycanresultinhighercomponentdragloadsthanoccurduringsteadystatereactoroperation. 00 3.9.'2.5.1.3Core'oads~Thetotaiinstantaneous:loa'dacrossthecoreisgivenbythesumationofthepressureanddragforcesactingparalleltotheflow.TheloadsareobtainedusingacontrolvolumeapproachutilizinganintegratedfIuidmomentumequation.Thedragforcesarerepresentedbythefluidshearterminthisequationandconsistofbothfrictionalandformdrag.3.9;2.51.4CEAShroudLoadsDuringnormaloperation,thereactorcoolantflowaxiallythroughthecoreintotheupperguidestructure.Withintheupperguidestructure,thecoolantflowchangesdirectionsothatitexitsradiallythroughthehotlegnozzles.DuringaLOCA,thetransverseflowofthecoolantacrosstheCEAshroudgivesrisetoloadss(hichinducedeflectionsintheseshrouds.Thetransversedragforcesweredeterminedfromflowmodelexperimentswhichweregeometricallyanddynamicallysimilartothefull-scaleupperguide.structuredesign.Themeasuredexperimentalmodelforceswerescaled-uptorepresenttheactualforcesontheupperguidestructureusingthecomputedtransientflowrateanddensityinformation.3.9.2.5.1.5ResultsofBlowdownLoadsAnalsisAnalysiswasperformedofapostulatedpipebreakatthereactorvesselinletnozzle.Thetransientpressuredifferencesthroughoutthevesselareevaluated~~andusedinthestr'ucturalresponsecalculationdescribedbelow.--ThepressureWdifferenceacrossthecoreisalsoevaluatedforthebreak.Apostulatedpipebreakoccurringatthereactorvesseloutletnozzlewasalsoanalyzed.Thepressuredifferencethroughoutthevesseliscalculated.Thedecompressionintheannulusissymmetricearlyinthetransientbecausethepressurewave'musttravelthroughthecorebarrelinternal'storeachthelowerplenumfromwherethewavepropagatesuniformIyupthroughthedowncomer.The.axialpressuredifferenceacrossthecorewasalsocalculated.Apostulatedpipebreak.occurringatthesteamgeneratorinletnozzlewasalsoanalyzed.Thepressuredifferencethroughoutthereactorvesselwascalculated.Theaxialpressuredifferenceacrossthecorewasalsocalculated. 3.9.2.5.2StructuralResonseAnalsesIIfhe-dynamicLOCAanalysesofthereactorinternalsandcoredeterminetheshelbeamandrigidbodymotionsoitheinternals,usingestablishedcomputerizedstructuralresponsetechniques.TheanalysesconsistbasicallyofthreepartsiIn~thefirstpart,thetime-dependentshellresponseofthecoresupportbarretothetransientloadingiscalculatedusingthefinite-elementcomputercode,ASHSD.Thesecond'artoftheanalysisevaluatesthebucklingpotehtialofthecoresupportbarrel,forho)legfreakconditions~singthefinite-'elementcomputercode,SAN<SOR-DYHASOR<1'~'.Inthethirdpart,thenonlineardynamictimehistoryresponsesofthereactorinternalsandcoretoverticalandhor-izontalloadsresultingfromhotandcoldlegbreaksaredetermined.withtheCESHOCKcode,whichisfurtherdescribedinReference(10).3.9.2.5.2.1ShellResonseoftheCoreSuortBarrel,Acoldlegbreakcausesapressuretransientonthecoresupportbarrelthatvariescircumferentiallyaswellaslongitudinally.TheASHSDfinite-element.computercodeisusedtoanalyzetheshellresponseoftheCSBtothepressuretransientfromacoldlegbreak.TheCSBismodeledasaseriesofshellelements'joinedattheirnodalpointcirclesasshowninFigure3.9-1.Thelengthoftheelementsineachmodelisselectedtobeafractionoftheshellattenuationlength.(yAdampedequationofnmtionisformulatedforeachdegreeoffreedomofthesystem.Fourdegreesoffreedom,radialdisplacement,circumferentialdisplace-ment,verticaldisplacement,andmeridionalrotationareconsideredintheanalysis.Thedifferentialequationsofmotionaresolvednumericallyusingastep-by-stepintegrationprocedure.Thecircumferentialvariationofthepressuretime-historyisconsideredbyrepresentingthepressureasaFourierexpansion.Thepressureateachelevationinthemodelisdeterminedbylinearinterpo'lation.Thus,acompletespatialtimeloaddistributioncompatiblewiththeASHSDcomputerprogramis..obtained.EachloadharmonicisconsideredseparatelybyASHSD.Theresultsforeachhar-monicarethenaddedtoobtainthenodaldisplacements,resultantshellforcesandshellstressesasafunctionoftime.3.9.2.5.2.2-DnamicStabilitAnalsisofCSB'Ahotlegbreakcausesnetexternalradialpressureon.thecoresupportbarrel.Astabilityanalysisof.'heCSBisperformedusingthefinite-elementcomputercode,SQft<SOR-DYHASOR.Theeffectsofaninitiallyimperfectshapebasedonactual.out-of-roundnessmeasurementsareincludedintheanalysis.TheCSBismodeledasaseriesofshellelements;es.showninFigure.3.9-2.StiffnessandmassmatricesforthebarrelaregeneratedutilizingtheSAMMSORpartofthecode.TheequationsofmotionoftheshellaresolvedinDYNASORusingtheHouboltnumericalprocedure. i' Aninitialimperfectionisappliedtothecoresupportbarrelbymeansofapseu-d~~~~~oloadforeachcircumferentialharmonicconsidered.Theactualpressuretran-ientloadinggeneratedbytheout'letbreakisuniformcircumferentiallybutvarieslongitudinally.Theresponseisobtainedforeach.oftheimperfectionharmonics.Appendix'F,SectionIIIoftheASt/EBoilerandPressureYesselCoderequiresthatpermissibledynamicexternalpressureloadsbelimitedto75Kofthedynamic$nstabi'btypressureloads,oralternately,thedynamicinstabilityloadsmustbegreaterthan1.33timestheactualloads.Consequently,thisanalysisisrepeatedwiththeimperfectionappliedinthecriticalharmonicandthepressureloadingisincreasedbeyond1.33timestheactualloads.inordertodemonstratethestabilityofthecoresupportbarrel.3.9.2.5.2.3DnamicSstemAnal~sisoftheReactorInternalsDynamicanalysesareperformedtodeterminethestructuralresponseofthereactor'nternalstopostulatedasyrhnetricLOCAloading(includingreactorvesselmotioneffects)andtoverifytheadequacyoftheirstructuraldesign.Thepostulatedpipebreaksresu'Itinhorizontalandverticalforcingfunctionswhichcausethe'internalstorespondtobothbeamandshellmodes.Detailedstructuralmathematicalmodelsofthereactorinternalsaredevelopedbasedonthegeometricaldesign.Thesemodelsareconstructedintermsoflumpedmassesconnectedbybeamorbarelements,andincludenonlineareffectssuchas'impactingandfriction.ThemodelsaredevelopedforinputtotheCESHOCKcodewhichsolvesthedifferentialequationsofmotionforlumpedparametermodelsbydirectstep-by-stepnumericalintegrationprocedure.ThemodeldefinitionsemploytheproceduresestablishedinCombustionEngineeringTopicalReportCENPD-42and,inadditio@includehydrodynamiccouplingeffectsandadetailedrepresentationofthecoresupportbarreltoupperguidestructuretoreactorvesselinterfaces.Separatemode'lsareformulatedforthehorizontal(Fig.3.9-3)andvertical(Fig.3.9-4)directionstomoreefficientlyaccountforstructuralandresponsedifferencesinthosedirections.Themodelsforthehorizontaldirectionsaredevelopedintermsof'lumpedmasses.connectedbybeamelements.Thestiffnessvaluesforthebeamelementsaregen-..eral'lyevaluatedusingbeamcharacteristicequations.Thelumped-massweightsa>:ebaseduponthemassd;stributionoftheinternalsstructures.Localmassessuch.-'sp'latesandsnubberblocksar'eincludedat'ppropriatenodes;--Theeffect-ofthesurroundingwateronthedynamicsoftheinternalsforhorizontalmotionisaccountedforbyhydrodynamicallycouplingthecomponentsseparatedbyanarrowannulus-thevessel,corebarrel,coreshroud,lowersupportstructurecylinder,andupperguidestructurecylinder.Theclearancebetweenthecoresupportbarrelandthereactorvesselsnubbersaswellasthec'learancebetweenth'ecoreshroudguidelugsandthefuelalignmentplateissimulatedbynonlinearspringswhichaccountfortheloadsgeneratedshouldimpactingoccur.Arepresentationofthecoreisincluded$ntheinternalsmodelswhichprovidesappropriateinertial'andimpactfeedbackeffectsontheinternalsresponse.Theverticalmodelstiffnessvalisesaregenerallycalculatedusingbarcharacter-isticequations.Nonlinear,couplingsareIncludedbetweencomponentstoaccountorstructuralinteractionssuchasthosebetweenthefuelandcoresupportplate'andbetweenthecoresupportbarrelandupperguidestructureupperf'langes.Pre-loads,whicharecausedbythecombined,actionofappliedexternalforces,deadweights,andholddownsarealsoincluded.Frictionelementsareusedtosimulatethecouplingbetweenthefuelrodsandspacergrids. 0 ~~Qefsmv+v~~vw+wA~%4e~a~~'~zeI1IAreducedmodelofthe'reactorvesselinternals(Fig.3.9-5)isdevelopedfor,'ncorporationintothereactorcoolantsystemmodel.Thedetailednonlinear!,~~horizontalandverticalinternals(pluscore)modelsarecondensedandcombinedntoathree-dimens.onalmodelcompatiblewiththereactorcoolantsystemmodelaridthecomputerprogramsthroughwhichthelattermodelisanalyzed.ThepurposeofthisreducedinternalsmodelistoaccountvrtheeffectsoftheinternalLOCAloadsonthereactorvesselsupportmotionandthestructuralloadinginteractionbetweentheinternalsandthevessel.Thereducedinternalsmodelisdevelopedsoas:toproducereactorvesselsupportmotionsand1oadingsequivaIenttothoseproducedbythedetailedinternalsmodels.ThedynamicresponsesofthereactorinternalstothepostulatedpipebreaksaredeterminedwiththeCESHOCKcodeutiliz'ingthedetailedmodels.Horizontalandver-ticalanalysesareperformed,forbothhotandcoldlegbreakstodeterminethelateralandaxialresponsesoftheinternalsto,thesimultaneousinternalfluidforcesandvesselmotionexcitation.'heverticalexcitationoftheinternalsiscalculatedbytheLOAD2computercode.(31)usingthecontrolvolumemethod.Inthismethod,thereactorinternalsaredividedintovolumescontainingbothstructureandfluidorstructurealone.Themomentumequationisthenappliedtoeachvolume,andaresultantforceiscalculatedwhichisdistributedoverthestructuralnodeswithinthevolume.'hismethodtakesintoconsiderationpressure,fluidfriction,momentumchanges,andgravitational'forcesactingoneachvolume.TheresultingloadtimehistoriesareinaformconsistentforCESHOCKcodeinput.Inordertoachieveaninitial(priortothepipebreak)equilibrium,theinitialstaticdeflectionsandgapsarecalculated.'TheresultinginitialconditionsandtloadtimehistoriesareinputtotheCESHOCKcodeandthedynamicresponseofthemodeliscalculated.Thehorizontalinputexcitationsresultingfromacoldlegbreakarethecoresupportbarrelforcetimehistoryandthevesselmotiontimehistorydeterminedfromthereactorcoolantsystemanalysis.ThecoresupportbarrelforcesareobtainedbyrepresentingtheasymmetricpressuredistributiontimehistoryasaFourierexpan-.sion.Thetwoterms(sineandcose)whichexcitethebeammodeofvibrationare.thenintegratedoverthecoresupportbarrel.andtransformedintonodalforcetimehistories.Thehorizontalinputexcitationd'esultingfromahotlegbreakaretheCEAshroudcrossflowloadtimehistoriesandChevesselmotiontimehistorydeterminedfromthereactorcoolantsystemanalysis.Theforcesappliedtotheshroudmasspointsare'determineddirectlyfromtheblowdownpressuretimehistoryandincludethedragforceandforcesduetothepressuredifferentialontheshrouds.Theresultsfromtheseanalysesconsistoftime-dependentmemberforces,andnodal'isplacements,velocitiesandaccelerations.Theloadanddisplacementresponsesareusedinthedetailedstressanalysesoftheinternals.Preliminaryresultsofreactorinternalsanalysesindicate,onaloadcomparisonbasis,ChatCheadequacyofthestructuraldesignoftheinternalswillbeconfirmedbythedetailedstressanalyses.ResultsofthestressanalysiswillbesubmittedinalateramendmentinDecember1981. 31."LDAD2-AcomputerCodetoCalculateVerticalHydraulicLoadsonReactorInternalsUsingCEFLASH-agDataAsInput",Calcu1ationHo.'79-STA-003,G.Garner,August24,1979.
l78SL2-FSAR~DesinLoadieCateariesThedesign,loadingconditionsarecategorizedbelow:3.9.5.3.INormalOperatingandUpsetThenormalandupsetcategoryincludesthecombinationsofdesignloadingsconsistingofnormaloperatingtemperatureandpressuredifferentials,loadsduetnflow,weights,reactions,superimposedloads,vibration,shockLoadsincludingoperatingbasisearthquake,andtransientloadsnotre-quiringshut,down.3.9.5.3.2FaultedThefaultedcategoryconsistsofthemechanicalloadingcombinationsnfSubsection3.9.5.3.1withtheexceptionthatthesafeshutdownearthquake(SSE)(inpiaceoftheoperatingbasisearthquake)andtheLoadsresultingfrautheloss-of-coolantaccident(LOCA)areincluded.3.9.5.4DesinBases3.9.5.4.1'eactorXnternalsThestresslimitstoMichthereactorinternalsaredesignedareListedinTable3.9-14.Hoemergencyconditionhasbeenidentifiedfortheapplicablecomponents,~therefor'e,noappropriatestresscriteriaareprovided.WWsFW8=l~paraMw~~~~ee-en~Cmeee~d.areeinThemaximumstressintensitiesinthereactorinternalcomponentsarede-terminedutilizingthemostconservativecombinationsofthelateralandverticalLOCAtime-dependentloadingsinthestructuralanalyRis.ThesemaximumstressesandthemaximumstressesresultingfromtheSSEarethencombinedabsolutelytoobtainthetotalstress.intensities.Toproperlyperformtheirfunctions,thereactorinternalstructuresaredesignedtomeetthedeformationlimitslistedbelow:a)Underdesignloadingsplusoperatingbasisearthquakeforces,de-flectionisIimiledsothatthecontrolelementassemblies(CEAs)canfunctionandadequatecorecoolingispreserved.b)Undernormaloperatingloadings,pIusSSEforces,pIuspiperuptureloadingsresultingfranabreakequivalentinsizetothelargestlineconnectedtotheReactorCoolantSystempiping,deflectionnarelimitedsothatthecoreisheldinplace,adequatecorecool-ingispreserved,andaLL.CHAscanbeinserted.ThosedeftectinnswhichwouldinfluenceCEAmovementarelimitedtolessthanSOper-centofthedeflectionsrequiredtopreventCHAinsertion.3.9-54 0 InsertAReactorinternalsaredesignedaccordingtoSubsectionNGoftheASIDECode,SectionIII,withtheexceptionofstampingandacodestressreport. r/o/gOZ~Q~~~%s:gp~~~~e'o7g+gpo>>yl21CS~L~~~t 'll4 ~n~~'F~'0~4~>~74~)~~eW4~~&seR~~C~:~/GhPbO]u.9/2ogOSI22y]'255m0Jo/t~~iZgo.875PS29tw0/5o/7~~.32'.e49eSOoR8'.SW/~~'0cC.F/6u~CAS/~lk~iWc' -H-h'e'en-eris~+I~Oal9f-m~PaOSP<i~~VPf'~GViOEu~vvMc.yccup64$gEAny~~'lf2,CAKOI~E)i)t-~PlgLQ/HEoops~NVo'I-IJEL-/PL]GArgEhgAl/PE~C.t4G5loblolIo7IO7'oj'ipgJWlogllog5Il2.'l/II$IIgI8I/9J)fIIlCIZIourl.E7<>z~5(0-/fooMc.'r))2'IVESSELSA'PaR,fgPR6$5uA.SVESS1-L.~~I37'I0,7'If7'f7'80$8Qcog'gppcrazejC(U~I7IcoRE'HRo~0yZ9Sg5oQ7gft/Cf><nI9 eGA.jjN'(".us5~HROr~~~M~~~wxWyr~v~'QIJo"cu~ye<~~8/-Ifr'.nbE'C.PJ~~tdF.Q=J.-L.cuLna5z~ruc'<o'sgoer..cj'IIucrr:c~-IJC)~JL(t~CCiRSj//A'4->>8F.".rc.rrouEzznrur,g0(+7+S(-ZIP<Oyc'XN~A'944vb~Ã~.~>+IfPCCr&-'S~~-+~i~~EQagP~~~$'Pgr&t5o5~pgt5codd~5HXouO~19gottwuPAA?7"PsA7El2.Go(6Qi)CPSCyzIMPS'R8-'////ze.Qvoze",-"~gyPMFLr~2$~/gpss)0~<~G-tCIDEQz.Qrr~asQQc37Q~.Ooj'g$5~gO>>~i'G>.Xlo~lXO0('KF~QLSXCoLc(e~r~~<8(~.Q(L5$8Entjs~CMuPr'd'RF~A&GI~No'=cass'oypczc&.".;~=Dppgg4'vcrSTD(,t-~.QgtAg('5Ufpj<Q,SieG'-coarct~MQzcoAEg.<yg/Pozr+X~+F')]csHLoM<NFlAMcEQ/6uS7-+AofX~~r-hY~rti~~~nAA/ 0 gII.ger.cr-ncrMrggEAKvfPEgGvlD<SWUCtVCEb~rt5'ic.Yg:,~~unrz.~a~(A360rpiggc77oFI+mrgg~<)7-'5HifdElESSE.L.guarucf'a)10H'0-)CORE5h<o~D)K(L)cREs'uRlL.qt.~Hfdfsufp~Rr~~ucruCGR/Fal5AL1GNNBV7llVq(r>tIll7IQCPgS(L)2/Ccg23(zggO~FiAa~+>>~f>>nIsU~rfi~/gonmnV/
~~ 00 0p0'4Ii9003g32Jlg0aVlIt,Q,~p4.ci-Y6Iifii(Nl0&6S~-~jRTilr.o~lw'~sTO@,Vl=..5'~BOV'iLK'TREAR.I=3il0l1 0tlgf01bt(Iglg)B56~Fc8cpgvogp.oI+~@I4Till~iEI,r~IIIQ)'I6')I)QiI 8 t9UG$BHANG,cYL)~DFt.ANSECCASHROUDSL(o20vESsELSUPPORTOs'4(L)C5PL55CoRE5HROuDIite(~)ttIal(L)PRFSSOREVERSEtZ.P(L)f40DElOFREACTOR.lhJTERhJALSF<GVRK5.8-2Z 0 SL2-FSARTABLE3.9-2(Cont'd)g.EmirencConditionsFiveCyclesofcompletelossofsecondarypressure.Thistransientwouldfollowasteamlinebreak.AsteamlinebreakisnotconsideredcredibleinformingthebasisfordesignoftheReactorCoolantSystem.However,systemcomponentswillnotfailstructurallyintheunlikelyeventthatitdoeshappen.4.FaultedConditionsTheloadingcombinationresultingfromthecombinedeffectsofthedesignbasisearthquakeandnormaloperationatfullpowerarecategorizedasfaultedcondition.Theloadingcombinationsresultingfromthedesignbasisearthquake,'ormaloperationatfullpowerandpiperuptureconditionsarecategorizedasfaultedcondition.DesignbasisearthquakeandpiperuptureloadingsarecombinedbytheSRSSmethod.5.TestConditionsTencyclesofsystemhydrostatictestingat3110psigandatatemperaturenotlessthan60Fabovethehighestcomponentreferencetemperature(RTN>T)or100Fabovethehighestcomponentsection(RTT)value.ThisisbasedononeinitialhydrostatictestplusamajIIIrepaireveryfouryearsfor36yearswhichincludesequipmentfailureandnormalplantcycles.200cyclesofleaktestingat2235psigandatatemperaturenotlessthan60Fabovethehighestcomponentreferencetemperature{RTRDT)orlDDFabovethehighestpipesectionRT>ig.Thisisbasedonnornmlplantoperationinvolvingfiveshutdownsforheademovalorvalverepairperyearfor40years.' SLZ-FSARThefuelassemblyisdesignedtobecapableofwithstanding-theaxialloadswit'hdutbucklingandwithout,sustainingexcessiveotrcsseo.4.2.3.1.2.2SafeShutdownEarthquake(SSE)r'Shea"ial.andlateralloadsanddeformationsustainedbythefuelassemblyduringapostulatedSSEhovethesameoriginasthosedicussedaboveforthcOBE,buttheyarisefrominitialgroundac'celerationstwicethoseassumedfortheORE.TheanalyticalmethodsusedfortheSSEareidenticaltothoseusedfortheOBE.LoseofCoolantAccident(LOCA)XntheeventofalargebreakLOCA,therewilloccurrapidchangesinpres-sureandflowwithinthe,reactorvessel.Associatedwiththetransientarcrelativelylargeaxialand'lateralloadsonthefuelassemblieo.Theresponseofafuelassemblytothcmechanical.loadsproducedbyaLOCAiocor)oidercdacceptableifthefuelrodsaremaintainedinaeoolablearray,i.c.,acceptably.lowgridcrushing.Themethodsusedfor.analysisofcombinedseismicandLOCAloadsandsresscsisdescribedinReference50.Voqualifythecompletefuelassembly,fu)lscalehotlooptestingwascon-ducted.Thetestsweredesignedtoevaluatefrettingandwearofcompo"ncnts,refuelingprocedures,fuelassemblyupliftforces,holddownperfor-manceandcompatibilityofthefuelassemblywithinterfacing.reactorin-ternals,CEAsandCEDHsunderconditionsofreactorwaterchemistry,flowvelocity,temperature,andpressure.Thetestassemblywasa16x16fiveguidetubedesign.Aetestwasrunforapproximately2000hours.Thetestaresultsdemonstratedtheacceptabilityofthedesign.Efcchanicaltestingofthe'fuelassemblyanditscomponentsisbeingper-formedtosupportanalyticalmeansofdefiningtheassembly'ootructuralcharacteristics.Thctestprogramconsistsofstaticanddynamictestsofspacergridsandotaticandvibratorytestsofaful)sizefuelas-acmbly.4'2.3.1.2.4CombinedSSEandLOCAItisnotconsideredappropriatetocombinethestressesresultingfromtheSSEandLOCAevents.Hevcrthcleso,forpurposesofdemonstratingmargininthedcoign,themaximumotrcssintensitiesforeachindividualeventwillbecombinedbyasquarerootofoumoftheoquareo(SRSS)method.Thisvillbeperformedasafunctionoffuelassemblyelevationandposition,cg,themaximumotressintensitiesfor,thecenterguidetubeattheuppergridelevation(aodeterminedintheanalysisdiscussedinSubsections4.2.3.1,2.2and4.2.3.1.2.3)willbecombinedbythcSRSSmethod.ItisexpectedthattheresultswilldemonstratethattheallowablestressesdescribedinSubsection4.2.1.1arenotexceededforanypositionalong'thefuelassembly,evenundert:headdedcon-'ervatismprovidedbythisloadcombination.4.2.3.l.3SpaccrGridEvaluation490.1Thcfunctionoftheopacergridsiotoprovidelateralsupporttofuelandburnablepoisonrodsinouchamannerthatthcaxialforcesarcnotouffi-~5~JJ4.2-39AmcndmcntNo,3~(6/81) Z<5ai+Fv4Pwsw~~~Qppgrwa+0?mrukcmsyiii~~boa.8i~p.iSCurva+~Q4.i'inca4a.hanoig~gg~p~~/g~~M'4gt+c&*ctPelkg',~g(z~/~agee.~i'i(4-'(W~k4.~r~f$g>(+kLconPrma4lryawafJsissing'f(i'~.~npg~e&~ndNA!w+Q/~+/lf82,'
Q35ST.LUCIEUNIT2REACTORVESSELSUPPORTLOADSLOCATIONLOCAONLYCOMBINEDLOCA+N.Op.+SSESPECIFICATIONHlVl4.2914.697'.746.478.008.50H2V24.1002.6424.713.757.007.00H3V33.9043.2164.44'.297.007.00Units-millionsofpounds $35ST.LUCIEUNIT2STEAMGENERATORSUPPORTLOADSLOCATIONCOMBINEDLOCA+N.Op.+SSESPECIFICATIONUpperkeys(ea.)Snubbers(ea.)Z1Z21.512.000.222.1722.1720.55SLIDINGBASEVerticalpadsY1Y2Y3Y41.712.332.231.725.9743.5882.4582.586Anchorbolts",Y1(perpairofbolts)Y2Y3Y41.851.720.581.732.7162.856'.0862.948LowerstopLowerkeysX3Z11Z125.6483.281.067.0853.7552.772Units-millionsofpounds ST.LUCIEUNIT2RCSCOMPONENTNOZZLELOADSRSSMOMENTSNOZZLELOCATIONCOMBINEDLOCA+N.O.+SSESPECIFICATIONRVInletRVOutletSGInlet3.476.739.9342.4921.75SGOutlet6.207.79RCPSuctionRCPDischarge3.903.984.455.42Units-millionsofpounds ProvidestresslimitsandcriteriatolimitdeformationandassurefunctionalcapabilityforClass2and3austeniticpipebendandelbows.~ResonseAllClass2and3austeniticpipebendsandelbowswillbereviewedtoassurefunctionalcapabiligy.FunctionalcapabilitywillbeassuredwithoutfurtherproofifthestressesarebelowthelimitsindicatedintheGeneralElectricTopicReport,NED0-21985,Paragraph2.2.Forthoseelbowsorbendswhichexceedthoselimits,additionaldemonstrationwillbeprovided. ,tXP0 5V.Section3.9.3.3oftheFSARohouldincludeamoredetaileddescriptionofthecalculationprocedures,whichwereusedintheparametricstudiesforcloseddischargesystems.~ResonseThecloseddischargesystemofthesafetyandreliefvalvesfromthepressurizerareanalyedbyatime-historydynamicanalysis.Asamoreconservative,less'omplexapproach,thecloseddischargesystemofthesafetyandreliefvalvesonsafety-relatedauxiliarysystemsuchasSafetyIn)ectionSystemandChemicalandVolumeControlSystemareanalyzedbyastaticanalysis.Atransienthydraulicforceequaltothefreelyblowingreactionforceactinginbothdirectionswithadynamicloadfactorof2isappliedtoeachstraightlegofthepipingsyst'm.Spy+gas/pry'd'Rl'Icrs~CooIvaH-+i>>bring<recur'fJrhogg~SpArw"<h<0'aweprarurrrZ~Plzyprau(rc+orr.e4<rrAppearoWHFpagus'V<rrep4+0+gdlCirsrrcL4~~A'J74+-f~auSrc'~Ap'uree'u~lr~Jawrusr'rramrrF+AcJrscA<rgEfjord.~g80AJSrp+44Of~~A>~rrApui4cr'h~"~ati~u~~u<,J'~+As'um S 'S~InformationshouldbeprovidedinSection3.9.3.3oftheFSARrelating~tothevariousdesignandserviceloadingconditionsandcombinationsthereof,andthecorrespondingstresscriteriausedinthedesignforthemountingofpressurereliefvalves.~ResonseTheDesignStresslimitsasdelineatedinPSAR3.9.3.1.1andTables3.9.6and3.9.7andDesignLoadingtable3.9.5areapplicabletothemountingofpressurereliefvalves.
ThemethodofevaluatingthestructuralresponseofthepipingandsupportsystemstiffnessinthedynamicanalysisofthesemountingsshouldbediscussedinSection3.9.3.3oftheFSAR.~PeaonseInthedynamicanalysisoftheSafety/Reliefvalvedischargepipingsystem,thesamestiffnessmatrixmethodasdescribedinFSAR3.7.3.l.l.?isusedfortherepresentationofthestructuralresponseofthepiping,Supportsaremodeledasaspringelementwithafinitestiffness. 00 QuestionNo.40.Ad'scussionwhichdemonstratedthat,thosecomponentsdesignedtotheFSARcriteriahaveanadequatemarginofsafetyshouldbesubmittedintheFSAR.Znaddi-tion,theapplicantshouldverifythattheallowablestressesofMSS-SP-58,"pipeHangersandSupports"areusedwithouttheadditionofashapefactortoaccountforbendingstresses.~R$$0$$6Theadequacyofthemarginofsafetyofsupportandre-straintdesignisdemonstratedbasedonuseofnormalAISCandMSS-SP-58stresslimitsasthedesignbasisforallloadcombinationsincludingfaulted.Shapefactorsarenotusedtoaccountforbendingstress.ThisisdiscussedintherevisedSubsection3.9.3.4.Asaresultofdiscussionsofthisresponseduring'thereview'eeting,'Question40.1wasgenerated.Thisquestionanditsresponseareattached. 0 ~uestion40;1a)CompareAISCallowableswiththoseofASMECodeAppendix17,Showthemcomparable.b)Howisreducedmat:erialyeildstrengthatelevatedtemperaturesaddressedwhenusingtheAISCcode?c)ASMErequiresCMTR'sandCofC's.WhatmaterialdocumentationdoesAISCrequire?~Resensea)TheallowablestressesintheAISCCodeandASMECodeAppendixXVIIhavebeenreviewedand,aresimilarinmostrespects.Thefollowingdifferencesareidentified:1)Forweldedteepointsthetensilestressesontheweldsurfaceinthethroughthicknessdirectionarelimitedto60%ofyieldbyAISCand30%ofyieldbyASMEAppendixXVII.Ultrasonictestingofbothshopandfieldweldsofthistypehasbeenspecified.2)ASMEIncreaseFactoris1.2~Snottoexceed0.7Su.FtFt.TheEbascoIncreaseFactorof1.6acrosstheboardwillbe]ustifiedfor~Svalues)0.73.Sutb)Noreductioninyieldstrengthistakenforapplicationbelow700'FinaccordancewiththeAISCManualofSteelConstruction.(
Reference:
EffectoflieatonStructuralSteel.)NoausteniticmaterialisusedinseismicCategoryIcomponentsupports.c)EbascopracticeforseismicCategoryIrequiresCertificatesofComplianceandQiTR'sasappropriate. 0 41.ProvideinatabularformforbothBOPandNSSSCodeClass1,2and3componentsupportstheloadcombinations,stresslimitsforvariousplantconditions.~ResouseThestresslimitsandloadcombinationsforvariousplantconditionsarepresentedinTables3.9-17and3.9-38forClass1,2,and3supportsandrestraints.ForNSSSscopeofsupplyseetheTablesinQuestion33.Asaresultofdiscussionsofthisresponseduringthereviewmeetings,question41.1wasgenerated.Thisquestionanditsresponseareattached. Ouestion41.1Justify-theuseofSRSSforcombinationofSSEIandSSEDinthefaultedcondition.b)Providethefaultedallowablestressesrorbolts.~c)CompareTable3.9-5withtheloadingtablesofSection3.8.3.d)DefinethematerialsforwhichallowablesaregiveninTablesofSection3.8.3.~Resoesea)WherethefundamentalfrequencyofthepipingsystemisbeyondtheresonantregionofthesupportingstructuretheSSEwillbecombinedinthefollowingmanner:SSE=SEI+SSEDMherethepipingfundamentalfrequencyisnotbeyondthestructuralresonantregiontheSSEwillbecombinedinthefollowingmanner:SSE=ISSEII+ISSEDIb)Faultedallowablesforboltsareasfollows:Material~~MTensileStress@,%ofUltimateQggt:4uA5c~A-32564Ksi53%(@)Il1IIdia)61%(l~~~"-14"dia.)A-49086Ksi58%c)RequirementsforcomponentsupportsareaddressedinSection3.8.3.AnyareaswheredisparitybetweenAISCandASMEsupportrequirementsissignificantwillbeidentified.Thiswillbeperformedsothatgoverningloadingcasesaddressorenvelopetheloadingcasesgiven.inTable3.9-5.d)AllowablestressesarebasedonSection1.5ofAXSCwhichinturnarebase'donASTMmaterialvalues.AISCfactorsofsafetyvaryfrom1.67to2.0onyieldstrength.ThedevelopmentoffactorsofsafetyisdocumentedintheCommentarytotheAISCCode.RR)Q~g4akiswd4(se4rbo(4e!R'.CAats444!s!si.!>!@Zoic.~,~ga.l4~44~.g>wuA4i's!<~">s!-,N!s!eJ.4(Ls!Ig~~4~M9hh /Y,uestionNo.42ProvidetheallowablebucklinglimitsforASMEClass1linearandplateandshelltypecomponentsupportssubjectedtofaultedconditionload.Alsoprovideadditionalinformationconcerningthedesignofsupportboltsandboltedconnections.~ResonseAllsafety-relatedcomponentsupportingstructuresaredesignated"SeismicCategoryX."LoadcombinationsandallowablestressesareinaccordancewithStandardReviewPlant3.8.3andStandardReviewPlant3.8.4.ThemarginofsafetyforthesestructuresisinherentinthedesignequationsintheAISCSpecifications.Forlinearandplateandshelltypecomponentsupportssubjectedtotheaccident(faulted)loadcondition,thedesignstressesarelimitedtoninety(90)percentofthecriticalbucklingstressasapplicable.Fordesignofsupportboltsandboltedconnections,refertotheaboveparagraph.CE-a)BucklingfailuremodeoftheRCSsupportsisnotcredibleduetothedesigncharacteristicsofthesupports.b)TheboltsinCEscopeofsupply(SteamGeneratorSkirttoSlidingBase)aredesignedtobe.below70%ofultimatewhich,forthematerial,islessthan75%ofyield.c)RequiredPreloadofinterfaceAnchorBolts(S.G.Snubber,PressurizerSkirt)werespecifiedtoEbasco.IINRCPosibion:AnysupportforaClass1,2or3componentinwhichthebucklingstressp67%criticalbucklingmustbejustifiedastowhythemarginagainstbucklingfailureissufficient.Asaresult"ofdiscussionsofthisresponseduringthereviewmeeting,Question42.1wasgenerated.Thisquestionanditsresponseareattached. 0 uestion42.1a)Whatthedesignvaluesforbucklingstresses')Committousing2/3ofcriticalbucklingstressasadesignlimitand)ustifythosecaseswhereitisneeded.~Resonsea)ThedesignvaluesforbucklingstressesarespecifiedinSection1.5.1.'3oftheAISCcode.ThisSectionidentifiesaminimumfactorofsafetyof1.67whichisinagreementwithAppendixXVIIoftheASMECode,ArticleXVII-2110b).b)CaseswherebucklingstressesinthesupportsofASMEIIIClass1,2or3componentsexceed67%ofcriticalbucklingstresseswillbejustifiedonanindividualbasisthatthemarginagainstbucklingissufficient. t,0 I4fP0IJa00y<<I tI8oRg~C8liVLE'7NOZZLE'II3~-z)TOtL0<A'fACCpvESSZC.-COLDAoTL:TuERulkLGRowruvoHolcoND>TIoVls.50.7HZ84SEPIA7EAUSTI'VE'aEQV47ESllfcFkCF7DASSII~GFVLLCOVT4CTVATHSLIDE,ITEe)9,IIu~ERCOLDORIIOTCohlDl7.'OAlS.A.vsuppr,socc.er.sere'eaZBPn~SiOVPzgrp$EcriorvC-C~~clppoprrppariGE'rJE'rvrArwarmBzc.e-2eeoo 0 Q)~"Sp~0L1TItII1I~r+~~gPilA'<j:~a"P~TjŽV~/iI.I~~/ 08 f~4/fie.e~Qee~~ E: 8H,.8,Sg,jofIf'oQy'if'O.geOwO~ergoWl~e)iQ@aQOQO0I!IIllI.IIOCTOIC)$k~+y~ 00 coLQCAO.oM~pcTKZMIH<pbvllwamrfv~8'iol4AlTCSTlMG~OrG+Ve<OO+COwCPScCwovC,)720~~0~~~~44~Q,$)2)9Zc2JSECT<OQB.BSChLXsf<I'0'IOQN8f7~~tL(tlat22P-'xvs'cu~reSE.CTLO'hJ%CALftl~l"O-A-Ital25-WOODfp05ITCH27.5.75O-.O&(<Ky)-itCIh2'5wn'HIlee>C,CTTOSg)ltKth2.7)PATIIIhQA~~ITCth25~15OOOfgtO5IT@'H2III.5ODigKOl252'527-KlQV.(r.'7,MI)QE.E,RE,F.%~eel,IIllSE,C7:5C7MI-.FSCAE-E:IslCCIJOTcCoLL)c-tE.ZLov3ER4Eg I7~)5ZP~(Ic~)~l/(IO.IIg)Kffcsfg)Ah.'5-I55-ffohiogaJuGfFR0URFAC6prgCES~ 0 f]@@0Yrbke STLaciE.ZuppE.R.YEYgLv&@+4CAP-TYS~COLCCOLDCLEhSV+4<E7oNEARESTSTRUCTURCCONCRETE,oR.OCTALA(~O)..'P<.gooIPt'PZRRimc7OR,VE~ML.r->>i>Z-WVi-OOOi~~CHOTOVERLEAPOF~Y~u.P~iouR.~i7EPAIIGYP4PlaCESDETA)LzSCALE,c(i<LOII32lI12SEGNO'TtP~12COLIOCLEARANCE~lP.RK,STSTRUCTURE-COQCRE~LoR/AETALQ(ii).Oq~)IJOTEQ(i)P.~JSECTIONA-ASCALESI+I0fT7I~Je~g~2)4~:LUS-R~LUGCOL@J;J~~~Li. SL2-FSAR3.9.3.4ComonentSuortsForNSSSsuppliedcomponents'rocuredpriortoJuly',1974designstresslimitsforASMECodeClass1vesselsupports,pipingsupportsandsupportsforthereactorcoolantpumps(including.theattachmentweldstothevesselor.pipingassemblies)aredefinedinthecomponentspecification.Forthefaultedconditionthestresslimitsaredefinedas:thelimitsofSectionIXI,NB-3220usinganSmvalueequaltothegreaterof1.5timesthetabu-latedSmvalueand1.2timesthetabulatedSyvalue,butnotexceeding.7timesthematerialtensilestrength,withthevaluestakenattheappropri-atetemperature.DesignstresslimitsforotherloadingconditionsarethoseidentifiedinapplicablesubsectionsoftheASMECode.A/EsuppliedsupportsforCodeClass1,2and3mechanicalsystems,compo-nentsandpipingaredesignedinaccordancewithcodesineffectatthetimeofpurchaseorder.ThesupportsforcomponentsprocuredpriortoJuly1,1974aredesignedperAISCguidelines.Fornormalandupsetconditions,normalAISCstresslimitsapply.Supportsfor,componentsprocuredafterJuly1,1974aredesignedinaccordancewithASMECode,SectionIII,SubsectionNF,withitsapplicablestresslimits.TheonlysupportsdesignedtoSectionNFareforthefollowingcomponents:ContainmentSprayPumps,IntakeCoolingMaterPumpsAuxiliaryFeedwaterPumpsDieselOilTransferPumpsBasketStrainersSafetyInjectionTanksSGSlidingBaseandBearingsIonExchangersllBottomLoadedFiltersFuelPoolHeatExchangerShutdownCoolingHeatExchangersInstrumentRacksLetdownHeatExchangerRegenerativeHeatExchanger(cont'donnextpage) 00 3.9.3.4(cont'd)Theextentofdeformationofthesupportsislimitedbytheallowablestressesdiscussedabove.EThewastegascompressorsupportsandanchorboltsaredesignedtothecriteriaoftheAISCHanualofSteelConstruction,1970,exceptthattheincreaseintheallowablestressesduetoseismicandwindloadsperParagraph1.5.6Part5,isnotpermitted.Allsafety-relatedcomponentsupportingstructuresaredesignated"SeismicCategoryI."LoadcombinationsandallowablestressesareinaccordancewithStandardReviewPlan3.8.3andStandardReviewPlan3.8.4.RefertoFSAR3.8.3and'SAR3.8.4.ThemarginofsafetyforthesestructuresisinherentinthedesignequationsintheAISCSpecifications.Forlinearandplateandshelltypecomponentsupportssubjectedtotheaccident(faulted)loadcondition,thedesignstressesarelimitedtoninety(90)'"percentofthecriticalbucklingstressasapplicable.Fordesignofsupportboltsandboltedconnections,refertotheaboveparagraph.PipingsupportsandrestraintsaredesignedtoaccommodatetheloadingcombinationsshowninTable3.9-16.ThenormalallowablestresslimitsofAISCandMSS-SP-58,assummarizedinTable3.9-15,areusedinoriginalsupportandrestraintdesignforallloadingcombinations,includingfaulted.Tominimizeredesignandrefabrication,whichmightresultfromrevisedstressanalyses,thefollowingcriteriaapplyasnecessarywhenevaluatingexistingrestraintdesignsagainstrevisedfaulted.loading:stressesinhangersandrestraintsshallbelessthan1.6timesAISClimits,nottoexceed.96timesmaterialyieldstress,whereshearyieldstressisassumedtobe.577timestensileyieldstress.Also,stressesshallnotexceed.90"timescriticalbucklingstress,whenthatisacontrollingfactor.Supportsaredesignedtothehighestloadingsthatwouldresultfromtransientconditionssuchasreliefvalveoperation,fastvalveclosure,orsystemthermalgradients.Thermalstressesareconsideredasprimarystressesforsupportsandassecondarystressesforcomponents.TheoperabilityassuranceprogramforactivecomponentsandtheirsupportsisdiscussedinSubsection3.9.3.2.PreoperationaltestsforpipingsystemsandtheirsupportsarediscussedinSubsection3.9.2.1.*CaseswherebucklingstressesinthesupportsofASHEClass1,2or3componentsexceed67%ofcriticalbucklingstresswillbejustifiedonanindividualbasisthatthemarginagainstbucklingissufficient.
TABLE3.9-17Notes1.forcompactsectionsasdefinedinAISC1,5.1.4,12.:,for-othersectionsasdefinedinAISC1.5,1,4.4and1.5.1,4.53.tablesforcompressionvaluesinAISC1.5.1.3.14.,calculatedperAISC1.5.1.3.15.Thesevaluesareusedinoriginaldesignforallloadingcombinations-includingfaulted.Whencheckinganexistingsupportorrestraintdesignagainstrevisedfaultedloadsstressesarelimitedtothefollowing:Rstressesinhangersandrestraintsshallbelessthan1.6;timesAISClimits,nottoexceed0.96timesmaterialyieldstress,whereshearyieldstressisassumedtobe0.577timestensileyieldstress.Also,stressesshallnotexceed0.90timescriticalbucklingstress,whenthatis,a'controllingfactor.Caseswherebucklingstressesinsu'pportsof.ASMEClass1,2or3componentsexceed67%ofcriticalbucklingstresswillbe)ustifiedonanindividualbasisthatthemarginagainstbucklingissufficient. SL2FSARTABLE3.9-17STRESSLIMITSFORPIPESUPPORTSe
Reference:
MSSSP-58&AISCManual--7thEditionShae&UseFb~BendinFt,TensionFvShearFp~BeardonTensionatPinHoleSteelStandardHanerComonents21,6002123,760N/A14,40014,400N/A14,50014,50011,60023,20010,850PlatesandBarsRodsatThreadsRods-Plain14,500N/AN/A14,5009,00014,50011$600N/A21,600N/AN/A10,850N/A.N/APins~Pie14,50015,000N/A15,00011,60023,200N/A12,000SeeNote3N/ABars&Plates304Steel~Pie304SteelBolts11$20011,20011,20011,20015,0008,95017,9008,4008,950SeeNote4N/A12$00021,600N/AFo'rNotes,seenextpage. 00 TABLE3.9-18LOADINGCOMBINATIONSANDSTRESSLIMITSFORPIPINGSUPPORTSASMECODECIABS1PlantOperatingConditionNormalUpsetEmergencyFaulted(1)DesignLoadCombinationSWa)SW+OBEb)SW+OBE+FVCc)SW+OBE+RVOd)SW+OBE+TSW+OBE+RVO+FVCSW+'(SSE2+FC2)~PipingSupport'tressLimitRefertoTable3.9-17ASMECODECLASS2&3NormalUpsetEmergencyFaultedSWa)SW+OBEb)SW+OBE+FVCc)SW+OBE+RVOSW+OBE+FVC+RVOSW+(SSE2+FC2)RefertoTable3.9-17Nooatfoo:SWDWOBE~SSE~RVO=FVC=THSSEI~SSED=Tc:FC(1}a)b)Largestof:a)DW+Hax(+)THb)DW+Max(-)THc)DWDeadweight(includessustainedmechanicalloads)OperatingBasisEarthquakeSafeShutdownFarthquakcReliefValve-includesbothopenandclosedsystemsFastValveClosureThermalexpansionInertiaPortionofSSEDisplacementPortionofSSETransientDynamicloadsassociatedwithplantfaultedconditionWherethefundamentalfrequencyofthepipingsystemisbeyondtheresonantregionofthesupporting'structuretheSSEwillbecombinedWherethepipingfundamentalfrequencyisnotbeyondthestructuralresonantregiontheSSEwillbecombinedinthefollowingmanner:SSE=)SSEIl+lSSEDt I Question43Xnaddition,assurancesmustbeprovidedthatstressesduetothermalexpansion,thermalgradientanddifferentialsupportmovementshavebeenincluded.~ResonseThedesignandserviceconditionsforsupportsandrestraintsincludedthermaleffectsanddifferentialsupportmovementsasprimaryloads.ICE-TheRCSAnalysisincludestheeffectsofthermalgradient,thermalexpansion,anddifferentialmovementofsupports.Forclass1,2and3vesselsandpumps,nozzleloadsincludepipingthermalexpansionloadings.Vesselswhicharesupportedatbothendsareprovidedwithonefixedsupportandoneslottedsupporttoaccomodatetheaxialthermalgrowthoftheshell. uestion44Mewillalsorequireanacceptableresponsetoourrequestforpreserviceinspectionandtestinginformationonsnubbers.Re~sonseInspectionandTestingofsnubbersonsafety-relatedpipingorcomponentsshallbeperformedasfollows:1)Aftersnubberinstallationiscompletedbutnotmorethansixmonthspriortothestartofpre-corehotfunctionaltesting,apre-servicevisualexaminationshallbeperformedtoverifythat:a)Therearenovisiblesignsofdamageorimpairedoperabilityas-aresultofstorage,handling,orinstallation.b)Thesnubberlocation,orientation,positionsetting,andconfigur-ation(attachments,extensions,etc.)areaccordingtodesigndrawingsandspecifications.c)Snubbersarenotseized,frozen,or)ammed.d)Adequateswingclearanceisprovidedtoallowsnubbermovement.e)Ifapplicable,fluidistotherecommendedlevelandisnotleakingfromthesnubbersystem.f)Structuralconnectionssuchaspins,fasteners,andotherconnectinghardwaresuchaslocknuts,tabs,wire,orcotterpinsareinstalledcorrectly.Iftheperiodbetweenthepre-serviceexaminationandthestartofhotfunctionaltestingexceedssixmonthsduetounexpectedsituations,re-examinationofitems(a),(d),and(e)shallbeperformed.Snubberswhichareinstalledincorrectlyorotherwisefailtomeettheaboverequirementsshallberepairedorreplacedandre-examinedinaccordancewiththeabovecriteria.2)Duringpre-corehotfunctionaltesting,snubberthermalmovementsforsafety-relatedsystemswhoseoperatingtemperatureexceeds250'shallbeverifiedasfollows:a).Duringinitialsystemheatup,snubberexpectedthermalmovementshallbeverifiedforanysafety-relatedsystemwhichattainsoperatingtemperature.VerificationshallbeperformedatRCStemperatureplateausofapproximately260',360',480',and532'.Snubberthermalmovementshallbeobservedduringcooldownandverifiedatambientconditionsaftercooldowniscompleted. 0C00 b)Forthosesafety-relatedsystemswhichdonotattainoperatingtemperature,'observationand/orcalculationshallbeusedtoverifythatsnubberswillaccomodatethepro)ectedthermalmovement.c)Snubberswingclearanceshallbeverifiedforthetemperatureplateausin(a)above.hnydiscrepanciesorinconsistenciesshallbeaddressedasfollows:a)Thesnubbe"inquestionshallberemovedfromserviceorotherinterimactionshallbetakentopreventsystemdamagepriortoproceedingtothenexttemperatureplateau.b)Thediscrepancyorinconsistencyshallbeevaluatedforcauseandcorrectedpxiortocoreload.c)Thesnubberinquestionshallbemonitoredagainduringheatupforpost;-corehotfunctionals'overifythattheproblemhasbeenresolved. ~l QUESTION~'(Section3.9.4)Thethermaldeflectionproblemofdissimilarmaterialsisnotcoveredandthereisnoinformationastotheallowableandactualdeflectionsduetothevariousloadirigconditions.Designmarginsforstress,defor-mation,andfatigueshouldbepresentedandshouldbeshowntobeequaltoorgreaterthanthoseofotherp1antsofsimilardesignhavingaperiodofsuccessfuloperation.Response:InresponsetotheNRCquestionspertainingtothedesignmarginsforfunctionalreliabilityregardingthedesigncriteriafornon-pressurizedcomponents,thecomponentsoutsidethepressureboundariesarethecoilstack,thepressurehousingshroud,andthecoolingshroud.Allaredesionedtobeaslipfitoverthemotorhousingandarecapableofbeingremovedattemperature.Atestwasper-formedtoverifythisrequirement.DimensionsandmaterialsusedfortheSt.LucieIICEDMsareidenticaltothoseonoperatingreactors..Allfailuremodesofnon-pressurizedactivecomponentswillnoteffectthesafetyfunctionoftheCEDING.Thec(ilstackisdesignedandhasbeentestedtoverifyitsc;pabilitytowithstandlossoaircoolantflowforup.t>four(4)hourswithoutlossoffunction.Partswithinthepressureboundary,suchasthemotorassembly,havebensized'forthermaldeflectionscausedbydissimilarmaterialsothatclearancesareavailableabovethemaximumdesigntemperatureof650'F. uestion46CEAInsertabilitA.AsstatedinProposedFSARAmendment3.'9.1.9.3{Question35),insertabilityforthedesignbasispipebreaksisnotrequired.Pressureboundaryintegritywi11bedemonstrated. 4g(ESTIONC7(Sectio3.9.5)Identifythehighestusagefactorandthelocationwhereitoccursinthereactorinternals.Response:Thehighestusagefactorforthereactorinternalsisfoundtooccurinthecoresupportbarrel'langeregionandislessthan.15. uestion49Wewillrequireanacceptableresponsetoourrequestforadditionalinformationonperiodicleaktestingofpressureisolationvalves.~ResesseFPLrecognizesthatleaktightintegrityofprimarycoolantsystempressureisolationvalves,whileanintegralpartofIST,willbereviewedindetailseparatelyonanadvancedschedulepriortoOL.Aseparateresponse,aspartofIST,willbetransmitted. 0 uestion50Theapplicantshoulddefinethestresslimitstowhichtheweldedattach-mentsinthehighandmoderateenergypipingsystemsaredesigned.Alsodescribethedetailedstressanalysisortestswhichmayhavebeenperformedtodemonstratecompliance,includingoneexamplewithasummaryoftheresults.~ResonseStressanalysisofpipingisperformedforvariousloadingconditionsaspresentedinTable3.9-5.Thisanalysisalsodeterminestheloadsonwelderattachmentswhichareusedasseismicrestraints.LocalstressesonpipingduetoweldedattachmentsarecalculatedusingWRCBulletin107.ThelocalstressedarecombinedwithotherstressesdeterminedbypipestressanalysisintheweldedattachmentlocationandASMEcodeSectionXIIallowableStressCriteriaaresatisfied.Asamplecalculationandthesummaryofresultsareattached.ThetrunnionanalysisutilizestheCylnozcomputerprogramtodeterminetheadequacy-ofthepipingsystemb>includingthe'ocalstressesintotheappropriateloadingcombination.Theloadingcombinationsandallowablestresscriteriaareprovidedonpage5.Thecomputerprogramusesthepipingloadinglobalcoordinates(referpg.2)andtransformstheseloadsintothefollowingcomponents:(1)Radial/shearloads(P/VL,VC)(2),Circum./longit.bending(MC/ML),(3)Torsionalmoment(MT)Thedetailsoflocalstressintensitycalculationforunitloadapplica-tionforP,VL,VC,MC,ML,andMTareprovidedonpage8.MembraneandbendingstressesinhoopdirectionduetoP,MCandMLarecalculatedatfourlocations'aroundthetrunnioninouterandinnersurfaceofthepipe.Forexample,AUandALrepresentthestressesatpointAuppersurfaceand'lowersurfacerespectively.SimilarcalculationformembraneandbendingstressesinlongitudinaldirectionduetoP,MC,andHLarecalculatedatthesameeightlocationsofthepipeasdescribedabove.ShearstressesduetoVL,VC,andMTarecalculatedattheselocations.Usingtheabovestresses,stressintensityiscalculatedateachoftheseeightlocations.The,largeststressintensityvalueisaddedwithpres-surestress(ifapplicable)andnormalstressinthepipe,duetocorres-pondingloadcaseandcomparedwiththeallowablestress.Theresultsoftheanalysis,shownonpage6,concludethatthecalculatedstressarewithintheASHEallowableforallloadingcombinations.I 00 cation51ProvidethefollowinginformationforanASHECodeClassIpipingsystemidentifiedinPSAR3.6A.(a)Calculatedstressintensity,calculatedcumulativeusagefactor,andthecalculatedprimaryplussecondarystressrangeforeachpointatwhichtheseparameterswecalculated.(b)Resultsintabularformandcorrelatedwithnodepointsidentifiedonasketchofthesystem.Response51Thecalcu1atedstressintensity,,accumulatedusagefactorandprimaryandsecondarystressrangeisprovidedinTable3.6C-l.
TABLE3.6C-1STRESSSUMMARYSAFETYINJECTIONSYSTEM(SC1Poit1131141140115116117118119120121157158159160169121012212312412512612712701271128129130131,13213313413513633623623723823913713813914O(*)9418002(TP)Eq10Sn/Sm.437.202.178.533.811.9031.136.907.975.882.431.353.370.176.5861.198l.226.7011.3761.395.794.823.8441.6251.498;568.5601.5061;6381.5591.4681.043.436.419.188.176.7901.3522.2132.3071.450Eq9s/l.55.285.267.250.314.609.554.554.543.538.511.256.243.215.135.271.561.560.297.554.540.275.287.301.582.560.275273.530.521.522.529.522.260.248.143.135.281.298.609.674.345UsageFactor.0.00040'0300..0024.0010Notes:(1)NodePointscorrespondtofigures3.6C-3.8,3.9,3.10(2)(*)Breaklocation(3)(TP)Terminalpoint TABLE3.6C-2STRESSSUMMARYSAFETYINJECTIONSYSTEl~d(SC2PointNumber8001(TP)100'.1000101102103'.1030104(*)10510501061081091101100112.113114StressRatioSA.424.335.389.519.355.417.633.402.099.101.244'.278.229.370.381.336.311.169StressRatioSh+SA.266.147.244.326.233.262.397.252.062.064.155.177.147'235.242.214.198.107Notes:~(I)NodepointscorrespondtoFigures3.6C-3.6,3.9,3.10s(2)(*)BreakLocation(3)(TP)TerminalPoint\ ~uestion52/rThepostulatedguillotinebreaksmayeitherbebasedoncompleteseverenceorlimitedseparation.Theappli'cantshouldidentifywhichtypeofbreakwasassumedforallpostulatedguillotinebreaksnotincludedaspartofCENPD-168.Xncaselimitedsepar-ationwasassumed,justificationshouldbeprovided.lfResonse52ForallhighenergysystemfailuresnotincludedintheCENPD-168report,thepiperuptureandjetanalysisconservativelyassumedguillotinebreakswithcompleteseparation.CE-ForlimitedareabreaksseeproposedamendmenttoFSARSection3.6.2.1.1(Question2).Allotherguillotinebreaklocationsarefullarea. uestion53Theapplicant,indescribinganalyticalmethodstodefineforcingfunctions,shouldindicate(a)theassumedloadingconditionsatthetimeofthepostu-latedpipebreak,and(b)the,risetimefortheinitialpulse.Iftherisetimewasgreaterthanonemillisecond,justificationshouldbeprovided.~Resoese(a)Forhighstresspointsdeterminingthepipestressanalysisconsidersplantnormalandplantupsetconditions.Thepiperuptureandgetimpingementanalysis'assumesanormaloperatingconditionof100%powerpriortothepipebreak.(b)Thepiperuptureanalysisassumedabreakopeningtimeequaltoorlessthanonemillisecond. uestion54MhatisthestatusofSt.Lucie,Unit2withrespecttotheSGfeedwaterringeventrecentlyexperiencedatSONGS2~ResDnseCEagreedtosetupameetingtodiscussthisissuewiththeNRC.
uestion55JustifytheuseofASNECodeLevelCservicelimitsforthesmallfeed-waterlinebreaktransientbyshowingthatthe.probabilityofasmallfeedwaterlinebreakislessthanorequaltothat,foranATWSevent(reference:NRCletterJamesP.KnighttoPaulS.Check,datedJuly29,1981)alger~~ResenseTheresponsetoQuestion440e81(f),whichisattached,showsthatforSt.LuckyUnit2theprobabilityofasmallfeedwaterlinebreakislessthan10perplantyear(sufficientlylowto)ustifyuseofLevelCservicelimits).Note:Inthei,nighttoCheckmemo,thereviewoftheeventprobabilityofoccurenceisindicatedasrequiredtobereviewedbytheNRCprobabilisticreviewgroup(notMES).Theoutcomeofthatreviewcanaffectitem833.ses'
SL-2RoundOneuestions440.81(f)(15.2.5)Thelimitingfeedwaterlinebreakw~snotadouble-endedguil-lotinebreak(OEGB),buta0.25ft.smallbreak.TheNRCwillacceptexceeding110".designpressureforverylowprobabilityevents,suchasadouble-endedguillotinebreak.However,forallbreaksizeslessthanaDEGB,whichresultinthesystempressureexceeding110Ktheapplicantmustdemonstratethattheprobabilityfortheseevents,issufficientlylowtosatisfytheLevelCServicecategorization,asdefinedinSection3oftheASMEPressureVesselCode.Herequiretheapplicanttoreviewallapplicabledataforjustifyinghisposition..Wealsorequire,asassessmentoftheconservatisminherentintheanalyzedevents..~Resonse:ThefeedwaterlinebreakanalyzedinFSARSection15.2.5.2ispostulatedtooccurinthespecificlengthofpipingbetweeneithersteamgen-eratornozzleandthefirstupstreamcheckvalve.UsingthemethodsanddatacontainedinHASH-1400wecanestimatetherecurrencefrequencyofsuchabreak.WASH1400,AppendixIIISection6.4.2providesanassessmentofnuclearexperiencewithlargepipe(>4")integrity.In150reactoryearsofexperience,nomajorfailureswereobservedinlargeprimaryorsecondary.pipingwiththeoneexceptionofonecrackinthesecondaryloop(certainly'lessthan.25ft.).BasedonthisinformationWASH1400concludesthatthepiperupturerateforthecombinedprimaryandsecondarysystemis'Too=.7x10-3/plantyear.(WASH-1400alsoindicatesthatthisvaluerepresentsa955confidenceestimateforruptures-vs.cracks).SinceapproximatelylOXofthispipingis"LOCAsensitive",WASH-1400interpretesthisdatatoshowthattherecurrencefrequencyforLOCAsduetofailuresoflargepipesis7x10-4/plantyear.PleasenotethatthisdataisnotlimitedtoDoubleEndedGuillotineBreaksandinfactincludesacrackwhichismuchlessthan.25ft.2.ThetotallengthofMainFeedwaterSystempipingwhichis"sensitive"withrespecttotheeventanalyzedinSection15.2.5.2is30feet.Thiscomparestoapproximately288feetofLOCAsensitivelargepiping.Fromthisinformation,usingthesameapproachasMASH-1400,wecanestimatetherecurrencefrequencyforthe.initiatingeventanalyzedinSection15.2.5.2as30x7x10-4perplantyear,or'.3x10-5erlantear.288ThusitisshownthattheinitiatingeventwhichisanalyzedinSection15.2.5.2isinfactaverylowprobabilityeventthatis.
highlyunlikelytooccurin,aplantslifetime.Additionally,thehighprimarysystempressuresreportedinSection15.2.5.2arrduetotheconservativelyassumedcoincidentoccurrenceofalossofnormala/cpower.MASH1400estimatestheconditionalprobabilityofthisat1x10-3(Ref.AppendixIII,Section6.3).Fromthiswecaneasilyconcludethatthejointrecurrencefrequencyfortheinitiatingeventwithf/pi1h107~Therefore,theeventanalyzedinSection15.2.5.2isindeedsufficientlylowtosatisfytheLevelCServicecategorization,asdefinedinSection3oftheASMEPressureVesselCode.AnadditionalconservatismoftheFSARanalysis,thatshouldbepointedout,isthatnocreditistakenforPORYoperationwhichwouldtendtominimizethepeakprimarysystempressure.Discussionofthe'conservatismsinherentintheanalysisoffeedwaterlinebreakswillbeprovidedby9/30/Sl,including~i)modelingofsteamgeneratorheattransfer,ii)>predictionoffluidconditionsatthebreaklocation,iii)correlationforpredictionofbreakdischargerate,iv)treatment=ofsteamgeneratorlowwaterleveltrip,v)selectionofplantinitialconditions,andvi)selectionofthe"worst"breaksize. "/ UNITEDSTATESNUCLEARREGULATORYCOMMISSIONl'lASHlkGTON,D.C.20555JUL381981MEMORANDUMFOR:Paul.S.Check,AssistantDirectorforPlantSystems,DSIFROM'UBJECT:JamesP.Knight,AssistantDirectorforComponents8StructuresEngineering,DEUSEOFLEVELCPRESSURELIMITFORNON-ATWSTRANSIENTSANDEVENTSTheuseofParagraphNB-3224(LevelCServiceLimits)ofSectionIIIoftheASMECodepermitsanallowableprimarymembranestress.duetopressureandothermechanicalloadingswhichis1.2timestheallowablestressusedfordesignloadingsforausteniticmaterialsandthegreaterof1.1timesthedesignallowableor0.9Syforferriticmaterials.ForPWRgeometriesthisessentiallycorrespondstoanincreaseof.1.2xdesignpressureforausteniticmaterials,and1.1xdesignpressureor0.9Syforferriticmaterials.LevelClimitspermittingincreasedpressurewasintroducedintheCodebytheASMEBoilerand-PressureVesselComitteeattherequestoftheNRCtodealwithanATWSevent.Whileothereventswerenotspecificallydiscussedbythe~~~~~Committee,webelievethatitwouldnotobjecttoLevelClimitsbeingusedforothereventsofaboutthesameprobabilityofoccurrence..asATWS.WeconsiderthistobeacceptableandwouldpermittheuseoftheLevelClimitsstatedinParagraphNB-3224forannon-ATWSeventhavingaboutthesameoralowerprobabilityofoccurrence.IftheprobabilityofoccurrencefortheeventishigherthanATWS,thentheLevelBlimitsofParagraphNB-3223shouldbeused.TheMechanicalEngineeringBranchisnotabletoevaluatewhetherthestatedprobabilityofoccurrenceofsmallbreaksinthemainfeedpipingasprovidedbyCombustionEngineeringisvalid..ItwouldappearthatthelengthoflinesubjecttothebreakeventmaybeplantspecificforPaloVerde,St.Lucie-2andWaterford.cc:Seenextpage.JamesP.ight,AssistantDirectorforComponents5StructuresEngirg'eringDivisionofEngineering
1'L2-PSARAPPENDIXl.9A19ATMXRELATEDREUIRH4ENTSThefollowingitemnumberscorrespondtothoselistedinNUREG-0737"Clarification.ofTHXActionPlanRequirements"(October,1980)(.'IA.l.lSHIFTTECHNICALADVISORFloridaPower6LightCo(FP&L)programsinresponsetothisrequirementhavebeendevelopedforSt.LucieUnit.1(DocketNo.50-335)andwi11alsobeapplicabletoSt.IucieUnit2.eChapter13hasbeenrevisedto'ddressthisrequirement.Responsibilityauthority,phaseoutplans,andreportingrelationshpsareinSection13.1.2.2.QualificationsareinSection13.1.3.1.TrainingisinSection13.1.3.1and13.2.1.1.2ThedetailsofthetrainingprogramMeresubmittedforUnit1totheNRCasrequiredbyNUREG-0737foroperatingreactors.Z..1.2SHIFTSUPERVISIONADHINISTRATIVZDUTIESFP&LprogramsinxesponsetothisrequirementhavebeendevelopedforSt.LucieUnit1(DocketNo.50-335)andwillalsobeapplicabletoSteLucieUnit2.TheplantproceduredescribingthesedutiesisaddressedinrevisedSection13.5.1.3.X.A.1.3~SHIFTHANNXNGProceduresreflectingtherequirementsofNUREG-Od737,limiting(13)overtime,hoursofworkandminimumshiftcomplementhavebeengener-atedforf)lLucfeUnftlendvillepplytoSr.tLucioUnit2when~necessary.Section13.5.1.3hasbeenrevisedtoaddresstheproceduredefiningovertimepolicy.Section13.1.2.3hasbeenrevisedtoindicateshiftmanning.X.$'2.1IHHEDIATEUPGRADINGOFOPERATORANDSENIOROPERATORTRAININGANDUALIFICATIONSSection13.1.3.1hasbeenrevisedtoaddressseniorreactoroperatorqualificationsasspecifiedbyNUREG-0737.(13)Section13.2.1.1.1hasbeenrevisedtoaddresschangestotheoveralltrainingprogram.Licensecandidatecertificationisaddressedinthexevisedsection13.2.1.1.1C).
I.A.2;3.ADMINISTRATIONOFTRAININGPROGRAMSRevisedsection13.2.1addresses-thequalificationsof,theplanttrainingstaffpersonnel.I.A.3.1REVISESCOPEANDCRITERIAFORLICENSINGEXAMH?6LinitialandrequalificationtrainingprogramrevisionstoaddresstheincreasedscopeofthelicenseexamshavebeendevelopedforSt.Lucie1(DocketNo.50-535)and'willalsobeapplicabletoSt.LucieUnit2.RevisiedSection13.2.1.1.1addressesthecontentofthetrainingprogram.I.B.1.2EVALUATIONOFORGANIZATIONANDMANAGEMENTITheFP&LorganizationisdescribedinSecti'on13.1.1.TheprincipalfunctionoftheIndependentSafetyEngineeringGroupasindicatedbyHUREG-0737isoperatingexperienceassessment.ThisfunctionisaddressedinI.C.5below.
~I.C.ISHORTTERIIACCIDENTANALYSIS.ANDPROCEDUREREYISIONF)oridaPower&LightCo.(FP&L)has.participatedinC-EOwnersGroupactivitiesconductedsincetheThreeHileIslandaccidentio.developim-provedemergencyprocedureguidelinesandassociatedsupportinganalyses..TheC-EOwnersGrouphascompletedriumerousdocumentswhichhavebeensub-mittedtotheNRCforrevi'ew.Asumnaryofresultsobtainedtodateandcurrentactivitiesisapprovedbelow.TheinitialC-EOwnersGroupanalysisofInadequateCoreCooling(ICC)isdocumentedinreportCEN-117,"InadequateCoreCooling-AResponsetoNRCIEBulletin79-06C,Item6forCombustionEngineeringNuclearSteamSupplySystems".'hisreportwassubmittedtotheNRCstaffforreviewonOctober31,',.979,bytheC-EOwnersGroup."OperationalGuidanceforInadequateCoreCooling"waspreparedbytheC-EbasedontheanalsesinreortCEN-117.ThisoperationalOwnersGrouppguidancewasdistributedtoallmembersoftheC-EOwnersGroupfortheiruseinrevl'ewandpossiblerevisionofplantemergencyproceduresinDecember,$979."AcopyofthisoperationalguidancewassubmittedtotheNRCstaffforreviewbytheC-E0'wners'r6uponDecember10,1980.UpdatedversionsofthisinstrumentationresponsecharacteristicsunderICZconditions.ThisstudywasdescribedtotheNRCstaffatameetinginBethesda,HD,*onHay28,1980.ThisstudywascompletedonDecember,1980,anditsresultshavebeendistributedguidancearebeingusedinthepreparationofSt.LucieUnit2emergencyprocedures.Sinceearly3.980,theC-EOwnersGrouphassponsoredanextensivestudyof0tomembersoftheC-EOwnersGroupfortheiruse.FP&Liscurrentlyevaluating ~theresultsorthisstudyforuseinpossiblerevisionstoplanteniergency'rocedures.Suchrevisionswouldbebasedupondeterminationoftheuse-.fullnessofspecificinstrumentationfordetectionofICC.ThisevaluationandsubsequentrevisionofplantemergencyproceduresasrequiredisexpectedtobecompletedpriortothestartupofSt.t.ucie2.'heinitial.C-EOwnersGroupanalysesoftransientsandaccidents(non-LOCA)isdocumentedinreportCEN-128,"ResponseofCombustionEngineeringNuclearSteamSupplySystemtoTransientsandAccidents".ThisreportwassubmittedtotheNRCstaffforreviewonApril1,3980.TheresultsinthisreportshowhowatypicalC-E-designedplantwouldmostlikelyrespondtovariouseventinitiatorsandshowswhatsystemsareactuatedfollowingeachevent.vThereportincludesresultsofplantsimulationanalyseswithdigitalcomputer~codestodeterminetransientbehaviorofpertinent.plantprocess.parameters,components,andsystemsandresultsofsequenceofeventsanalysesperformedtoidentifycomponentandsystemfunctionsandalternatemeanstoaccomplishspecifiedsafetyfunctions.TheanalysescontainedinreportCEN-128considersingleactivefailureforeachsystemcalledupontofunctionforaparticularevent.Passivefailuresandmultiplesystemfailuresarenotconsidered.Thesequenceofeventsanalyses(SEA)showthevariouspathsthroughaneventwithoutprobabilisticconsiderations.EachSEAdemonstrateshowspecifiedsafetyfunctionsaresat-isfied.Sequenceofeventsdiagrams(SED)are'usedtoshowhowthesefunctionsareaccomplishedandincludesingleactivefailuresineachrespondingsystemandoperatorfailuretoperformmanualactions.ConsequentialfailuresareconsideredintheSEDforthesteamlinebreak.yP't-,,~v~ags.'~a,~~sfytr4 4 tI.C-E0ersGrouphasconductedaprogramtodevelopSinceearly1980,tie-wnanalysesoftransientsandaccidentsinvolvingpmultilefailures.TheseanalyseswereoutlineoedtthNRCstaffinameetingheldinBethesda,HD,onJanuary31,..1980Theseanalysesarecurrentlyscheduleduledtobecompletedinthe.firstquarterof1981Theresultsoftheseanalyseswillprovideonebasisforpossiblerevisionbloofemergencyprocedureguidelines.TheinitialC-EOwnersGroupdevelopmentofemergencypgrocedureguidelineswascompleteineirdthf'tquarterof.1980.TheseemergencyprocedureguidelinesaredocumentedinrepottCEN-l28.pThisreortwassubmittedtotheNRCstaffforreviewonApril1,'980.Theemergencyprocedureguidelinescontaine'iedinreortCEN-128werepreparedsastsafety,andbasedonexensivetreviewsofexistingemergencyprocedure,p1thlantsimulationandsequenceofeventsanalysesindesignanayses,epCEN-l28,andinterviewswithoperationspersonnepelatlants<IithoperatingC-Ereactors.Theseemergencyprocedureguidelineswerepp~~rearedtobeusedasabasisforreviewing,andrevisingifnecessary,existgpstinlantemergencypro-theNRCreviewsSONGS2+3..FPSLcedures.Theseguidelines.wereupdatedbasedonedontheseguidelines.ispreparingtheSt..Lucie2emergencyproceduresbasedonTheNRCstaff,inaletterdatedJulyX7,2980,qsentuestionstotheC-EuidelinesdocumentedinreportOwnersGroupconcerningtheemergencyprocedureginBethesda,l'ID,onSeptember11,1980,CEN-128.AmeetingwasheldwiththeNRCstaffineetodiscussthesequestionsandanswerstothem.Apreliminaryresponse I tothesequestionswasSubmittedbytheC-EOwnersGrouptotheNRCstaffin\aletterdatedDecember10,1980.TheremainingresponsesweresubmittedtotheHRCstaffbytheC-EOwnersGroupinJanuary,1981.4Sinceearly1980,theC-EOwnersGrouphasconductedanextensiveevaluationof"specifictechnicalcharacteristicsofemergencyprocedureguidelines.Theseinclude(1)thediagnosticguidancetobe.providedinemergencyprocedureguidelines,(2)theneedforaseparateguidelineforinadequatecorecooling,and(3)theformatforpresentationofemergencyguidance.Thisevaluationiscurrentlyscheduledtobecompletedinthefirstquarterof1981.Theresultsofthisevaluationwillserveasonebasisforpossiblerevisionofemergency,procedureguidelinescontainedinreportCEH-128.TheC-E(4nersGroupagreedonDecember3,1980,toconductaseriesofwork-shopsconcerningemergencyprocedureguidelinesinearly1981.Theseworkshops4wereintendedtoprovideaformalprocessbywhichtheemergencyprocedureguidelinesdocumentedinreportCEH-228willberevisedtoaccountformultiple~failureconsiderations.InputtotheseworkshopswasprovidedbytheanalysisandemergencyprocedureguidelinesstudieswhichhavebeenconductedbytheC-EOwnersGroupsince'early1980.TheworkshopswereattendedbystaffpersonnelfromC-EandfromutilitieswhichownC-Ereactors.Theseworkshopsalsopro-videdtheopportunitytoexploremultiple-failurescenariosbeyond,thosewhichhavebeencurrentlyidentifiedintheC-EOwnersGroupanalysesoftran-Psientsandaccidents.LOCAwasalosbeconsideredintheseworkshops.ITheC-EOwnersGroupmetwiththeHRCstaffonJanuary30,1981~inordertodiscusstheprocessbeingusedforrevisionofemergencyprocedureguidelines.i'/,J/.~'
WTherevisedemergencyprocedureguidelinesweresubmittedforreviewtotheNRCstaffbytheC-EOwnersGrouponJune30;1981inCEN-152and156.kFollowingcompletion,oftheNRCreviewoftherevisedemergencyprocedureguidelinesFPKLwillevaluatetkeneedforrevisionofitsplantemergency1procedures.ThescheduleinNUREG-0737indicatesthatsixmonthswillberequiredforNRCstaffreviewandapprovalandthatanothersixmonthsormoreareto-beallowedforrevisionandimplementationofemergencyprocedures.Therefore,theSt.LucieUnits2emergencyprocedureswillberevisedifnec-.essaryafterDecember1,1981,andtherevisionsimplementedatthefirstre-fuelingoutageafterJune1,1982. X.C2SHIFTRELIEFANDTURNOVERPROCEDURESTheFP&Lprograminresponseto'hisrequirementhasbeendevelopedfoxSt.Lucie1(DocketNo.50-335)andwillalsobeapplicable.toSt..LucieUnit2.RevisedSection13.5.1.3addressesthisrequirement.X.C.3SHIFTSUPERVISORRESPONSIBILITIESTheFP&LprograminresponsetothisrequirementhasbeendevelopedforSt.Lucie1(DocketNo.50-335)andwillalsobeapplicabletoSt.LucieUnit2.RevisedSection13.5.1.3addressesthisrequirement.X.C.4CONTROLROOMACCESSTheFP&LprograminresponsetothisrequirementhasbeendevelopedforSt.Lucie1(DocketNo.50-335)andwillalsobeapplicabletoSt.LucieUnit2.RevisedSection13.5.1.3addressesthisrequirement.Accesslimitationsare'alsoaddressedinthesitesecurityplan,Section13.6.X+C.5PROCEDURESFORFEEDBACKOFOPERATINGEKPERIENCETOPLANTSTAFFProcedureshavebeengenexatedtoreflecttherequirementsofNUREG-0737(Sections13.1'.1.3and13.1.2.2k)havebeenrevisedtoindicatetheorgani-zationalresponsibilitiesforthisprogram.0I.C.6VERIFYCORRECTPERFORMANCE'OFOPERATINGACTIVITIESPerformanceandprocedurescurrentlyineffectatSt.LucieUnit1reflecttherequirementsofNUREG-0737(13).ThisrequirementwillalsobemetatSt.LucieUnit2.Section13.5.1.3hasbeedrevisedtoaddressthisrequirement.
I.C.7NSSSVENDORREVIEWOFPROCEDURES~~~Thelow-powerandpowerascensiontestandemergencyproceduresforSt.Lucie2areintheprocessofpreparationandreview.TheHSSSVendor,CombustionI~~Engineering(C-E),Inc.,isassistinginthepreparationofthelow-power,physicsandpower'asceniontestproceduresfor'sebpFP&LduringthestartupofSt.Luc>e2.TheC-ESiteRep.isamemberoftheTestHorkingGroupandparticipatesinthereviewandapprovalofthelow-powerphysicsandpower-ascensiontestprocedures.Inaddition,C-Ewi.llbereviewingthespecificemergencyprocedureslistedintableI.C.7-1.Documentationwillbeavailablepriortothestartoflow-powertestingwhichwillverifythattheNSSS.vendorreviewedandapprovedproceduresinvolvedwiththefollowing:Precriticaltests(FSARtable3.4.2-2)Low-Powerphysicstests(FSARtable14.2-2)'PowerAscensiontests(FSARtable14.2-2)EmergencyProcedures(tableI.C.7-1)AmplifyinginformationfortheUnits2&3startuptestprogramcanbefoundinFSARsection14.2,whichalsoliststhetests'involvedandthetestorganization.l'<<P'.<<e>>I.C.7-1 Table'I.C.7-1EMERGENCYPROCEDURESShutdownResultingfromReactortriporTurbinetripAnticipatedTransientswithoutScramBlackoutOperationControlRoomInaccessibilityRCSCooldownDuringBlackoutPLCEAOff-NormalOperationandRealignmentExcessiveReactorCoolantSystemLeakageExcessiveReactorCoolantSystemActivity~.ReactorCoolantpump'-Off-NormalOperationPressurizerPressureandLevel-Off-NormalOperationPressurizerReliefandSafetyYalve-Off-NormalOperationLossofReactorCoolantFlo~vSteamGeneratorTubeLeakFailureLossofReactorCoolantInadequateCoreCoolingCharging,andLetdown-Off-NormalOperationEmergencyBoration'BoronConcentrationControl-Off-NormalComponentCoolingt4ater-Off-NormalOperationC.C.W-ExcessiveActivityHPSI-Off-NormalOperationSDC/LPSI-Off-NormalOperationUncontrolledReleaseofRadioactiveLiquids((~) 0 WasteGasSystem-Off-NormalOperationUncontrolledReleaseofRadioactiveGasCondensorTubeLeakLossofFeedwaterorSteamGeneratorLevelMainSteamLineBreakLossofInstrumentAirWideRangeNuclearInstrumentationChannelHalfunctionsLinearPowerRangeChannelMalfunctionsLossofContainmentIntegrity-Off-NormalOperationsAccidentsInvolvingneworSpentFuel:po~Jl'.,+)'g~'h(<<) X.C.GPILOTNONITORINGOFSELECTEDEHERGEHCYPROCEDURESFORNTOLAPPLIGQ/TSlhnydeficienciesidentifiedbyanHRCauditvillbecorrected.X.B.lCONTROlROONDESIGH1hcontrolroomdesignreviewvillbeperformedthatwillsatisfytherequire"mentsofBUREG-0737~,itemI.D~I~ThisreviewMillcoaxnencein1981,andvilli>aethedraftRVRRG/GR1580.f11'Ijdry'URB50700'AschedulehasbeenestablishedthatvillcompletethereviewbyApril,1982.Alldiscrepanciesfoundvillbeevaluatedfortheirsafetyimplication,prioritiredandscheduledforimplementation.ThosediscrepanciesfoundtobeasignificantHumanFactorsproblemvillbecorrectedpriortoNovember,1982.OtherdiscrepanciesfoundnottobesignificantvillbeconsideredforlongtermimplementationandvillbecorrectedonascheduleapprovedbytheNRC.
~~3hgss~~gQk(stl5)C<+w'Ap~'~g.~(~qh,m,ATlc.~fy~~k4ni'~ey)Wc,-~(ygC)(~,~~~,Q+'+('OF)aMMLcmt5rard(nJDc;g,I.G.1TRAININGDURINGLOW-POWERTESTINGThistrainingwillbeinaccordancewithRobertL.Tedesio,AssistantDirectorforLicensingtoDr.RobertE.UhrigletterdatedJune12,1981.Subject,THI-2ActionPlanItemI.G.1.Sincetestingwasaccomplishedatacomparableprototypeplant,SONGS-2,onlythetrainingrequiredbythisletterneed.beaccomplishedand'isaddressedinrevisedSection13.2.1.2. REACTORCOOLANTSYSTEMVENTSSeSction.7.l4,)3oJOugs'J)11c)I)'/+i(~mf//ii~kCeo/i~~Spk~I/ikis~Ky,3,,7 SL2FSARII.3.2'LANTSHIELDIHG.Adesignrevieww~conucedctedtoevaluatetheradiologicalenvironmentofepan.hltfollowinganaccidentinwhichaigni,ficantcoredamagehasoc-curred.TheevaluationF~fc4r~g~*ac~<~Gp<~~~~5,AAce~'phoaeare(~ul6'g~sdH~P>nvgp~pnhp~/2.,gg,c~'cledc~~~~~i~~'si~cadi)Mo-cjF~ydrXA+pAp'~$p5kj'cd'c3il~ 7POSTACCIDENTSPiHPLINGSeeection..(Opt'covi.)c'-FuIiri)c-pscjcpu,Na1qp~improv,)lCpdgkP~~~~~/p[yachal'~
IX.B.4TRAXNXNGFORHITIGATXNGCOREDAMAGETheprogramsinwhig?jinitigatingcoredo@agetrainingiscontainedareaddressed1nrevisedgectinns13.2.1.1.1a)and13.2.1.1.2.IX.D.1.RELIEFANDSAFETYVALVETESTREQUIREMENTSTheElectricPowerResearchInstitute(EPRI)bdtsdcudepcZagenericprogramtoverifytheoperationa1characteristicsofPMRsafetyandreliefvalvesincludingtheeffectsofdownstreampipingonvalveoperationandtoprovideassurancethatthesesystemscanperformasrequiredtopreventoverpressuri-ragionoftheprimarycoolantboundary.ThetestingofPORVisolationvalves.mundercoooideTation.ApreliminaryprogramplanwaspresentedtotheNRCstaffinameetingheldonDecember17,1979.TheprogramincludesteatsonfullscaleP4Rreliefandsafety.valves.Experiencefromforeign'reliefvalvetestprograms~5;utilizedtoexpeditetheprogram.Theexperimentaldatatogetherwithforeignreliefvalvetestsresultswillbeusedtovalidateacomputationalmethodologyforassessingthehydraulic/structuralperformance'fPMRsafety/reliefvalvesystemsonaplant-uniquebasis.~'heoverpreasureprotectionsystemofSt.LucieUnit2includesthreeASHECodesafetyvalveslocatedonthepressurizer.ThevalvesaredesignedtoprotecttheReactorCoolantSystemasrequiredbySectionIXIoftheASHECode.AdescriptionofthesevalvesisprovidedinSubsection5.4..13andTable54-8Sd.+VchcSr/v(se2kX'vcg~4~c<<v~'~ave-6>'~'IAEP>R3Pv23~nAlso,thepreliminaryteatmatrix(asoutlinedintheDecember17,1979programplan)boundsthefluidconditionsandtransientoimulationounderwhichtheSt.LucieUnit2safetyvalvesareexpectedtooperate.'Theoverpressureprotectionsystemalsoincludeotwopoweroperatedreliefvalveswhichservetoamelioratetransientsatnormaloperatingtemperaturesandalsoprovidelowtemperatureoverpressureprotectionatreducedtempera-<<<<s~Rekg<re~..yepvCJ(ndcZi'vccggQpjp~d.~pi<~~v~Z~'~~~4&(1'P4~E7'~2Pvp~~,Thesevalveshavebeenspecifiedandarebeingdesigned,developed,andtestedtoassureoperabilityandcapacityfortheapplicableliquidandsteam'onditions.'hesevalvesareincompliancewithSectionIII,ClassIoftheASMECodeandvillbequalifiedforpostaccidentconditionssThedesignandtestingofthesevalvesaresummarizedinTable5.4-9,andAmendment1toSubsection5.4.13.XXeD3RELIEFANDSAFETYVALVE,POSITIONINDICATION~s4'cgpuysi,'&ru,'u6c,u>Mg~HlciM'ajr~qpr~rurig~~yes'+sssud,ptucppsr~rryu$y~~paid~,Se~i~/mM~aIs(nyct~SQg~6'c7d,ZE'. III 0XI.E.1-1AUXIfXARYPEEDMATERSYSTEMRELIABILITYEVALUATIONn)Eventtreeandfaulttreelogictechniques~@fresnconductedaspartofareliabilityanalysistodeterminedominantfailuremod~aandassessAuxiliaryFeedvaterSystemreliabilitylevels.77c.~c5ul6~gf4'5~'a,hi+w>ntuafi~fipv~ig~i~App~drp.Io.0'7(3.b)~Astandarddeterministictypeofsafetyreview~gunperformedusingasprincipalguidancetheacceptancecriteriaspecifiedinStandardReviewPlan10.4.9"AuxiliaryPeedvaterSystem"{Rl)andBranchTechni-calPositionASB10-1,"DesignGuidelinesforAuxiliaryFeedwaterSystemPumpDriveandPowerSupplyDiversityforPHRPlants"{RO).ih<zcsAfsPWs~~d~dWcQ~dr!04.galc)"TheguidelinesofEnclosure2ofNRClettertopendingOLapplicants.datedMarch10,1980t12)hasWciaddressedtodescribethedesignbasisaccidentandtransientsandthecorrespondingacceptancecri,teriaforAuxiliaryPeedvaterSystem.(nRppzvA'wN'/<AII.Eli2AUXILIARYPEEDLATERXHXTIATIOHAHDXHDICATION4Asafetygradeautomatic-initiationAuxiliaryPeedwaterSystemhogbee~imple-mentedforSt-LuciaUnit2andr'sdescribedin5+sg~fi'~5(gi7.$.I(.8
SL2-FSARIIE+3ol~EHERGEN"YPOFERSUPPLYFORPRESSURIZERHEATERSa)hsufficientnumberofpressurizer.heatersandassociatedcontrolsnecessarytomaintainnaturalcirculationathotstandbyconditionareprorovidedwithpowersupplyfromeithertheoffsitepowersourceortheemergencypowersource(vhenoffsitepowernotavailable).Eachredundantgroupofheatershasaccessto.onlyoneClasslEdivisionofpowersupply'ob)Anychangeoveroftheheatersfromnormaloffsitepovertoemergencyonsitepowerisaccomplishedmanuallyinthecontrolroom.(SeeSubsection8.3'.11)c)Proceduresandtrainingvillbeestablishedtomaketheoperatorawareofwhenandhovtherequiredpressurizerheatersareconnectedtotheemergencybuses.Theprocedureswillidentifya)vhichengineeredsafetyfeaturesloadsmaybeappropriatelyshedforagivensituation,b)manual.operationoftheheatersandc)instrumentationandcriteriatopreventoverloadingadieselgenerator.Thetimerequiredtoaccompli'shtheconnectionofthenecessarynumberofpressurizerheaterstoemergencybusesisconsistentviththetimelyinitiationandmaintenanceofnaturalcirculation.QPressurizerheatermotiveandconsolpowerinterfaceswithemergencybusesaxethroughdeviceswhichad~ualifiedtosafetygraderequirements.SafetygradecircuitbreakersareprovidedtoprotectthisClasslEinterface'spertheStLucieUnit2commitmenttoRegula-toryGuide175~"PhysicalIndependenceof'ElectricSystem"1/75(Rl)inSection8.3i0)3)0l3)0tof)Beingnon-class1Eloads,thepressurizerheatersareautomaticallyshedfromtheemergencypowersdurceuponoccurrenceofaS/AS~IX,E,CI,lDEDICATEDHYDROGENPENETRATZONSAsdiscussedinSubsection6~2;5,redundantinternalhydrogenrecombiners.areprovided.ThereforethisrequirementisnotapplicabletoStLucieUnit2.0XX.E42CONTAINHKNTISOLATIONDEPENDABILITYThefollowingitemsaddresscorrespondingNRCpositionscontainedinNUHEG&73I-1)AsdiscussedinSubsection7~3~11thecontainmentisolationactua-tionsignal(CXAS)isinitiateduponhighpressureorhighradiationinsidethecontainmentTherefore,theCIASgomplieswiththerecommendationinStandardReviewPlan6.2~4"ContainmentIsolationSystem"(Rl)withrespecttodiversityintheparameterssensedforinitiationofcontainmentisolation.~AmendmentNo,3,(6/81) SL2PSAR2}Uofagthedcfinftfon.inAppendixAtotheBranchTechnicalPositionAPCSB3-1(Ji.l/24/75)(nttnchdtotheStandardRevfe>rPlan3~6.1),essentialsystemaad.componentsaz'edefinednothosesystemsnadcomponentsrequiredtoshutdownthereactornndmitigatetheconse-quencesofanaccident.Table62-52IdentifiestheesoentfnlpeaetrntioaonoESFpeaetrntfoaoAoindicatedinSubsection6.2.4,nllcoatafamentperetratfonoassociatedwithnonessentialsystemsareeitherndaiaistrativelylockedclosedorautomaticallyioolnteduponnCEASPeatrntionoforsystemslikpostaccidentmonitoriagfastrumeatatfonnadRCSoamplfaghoweverareprovidedwithannual~overrideoftheCIAStoenabletheopezatortoopenthecontniamcntioolationvnlvconadactivatethesystemsasaecessaryi'heStLucfeUnit2coataiaanatfoolatfonsystemcomplfeowithGeneralDesignCriteria(GDC)55,'6nnd57'CIASiouoedtoisolatenoaeosentialsystemsGDC57permitstheuoeofonecon-tainmentisolationvalvelocatedoutsidecontainmentwhichiocapableofautoaaticorremotemanualoperationanddoesnotrequireclosureonnCIAS.ThepeaetrationothatfalLintothiscategoryazenaiasteamaadfeedwaterwhichareautomatfcnllyisolateduponreceiptofnHSISHowever,withthcdiversityofhighcontainmentpressureorIowsteamgeneratorprcssure,nHSISiogeneratedandioolatesthcmafasteam5solntionvalvesandHainPeedwaterisola-tionvalves.Thecomponentcoolingwaterlineatoaadfromthcz'eactorcoolantpumpfallundertherequirementsofGDC56AnSEASisolatesthesepcaetratfoaoaadisinitiatedbydiverseparameters,lowpressurivrpzeosureorhighcoatainneatpressure.4)Thepresentdesignofcontrolsystemsforautomaticcontainmentfsolntionvalves"aresuchthatreoettiagtheisolationsignaldoesnotresultintheautomaticreopeningofcontainmentisolatioavalves.Ceztainvalves(eg,pootaccidentoaapl'ing,containmentradiationaonitoriagpinstruaeatnir)whicharerequiredtoopenduring,ana'ccidentareprovidedwiththecapabilityofannuallyoverridfagtheautomaticisolationofgnalReopeningofthesecontainmentioolatfonvalvesrequiresdeliberateoperatoraction,nndcanbe-,accomplishedonlyonnvalve-by-valvebasis.Thecon-tafnaentisolationdesigndoesnotutilise"ganged"controlswitchesforcontnfamentisolationvalvoo.5)TheCIAS~HSISaadSIAScontainmentpresoureoetpoiatioselectedtoaccountforthenormaloperatingpresourefnsidecoataiamcnt,equipment'uncertainty,octpointdriftandnsoocintediaotrumeatatfontimedelay."Thepressuresetpointselectediofnrenoughabovethemaximumexpectedpreosuz'einsidecontainmentduringnormal'operationoo.thatinadvertentcontainmentisolationdoesaotoccurduriagnormaloperationEroainstrumentdriftorfluctuationsduetothc,inaccuracyof'thepressuresensor(~JAmendmentNo.1,(4/8l) 0 6)ThecontainmentpurgevalvesvillcomplywiththeoperabilitycriteriaprovidedinBranchTechnicalPositionCSB6-4(Rl)'ndthstaffinterimpositionofOctober23~1979.The48"purgevalvesarcadministrativelyclosedduringnormalplantoperntioanndonlyonedMhentherea'ctoriaincoldohutdovnorrcfueliagmode.~Thepe8"continuouscontainmentpurgevalvestrillb=nbletocloseundertheDBApressurenndfloe'conditionloading(timedependent)withintherequiredvalveclosuretirmlinitThe48"purgevalvesareve'rifiedtobeclosedatleastevery31days')ThecontinuouscontniameatpurgevalvescloseonnCIAvhich,nostatedinXtem1,isinitiatedupon.a.highradiationorhighpres-oureinsidecontainmentIX.P1ADDITIONALACCXDEHTHOHITORIHGXHSTRUHEMTATXOHXnordertominimizethepotentialforoperatorerror,displaypanelcontroloaddedtothecontrolroomnonresultofthisactionitemMillundergonhumanfactoranalysis.IIThecontainmentpressuremeasuremeatnadiadicati'oncapabilitywillbeupgradedtofourtimesthedesignpressureofsteelcontainment-Acontinuousindicationafcontninmeatpressurevillbeprovidedinthecontrolroom,inndditioatorecordiagQrcfccdu5'A~~h~vI>I)Acontinuousindicationandrecording,ofku~trillbeprovidediathecontrolroom-/krrawn~~'W~gC-Q~rh.dnc~fm~'0bc.p~'A+C+v~c~Pg'VD6~8.ca(crcael~~~fsu~gq~Ml~~de&ACo0,cocgaO~~Q$4Lfcv*4$cpignl7ib.g.3)0*jo.c)Redundantphysicallyoepnratesafetyrelatedhydrogenanalyzersare~presentlyprovidedvithnmeasurementrangeof0to10percenthydrogenconcentration-Theanalyzersaremanuallyoperatedfromthecontrolroomandreadingsnrccontinuouslydisplayedinapanelmeterandrecordedonnaanalogstripchnrtiathecontrolroom-,AsindicatedinSections3.10nnd3.11theanalyzersystemareoeiomicCategoryI,meetstheseipmicqualificationofIEEE344-l975,andenvironmentalqualifi-cationofICE323-1974.TheposerissuppliedfromClass1EemergencybuoMithautomaticloadingontothedieselgenerators.Provisionsareandeforperiodictesting.Subsection6.2.5.2.1providesadetaileddescriptionofthehydrogenanalyzersAmendmentNo.1,(4/81)
0A~>>P>>Ii<~6-.~"mr-TSARErang/Ar'Cg~~""~'AheICrequircaento.<<aouringcontainx-ntradiationlcvclauptoTOORfhr(totalrEadiation4willbenxetbyprovidingcontainsentpost-accidentmonitorceitbamaximarangeofDLLnimumoftuoouchnonitoravillbeprovided;physicallyaeparatcd;anddcaigncdandqualified'tofunctioninanaccidentenvironment(ie,ClaaoTErcquirencnta)..lContinuouaindicationandrecordingviLlbeprovidedinthecontrol'ock/~<~c~~ig,9.4.Qkeblegaseffluentaonitornareprcaentlyp'rovidedinthefollovingpotentialgaseousrclcaoepointa(aaxinuamonitorliait)-1)CascousMcetediochargeline(10pCi/cc)2)Condcnncr,aircjcctordiachargc(TOpCi/cc)3)plantvent(JOIECi/cc)04)PuclBa'ndlingBuildingatact:(10"jCi/cc)5)GCCSareacxhauat{10~pCi/cc)Hovcver,afteranaccidentinvolvingradiationrelease,theonlyrclcaoc~pathsutiliaodarctheplantvent,L'CCSareaexhaustductoandataoa-phcricd~valvesandBainatcaxnsafetyvalvesThesystemdescriptionforthehighrangenoblegaseffluentmonitorsareprovidedinSubsection11.5.2.Thehighrangenoblegaseffluentmonitorsareeithermultistagegaseousmonitors(subsection11.5.2.1.3~orexternally,mountedGHtubes(Subsection11.5.2.1.3.e).1U'apabilityforcontinuousaanplingofplantgaacouaoffluantforpootnccidontreleaseofradioiodineandparticulateostillbeprovidedtrithonoitclaboratorycapabilitieotoaaalyreoraeaourctheseaanpleag~<gVQeCHE>>ENrg"oR~EE,'Adetaileddescriptionofthoseeyoteaaunderitcnaa,b,d,eandfm;llbeprovidedinelateramendment.tXXP.IIHAOEQOATECORECOOLIEOXBSTRV!XEHTSS'e~-t'-Ip
EI.G.lEHERGEBCYPOMERPORPRESSURIZEREQUIMEHTc)d)Vwtiveandcontrolcomponentsoftheposeroperatedreliefvalves(PORVa)villbesuppliedfromeithertheoffaitepoversourceortheemergencypowersource(whenoffoitepoveri'onotavailaeble).HotiveandcontrolcomponentsforthePORVblockvalvesm,llbesuppliedfromeithertheoffsitepovnrsourceortheemergencypowersource(whenoffsitepoverionotavailable).ThchangeoverofthePORVandblockvalvemotiveandcontrolpoMerfromecangedthenormaloffoitetoemergencyonsitepoveriatobeaccomplxshemanuallyinthecontrolroom.HotiveandcontrolpoverconnectionstotheemergencybusesforthePOPVsandassociated"blockvalvesMillbethroughdevicesqualifiedinaccordancevithsafetygraderequirements.Tnepressurirerlevelindicationinstrumentchannelsm.llbepoveredfromvitalinstrumentbuses,suppliedfromeitheroffsitepoverortheemergencyposersource(Mhenoffoitepoverisnotavailable).ThePORV'sarepoweredfrom125VDCsafetybusses2Aand.2Bandareavailablecontinously.ThePORVblockvalvesarepoweredfromsafetyrelated480VACmotorcontrolcenterswhicharepoweredthroughtheonsitedistributionsytern.Uponlossofoffsitepowerthedieselgeneratorisstartedandpowerstheonsitesystem.(refertosection8-3)Therefore,thePORVblockvalvesreceivereliablepowerintheevent,,theyarerequiredtooperateduringalossofoffsitepower.ThedescriptiongftheoperationofthePORVandPORVBlockValvesisfoundinFSAR~%ection5.2.6.Thetwosafetyrelatedpressurizerlevelinstrumentationchannelsarepoweredfromthesafetyrelated120VACmotorcontrolcenterswhicharepoweredthroughtheonsitedistributionsystem.Uponlossofoffsitepowerthedieselgeneratorsarestartedandpowerstheonsitesystem(refertoSection8.3).Thecontrolwiringdiagrams(B327Sheets90,370,395,649and658)aresubmittedtotheNRC(refertoSection1.7).2.3 XEBQLLETINSOHNEASURESTOMITIGATESHALLBREWS,LOCASANDLOSSOFFEEWATERACCIDENTSi.-~PertherequirementsofHUREG-0737,onlyt~concernsunderthisitem(II.K.1)areappicae1cabletoStLucieUnit2.Theseconcerns,asaddressedbelow,areandItems7and9fromXEBulletin79-06B,"ReviewofOperationalErrorsanSystemsHisalignment>IdentifiedDuringIhcThreeNileXslandIncident"(April14~1979).XtemXZ.K.1.5"REUXEt4ESFVALVESAllsafety-related,valvep'ositions,positioning,requirements,andpositivecontrolswerereviewed,anddocumentedinTable1.9A-l,toassurethatvalvesremainpositioned(openorclosed)inamannertoensuretheproperoperationof.engineeredsafetyfeatures.Theprovisionofcompletedisplayofinstrumentationisanintegralpartofthedesign'ofsystemsrequiredforsafeshutdownandaccidentmitigation.Ama)orcomponentofthedisplayinformationprovidedinthecontrolroomispositionindicationforvalvesandHVACdampers.Table1.9A-llistsallactivevalvesanddampcrsthatmayberequiredtooperatetoachievesafeshutdownormitigatetheconsequencesofanaccident.Formostvalvesanddamperspositionindicatinglightsareprovidedoncontrol'panelsinthecontrolroom.Forallothervalvesanddamperswhosefailuremighthaveadverseconsequences,sufficientinformationisava'ilableforpositiondeterminationinthecontrolroom(refertoTable1.9A-1).Therelated.proceduresformaintenance,testing,plantandsystemstart-upsadsupervisoryperiodicsurveillancerequirethatthesevalvesarexeturnedtotheircorrectpositionsfollowingnecessarymanipulationandaremaintained'intheir'roperpositionduringalloperationalmodes.Theseprocedureshavebeendevelopedinresponsetothis1'RREG-0737requirement.forSt.LucieUnit1(DocketNo.50-335)'ndwillalsobeapplicabletoSt.LucieUnit2.Revisedsection13.5.1.3addressestheseprocedures.TrainingintheuseoftheseproceduresisaddressedintheprogramsdescribedinrevisedSections13.2.1.1.1and13.2.1.1.2.XtemXI.K.1.10-0erabilitStatusPPRLprogramsinresponsetothisrequirementhavebeendevelopedfoxSt.LucieUnit1(DocketNo.50-335)andwillalsobeapplicab'letoSt.'LucieUnit2.AsindicatedinNUREG0660(notclarifiedbyNUREG0737)forunitsapplyingforoperatinglicenses,thisitemisaddressedinI.D.2andI.C.6above.
n%IL82.N:2.33THERMALMECHANICALREPORT-EFFECTOFHIGHPRESSURE'FPElisparticipatinginC-EOwnersGroupgenericeffortstoevaluatetheeffectofhighpressuresafetyinjectiononreactorvesselintegrityinresponsetoitemII.K.2.13ofNUREG-0737.FP8Lwillsubmitthere-quiredreportby.theendofthesecondquarterof1982.iI.$'~t','
'T1.K.2.17PotentialForVoidinInTheReactorCoolantSstemDurinTransients:DescriptionInordertopreventvoidingintheReactorCoolantSystemduringnormaloperationStLucieunit2operatingproceduresarewrittentoprovideacooldownrateof50F/hourto325Fandthenmaintainhotlegtemperatureat325Ffor20.40hours.Thiswillallowshutdowncoolingpressuretobereachedwithoutflashingoftheupperheadfluidinatotalcooldowntimeof25.7hours.FloridaPowerandLight.analysistosupportthisprocedureisprovidedinApendix5.2aIn"the"eventavoidformationisidentifiedintheReactor'oolantSystemtheoperatorsaretrainedtoimplementa",DrainandFill"proceduretomitigatevoiding.TheNSSSvendorhascompletedanextensiveanalysisofvoidingintheReactorCoolantSystem.Theresultsshowthatrapidrefill,anddrainofthereactorvesselheaddoesnot,causestresslevelsinexcessofthoseoccuringduringanormalcooldownat,100F/hour.TheresultsofthisanalysistosupportthisprocedureisprovidedinApendix5.2C-gWr+of~Cpgrn,~gy~-fc:.('l.aO'O~V,c-geeJ~~ae~J'~.,'). SEUENTIALAUXILIARYFEEDMATERFLOllANALYSIS I II.K.3.1-INSTALLLATIONANOTESTINGOFAUTOMATICFORVISOLAT10llSYSTBSII.K.3.2-REPORTOHOVERALLSAFETYFFFECTOFPORYISOLATIONSYSTEMFP+LhasparticipatedinC-EOwnersGroupactivitiesconductedsincetheThreeMileIslandaccidenttoaddressvariousaspectsofPORVdesignandoper-ation.TheseactivitieshaveincludedreviewofoperatingexperiencewithPORV'sonC-Ereactors,developmentofinputtotheEPRIprogramfortesting~~thesevalves,reviewofrequirementsforemergencypower'othePORYsandtheassociatedblockvalves,developmentofarecommendationforPORVpositionin-dication,reviewandupdatingofemergencyprocedureguidelinestoassurePORYoperationisadequatelyaddressed,anddevelopmentofassociatedoperatortraining'aterials.TherequirementsofActionPlanItemII.K.3.2havealsobeenalsobeenaddressedasaC-EOwnersGroupactivity(CEN-145,PORVFAILUREREDUCTIONMETHODS).IthasbeenconcludedbasedontheC-EOwnersGroupactivitiesthattheadditionofanautomatic"PORVisolationsystemonSt.LucieUnit2tofurtherdecreasetheprobability'ofasmall-breakloss-of-coolantaccidentcausedbyastuck-openPORVisnotnecessary.Thisconclusionisbasedonthefollowingconsiderations."FirNst,thedesi'gn'ofthePORYactuationlogicissuchthatthevalvesareonlyactuatedcoiAcidentwiththehighpressurizerpressuretripofthereactor.hePORVsarenotused'priortotheReactorProtectionSystemactuationinanattempt'toavoidthereactortrip.Thus,challengestothePORVsarereducedbecausethemarginbetweenthenormaloperatingpressureandthehighpressurereactor~~tripismaximized.Thesuccessofthisdesignapproachisev>dentbasedontheoperatingexperiencecompi'ledtodatewhichhasonlynineteenchallengestothepuff
PORYsin29reactor-yearsofoperationonC-Eplants(datafromarecentsurveyoftheC-EOwnersGroup).Itshouldbenotedthatelevenofthesenineteenchallengeswerecausedbyatrubinerunbackfeaturewhichhasbeenremoved.ThePORYssuccessfullyreclosedineachcasewheretheywerechal1enged.ThesecondconsiderationfornotneedinganautomaticPORYisolationsystemisthat'various.actionshavebeentakenwhichsignificantlyimprovethere-liabilityofthePORVsandassociatedblockvalves.Theeliminationoftheturbinerunbackfeaturementionedpreviously,andtheprovisionofadirectreliablemeansforindicattngPORVpositiontotheoperatorreducetherecurrencefrequencyofasmallbreak-LOCAduetoPORYfailurebyanestimatedfactorof15.Improvedoperatortrainingprograms,improvedemergency~.procedures,'n'd'theprovisionofemergencypowertothePORVsandblockvalvesreducethesmallbreakLOCArecurrencefrequencyfurtheralthoughtheexactmagnitudehasnotbeenquantified.ThefinalconsiderationfornotneedinganautomaticPORYisolationsystemisthattherecurrencefrequencyofasmallbreakLOCAduetoPORVfailurehasbeensubstantiallyreducedbytheactionsmentionedpreviouslytoanestimatedvaluewhichfallswellwithintheuncertaintybandoftherecurrencefrequenciesfora"LOCAduetoasmallpiperuptureestimatedinHASH-1400.Thus,therecurrencefrequencyisnowatanacceptablylowvalue.Theincor-porationofanautomaticPORYisolationsystemvtouldfurtherincreasePORYsystemreliability.However,thisactionisnotconsideredtobenecessarysincetherecurrencefrequencyofPORYsystemfailureswithoutthisfeatureissmall. 8 ItemII.K.3.3-RertinSafetValvea'ndPORVFailuresandChallenesFP&LvillassurethatanyfailureofaPORVorsafetyvalvetoclose>6llbereportedtotheHRCpromptly.AllchallengestothePORV'sorsafetyvalvesvillbedocumentedintheannualrcport.ItemEI.K".3.5-AutomaticTriofReactorCoolantPumsDurinaLOCAAsanactivityfortheC"EOMner'sGroup,Comb'ustionEngineeringispreparingpredictionsoftheLOFTTestL3-6.Becauseoftheimportanceof,thosetests,C"EconcurswiththeBRCpositionprovidedintheclarificationtothisActionItemandvilldeferafinaldecisiononimplementationofautomatictripofreactorcoolantpumpsuntiltheevaluationofECCmodelsiscompleted. n II.K.3.17REPORTONOUTAGESOFEMERGENCYCORE-COOLINGSYSTEMSLICENSEEREPORTANDPROPOSEDTECHNICALSPECIFICATIONCHANGES,Adetailedreportwillbesubmittedincludingtheoutagedatesandlengthofoutagesf'rallECCsystemsforfive(5)yearsofoperation.Thedeterminedcausesoftheoutageswillalsobeincludedinthereport.TheECCsystemsorcomponentsinvolvedintheoutage,andcorrectiveactionwillalsobeidentified.'estandmaintenanceoutageswillbeincludedintheabovelistingcoveringfiveyearsofoperation.Anyproposedchangestoimprovetheavailability~ofECCequipmentifneededwillalsobeincludedinthereport.AttheendoffiveyearsofplantoperationforSt.LucieUnit2necessarydatawillbederivedfromtheplantoperator'slogbook,equipmentmalfunctionlogandthelicenseeventreports(LERS).f~L-E.~I4'IiLt~~II'
)ILSESEFFECTOFLOSSOFACPOINTEROIIPUIIPSEALSFPSLhasconductedatestofRCPsealsundersimulatedlossofacpowerconditionsoffulltemperatureandpressure.Afterapproximately50hoursatcoolantconditionsof550oFand2250psig,theRCPsealcartridgestillperformedsatisfactorilywiththe.pumpidle.Somesealdamagewasobservedduringthe'post-testinspection;however,themaximumsealleakageduringthetestwasonly16gph(
Reference:
FPELletterL-81-107,March10,1981),'32-II.K.3.30REVISEDSHALLBREAKLOCAMETHODSTOSHO'l4COMPLIANCEWITHIDCFRPART50,APPENDIXKIThesmallbreakLOCAmodelsusedintheSt.LucieUni'.t2FSARanalysesaredescribedinCENPD-137,"CalculativeMethodsfortheC-ESmallBreakEvaluationModel"FollowingtheTMIaccidenttheC-EOwnersGroupsubmittedtworeports,'EN-114-PandCEN-115-PinresponsetoNRCrequests'inIE.Bulletins79-06Band79-06C.FollowingareviewofthesereportsandsimilarreportsfromothervendorstheNRCissueterequiremen)RCdthequirementIIK.3.30inNUREG-0737.FPSLhasbeenactivelyparticipatingintheC-EOwnersGroupeffortstoprovidethejusti-ficationofthecurrentsmallbreakLOCAmodelssincethatrequirementwasissued.Todate,theC-EOwnersGrouphassubmittedananalysisoftheLOFTSmallBreakexperimentL3-6.andhasmetwiththeNRConJanuary6,1981to.de-finetheNRCconcernswiththemodelsinuse.TheconcernsexpressedatthattQomeetingarecurrentlybeingaddressedasresponsetoactionitemII.K.3.*andtherequiredreportjustifyingthepresentmodelwillbesubmittedduringthefirstquarterof1982.33P~~/'"/~t
JI.K.3.3lPLANTSPECIFICCALCULATIONSTOSHOWCOHPLIANCEWITH20CFRPART50.46UponcompletionofsatisfyingitemII.K.3.30ofNVREG-0737-(~e-response~o-question-440;-36)-,adeterminationastotheadequacyofthepresentsmallbreakLOCAmodelwillbemade.Ifitisfoundasaresultofthatdetermin-ationthatarevisedsmallbreakLOCAmodelisnecessaryandthepresentlyZJp3ttt3113I'.LOCA1t)316.3.3.3~)13Qlvalid,arevisedsmallbreakECCSanalysis,applicabletoSt.LucieUnit2,willbesubmittedwithinoneyearafterstaffapprovaloftherevisedsmallbreakLOCAmodel. t0 III.A.1.1UPGRADEEMERGEHCXPREPAREDHESSTheSt.LuciePlantEmergencyPlandiscussedin'Section13.3hasbeenmodifiedtoincorporatetherequirementsofthistask.WIII.A.1.2UPGRADEEHERGENCXSUPPORTFACILITIESFPhLprogramsinresponsetothisrequirementhavebeenorarebeingdevelopedforSt.LucieUnit1.{DocketNo.50-335)andvillalsobeapplicabletoSt.LucieUnit2a)FP&Lhasdesignatedspaceforajointonsitetechnicalsupportcenter{TSC)adjacenttotheSt.LucieUnit1controlroom.AUnit1PlantProcedurehasbeenapprovedvhichdelineatestheactivation,manninganduseoftheTSCduringemergencies.TheEmergencyPlanhasbeenrevisedtoreflecttheexistenceofthisfacilityandtoestablish'themethodsandlinesofcommunication.c)FP6Lhasdesignatedanareaasthejointonsiteoperationalsupportcenter.TheEmergencyPlanhasbeenrevisedtoreflecttheexistenceofthiscenterandtoestablishthemethodsandlinesofcommunication.FP&Lhasdesignatedanareaasthejointemergencyoperationsfacility-TheEmergencyPlanhasbeenrevisedtoreflecttheexistenceofthisfacility. J TheTSCwillbelocatedin1929squarefootroomadjacenttothecontrolroom,gksksandofficespacewillbeprovidedfortheNRC,andsanitaryfacilitieswillbeavailable.TelephonecommunicationsystemisprovidedinbetweentheTSC,controlroomandEmergencyOperationsFacility{EOF)togetherwiththededicatedtelephonelinkwiththeNRCasdescribedinsubsection9.5.2.TheSafetyAssessmen'tSystem(seeItemI.D.2inAppendix1.9A)willprovidetheSafetyParameterDisplaySystem(SPDS)displayandothertechnicaldatadisplayrequiredintheTSC.TheTSCwillhaveatleasttwocolorCRT's,adataloggerandaconsole.TheequipmentshallreceivedataneededintheTSCtoanalyzeplantconditionswithoutinterruptingtheplantoperation.ItwillbpossibletoaccessRegulatoryGuide1.97inputdataandthehighleveldisplay(SPDS)inallmodesofoperation.TheoperationoftheTSCequipmentwillnotdegradeperformanceofanySafetySystemequipmentordisplays.Thequalityandac-curacyoftheinstrumentsusedwillbeofthesamede'signasusedforSPDSintheControlRoom.Theoverallsystemrelia-bilitycol/bedesignedtoachieveanunavailabilitygoalof0.01duringalloperationsabovecoldshutdown.DatadisplaysystemandprintoutdevicesvillbeadequatetoprovideTSCpersonnelunhinderedaccesstosufficientdatatoperformtheirassignedtasks.The'TSCdisplaywillincludeplantsystemvariables,radiologicalvariables,meterologicalinformationandoffsiteradiologicalinformation.Trendgraphandtimehistorycapabilitywillbeprovided.Aconceptual'esignfortheTSCpowersupplyispresentlybeingdeveloped.Thereareseveralpossiblepowersourcesbeingcon-sideredbutthefinaldecisionhasnotbeenmadeatthistime.Theintent.ofrequirementssetforthinNUREG0696willbemet.ZlA.l<>Q~s4Qp~D(~Syp~l-('~J-~C>~)Theon-siteOperationalSupportCenter{OSC)'ervesasanassemblypointforauxiliaryoperators,healthphysicstechni-cians,maintenancepersonnel,andotherplantshiftpersonnelavailabletosupporttheemergencyresponse.RequiredstaffwillbeassignedtoappropriateactivitiesbytheEmergencyCoordinatororhisdesignee.ActivationoftheOSCwillbeinitiatedbytheEmergencyCoordi-'ator.TheOSCwillbeinoperationforanAlert,SiteAreaEmergencyorGeneralEmergency.TheOSCismaintainedinthefirstfloormaintenanceareaoftheServiceBuilding.PAXtelephonecommunicationsaremaintainedbetweentheControlRoomandtheOSC.
TheEOFwillbelocatedina2500squarefoot,areaadjacenttobutseparatefromthecafeteriaintheGeneralOfficeinMiami.Thisareacanbeisolatedfromothercompanyoperationsandthepublic.TheRecoveryManagerwillcommandtheEOFandwhennotifiedbytheRecoveryManager,designatedmanagerswithresponsibilityforthefollowingfunctionalareaswilleitherbestationedorrepresentedintheEOF!OperationsEngineeringRadwasteHealthPhysicsPersonnelSecurityNuclearAnalysis,SchedulingProcurementAccountingAdministrationLicensingState-CountyCoordinationInaddition,publicinformationandgovernmentalaffairsmanagerswillberepresented.DeskspacewillalsobeprovidedforStateofFloridaandNRCrepresentativesintheEOFandadjacentprivateofficesaresetasidefortheirexclusiveuse.,PowertotheGeneralOfficeBuildingisnormallysuppliedfromtheFPLdistributionsystem.Ifpowerisnotavailablefromthedistributionsystem,powerisfurnishedbystandbygasturbineswhicharecapableofsupplyingalltheEOF'srequirements.('c/cnjD2<$lip(~C'wlTheSafetyAssessmentSystemwillbecapableoftransmittingalltheTSCdataandmeteorologicaldatatotheEOF.TheEOF~i>lbeprovidedwithfacilitiesfordataacquisition,displayandevaluationofradiological,meterologicalandplantdatatodetermineoffsiteprotectivemeasures.ItwillhavealltheSPDSfunctions,andallotherdataavailableintheTechnicalSupportCenter.An.areainclearviewofthedatadisplayswillbesetasidewithaconferencetablesothatprogressoftheaccidentcanbeob-served,discussionheld,,andrapiddecision'smade. S EOFCommunicationsTheGeneralOfficetelephonesystemisaCentrexexchange.Ex-clusivetielinesareprovidedtodivisionoffices,powerplantsandtheJunoBeachFacility.Inaddition,dedicatedprivatetelephonelinesareprovidedtoeachTSC,ControlRoomandPlantManager'soffice.\ThreeCRTdisplaysofplantparameterswillbeavailableintheEOF.Computerterminals,teletypeand'facsimileequipmentandaccesstothe'.StateLGRandHRSradionetworkswillalsobeprovided.Xnaddition,theprivateofficethathasbeensetasideforth'eNRCwillhavetelephonecommunicationsspecifiedbytheNRCstaffaswellasnormalBelltelephoneservice.TheFPLGeneralOfficeCommunicationCenterisneartheEOFandhascapabilitiesforTNX,FacsimileandFPLTelenet.Itwillbemanned24hoursperdayduringanemergency.SatelliteEmerencyOperationsFacilityInmid-l982,theProjectManagement,Engineering,andConstructiondepartmentswillberelocatedtoanewfacilityatJunoBeach,Florida.TheJunoBeachfacilitywillalsoserveasacorporatetrainingcenter.OneofthetrainingroomsintheJunoBeachfacilitywillbearrangedtopermitrapidconversiontoaSatelliteEmergencyOperationFacility(SEOF).Thisroomhasabout790squarefeet.DatadisplayswillbeprovidedandtheSEOFwillbestaffedbyengineeringandconstructionpersonnelrequiredtoassistintheaccidentdiagnosis,managementandrecovery.AnadjacentroomhasbeensetasidefortheNRC.ByconveningtechnicalpersonnelattheJunoBeachSEOFratherthaneitherplantsiteortheGeneralOffice,mobilizationtimewillbereducedfromseveralhourstoaboutonehour.Anemergencygeneratorwillprovideessentialservicesintheeventoflossofnormalpower.XII.'A.3.3COHMUNICATIONSDirectdedicatedtelephonelinesforNRCnotificationandenvironmentalnotificationvillbeinstalledsimilartothosealreadyinstalledonSt.LucieUnitl.pic.<~nmu~t~gewspk~lsg<c~'bgd4$45cc.froTheEmergencyProceduresvillberevisedtoreflecttheseadditions. 0 INTEGRITYOFSYSTEHSOUTSIDECONTAINHENT.LIKELYTOCONTAINRADIOACTIVEMATERIALIntheunlikelyeventofanaccident,theContainmentIsolationActuationSignal(CXAS)isolatesallnonessentialsystems,therebyeliminatingalllargeradioactiveleakagepathsfromcontainment.TheonlymeansofleakageintotheReactorAuxiliaryBuildingisthroughESFsystem'omponents(i.e.,pumpseals,valveleakage,etc.)andpostaccidentmonitoringsamplelines.LiquidleakagescollectedintheECCSroomsumpsarenormallyroutedt'otheequipmentdraintankintheWasteHanagementSystem(WMS).ThenormaloperationalmodeoftheECCSroomsumppumpshasnotbeenmodified.Onhighsumpwaterlevelthepumpsdischargetotheequipmentdraintank.TopreventradioactivecontaminantsfromenteringtheWHS,theESFLeakageCollectionandReturnSystem(seeSubsection'9.3.5)providesoperatorswithamethodtodirectESFleakagetothecontainment.Thissystemeliminateshignlyradioactiveliquidfromenteringnormally"Lowactivity"wastehold-uptanks.likewise,allsourcesofhighactivitysamplegas(e.g.,hydrogensampling)arere-routedtothecontainment,thuseliminatingcontaminationoftheWasteGasSystem.TheabovedescribeddesignprecludestheuseofLiquidandGaseousWasteManage-mentSystemsduringanunlikelyeventofanaccident.Thefollowingsystemscontainhighactivityfluidduringapostulatedaccident:1)ShutdownCooling,System2)HighPressureSafetyInjection(RecirculationPhase)3)ContainmentSpray(RecirculationPhase)4)SamplingSystemplyl)Il~Ir,'r5)ShieldBuildingVentilationSystem~C~i<""~~:.c"---d~(A.t.6)ECCSAreaVentilationSystem.Forthesesystemsabaselineleaktestisimplementedforthepurposeofestablishingminimumleakagerequirementsforthepreventivemaintenanceprogram.ThisbaselinesystemleakratetestisdescribedinSubsection14.2.12.4NandisconductedincoordinationwithsystempreoperationaltestingasdescribedinSection14.2.Periodicintegratedleaktesting,atintervalsnottoexceedeachrefuelingcycleisestablished.Amethodisprovidedtocompareyearlyleaktestresultswiththebaselineteststaken.Aprogramisestablishedtoevaluateyearlyresultsandinitiateleakagereductionmeasuresforthepreventivemaintenanceprogram.III.D.3.3InPlantRadiationHonitorinFP&LprogramsinresponsetothisrequirementhavebeendevelopedforSt.LucieUnit,1(DocketNo.50-335)andwillalsobeapplicabletoSt.LucieUnit2.TheHealthPhysicspioceduresaddressdetailedradioiodineassessment.ThesearegenerallydescribedinSectiont12.5.3.Trainingisanintegralpartofthenon-licensedtrainingprogramdiscussedinSection13.2.1.1.2. III.D".3.4CONTROLROOM.HABITABILITYPotentialhazardsin'hevicinityofthesitehavebeenidentifiedandevalu"atedtoconfirmthatoperatorsinthecontrolroomareadequatelyprotected(refertoSection2.2).Inaddition,'radioactivereleaseshavebeenanalyzedfortheireffectsoncontrolroomoperators(refertoSection6.4).LiquidsourcetermsfromwithintheReactor'uxilaryBuilding,althoughnotfactoredintothedoseratetotheoperatorspresentedinSection6.4,wouldhaveinsignificantimpactintermsofdosesbecausethecontrolroomitselfislocatedontopoftheReactor-AuxiliaryBuildingandiswellseparatedfromliquidsourceterms.
SL2<<FSARREFERENCES-APPENDIX1.9A(~Deleted2.Deleted3.LettersfromH.R.Denton,NRC,toAllPowerReactorApplicantsandLicensees,
Subject:
QualificationsofReactorOperators,datedMarch28,1980.4.CEN-114,"ReviewofSmallBreakTransientsinCombustionEngineering'NuclearSteamSupplySystems",'proprietary)CombustionEngineering,July,1979.5.CEN-115,"ResponsetoNRCIEBulletin79-06C,Items2and3forCombustionEngineeringNuclearSteamSupplySystem",(proprietary)CombustionEngineering,August,1979.6.LetterfromD.F.RossJr,NRC,toG.E.Leibler,FloridaPower6LightCompany,datedNovember14,1979.7~CEN-117,"InadequateCoreCooling-AResponsetoNRCIEBulletin79-06C,ItemsforCombustionEngineeringNuclearSteamSupplySystems",CombustionEngineering,October,1979.CEN-128,"ResponseofCombustionEngineeringNuclearSteamSupplySystemstoTransients'andAccidents",CombustionEngineeringyVolumes1and2,April1980.U.S.NuclearRegulatoryCommission,"TMI-2LessonsLearnedTaskForceStatusReport.andShort-TermRecommendations,"USNRCReportNUREG"0578,July1979.10.CEN-125,"InputforResponsetoNRCLessonsLearnedRequirementsforCombustionEngineeringNuclearSteamSupplySystems,"CombustionEngineering,December1979.LetterfromH.R.Denton,NRC,toAllOperatingNuclearPowerPlants,
Subject:
DiscussionofLessonsLearnedShort-TermRequirements,datedOctober30,1979.12..LetterfromD.F.RossJr,NRC,toAllPendingOperatingLicenseApplicantsofNuclearSteam,SupplySystemsDesignedbyWestinghouseandCombustionEngineering,
Subject:
ActionsRequiredfromOperatingLicenseApplicantsofNuclearSteamSupply.SystemsDesignedbyWesting-houseandCombustionEngineeringResultingfromtheNRCBulletinsandOrdersTaskForceReviewRegardingtheThreeMileIslandUnit2acci-dent,datedMarch10,.1980.'3.U.S.NuclearRegulatoryCommission,"ClarificationofTHIActionPlanRequirements"USNRCReportNUREG"0737,October,1980.AmendmentNo.1,(4/81) APPENDIX1.98ST.LUCIEUNIT2RgbRESPONSEToINADE)UATE'8E.:":-'LINGITEN:.I'.F.2.'5EG-0737~.'i'~4Q:P~JULY,1981lQ~
TABLEOFCONTENTSSECTIONTITLEPAGE'~0INTRODUCTIOH1.1PURPOSE1.2SCOPE1.3BACKGROUND1.98-11.98-11.98-11.98-12.0BASESFORSELECTIONOFICCI2.1DESCRIPTIONOFICCPROGRESSION2.2ADVANCEDWARNINGOFTHEAPPROACHTOICC2.3APPLICATIONOFFP8ILDETECTIONSYSTEM2.4INSTRUMENTRANGE1.98-31.98"31.98"41.98-51.98-53.0INADEQUATECORECOOLINGINSTRUMENTATION3,1SENSORDESIGN3.2DESCRIPTIONOFICCIPROCESSINGAHDDISPLAY1.98-71.98-71.98-74.0SYSTEMFUNCTIONAl.DESCRIPTION4.1SUBCOOLIHGANDSATURATIOH4.2COOLANTINVENTORYMEASUREMENTINREACTORVESSEL.4.3COREEXITSTEAtlTEMPERATURE'..."-8-211..98-211.98-221.98-235.0SYSTEMQUALIFICATIOH1.98-246.0SYSTEMVERIFICATIONTESTING6.1RTDANDPRESSURIZERPRESSURESENSORS6.2HJTCSYSTEMSENSORSANDPROCESSING6.3COREEXITTHERt%COUPIES1.98-251.98-251.98-261.98-287.08.0OPERATINGINSTRUCTIONSCOMPARISONOFDOCUMENTATIONREQUIREHEHTS1.98-291.9830 0 SECTIONTITLEPAGEOFPOSITIONII.F.2,ATTACHt)EttT1ANDAPPENDIXBWITHSTATUSREPORT.9.0SCHEDULEFORICCINSTRUMENTATION1.9B-35INSTALLATION10.0OPERATIONWITHIt<TERIt'1ICCINSTRUt1ENTATION1.98-35
11.0REFERENCES
1.9B-37 LISTOFAPPENDICESAPPENDIXTITLEAEvaluationofInstrumentationforDetection~ofInadequateCoreCoolingSaturationMarginMonitorCHeatedJunctionThermocoupleSystemDCoreExitThermocoupleSystem 1.98-
11.0INTRODUCTION
1.1PURPOSEThisdocumentprovidestheFPELpartialresponsetotherequirementsofSectionII.F.2ofNUREG-0737'Reference1)regardingthedocumentationoftheFPSLSt.Lucie2instrumentationfordetectionofInadequateCoreCooling(ICC).1.2SCOPEThisreport(1)identifiestheinstrumentsensorpackageselectedbyFP8LtodetectICCinSt.Lucie2and(2)describesthestatusof.designanddevelopmentactivitiesbeingconductedbyFPGL,toimplementtheinstrumentationtobeusedtodetectinadequatecorecooling(ICC).1.3BACVGROUNDC-"EOwnersGroupeffortsontheevaluationofInadequateCoreCoolinghavebeenongoingsinceearly1979.ResultsofinitialstudiesbytheC-EOwnersGroupar'edocumentedin,reportsCEN-117(Reference2)andCEN-125(Reference3).TheseresultsarebeingconsideredinthepreparationoftheemergencyoperatinginstructionswhichFPSLwilltransmittotheNRC.Allstudieshavebeenbasedontherequirementstoindicatetheapproach:to,theexistenceof,andtherecoveryfromICC.TheC-EOwners'roup(withFP8Lparticipation)hasperformedanevaluationofresponsecharacteristicsofpotentialInadequateCoreCooling(ICC)detectioninstrumentation.Thisstudyis,in'art,anam-plificationoftheworkreportedinCEN-117inthatitprovideddetailedanalysesoftheexistinginstruments,aswellas,investigatingtheper-formancecharacteristicsofselectednewinstruments.Specifically,theinstrumentswhoseresponsecharacteristicshavebeenevaluatedarethesubcooledmarginmonitor,theheatedjunctionthermocouplereactorvessellevelmonitor,core-exitthermocouples,in-core.thermocouples,selfpoweredneutrondetectors,hotlegresistancetemperaturedetectorsandex-core
1.98-2Ineutrondetectors.AsummaryofthedetailsofthiseffortiscontainedinAppendixA.Basedontheresultsoftheaboveinstrumentevaluationstudy,FP&LhasselectedanInadequate@reCoolingInstrumentation(ICCI)packageforuseinSt.Lucie2,consistingof:1)hotandcoldlegRsistanceTemperatureDtectors(RTDs)2)pressurizerpressuresensors3)CoreExitIhermocouples(CETs)4)ReactorVesselLevelMonitoringSystem(RVLflS)probesemployingtheHeatedJunctionThermocouple(HJTC)conceptFPRLisintheprocessof'valuatingappropriatetransmission,processinganddisplayhardwareforusewiththeaboveICCsensorpackage.Thishardwarewill~atisfythelicensingrequirementsofSectionII.F.2ofNUREG-0737.'
$.0BASESFORICCINSTRUt1ENTSELECTIONTheICCinstrumentationsensorpackageselectedbyFPSLisdesignedto;1)providetheoperatorwithanadvancedwarningoftheapproachtoICC2)coverthefullrangeofICCfromnormaloperationtocompletecoreuncoveryTheICCdetectionsystemthatemploystheFP8LsensorpackageanddisplaysthesensoroutputenablesthereactoroperatortomonitorsystemconditionsassociatedwiththeapproachtoandtherecoveryfromICC.2.1DESCRIPTIONOFICCPROGRESSIONTheinstrumentsensorpackageforICC-detectionprovidesthereactoroperatoracontinuousindicationoftheprogressionleadingtoandawayfromICC~Toensuretheselectedinstrumentpackageprovidessuchcoverage,amethodicalpresen-tationoftheconditionsleadingtoandawayfromICCisdeveloped.Inthisdevelopment,theprogressiontowardsandawayfromICCisdividedintoconditionsbasedonphysicalprocessesoccurringwithintheRPV.SixdistinctICCcondi-tionsareidentified.Thesearecharacterizedasfollows:'onditionsAssociatedwiththeApproachtoICCCo.~itionlaLossnffluidsubcoolinaoriortot.';efirstoccurrenceofsatur-.-tionconditionsinthecoolant.Condition2aFal'lingcoolantinventorywithintheupperplenum,from.thetopofthevesseltothetopoftheactivefuel.Condition3a'ncreasingcoreexittemperatureproducedbyuncoveryofthecoreresultingfromthedropinlevelofthemixtureofvaporbubblesandliquidfromthetopoftheactivefueltotheminimumlevelduringtheevent.ConditionsAssociatedwithRecoverfromICCCondition3bDecreasingcoreexitsteamtempeartureresultingfromtherisingoftheleveltothetopoftheactivefuelCondition2bVesselfillbytheincreaseininventoryabovethefuel.ConditionlbEstablishmentofsaturationconditionsfollowedbyanincreaseinfluidsubcooling.Theseconditions,encompassallpossiblecoolantsituationsassociatedwithanyICCeventprogression.Theconditionsdenotedwithan"a"refertofluidsituationsthatoccurduringtheapproachtoICC.Conditions"denotedbya"b"refertofluidsituationswhichoccurduringtherecoveryfromICC.Thus,"a"conditionsdifferfrom"b"conditionsinthetrending(direc-tionalbehavior)'oftheassociatedparameters.
~~l.s~.-o'reroressionofanevent,anICCIiiordertoprovideindicatorsduringtheentirepg"ichrovideatleastoneappropriateinstrumentsystemconsistsofinstrumentswhicipindicatorforeachofthephysicalConditionsdescribedabove.fIIApplyingthisdescriptionofthe"approachto",and"recoveryfromICCtoICCinstrumentselection:1)providesassurancethattheselectedICCsystemdetectstheentireprogression2)demonstratestheextentofinstrumentdiversityorredundancywhichispossiblewiththeavailableinstruments.Furthermore,bydefiningtheICCprogressiononaphysicalbasisthegenerallabelsof"approachto",and"recoveryfrom"ICCcannowbeassociatedwithspecificphysicallymeasurableprocesses.(SeeSection2.2,.22.3and2.4).TheinstrumentpackageselectedbyFP&Ltomonitor.theICCeventprogressioncon-sistsof(1)saturationmarginmonitors(SMM),{2)reactorvessellevelmoni-torsemployingtheHJTCdesignconceptand(3)coreexi.tthermocouples.TheSMMscanindicatetheinitialoccurrenceofsaturation(Conditionla)andtheachievementofasubcooledconditionfollowingcorerecovery{Conditionlb).Thereactorvessellevelmonitorsprovidesinformationtotheoperatoronthedecreasingliquidinventoryinthereactorpressurevessel(RPV)regionsabovethefuelalignmentplate(FAP),aswellastheincreasingRPYliquidinventoryabovetheFAPfollowingcorerecovery(Conditions2aandZb).Thecoreexitthermocouples(CETs)monitortheincreasingsteamtemperaturesassociatedwithICCandthedecreasingsteamtemperaturesassociatedwithrecoveryfromICC(Conditions3aand3b).2.2AOVANCEDWARNINGOFTHEAPPROACHTOICCTheFP&LICCinsttumentationorovidestheooeratorwithanadvancedwarningoftheapproachtoICCbyprovidingindicationsof:1)thelossofsubcoolingandoccurrenceofsaturation(Conditionla)withtheStN.2)theincanfinv~ntnrvinthoR>V(f:ondition2a)withtheRVLHS3)theincreasingcorecoolantexittemperature(Condition3a)withCETsItshouldbenotedthattheRYLNSmeasuresinventory(collapsedliquidlevel)ratherthantwo-phaselevel.Thismeasurementprovidestheoperatorwithanadvancedindicationofthe,coolantlevelshouldconditionsarisetocausethetwo-phasefrothtocollapseviasystemoverpressurization,orthelossofoperatingreactorcoolantpumps.
2.3APPLICATIONOFFP8LICCDETECTIONSYSTEMFollowinganeventleadingtoICCtheFP8LICCdetectionsystemwillprovideinformationtothereactoroperatorsothathemay:l)verifythatthecorecoolingsafetyfunctionisbeingmet,2)establishthepotentialforfissionproductrelease.AccomplishmentofthecorecoolingsafetyfunctionisverifiedviaICCIbyobserving(l)anincreasinginventorylevelabovethefuelalignmentplate,(2)anincreasingsubcoolingintheRPVandRCSpipingor(3)adecreasingcoreexitsteamsuperheat.Theoperatorisinformedabouttheprogressionofaneventbybothstaticandtrenddisplays.ThetrendingofICCinformationenablestheoperatortoquicklyassessthesuccessofautomaticallyormanuallyperformedmitigatingactions'chartindicatingthe,ICCItrendingduringhe"riu>>CCorogressionconditionsassociatedwiththeaoproachtoandrecoveryfromICCispresentedinTable3-l.2.4INSTRUMENTRANGE,FP8LusessaturaiontemperatureandwaterinventoryasindicatorsfortheapproachtoandrecoveryfromICCwhenthereiswaterinventoryabovethefuelalignmentplate.Thesemeasurementscharacterizeconditionsla,lb,2a,and2boftheICCprogression.Whenthetwo-phaselevelisbelowthefuelalignmentplate,themeasurementofcoreexitfluidtemperaturerepresentsadirectindicationoftheapproach.to,andrecoveryfromICC(Conditions3aand3b).Therefore,the.FPSLICCsensorpackageissufficienttoprovideinformationtothe'eactoroperatoro'ntheentireprogressionofaneventwiththepotentialofresultinginICC. TABLE3-1ICCSTATUSASAVAILABLETOTHEOPERATORFROMICCIHSTRUMENTATIOHTRENDINGI..APPROACHIHGAHICCCONDITIONCONDITIONSUBCOOLINGMEA-SUREDBYSMMWATERINVENTORYMEA-SUREDBYHJTCPROBECOOLANTSUPERHEATMEASUREDBYCETla2a3aDECREASINGCONSTANTCOHSTANTCONSTANTDECREASINGCONSTANTCONSTANTCONSTANTINCREASINGII.RECEDIHGFROfjANICCCONDITIONCOHDITIONSUBCOOLIHGMEA-SUREDBYSMMWATERINVENTORYMEA-SUREDBYHJTCPROBECOOLANTSUPERHEATMEASUREDBYCET3b2b1bCONSTANTCONSTANTINCREASIHGCONSTANTINCREASINGCONSTANTDECREASINGCONSTANTCONSTANT 1.98-7.3.0INADEUATECORECOOLINGINSTRUMEHTATIOHDESIGNDESCRIPTIOHThissectiondescribestheFPSLSt.Lucie2InadequateCoreCoolingInstrumentsensorpackage.Associatedsignaltransmission,processinganddisplayhard-wareandsoftwarehavenotyetbeenfinalized.andwillbepresentedinafutureamendment.Thereactorvesselliquidinventoryabovethecoreandthefluidconditionsatvariouslocationsintheprimarysystemwillbemeasuredby:-SaturationMarginMonitors-ReactorVesselLevelMonitors'-CoreexitthermocouplesTheseinstrumentscollectivelyconformtothedesignrequirementspresentedinSction2.0andfunctionalrequirementsofSection4.0.TheSt.Lucie2ICCinstrumentationpackagewillprovidetheoperatorwithindicationsoftheapproachto,existenceofandrecoveryfromICC.'AfunctionaldiagramoftheICCinstrumentpackageispresentedinFigure3-1.Detailedinformationontheassociatedsensorsispresentedinthefollowingsections.3.1SENSORDESIGN3.1.1SATURATIONtQRGIHMONITORINGSYSTEMThesaturationmarginmonitorcanbeusedtoprovideinformationtothereactoroperatoron(1)theapproachtosaturationand(2)existenceofcoreuncovery.ThespecificsaturationmarginmonitordesignconfigurationtobeimplementedbySt.Lucie2isnotyet'inalized.ItisexpectedthattheSt.Lucie2SMMincludesthesameRCStemper'atureandpressureinputsasdescribedinAppendix8plusthemaximumunheatedjunctionthermocoupletemp-erature(UHJTC)describedinSection3.1.2and3.2.2. I 'igur-1ICCDETECTIONINSTRUMENTATIONTCIBT2APZRAA(28CETSPERCHANNEL)CHAN%LAICIDETECTOR~ASSY(56)ICINOZZlE~(101~A(8HJTCSENSORSPERCl(ANNElIIJTCPROBEASSY(2)(CHANNELB~SIMIlAR)STEAhlGEXiRATORho.1PUMP1BPUMP2ASTEAMGENERATORNo.2~}lJTCSENSOR(8PERPROBEASSY)TCIBTll)REACTORVESSELTC2ATl(2TCIATC2CPUMPIAPUMP28PRESSURIZERPZRAPZRBREACTORCOOLANTSYSTEMP(ANVIEVfCET(1PERICI~.DETECTORASSY)XXXXXXXXXXXXXCORECONTAINMENTAUXILIARYBUILDINGREACTORVESSEl.ELEVATION 1~I4 '.98-.9TheUHJTCinputscomefromtheoutputsoftheHJTCSprocessingunits.Insummary,thesensorinputstotheSN'3are:~1nut~RanePressurizerPressureColdLegTemperatureHotLegTemperaturethaximumUHJTClemperature(fromHJTCprocessing)0-3000psia0-710F0-710F100-1800F3.1.2HEATEDJUNCTIONTHERtSCOUPLEHJTCSYSTEilTheHJTCSystemmeasuresreactorcoolantliquidinventoryabovethefuelalignmentplate.withdiscreteHJTCsensorslocatedatdifferentlevelswithin'separatortuberanqinqfromthetoPofthefuelalignmentplatetothereactorvesselhead.Thebasicprincipleofsystemoperationisttiedetectionofatemperaturedifferencebetweenadjacentheatedandunheatedthermocouples.'spicturedinFigure3-2,theHJTCsensorconsistsofaChromel-Alumelthermocouplenearaheater{orheatedjunction)andanotherChromel-Alumelthemocouplepositionedawayfromtheheater(orunheatedjunction).Inafluidwithrelativelygoodheattransferproperties,thetemperaturedifferencebetweentheadjacentthermocouplesissmall.Inafluidwithrelativelypoorheattransferproperties,thetemperaturedifferencebetweenthethermo-couplesis1arge.TheHJTCSystemiscomposedoftwochannelsofHJTCinstruments.EachHJTCinstrumentismanufacturedintoaprobeassembly.Theprobeassemblyincludeseight(8)HJTCsensors,asealplug,andelectricalconnectors(Figure3-3).Theeight(8)HJTCsensorsareelectricallyindependent.Detailsoftheaxialplacementsofthe16HJTCsensorshavenotbeenfinalized.Twodesignfeaturesensureproperoperationunderallthermal-hydraulicconditions.First,eachHJTCisshieldedtoavoidovercoolingduetodirect HEATEDT/CLOCATIONREFERENCET/CLOCATIONHEATERZONESPLASHSHIELDIHJTCSENSOR-HJTClSPLASiiSHIELDFIGURE3-2 ELECTRICALCORHECTORS(ONEPERSENSORISEPARATORTUBE0SEALPLUG8JTCSENSORHEATEDJUNCTIONTHERh'IOCOUPLEPROBEASSEMBLYFIGURE3-3 t/0 1.98-12watercontactduringtwophasefluidconditions.TheHJTCwiththesplashshieldisreferredtoastheHJTCsensor(SeeFigure3-2).Second,astringofHJTCsensorsisenclosedinatubethatseparatestheliquidandgasphasesthatsurroundit.Theseparatortube(SeeFigure3-4)createsacollapsedliquidlevelthattheHJTCsensorsmeasure.Thiscollapsedliquidlevelisdirectlyrelatedtotheaverageliquidfractionofthefluidin,thereactorheadvolumeabovethefuelalignmentplate.Thismodeofdirectin-vesselsensingreducesspuriouseffectsduetopressure,fluidproperties,andnon-homogeneitiesofthefluidmedium.ThestringofHJTCsensorsandtheseparatortubeisreferredtoastheprobeassembly.Theprobeassemblyishousedinastainlesssteelstructurethatprotectsitfromflowloads.Figure3-5showsthetworadiallocationsoftheHJTCprobeassemblies.InstallationarrangementsarebeingdevelopedforSt.Lucie2andwillbeprovidedinafutureamen'chnent.3.1.3COREEXITTHERtSCOUPLECETSYSTEMThecoreexitthermocouplesprovideameasureofcoreheatu'pv'iameasurementofcoreexitsteamtemperature.'hedesignoftheSt.Lucie2In-coreInstrumentation(ICI)systemincludesaTypeK(Ch'romel-Alumel)thermocouplewithineachofthe56ICIdetectorassemblies.Thejunctionofeachthermocoupleislocated~18"abovethetopoftheactivefuelinsideastructurewhichsupportsandshieldstheICIdetectorassemblystringfromflowforcesintheoutletplenumregion.TheseCoreExitThermocouples(CET)monitorthetemperatureofthereactorcoolantasitexitsthefuelassemblies.Figure3-6depictsatypicalICIdetectorassembly,showingtheCET.ThecorelocationsoftheICIdetectorassembliesareshowninFigure3-7AppendixD'escribesthepresentdesignoftheCETsystemwhichwillbeusedforthefirstcycleofSt.LucieUnit2. 1.98-13FIGURE3-4HJTCSEi<SORA((DSEPARATORTUBETCSheathLevelofSteam-';,'atertaixtureSeparatorTubeloaferLevelInsideSe;".arator:uoeCollapsedllaterLevelUnheatedTC~unction-l!.atadTCJurction-SplashGuard I 1.9B-14LEVELDETECTORHOLOEALOCATIONS(2).~eOQoQo00800QoQoQoQQQoQoQoQoQoQoPo000e000220QoQoc>QooOQoQoOoLEVELDETECTORPENETRA'TIONLOCATIONSINICINOZZLESI2)ICINOZZLES1101ORIVEMECHANISMHJTCPROBEASSEMBLYLOCATIONSFIGURE3-5
1.98.-15'ICICOllVECTORNOTABLEli)CORGUIDETUBEEDFTECTORSEALPLUG~COREEXITTHERi')OCOUPLERHODIUIIEIIITTER(~)BACNGROUllDDETECTORCALIBRATIOi)TUBEBULLETHOSETIPFIGUAE3-6ICIDETECTORASSE)SLY
000000ICI=DetectorAssembly/CoreExitcThermocoupleLocationFigure3-7,rICIDETECTORASSE518LIES/COREEXITTHEM/OCOUPLESCOPELOCATIOhS 1.9B-17(heCETshaveausabletemperaturerangefrom200'Ftoupto1800'F(Reference4).3.2DESCRIPTIONOFICCIPROCESSINGANDDISPLAYThefollowingsectionsprovideapreliminarydescriptionoftheprocessinganddisplayfunctionsassociatedwitheachoftheICCdetectioninstruments.AdditionaldetailsonthecompleteICCIsignalprocessing,transmissionanddisplayequipmentwillbemadeavailablehtalaterdate.3.2.1SATURATIONt'lARGINYjONITORTheSNMprocessingequipmentwillperformthefollowingfunctions:1.CalculatethesubcooledmarginThesaturationtemperatureiscalculatedfromtheminimumpressureinputandthesaturationpressureiscalculatedfromthemaximumtemperatureinput(SeeSection3.1).Thetemperaturesubcooledmarginisthedifferencebetweensaturationtemperatureandthemaximumtemperatureinput.Thepres-suresubcooledmarginisthedifferencebetweensaturationpressureandtheminimumpressureinput. -Processsenso>outputsfoidisplayof,temperaturemargintosaturation.-3.Provideanalarmoutputwhensubcooledmarginreachesapreselected(tobedete.mined)setpoint.3.2.2HEATEDJUNCTIONTHERNOCOUPLETheprocessingequipmentfortheHJTCperformsthefollowingfunctions:1.Determine,collapsedliquidlevelabovecore.TheheatedandunheatedthermocouplesintheHJTCareconnectedinsuchawaythatabsoluteanddifferentialtemperaturesignalsareavailable.ThisisshowninFigure3-8.Whenliquidwatersurroundsthethermocouples,theirtemperatureandvoltageoutputareapproximatelyequals.hevoltageY(A),onFigure3-8is,therefore,approximatelyzero.Intheabsenceofliquid,thethermocoupletemperaturesandoutputvoltagesbecomeunequal,causingY(AC)torise.WhenY(C)oftheindividualHJTCrisesaboveapredetermined(A-C)setpoint,liquidinventorydoesnotexistatthisHJTCposition.2:Determine'hemaximumupperplenum/headfluidtemperaturefromtheunheatedthermocouples"foruseasanoutputtotheSNN.(Thetemperatureprocessingrangeisfrom100Fto1800F).3.Processinputsignalstodisplaycollapsedliquidlevelasafunctionoftime,andselectedunheatedjunctionthermoco~i~letemperatures.r4.ProvideanalarmoutputwhenanyoftheHJTCdetectstheabsenceof.liquidlevel.5.ProvidecontrolofheaterpowerforproperHJTCoutputsignallevel.Figure3-9showsthe'designforoneofthetwochannelswhichincludestheheaterpowercontroller. 1.9B-19~~(+)COPPERINCONELCHROhIELALUMELALUMELCOPPERV(A-BIsACTUALTEMPERATUREUNHEATEOJUNCTIONV(C-BI~ACTUALTEhlPERATURE.HEATEOJUNCTIONV(A-C)iOIFFERENTIAI.TEMPERATUREELECTRICALDIAGRAMOFH.J.T.C.FIGURE3-8 1.98-20SENSOR1~THROUGHSENSOR8SIGNALPROCESSORLOGICANOCONTROLSPANElDISPLAYTRENDRECORDERALARi~lPOl4ERPOOVERCONTROLSIGNALHEATPOPOVERCONTROLLERPOV/ERTOHEATERSHJTCSYSTEMPROCESSING,CONFIGURATION(ONECHANNELSHOWN)FIGURE3-9
1.9('-21',2.3COREEXITTHERMOCOUPLESYSTEM'hefollowingconstitutesapreliminarydescriptionoftheCETprocessingfunctions:Processcoreexitthermocoupleinputsfordisplay.utpuwhentemperaturereachesapreselectedvalue.3.ProcessCETsfordisplayofsuperheatdes'requ>rementsofNUREG0737ThesefunctionsareintendedtomeettheesignII.F.2Attachmentel.AfinaldescriptionoftheCETprocessingequipmentwi'llbepresentedinafutureamendment.3.2.4SYSTEMDISPlAYThedisplayequipmentwill(ataminimum)becapableoftrending:(1)TemperaturelarkintoSaturation(2)Collapsedliquidlevel(waterinventory)abovethefuelalignr,entplate'tthrmocoupletemperaturesandsaturationtemperature.(3)Representati,yecoreexieDetailsregar,ii>>.~thetrendingdisplaywillbepresentedinafutureamendment.4".OINSTRUMENTFU(iC'i>.').'L'";<IPIllInthefollow'ingsectionsafunctionaldescriptionoftheinstrumentsoftheICCDetectionSystemisgivenandthefunctionoftheinstrumentsisrelatedtotheICCconditionswhicharedescribedinSection2-1.I4.1'UBCOOLINGANOSATURATIONTheparameters'me'asuredtodetectsubcoolingandsaturationaretheRCSandUHgCcoolanttemperatureandthepressurizerpressure.Temperatureismeasuredinthehotlegsandthevesselupperheadregion.4.1.1INSTRUMENTRANGEANDRESPONSETIMEInordertoincludeallinitialconditionsandICCeventtypes,theinstrumentstodetectinitialsaturationshouldencompasstherangefrom.theshutdowncoolingentryconditions,whicharethelowesttemperatureconditionsforwhichthereactorprimarysystemprovidestheheatremov'alsafetyfunction,uptothesat-urationconditionsatthepressurizersaFetyvalvepressurerating,whicharethe
1.98-22highesttemperatureconditionswhichcanoccurwhilethecoreiscoveredwithcoolant.Theinstrumentresponsetimeshouldbefastenoughsoasnottoloomstordelaythereactoroperatorfromt'akingappropriateactions.Genericanalyses,donetodateshowthatexistingorplannedinstrumentshaveadequaterangeandresponse.r1heinformationwhichisderivedfromthereactorvesseltemperatureandpressuremeasurementsistheamountofsubcoolingduringthe>nitialapproachtosaturationconditionsandtheoccurrenceofsaturation(Conditionla)and,thereestablishmentofsubcooledconditions(Conditionlb).4.2COOLANTNVNARYMASIIRI:MI=NTNRI'AC:TARVFSSELTheReactorCoolantSystemisatsaturationcoriditionsuntilsufficientcoolantislostto,1owerthetwo-phaseleveltothetopoftheactivecore.Quringthisintervaltherewerenoexistinginstrumentswhichwouldmeasuredirectlythecoolantinventoryloss.AHeatedJunctionThermocoupleSystemprovidesa'directmeasurementduringthisperiod.Theparameterwhichismeas'uredisthecollapsedliquidlevelabovethefuelalignmentplate.Thecollapsedlevelrepresentstheamountofliquidmasswhichisinthereactorvesselabovethecore.Measurementofthecollapsedwaterlevelwasselectedinpreferencetomeasuring.two-phaselevel,becauseitisadirectindicationofthewaterinventorywhilethetwo-phaselevelis'.determinedby-waterinventoryandvoidfraction.The-collapsedlevelisobtainedoverthesametemperatureandpressurerangeasthesaturationmeasurements,therebyencompassingalloperatingandaccidentconditionswhereitmustfunction.Also,itisintendedtomonitorCondition2b(followingcorerecovery).Therefore,itmustsurvivethehighsteamtemperaturewhichmayoccurduringthepreceedingcoreuncoveryinterval.
1.9B-234.2.1'ANGEANORESPONSETINEThelevelrangeextendsfromthetopofthevesseldowntothetopofthefuelalignmentplate.TheresponsetimeisshortenoughtotrackthelevelduringsmallbreakLOCA'events.Theresolutionissufficienttoshowtheinitialleveldrop,thekeylocationsnearthehotlegelevation'ndthelowestlevelsjustabovethealignmentplate.Thisprovidestheoperatorwithadequateindication.to'racktheprogressionofConditions2aand2bandtodetect'theconsequencesofhismitigatingactionsorthefunctionabilityofautomatic=-equipment.4.3COREEXITSTEANTEt1PERATURETheoverall'ntentofICCdetectionisthedetectionofthepotentialforfissionproductreleasefromthereactorfuel.Theparameterwhichisrelatedtothepotentialforfissionproductreleaseisthe.fluidtemperatureatthecoreexit,'atherthantheuncoveryofthecorebycoolant.Afterthecore'ecomesuncovered,thefluidleavingthecoreissupe'rheatedsteamandthetrendingofthesuperheatprovidestheoperatorwithanindi-cationofwhetherhe'isapproachingor.recedingfromanICCcondition.Unlikethe"measureofcoolantinventory,theCETprovidesadirectindicationoftheICCdirectionandseverity.ITheamountofsup'erheatofthesteamleavingthecorewillbemeasuredbythecoreexitthermocobples.'Thetimebehaviorofthesuperheattemperatureissimilartothetimebehaviorofthecladdingtemperature.ThecoreexitsteamtemperatureismeasuredwiththethermocouplesincludedintheIn-CoreInstrument(ICI)string.TheyarelocatedinsidetheICIsupporttube,atynelevationafewinchesabovethefuelalignmentplate.Genericcalculationsofasimilarinstallationforrepresentativeuncovery I 11.9B-24eventsshowthatthethermocouplesrespondsufficientlyfasttotheincreasingsteamtemperature.PlantspecificcalculationsontheSt.Lucie2configurationwillbemadetoverifythisresponse.4.3.1RANGEANDRESPONSETINEAI0Therequiredtemperaturerangeofthethermocouples.extendsfrom200F,thelowesttVsaturationtemperatureat-whichuncoverymayoccurupto1200Fwhichgives~'Iasignificantmeasureofsuperheat.Theapproximateupperservicetemperaturelimi.tis1800F,thereforethedesiredrangecanbemetwiththepresentthermocouplecapabHities.Thermocouplesareexpectedtofunctionwithreducedaccuracyatevenhighertmperatures,soth".angeforprocssin"thethermocoupleoutputcouldextendtoabout2300F.Itisnotnecessarythatthecoreexitsteamtemperaturebemeasuredaccurately.Itisonlynecessarytothereactoroperatorthathisi'ndicatorofstea~>temperature.provideananalogoustrending(withasmalltimedelay)ofthefueltemperaturebehavior.Therefore,throughthesteamtempe-raturetrending'heoperatorcanmonitor'theconsequencesofhisremedialactions,Thisinformationisofprimaryinteresttotheoperatorduringcoreuncovery,.(Conditions3aand3b).t5;0SYSTEMUALIFICATIONrThequalification-programfortheICCDetectionSysteminstrumentationhasnotbeencompletelydefined.Thequalificationprogramwillbebasedonthefollowingthree<<"categoriesofICCinstrumentation:1.>Sensorinstrumentationwithinthepressurevessel2.Instrumentationcomponentsandsystemswhichextendfromtheprimarypressureboundaryuptoandincludingtheprimarydisplayisolatorandincludingthebackupdisplays.3.Instrumentationsystemswhichcomprisetheprimarydisplayequipment. K4 1.9B-25AIApreliminaryoutlineofthequalific'ationprogramforeachclassificationisllgivenbelow.Thein-vesselsensorsrepresentthebestequipmentavailableconsistentwithqualificationandschedularrequirements(asperNUREG-0737,AppendixB).Designoftheequipmentwillbeconsistentwithcurrentindustrypracticesinthisarea.Specifically,instrumentationwillbedesignedsuchthattheymeetappropriate,stresscriteriawhensubjectedtonormalanddesignbasisaccidentloadings.Seismicqualificationtosafeshutdownconditionswillverifyfunctionafter'beingsubjectedtotheseismicloadings.II,ll.Tt>eout-of-vesselinstrumentationsystem,uptoandincludingtheprimarydisplayisolator,andthebackupdisplayswillbeenvironmentallyqualifiedinaccordancewithIEEE-323-1974.Plant-specificcontainmenttemperatureandpressuredesign,profileswillbeusedwhere'appropriateinthesetests.Thisequipmentwillalso.beseismicallyqualifiedaccording.toIEEE-STD-344-1975.CEN-99(S),"SeismicOualificationofNSSSSuppliedInstrumentationEquipment,"CombustionEngineering,Inc."(August1978)describesthemethodsusedtomeetthecriteriaofthisdocument.FP&Lis'evaluatingwhatisrequiredtoaugmenttheout-of-vesselClasslEinstru-mentationequipmentqualificationprogramtoNUREG-.0588.ConsistentwithAp-pendixBofNUREG-0737,theout-of-vesselequipmentunderprocurementisthebestavailableequipment.FP&Lexpectstocompletethisevaluationbytheendof',thefirstquarterof3982.t6'.0SYSTEMVERIFICATIONTESTINGThissectiondescribestestsandoperationalexperiencewithICCinstruments.ll6.1RTDANDPRESSURIZERPRESSURESENSORSThehotandcoldlegRTDtemperaturesensorsandthepressurizerpressuresensorsarestandardNSSSinstrumentswhichhavewellknownresponses.Nospecialverificationtestshavebeenperformednorareplannedforthefuture.ThesesensorsalongwitnUHJTCinputs,providebasicreliabletemperatureandPpressureinputswhichareconsiaerc'dequateforuseintheSt+1andotheradditionaldisplayfunctions. 1.98-266.2HJTCSYSTEMSENSORSANDPROCESSINGTheHJTCSystemisane>>systemdevelopedtoindicateliquidinventoryabovethecore.Sinceitisanewsystem,extensivetestinghasbeenperformedandfurthertestsareplannedtoassurethantheHJTCSystemwilloperatetounambiguouslyindicateliquidinventoryabovethecore.I4Thetestingisdividedintothreephases:Ph'ase1-ProofofPrincipleTestingPhase2-DesignOevelopmentTestingPhase3-PrototvpeTestingThefirstphaseconsistedofaseriesoffivetests,whichhavebeencompleted.ThetestingdemonstratedthecapabilityoftheHJTCinstrumentdesigntomeasureliquidlevelinsimulatedreactorvesselthermal-hydraulicconditions-(includingaccidentconditions).PROOFOFPRINCIPLETESTINGTest1AutoclavetesttoshowHJTC(thermocouplesonly)responsetowateror=steam.InApril1980,aconceptualtestwasperformedwithtwothermocouplesinoneshe'athwithonethermocoupleasaheaterandtheotherthermocoupleastheinventorysensor.Thisconfigurationwasplacedinanautoclave(pressurevesselwiththe'capabilitiestoadjusttemperatureandpressure).Thethermo-coupleswereexposedtowaterandthensteamenvironments.Theresultsdemonstratedasignificantoutputdifferencebetweensteamand'waterconditionsforagivenheater'owerlevel.Test2TwophaseflowtesttoshowbareHJTCsensitivitytovoids.I'nJune1980,aHJTC(ofthepresentdifferentialthermocoupledesign)wasplacedintotheAdvancedInstrumentationforRefloodStudies(AIRS)testfacility,alowpressuretwo-phaseflowtestfacilityatOakRidgeNationalLaboratory(ORNL).TheHJTCwasexposedtovoidfractionsatvariousheaterpowerlevels.TheresultsdemonstratedthatthebareHJTCoutputwasvirtuallythesameintwo-phaseliquidasinsubcooledliquid.TheHJTCdid 1.98-27Test3Atmosphericair-watertesttoshowtheeffectoi'splashshield.A'splashshieldwasdesignedtoincreasethesensiivitytovoids.The'plashshieldpreventsdirectcontactwiththeliquidinthetwo-phasefluid.TheHJTCoutputchangedatintermediatevoidfractiontwo-phasefluid.TheresultsdemonstratedthattheHJTCsensor(heatedjunctionthermocouplewiththesplashshield)sensedintermediatevoidfractionfluidconditions.Test4Kighpressureboil-offtesttoshowKJTCsensorresponsetoreactorthermal-hydraulicconditions.InSeptember1980,aC-EHJTCsensor(HJTCwithsplashshield)wasinstalledandtestedattheORi'iLThermal-HydraulicsTestFacility(THTF).TheHJTCsensorwassubjectedtovarioustwo-phasefluidconditionsatreactortemperaturesandpressures.TheresultsverifiedthattheHJTCsensorisadevicethatcansenseliquidinventoryundernormalandaccidentreactorvesselhighpressureandtemperaturetwo-phaseconditions.Test5Atmosphericair-water'testtoshowtheeffectofaseparatortube'separatortubeviasaddedtotheHJTCdsigntoformacollapsedliquidlevelsothat"theHJTCsensordirectlymeasuresliquidinventoryunderallsimulatedtwo-phaseconditions.InOctober.,1980,atmosphericair-water'testswereperformedwithHJTCsensorandtheseparatortube.TheresultsdemonstratedthattheseparatortubedidformacollapsedliquidlevelandtheHJTCoutput'didaccuratelyindicateliquidinventory.ThistestverifiedthattheHJTCinstrument,whichincludestheHJTC,thesplashshield,andtheseparatortube,isaviablemeasuringdeviceforliquidinventory.DESIGNDEVELOPHEN7TESTINGThePhase2testprogramconsistedofhighpressureandtemperaturetestsoftheprobeassemblyundersteadystateandtransientconditions.Thesetests,performedduringHay1981atC-E,provideddesignverificationinformationfortheHJTCinstrumentunderconditionsexpctedtooccurinthereactor. 1.98-28TESTSERIES1:SinglePhaseTestsTheHJTCresponsewasmeasdredasthewaterlevelwaschangedbyfillingordrainingthetestvesselatdifferentrates.InformationonHJTCtemperatureresponseatvariouspressuresandsensorheaterpowerswasobtained.TESTSERIES2:Two-PhaseTestsSteamwasinjectedatthebottomofthetestvesseltoproduceatwo-phasemixture,TheHJTCresponsewasmeasuredasthewaterlevelwasvariedbyfillingordraining.Theresultsweresimilartothesinglephasetests,indicatingthattheHJTCcanmeasurethecollapsedwaterlevelinatwo-phaseenvironmentunderconditionssimilartothoseencounteredduringasmallbreakLOCA.TESTSERIES3:OepressurizationTransientTestsTheHJTCresponseduringadepressurizationtransientwasdeterminedby.allowingthetestvesseltoblowdownfromhighpressure.Resultsofthesetestsarestillbeingreviewed,additionalinformationonthistestserieswillbepresentedinafutureamendment.PROTOTYPETESTINGThePhase3testprogramwillconsistofhightemperatureandpressuretestingofthemanufacturedprototypesystemHJTC,probeassemblyandprocessingelectronics.VerificationoftheHJTCsystemprototypewillbethegoalofthistestprogram.',ThePhase3testprogramisexpectedtobecompletedbytheendof1981.6.3COREEXITTHERMOCOUPLESTestingatOtNL,wasperformedtoevaluatetheresponseofCETsundersimulated'ccidentconditions{Reference4).Thistestinadditionshowedthattheinstru-mentsremainedfunctionalupto2300F.ThistestalongwithpreviousreactoroperatingexperienceareconsideredsufficienttoverifytheresponseofCETs.
1.98-297.0OPERATINGINSTRUCTIONSlTheC-EOwnersGroupisdefiningaprogramfordevelopmentoffurtheremergencyprocedureguidelinesandoperatortrainingmaterialsassociatedwiththeICCDetectionSystemdescribedinSection3.Thisprogramisexpectedtoprovidetheseguidelinesandtrainingmaterialsduringthefourth.quarterof1981.TheseguidelinesandtrainingmaterialswillbebasedonmodificationstoexistingICCguidelines.TheexistingguidelinesforreactoroperatorstousetodetectICCandtakecorrectiveactionhavebeendevelopedbytheC-EOwnersGroupandsubmittedtoHRCforreview(Reference5).TheseguidelineshavebeenusedtoreviewandrevisetheplantemergencyproceduresforSt.LucieUnit2.Inaddition,theC-EOwnersGrouphasdevelopedreactoroperatortrainingmaterialsconcerningICC.
1.9B-308.0COMPARISONOFMCUNENTATIONREUIREt4ENTSOFPOSITIONII.F.2,ATTACHMENT1ANDAPPENDIX'WITHSTATUSREPORTTables8-1through8-3provideapointbypointcompari'sonofthedocumentationrequiredbyNUREG-0737,ItemII.F;2,therequirementsofAttachment1ofItemII.F.2,andtheCriteriaofAppendixBofNUREG-0737withtheinadequatecorecoolingdetectioninstrumentationtobeinstalledinSt.LucieUnit2., n 1.9B-31TABLE8-1EUALUATIONOFICCDETECTIONINSTRUMENTATIONTODOCUMENTATIONREUIREMENTSOFNUREG0737ITEM11.F.2ITEMRESPONSEl.a.DescriptionoftheICCDetectionInstrumentationisprovidedinSection3.0.TheinstrumentationtobeaddedincludesthemodifiedSMt1,theHJTCProbeAssemblies,andImprovedICI(CET)DetectorAssemblies.l.b.TheexistinginstrumentationsystemsaredescribedinAppendicesB,C,andD.ThisincludestheSMM,HJTCProbeHolders,andICI(CET)DetectorAssemblies.Section10.0discussesfirstcycleoperationofSt.'LucieUnit2withtheexistinginstrumentation..l..c.TheplannedmodificationstotheexistingUnit2instrumentationwillbemade(datetobeincludedlater)ModificationsincludechangestotheSMM,design,procurementandinstallationoftheHJTCprobeassemblies,andimprovedICIDetectorAssemblies(whichnecessitateinstallationofimprovedICINozzleFlanges).The.finalICCDetectioninstrumentationwillbeasdescribedinSection3.0.2.,The'designanalysisandevaluationoftheICCDetectionInstrumen-tationisdiscussedinSections2.0and4.0.andAppendixA.Test-ingisdiscussedinSection6.0.3.AdditionalinstrumentationtestingisdiscussedinSection6.0.gualificationtestingisdiscussedinSection5.0.
1.98-32RESPONSEThistableevaluatestheICCDetectionInstrumentation'scon-formancetotheNUREG-0737,ItemII.F.2documentationrequirements.Table8-2evaluatesconformancetoAttachment1ofItemII.F.2Table8-3evaluatesconformancetoAppendixBofNUREG-0737.InformationontheICCtransmission,processing,anddisplayhardwarewillbepresentedinafutureamendment.Section9.0discussesthescheduleforinstallationandimple-mentationofthecompleteICCDetectionInstrumentation.GuidelinesforuseoftheICCDetectionInstrumentationarediscussedinSection7.0AfutureamendmentwilldiscusskeyoperatoractionsinthecurrentemergencyproceduresforICC.Section7.0discussestheemergencyprocedurestobeimplementeduponincorporationofthecompleteICCDetectionSystem.ThefollowingdescribesadditionalsubmittalsthatwillbeprovidedtosupporttheacceptabilityofthefinalICCDetectionInstrumentation.ThescheduleforsubmittalofthisdocumentationwillbeprovidedinSeptember,1981.1)equalificationTestingoftheHJTCS.2)EnvironmentalandSeismicqualificationofthein-vesselandout-of-vesselinstrumentationequipment.3)llodificationstoemergencyprocedures.4)ProposedChangestoTechnicalSpecification.5)DescriptionofICCsignaltransmission,processing'anddisplayequipment. 1.9B-33TABLE8-2EVALUATIONOFICCDETECTIONIi(STRUNE<<TATIONTOATTACH.'KHT1OFII.F.2RESPONSESt.Lucie2has56coreexitthermocouples(CETs)distributedunifomlyoverthetopofthecore.Section3.1.3hasadescriptionoftheCETsensors.Figure3-7depictsthelocationsoftheCETs.TheICCdesignincorporatesaminimumofonebackupdisplaywiththecapabilityforselectivereadingofaminimumof16operablethemocouples,4fromeachcorequadrant.TheICCdesignwasanalyzedforhumanfactorsconsid-erations.TheICCinstrumentationwasevaluatedforconformancetoAppendixBofNUREG-0737(seetable8-3).Theprimary'andbackupdisplaychannelsareelectri-callyindependent,energizedfromindependentstationclass1Epower'sourcesandphysicallyseparatedinaccordancewithRegulatoryGuide1.75uptoandincludingtheisolutiondevices.
ICCinstrumentationshallbeenvironmntallyqualifiedpursuanttoC-Lowners.groupqualificationprogram.rPrimaryandbac)updisplaychannelsaredes'ignedtoprov"dethehighestavailabilitypossible.ICCmonitoringsystemwasdesignedandreviewedtothequaliyasuranceprovisionsinApp.Bitems. 1.9B-34TABLE8-3WTALUATIONOFICCDETECTIONINSTRUYiENTATIONTOAPPENDIX8'OFNUREG-0737ITEMRESPONSETheICCdetectioninstrumentationisenvironmentallyandseismically.qualifiedasspecifiedinSection5.0.2.TheICCdetectioninstrumentationisdesignedsuchthatnosinglefailurewithineithertheaccident-monitoringinstrumentation,itsauxiliarysupportingfeaturesor.itspowersourcesconcurrentwiththefailurethatareaconditionorresultofaspecificaccidentwillpre->>,venttheoperatorfrombeingpresentedthedatarequiredtoanalyzecoreinadequatecorecooling.3.TheICCdetectioninstrumentationisdesignedsuchthatredundantordiversechannelsareelectricallyinde-pendent,energizedfromstationclass1EpowersourceandphysicallyseperatedinaccordancewithRegulatoryGuide1.75.4.InstrumentationisavailablepriortoanaccidentasdefinedinIEEESTD279and/orasspecifiedintechnicalspecifications.5.RecommendationsofthefollowingregulatoryguideswereconsideredinthedesignofICCinstrumentation;128130'38158'64'74188'123'1446.Continuousindicationdisplayisprovidedatalltimes.7.Allinadequatecorecoolinginstrumentationisdesignedtoprovideread-outdisplayandtrendinginformat,iontotheoperator.8.Allinadequate'orecoolinginstrumentationisspecifi-callyandsi'ngularlyidentifiedsothattheoperatorcaneasilydiscern'theiruse.duringanaccidentcondition. ISignalsfromaICCinstrumentintendedforotheruseisisolatedthroughisolationdevicesdesignatedaspartofthemonitoringinstrumentation.EachICCmonitoringchannelisprovidedwithacheckingvariable.Instrumentcheckinghasahighdegreeofconfidenceandoperationalavailability.Servicing,testingandcalibratingprogramssnailbeconsitantwithoperatingtechnicalspecifications.iTheSystemdesignissuchastofacilitateadministra-tivecontrolduringperiodswhenchannelsareremovedfromservice.TheSystemdesignissuchastofacilitateadministra-tivecontrolofaccesstoallsetpointsadjustments,modulecalibrationadjustmentsandtestpoints.Monitoringinstrumentationisdesignedtominimizeanomalousindicationstotheoperator.Instrumentationisdesignedtofacilitatereplacementofcomponents.ormodules.Theinstrumentationdesignisdesignedsuchthatmalfunctioningcomponentscanbeidentifiedeasily.Thedesignincorporatesthisrequirementtotheextentpractical.Thedesignincorporatesthisrequirementtotheextentpractical.Thesystemisdesignedtofacilitateperiodictestingofinstrumentchannels.~~
1.98-359.0SCHEDULEFORICCINSTRUl<ENTATIONINSTALLATIONAschedulefortheinstallationoftheICCInstrumentationwillbeprovided,totheNRConcethesystemdesign(includingtransmission,processinganddisplayhardware)iscompleted.Itiscurrentlyplannedtocompleteinstal-lationofallICCequipment(datetobeincludedlater).10.0OPERATIONllITHINTERIMICCINSTRUi<ENTATIONProceduresandtrainingforidentificationofanapproachtoICConSt.Lucie2havebeendevelopedusingexistinginstrumentation.TheseproceduresarecurrentlyundergoingNSSSvendorreviewandwillbereviewed.bytheNRCPIRBpriortostartupofSt.LucieUnit2.WithfinalICCinstrumentationinstallationscheduledforfirstrefueling,theplantwillbeoperatedduringthefirstcycleusingexistinginstrumentation.Thisincludes,twoofthreeinstrumentationsystemsplannedforthefinalICCsystem,whichwillbedescribedinafutureamendmenttotheFSAR.Thosetwoare:Subcooledt4rgint<onitor(SHN)CoreExitTemperature(CETs)TheHJTCSwill"beabsentfromtheinterimsystem.Thisinstrumentationwillbeintegratedwith:EmergencyOperatingInstructionsOperator-TrainingforICCRecognitionandthtigationEmerenc0eratinInstructionsEOITobesubmittedinafutureamendment.~TraininFPKLwi'llcompleteoperatortraining(includingsimulatortraining)prior'ofuelloadonuseoftheexistingcontrolroominstrumentationrelatedtoICCasutilizedintheapprovedEOIs.
1.98-36Basedontheexistinginstrumentation,trainingandproceduresforICCrecognition,FPIILisconfidentthatSt.Lucie2canbesafetyoperatedpriortoimplementationofthefinalICCinstrumentation(Datetobeincludedlater).
1.9B-37
11.0REFERENCES
1.NUREG-0737,"ClarificationofTl<IActionPlanRequirements,"U.S.NuclearRegulatoryCommission,.November,1980.\2.CEH-117,"InadequateCoreCooling-AResponsetoNRCIEBulletin79-06C,Item5forCombustionEngineeringNuclearSteamSupplySystems,"CombustionEngineering,October,1979.3.CEH-125,"InputforResponsetoHRCLessonsLearnedRequirementsforCombustionEngineeringNuclearSteamSupplySystems,"CombustionEngineering,December,1979.4.Anderson,R.L.,Banda,L.A.,Cain,D.G.,"IncoreThermocouplePer-formanceUnderSimulatedAccidentConditions,"IEEENuclearScienceSymposium,Yol.28,No.l,page773,.figure81.5.LetterC-EOwnersGrouptoNRC,"C-EGenericEmergencyProcedureGuidelines,"December10,1980. AppendixAEvaluationofInstrumentationforDetectionofInadequateCoreCooling APPENDIXAEvaluationofInstrumenta'tion,forDetectionofInadeuateCoreCoolinTheC-EOwnersGrouphasconductedanevaluationofinstrumentationforthepotentialapplicationtothedetectionofInadequateCoreCooling.Theperformancecharacteristicsofselectedinstrumentswerecomparedforrepresentativetransientsresultinginvariousdegreesofreactorcoolantsystemvoiding.Therespectiveinstrumentsthenwereevaluatedbasedontheirdevelopmentalandpost-accidentqualificationstatus,responsecharacteristics,andsignalclarity.'.lDESCRIPTIONOFICCEVENTPROGRESSIONThestateofprogressionofaneventresultinginICCcanbedividedbasedonphysicalprocessesoccurringwithintheRPV,intothefollowingsixconditions:ConditionsAssociatedwiththeApproachtoICCConditionlaLossoffluidsuhcoolingoriortothefirstoccurrenceof\saturationconditionsinthecoolant.Condition2aFallingcoolantinventorywithintheupperplenum,fromthetopofthevesseltothetoooftheactivefuel.Condition3aIncreasingcoreexittemperatureproducedhyuncoveryofthecoreresultingfrom.'thedropinlevelofthemixtureofvaporbubblesandliquidfromthetopoftheactivefueltotheminimumlevelduringtheevent.ConditionsAssociatedwithRecove~rfromICCCondition3bDecreasingcoreexitsteamtempeaitureresultingfromtherisingoftheleveltothetopoftheactive,uelCondition2bVesselfillbytheincreaseininventorv'bovethefuel.ConditionlbEstablishmentofsaturationconditionsfollowedbyanincreaseinfluidsubcooling. TheinstrumentsystemusedforthedetectionofICCshouldprovidethereactoroperatorwiththecurrentstatusofselectedkeyparametersandthetrendingofpriorstatusofselectedkeyparametersastheeventprogressesthrougheachoftheaboveconditions,A.2SUMMARYOFSENSOREVALUATIONTheinstrumentsevaluatedinthiseffortwerethesubcooledmarginmonitor(SMM),resistancetemperaturedetectors(RTDs),reactorvessellevelmonitoremployingtheheatedjunctionthermocouples(HJTC),coreexitthermocouples(CETs),self-poweredneutrondetectors(SPNDs),ex-coredetectorsand'n-corethermocouples.TheinstrumentsarelistedinTableA-l,wheretheircapabilitiesaresummarized.Significantcon-clusionsabouteachinstrumentaregivenbelow.A.2.1SubcooledMarinMonitorTheSubcooledMarginMonitor(SMM),usinginputfromexistingResistanceTemperatureDetectors(RTD)inthehotandcoldlegsandfromthepressurizerpressuresensors,willdetecttheinitialoccurrenceofsaturationduringLOCAeventsandduringlossyfheatsinkevents.TheusefulnessoftheSMMmaybesignifican'tlyincreasedbyalsofeedingintoitthesignalsfromthefluid'emperaturemeasurementsfromtheHJTCSandbymodifyingtheSMMtocalculateanddisplaydegreessuperheatinadditiontodegreessubcooling.ThesignalsfromtheHJTCStemperaturemeasurementsprovideinformationaboutpossiblelocaldifferencesintemperaturebetweenthereactorvesselupperhead/upper.plenum(locationoftheHJTCS)andthehotorcoldlegs(locationoftheRTDs).1.9B-A-2 Withthesemodifications,theSHMcanbeusednotonly'fordetectionoftheapp-roachtoICC,namelyConditionla(lossofsubcooling),butalsoforConditions3aand3b(coreuncovery)andConditionlb(corerecovery).Evenwiththemodifications,theStOwillnotbecapableofindicatingtheexistenceofConditions2aand2bwhenthecoolantisatsaturationconditionsandthelevelisbetweenthetopofthevesselandthetopofthecore.A.2.2ResistanceTemeratureDetectors(RTD)TheRTDareadequateforsensingtheinitialoccurrenceofsaturation.Thehotleg('TDrangeissufficienttosensesaturationforeventsinitiated(I)atpower.ThecoldlegRTD,whichhaveawiderrange,aresufficienttosensesaturationforeventsinitiatedfromzeropowerorshutdownconditions.TheRTDrangeisnotadequateforICCindicationsduringcoreuncovery.FordepressurizationLOCAevents,thecoremayuncoveratlowpressure,whenthesaturationtemperatureisbelowthelowerlimitofthehotlegRTD.InitialsuperheatofthesteamwillthereforenotbedetectedbythehotlegRTD.Astheuncoveryproceeds,thesuperheatedsteamtemperaturemayquicklyexceedtheupperlimitoftheRTDrange.A.2.3HeatedJunctionThermocoule'SstemHJTCSTheHJTCprobeis.designedtocreateandmeasure,acollapsedliquidlevelinalocalizedplenumregion.Theheightofthecollapsedliquidlevelwithin'heprobeissensedusingpairsofheatedjunctionthermocouples.ThismodeofsensingreducesspuriouseffectsdueLvpressure,fluidproperties,andnon-homogeneitiesofthefluidmedium.ThesiqnalwhichisoroducedbvtheHJTCorobeisasmallelectricalcurrentsimilarinmagnitudeto,orgreaterthan,thecurrentproducedbytypical(I)InmostC-EPWRsadualrangeRTDsystemisemployed.Typically,'arrowbandRTDsarelocatedinthehotlegsandwiderangeRTDsarefoundinthecoldleg.St.LucieUnit2employswiderangeRTDsinbothhotandcoldlegs. 'I temperaturesensingdevicespresentlyusedinthereactorcoolantsystem.Thissignalmaybetransmittedfromwithinthereactorvesseltooutsideofthecontainmentbuildingwithnointermediate.electronics.Furthermore,thesignalisnotsubjecttoexternaldisturbances,suchascontainmentenviron-mentaswouldbepresentwithahydraulicsignaltransmissionsystem.TheHJTCcanprovidesignificantinformationtotheoperatorfortwoconditionsassociatedwithanICCevent-Condition2a,theapproachtouncoveryandCon-dition2b,therefill.Fora"largesmallbreakevent,thetwo-phaseleveldropstothetooofthecorewithin5tol5minutesofthebreakinitiation.Inthisevent,theHJTCwouldshowtherapidlydecreasingcoolantinventoryandwouldquantifyfortheoperatorthestatusofthedegradingsituationwhichisotherwiseevidenttohimfromnumerousexistinginstruments.Forsmallerbreaks,theprogressionoftheeventisslower,andtheHJTCcanprovidesignificantinformationontheeffectivenessofhismitigatingactions.Itisprobablyforsuchlongtermconditions,priortocoreuncovery,thattheHJTCwouldhaveitsgreatestusefulness.Followingrecoveryofthecore,theoperatorcouldusetheHJTCtoverifythat1thecoreisagaincoveredandthereforeis-beingadequatelycooled.ThroughmonitoringtheHJTCleveltheoperatorhasbetterindicationofthecorrectnessandeffectivenessofhisactionsinmaintainingthecoolantinventory.1.9B-A-4 0 0A.2.4.CoreExitThermocoules(CETsThecore.exitthermocoupleswillshowthe.approachtoandexistenceofICCaftercoreuncoveryfortheeventsanalyzed.Thecoreexitthermocouplesrespondtothecoolanttemperatureatthecoreexitandin-dicatesuperheatafterthecoreisnolongercompletelycoveredbycoolant.Thetrendofthechangeinsuperheatcorrespondstothetrendofthechangeincladdingtemperature.ExistingthermocouplesinC-Ereactorshavebeenqualifiedtoindustrystandardaccuracyforoperationto750F.However,thermocouplesof0thisdesign(i.e.stanlesssteelsheathed,aluminainsulated,TypeK,0Chromel-Alumel)aresuitablefornuclearserviceto1650F.Testshavebienrunonsuchthermocouplestosimulatesevereaccidents(SeeReference4oftext).Resultsfromthesetestsdemonstratedtheshuntingerrorcausedbytheincreaseinelectricalconductanceofthealuminaathightemperatureisshowntobenegligibleupto1650Fandisacceptablysmallto1800F.ItisconcludedthatthethermocouplesinoperatingC-E0designedreactorscouldsatisfytheminimumNRCrequirementfor1650Fandareadequate,to1800F0A.2.5,Self-PoweredNeutronDetectorsSPNDTheSPNDyieldasignalcausedbyhightemperatureasthetwo-phaselevelfallsbelowtheelevationoftheSPND.However,testingisrequiredtoridentifythephenomenaresponsiblefortheanomalousbehavioroftheSPNDatTMI-2.Atthepresent,theiruseislimitedtolowtemperatureevents(lessthan1000Fcladtemperature)ortoonlytheinitialuncoveryportionofanevent.A.2.6Ex-CoreNeutronDetectorsExistingsourcerangeneutrondetectors-aresensitiveenoughtorespondtotheformationofcoolantvoidswithinthevesselduringtheeventsanalyzed.However,thesignalmagnitudeisambiguousbecauseoftheeffectsofvary-.ingboronconcentrationanddeuter'iumconcentrationinthereactorcoolant.1.9B-A-5
Astackofex-coredetectorsgiveslessambiguousinformationonvoisnvoidsandlevelinthevessel.TherelativeshapeoftheaxialdistributionofsignalsfromastackoffivedetectorsshowspromiseasanICCindicator,butadditionaldevelopmentisneeded.A.2.7In-CoreThermocoulesAlthoughthelossofotherinstrumentationsuchastheSPND'swouldhavetobeconsi-dered,ingeneral,itappearsfeasiblethatin-corethermocouplesmaybeaddedtoorsubstitutedforsomeSPNDinthein-coreinstrumentstring.In-corethermocouplessensethesurroundingenvironmentviaradiation,aswellas,steamconvection.Theinformationprovidedtotheoperato"byin-corethermocouplesisqualitativelythesameastnatprovioeuoyieTs.1.9B-A-6 TA1)LHA-lINSTR)N)fHTSIt)Ct.t)ofDIt{FVAI.UATIONSFORICCIHSIR)X)I.NIhtl'Ot{SYSTENOfVKLOPI{ENTmihmSPOST-AFCIDKHl't!ALIFICATIDHSTAIUSINDICATIONPROVIDEDDYINSTAU){KNTCLARITYOFSIGHALCONDITIONSBffNZDKEDSut)Kl)ot.tI))NACiIHuntilIORKXISTStjuhLIFIf0l)CORKEOFSOACOOLIHGIHRCSla,lbul.ht.louvfssf1.I.fvfLHOHI'IDRUHDKRDfVfLOP.){ILLDE{IUALIFIEDI)Il)luloIt{Vtt{IOHYIHu)'I1nt)IAD2)Llgutt)l))YltlloRYINUt'I'fttPLK)ON3)AXIALTO)lfiMT))REDISTI)IDUTIOHIHl)fhnNtoILKN)VIGt)OOr,nooroon2a,2bI:oufEXITTttfANOCOUPLKSEXISTCAHBEt)O){KI)FLUIDTf))PKRATI)REATCOREEXIT3a.3bIt{-t:t)))E1ut)ON)C{)t)PLKSCOHCKPTSTAGECAHDEDDNKI)){KThlTKNPERATUAKINSII)EGull)ETUAEH))ft{ACPOlE3a,3bSIIFPwtt.nft)ttfUIROHt)flKCTORSEXISTINDIRECTNKASURK.OFHIXT))RELEVEL(Lo)tPRfSSultf.UNCOVKRY)POOR3a,3bttoll,lr,All)(5Khr)t)EXISTguhLIFIEDFLUIDTEHPKAAT)mfINltoTLEG-riooola,lb,3a,3btx-routHft)loonDitfcton(t)nt,Stloi)LI)thurf)fX-rt)ufHtulltotlDf)EClott(SlhonOF5,S)NNCLRANGE)EXISTCOHCEPTChl{AEDOHECAHBEDONEIHotnfcrNt'hsunfOrGA))ssvotntttt;Ito)tutCTtttt){CA)IONor){IXTunflEVELlttCOAE,ACP0[FSANKASOt{EEX-COREDKTfCTOR,DUTt)OREAXIALRfSDLUIIONrh)RFAIRI'AIR"3a.3b3a.3b
AppendixBSubcooledMarginMonitor [ APPENDIX8SATURATIONMARGINMONITORThedesignoftheSt.LucieUnit2SaturationMarginMonitor(SMM)isdescribedinSection3.1.1oftheaccompanyingreport.Thisdevicewillprovideon-linecontrolroomind'cationofreactorcoolantsaturationconditionstotheoperator.The".t.,Lucie2SMMisdesignedtoacceptinputfromselectedRTDsandtheUnheatedJunctionthermocouplewiththemaximumtemperatureindication.DuringthefirstcycleofSt.LucieUnit2operationtheHJTClevelprobewillnotbeinstalled.Therefore,theSMMwillreceiveitsinputfromtheRTDsalone.AdetaileddescriptionoftheSMMsystemtobeusedduringthefirstfuelcyclewillbepresentedinafutureamendment.1.9B-B-l Appendix.CHeatedJunctionThermocoupleSystem
APPENDIXCHeatedJunctionThermocouleSstemC.1SYSTEMDESCRIPTIONTheHeatedJunctionThermocoupleSystem(HJTC)thatisplannedtobein-stalledinSt.LucieUnit2consistsoftwoseparatechannelsofinstru-mentationwhichmeetthedesignrequirementsfora'post-accidentmonitoringsystem.Thesensorsareinternaltothereactorvessel.Detailsoftheassociatedtransmission,controlanddisplayhardwarearecurrentlybeingfinalizedandwillbepresentedin'futureamendment.C.2TECHNICALDESCRIPTIONOFTHEREACTORVESSELINTERNALSCHANGEThechangesconcernhardwaremodificationsinternaltothereactorvesselwhichwillserveasaholderandguidepathforleveldetectorassemblies.Thedesignoftheholderswillfacilitatefutureuseof.theleveldetectors.Basically,threemajorcomponentsareaffectedbythemodification.Theseincludetheupperguidestructureassembly,theinstrumentsupportplate/assembly,andthein-coreinstrumentationnozzle.Theupperguidestructure.changesincludetwoinstrumentguidetubes,supportbrackets.andlead-infunnelsasshownonFigureC-1.TheinstrbmentsupportplateisbeingmodifiedtoprovideapathwayfortheHJTCprobeassembliesasshowninFigur'eC-2.AnadditionalpenetrationisbeingaddedineachoftwoICInozzleflanges.llhentheabove,changesarecomplete,St.LucieUnit2willhaveprovisionsfortwoHJTCprobeassemblieslocatedasshowninFigure3-5.C.3IMPLEMENTATIONSCHEDULEThefutureHJTCprobeassemblytobeinstalledintheholdersisshowninFigureC-3anddescribedinSection3.1.2oftheaccompanyingreport.TheHJTCprobe/holderlocationsaredepictedinFigure3-5.Theprobewillbe1.9BC-1
installedinSt.LucieUnit2(datetobespecifiedlater).AnimolementatinnscheduleforthiseffortvIillbeprovidedinafutureamendment.1.9B-C-2 ~~CEASHROUDADDEDTHIMSLECLUSTERLEAD-INFUNNELUGSSUPPORTPLATEADDINSTRUMENTGUIDETU8EFUELALIGNIlIENTPLATE1.9B-C-3ICL,'CLEARGEMERATI'JGSTATICNST,LUCIEUl)IT2REACTOR,VESSELLr.i~MONXTORZ'iCSIST~IXNSTRK'IEHTGUIDETUBE . ~LEYELOETECTOR-IIM-CORETHI!i'iBLENUCLEARGFNERATINGSTATION~ST.LUCIEUNIT2INSTRU:IWTSUPPORT'-'LATEFIGUREC-2 Appendi'xDCoreExitThermocoupleSystem
l~~APPENDIX0CoreExitThermocouleSstemThebasicdesignoftheSt.t.ucieUnit2Core.ExitThermocouples(CET)isdescribedinSection3.1.3oftheaccompanyingreport.TheCETsare.'ncludedinthe56In-CoreInstrument(ICI)DetectorAssembliesasshowninFigure3-6;thelocationsofwhichareshowninFigure3-7.AdescriptionoftheCETprocessinganddisplaytobeusedduringthefirstcycleofoperationofUnit2willbepresentedinafutureamendment..1.98-0-1
f),Adequate'overlappingoftherangesofnarrowandwiderangemonitorsareprovided.g)Signalsfromtheassociatedsensorsareonlyusedformonitoringthecontainmentwaterlevel.h)Theavailabilityrequirementofthewiderangecontainmentwaterlevelmonitorsisspecifiedinplanttechnicalspecification.i)Testingandcalibrationrequirementsarespecifiedanplanttechnicalspecification.Thstrumentsarespecificallyidentifiedonthecontroleinpanelssothat.theoperatorcaneasilydiscernthayttheareintendedforuseunderaccident'onditions.7.5.3.2.27.5.3.2.3DesignDescriptionThewideandnarrowrangecontaimientleveltransmittersarelocatedinside%hecontainment.Thenarrowrangemonitormeasuresdiscretelevelpointsfrom..thebottomofthereactorcavitysump{elevation-7ft.)tothetopofthesump(elevationOft.).Thewiderangemonitorsmeasurediscretelevelpointsfromelevation-1ft.toelevation26ft."ofthecontainment.Theelectronicsportionofeachofthesensorsarelocatedoutsidethecontainmentandconvertsthediscretepointmeasurementtoacontinuouslhvelindicationinthecontrolrooms.Thetwochannelsofwide"rangelevelmonitorsareindicatedinthecontrolroom,onechannelisrecorded.Theaarrowrangelevelmonitoringchannelisbothindicatedandrecordedinthecontrolroom.Safety'valuationTher'edundant,widerangewaterlevelmonitorsaresafetyrelatedanddesignatedseismicCategoryI.TheyarequalifiedforthedesignbasisaccidentenvironmentinwhichtheyoperateperXEEE323-1974,seismicqualificationisperIEEE"3'44-1975.Thesemonitorsareprovidedstrictlyformonitoringpurpose.H~fety-rela4ed~rator-action-i-s~edm~forma4ioa-providedWy&his-instrument.;Thenarrowrangewaterlevelinstrumentisprimarilyusedduring'normaloperationanddoesnotserveanysafetyrelatedfunctionpostaccident.
44~47il'414A474/~84Aendix7.5A-.SafetAssessmentSstem7..1TheSafetyAssessmentSystem(SAS)willprovidetheSafetyPara-meterDisplay:System(SPDS)andallotherdatarequired.inthecontrolroom,TechnicalSupportCenter(TSC)andEmergencyOpera-tionsFacility"(BOF).ThisreportdescribesthatportionoftheSASwhichmee'ts'theSPDSrequirementsofNUREG0696functionalCriteriafor'Em7ergencyResponseFacilities,February1981.Itprovidesacentralized,flexible,computer-basedataanddisplaysystemtoassist'controlroompersonnelevaluatingthesafetystatusofthepl'ant.Thisassistanceisaccomplishedbypro-vidingtheoperatorandotherEmergencyResponseFacilities(ERFs)ahigh-levelgraphicaldisplaycontainingaminimumsetofkeyplantparametersrepresentativeoftheplantsafetystatus.Alldatadisplayedbythe'SASisvalidatedbycomparingredundantsensors,ehckingthevalueagainst.reasonablelimits,calculatingx'atesofchange,and/orcheckingtemperatureversuspressurecurves~4ThedisplaysoftheSAShavebeenevaluatedagainsthumanfactorsdesigncriteria.Theconcepts.usedinthe.SASdesignwillbeverifiedusing.datarecordedfroma"similarpowerplantsimulator.TheSASwillbeoperableduringnormalandabnormalplantoperat-ingcondition's.TheSASwilloperateduringallSPDSrequired-modesofpIant'peration.Thenormaloperationmodewill'encom-passallplantconditionsatorabovenormaloperatingpressureandtemperatui*e."'-.WhentheReactorCoolant.Systemisintentionallycooledbelow'~normaloperatingvalues,theoperatorwillselectthe"Heatup-Cooldownmodewhichaltersthelimitcheckingalgorithmforthekeypa'rameters.4'he'SPDSpoxti'on"'oftheSASwillbeimplementedonaCRTlocatedinanareaof"'thecontrolroomvisibletothecontrolroomop-exatorandthe'"seniorreactoroperator..ThisCRTcontainsthehigh-leveldi'splayfromwhichtheoverallsafetystatusoftheplantmaybe"assessed.Adedicatedfunctionbuttonpanelallowsthe'operator--"to'selectanyofthehighleveldisplaysandvarioussupportingdisplaysatanytime.TheSASisde'signedsuchthatcontrolroompersonnelcanutilizeits'features-'isithoutrequiringadditionalopexationspersonnel.Theprimarydispl'ayconsistsofbargraphsofselectedparametervalues,digitalstatusindicatorsforimportantsafetysystemparametexsanddigitalvalues.Theparametersindicatedby 1i bargraphsanddigitalvaluesinclude:RCSpressure,RCStempera-ture,'pressurizerlevel,steamgeneratorlevelsandsteamgen-eratorpressures.Statusindicatorsareprovidedforcontainmentenvironmentandsecondarysystemradiation.Reactorvessellevelcoreexittemperature,amountofsubcoolingandcontain-ment.radiationareindicatedbydigitalvalues.Inaddition,thereisamessageareaforanappropriatesecondarydisplayprovidinginformationrelatedtooff-normalvalueorevent,detection.Thebargraphsindicatevide-rangevaluesandifaparameterisoutsideitsnormalrangethebarcolorwillchange.Thedirec-tion(increasingordecreasing)ofchangeisindicatedbyanarrow.Duringnormaloperation,themessage'reawillbeusedtodisplayaveragepower,reactorcoreaveragetemperature,data,time,andunittime.Thesemessagesmaybedisplayedbyhigherprioritymessagesasrequired.Trendgraphgroupsofselectedrelatedparameters,showingthelastthirtyminutesofplantoperationareavailable.TheSAShardwaresystemutilizesasymmetricalredundantcom-ponentinterconnection,configurationtoinsurehighavailability.ThefunctionalcenterofthesystemisapairofmainprocessingcomputerslocatedinStLucieUnit1ReactorAuxiliaryBuildingwhichreceivesmultiplexedplantprocessdatafrombothStLucieUnits.Theinputmultiplexersystemineachunitisinitselfcomputercontrolledandfullyredundant.Bothmainpro-cessingcomputersreceivetheavailablevariablesspecifiedinRegulatoryGuide1.97"InstrumentationforLightMaterCooledNuclearPowerPlanttoAccessPlantandEnvironsConditionsduringandfollowinganAccident",December1980(R2),frombothStLucieUnitssimultaneously.Alsoeachmaincomputerisavailableatalltimestofunctionallysupportthesystemperi-pheralsanddisplaydevicesinbothplantssimultaneouslyaswellastheTechnicalSupportCenter(TSC)andtheEmergencyOffsiteFacility(EOF).TheinterfacebetweentheSASandtheinputvariablesderivedfromsafetyrelatedsystemsareisolatedinaccordancewiththesafetysystemcriteriatopreservechannelindependenceandin-tegrityofthesafetysystemsinthecaseofSASmalfunction.AlsodesignprovisionsareincludedintheinterfacebetweentheSASandnon-safetysystemstoensuretheintegrityoftheSASuponfailureofnon-safetysystem.~4Jav'c.cc+otafAgcvcKcf~~~~<<<$4~~Ž~rj
'7.5A.2.Human'--'FactorsConsiderationsIIHumanfactorsengineeringandindustrialdesigntechniqueshave;beeneffectively-comb'ined,,inaccordancewithestablishedman-machineinterfacedesignequirementstomaximizesystemeffect-iveness:,reduce'trainingandskilldemands,andminimizeop-,.eratorerror.,4,u,IP~tTheCRTcoloi~graphicformatsandfunctionalkeyboarddesigns,havebeendev'e3opedthroughaninterdisciplinaryteamofsenior,operational-,human.factors,industrialdesignandcomputerin-terfacepersonnel.Minimumuse,.'of,.color,combinedwithsimplifiedformatthrough-outtheCRTprisentaion,havebeenkeydesignfeaturestopro-videbothnormalandoff-normalpattern.recognition.The.operator,who,istheenduser,hasbeendirectlyinvolvedfromtheconcepti'on"toinsure.thatman-machineinterfacegoalsof,SAShavebeensatisfied.Thehumanfactorengineeringstandardsandtesting>verificationmethodswhichhavebeenusedarecon-sistentwith'acceptedpractices.'.5A.3VerificationandValidationTheSASisimplementedonadigitalcomputersystem.Thedisplaysoftwarethatcontrolsthesensordata,keyparameterconstruc-tionanddisplay'ormatshasbeendevelopedunderstrictveri-ficationand'alidation.hDur3.ngthecourseofsoftwaredevelopment;.asetofstatictestcaseswillbedevelopedwhichtestthekeyfeaturesofeachsoftwaremodule.Furthermore,staticsystemtestcaseswillbe.'developed.andusedto'erifythe.correctoperabilityofthetotalsystem.Aset.ofdynamictestcaseswillbegeneratedby.recording,'nucl'earsimu'ltordataonmagnetictapefrom'anumberof,'different'l'anttransients.whichtestthedynamicbehaviorofthe'systemunder"real"conditions.Adesignreviewthatcom-'paresthesetestresultstotheoriginalfunctionalanddesignspecificationsvillbeperformed.Aselectednumberofthestatictest'caseswillbe"frozen"suchthattheycouldbeusedto,verifyfuture"changestothesoftware.lnsummary,verifi-cat'ionandvalidationisaddressedanddesignedintotheSAS'softwareto"prov'ideahighlyreliableproductandamechanismforidentifyingandcontrollingfuturechanges.k
a~~"I'CIIOlf~044itfttSICTILSftftfILEPTLSN14TV8ILLTN'Rggffttttfe,"ICfgfCfftttelil~PAh4l'44~lCatatataf'~nafIstuftRSSItautleAVLSC~STOLKS14ILSSIIIIC4CSIIIICNICSIIIIC4CSIllI"ICtfI?I'Aflgtfl114IITLLIILIITLhlttChCLWTLIJC~l~L--~1'~~4I~CCCtgrflitIofrgrgtgt114IITLITIS4IITLIT~LAIT4flCKCTTLIPP41ILI41ST'IrentILCCtgr1114I~LgttIACIIICC'ggtllIIICILCIRCOOglglIILlgte14/&sMCfICCfgttIgtttfICCCffftLCIILTICCIII&ICCI%ITCCSIILI4lCOCIIISISI1IIglgI~'AIIC0I'CssgIITICCLCCKOTTLL'T'ftCsl.ttILOftllggLTTIILCCCgseICOTTRIIICIITftteDCI/'ILIIttglttTClf/Teflgrstfgu4LLtI/OCClfIOLItettmCgf/TIgL4'/-*I,.IITCLCrlllffgICIllllIIT'PRf/Terl4SSCCCktfRIFCgILLILSTSLIgItftltT~CI~F4ILV~TKmCTTLlgltLtIllLTTIlMltILLffRf/LLI%45g$5s<ss~dQfl~TLCVTTLLITRT~4l ~, 7.6.3.8DIRECTPOSITIONINDICATIONOFRELIEFANDSAFETYVALVES,TMIITEMII.D.3Acousticvalveflowmonitorsareusedtoprovidedirectpositionin-dicationofpressurizersafetyvalves'(SRVs)andpoweroperatedreliefvalves(PORVs).7.6.3.8.1DESIGNBASISa)Valvepositionsaremonitoredacousticallyandindicatorsandalarmsareprovidedinthecontrolroom.b)Acousticflow':-monitorsarepoweredfromavitalinstrumentbusandaredesignedasseismicCategoryI.c)Theacousticflowmonitorsarequalifiedfortheappropriateenvironment"'(a'ytransientoraccidentwhichcausesthereliefor,safetyvalv'etoopen).7.6.3.8.2DESCRIPTXONThemeansofdetectingpressurizersafetyreliefand,poweroperatedreliefvalvepositionisbycontinuouslyandautomaticallydetectingaccusticalsignalsgeneratedbyflownoiselevelsthroughthevalve.Thisisaccomplishedbyutilizingaccelerometersmountedonthevalvebody.Theaccelerometerconvertsacousticalaccelerationintoanelectricalchargewhichisconvertedtoavoltagebythechargecon-tverter.Thisproportionalvoltageisthenprocessedandarelativeflowindicationisobtained.~~4f/freeFive'alveposition.monitorsareprovided,~forthe>pressurizersafetyreliefvaly~and+<~~oPORVr.Acommonaudio-visualalarmalertstheoperatorswhenflowthroughanyofthefivevalvesexceedsapre-establishedsetpoint.Thesesetpointscanbead-justed'fromthe'.controlroom.JThesystemispoweredfroma120VAC60Hzuninterruptablepowersupply(UPS).Analarmis'initiateduponloss,ofinstrumentpower.Theindicatormodules,ar'elocatedintheControlRoomAuxiliaryPanel.ThesystemisqualifiedinaccordancewithIEEE-323-1974'344-1975.Theaccelerometers'ndchargeconvertersarelocatedinsidethecon-tainmentandare"',subjectedtothecontainmentenvironmentduringandfollowingasmal'1breakLOCA.Thesecomponentsaredesignedandtestedtowithstandandremainoperablefollowingthepostulatedaccident.Various'componentsoftheacousticvalveflowmonitorsareidentifiedinTable7.6-2.I
a)theuseofthisinformationbyanoperatorduringbothnormalandabnormalplantconditionsb)integr'ationintoemergencyconditionc)integrationintooperatortrainingandd)otheralarmsduringemergencyandneedforprioritizationofalarms76.3;8.3EVALUATIONAsabackuptothisreliablesingle.channelenvironmentallyqualifiedsystem~vg6lc5fcmm'en()g~<eh~switchesareprovidedforthepressurizerPORVsanddischargetemperatureindicationforthepressurizersafetyreliefvalvesareused.Thksebackupmethodsofdeteuniningvalve'ositionarediscussedintheemergencyprocedures.)Thedisplaysandco'ntrolsaddedtothecontrolroomwillbeincludedinthedetailedhumanfactorengineeringstudytakingintoconsider-(iation( I TABLE7.6-2ACOUSTICVALVEFLOWMONITORCOMPONENTSAcousticalSensorslo4~m~kv-testedandqualifiedtoIEEE344and323forthecontainmentenvironment.ChargeConverters/galcAAl4~6eY'estedandqualifiedtoIEEE344and323forthe-containmentenvironment.IndicatorModulesmQv-5testedandqualifiedtoIEEE344and323forthecontrol'roomenvironment.AlarmModuletestedandqualifiedtoIEEE344,and323forthecontrolroomenvironment.'CablefurnishedasClass1E.50feetoflownoise,hightemperaturecable,connectseachvalvesensortoitschargeconvertor. 0 ~~3.7REACTORCOOIJPlT'ASVENTSYSTEM3.7.11.1Desi.nBasesFunctionalRequirementsThereactorcoolantgasventsystem(RCGVS)isdesignedtoperformthefollowingfunctions:A.Theprimaryfunction.ofthesystemistoallowforremoteventingoftheReactorCoolantSystem(RCS)viathereactorvesselheadventor'pressurizer,steamspaceventduringpost-accidentsituationswhenlargequantitiesofnon-condensiblegasesmaycollectinthesehighpoints.B,Asasecondaryfunction,thesystemmaybeusedinnormalRCSventingproceduresrequiredforaplantoutage..3.7.1.2DesignCriteria.FlowRateThebasicpurposeoftheventsystemistoremovenon-condensiblegases(primarilyhydrogen)fromthe.RCSinatimelymanner.~'1)Thesyste'misdesignedtovent,non-condensiblegasfromtheRCSinareasonableperiodoftimeoverawiderangeofreactorcoolanttemperatureandpressureconditions.Overtherangeofconditions.consersidered(pressuresfrom250psiato2250psiaandtemperatures0offrom200Fto700F)thesystemisdesignedtoventone-halfotheRCSvolumeinonehourwiththeventedvolumeexpressedinstandard"cubicfeetofgas.(2)Attheupperend,flowthroughtheventsystemmustbelimitedtoavoidexcessivemasslossfromthereactorcoolantsystem.Byutilizingflowrestrictingorifices,theRCGVSisdesignedto'.a)Limit't:hecoolantliquidlossthroughtheventtothemakeupcapacity.ThislimitsthemasslosstobelowthedefinitionofaLOCAin1OCFR50,AppendixA.~0f'\b)Limitthevent'massratesuchthatventingdoesnotresultinheatormasslossfromtheRCSwhichwouldresultinuncontrollablepressurizerpressureorlevelchangesunderemergencyconditions,Vithallheatersavailable,theheatlossiswithintheheatercapacity~B.Controls"Theventsystemcont:roisaredeignedtoallowventingunderaccidentconditionsandminimizethepotentialforinadvertantoperation.Specifically:I)Thesystempermitsremote(controlzoom)ventingfromthereactorvesselheadorthepressurizer.2)Theventsystemisoperablefollowingalldesignbaiseventsexcepthoserequiringevacuationofthccontrolroom,andlossofallAC~power(plantbackout). Ilg1i 3)Controlroompositionindicationisprovidedforallpoweroperatedvalves.4)Tominimizethepossibilityofinadvertentoperationofthesystem/administrativecontrolsonvalveoperationareprovided-5)TheRCGVSisdesignedforasingleactivefailurewithactivecomponentspoweredfromtheirrespe'ctiveredundantemergencypowersources.Parallelventpathswithvalvespoweredfromalternatepowersourcesareprovided.Thesolenoidoperatedvalvesarepoweredfromsafetygrade125VDCpowersupplies.Powerisremovedfromthefailclosedvalves,byutilizingkey-lockedcontrolswitches,tominimizethepossibilityofinadvertentoperationduringnormaloperation.'.PipingandArrangementl)Theventpathissafetygrade,andmeetsthesamequalifications.astheRCS.RedundanceintheventpathisprovidedandessentialpipingandcomponentsareSeismicCategory1,SafetyClass2.2)ThesystemIsdesignednottointerferewithrefuelingmaintenanceactions.Systempipingisflangedvhererequiredtofacilitateremovalofcomponentsthatmightinterferewithrefuelingoperation.~.3)Ventathsareprovidedtoboththequenchtankandcontainmentatmosphere.Thequenchtankpathallowsforcoolingofgasesandcondensingvatervaporbyreleasingtheventedgasesbelovthevaterlevelinthetank.Thecontainmentventpathterminatesfintheareawheregoodairmixingandmaximumcoolingpropertiesexist~'-4)Theventsystemmaterialsaredesignedtobecompatiblewithuper-heatedsteam,steam/watermixtures,water,fissionpses,helium,nitrogen,andhydrogenashighas2500psiaand700F.3.7.2.1SummaryThesystemisdesignedtopermittheoperatortoventthereactorvesselheadorpressurizersteamspacefromthecontrolroopcontons,andiidisoperablefollowingalldesignbasiseventsexceptthoserequiringevacuationofthecontrolroomoracompleteossoapower.eventpaThathfromeitherthepressurizer'orreactorvessdfromemerencyfosingleactivefailureproofwithactivecomponentspoweredogpoversources.Parallelvalvespoveredoffalternatepowersourcesareintheeventofproveatoiddbthventsourcestoassureaventpathexistsisstemrovidesasinlefailureofeitheravalveorthepo~ersource.Thesystpasngeaureoeidirectlorto.thequench8redundantventpatheithertothecontainmentdirectyoro.ak.TheuenchtankrouteallowsremovalofthegasfromtheuencomtheRCSvithouttan.equenctheneed'toreleasethehighlyradioactivefluinocotequencanfhhtankprovidesadischargelocationwhichcanbeusedtostoresmaquantxtesoalliofgaswithoutinfluencingcontainmenthydrogentrationlevels.However,venting,largequantitiesogas.toetankvillresu1tinruptureofthequenchtank'rupturediscprovidingasecondpathtocontainmentforventedgas. 0 lCocrlingofgasventedtothequenchtankisprovidedbyintroducingthegasbelowtheq'uenchvolume.Thedirectventpathislocatedtotakeadvantageofmixing<andcoolinginthecontainment.~g~~~lpThesystemisdesignedwithaflowlimitingorificetolimitflowsuchthat"themass'flowrate'ofreactorcoolantsystemfluidoutoftheventislessthanthemakeupc'apacityofasinglecoolantchargingpump.Thiseffectivelylimits'heflowtolessthantheLOCAdefinitionooflOCFR50AppendixA.TheventratelimitationalsoassuresthatRCSpressurecontrolisnotcompromisedbyventingoperation.ThesystemhasthecapabilitytoventlargequantitiesofhydrogengasfromtheRCS.,r.'r",Althoughdesignedforaccidentconditions,thesyste'.maybeusedtoaidinthepreorpost-refuelingventingofthereactorcoolantsystem.VentingoftheindividualCEDNsandRCPswillstillbenecessary,however,pressurizerandreactorvesselventingcanbeaccompliaomlishedwiththesvstemg<<hpcrea45emu:~cpccrriCifdesired.VentflowcanbedirectedtothequenchtankorIorthŽisoperationtopreventinadvertent'eleaseofradioactivefluidtothecontainment.~;3.7.2.l.lAsshown'n'PAID,(Figure9.37),non-condensiblegasesareremovedfromeitherthepressurizerorreactorvesselthroughtheflowrestrictingor5.ficeandoneoftheparallelisolationvalvesanddeliveredtothequenchtankorcontainmentviatheirisolationvalves.Ventingunderaccidentconditions'ouldbeaccomplishedusingonlyonesource.(reactorvesselorpress'urizer)andonesink(quenchtankorcontainmentatmosphere)at,agiventime.NormalOperation'"Thissystemisnotintende'dforuseduringnormalpoweroperationandadministrativecontrolsareprovidedtominimizethepossiblityofin-advertantoperation.Additionally,powerisremovedfromallvalvesduringnormalplantconditions.3.7.2.1.2Duringnormaloperation,leakagedetectionismaintainedbyuseofthepressureinstrumentation.Ariseinpressurewillindicateleakagepastanyofthesystemisolationvalves.SmallleakageratescanbedeterminedbyconductingRCSleakratecalculations.Largerleakageratescanbedeterminedbydirectingleakagetothequenchtankandmonitoring1hange~C',M~~cvcrvcM~h~ju0M+Aoxi~c'coutrrrosWo+A+~~gJtankl.evelchan<emAccidentOperationOperationoftheRCGVSduringaccidentconditionswillvarydependingontherateofgasrgeneration.Forlowgasgeneration'rates,gasfromwithinthereactorvesselorpressurizerisventedtothequenchtanank.Reactorand/orpressurizerventvalvesarelinedupandthegasreleaseasedtothequenchtank.Honitoringofquenchtankpressureisnecessaryduringthismodeofoperation.Fromthispointthegascouldbedischargedtothegaseouswastemanagementsystemifit,isavailableforuse.Forhighgasgenerationrates,gasesmaybeventedtothecontainmentatmosphere. 'h0 TheRCGVSwillbe.operatedasanon-offsystemtoremove'gasfrom.theRCS.Thevolumeofgastoberemovedisdeterminedbyreactorvesselorpressurizerinstrumentationandthorntheventingtimeisdetermineddependentuponthisvolumeand"ystemtemperatureandpressure.3.7-2-2ComponentDescrip'tiontITherearenomajorcomponentsintheRCGVS.Theentiresystemconsistsofpiping,valves,and"pipefittings.Allpipingandvalvesareconstructedof-austeniticstainlesssteelsandareNuclearSafetyqualifiedaccordingtotheClassasindicatedonFigure9.3-7.'Pipingsystemsupportsandallvalvesarealsoseismicallyqualified.Poweroperatedvalvesaresolenoidoperatedtypedesignedtofailclosetominimizeinadvertentoperation.Redun'dancyinvalvearrangementandpowersupplyisdesignedtomeetthesinglefailurecriterion.Partofthepipingsystemincludesorificesatthepressurizexventandreactorvesselheadvent,bothsizedtomeettheflowrequirementsofsystemdesigncriteria.3.7.33.7.3-1SafetEvaluationHUPerformancere'quixements,capabilities,andreliabilitiesTheabilityto,venttheRCS-eitherreactorvesselorpressurizer-'nderaccidentconditionsisassuredbyprovidingredundantflowpathsfromeachventingsource,redundantdischaxgepaths,andemergencypowertoallpoweroperatedvalves.Asingleactivefailureofeitherapoweroperatedvalveorpowersupplywillnotpreventventingtocontainment(eitherdirectlyorthroughthequenchtankdependentuponfailuremode)fromeithersou'rce..3.7.3.2PipeBreakAnalysisConsistentwith+Cxequirements,theRCGVSisdesignedtolimitmasslossto,lessthanaLOCAasdefinedin10CFR50,AppendixAandthusaseparateanalysisofinadvertentsystemoperationorpipebreakageisnotrequiredtomeet10CFR50.46.Thepressureboundaryofthenormallypressurizedportionoftheheadventsystem/protected.fromtheeffectsofpostulatedpipebreaksinthemainloopcoldlegpiping,orbranchlinestothecoldlegs,ornon-RCPB"piping.Thepressureboundaryofthenormallyunpressurizedportionoftheventsystemisprotectedfromtheeffectsofpostulatedpipebreaksin.non-RCPBlinesforwhichventingwouldberequired.,Theflowfunctionoftheventsystemisprotectedfromtheeffectsoffailuresforwhichventingwouldberequired.LeakageDetectionandControlThecomponentsoftheRCGVSareprovidedwithweldedconnectionswhereverpossibletominimizeleakagetotheatmosphere.However,flangedconnectionsareprovidedonthereactorvesselventlinetoallowdisassemblyforrefuelingmaintenance.Systemvalvesareofthepacklesstypetominimize
- I IIleakage.'Leakage'Pastthesystemisolationvalvesintothenormallyznpressurizedportionofthesystemisdetectedbyprcssureinstrumentation7.3.5NaturalPhenomenaCRCGVScomponentsa'elocatedincontainmentand,therefore,arenotsubjecttothenaturalphenomenadescribedinChapter3otherthanseismic.Allcomponents,pipingandsupportsintheRCGVSintheNuclearSafetyClass12andNon-NuclearSafetypipingarespecifiedanddesignedasSeismicCategoryI.Pipinghasbeenanaly"edandsupportedinaccordancewithSt.Lucie2seismiccriteria.Allvalveshavebeenanalyzedandtetedforoperabilityduringaseismiceventbymanufacturers.Table9.3-$providesatabulationofSeismicCategorylvalveswnoseoperationisreliedupontomitigatetheconsequencesofanaccident.kFailureModesand,EffectsAnalysisVTable9.3-9showsafailuremodeandeffectsanalysisfortheRCGVS.At~lastonefailureispostulatedforeachsafety-relatedcomponentof~easeentedtheRCGVS.Ineachcasethepossiblecauseofsuchafailure'ispresenteas.wellasthelocaleffects,detectionmethods,andcompensatingprovisions."7.4InsectionTestin~ReuirementsEachcomponentis,inspectedandcleanedpriortoinstallationintotheRCGVS.Theinstrumentwillbecalibratedduringpre-operationaltesting.Thevalvesandcontrolswillbetestedforoperabilityfollowinginstallation.ComponentshavebeenspecifiedandpurchasedasSeismicCategoryIandNuclearSafetyClass~hererequired.VendorshavesubMantiatedeitherthxoughtest,calculationaland/oroperationaldatathatsystemcomponentstrill.remainoperableunderthedesignseismicloads.Vendorshavetested'andinspectedallsafetyclassequipmentinaccordancewithapplicableASMEandIEEEcodes.>.7.5InstrumentationReouirementsThesystemisdesignedtobecontrolledremotelyfromthemaincontrolroom.Allover-operatedvalvespoweredfromemergencypowersourcesandalternatesourcesareusedasnecessarytomeetsinglefailurecriteria.Positionindication(open/shut)"isprovidedforallremotelyoperatedvalvesanddisplayedinthecontrolroom.~75.1PressureInstrumentationVentheadexpressureinstrumentationisprovidedtomonitoranyvalveleakage.Pressureindicationandhighpressurealarmarelocatedinthecontrolroom.
7)NSTR(%qEN~pFoRlRAD~.QUA~c.CQPCCQoL,lbJ&I(0sPOS.-A)QtSPLAYPL@)VT'bJo~Sa<+~PAD>oLa61GWl)NpgT'atyrspAaema~zaD>spsAYs~s~s&SCUMR>t-Mzx><.</c.915PL.Af)50LAT'loll~KVtCC+V]TaiPLAVTSySTaH+TRAINnie6+9IT'AL,PLAluTPAzAHevsgsgSP,rawYGRRoa~WRt'-1VST'eZSuTIN'espos-8)<Xll'/gISOLATl0~D)SPI.Ay('sA~~AsABovs)GABERsRQOVQD1SPl.AYOpv)c,E 0 Apendix5.2BAHALYSXSOPNATURALCXRCULATXONCOOLDO'IlhNXTHOUTUPPERHEADVOXDXNGDFCENBER1980NUCL<~%AVv.ALYSXSDEPARWilENTPLORXDAPO'HERAvVDLXGiiTCO:1PAVY gTRODUCTXO~teva3.uationofnaturalcirculationcooldowntosudd275antsst.empressuremust..bereuceoon.Consequent3.'ytopreventtheforshutdowncoolinginitiation.onseqeuerheadfluidmustcooerma'huppvaluelessthanthecorrespondingsaturatxontemperathttde-pressurizationtoshutdownementconditionscanoccurwithoutvo3.dnt-Hot.legtemperatureatesof30P/hrand50Pghrto32Pfrerecooldo~ratesothecooldovntimerequi.xedfortheinvestigatdtodetrmineo1terneratux'einthereactorvesseluppereaosdtionswithoutvoidformationshutdown.coo3.ingentrycond3.t3.ons.THEK~ZZ-HYDBAUL3;CblODFLd,thadetai3.ed,therma3.-.hydraulicTheanalysisa~aspexformeu3.TheRETRAl%(Reference1)computercode.<~~odetutilizingthenn8pchmaticgdes.adescxiption,oxthesevolumes,junctions,anconductors.Specificfeaturesox.theactor'ftheupperportiono.exedetailednodal3.zationoctorvesselwallsudinarepresentationoftivereaci.*3.tdflo"fcontrova3.veand,lS.anumberOXautOmat3.CCOnOlthoseforcnarggpspi1tdinums,theletdownthepressurizerheaters,"andanon-equ3.iriumhydraulicmodelforthepressurizer.AHALYS3;SRESULTS218,500galI,esameckna~ys3.sfoaoeght1temperaurecooldomzrateof'h~to325Pdemonstratesthatthereactorabout50P/hrtosto409.5r(shutdowrxcoo3.ingvesse3.uppex'adflu3.dcoolentryMond3.3.0".ls)3.h142~'igurdq-3.Thecondensat.esupplyrequ3.reor~i/I193,000ga3.1ons.'oU't.1naturalcirculat3.oncooldo~nrecooldo:~rat1sisofaSt.Luc3en3.n~~'Cfomfull.power'.forahotlegemper~095~7(~hutdowncoolingvesseluppexneadfluidcoolsto4eresultsarepresentedin4zentrycond'ons)i3.~reuiredforthi'ooldo.gn3.SPigure5+-3Thecondenatesupplyrequ3.rexoons~rateofaboutnalsisforahotlegtempraturecooldo..~r50P/hrto325Pasrepeateassumptionsregard3.ng:pfluidmiming3.neupaboundingcooc.o;~m3.nordertodetermxnegll3.de13.nes~~ee~Theresultsdemonstratethate pp<<headf1u>dcoolsto40m.5P(sh<<<<wn<<>>>>gentycondxtz.ons)xnd'25'hou-s.Thecondensatesupp3.yremiredforethiscooldownis270i'00gallons~RECONNr.".TDAT3:OHTheaboveresu1tsshowthatforahotlegtemperaturecoo1downrateof50P/hrto325~P,theupperheadfluid.canbecooledtoshutdowncoo3.ingsystementrycondit.ionswithoutvoidformationinapproximate1y14.2hours-Xnordertoprovideadditionalconservatism,itisrecormnendedthatfornatura1circulat'ncoo1detoshutdowncoo1ingsystementryconditionswithoutvoidformation,thehotlegtemperaturecoo1Gownratebeabout50P/hrto325Pfollowedbyasoak~.at325Pfor20.'4hoursfor.atotalcooldowntimeofapproxxmaeyte125.7hoursfromcooldowninitiationPigureecondensat.eshoestherecommendedplantcoo1do>enrate.Thecondensaesupplyrequiredforthiscoo1downis270,500gal1ons.REPKRE~iTCE:(3.)RETD%-A.ProgramPorOne-DimensionalTransientThetTherma3.-HydraulacaysisAn3.'fCo~p1exF}.uidP1ocrSystems,Vo1ume's2g354,EPR3:CCi~1-5,Decemberl978. TABLE2~tlODELGEOtM~TRYDESCRXPTXOHFLUXD,VOLUMEDESCRXPTXOM2Combinedhotlegvolume.Combinedsteamgeneratorinletplenum~vo3.ume.3Combinedsteamgeneratortubevolumefromtubesheetto'topoftubebundle.Combi.nedsteamgeneratortubevolumefrom.topoftubebundletotubesheet.Combinedsteamgeneratorouletplenumvolume.Combinedcoldlegvolumeupstreamofreactorcoolantpump.Combinedreactorcoolantpumpvolume-Combinedcoldlegvolumedownstreamofreactorcoolantpump.hReactor'esse3.domcomervolume.10Reactorvesselinletplenumvolume.Corevolume-16Volumefromtopofactivecoretofuelalignment,plate.Outletplenumvolumefromfuelalignmen"platetoupperguidstructuesup:ort'late.3.3CEAshroudvolume.17Upperheadvolumefromupprguidestructuresupport,plateto"opoCE~shroud..3.4'pperheadvolumeabovetoeofCEA,Shroud.32Surgelinevolume.Pxessurirervolume.Steamgeneratorshe3.1idevolume. /0 4~TABLE1(continued)MODEL'.GEOi~tETRYDESCRXPTXONPLONZUNCTLONDESCRXPT3:OiTPlowfromvo3.ume12tovolume1.2Plowfromvo3.ume1tovolume2IPlowfromvolume.2tovot.ume3Plowfrom,volume3tovolume4Plowfromvolume4tovo3.um5.Plowfromvolume5tovolume6Plowfromvolume6tovolume7.8Plowfromvo3.ume7tovolum8.P3.owfromvolume8tovolume9.10P3.owfromvolume9tovo3.ume10-17Plowfromvolume10tovolume11.Flowfromvo3.umelltovolume16.12Plowfromvolume16tovolume12.Plowfromvolume3.6tovolume13.~'Plowfromvolume13tovolume3.7.Plowfromvolume17tovolume3.2.Plowfromvolume14tovolume17.3536Plowfromvolume32tovo3.ume1-Plowfromvolum34tovolume32.37Sprayflowtovolume34.38I39ChargingSlowtovolume8Letdownflowfromvo3.ume6.
TABLEl(continued)blODELGEOi~KTRXDESCRXPTXOHPLOMJUHCTXOHDESCRXPTXOH81'eedwaterflowtovolume51.Atmosphericreliefvalveflowfromvolume51.'83SteamBypassvalveflowtocondenserfromvolume51.Steamdumpvalveflowtocondenserfromvolume51.Steamflow"oturbinefromvolume51
TABLE1('ontinued)-~HPWTCOiTDUCTORMODEL.GEObKTRYDESCRXPTXOHDESCRXPTXOM-Puelconductorconnectingfueltovolum11Steamgeneratortubesconnectingvolume3andvolume51.Steamgeneratortubesconnectingvolume4andvolume51-Metalinreactorvesselwallsadjacenttovolume14-kletalassociatedwithupperheacLdriveshaftsinvolume14.MetalassociatedwithCEA.shroudsconnectingvolume13andvolume17.MetalassociatedsaithCEAhroudsconnectingvolume13andvolume12.Metalassociat.edwithCEA,shroudsconnectingvolume13andvolume12.Upperguidestructuresupportplateconnectingvolume17andvolume12Metalassociatedwithupperguidestructureadjacenttovolume12-Metalinreactorvesselwalladjacenttovolume17.Aneffectiveconducto-toallowa:<ialneatconductionbetweenvolumes14.andvolu;..17- ~~~ ll~Q~~I~~t~0II~ilII Il LSLmWW
4~~~~~~~I~~0~~~I0~gt) i'IAPPENDIX5.2C~~NaturalCirculationCooldownAccmbinedthermal/stressanalysiswasperformedtodeterminetherangeofstressesproducedinthereactorvessselheadduetovoidingof'heupperheadregion.Inperformingtheth'ermalanalysis,"worstcase"assumptionsweremadindefiningthefluidtemperatureandinitialvesseltemperatures-Thassumptionswhichdefinethethermaltransientareasfollowsandil'iustratedonFigureaS.~C-I1.Theupperheadisdraineddowntotheupperguidesupportstructureplatein20minuteswithbothfluidandmetaltemperaturesremainingat600'F-2.Thewaterlevelisheldatthisheightfor40minuteswithafluidtemperatureof300'F.3.Theheadisrefilledovera20minuteperiodwith300Fwater.Theupperheadremainsfilled5.Theheattransfercoefficienthr-F)-'ith300water=oraperiodoftime-forthewaterislarge{H=500Btu/ft6.Theheattransfercoefficientforsteamisverysmall(H=O.Gtu/ft~-hr-oF)Temperaturescalculatedforthistransientwereappliedtoastressana1ysismodel.Theres'ultsofthisanalysisindicatethatthehigneststressesoccurin'the"knuckle"",egiono'ftheheadnearthe.insideradius.Themagnitudeofstressesproduced'f'rthistransientwerefoundtobenomoreseverethanthostressesoccurring'uringanormalcooldownof100'F/hr.Inadditiontheresultsofthisanalysisdemonstratethat:Il.Amorerapidrefilloftheheaddoesnotcausehigherstressessince~-thethermalconductiIitythroughthereactorvesselwallisthlimiting!:eattransfermechanism.'2.Thewaterlevelholddowntimedoesnaveaneffectonthestressesinthehead.Longerholddowntimesdecreasehestressinthe"knuck1e"regionbecauseofaxialheatflowwhichre'novesheatfromthhead-3.'Thethermally-inducedstressesinthenozzle.regionofthereactorvesselaresmallincomparisontothtressesduetopressureloadingonly.
Thedeformationsandrotationsinthecontrolelementdrivemechanismnozzlesarenegligible.duetothethermaltransient.5.Noseparationoccursatthe0-ringsealregionoftheflange,hence,noleakageoccurs.' FORCItlGFUt'ACTIOHUSEDFORTHERtlALTPSi'ISIEHTHEIGHT.OFHATERFULLQGSSPLATE20min.Il160min.80min.lII[f120min.130min.600'FTB'iP.OF'.HATER.300'F20min.60min.80min.120min.130min.Figure1 A ~v.s.z'7.5.3.1TMIRELATEDADDXTIONALACCXDENTMONXTORXNGINSTRUMENTATXONI.TMIContainmentPressureMonitors7.5.3'.1XnCompliancewithNUREG0737permanentlyinstalledwiderangecontainmentpressuremonitorsareprovidedforpostaccidentmonitoringofcontainmentpressure.DesignBasesa)Measurementandindicationcapabilityisprovidedowerarangeof-5psigtofourtimesthecontainmentdesignpressure(175psig)b)Safetyrelatedredundantinstrumentationchannelsareprovidedtomeet.thesinglefailurecriteria.c)Theredundantcontainmentpressuremonitoringinstrumen-tationchannelsareenergerizedfromindependentclassIEpowersources,andarephysicallyseparatedinaccordancewithregulatoryGuide1.75"PhysicalIndependanceofElectricSystems"January1975(Rl)d)ThecontainmentpressuremonitoringinstrumentationisqualifiedinaccordancewithXEEE323-1974forthedesignbasesaccident,environmentinwhichtheyoperate.')ThecontainmentpressuremonitorsaredesignedseismiccategoryIandqualifiedpertheIEEE344-1975criteria.f)Continuousindicationandrecordingofcontainmentpressureisprovidedinthecontrolroom.'g)Eachinstrumentcoverstheentirepressurerange.'th)Themonitoringinstrumentationinputsarefromsensorsthatdirectlymeasurecontainment,pressureandprovideinputonlytothecontainmentpressuremonitors.i)Aninstrumentationchannel.isavailableduringnormaloperationpriortoanaccidentasspecifiedinplanttechnicalspecification.j)Testingandcalibrationrequirementsarespecifiedinplanttechnicalspecificationk)Theinstrumentsarespecificallyidentifiedon,thecontrolpanelssothattheoperatorcaneasilydiscernthattheyareintendedforuseunderaccidentconditions.~~7.5.3.1.2DesignDescription,Thecontainmentpressuredetectorsareelectronictrans-mitters'(Rosemount1153GB7)mountedoutsidetheReactor t 7'.3.1.3containmentBuilding.Thedetectorsutilizeindependentsensinglineswhichpenetratethecontainment.Anormallyopenf'ailclosedsolenoidvalvewithremotemanualcontroloperatedfromthecontrolzoomisprovidedforcontainmentvolationforeachloop.Theredundantcontainmentpressuremonitoringchannelsareprovidedwithindicatorsinthecontrol-roomandoneofthechannelsisrecordedinthecontrolzoom.InstrumentloopaccuracypprovidedinTable7.5-1SafetyEvaluationTheTMIcontainmentpressuremonitorsaredesignatedseismiccategoryIanddesignedtotheQualityGroupBstandard.Twomorecharm'elsofcontainmentpressuremonitoringinstrumentationswitharangeof0to60psigarepro'videdaspostaccidentmonitors(refertoTable7.5-1).HenceintheunlikelyeventwhenthetworedundantTMIcontainment,pressuremonitordisplaysdisagreetheoperatorhasavailabletohisdispositiontheseothermonitoringchannelsforverificationpurposesasdescribedintheplanttechnicalspecifications,Channelcalibrationandchannelcheckareperformedperiodically.7.5.3.2TMIContainmentNaterLevelMonitorsIncompliancewithNUREG0737,permanentlyinstallednarrowandAiderangecontainmentwaterlevelmonitorsareprovidentfor'ostaccidentmonitoring.Thenarrowrangeinstrumentcovers'herangefromthebottomtothetopofthereactorcavity'sump.Thewiderangeinstrumentscovertherangefromthebottomofthecontainmenttotheevelationequiv-alent:to600,000galloncapacity.7.5.3.2.1DesignBasesa)"Safetyrelated,redundantwiderangewaterlevelmonitorsareprovidedtomeetthesinglefailurecriteria..ThewiderangemonitorsaredesignedtoseismicCategoryI-'re'quirements.b)-TheredundantwiderangewaterlevelinstrumentationchannelsareenergizedfromindependentclassIEpower"sourcesandarephysicallyseparatedinaccordancewithRegulatory,Guide1.75"PhysicalIndependenceofElectricSystems"January1975(Rl)-c)One'arrowrangecontainmentwaterlevelmonitorisprovidedd)BoththenarrowandwiderangecontainmentwaterlevelmonitoringchannelsarequalifiedtoIEEE323-1976forpostaccident.environmentinwhichtheyoperateSeismicqualificationperIEEE344-1975isalsoprovided-e)Continuous,.indicationandrecordingofcontainmentwaterlevelisprovidedinthecontrolroom. 0 0'ble9.3-9ValveHo.DescriptionSire(In.)TypeActuaCionTypeV1462V1460V1461V1464V1465V1466ReactorVesselVentisolationReactor'.VesselVentisolationPrcssu'rizerVentisolation'ressurizerVentisolationguenslsTank'VentisolationContainsssentVentisolationContainmentVentisolationGlooeGlobeGlobe-GlobeGlobeGlobeGlobeSolenoidSolenoidSolenoid'olenoidSolenoidSolenoidSolenoid lrrtiuraModesEffectslhaiub>apnrfowslouptcusutuIndica>>tfonfluenchTant?asiaaoPailsOpen',tlonValveY1464>~~CausaIKfcccro-c>cchsnIcolfailure,set1>ointdriftElcctro-rnuclrunIcolfailure,sot>>pointdrift*}Ical>;rnfcol5frrdlng~ScatLe.rkcgcb.Paf.loClonedItechanicalFailure,'LossofPoucr~\PaiLuro~>>dePrassuraindicatoraospurioushighPj-1140prcssureIndfca>>'tIUrr/1IarreSymptomsandLocalKffcctoIncludIn'crrdcntPnilutesNoImpactonnormalopetncfun.I.ossofabilityt,odetectleakageIntoClruvcnCsystempiping..Boimpactonnntrcnlopctstinn..l.osuofabilitytodecoctlcnkagointothcventaystcmpiping.HethodofDetect>anVdlvopositfo'nindfcacfanfnthoControl'tours,.Valvepositionfndfcncfunfnthocontrolroam,Pago4r>~ttXnharcntCorspensotendother>~au>at>ne:eaHunuPoet-Ahcr4cntventinglsnotaffectedfionaYu>rC-htcIdentventlrl;IsnotaffectedinabilityCoisolatequunclltantfromchetcndcorcoolantgasventaystcrr>~~ou>>anHofr>>pactonnorr>~loperation.Inabilitytovent.preasurfrerorreactortoquenchtank,.,Valvepositionindi>>cationfnchacontroLroorsoValvepositionindi>>cationinthe'controLroow~Operator.IfonoRedundantfsulr-tfonvalvesCoChcreactorvessels>>dpter'urfxcr'precfutuncontrolledvrIrigCuChe'uertenk.VentingCothe~Cr>ntc1nmcrrCIspossible,fInccusa.rtySuoororoethotoecoo>nohcaot>a~no8area3..PressureInstrucentisolationVaiveeY1467YPIS11404<PaflaOpenHcchsnfcalSfndfng,Seat-LeakageNplr4~~~'peO'At4c'gedundaatValves~~biFaffaClosedMechanicalFsIfuteLossofabilitytodetectseatleakagefroathopresaurircrarfdteactorisolationvalvesintothereactorcoolantgasventaysterepiping.OperatorUnlikelyeventsincevalveIrnormallyopenandhcconlyrr>anus1opttscr4ConcafnrlentIsolationVolvoY1465Y1466~~a>PaflnOpenHcchanfcelIindfng,SentLeakage~~InabilitytoisolatereactorcoolantHfghcontainc>entpressureHonoVCntayaterefrO>SCOntainment.andhursidityifventingfninprogressoValvepositionindicationinthecontrol>>~~o~4)Redundantfsol,CionvalvesCothereactor.VesselsntfptcutltetprecfuJ'untorrCto11edv~fngtoCheContsfnmcut~
0'ressurizerVentIsolationvalveY1460Y)461e~0sinfortReactorCoolantCaaSymptonsndLocalEffcctaIncludfnpDcenffcntFailuresI'dffbfeMedenKffeeeeAnefVentSyetjf5~MethodofDetectfonFailureModeft,PoffeClonedCenceMeohnnfeofFaflure,LoseofPoucrtotheValveMoimpactonnorraloperation.Inabffftytovent,prssurfzcrorreactortocontafnncnteValveposftfonindifeationLnthecontrolroon,Operator,a,FntlaOpenValveposftfonLnJffootionLncontrolroon.PT-1140hitchpresaurafnJfcotfon~~o~~b.PailsClosedMechanicalFailure,LocaofFoucrInabilitytqventtha'ressurizer.~~~0ooValvepositioninthecontrolroora,Isolatfonvalve.Operator.oMechanicalHoffffpactonnorfnaloperation,Bfndfng,SeatZnubflftytoventthoreactorLeakagevesseluitiudutalsoventingpressurizer.ThfsLasatfsfactorpanduffl'notLPMpactnaturalcfrculatfon.ooInherentConpchsagngPoofofonParallslwedsadsnttooiatfoavalve4fnoo$W.p,a.r~gqj>>u-'~'-.c.i.;,l',a~Mdd<.redoQHoneParalIOI'edundantioolatioavalve,~~Fee5fa!XandbtbEf(sets~Ventfrfgtothequenchtankffpossfbfoifncces>>ryeRcdf>ndadptisofatfonvaluestoCOff(afna,enfy1455Y146andqu<<nchtafAY1464pr<<eludesunconlro>Irventingtotilepru>SofazeroParwll<<fisulatfonvalve31louvcnifngofthuprcs-surfaer.ReactorVesaeiVentIsolationVa1vaY1462Y1463~~af.PatioOpenbMPailaClosedMechanicalBLndfng,ScatLeakageMechanical,Failure,LocaofPaverNoinpactonnoraaloperation.'nablotoventpreaaurLzervtthoutalsoventingthcReactorVessel.ThfeiasatisfactorydfndufllnotinpactnaturalcirculatLoneInabilitytoventthareactorvessel,0~YalveposftLonindfcatfoninthecontrolroon.PT-ll40highprcssureindication.ValvepositioninthecontrolrooneOperator.~~HoneParallelredundantisolationvalve.ROJundantLsolatfunVafleestocurfc~lnnuntY1465,Y1466anJY1464prccludusuncon'tro11cdv<<nt'fnofthureactorVcsetfoParallelLsofatfonvh1ven311oeisventingoftlfureactorvessel~dn~~ 0 ~~PolluteHodeFailureHadesEffectsAnni~CauseSynptonsnndLocalEffectsIncludingDependentEntlurcs~Hcthodof~DctcctfonTable9.3-siafortheRcacto-Coo'tantf~sVentSsteraPag43of3InherentCorapensnttngFtovfstonR.enny.nndotherEffectsPositionIndfca>>totforY>>462iY1463PosttfonIndtcatotfotY1460Y1461PosfttonIndfcatorfotY1464PaleaindicationofvalveponttLonFalseindfcntfonofvalvepost'ttonPaleoindfcntionofvalveposftforlElectro-mechsntcalfnflure,Elcctto-mechnnfcnlfnifurerElectro-mechanicalfailurerLoanofabilitytodetectvnlvopsoftfonfnrcnctotvesselventline.Lossofnbflftytodetectvalveposttioninpressurizervent1frrc.LossofabilitytodetectvolvopositioninquenchtankventIinc.PrcssuregaugePT-1140in>>>>tea~tionehousvalveLsopened.PressuregaugoP<-1140tndfcatfur1s>>rounvalve~tsopcrrud.IQuenchYanktemperatureandpress<<rcvertfyval<<cposfcfon.Prcssure-gougePT-1140HoneHonea~DrainValvesY1469Y1471Y1486eoScatLeakageboPailsClonedContnmfnation,HcchnntcnldnnsgeHcclrnnfcnlBindfngPositionIndfcaPainefndfcntfonElcctro4rtorforY1465ofvalvepositionmcchnnfcalY1466fnflute4Lossofnbflftytodetectvalveposttionincantatnraentventline.Hoimpactonoyntenoperation+Contelnncntpressure/huntJfty/rndinttonlevelsverifycon-tafrrmcntvalveposition,Press<<rcgnugoPT-1140honeNotnpnctannormal-operations+OperatorInnbilitytodrafnaffectedlincacctfon,HoneDratnltoeoareblindffanged.Honocumocw~~'.PailsOpenlhoL0Iv.dviervf'a9>+ciHcchnntcalBinding,SeatLeakagea.c~~ulJarInobilitytoisolatereoccurcoc4ontHighcontainmentptosouravonC=4Irroconr,ftoracontainncnt.andhumiditytfventingiainptogresa.ValvepositiontndicctfoninthocontrolHoneRedundnntfsolfrrtionvJ1vcs'tothereactorVCSSClnodpree4rurizerpreclude'uncontrolledventingtothecontafnraerrtrb,PailsClonedHcchnnicalPnffure,LoseofPouertothcVolvo~rf,goYatvcpositionfndfcntfontntha$U/(~QrIt)~wc&l~~~corrttoftoora~Opcrntot,Honegin.)4n4I'i~>>c,~~>>.>('n..~~'rc.l~T.-nC5>>.>>>>p,Sr>>>><.. ttSO0ttOAIA,O)~Lass)Darren,)II'IeaICIII+ASQvIMStlaTIt~al'l4Il0e-~f-m~K.ass~ICOatLl""SJi~tsHI--WIbhdII)S.KOCOAaerzCSDADSO~<<O'DSAQII~~Iii0IUOal'SaiSCI.X~faLtljj~acSDIVia~'I0QIasOllrcr~aaHf-~~AltIO0(IOAKtO)~~e~I~AQ]l'""e3,.-SKovsIacSIsvtaaaacararfCOSOsl0~Hl--K0SKlaotvoiltl~~IKllr~KSla~~a0IOCOclarrawascirrC0IHf--Q~AC~la1~VCC0Af-+8"sclalsLroaIoilaaIAIDAIoracacloaIraaraislasteatilloval'lIalt'aisioslaol.vasvcOavwcfsaAI\,stalsrrassortaticssasOowvAAOIroasvaisossIaasAssatviatehsecairOaatIIIISsaisOO gg.Mrel&4LLUBbXb'llewroramxreqf'etectionandui-ptpgi,'ativecontrols.anpingsystems'1tterovideaassurancethatafir'tefelantauormiekofradioactivereecantlreasetherxe,o9.5.29.5A.'oresentedinAppendix9.AFireHazardsAnalyst,oxopreCOMHUNICATIONSSYSTEHS9.5.2.lDesinBasis1'ableanddiverse'edtoassurereiassstemsaredesignoerationandTecommnxcatxoydonffoitecommunicationsoeandareillustrateonoite,andooximumnoiselevels,anemergencyconditionsundermaximumFigures9.5-1through9.5<<5.9.5.2..2SstemDeacritron'onovotemsareasfollows:Theonsitecommunicationoya)Privateauomtomatictelephoneexchane{PAX)PA)b)Page<parv/tli.necommunication(c)Radiopagingd)Soundpoweredheadsetse)Sitealarmsignals(PBX)f)Privateranebhtelephoneexchange'evatemeareasfollows:'heoffsitecommunicationeyaemane{PBX)a)Privateranbanchtelephoneexchgb)Two-wayradioRadiopaging(limitedrange)J~gc.<<0c)9.5.2.2.1On'teCommunicationSystemssionsietingofaxchane{PAX)iea;systemconsi'td'dunit,telephoneseto,assoc'.aeesstemisanextensionohonesetaareconnected.eh'uipmentandtelepone.eaddi.tionalswitch'.ngequtheplantprovidingx,atelephoneearelocatedthroughouttion. I( SL2-FSARThepage/partylinecommunicationsystemconsistsofasolidstatecombinedspeakerandhandsetstationamplifier,speakersandassociatedequipmentandwiring.Thesystemprovidesonepageandfivepartylinechannels..Thepage/partysystemforStLucieUnit2isinterfacedwiththeStLucieUnit1page/partysystemthroughamerge/isolateassembly.AccesstothepagingchannelisprovidedbythehandsetstationsorPAXtelephoneviainterfaceequipment.Thespeakersandhandsetstationsarelocatedthroughoutthesitetoprovidefullplantcoverage.Theradiopagingcommunicationsystemconsistsofatransmitter,radioreceivers,antennae,remotedesksets(priorityphone),remotecontrol/masterconsoles,interfaceequipmentandwiring.Thesystemprovidestoneplusvoiceselectiveradiopagingsignals,broadcastthroughouttheUnit2site.Thesoundpoweredcommunicationsystemconsists'ofsoundpoweredheadsets,remotejackstationsandwiring.Jackstationsarelocatedinvitalareaswherecommunicationisrequiredforremoteshutdown.Adedicatedheadsetisstoredadjacenttoeachjackstation.Thesystemprovidesback-upcommunicationintheunlikelyeventofacompletelossofnormalcommuni-cation.-Thesitealarmsignalsareincorporatedintothepage/partysystem.Siteevacuation,containmentevacuationandfirealarmsignalsareprovidedbvtonegenerators.Thetonegeneratorsareremotelvcontrolledbythecontrolrocmoperatorpushbuttonstations.Highcontainmentradiationinit'atesacontainmentevacuationsignal.Twoemergencypushbuttonstationsinthecontainmentcanalsoinitiatethissignal.Thetonegeneratorsignalsarefedtothepage/partystationamplifiersandbroad-castthroughthespeakersystemintheentiresite.Thepage/partysystemisprovidedwithavolumeoverridefeaturetoassurethatmaximumsounddispersionisprovidedintheeventofsitealarm.Additionalonsitecommunicationsisprovidedbyaprivatebranchtelephoneexchange(PBX)viathelinetothePAXsystem.ThePBXtelephonesystemconsistsofacentralswitchingunit,telephonesets,associatedequipmentandwiring.ThissystemisanextensionoftheexistingStLucieUnitPBXsystem,andisequippedtoprovideStLucieUnit2,withonoiteaswellasoffsitecommunicationviatelephoneslocatedinthecontrolroom,re-moteshutdownroom,officesandlabs.Twolinesfortelemetry,loadcon-trolandsupervisorycontrol'areprovidedforthesiteinadditiontothetelephonecompanycentralofficevoicetrunks.Intheeventofcomplete.lossofallplanttelephoneservice,atelephonelineisprovidedforvoicecommunicationbetweenthesiteandthesystemloaddispatchoffice.Thisisinadditiontothenormalplanttelephoneservice.9.5.2.2.2OffsiteCommunicationsFaciliticsOffsitecommercialtelephoneserviceisprovidedbyaprivatebranchtelephoneexchange(PBX)systemasdescribedabove.9.5-2 SL2-FSARAsback-uptothetelephonelines,atwo-wayradiofacility(operatingon37.7megahertz)is.rseintainedhetweenthesiteandFloridaPower&LightCompany'sRivieraPlantwhichmaintainsradioandte]ephonecontactwiththesystemloaddispatchofficedThesystemloaddispatchhasdirecttelephonelinesandeitherpatchedorindirectradiocontactwithallplantsandradio,equippedvehiclesintheFloridaPower&LightCompanysystemsAdedicatedtwo-wayradiocommunicationsystemisalsoprovidedforplantsecuritypurposes(seeSection13.6).ITheradiopagingsystemdescribedinSubsection9,5,2.2,1haslimited~capabilityforradiopagingcoveragebeyondthesiteboundary.'5tr'IErr9t5~2.33stemsEvelaotianr:CommunicationfacilitiesofthetypesdescribedareconventionalandhaveahistoryofreliableoperationatFloridaPower6LightCompanyplants<Theavailabilityofthepageparty,twowayradiosystem,andradiopagingsystemisassuredbypoweringthesystemfromavitalacbuswhichhasthreea)ternatesupplies;a)inverter,poweredfromanemergencyHQCb)voltageregulatingtransformer,poweredfromanemergencyMCCc)dcpowerfromstationbatteryTheVitalACBusissuppliedfromanautomatictransferswitchthatisnorm-allyselectedto,thestaticuninterruptablepowersource(SUPS).Thealter-natesupplytotheautomatictransferswitchisfroma120VACregulatorpoweredfromthe480VAC2ABBus,Theautomatictransferswitchwillauto-maticallytransferfromtheSUPStothealternateregulated120VACintheeventofaSUPSmalfunction<Theautomatictransferswitchcanbemanuallybypassedandtheregulated120.VACconnected.totheVitalACBus.TheSUPSinverterisnormallysuppliedbyrectifiedpowerfromthe480VAC2ABBuswithaback-up125VDCfromthe125VDC2ABBus.Diodelogicinsuresthatthe125VDCisavailabletotheSUPSintheeventoflossofthe480VAC-2ABBussThe125VDC2ABBushasabatteryback-uptoprovidepowerintheeventofalossoftherectifier,4430.0Theavailability'of,thePAXsystemisassuredbypoweringthissystemfrom'.a)acoperatedbatterychargerb).48voltbattery7ThePAXinternaltelephonesystemissharedwithUnit81~ThepowerforthePAXsystemissuppliedfroma48VDCBattery,Thebatteryiscontinuouslychargedwithpowerfromapowerpanelthatissuppliedfromthe480VACIBGnon-essentialBus,IntheeventoflossofpoweronthisBus,theemergencydieselwillautomaticallysupplypowertotheBus.Underoperationalcon-4430.59.5-3AmendmentNo.4,(6/81) SL2-FSARtrol,thenon-essentialsectionofthisBuscanbeenergizedtoprovideforAXsystembatterycharging.~Mg~rtbang-up-systemsThcSoundPoweredTelephoneSystemwillbeavailable.forinplantcommunica-tionsfrbmtheControlRoomandbetweenvariouslocationsthroughouttheplant~Thissystemusesvoicesoundpowertogeneratethecommunicationsignalanddoesnotrequireexternalpower,makingitimmunetodisruptionintheeventoflossofallonsitepower.nS~~.>avbilitoftPPAXstem'sssurroedbuthe~nBeIntheeventoflossofthenormaloffsitepowersources,thecommunica-tionssystemsremainoperablesincetheyarepoweredfrombatteries,Diverseoffsiteandonsitecommunicationssystemsensurethatplantcom-municationsaremaintained'ngeneral,eachofthecommunicationssystemshavetheirinterconnectioncablesruninadedicatedconduitsystemtominimizetheprobabilityofcommonmodefailure,Theuniquedesignfeaturesthatwillassurefunctionallyoperableonsitecommunicationsisdecribedbelow,ThePaePart/SiteAlarmSstemhasthefollowingfeatures.1)Thevariousinstrumentsaredistributedthroughouttheplant~Shouldoneinstrumentfail,analternateinstr~mentwouldbeavailablewithinashortdistance.t2)Eachinstrumentisindividuallyfused,Shouldacomponentfailthatwouldoverloadthepower,theindividualinstrumentfusewouldopenthecircuitpreventingdisruptiontotheentiresystem.3)ThePageParty/SiteAlarmSystemelectrical.cablesareroutedthroughdedicatedconduitsotherthaninthemanhole.systemswhereitmixeswithsoundpoweredcables.-DamagetothePageParty/SitaAlarmcon-duitandcableswouldnotdisruptothercommunicationsystems.Routingofmorethantwocommunicationsystemswithinonemanholeorracewaysystemisnotpermittedtoassurethatthelossofanyoneracewaysystemwillnotjeopardizetotalsitecommunications')Thebulkoftheinterconnectingcablingissectionalizedatamainterminalboxbybuildingand/orareas;inadditiontothattheReactorAuxiliary,ReactorContainmentandTurbineBuildings(ic:sectioncables)aredesignedtoringloops,someremoteinstrumentsarefedradially.Shouldaninterconnectingcablebeseveredinanyloop,theequipmentwouldcontinuetofunction,beingconnectedbytheremainingpartsoftheloop.Inthepage/partysystem,ifalineisseveredproducinganopencircuitthesystemissectionalizedintotwoparts;ifthelineisshortedservicemaybeimpairedortotallylostuntilitisrepairedi~6)Discnnnectsareprovidedtoisolateandremoveanysection/loopfromthesystem.Shouldamalfunctionintroducenoiseintothe9.5-3aAmendmentNo.4,(6/81) SL2-FSAR~entiresyst:em.If.communicationsaredisruptedthemalfunctioningsection/loopcanberemovedfromthesystem<Onlossofpower-fromthevital120VACBus,thePageParty/SiteAlarmsignalsvillnotfunction,ThePaxTelehoneSstemhasthefollowingfeatures:VariousinstrumentsaredistributedthroughoutthePlant~Shouldoneinstrumentfailanalternate.instrumentvouldbeavailablevithinashortdistancei2)TheUnit2PAXsystemisconnectedtotheUnit1systemvia2(tvo)50paircables.FromtheSL2maindistributionframemultipairshieldedtwistedpaircablesareroutedtotelephonecabinets(terminalboxes)<Fromthetc)ephonecabinettoeachinstrument,anindividualshieldedtwistedpaircableisrun.3)4)ThePAXsystemelectricalcablesareroutedthroughseparateconduit,fromtheothercommunicationssystems,otherthanwhenmixedwithradio-pagecircuitsinmanholes/conduitsasrequired.Routingofmorethantwocommunicationssystemswithinonemanholeorracewaysystemisnotpermittedtoassurethatthelossofany.-oneracewaysystem.willnotjeopardizetotalsitecommunications.-Onlossofpower,thePAXsystemwillcontinuetooperatefrom'itsback-upbattery'oundPoweredTelehoneSstemhasthefollowingfeatures:Thesystemconsistsoftwoindividualcircuitsinasinglecable;shouldone,circuitfail,theothercircuitvillbeavailable.4430.52)Thcsoundpoveredphonesystemcables,'areroutedthruseparateconduitsfrom-theothercommunicationssystemotherthan-whenmixingwithPAcablesinmanholes.Routingofmorethantwocommunicationssystemsvithinonemanholeorracewaysystemisnotpermittedtoassurethatthelossofanyoneracewaysystem'illnot,jeopardizetotalsitecommunications.Ifalineisseveredproducingan,opencircuit,thecommunicationchannelissectionalized,Ifthelineisshortedservicemaybeimpairedortotallyloathe3)Theindividualinstrumentisconnectedintothesystemviaatelephonejack.Shouldaninstrumentfailitcouldbedisconnected"andanotherinstrumentconnected'The.soundpoweredsystemdoesnotrequireexternalpowerandisimmunedtopowerloss,9.5-3bAmendmentNo,4,(6/81) SL2-FSAReTwo-WaRadioSstemhasthefollowingfeatures:~1)TheTwo-WaRadioSstemhassearatetransmityPandreceivefrequencieswithapowerboostrepeater.'herepeaterhasantennasinvariouslocationswithin,theplant,Lossofoneantennacablecoulddegradethecoverageinthatlocationbutnotdisrupttheotherradiocommunicationsorothercommunicationsi2)Failureofasingleradioinstrumentwillnotdisrupttheradiocommunicationsorothercommunications,3)Batterypowerlossonanindividualradiowillmakeitsradioinoperablebutwillnotdisrupttheradioorothercommunicationssystems.Lossofpowertotherepeaterwillmakethetwo-wayradiosysteminoperable.TheRadioPaerSstemhasthe,followingfeatures:1)TheradiopagersystemreceivesitsinputfromthePAXSystem.PrioritytelephonesarelocatedinthecontrolroomandtheHotShutdownroom.ShouldtheentirePAXSystemmalfunction,theprioritytelephonescanbeusedtopageandtransmitavoicemessagetoanindividualreceiver.-2)TopreventamisplacedPAXtelephonehandsetoratelephonemalfunctionfromdisruptingtheradiochannel,anautomatictimerisemployedtodisconnectthecircuitafteraspecifictimeperiod,3)Variousantennasarelocatedthroughouttheplantforindoorandoutdoorcoverage.Lossofoneantennaoritsantennacablecoulddegradethecoverageinthespecificareabutnotdisrupttheradiopagersystemorothercommunicationssystem,Ifatransmissionlineusedforconnectingtheindoorantennasystemisfaulted,dependinguponthenatureandlocationofthefault,theonesectionaheadof.thefaultwillbecomeinoperative')Batterypowerlossonanindividualreceiverwillpreventthereceiverfromoperatingbutnotdisruptothercommunications,Lossofvital120VACpowertothepagertransmittersystemwill.,makethesysteminoperable,5)TheradiopagersystemcablesareroutedthroughseparateconduitsfromtheothercommunicationssystemsotherthanwhenmixedwithPAXcircuitsinmanholes/conduitsasrequired,Routingofmorethantwocommunicationssystemswithinonemanholeorracewaysystemisnotpermittedtoassurethatthelossofanyoneracewaysystemwillnotjeopardizetotalsitecommunications'orkingstationsvitaltoattainasafeplantshutdownarelistedinTable9.5-6,Alsoindicatedinthistablearetheestimatedmaximumsoundlevelsateachworkingstation,thecommunicationsfacilitiespro-idedatorinthevicinityofeachworkingstationandthemaximum9.5-3cAmendmentNo.4,(6/81) SL2-FSARnoiselevel.thatcouldexistateachirkingstationandsti).l-maintaineffectivecommunicationwiththecontro).andHotShutdownRooms'uringemergencyplantoperation,includingtransients,fire,accidentsandlossofoffsitepowerconditions,thep)antcommunicationssystemsprovideeffectivetwo-waycommunicationbetweenallplantpersonnelinal.l.vitalworkingstations/areasintheplant.4430.595,2d~InsectionsndTestisThesystemsassurere).iableonsiteandoffsitecommunicationsfornormalandemergencyconditions,Routineuseofthecommunicationsystemspro-videsacheckoftheircontinuedavailabi).ity.Pre-operationprocedureswil).verifythatthereisadequateandunderstandablecommunications,fd430.59.5-3dAmendmentNo.4,(6/81) 9.5.2.2INSERT,~d)EmergencyNotificationSystemAutoringdowntelephone(~I'c%gPgi~P,.>,~)e)HealthPhysicsNetworkDialupcommunicationslink.(>~~p~'pf"A3.3)9.5.2.2.2INSERT'I-TheEmergencyNotificationSystemAutoringdowntelephoneisadedicated'elephonesystemlinkingStLucieUnitgwiththeNRC'sregionalofficeandtheNRC'soperationscenterinBethesda,Maryland.TooperatethisphonetheoperatorneedonlyliftthereceivercausingthephonesattheNRCtoringautomaticly.Extensionsonthisphonelinearelocatedinthecriticalareaswhichwouldbemannedduringemergencies;.Theseareasare-thefollowing:l)ControlRoom2)ShiftSupervisor'sOglcc3)NRCResidentInspector'sOffice4)RemoteShutdwonPanel5)TechnicalSupportCenter6)EmergencyOperationsFacilityINSERT2TheHealthPhysicsNetworkisintendedforuseasthededicatedlinebetweentheNRCHeadquartersandtheStLucieUnitQsiteforhealthphysicsdatatransmissionduringsiteemergenciesandothersignificantevents.Exten-sionsofthisdial-upcommuncationslinkarelocatedinthefollowingareas.ll)HealthPhysicsOffice.2)ShiftSupervisor'sOffice3)NRCResidentInspectorsOffice4)TechnicalsupportCenter5)EmergencyOperationsFacility.9.5.2.3INSERT3TheavailabilityoftheEmergencyNotificationSystemAutoringdown,HealthPhysic'sNetworkDialupcommunicationlinkandthePBXsystemisassuredbytheinherentback-upsystemsprovidedbySouthernBell. SL2-FSARradioactivematerial'duringnormaloperations,includinganticipatedoperationaloccurrences:n)Providecontinuousrepresentativesampling-,monitoring,storageofinformation,indic'ationandifnecessary,alarmofliquidandgaseousradioactivitylevels.b)Providethecapability,duringthebatchreleaseofradioactiveliquidandgaseousMastes,toalarmandinitiateautomaticclosureoftheappropriatewastedischargevalvesbeforeTechnicalSpecificationslimitsareapproachedorexceeded.e)Provideradiationlevelindicationandalarmannunciation.tothe,,controlroomoperatorsMheneverTechnicalSpecificationslimitsforreleaseofradioactivityareapproachedorexceeded.TheSamplingSystemprovidesgr'absamplestosupplementthecontinuousProcessandEffluentRadiologicalHonitoring-System,andinparticularisdesignedtoprovidespecificinformationregardingspecificrndionuclidecompositionofprocessandeffluentstreamsandtomonitortritiumasrequiredinRegulatoryGuide].21(Rl).Resultsofroutinelaboratoryanalysisofpr'ocesssamplesareusedtomonitortheoperationalperformanceofunitequipmentandtoprovideadditionalinformationformakingoperatingdecisions.Thebasisforselecting.samplinglocationsforliquidandgaseousstreams.istopermitlaboratoryanalysisforconfirmationofreadingsfromthestreammonitors,to'p'rovidemorepreciseinformation'thanmaybeobtainedfromthecontinuousmonitors,andtoverifyeffectivenessofprocesses.Jl.5.2SYSTEHDESCRXPTIONEl.5.2.lProcessandEffluentRadioloicalMonitorinTherequirementsofthesystemdesignbasesforcontinuousmonitoringaresatisfiedbyasystemofoff-line-typemonitoringchannelsforthe.in-plantliquidandgaseousprocesslines.Thesystemincludessingle-stagegaseousmonitors,single-stageliquidmonitorsandthree"stageparticulate,iodine'andnoblegasmonitors.WQy~~~W:s~egaseousG~~~md@(~riot'4~Continuousmonitoringmeansthatthemonitoroperatesuninterruptedforextendedperiodsduringnormalplantoperation.Themonitormayocca-sionallybeoutofserviceformaintenance,repair,calibration,etc,during,whichtimethefrequencyofsamplingoftheparticularstreammaybeincreased,dependingonthepasthistoryoftheradioactivitylevelofthestream.Off-lineradiationdetectioninstrumentationisassociatedMithliquidand~gaseousprocessandeffluentstreams,inordertomonitorradionuclidcconcentrationsinsuch'treams.Radiationmeasurementscanbeobtainedthroughmeasurementsofgrossbeta(gammaactivityand/oraselectgamma11.5-2
Thepostaccidenteffluentreleasepointsareprovidedwithfilterassembliestocollectsamplesofsuspendedxadioactiveparticulatesandgaseousiodine.Thesamplingsystemdesignissuchthatplantpersonnelcouldremovesamples,replacesamplingmedia,andtransportthesampletoanonsiteanalysisfacilitywithradiationexposureslessthanthoseofGDCcriteria,19. 00 SL2-FSARtenergybasisdependentupontheisotopiccompositionnfaparticularstream.Themonitn'ringsystemoperatesinconjunctionwithregularandspecialradiationsurveysandwithradiochemicalinformationforcontinuedoperation.Continualindicationandrecordingsofradiationlevelsfornormaloperation,foranticipatedoperationaloccurrencesandforarsacaaeb4erangeofaccidentconditionsismaintainedforeachchannelassociatedwiththemonitoringsystem.Readoutrecording,alarm'nnunciationandalarmsetpointadjustmentarecentralizedwithinanf>+gareaofthecontrolroc'omplex.11.5.2~1~1RadiationHonitoringSystemTheProcessandEffluentRadiationHonitoringSystemisadigitalcrxaputer-basedsystemandconsistsnfvariousmonitorchannelslocatedthroughouttheplant.Eachchannelisequippedwithadetector'anditsassociatedelectro-nics,alocalcontrolanddisplayunit,apowersupply,andamicroprocessorpermonitorthichmayconsistofmorethanonechannelasxutoecaseofairbornetypemonitors.Allchannelinformationisprocessedthroughadedicatedlocalmicro-processorpermonitorandthentransmitted'othecomputersystemforthepurposeofdatajogging,processing,editinganddisplaying'finformationobtainedfrantheradiationsensors.Thosechannelsidentifiedassafetyrelatedarefirstindicatedandrecordedondigitalratemetersandstrip-chartrecorderslocatedinthecontrolroomandthentransmittedthrougha'nisolationdevicetothecomputersystem.Aschematicofthesystem1sshownonFigure11.5"l.Adualcomputerandloopconfigurationallowsanycomponenttofailwithoutaffectingtheremainderofthesystem.11.52.1.2ContinuousSamplerhsse'mblyAllcnntinuou's'processandeffluentradiationmonitorsarelocatedinanoff-linesamplerassembly.Eachsamplingassemblyconsistsofasamplerandtheassociatedpiping,fittings,andothercomponentsasrequiredtotransportthesamplethroughthesystem.Allsamplersincluderadiationdetectionequipmentandachecksource.Themonitorcabinetisaskidmountedsystem"andincludessuchitemsasthemicroprocessor,asamplingpump,valves,.interconnectingpiping,fittings,flowandpressureindicatora.Thesamplechamberissizedandshieldedina4~geometryasrequiredtnachievethespecifiedminimumsystemsensitivities.Bacha~pierisconstructedofstainlesssteelandisLocated'ascloseaspracticaltotheprocessstream,suchthatsamplelineinterferenceorlossesareinsignifrcant.Samplersaredesignedsothattheyhaveflushcapabilityfordecnntam-anstionpurposeswherepracticable.Eachcontinuousgaseousandliquidmonitorisprovidedwithasnlenoid-operatedchecksourcethatsimulatesaradioactivesampleinthedetectorsamplechambe'randmaybeusedforoperationalandgrnasl1.5-3 INSERT8Theradiationmonitorsrequiredtooperateduringandafteranaccidentarequalifiedtooperate'intheaccidentenvironmentthatfkyexperience'.Proceduresareusedtoconverttheinstrumentreadingstoreleaseratesperunittime. 0 SL'2-FSARc)Three-StageParticulateIodineandNobleGas(P-I-G)-lfonitorThree-stageparticulate,iodineandnoblegasmonitorconsistsofthreedetectors,'oneeachfornoblegases,airborneparticulates,'ndiodine(refertoFigure11.5-4).ThegaseousnanitorissimilartotheSSG14described'kn'b)above.Theparticulateaonitorisabetasensitiveplasticscintillationradiationdetector,coupledtoaphotomultipliertubewhichisprotectedbyanelectromagneticshield.Theminimumdetectablelfnftofthanonftorfoggr-90Jnn1nr/hebackgroundat95percentconfidencelevelis10pCi/cm,basedonasampleflow0r'ateof2scfmandaone-halfminutecountingtime.Theresponseofthedetectorisatleast3backgrounabovebackground.Themovablefilterincreasesthetimetoachievethesamecountrate.Filtersfortheparticulateoonitorareatleast99percentefficientforparticles0.3micronsandlarger:Bothfixedandmovingfiltersareutilizedontheairbornemonitors.Effluent'-typemonitorsusefixedfilters(excepttheECCSareaeffluentmonitors);inplant-typemonitors.use,aavingfilters.Bothcon-.tinuous-advanceandstep-advancecapabilityioprovidedonthose-monitorswithmovingfiltersmechanismsControlmaybeexercisedlocallyorremotelythroughthePAScomputersystem.Sr~iC~11.5.2.1a4ControlsandAlarmsTheiodinemonitorisagamma-sensitiveHaX(TI)crystal,coupledtoaphotomultipliertubewhichisprotectedbyanelectromagneticshieldTheminimumdetectablelimitofthemonitorforI9131ina1mr/hgbackgroundata95percentconfidencelevelis10pCi/cm,basedonasampleflowrateof2scfmanda3minutecountin'time.Theresponseofthedetectorisatleast3xbackgroundabovebackground.Theresolutionofthedetectordoesnotexceed10percentFMHMat0.662MeV(Cs-137)eAfixedfiltercartridgeassemblyisusedfortheiodinechannels.Itiseasilyaccessibleforreplacement.Itisatleast85percentefficient-forthecollectionofiodine.Allmonitorsareprovidedwitheitheralocalcontrolanddisplayunitlocatednearthemonitoror,aportableindicatorcontrolboxcapableofaccessingthemonitorcontrolfeaturesanddatabase-Eitherofthetwounitsprovideinformationrelatingtooperationalmode,alarmstatusanddataoutput.Purging,checksourceactuation,valveandpumpcontrolsandvarioustestmodeactuationsmaybedonelocallyand,withtheexceptionofvalvecontrol,withinthecabinetsatthevariousoperator'oterminals.Thcdigitalinformatonfromall'channelsisstoredbytheredundantcomputersanddisplayedatthethreeoperatorconsolesoncathode-raytube(CRT)displays.Ifanalarmconditionisdetected,astatuschange,occursateachofthethreeCRTsandloggingofthealarmoccursAmendmentHo.0,(12/80) Cl0 XNSERTCd)Multi-StageGaseousMonitor(MSGM)Themulti-stagegaseousmonitorconsistsofthreedetectors'ithoverlappingranges.ThelowrangedetectorissimilartotheSSGMdescribedinb)above.Themidrangedetectorusesasolidstatedetectorandhasarangeoverlappingbymorethanonedecade+helowrangedetector.Thehighrangedetectoralsousesasolidstatedetectoranditsrangeoverlapsthemidrangedetectorandextendsto.10pCi/c~3.(seeFigure11.5-5)e)ExternallyMountedMonitor(EXT)TheAtmosphericsteamdumpmonitorconsistsofgammadetectingGMtubesviewingthemainsteamlinesanda-backgroundsubtractiondetector(see'igure11.5-'6).Theminimumdetectablelimitfornoblegasactivityinthemainsteamina5mR/hrgackgrcunBata95percentconfidence.levelis6x10pCi/ce,basedonaoneminutecountingtime.Aprocedureisdeveloped-tocorrectforthelowenergygammastheexternalmonitorswouldn'otdetect,. 00 SL2-FSARbasedonsampleanalysesandgaseousactivitydischargelimits.Iftheactivityexceedsthe'setpoint,thedischargevalveisautomaticallyclosed.11.5.2.2.7CondenserAirEjectorNonitorThecondenserairejectormonitorisasingle-stagegaseousmonitorasdescribedinSubsection11.5.2.1.3b.Themonitormeasuresnoncondensablefissionproductgasesinthecondenserairejectordischargetodetectanyprimary-to-secondaryleakage.Thepresenceofradioactivity,inthislineindicatesaprimary-to-~oecondaryleakinthesteamgenerators,Thepredomi-nantisotopeswouldbeKr-85andXe-133,.withpresenceofiodine.Thefunctionofthismonitoristoalarmintheeventofaprimary-to-secondarysteamgeneratortubeleak.Themonitorislocatedonthecommonheaderdownstreamoftheairejectorafterco'ndensersdischarge.Thealarmsetpointwouldbesetslightlyhigherthan"'expectedplantbackground.11.5.2.2.8PlantVentMonitor'Xhesafety'relatedplantventmonitorsarethreestageparticulate,iodineandnoblegasmonitorsasdescribedinSubsection11.5.2.1.3c.Theprimarypurposeoftheplantventmonitorsistocontinuously'monitorandrecordtheradioactivitylevelofplanteffluentgasesbeingdischargedfromtheplantventin=ordertoassurethattheplantreleasesdonotexceedTechni-'alSpecificationslimits..Xsokineticsamplenozzlesinsurethatarepre-sentativesampleisvithdraMnfromthevent.Thealarmsetpointisbasedonapplicabledischargelimits.Thesemonitorsare,seismicallyqualifiedandrelayinformationdirectlytothesafetycontrolpanel.11.5.2.2.9PuelHandlingBuidling(PHB)StackHonitorTheFHBstackmonitorisathree-stageparticulate,idoine,andnoblegasmonitoras'-:describedinSubsection11'5.2.1.3c.Theprimarypurposeofthismonitor"istocontinuouslymonitorandrecordtheradioactivitylevelofeffluentgasesbeingreleasedviathePHBstack.Thealarmsetpoint~issetsli'ghtlyhigherthanplantbackgroundconditionssincethisreleasepointisnot~consideredanormalreleasemode.Anioskineticsamplenozzleisprovided.'.f4=aAygcif-.2.2:1ECCSAreaVentxlatxonSystemExhaustHonxtorsTwosafetyrelatedmonitorsareprovidedtomeasuretheairborneeffluentfromtheECCSarea.AsampleisvithdravnfromtheECCSareaventilationexhaustductstoanofflinegas,particulate,andiodinemonitorasdes-cribedinSubsection11.5.2.1.3c.ThesemonitorsmeasureairborneactivityoriginatingfromtheECCSareaduringaccidentconditions.Thesemonitorsareseismicallyqualifiedandrelayinformationdirectlytothesafetycon-trolpanel.,11.5-10
XNSERTDPage1ofI11.5.2.2.10ECCSAreaVentilationSystemExhaustMonitorsTwosafetyrelatedmonitorsareprovidedtomeasuretheairborneeffluentfromtheECCSarea.Asampleiswithdrawnfromthe.ECCSareaventilationexhaustductstoanofflinemonitor.Samplenozzlesinsurethatarepresentativesampleiswithdrawn.-ThesemonitorsconsistofthemultistagegaseousmonitorsasdescribedinSubsection11.5.2.1.3d.Thealarmsetpointisbasedonapplicabledischargelimits.Thesemonitorsareseismicallyqualifiedandareindicatedandrecordedinthesafetycontrolpanel.11.5.2.2.3.1PlantVentAccidentRangeRadiationMonitor.TheplantventaccidentrangeradiationmonitorisamultistagegaseousmonitorasdescribedinSubsection11.1.3d.Upstreamofthe'etectorsareiodineandparticulateprefilters.Samplingnozzlesareprovidedtoinsurethatrepresentativesamplesarewithdrawnforaccidentanalysis.Thealarmsetpointisbasedonapplicabledischargelimits.Thesemonitorsareseismicallyqualifiedandareindicatedandrecordedinthenon-safetyportionoftheauxiliarypanel.11.5.2.2.12AtmosphericSteamDumpExhaustMonitorTheatmosphericsteamdumpmonitorisdescribedinSubsection11.5.2.1.3e.Theprimarypurposeofthismonitoristo.continuouslymonitorandrecordtheradioactivitylevelinthemainsteamthatisdischargedtotheenvironmentviatheatmosphericsteamdumpvalves.ThealarmsetpointisSetatMe3.owestrangesincethisreleasepointisnot.'onsideredanq,.aPreleasemode. SL2-F"ARallprocessandeffluentradiationmonitorsandtheparticulateandiodinefiltersinthegaseousmonitorsmayberemovedforlaboratoryanalysis.ThelocationandotherdataforthespecificsamplingpointsarelistedinTable11.5-2forprimarysamples,Table11.5-3forsecondarysamples,andTable11.5-4forlocalandgas,analyzersamples.Samplepointlocationsarebasedononeormoreofthefollowin'grequire-ments:a)tochecktheperformanceofprocessequipment,b)toalerttheoperatortoanyabnormalconditionsuchasleakage,and/ortc)toinsureeffluentreleasesarebelowapplicablelimits.Toinsurerepresentativesamplesallliquidsamplepointsaretakenfromverticallyrunpipeorfromthetopofhorizontal'runpipe.Thelocalsamplelinesareasshortaspossibletolimittheamountofpurgewaterrequiredbefore,arepresentativesampleisobtained.Ventsamplesaretakenfromstraightductruns.Liquidtanksarerecirculatedpriortosampling.11.5.2.5Reviewof-Requirements'ofPERHSSAreviewofthemonitoringandsamplingprovisionsinthegaseousprocessandteffluentradiologic~1monitoringandsampling'ystemwiththesystemsdescribedintheStandardReview,Plan,'ection11.5,Table9AistabulatedinTable11.5-5.IAreviewofthemonitoringandsamplingprovisionsintheliquidprocessandeffluentradiologicalmonitoringandsamplingsystemwiththesystemsdescribedintheStandardReviewPlan,Section11.5,Table1BistabulatedinTable11.5-6.C11.5.3EFFLUENTMONITORING'NDSAMPLINGForadiscussionofimplementationofGeneralDesignCriterion64,Sub-sections11.5.1and11.5.2containadetaileddescriptionofthemeanswhichareprovidedformonitoringeffluentdischargepathsforradio-activitythatmaybereleasedfornormalopertions,includingantici-patedoperationaloccurrences,andfrompostulatedaccidents.11.5.4-PROCESSMONITORINGANDSAHPLINGForadiscussionof"impl'ementationofGeneralDesignCriterion60,Sub-.sections11.5.1and11.5.2containadetaileddescriptionofthemeanswhichareprovidedforautomaticclosureofisolationvalvesingaseousandliquideffluentpaths.ForadiscussionofGeneralDesignCriterion63,Subsections11.5.1andI11.5.2containadetaileddescriptionofthemeanswhichareprovidedformonitoringofradiationlevelsinradioactivewasteprocesssystems.11~5-12AmendmentNo,3,(6/81)
INSERTE11.5.2.5,Continuous'ampl'ingandAnalysisofPlantEffluentThepostaccidenteffluentreleasepointsareprovidedwithfilter,assembliesforcollectionof'suspendedparticulatesandgaseousiodine.Thesamplerassembliesareeasilyre-movable;-seltsupportinginnatureandsurroundedbyaradiationshieldtoprotectt$eoperator.Theradiationshielddesignassumesthat10p.Ci/cmotgaseousradioiod'na.andparticulatesisdepositedonthesamplingmediumfora30minutesamplingtimewithanaveragegammaenergyof0.5Neu.Thisdesignbasissamplewillbeusedtocalculatetheoccupationaldosetopersonnelduringsamplehandlingandtransport,andanalysisofsample.RepresentativesamplingperANSIN13.1-1969willbeprovidedattheECCSexhaustandplantventstackexhaust.Continuousandgrabsampleswillbeprovidedatthesepoints.-Theiodineadsorbingcartridgegesactivatedcharcoalwithatleast90$effectiveadsorptionforallformsofgaseousiodine,as-itsactiveingradient..Theparticulatefilterisaddedupstreamoftheiodinecartridgeinordertopreventtheradioactiveparticulatesfromenteringtheiodinecartridge.Thesamplingmediumforparticulatesisatleast908effectiveforretentionof0.3microndiameterparticles.Designoftheanalyticalfacilitiesandpreparationofanalyticalprocedureswillconsiderthedesignbasissample.
SL2-FCARTAZ1,E11,5"1PROCSSSANDKFFLDEHTRADIATICR7CÃIITORS(ca)Conpoaent2CoolingMaterb)Chcaieelcad1YolunaControlLetdcunI-l"-CC-227I-1"-CC-2311"~%32l!onitorsImbedTX~(I)Location(2)ControlFunctioa~PoorerSIClosesurgeSafetyACthventbusNonsetctyACbus'Rendu(hei/cc)10to1010to10'CnCaunScnsitivit(3)1.3x101~3x10cpnlpCC/ccCs137cpa/pCi/ccCo137TypicalAlamo6ControlSetint1.4x10pCC/eclx10pCC/cchtDetector2,5nr/hr10nrlhrc)SteeaGenerator2Slowdownd)LiquidReste1Discharge1"-B-107SIL3"AWA29Closeblov-domavalvesI"FCY-23'3~S,-7)6-9ClosodischargovalvesFCY"6627X&NongcfetyACbueRongatotyACbus10to1010to101.3x10cpalpCC/ceCa13781.3xl0cpm/pCC/ecCa1371x10g"i/ce4xlOpCC/cc.1ccr/hro)GaseousReste1Dischargef)CondenoorAir14IEjector2"~D40I"-AK47ClosoRoaSatetydischargeACbusValveV6565NoagafotyACbus10.to1010to104,3x10cpnlpCi/ecXe1334.3x10cpn/pCC/ceXe133500pCi/cc3x10pCi/cc2.5cr/hrIl1ccr/hrO0)PlantVoat2PICi)ECCSArea2VentC1stioaSystemExhaustj)boricAcidend1ResteHoldupCondensateTechSSL3"-CR-4h)FuelHandling1PICbldg,StaehNonaSafetyACbusNongefetyACbusNonsafctyACbusNoaeSafetyACbus107to-1010to10to10~to1toto10to-8105P10'I100pG10'010to10SP107to102I10to10C8,&x)0cpnlpCC/ceCs137lx107cpa/pCC/ee11312.1x10cpn/pCC/ccXe1338.6x/0cpn/pCC/ceCo1374lx10epa/pCC/cc1131.lxlOepn/pCC/ecXe133/0~cy71~3xlOcpa/pCC/ccCs13785x107pCi/ccSrl06aCi/ccSx10~C/cc"6lxlb6pci/celx10)CC/celx10pci/cc4x10pCi/cc1m/hr1nr/hr2.5ar/hrNotescsP~(1)SSL~SingleStageLiquid,SSC~SingleStegoGaseous,P"IW>PertCculate,iodineandnoblegas(reterSubsection11.5.2.1.3)(2)Allnonitorsareotf-linetype.Locationindicatesac=pielinetska-oft.(3)sensitivitylistedioforcountingtimcadbschgrouadstates.Inaddition,allcanitorsneetthesensitivitiesindicatedinSubscetbm11.5.2.1.3. k)Plant1Vent(highPangeNobleGasYanitor)H.S-l(~t~@MDBG4R7ZKiQARYB&-A~GcSKHSZZXVITYCXX'GK)LSEZPOIHZ~r'IORroan.)DX-'mONg).m~~mrZmPC.~SUPPIZm~Ron10to102Gbus103to10G14to105G1)Atrtnspheric3&8MainSteamNonStanDunptubeTrestleExhaustNonsafetywithuniz-terruptablebackup10to10
~~0~~t~rr~~~0~4i~~~'rk/~~~~~~~~~~0~~~~~rrrB'r~~rrrs~rPrrr trtAf<STEAIALtME7.52.0T'VP5I'T'CLEARANCE'cq'ovoz5KIZVIC68.0REQ'0FORDOORCLEAQAMEFLORIDAPOY(ER8LIGHT;COMPANYST.LUCIEPLANTUNIT2EXTERN'ALLYMOUNTEDMONITOR'lGURE,ll.5-6 SilpIClq;'l SL2-FSARinaccordancewithZEEE-323-1974andXEEE344-1975.RefertoSections3.10and3.11forfurtherdiscussiononqualificationofClass1Eequipment.Thosemonitorswhosemainfunctioniotomeasureradiationfollowingnde-sign.basisaccidentmeettherecommendationsofRegulatoryGuide1.97,"InstrumentationforLightHater-CooledNuclearPowerPlantstoAssessPlantConditionsDuringandFollowingandAccident",December,1975(RO).TheinstrumntoareseismicallyqualifiedClass1E.'hecontainmentisolationoignal(CIAS)monitorsconsistoffourseparategamma-oensitiveionchamberslocatedwithinthecontainmentat90degreeintervalsalongthecontainmentvesselwall.ThesemonitorsinitiatetheCIASonhighradiatioa.ThemonitorsaxefedfromfourClassXEinstrumentpowersupplyoyotembuoeo(NA,1kB,HCandHD)-"Sixspentfuelpool'onitorsareprovidedaroundthespentfuelpooltode-tectradioactivityiatheeventofafuelhandlingaccidentintheFuelHandlingBuilding.Ahighradiation"signalisolatestheFuelHandlingVentilationSystemonddivertstheairtotheShieldBuildingVentilation.System.Twocontainmentpost.accidentmonitorsarelocatedoutsidethecontainment.Thesegammaoenoitiveionchambersprovidelongtermindicationofradia-tionconditionsinsidethecontainmeatfollowinganaccident.&dc,Qrggserf0t.12.3.4.2AirborneRadiationHonitorinSstem12.3.4.2.1.'.DesignOb]ectiveoTheobjectivesoftheAirborneRadiationIfonitoriagSystemduringnormaloperatingplantconditionsandanticipatedoperationaloccurrencesare:'a)Toinformoperationspersonnelofoirboraeparticulate,gaseousandiodine:.activityinthevariousbuildiagsandstructuresoftheplant,b)Toalarmanyabnormalincreaseointheairborneactivitylevels,c)Tofurnishrecordsofgrossairbornetrendsinthevariousplantareasandoftheamountofradioactivexeleaseototheenviron-mentthroughthcplantbuildingsorstructuresduringnormal,'rebnor'maloperationaloccurrcnceo,Tohelp'detectidentifiedorunidentifiedleaksinsidethereactorcoolantpressureboundary(asrecommendedinRegulatoryGuide1.45,"ReactorCoolantPressureBoundaryLeakageDetectionSystem",14ay,1973(RO))andotherareas.oftheplant,e)Toassistpersonnelindecidingwhether,ornotbreathingapparatus'snecessarywhenenteringahighactivity,area,and12.3-19AmendmentNo.0,(12/80)
~~INSL'RTFTwohighrangepostaccidentmonitoredwithamaximumrangeof107R/hr(gamma)arelocatedinsidethecontainment.Thesemonitorsarewidelyseparated'soastoprovidereasonableassess-me'.:tofarearadiationconditionsinsidecontainmentandpoweredfromindependantClasslEpowersupply.Table12.3-2providesatabulationofthebasicdesigndescriptionforthesemonitors.Pr'gure12.3-13ashowsthelocationoftheradiationmonitorsin-sidecontainment.Thesemonitorsare.gammasensitiveionizationchamberscapableofdetectingphotonswithanenergyrangeof10ke9to3QcV,withalinearenergyresponseof+208.ThedetectorsareseismicCategoryIandqualifiedtonormaloperatingandpostaccidentenvironmentalconditionsinsidecontainmentandhaveatotalintegratedlifeof109Rads'.Aselftestingradiationsourcewithacontinuousreadingof1R/hrisprovidedwithintheradiationmonitorsforcheckingtheoperationalavailabilityofthemonitors.Alsotherearetwoadditionalsafetyrelatedradiationmonitors(gammasensitiveGNdetectors)locatedoutsidethecontainmentwhi.chcouldbereferencedbythe'lantoperatorsincasethere-dundantdisplaysofthehighrangeincontainmentmonitorsdisagree. ,h SL2-PSARThesemonitorsaredesignedtoseismicCategoryIandClasslErequirementsandarequalifiedinaacbordancewithIEEE279-1971,IEEE308-1971,IEEE323-1974andIEEE344-1975.ThemonitorshaveasolenoidactuatedCs-137checksour'ce.Holocalalarmorindicationisprovided.12.3.4.2.3.3BCCSAreaVentHonitorsseismicallyqualifiedmonitorsareprovidedtomeasurfluentfromarea.meef-Thesemonitorsaredes'seismic-aandClasslErequirementsandarequa'xnaccordancewithIEEE279-1971,IKEIEEE-l974andIEEE344-1975AsampleiswithdrawnfromtheECCSareaemergencyventstoanofflinegas~sasniassl'monitornsdoscribadin.gnbsactionIl.3.2.1.3(andasshowninFigure11.5-4.Themonitorsmeasureairborne'ctivitynri-ginatingfrantheECCSareaduringaccidentconditions.sic0'~~rP12.3.4,2.3.4HobileAirbornemonitorspvAI'QhsWi'ok-'c-Portablecontinuousairbornemonitorsareavailableforuseinpotentialairbornehazardareasduringmaintenanceoperations.Thesemobilemoni-torsconsistofnsampLerassemblymountednnacart.Thesamplerafsemblycontainsgas,particulateandiodinedetectorsasdescribedinSubsection11.5.2.1.3C.ThemonitorcanactinconjunctionwiththeRadiationAnni-toringSystemviapluginjunctionboxeslocatedthroughouttheplant,oritcanoperateindependentl.yprovidingonlyLocaLindicationandalarm.Inareasthatareoccupiedonaroutinebasis,surveysareconductedbypatrollingpersonnel.Acomprehensiveairsamplingprogramestablishesabasisforroutinesurveysandportable,continuousmonitorLocationsotherthanmaintenancecoverage.Thisprogramconsistsoftakinggrapsamplesforgaseous,particulateandiodineactivityinall.areaswithaprobabilityofairbornecontaminationnearHPC.Theprogramisimplementedafewmonthspriortoinitialoperations.Basedonthedatacollectedfromthisprogram,aroutineairbornemonitoringprogramisestablished.Theeffec-tivenessof'thi'sprogramisdeterminedbyroutinedataobtained,non-routinesamplesonanas-neededbasis,andaradioassayprogram.Portable.continuousairmonitorsaredisplayedinareaswherethereispersonneloccupancyandahighpotentialforairborneactivitynearMPCLevelsnl2)-23 C ~~SL2-PSARTABLS12o3-2(CantSd)Cbcnaol252627MonitoredAreaIonExchcnBorValveAreaAZonBachelorVolvohroaBPurificationPiltorAscaSpentRcainTachAreaKCCSEquipcantAreaDocontaninatioabreaGVACRoon323334353138VoluzaControlToshAreaDo~terEncicauroLouPoolStorcSoAreaAaratodMonteStoraSoAreaBoricAcidCocccatretorAran'lPualPoolPiltorAreaOpcraticSDochAron31(hcnicalDraiaPucpAreaSafetyClaaoificationSon-SafetyKon-Safetytion-ScfotySon-SafetyNon-SafctyIten-SafetyRon-SafetyIten-Safotytbn-SafetyNon"SafotyHon-SafetySon-Safetyloon-SafetySon"SafetyDon"SafetyRange~nt/nt10-1010-10Senaitivity~R/Rt10-1010'-104I1010-1010"1-10410-1010-1010-10101-104-10110101010'-1041010-!Accuracy~R+3+3+3TypicalAlarn~Sot~o/ntRR/lt2o552o52o52.52o5janitor'ocationRABel26'ABol26'ABol26'ABol26'ABoABol5'ABel49'ABol26'ABel26'AB'el5'ABel26~PHBol26lContai~ntol39'etectorLocationWeol26'AEol26'ABcl3$.$'ABol6.$~LWBol10'ABel26'lol49'ABol12'ABol26'ABel26'BBol53o5'ABal5'RABcl26'SBol26'ontainsctol8$'9Dru~nSStationArea,Ifon-Safety8.gyoCM~M1I,>gP~FOO~NSR4(l)GgmstRccsRcfsv(yf44ckg,Pff~fsHt8na/(,2.$RABel26'ABol25
cpsnA;gg-()IsLS4I>>OOtl(aloao~~iaa($PO(('aaat(hotCrrlca44,oy(actllCA4(t'V..>>.S.QPJ~k4>>>>aairiIIC.~~WCVPOCQ~OC~'taIOait+'Iti<<lOt<<ah(aachattttv~I'lltlC(gv(attO<<)ChtO(ta4>>Itotaa(t'lailttY<<r'Q(<<4sassO.cot('1'Ig(vIt(-ZG-RL>I011~~cittalc(((I~.,1.]-4>>(llv<<'1>>O(\SVOtlOI~laaIItiio11a('i1'll~c,rIO(<<tIO\AOOII44iCr<<rtAtttI~)~If>>'ttIAI/1A)IPatri(\r'(ODj'a,$~t~(.,~Ipse+:((VOC)lIII-~-'~(~.r...'.~Ii);Oh)III(A(i()r)41C(IICIICAA19@+5~Posh-A~(k<+Rb-Rt-3ge,O-Z.I-6Q',!,ix~Qg;ila(hatC~t~'Iti~.aaaoatt~~~~atctics'Orra>>IPt~IlI(11I"'+iZI-.;5'.~)~wtAtua<r+~Aal111Ital4Oil41t>>11>>v(It(ati1(rlActliai<<ta11<<~t)~(.IW~('llI~(vaa1CCAC~Itt<<c\Ct<<II.acaii'I<<AAO<<\'11I1allo>>~(lalIat<<>>CIAAh~~~t<<Aiti~i~(~taa$4aalitt'lihOIl.d~~<<t(~(~(1tilv1~1;:P~Aggb-?b3=I9.Oioor(lotto\I)aI~'i/'~~111l\I~I>>halAlh(1thAI~+OA>>'>>ACPO)ltHOTE$>>((OOOlOOC'ht(4'<<PI$f()Aatht4$4R(fta(h)44(A)4$.$C4(A(14.SKI)4040tO)ER)(TRI)GFl.OORP(:AHEL.6200FLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2COCO('X'LO&OVC1SA9bP~vPcc(>%,M'7P.hb'(MAL('~o~'lo'IGUREn,.'3-t~g
12.3ATMISHIELDINGSTUDY12.3A.1IntroductionFollowingtherequirement.ofNVREG0737itemII.B.2"PlantShielding",adesignreviewoftheStLucieUnit2plantshieldingwasperformed..Thisassuressafepersonnelaccesstothevitalequipmentorareasre-quiredformitigationormonitoringofanaccident.Equipmentqual-ificationtoradiationdosesresultingfromanaccidentisaddressedinSection3.11.IncompliancewithX4~ZI.B.2ofNUREG0737,radiationsourcetermsarespecified,systemsassumedtocontainhighlevelsofradioactivityasaresultofapostulatedaccidentarelisted,vitalareasrequiringaccessareidentified,anddoseratesanddosesinvitalareasarepre-sented.DoseratezonemapswerecreatedtoshowdoserateimagesthroughouttheReactorAuxiliaryBuilding(RAB)at1,10,100and1000hoursfollowinganaccident;theyareincludedasFigure12.3A-1to12.3A-4.12.3A.2SourceTermsThesourcetermsusedindeterminingdoseratesanddosespresentedinSection12.3AareconsistentwiththespecificationsofNUREG0737.Allsource-termsarebasedonthecoreinventoryofnuclidesderivedforIStLucieUnitNo.2'fromTable4.3-1oftheCombustionEngineeringSystem80RadiationDesign'Guide.TheStLuciecoreinventory,separatedforconvenienceintonoblegases,halogens,andothernuclides,isshowninTable12.3A-1..Fourgeneralsets-ofmultigroupsourceterms,suitableforinputtoshielding.codes,~~erecreatedfromthecoreinventorydata;twoforliquidsources,oneforgaseoussources,andoneforplateout.TheGPc.OP@codewasusedtotransformtheisotopicsourcesintomulti-group,energy-dependentgammasourcesasfunctionsoftimeafterreleasefromthecore. 'I Thetwosetsofsourcetermsforliquidsystemsarebasedontheassumptionsofinstantaneousreleaseintothereactorcoolantofthefollowingpercentageofthecoreinventory:100%,ofthenoblegases508ofthehalogenslboftheothernuclidesNultigroupsourcetermscalculatedundertheseassumptionsforvarioustimesafteranaccident(consideringradioactivedecay)'arepresentedinTable12.3A-2.Theunitof.thesourcetermsis~/sec,whichcanbeconvertedtoaspecificsourcetermunitof0'/(cm-sec)bydividingbythereactorcoolantvolumeof2..05X10cm(fromTablell.l-l).Theresultingsetofgammaraysourcetermswasusedindoseratecalculationsforsystemspostulatedtocontain"undiluted"reactorcoolantwatersuchastheprimarysamplingsystem,whichwouldberequiredtofunction=intheeventofa"smallbreak"LOCA,wherethereactorcoolantwouldexperiencelittledilutionbynonradioactivewater.OthersystemssuchastheContainmentSprayandSafetyInjectionSystems,wouldcontainradioactivewateronlyafterexhaustingthesupplyof.nonradioactivewatercontainedintheRefuelingWaterTank,andthenbeingswitchedtotherecirculationmode.Inthatmode,.commencingnosoonerthantwentyminutesafterthestartofa"largebreak"LOCA,thesesystemswoulddrawwaterfromth'econtainmentsumplocatedintheReactorBuilding.Sourcetermsforrecirculated(containmentsump)waterwerecreatedbyfirsteliminatingthenoblegasesfromthewater,inaccordancewiththe~Hei'~asofNUREG0737forrecirculated,depressurizedwater,andthendilutingtheremaining50%ofthecoreinventoryofhalogensand1%oftheothernuclidesbythecombinedvolumesofthereactorcoolant,theSafetyInjectionTanks,andtheminimumvolumeoftheRefuelingWaterTank;thetotalwatervolumebeingapproximately1.62X10cm.TheresultingsourcetermsarelistedinTable12.3A-3.tThegaseoussourcetermswere-createdusingtheNUREG0737assumptionofinstantaneousreleasetothecontainmentatmosphereofthefollowingpercentagesofthecoreinventory:
~,,100%ofthenoblegases25Kofthehalogens.'tTimedependent,sourceterms,showninTable12.3A-4,resultedfromapplicationofappropriateradioactivedecayfactors,leakagefactors,andcontainment,sprayremovalfactors.Thesesourcetermswereusedprimarilytoobtaindoseratestopersonneloutside,but3.nthervicinityof,thecontainment,anddoseratestopersonnelinthevicinityoftheHydrogenAnalyzers.tThefinal,gener'alsetofsourcetermswascreatedtomodeltheeffectofplateoutintheContainment.Accordingly,aninstantaneousplateout.of25%ofthecoreinventoryofiodinewasassumed.Timedependent.sourcetermsappearinTable12.3A-5.Thesesourcetermswe'eusedindeterminingdoseratestopersonneloutsidethecontainment.Severalspecializedsetsofsourcetermswerealsocreatedforap-plicationssuchasdeterminingdoseratesfromthecharcoaladsorbersoftheShieldBuildingVentilationSystem,andoftheControlRoomEmergencyFilters.'2.3A.3RadioactiveSstemsIIThesystemsidentifiedaspotentiallycontaininghighlevelsofradioactivityinapostaccidentsituationandwhichwereconsideredintheshieldingdesignreviewundertakentoassureaccesstovitalareas,arelistedinTable12.3A-6.Allothersystems,suchastheChemicalandVolumeControlSystem,andtheWasteManagementSystemarenotnecessaryforpost,-LOCAoperation.DegassingoftheReactorCoolantSystemwillbedoneusingtheReactorHeadVentSystem(seeAppendix1.9AitemXI.B.1)ratherthantheletdownportionoftheChemicalandVolumeControlSystem,andtheWasteManagementSystemwillbeisolatedand,therefore,notemployedsinceradioactiveleakagesanddrainswillberoutedbackintotheContainmentviatheESFLeakageCollectionandReturnSystem(seeSubsection9.3.5). 'V t12.3A.4VitalAreasReauirinOccuanc/AccessAnextensivereviewwasundertakentoidentifyvitalareasoftheimplanttowhichpersonnelaccessfollowinganaccidentmust'beas-sured.Alist.of,theseareas(withaccompanyingoccupancy,dose'rate,anddoseinformation)appearsasTable12.3A-7.Accessroutesfromthe,ControlRoomtothevitalareashavebeennoted,inFigure12.3A-5to13.3A-7.Noaccessoutsidethecontrolroomisrequiredforcontainmentisolationresetandinstrumentpanels.ThedieselgeneratorsarelocatedoutsidetheRABinaseparatebuildingwithnecessarycontrolandindicationprovidedinthecontrolroom.NoaccessisrequiredtothemotorcontrolcentersandtheWasteManagementSystempostaccident.AsindicatedinTable12.3A-7incaseswherethereviewrevealedthathighdoseratesoraccumulateddoseswouldprecludeaccess,meansforremoteoperation,additionalshieldingorplantmodificationswereprovided'heresultofthereviewprocesswastoassurethataccesstovitalareascouldbeaccomplishedconsistentwithNUREG0737requirementsof:(1)lessthan15mrem/hr(averagedover30days)forareasrequiringcontinuousoccupancy,andGDC-19requirementsoflessthan5remforthedurationoftheac-cidentforareasrequiringirregularoccupancy. 12.3A.SDoseRateandDoseCalculations~~Doseratecalculationswereperformedinareasidentifiedasvitalareas,andalongpotentialaccessroutes.'Time-dependentsourcesweredeterminedasstatedinSubsection12.3A.2,andappropriategeometryfactorswereappliedtopipeandequipmentofthesystemsidentifiedinSubsection12.3A.3.'heshieldingeffectoftheequipment,fluid,andshieldwallarrangementwereconsidered.Theeffectofrebar,embeddedplates,oranystructuralsteelwasneglected,which,whencombinedwiththeveryconservative,"worstcase"sourceterms,resultedinveryconservativecalculateddoserates.DoserateswerecalculatedprimarilybythelSOSHLDpoint-kernel(3)integrationcode.Radiationdosemapswerepreparedfromthedoseratedata,andshowdoseraterangesthroughouttheRABat1,10,100and1000hoursfollowingapostulatedaccident.Thesemaps,super-impOSUongeneralarrangementdrawingsareincludedasFigure12.3A-lto12.3A-4. 0 .
REFERENCES:
APPENDIX12.3A(1)CombustionEngineering,RadiationDesinGuide,Rev.4,SYS80-PE-PG(7/12/79).(2)E.Ochoa,0.Vories,"GRCVP-AnIsotopicSourceGenerationProgram".AnEbascoCode(7/10/77).(3)B.L.'-Engel,etal,"ISOSHLD-AComputerCodeforGeneralPurposeIsotopeShieldingAnalysis",BMNL-236(1966).AnEbascoversionofthecode,DEV/ISOSHLDwasactuallyused.
r0 DATECH.P.ElYDATECLIENT/TPROJECTfVEJECTEBASCOSERVICESIHCORPORATEOHEWYORKOFSNO.:to~~ye<jNKKTOFDEPT.RO.k)--Fs/k'r-SW/.--p~Ir-/.go+7g.o~kS,~.V47.97-/V/t(r-Bt(r-9/Xe-IZ/+Cz<.o9~7.6.0~+7YVY~75-.3o<9//e-I33N/'(35'Pe-l'35'7C>/S'i+9),07+72..73+7,aA$"P~-/3Je-/VOXe/Y3-'e-/0':I.wfsF.'.C.z~q7I.VP~-'3-~I+~/~cx~oe~zGr-PyQr-PSOy-g'7/3r-t9/.QC<7(,$'v+~9.gI+'73.(Py<iQr-F9QF-99K-I>7~-(~92.(9<ai-~>P~7/./9+2.4IPS+0K-/3fX-la~W-('33K-/sVp.5'7+7).la~PIS>t..P-~C'/wpW-i35M-)'37~/3P./.%AS'33+73.l'P+'7%.-A!"/2~14/].eLJe-P.v.Ar-Ps3'e..-H'e-.P7A.-PP5'r,-IQ'-9p4-9oI'ry'-.9Og5-gJJr9I-P-8/mgIS'w-9~pps'9Ci/.'3g+7-g,qzq'ge.c/+.~5.oS'~77.0/~7s.19~77.97+72I'.Gl<7PgG~/5./3~7g.(f47Ii/.P.~~vPivL-5S'y-99g4-99Pfo-997cÃ/~pfg-/03Qc(03/Pq-IO)jc-(OGgu-logSn-)i9s4-(~gJE-/)9'C.-(>$Zni3I-S/-Ipt./.>P+P../gI/+.I/.j(a<I'.~l~~...I3.svI/t.~V~P...:..s../lg73.50+TS'.Oq'+43.So+7gQgg2-.$7+7%.2'LV7G.y/-f7<.v&6/".~V~/,/"!gFjpAP~.S>+JI.OO
'0+?3.63+7I,oP<P9.'V9+4.Y..v7+7.s:Q5:~,7Pggw7/g3.V7.I.!5'+I/'~gg5.99'q7l.90+11.00<cs)pP,Cr-/VOga/QO-Lu-($0Cz-/V~.f3a-!'!3Lc./1>-Ce-h'3Pv.-/.~;3.C~-)vY/2Lq./q'9'9.F'/+7Ci-/~"!5cs47Pr-guI3.o..5V.!je,-/3/~7e;l315'p-/3>+-g~e-(3~'n-(335'6.-lg3le.-(33~l=/33Cs-t@s4-/3VsG-)35i<-/3SCg-(35'~asG-(g).Pc~~~l-90/)0~curi41-V-f7gZ~~>/Q/tJ~i~ggvWe+~F1gPFOAM00lA%V01l I'40 DYDATEEBASCOSERVlCESiNCORPORATEDIcEWYORKceca.ocoAccCLIENTrnotreSLIDJCCTOFSNO.DEPT.NO.7V9)0II)2Ilt7)O~iaaf."'@4fkL-h8rp/.8~3S'Sgr/t/.9A/PIt/.VA1.VOIPS:gG~IPg.]&IViAPx.'Itchy/.ot<l9.67</,t&lQ.R.Vtyg)wtx..3+II.t9~I6.'>ailISihIf>.I14I9'.%<7I.C/<3f/i7.39'/G3.qvHV93ofl7L//CU3.0093,5go/.gVO$ooQg.3I.P3flf/7.178/gg~/77.tlftI.77f/7//y<1/~I.WPfIP/.VVftI.9%8i4tfA'.'I387/.ef/E3.S'gf'IP./~l/.70f3.a&/P/,offli~rFStd.G/,%sfl7;I4l+I/.MVI7V/y/qI.'L3ff~I.o'NvlPal~/q9.sow40G.'hat//.i'i+/I57>i.sWv/O.olr1'J~9'Ufl),/I.)>VIPI6.3'J<l7X.7>e/il/.Ic~lel/.o71.1'J3If/eI~6yWI7,/.5'Itl3%~73..0HI7//.7)f/G/.~3)"7'L.G3<I//I.591II.'/74/'tI9.53<<<j1.7/f/J736/3/.W+~D.0..Pc/OWL.S7II7.92+/7i~7OIIJ/.SOI/6g.~/l/>.'%III.oslo07+gt'1.t/'IfO'I.VV<I7.6~4I,S.'l14/t.ofCIqg.~(.g/fl75;Ffi'/Di./6e/7'.g.m<<19;G7+@.7.30i(.VIII~.f.l/qltS.scag197+/7..ryeS,S.9Z~IP.63f/J1..G'74/I.i3C/3'/44fI3/off60b3,.y74//J.QAI0D000,0.0;.0,069//qg.'Sg~7iD~Q0oD.u.'0O,O000t7000030Cyllg~wp.~/c~CQ/g7yI73.oM'i!/g2+S.3~94/6.9/<IP~'l8'+I01XR/3.3.1'IP6/pE16;3./RIG,'Ii3+/1;/QM'.~V+c)><<<>./o<cSISa.)3.flf2.7?q!GI.I14I>>g.5st/g~/G,'f.73+16o/3/+IS.Q.>0~:;G.A&36S7eISV%7+/3+/"'I/QFVIj3.I/V//.9.I/7g/37:34/>/~y/v;I77+Iy/.sG+Iv/.3h'-/9f+t/;I.S>fN,0/IG+v./7>Vg'0cI.I(o>///p'Ho(//QG/M5cYI4/g~///,or/oc*oJA~(/~3/oo!f>n-)pci/icJmccI>~v'I/Cci>>>-/'ao))o/~A~yi~::7co..:...a>lC3Ilu6..X.OSX/a~t-.~>;.....(cy.IPUa/9.3/w/0I//pc:FOAMOilAIV711 T OYOaT'a'HHO.OYOSTEH'LILNTEBASCOSERVICESINCORPORATEDNEWYORKOFSHOFSHEET~OFDEPT,NO,PROJCCT'SUSPECTZCsCu/6/~@i,VPS~~~<<SH4/l,7fJ.<<rCgt~~7r7/2/I)w/3IYI/J4/6H+~aCnp-(47K~j~J)>J'~GfE';>>..4wQc'g,'OFi~i~S/S.P~J~I'5:Nfg3.~/vd./""-'zlr'/~~/g~~IgrF~0~C.is~vPdb7P.~y'7N.g6$7I/A~/.~~It:f9000000030'I009q0...0/QO,3~8.V75.gs.oP~f/.~zJ'gg)/.geo/g)d'3ggodZ..70>3~03.5o05,ot/+73,I!g7i2.'/0<7,7.I94$7.)147.$g7y73.'3517'3.96+gISN+Ii'-'/.0A3,B+f5:Wv7F.0147.'g.Mf7Z.~./,//+5VItp.qq<<.9gsP/.79+9./'5<5/'/77'.3Jft/2..vf~~f7~./iP~/6~3.E/3/g7/,gingQ/>i~'6I+7:6.9'+d966~.z..GI+7.5.7S~g2GI>>.YoGW3,<79//,L.pip~(fqg8.EOF7.I9.n+71./St7t.7>vjp:zs~)yIS~7,/.534//%VPgN+S/.5P+7(25%5,92f7i+.33+g.OPV$,/IpcV:00I15'O<<IFPO<S,,0LO0i000i.o~~t/.e3.V'G+9gtyF.3A9.gs+P7-2/fP'/.5'z+70,.3&fT.vuC0i3.G2v7/69'.8Xw7.</5+T.5'I+'7.3.go+7>77WS.graf.9o3fiI',/ss&/.VPtPIi>><PV.5~I/.sS~g.vI<PP,(4fP.OgtPP./Gf7p%+P;Bv~PIao!f7:/g70./33f9.VFgP/.IR9//~6;~y~Pp.xds70I9~5Ja~pga7qyyyH2.YL+5,//c'+S%o~t'5.2G3~'V.P.b5"/Q'w6J.</<L'00.:.o2.'f7'7!0~'0,'O0Gt:00.l0(.goTI/.5$'4'9S,V7759&0,P.{izf5'//~7Z.@3+A'.fQ00000!05:P~e;VM~~00i900.'0IO0;g:o0)iI1I0!0IPC6+F$$otVi0I.S/Y)VS74SIIiIE'III{so35o'>c<<Fo.,~~op'FFP/lo/le><<El'//<<~<nl6~xlg~c~~ssF{0fPec,~i<Jer~+F<<6Ea.~~~<<'alPllFFyocFA=~{E1fWcg9%5sclo79/tcF>-/4g..:.............FOAMI~'IACV7<<7'I p, DATECIIIIC.CYC*TKCLIEKTPAOJECTSuO>ECT/~IX/>->4"EBASCOSERVlCESfNCORPORATEDt4EWYORKOFjNOGm~6TKT.~7ATH>~~i~KP~7+KC.SHEETOFDEPT.NOfl.ftI~altI=t.En.HY.le.2.50.35o.V7zg)o.Pn/.os/mS'fate'700/fW2./VO2-3coz5'og~~nfl)Z~(r-~va.JPI-R5'7%/~g.7S'+'Pwot87/oty/P2..63+I7ggg+/7qgz+/gP.og~d3ggq/l.z.7+~7z..~+/5'.039:.'>).g3+E/IC+fgwalt/P.0<~/>t,76+/7COft/77..4'P/'7po5q/$7.oh'+/6zg$+g/gylygt,+/7ya+/P/,07/7y,p~q/P~P'/plyg.P3y/g/,37+/'7t//Sv/7/.Ys+/73.Yz+/g/7/~/42o7+/33.g5+/65;Py+/J/.M+/P:LVJgg.$.7/f/~i7~'/+/7'%'/~2-Y3y/'/'/Zr+/4,'~32~/6uP<.6;w3+/6$:g5</s/.Ii+/9gp~+/S3'L.'PH5V.85</'IIg.gP~E,3.OS+/b./.Iiw/<I$3+Id;.7.~Pi3Z.g>w/39.SWANJ+3.$7.f/Y.g.pygmy9.'2+</3Po~e/i./V9t/3g>~iJ,'/pig.>>.0/7/k'J9.".'+/'/3.5/yliI7./I+A0;~/e~3./J+'V/O~e7.04.2,3f7..O/P9'+II.IL/QQ'5~po5y~2.Wg4J~y~I<oa~fscTz+cmJKTYYLc7~YIYJi.CP/(cITT+Jdcgg-'iJi~+.ALIIc7c'?~~/emg?lotto'cc~(2soy<Jocgl~).(cg~n~,Ylf<lo'~g/Jsc-...:YFORMOOIAKV7e7I tl DATECHIYD.DYDATECL'(KNTEBASCOSERYrCESlNCORPORATED"NFMYORKOFSND.)1(SHEETDTDCPTANO,tPRDJCCT4SDDIECT~Cjf~~ah~'-'4'DQWrnnrf'74zh'PlPcJ~I,/so,2.5'0,gsL{qI(53/.~/>f.SI.V'1>lycee3/vd',!gI->'f+/8'g~+fdIo54/"-/Q+/P/.vg+/aggz~(V.03+/7/.3ztII"/.27<76.0A/7~as-t0J.S"Ig/(rr.5~4/6/03+/P'.'gal',5'gw-/ygo~i~qg~l/-3gq/f.Y74/7C.PPalI.Ffg/4a.~~HProv/l.spy/Pl.~+/I2..5og/Pl/.5gH/l'.oiW/P,/x><</75.sot/x-sic)6003.g>+C/.9/+Id,log'f/5//7@I)3.~+Id~.5&y/6z.75V4w+/7).5$+/7)pI.Sg+/d>.Nc/d7VA./>/.s/+fcP(./r~/S'~3t/PO'-S<v'/)s.wow/v/n+/7z->Ave/tg+/tl3S/7/(t.pl+/7/o5+IPEzv+/77.9'0fl/.9'74/7Ia]~/7I-139/7(.so~C3.Co+/4g./3f'//.5od./Z//'of+/~/V7~/PP.zp/77.ref/7/~A/7/~>~P/75.$7+4.kg,.+77/9'fl73.9'0%/7.R~"<"G.iv)/73.>s+/~%>7+/3'7>q/-I~>>y/<i.>&I9!//Pf/<Y./I'<<<9"94~.r.W~<<Y.'>S~H./,GP~'V3.P'<+73.'/39/6~.>Ie(.~./6~<<QSg3.3?+IE;i.~7t/3.o/P'9+4(/~7/63974!33.53T'/53./8+/5(,3zttf<~.~g+Pi.~~/~0g,),0,o:0:0noIA(ag35I-co~>,J~i~(4JzaJuI;Iave!o'.~/jj4-:.....44~~FORMIC'IRKVTTl Page12of22Table12.3A-G:SystemsPotentiall~ContaininHihLevelsofRadioactiveMaterialContainmentSpraySystemSafetyInjectionSystemLow-PressureSafetyInjectionHighPressureSafetyInjectionShutdownCoolingSystemPostAccidentSamplingSystemsLiquidSamplingHydrogenAnalyzerVentilationSystemsShieldBuildingVentilationSystemControlRoomEmergencyVentilationSystemECCSAreaVentilationSystemContainmentBuilding IIII:gg~cf~MVd74-/So~fP>>H~riM~aKcQ.(bed'-~a~6'/p~~/LriQan"a4Ijr'ft4oAafI/of~Cent+Ita~~yj-r<P~~I~~].e/~,',(~.-~w,~)~gIoJC~1PZE~kWJi5JC1Pc0'0ao0Orx7C,AX)6'e@8'f~,Maaagoo/vs/laP.ore/aT'.'~P//aj:Mdivof'4~7~/,gIIoAl~Pqg,oP~/oo//oooofj~::WrAg;/77~e,orcrrIa//lIhIII~J++iCjI-JII+OOQIWj/tV'QC,ootOp~C(.gg//'>>QR.,aors"IoPa/0/+g./o,l/~g,0II000Iol S pf~WQMop~llaw'<0hA~/ln//yynP~aClr&>>~/3pp~~a0F4AIr~P,I/,/00i4>>liar/AI~I,hr/oow~'/Q/l~P~acM/ggcfIr~pI/r'll/'/QI/rr~Jwyj7~IIh~/Aw~/IrrJIA/<<JIdffoalII//fyllr/CIr.7A/~ga//Jr~./Cyr~dP.gr8Lj."*o'~<"/Jccr+<~-~.(e~~g00PilQloPlXIsn.WAoDofoal~I0 8 OO.O'llOlXO~i(IIIOC/IOClC7UC)PilC7VlZ-III0On0 If'I ~J>>g~DQgI~LL~etleo-te~Cjg~~~vrcaA<ALL'tgeatfCltoiaLt~o(VI,VI,IV,IV~Veaeloe>>'viIee~I~JgeIJ(II,II,I,I)~.oraav~CItLSI-'"g++Lweaaea~cfrlitacoo~Leaa~ILl'>>(vl.vl,vl,v);j.LID@gtg)II."i*.:vil,.fiP~\evV,V;IV.III)goit4~,',g,VI,Vi,V)(Lt,~,.Fg~ieI~t~Qceg~I]jjOCQIf""L(V,IV,III,1!)jiil-lIJ[L(3IipIetCLaa~~I.IIO~a~~I:i(V,iV,iii,ii)'I'revi-'j)I"ij'(~l*.'.iI'gF"Lv'tr'aevJtaI'":'(Vi,Vi,iV',"iV)'=-'=;=="(EI<<,I<<,<<,'ia.8Ii,I,1)acoo~atraaeotO~erroigtt~&evtreitoeeooeCeLercecvaaatecLeagecetrgaoAlcvgwIitii~oeIaaaalvilli~vveeteaava>>aaavovcaatooV'aagel0I'aggeoodIvoao>>aLa'tLocalJoatraetlecatagioeaaaeacaaoo>>IOTLavieol41oo~aooJ>>ogoooa'\'loa\&Itghgh~a.OaawtcooJvtvaaaiolaetaaaLor<<@et>>aiaelogaga>>tl4ocrOOIVOOIL~eeOJliiIIiI~,.,!(.)IC~~glvao~~~~~Iv~~~'oIaag~lt~avaataae~agaa4eatgeoaa.TigSLAVgF6'JO'KOEND:ttttMOgttoo'i~gataa1qIIp.V~V>>I~JO~Ioor~Ji.aa,1gag~~~.,'gag~LaIatglaggge)ZONALDOSERATECLASSIFICATIONUPPERLIMITDOSEZONERATELMA/HAII(15hlR/HRII~15-100htA/HRHI100.1000MR/HAIV1<0A/HLTv10100R/HAVI0'100R/HA~.ROhlANNUMERALSINPARENTHESISCORRESPONDTODOSERATESATVARIOUSTIMESAFTERTHEACCIDENTI~IX,X.X,XIAFTLA1HAlAFTER10HRAFTER100NAAFTKR'l000HRNOTES:DOSERATESFROhlNOi'I-ThglSOURCESNOTINCLUDEDFLORIDAPOT/ER8LIGHTCOMPANYST.LUCIEPLANTUNIT2TMIRADlATIONZONEMAPFIGURE12.3A-l fI N~<<o<<oio~iW+h%~a<<hooe1<<<<a~/wowaa~\<<aoSo<<ooaPP~CElDQ~i=~$III/!,I~o~aa~oh~leoaaoaaR.<<z~oe'<<aaJ)~<<4%aao<iz=<<iiaaoaa<<TC3haoo,11&W+~~l'6,ia-~<o<<~aIlt./I~'>>(V,IV,lI,I)'Qe<<<<ooooooa~<<aaIoat~<<h<<<<'<<i<<a<<<<<<af'<<~~P~'(V,IV,11I,1I)'oP'h~<<aho=-.:-..=.:-a((Il,ll,l,t)qŽ:-.:~<<al"t(1I1I)pg'"...PIaLtt9,~aeoaei<<o<<<<-0Viji)$f.l~aIaa<<Igr.~I*~a<<a<<h'~rsjth~Lm./Aete~~a<<a;-::(I,I,I,I)=4'.Q'aoohe-\<<I'(I,I,I,l3Oaaoooaaoeaaaa~alaIIao<<ae<<ac<<ooooI-<<aoheioo~<<<<aa4alLKOKND:ZONALDOSERATECLAIIFICATION.KOREItlNIIVVVIUPPERLIMITDOSERATEIMR/HR)(1dMR/HRtMOQMR/HR1001000MR/HII140R/HR14100R/HR>100R/HR~.ROMANNUMERALSIkPARENTHESISCORRESPONDTODOSKRATESATVARIOUSTIMKSAFTERTHEACCIDENT...IX.X,X.XlAFTKR1HR~AFTER10HR~AFTER100HRAFTER'1000HRhaeo~Coooo'<<<<lha4'aooe~'aAwoooo~ohooaaoaoahPLNIATmII.SOOOMRATESHIOHERINVICINITYOFPKNKTRATIONSANDOFRADIOACTIVEP/PKSNOTES:DOSERATESFROMNON.TMISOURCESNOTINCLUOKDFLORIDAPOWER8,LIGHTCOMPANYST.LUCIEPLANTUNIT2TMIRADIATIONZONEMAPFIGURE12.3A-2 taatf<<~<<I\t<<at~a<<,~aa<<~4(IV,III,I,I,)t<<ataat~(II,III,III,I)pataattatatata4t<<<<aaaatt.lt'ltIttl:&aa<<atta<<tat<<a~tat(IV,III,II,I)'<<t~tatata~a.l~.IfIa~<<ap~aatat<<aal<<<<a<<iast'~,anati~tt<<<<aa<<Ekat~tat=-@ij(V,VI,VI,V)pt'tJtt(i7%,2;('~pls'-.T'IgE--IIIIt<<a<<a~jg/tat<<ataaaa0<<a<<@asIb';ll!:(III,II,II,II)'~'CXRCXS~0Q~,%a<<=(III,IV,IV;III).'S,t~Isl,~a<<VahNtaaaa'--::"'LQL0L<<aattSatstat$ttt-~1~a~~J(II,II,II,I)R3Ql<<<<<<aa*saaatst~(IV,V%VI(g's4ta90,I~tg.-(IV,IV,IV,III)=-ift"ila'.s/,(IV,V,V,IV)vaaaaag/~ttthaatS<<taaata,ttaa~ataasaa%atsataatLECEND:ZONAI.DOSERATECLASSIFICATIONPLANAT'EL4S00'tts~tlttalQo~<<st<<ashesZONEIIIIIIIVtVVIUPPERLIMITDOSERATE{MA/HAI-(15MR/HR'15100MR/HR100ICOOMR/HR140R/HA10.1COR/HR)100A/HRA.ROMANNUMERALSINPARENTHESISCORRESPONDTODOSERATFSATVARIOUSTIMESAFTERTHEACCIDENT...IX,X.X,XIAFTERIHR~AFTEA10HR~AFTER100HRAFTER1000HRtASSUMINQHYDROOENANALYS.AINOCCUPIEDCUSICLEISNOTOPERATINO,WHILEOTHERONEIS.NOTES:DOSERATESFAOII1NON.TMISOURCESNOTINCLUDEOgo.qiscdgFLORIOAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2TlJIIRADIATIONZONEMAP.FIGURE12.3A-3 0 ~AH4I44~44IlttAWl~4~~r~t44~g)CAttI~ttt4Ct0%t4htt4tt<a44t4tt'usi44'.tJLt$gctl~Ft~IJiCLCl4~i4~ijifmt'--(jI,I,I,I,)ta4~el~1t~'t~\~~44Llg.~eaa44~~~tAt'1-HII>>PjT'!-c--t4~~Oe~MtMl~."t'E,I,I,I)'IO4ttC444Skeaace%4@IjkOCV'LalOdtt4~444ttt't44444SL'MOCCCTletttt~Itt44~.~.Ott<~4t)~tiLEOENDZONALDOSERATECLASSIFICATIONA-.,..pw(III.ME'K0gQi~~liet44V~tti4td~'OLIl41)ZONE-IIIIIIIVVVIlPFERLIMITDOSERATEIMR/HRI(1SMRIHR15.100MR/HR'1001000tAR/HR140R/HR10100R/Htl)100R/HRtl4ttf4tLW~1%44%(I~)t~1~tflitI,r~tttt.gt.4'tgRLa444w\~44~Pttt~t44te.ROMANNUMERALSINFARENTHESISCORRESFO//DTODOSERATESATVARIOVSTIMESAFTERTHEACCIDEtIT,,IX,X,X.XIAFTER1HRAAFTKR10HRAFTER100HRAFTER1000HRIIOTKStDOSKRATESFROMNONTMISOIIR0ESNOTINCLUDEDktgMT/lctLNAt4~j(W44tt44Pt/tTiN.FLitt0t44tFLORIDAPOWER6LIGHTCOMPANYST.LUCIEPLANTUNIT2TMIRADIATIONZONEMAPFIGURE12.3A-4 0 ERRF~CZCR~aawwc~1Ial+PljI~~ROUTETOPASS.EPALTERNATEROUTETOHYDROGENANALYZERS(CU3ICLEIRI~Eeeaaaw~PP4WtA'3.'.IWWIREwaeTI-~~e4etRattta4~tttpt~eweaaw4aaaaeCCTICTIRRtwI~R.oao(Fat)W1caI%44a\I~awR.II)PEl'1~.clews~wPAl.~~W~If0aaIaaaewaeecaacI~~aaaeR,OI(,aaog>>4~tI~~4'-}~"~ej4.EIETCEElOttado(/I)x.:TOSTAIR1RA4AKOROOFEL43AOIPREFERR'EDROUTETOIIYDROOENANALYZERCUSICLEIwvseat~plaeee'aq'eR~~WwYF.TaII~wae~raEFOla414~~wew4TE~l,p4]I"--RRERae'aaaaawawwLEGEIEOPREFFEIIOROUTE4ttt-It-tALTERNATEROUTE-.a.paRaceea,eaeoLttatt+AP~EPtttagFLORIDAPOWER5LIGHTCOMPANYST.LUCIEPLANT.UINIT2ACCFSSROUTESTOYITALAREASFIGURE12.3A-5 f0 ~aratP==-(IFIEFtattr~ttEII44~taataartraar4rFir4Atag~,4~~II~I~I~IIrraaaata'~.I4waEater4)ttt,taat~4~tr44444~EEE~TXQCZQ~~arkCda~~4!I"d~'ItraadIrl44+44~\I~4ROUTarrrETOPA~~I.~vaIFALTERNATEROUTETOHYO.AMYL.CUQICLEmaQg-I4gatIirmaHYOAMYLCUBICLE~LEaaaaprQO~)QPT..III~+A!&tata444444EE!!I~aaIaaltaar4'-'MQ...~ttt~rrLI-~waaye44I~~/,raT'~ZXWRTlK'44~Cr1CCII4at~~4alanPREFERREDROUT'ETOHYDROOEMAMALYZERIiyCUBICLEv4%,444EEEEIrratataaItrratallJE'EEE44PLLVAlEL.CQQ'4t~EEtaa4aaaaarlE440'ralaCPIOIS'>)LEGENDFIIEFFEIIEOIIOFEEemccl~aaALTERNATEROUTEFLORIDAPOIYER8,LIGHTCOMPAIIYST,LUCIEPLAHTUHIT2ACCESSROUTESTOVITALAREASFIGURE12.3A-6 N\~'~III444~VIP>>CA~4tll>>44~H%AV~'I~\II>>'QIIRPUR~V>>II~ItlA>>1PR~(PINI(ttot4>>4>>~CRICOD~P~4PA4~PlOQJCLhLLFAKFKAAKOAOVTKIPIIP>>i'e'LTKANATKAOUTEvi:.igraf,LFEPNVtttr~NNA'IA>>NgF~=~II((rl/.XIg)~~V.',V.tl~~Ph>>rgPX~~I4IEILIP>>TRCbCRCSIPE~\&INVrti-,-.2!'FiRRBvt444~1~KIPh'4I\ItItf)I~I(PL'A>>4PI2I'.I1~>>A,tl>>I/hRIP~r>>4L.lIIiIIII.I.IWC;.IPLI'I'WPI"NvI~/h'lentHKIP.&JNjI~IlII4(EAAEAl(-IC4>>I-PIw~~AtN>>PA4>>>>PI1II~I>>.4~7'A~~PtN>>NIVIIS:NtrNV4IrIIigloo,>>llQo..:~VFg~IIII~I2I~,I~tII-g',II'l'K~I(Ar)EPAPGsIAPIttrrERNEI4>>E(It.~I~1PRIF14!144EIEQ144~(>>44~1144Et~Xltll~EII4444~Atl~VIAAIAAtt,hRLEGENDPREFFEREOROUTEFLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2+~~~IIALTERNATEROUTEACCESSROUTESTOYITALAREASFIGURE12.3A-7 SL2-FSARCONDUCTOFOPERATIONSC))APTER13LISTOFTABLESTitleSTLUCIEOPERATINGORGANIZATIONSTAFFIHGPLANPo'SITIOHCORRELATIONOFSTLUCIEPLANTSTAFFPOSITIONSNITHANSI/ANS3.1-1978TITLESSTLUCIEPLANTEHPLOYEETRAININGSCHEDULE ilii SL2-FSAR'ONDUCTOFOPERATIONSCHAPTER13LISTOFFIGURES~Piute13.1-113.1-2TitleORGANIZATIONCHARTGENERALORGANIZATIONORGANIZATIONCHARTSTLUCIEUNIT2PROJECTTEAM13.1-3ORGANIZATIONCHARTPOWERRESOURCES13.1-4ORGANIZATIONCHARTOPERATIONS.13.4-5"ORGANIZATION'CHARTPOWER-RESOURCES,DEPT.,-13.113.1-ORGANIZATIONCHARTPLANTCONSTRUCTIONORGANIZATIONCHARTPOWERPLANTENGINEERINGORGANIZATIONCHARTPROJECTMANAGEMENTORGANIZATIONCHARTPLANTORGANIZATION13.5-1"ATTHECONTROLS"INTHECONTROLROOM 40 Py8VPage1SL2-FSARCHATTIER1313eOCONDUCZOFOPERATIONS131ORGANIZATIONALSTRUCTUREOFAPPLICANT13+i~1140VGEMENTANDTECHNICALSUPPORTORGANIZATION0FPLutilizesaProjectManagementTeamapproachtointegratethevariedactivitiesrequiredtosuccessfullycompletetheSt.LucieUnit2project.TheProjectManagementOrganizationiatheresponsibilityofaVicePresidentwhoreportsto,anExecutive.Vice.President.TheProjectGeneralManagerreportstotheDirectorofProjectsandisresponsibleforcoordinatingallgroupsinvolvedwiththeprojectbothinsideandoutsidethecompany,TheProjectTeamiscomposedofstaffrepresentativesfromsupportingFPL'departmentsandthearchitect-engineer.FPLteammembersreporttotheProjectGeneralManagerona-linebasis,Teammembersrepresentingthearchitect-engineer,forplantdesignandconstructionsupport,areresponsibletotheProjectGeneralManagerthroughcontractualobligation.ThoseProjectTeammembersareresponsibleforbringingtothcProjecttheexpertiseoftheirresidentdepartments.Respectivedepartmentheadsareresponsiblefor.thequalityoftechnicalservices'providedbyFrojectTeamMembers.AfterSt~LucieUnit2becomesoperational,theProjectManagementOrganizationhastheresponsibilityformanagingtheimplementationofcertainspecificmodificationstotheoperatingunit.AbriefdescriptionofFPLEngineering,QualityAssurance,Licensing,ConstructionandOperating(PowerResources)DepartmentsisgivenbelowThesefunctionsaretheresponsibilityofanExecutiveVicePresident,whoreportsdirectlytothePresident.Thereportingrelationshipsareshown.onFigure13.1-1.TheorganizationoftheProjectTeamisshownonFigure13.1-2. Page2SL2-PSARPro)ectdesignand,engineeringsupportistheresponsibilityoftheChiefEngineer,PowerPlantEngineering,whoreportstotheVicePresidentofEngineering,Construction&Pro)ectowhoreportstotheExecutiveVicePresident.ThePowerPlantEngineeringDepartmnt,thxoughtheEngineeringProspectManager,andr~bersoftheProjectTeam,providesindependentanalysesandevaluationsofkeysafetyrelatedaspectsofarchitect-engineer,andvendordesignsandperformancecommensuratewithlicensingrequirements,assuresintegrationofnucleardesignandoperatingexperiencefromthePowerResourcesDepartment,evaluatesproblemsandNRCactionconcerningotherutilitieswhichcouldaffectPPLplants,andassistsinevaluatingbidsforfuturenuclearplants,Corporatequalityassurance,nuclearplantlicensingmanagement,andcoordinationofresearchanddevelopmentaretheresponsibliityoftheVicePresident-AdvancedSystems&Technology,whoreportsdirectlytotheExecutiveVicePresident.CorporateQualityAssuranceandLicensingManagementarerepresentedonthePro)ectTeam.DetailsoftheQualityAssuranceDepartmentorganizapionarecntainedinSection-%7~2~6Ii-Qc'I-~.'6'~-<x".~-pc.pThePowerPlantConstructionDepartmentistheresponstbliityoftheDirectorofConstruction,whoreportstotheVicePresidentofEngineering,ConstructionandPro)ects,whoreportstotheExecutiveVicePresident.Thisdepartmentprovidesconstructionmethods,handlesconstructioncontracts,andprovidesqualitycontrolandlaborrelationspersonnel.PowerplantoperationandmaintenancearetheresponsibilityoftheVicePresident-PowerResourceswhoreportstotheExecutiveVicePresident.TheManagerofPowerResources-Nuclearisresponsibleforallmattersconcerningtheoperationandmaintenanceofnuclearpowerplants.TheAssistantManagerPowerResources-NuclearisresponsibleforthoseoperationandmaintenancemattersspecificallyxelatedtotheSt.LuciePlant.TheManagerPowerResources-NuclearServicesreportstotheManagerofPowerResources-Nuclearandisinchargeofthenuclearsupportstaff.TheNuclearSupportStaffofthePowerResourcesDepartmentisestablishedtofurnishtechnicalsupportinthoseareasoftechnicalexpertisethatareuniquetonuclearpowerplants~TheManagerofPowerResources-ServicesreportstotheVicePresident-Power Page3SL2-PShRResourcesandisresponsibleforstafftechnicalsupportinareascommontobothnuclearandfossilplants.TheServicesstaffiscomposedofOperations,Haintenaace,tQmiaistratioa,InstrumentandControl,andTestandPerformancegroupswhichprovideia-housetechnicalsupporttooperatingplantsinabroadspectrumofengineering,tcchnicalandscientificdisciplines.Specifictechnicalsupport.areasassignedtovarioussectionsuperviooroareindicatedonPigure13,1-3alongwiththeauthorizedotaffinglevelforeachsection.Actualstaffinglevelsmayvarydependentupontheoupportrequired.t8'/-/9'7/RegulatoryrequirementsforplantoupportspecifiedinANSI/QfSM~&8,RegulatoryGuide8.3,"FilmBadgePerformanceCriteria"February1973(RO)andANSI8.7arefulfilledbythePowerResourcesstaffsections.Duringpreliminarydesign,engineeringaadconstructionactivitiesthataretheresponsibilityofPro)ectHsnagement,PowerResourcesiorepresentedbythePowerResourcesTeamHember.ThePowerResourcesandPowerpleatEagineeriagDepartmentshavebeenexpanded/RtosupportthedesignaadoperationofTurkeyPointUnits3and4aadSt.LucieUnits1and2~13.1.1.1ScificDesnand0ratinActivitiesThefollowingparagraphssummarizethedegreetowhichcertaindesign,.constructionandpreoperationalactivitiesarcaccomplishedanddescribesthespecificresponsibilitiesandactivitiesfortechnicalsupporttooperation./R I0 Page413~lelololSL2-PSARPrincipalSite-RelatedEngineeringcworka)meteorologyAmeteorolog1calmonitoringprogramuasestablishedatthesitetoprovidethosemeteorologicalfactorsthatbearuponplantdesign,operat1onandsafety.TheprogramhasbeenconductedbyDames&Hooreandisdiscussed1nSection2'.DirectionandsupervisionoftheprogramisprovidedbyFPL.Geology&HydrologyLawEngineeringofAtlanta,Georgiaperformedthegeologicandseismologicstudiesofthesite.Duringconstruction,EbascoServices,Inc.soilsengineersinspectedtheexcavationandmappedanysignificantgeologicfeaturesencountered.Geology,hydrologyandseismologyisdiscussedindetailinSections2.4andF5')DemographyEbascoServices,Inc.,performeddemographicstudiesrelativetopopulationMithin50milesoftheplantasdiscussedinSubsect1on2~1o3~EnvironmentalEffectsApreoperationalmonitoringprogramforSt~LuciaUnit2vasdevelopedtoenablethecollectionofhydrothermal,biologicalandeaterqualitydatanecessarytodeterminepossibleimpactsontheenvironmentduetoconstructionactivitiesandtoestabl1shapreoperationalbaselinefromwhichtoevaluatefutureenvironmentalmonitoringdata.ThisprogramisdescribedintheEnvironmental.ReportandisperformedbyAppliedBiology,Inc.andPPL. 00 4~Page5SI2-FSAR~DesignofPlantandAuxiliarySystemsIAnevaluationofengineeringprogressasofDecember31,1979indicatedoverallcompletionofdesignandengineeringof95.2percent."ReviewandApprovalofPlantDesignFeaturesDesigncontrolforreviewisperformedinaccordancewiththequalityassuranceprograminFPLTopicalQualityAssuranceReport{FPLTQAR)1-76A~/Peg4SiteLayoutwithRespecttoEnvironmentalEffectsandSecuri.tyProvisions.Apxeoperationalmonitoring-programforSt.LucieUnit2wasdevelopedtoenablethecollectionofphysical,chemical,andecologicalparametersnecessarytodeterminepossibleimpactsontheenvi~ronmentduetoconstructionactivitiesandtoestablishapreopcrationalbaselinefromwhichtoevaluatefutureenvironmentalmonitoring.AppliedBiologyInc.hascarriedoutthebiologicalandwaterqualitymonitoringprograms.SecurityprovisionsinaccordancewithapplicableNRCregulationsareincorporatedintooverallsitedevelopmentbydevelopingsecuritycriteriaandincorporatingthesecriteriaintodesigndrawingsandspe'cificationsbyFPLandEbascoServices,Inc.DetailsofsecurityprovisionsareprovidedinthesecurityprograminSection13.6.DevelopmentofSafetyAnalysisReportsOverallresponsibiityforpreparationoftheFSARrestswithPowerPlantEngineering.PreparationoftheindividualsectionswasassignedtothecognizanttechnicalgroupswithinFPLortoEbascoServices,Inc.forbalanceofplantsystems,andCombustionEngineeringforNuclearSteamSupplySystem(NSSS)systems. I Page6SL2-PSAR~'eviewandApprovalofl&terialandComponentSpecificationsAllsafetyrelatedprojectspecificationsarereviewedinaccordancewiththeq'ualityassuranceprograminPPLTopicalQualityAssuranceReport(PPLTQAR)1-76A>R~gProcurementofHaterialsandEquipment)AsofDecember31,1979,approximately84.6percentof.theoveralltotalprocurementeffort,iscompleted.lfanagementandReviewofConstructionActivitiesHanagementandreviewofconstructionactivitiesareperformedbythePPLConstructi'onDepartmentandProjectGeneralHanagement.13.1~1.1.2PreoperationalActivitiesIIglDevelopmentofHumanEngineeringDesignObjectivesandDesignPhaseReviewofProposedHainControlRoomLayouts.ThehumanengineeringdesignobjectivesweredevelopedjointlybetweenPPLprojectteammembersandEbascoServices,InesengineeringdesignpersonnelandconfoxmtoNUREG-0770Thecontrolroomlayoutsaredesignedtoincludeallthefeaturesandcomponentsnecessaryformonitoringandcontrollingtheoperationsofthenuclearpowerplantwithahighdegreeofreliability.Thecontrolboardsandpanelsactasamajortoolintheoperator'sinterfacewithalltheplantsystems.Theyhousecontrol,instrumentation,displayandannunciationequipmentandarearrangedwithinthecontrolroomtofacilitatetheoperator'staskofcontrol'andpxotection.Inaddition,thecontrolroomlayoutsincludeadvancedconceptssuchasvideodisplays,computerbaseddataacquisition,loggingandanalysis. Page7SL2-FSARThebasichumaq,engineeringdesignob)ectives~retoimprovetheoperator'sabilitytomaintaincommunicationMithallthesystemsintheplant.ThecontrolboardsutilizeanodulardesignconceptMithcompactminiaturizeddevicesformoreefficientfunctionaldisplay.Theoperator,havingthecontrolboardinformationonasmallerarea,villhave'better=controloftheplantoperation.Developm'entandXmplementationofStaffRecruitingandTrainingProgram.ThestaffingplanandimplementationscheduleispresentedinTable13F1-1~ThetrainingprogramispresentedinSection13'.c)Develo'pmentofPlansforXnitialTestingTheSt.LucioUnit2StartupGrouphastheresponsibilityfortheintegratedoperationsoftheStartupProgram.Thescopeofthe'estingtobeaccomplishedduringthetestprogramisdefinedinSection)A.2DvelopmentofPlant,HaintenancePrograms,PlantmaintenanceprogramsforSt.LucieUnit2aredevelopedbythe'hyFPLPovarResourcesDepartmentbyupgradingandexpanding,asneeded,theexistingprogramsforSt.LucieUnit1.*e13~1~1.13~TechnicalSupportforOperationsTechnicalservices,andbackupsupportfortheoperatingorganizationarealsodiscussedinSubsection13.1~Backupandsupportfortheoperatingorganizationinthespecificcapabilitiesofoperatingexperienceassessment,nuclear,mechanical,structural,electrical,thermal-hydraulic,meteorologyandmaterials,instrumentationandcontrols,plantchemistry,fuelingandrefueling,operationengineeringandanalysisisavailableinFPL'sPowerPlantEngineeringDepartmentinadditiontothestaffsupportavailablevithin Page8SL2-FSARthePowerResourcesGeneralOfficeGroup.MaintenanceandbackfitconstructionsupportisavailablethroughFPL'sPowerPlantConstructionDepartment,providingmanagementofcontractorforces,inadditiontothestaffsupportavailablewithinthePowerResourcesGeneralOfficeGroup.13~I~1.2OranizationalArraenentTheFPLGeneralOfficeManagement.andSupportDepartmentOrganizationisshownonFigures13F1-1through13.1-$.7AsshownonFigure13.1-1,alldepartments,withtheirrespectiveVicePresidents,withresponsiblityforthedesign,licensing,construction,qualityassuranceandoperations,reporttoanExecutiveVicePresident,whoreportstothePresidentof1PL.~lificationsforkeyindividualswithintheorgan'izationareprovidedinSubsection13.1~lanForspecificactivities,FPLmayelecttoenterintoacontinualarrangementwithaconsultingorganizationinordertosecurespecificorspecializedexpertiseortosolicitarecommendationonacourseofactionsFPLmayalso"'enterintocontracturalarrangementforconstructionservicesprovidedbyacontractorforspecificimprovementormodificationwork.ExtendedorganizationswillbcresponsibletocognizantpersonnelwithinPPL'fterSt.LucieUnit2beginsoperation,theProjectManagementOrganizationmaymanagetheimplementationofspecificmajormodificationsoftheplantormaymanageamodificationprogramfortheunitiftheprogramisextensive.TheoperationsoftheProjectManagementGroupisdiscussedinSubsection13Ilo\13~I~1.3HeaduartersStaffiForpersonnelwithintheFPLGeneralOfficeManagementandSupportDepartments SL2-PSARvhohavedutiesandresponsibilities-relevanttoSt.LucieUnit2,asreflectedintheorgani"ationchartaofSubsection13~1~1.2,summariesoffunction,expertiseandeducationarepresentedbelow'. SL2-FSARH.J.Dager,Jr.VicePresident'EducationalBack'round:1975,StanfordExecutiveProgram,StanfordUniversity1949-1951,UniversityofCalifornia,Berkeley,CAM.S.,Bioradiology(Major:NuclearPhysics)1948"1949,U.S.NavyPostgraduateSchool,Annapolis,MD(Major:NuclearEngineering-NoDegree)1942-1945,Un'edStatesMilitaryAcademy,WestPoint,NewYork,B.S.,Mi1itaryEngineeringExerience:NuclearH.J.Dagerhasparticipatedinnuclearworksin'rel948withartiveinvolve"mentinplanning,engineering,constructionandoperationofovertwentynuclearreartors.H.J.Dagerwaslicensedtooperatefourdifferentnuclearreactorpowerplants.1945-l955U.S.Army,CorpsofEngineers,PlatoonLeader,CompanyCommander,AssistantDivisionEngineer,Nur.learEngineer-FarEastCommand,ChiefSperialStudiesSectionEngineerResearchandDevelopmentLaboratories.1955-19561956-1958WestinghouseElectricCorp.;BettisLaboratory,SeniorEngineer,ShippingportProject.GeneralElertricCo.ProjectEngineerLockheed.Project(3testreactors).1958-1959GeneralElectric,ProjectEngineerHumboldtBay,PG&E(50MevBWR).1959-1962GeneralElectric,ManagerSpecialProjects,TestReactors,ControlSystemN.S.Savannah,Control&SafetySystemIndianPoint1,HighTemperatureHeLoop.1962-1963GeneralElectric,ShiftSupervisor,BigRockPoint,ConsumersPowerCo.1963-1964GeneralElertrir.,ManagerShiftOperations,JapanPowerDemonstrationRractor.13.1-7 SL2-FSAR1964-1967GeneralElectric,PrincipalProjectEngineer(Project'Manager)SouthwestExperimentalTestOxideReactor.1967-1972GeneralElectric,ProjectManager,CooperProject,NebraskaPublicPowerDistrict-IowaPowerandLight.1972>>1973NebraskaPublicPowerDistrict,AssistantGeneralManagerforpowersupply,generationengineering,andqualityassurance.1973-Jan,l976FP&L;ManagerofPowerResources-Nuclear;responsibleforstartuppreparationsandoperationofallnuclearpowerplantsinFP&Lsystem.Jan.-Sept.1976AsistanttoGroupVicePresident.1976-PresentVice-President-Engineering,ProjectsandConstruction.OtherMr~DagerispresentlyVicePresidentofEngineering,ProjectsandConstruction.¹isresponsibleforthedesignandconstructionofmajorcapitaladditionstotheFP&LSystem.OtherresponsiblepositionsheldincludeManager,PowerResources-Nuclear;AssistantGeneralManager,NebraskaPublicPowerDistrict;ProjectManager,GeneralElectricCompanyandCaptain,U.S.ArmyCorpsofEngineers.J.W.Williams,Jr.DirectorofPro'ects*A.Function,ResonsihilitissendAu~thoritPrimarilyaccountablefordirectingandcoordinatingtheactivitiesoftheassignedProjectGeneralManagers,themanagerofNewPro-jectsandtheManagerofProjectControlServicestomeettheob-jectivesoftheProjectManagementorganizationandFP&LManagement.Overal1responsibilityfordeveloping,establishing,implementingandmonitoringpolicies,guidelines,proceduresandtechnicalandadministrativeaspectsofallprojectrelatedactivitiestoinsureassignedprojectsmeetProjectManagementandcorporategoalsandobjectives.+Aproject,forthepurposeofdefiningtheroleoftheDirectorofProjects,typicallyencompassestheplanning,design,construction,start-upandassociatedactivitiesrequiredforthecompletionandcommercialoperationofanynewpowergenerationfacilitybutmayincludeanytaskassignedbymanagement.13.1-8 SL2-FSAROver'allresponsibilityforobtainingmanagmentapprovalofprojectstrategies,plansandbudgets,forreportingbothprogressandstatusofassignedprojects,foreffectingtimelymanagementactiontoensurethecontinuedprogressofprojectactivitiesandforob-tainingcompletionofprojectswithinapprovalbudget,scheduleandtechnicalspecificationconstraintsandincompliancewithregula-tionsandagreementsmadewithoutsideorganizationsandagencies.Edu'cacionalBac~kround:BChEUniversityofFlorida,GainesvilleFP<rainingInstructoronSteamGenerator&TurbineTechnology1955-63,NuclearPowerPeactor-UniversityofFlorida1966NuclearFuelHanagement-NUSRadiologicalHealth-PHS19661966ReactorSafety&HazardsEvaluation,PHS1967AdvancedNuclearTechnology-UniversityofFlorida1967StanfordExecutiveProgramStanfordUniversity1975SecificNuclearCourses:NuclearPowerReactor-UniversityofFlorida,1966NuclearFuelHanagement-NUS,1966RadiologicalHealth-PHS,1966ReactorSafety&HazardsEvaluation-PHS,1967AdvancedNuclearTechnology-UniversityofFlorida,1967Exerience:NuclearJ.W.Williams,Jr.hasparticipatedinFP&Lsnuclearprogramsince1966,withactiveinvolvementinthepreliminaryplanningandcon-structionphasesofthenuclearplantTurkeyPointUnits3and4,andcompletedtheabovecoursesinnucleartechnologywhichrelatetolicensing.13.1-9 SL2-FSARExerience:OtherMr.WilliamsispresentlyDirectorofProjects,providingdirectionforsixprojectsandProjectControlServicesDepartment;directsworkofeightmanagersorassistantmanagersandissupportedby34otherpersonnel.Otherresponsibilitiesandpositionsheldinclude:PlantBettermentForeman,PlantResultsForemanandAssistantPlantSuperintendent-OperationsandPlantSuperintendentforPalatkaPlant;AssistantPlantSupervisor-OperationsandPlantSuperintendentatCutlerPlant;PlantSuperintendentforTurkeyPointPlantUnits1and2withresponsibilitiesofasafeandsuccessfulstart-up,andsubse-quentoperationandmaintenanceoftheplant,alongwithprovidingsupervisionforplantpersonnel;Manager,QualityAssurancein-cludingdevelopmentandimplementationofmethodsandsystemstocollect,record,monitorandreportdataforqualityassuranceaf<<fecteditems.ProjectGeneralManager-St.Luci'eproject,providingcoordinationandcontrolofactivitiesnecessarytocompletetheprojectwithinschedule,budgetaridtechnicalspecificationconstraints'.B.DerricksonPro'ectGeneralHanger(PGM)Primarilyaccountablefordirectingandcoordinatingthetimelyperformancebyalldepartmentsinvolvedinthecompletionofanuclearpowerplantwithinadesignatedtimespanandwithintheapprovedbudgetlimitationsandalltechnicalspecifications.Coordinatesandparticipatesindecisionsandactivitiesrelatingtodesign;permitting,purchasing,licensing,constructionandstart-upofthenuclearplantprojectassignedto'im.Establishesschedule<<for,andmonitors,eachoftheactivitiesofthedepart-mentsandgroupssoastoachievetheobjectivesrelatingtoqual-ity,cost"andoperatingdateoftheproject.Administ'erstheprojectplanningandschedulingsystemthrough=whichallareas.relativetotheconstructionofthenuclearplantandstartupisplannedandscheduledfromauthorizationtocommercialoperation."ThePGHmustbecognizantofalldeviationsfromestablishedob-jectivesinconstructionofthenuclearpowerplant,initiateactiontocorrectthedeviationandthestepsnecessarytopreventtheoc-currenceofsubsequentdevia'tions;resolveconflictsbetween'all-partiesattheconstructionsiteandthevariousdepartmentsoftheCompany;secureorrendertimelydecisionswhichwillaidtheCom-panyandtheContractortomeettimeschedules;maintainaclose SL2-FSARrelationshipwithDivisionManagersandotherDivisionandDistrict'personnelregardingtheinterfaceofconstructionplansandDivisionactivities;reviewactualandpotentialproblemareasonacontinu-ing.basissoastoidentify,isolateandarriveatthebestmethodofproblemsolution;keepinterestedpartiesadvisedofprogressandofdeviations,fromschedulesandbudgets;andcoordinateactivitiesbetweenconstructionforcesandallotherdepartmentstoinsureasmoothtransitionofthecompletedprojecttothecommercialopera-tionoftheplant.Education:3SEE-Uni'versityofDelaware1964Nuclear.Mr.,DerricksonjoinedFP&Lin1970asanelectricalstart-upengineeratTurkeyPoint..HethenprogressedtoElectricalStart-upSupervisorandin1972toStart-upCoordinator.Inthelatterposi"tionheassumedresponsibilityforallstart-upactivitiesforTurkeyPointUnit4.In1973hetransferredtothePlantConstruc-tionDepartmentandwasappointedProjectConstructionSupervisorforSt..Lur.ieUnitl.In'1974Mr.Derricksonreturned.totheGene-ralOfficeasSuperintendentofNuclearPlantConstruction.In1975hewasappointedAssistantProjec'tGeneralManageroftheSt.LucieProject,Units1and2.'IIn1976aneedformanagementattentiontoworkatTurkeyPointaroseandMr.DerricksonwasappointedProjectGeneralManagerformajorfacilitymodifications.In1976'avarancyaroseontheSt.LucieProjectandMr.DerrirksonwasappointedtohisrEurrentpositionasProjectGeneralManagerofSt.LucieUnit2andUnit1modifications.~Exerleece:OtherPriortojoiningFP&L,Mr.DerricksonworkedforfouryearsasanElertricalMaintenanceEngineerforDelmarvaPower&LightCompany.InthiscaparityhespentoneyearattheIndianRiverDelawarePlantandthreeyearsattheViennaMarylandPlant.Hischiefactivitieswereplanning,schedulingandsupervisingperiodicmaintenanceonplantequipment,suprrvisingfacilitymodifica-tionsandshorttermloadforerastingandgenerationscheduling.'IhetwoyearsatHerrulesInc.werespentinthedesignandstartupofchemiralp'lants.Activitiescrnteredmainlyintheinstrumenta-tionarea.Duringthetwoyearsheworkedonvariousprojectsatfiveplants. SL2-FSARAtSunShipbuildingandDrydock-CompanytheresponsibilitieswereintheR&Darea.Theprimaryprojectwastodevelopacomputercontrolsystemforautomati'cshipnavigation.G.B.BradshawAsst.ProectGeneralManaer1'Assists,theProjectGeneralManagerindirectingandcoordinatingthetimelyperformancebyalldepartmentsinvolvedinthecompletionofanuclearpoverplantvithinadesignatedtimespanandwithintheapprovedbudgetlimitationsandalltechnicalspecifications.Aidsindecisionsandactivitiesrelatingtodesign,permitting,purchasing',licensing,constructionandstart-upofthenuclearplantprojectassignedtohim.Asassigned,establishesschedulesforandmonitors,eachoftheactivitiesofthedepartmentsandgroupssoastoachievetheobjectivesrelatingtoquality,costandoperatingdateoftheproject.Alsoparticipatesinadministeringtheprojectplanningsystemthroughwhichallareasrelativetotheconstructionofthenuclearplantisplannedandscheduledfromauthorizationtocommercialoperation.Hemust.'ecognizantofalldeviationsfromestablishedobjectivesinconst'ructionofthenuclearpowerplant,initiateactiontocorrectthedeviationandthesteps'ecessarytopreventtheoccur-renceofsubsequentdeviations;resolveconflictsbetweenallpar-tiesatthe.constructionsiteandthevariousdepartmentsoftheCompany;revi.ewactualandpotentialproblemareasonacontinuingbasissoastoidentity,isolateandarriveatthebestmethodofproblem,solution;keepthePGMadvisedofprogressandofdeviationsfromschedulesandbudgets;andcoordinateactivitiesbetweencon-structi.on'orcesandallotherdepartmentstoinsureasmoothtran-sitionofthecompletedprojecttothecommercialoperationoftheplant.,Education:BachelorofScience,MechanicalEngineering1964MasterofScience,NuclearEngineering,UniversityofCaliforn'ia,"-'965ManagementCertificate,UniversityofCaliforniaExtension,1975C.Exerience:NuclearRegisteredProfessionalNuclearEngineerintheStateofCalifornia,Mr.BradshawwaslicensedtooperatearesearchreactorandwasemployedhalftimebytheUniversityofCaliforniaatLosAngeles13'.1-12 I SL2-FSARkkaasalicensednuclearresearchreactoroperatorassistingxnnumer-oussc'ientific.experiments.Since1973hasbeeninvolvedintheProject".ManagementandProjectEngineeringofnuclearpowergenera-tion'units.ktPresently,AssistantProjectGeneralManagerfortheSt.LucieUnit2nuclearpowerplant.Responsibleformanagementandprojectdi-rectionofutilityactivitieson850MVenuclearplant.Activitiesinclude"applicationofcostandschedulecontroltechniquesfortheentireprojecteffort,coordinationoftheutilityfunctionaldepart-mentactivitiesandinterfaceswiththearchitect-engineerandcon-structionorganization.Heassistedintheevolution,planning,organizing,andimplementationofnewutilitymanagementconceptsforimprovingcontrolofprojectcostsandscheduleonlargepro-jects."OtherGeneralAtomicComanSanDiego,CaliforniaManager,AppliedFuelEngineering.Responsiblefordesigncontrol,licensingsupport,.fuelcycleenvironmentaleffects,presentationoftesti-monyatlicensinghearings,projectcontrolsystemsandcoordina-tionof'llprojectsupportactivitieswithintheFuelEngineeringDivisionforthelargeHighTemperatureGas-CooledReactor(HTGR).FuelProjectFngineer-AssignedtothePhiladelphiaElectricFulto'n'eneratingStationProjectfortwin1160MMeHTGRsandtheDelmarvaPowerandLightSummitStationProjectfortwin770MMeHTGRs,bothwithfuelcontractvaluesinexcessof$100million.'esponsibilitiesincludedcoordinationofallfuelactivitiesrelatedtodesign,development,licensing,contractprovisio'nsandprojectcontroloftheprojects.Staff'ndSeniorEngineer,SpecialNuclearSystemsDivision.Responsiblea'saTaskLeaderandPrincipalEngineerforthedesign,developmentandtestofdirectenergyconversionspacenuclearpowersystems.Performedthermaldesign,electricalperformancepredictions,reliabilityassessmentandevaluationofflightdata.~TRMBstems,RedondoBeach,CaliforniaMemberoftheTechnicalStaff.Responsibleforthedesignanddevelopmentofhightemperatureradioisotopeheatsources;carryingoutR&Dprograms;performingradiationeffectsstudiesonsatellitepowersystems;and,evaluatingmobile'nuclearreactors.ObtainedAirForcepatentonheatsource.\Additi'onally,published20TechnicalPapersonEnergyConversion~Technology1-TechnicalPaperonCostof.NuclearPlantDelays1-TechnicalPaperonLicensingandConstructionofSt.LucieNuclearPlant13.1-13 SL2-FSARG.R.GramAsst.Pro'ectGeneral'SanaerFunction,Responsibi*litiesandAuthority:AssiststheProjectGeneralNanagerindirectingandcoordinatingthetimelyperformancebyalldepartmentsinvolvedinthecompletionofanuclearpowerplantwithinadesignatedtimespanandwithintheapprovedbudgetlimitationsandalltechnicalspecifications.Aidsindecisionsandactivitiesrelatingtodesign,permitting,'purchasing,licensing,constructionandstart"upofthenuclearplantprojectassignedtohim.Asassigned,establishesschedulesforandmonitors,eachoftheactivitiesofthedepartmentsandgroupssoastoachievetheobjectivesrelatingtoquality,costandoperatingdateoftheproject.Alsoparticipatesinadministeringtheprojectplanningsystemthroughwhichallareasrelativetotheconstructiono'fthenuclearplantisplannedandscheduledfromauthorizationtocommercialoperation.Hemustbecognizantofalldeviationsfromestablishedobjectivesinconstructionofthenuclearpowerplant,initiateactiontocorrectthedeviationandthestepsnecessarytopreventtheoccur-renceofsubsequentdeviations;resolveconflictsbetweenallpartiesattheconstructionsiteandthevariousdepartmentsoftheCompany;reviewactualandpotentialproblemareasonacontinuingbasissoastoidentify,isolateandarriveatthebestmethodofproblem'olution;keepthePGNadvisedofprogressandofdevia-tionsfromschedulesandbudgets;andcoordinateactivitiesbetweenconstruct'ionforcesandallotherdepartmentstoinsureasmoothtransitionofthecompletedprojecttothecommercialoperationoftheplant.'ducation:BSin"AerospaceTechnology,1969,KentStateUniversityVorkedasco-opforFord'AotorCompanyasaQualityControlEngineer.C.NuclearlFebruary,1979topresent,AssistantProjectGeneralNanageronStLucieUnit1BackfitandBetterment.JoinedFP5Lin1973asBackfitConstructionSupervisorforTurkeyPointBackfit.BeforehispresentappointmentheldAreaConstructionSupervisorandProjectConstructionSupervisorpositionatPTP.From1971to1973,wasanInstallationServiceEngineerforGeneralElectricinTurbineGeneratorFrectionareaforbothfossilandnuclearunits~13.1-14 SL2-FSARW.B.LeeDirectorofConstructionEducation:B.S.GeneralEngineering,andPhysics,Univ.ofRichmond,1949.WorkExperience'r.Leehasmorethan30yearsexperienceinengineeringandconstructionforfossilandnuclearplants.Hehasspentthelast25yearsinthenuclearelectricgenerationarea,fromengineeringanddesigntoprojectandconstructionmanagement;involvedinover30nuclearfueledelec-tricgenerationplantsworldwide.HeservedintheUnitedStatesNavyinWorldWarIIandtheKoreanconflict.In1953hejoinedBettisAtomicPowerLaboratorywhereheworkedonthe'rototypeoftheUSSNAUTILUSandthefirstcommercialatomicplantatShippingport."In1966hewasassignedtotheCommercialAtomicPo~erDivisionsandbecameProjectManagerfortheCarolinaPowerandLight800Megawattnuclearstationturnkeyproject.From1966to1969hewasassignedasFxecutiveVice-PresidentandGeneralManagerofWEDCOCorporation,awholly-ownedsubs'idiaryofWestinghouse,establishedtoperformallengineeringandconstructionoftheIndianPointnuclearproject.In1972hewasnamedVicePresident,FacilitiesConstructionforOffshorePowerSystems(ajointventureofWestinghouseandTenneco>.SinceMarch,1975,hehasbeenwithFPbLasDirectorofConstructionsB.J.EscueSiteManaer,'tLucieUnit2ConstructionEDUCATIONJuniorCollege-'OnesemesterofPetroleumEngineering(1950>-N.E.JuniorofL.S.U.,Monroe,Louisiana.College-Graduated1954fromU.S.MerchantMarineAcademy,KingsPoint,N;Y~(B.S.).MISCELLANEOUSU.S.CoastGuardLicenseasThirdAsst.Engineer(Diesel5Steam),Active.ClassIContractorLicenseforMonroeCounty,Florida.1966-1968.Allowedtoexpire.SUMMARYORUAl'IFICATIONSMar.1976-Present-SiteManager,St.LuciePlant-Unit2Responsibleforconstruction.13.1-15 SL2-FSAROct.1972-Mar.1976Project1fanagerofConstructioninFacilitiesConstructionDept,responsibleforallPlatensandWaterfrontConstruction.Thisincludesengineering,budgetsandconstructionandascertainingthattheConstruction.Managerwasfollowing-hiscontractualresponsibilities.Feb.1971-Oct.1972SiteManagerforWNESoftwo4-loopreactorsites(2plantsoneachsite>.Thisworkconsistedofmaintainingastaffedofficeof'experiencedengineerstoprovidetechnicalassistancetothecustomerinallphasesfromthereceiptandwarehousingofequipmentthroughinstallationandtest.June1968-Feb.1971ManagerofConstructionoftheCarolinaPower&LightCo.Three-LoopNuclearPlant(RobinsonPlant),responsibleforastaffofengineeringspecialists,Q.A.engineers,'civil,costandschedulingpersonnel.Ar.1967-June1968-,ConstructionSuperintendentforWHTDtofielderectwaterdistillationplantforV.S.SteelatClairton,Pa.SupervisedalloftheworkpertainingtoassemblingtheFlashEvaporatorandsettingallmajorequipmentwithmi11-wrights.Ma1966-Aril1967ConstructionSuperintendentforW.HTDtofielderectworld'slargestDesaltPlant(SingleUnit2.62MGD)atKeyWest,FloridaforFloridaKeysAqueductCommission.Jul1965-Ma1966BettisAtomicPowerLaboratory,Pittsburgh,Pa.CognizantEngineerforPWR-2omegasealweldingmachinewhichisusedtoperformallomegasealsonreactorvesselheadautomatically.Jul1961-June1965BettisResidentEngineer'sOfficeShippingportAtomicPowerStationPWRProject(PressurizedWaterReactor>Shippingport(BeaverCounty>,Pa.MechanicalEngineer.Dec.1958-June1961BettisResidentEngineer'sOfficeforconstruc-tionofV.S.S.Enterprise,NewportNewsShip-yardandDrydockCo.,NewportNews,Virginia.MechanicalEngineer,.13.1-16 51F1SL2-FSARMarch1957-Nov.'1958--1-WPo'ecArJt,NavalReactorsFacility,IdahoFalls,Idaho(PrototypeofU.S.S.Enterprise>.HiredasChiefOperatorTraineefor'A-1-WandunderwentoperationaltrainingatS-1-W(OperationalPrototypeofU.S.S.Nautilus>forashorttimepriortoenteringplantconstruc-tiongroupforA-1-W.Jobconsistedoffollow-ingconstruction,intallationofequipment,andtestingasperspecificationsanddrawings.Dec.1954-Dec.1956U.S.NavyJ.E.VesselyDirectorofualitAssuranceAyMarineEngineeringresponsibleformannpowerandallgeneralmaintenanceworkGeneralElectricCo.-ManufacturingManagementTrainingProgramGeneralElectricCo."Manager,AdvancedHanufacturingEngineering-newelectronicproductdesignforAtomicEnergyCommissionGeneralElectricCo.-Manager,QualityPrograms-development,implementation,andevaluationofreliabilityandqualityprogramactivitiesforApollo/NASAGeneralElectricCo.-Manager,Washington,D.C.ProgramOffice-programManagerforthefollowingtypesofprograms:QualityandReliability,ConfigurationControl,DataManagement,InformationSystemsFP&L-SeniorQualityAss'uranceEngineer-SystemDevelop-mentFP&L-AssistantManagerofQualityAssurance-SystemDevelopmentFP&L-ManagerofQualityAssuranceFP&L"DirectorofQualityAssurance1953"19561956"19621962-1967F1967-19731973-19741974-19751975"1978197S"PresentB.B.A.-IndustrialEngineering&Management,UniversityofMiami-1952U,S.Army-MarineEngineering-1952-53HanufacturingManagementTrainingProgram-GeneralElectricCo.-1953-56Statistical'QualityControl-GeneralElectricCo.-1960PlasticsEngineering-GeneralElectricCo.-1960ManagementCoursesatUniversityofFlorida-1966"67NuclearPowerReactors-GeorgiaTech-1975NuclearPowerReactorSafety-MassachusettsInstituteofTechnology-1975StanfordExecutiveProgram-Grad.SchoolofBusiness,StanfordUniversity-1978ProfessionalEngineerinQualityEngineering-StateofCalifornia"197911952-1953USrmMemberof:AmericanSocietyofMechanicalEngineersCommitteeonQualityAssurance(GoverningBodyforANSIStandards>Chairman1978-198113.l-17 0 SL2-FSARSubcommitteeonPersonnelQualificationsN45.2.23QualityAssuranceWorkGroupAmericanNuclearSocietyAmericanSocietyforQualityControlNuclearDivision-AdvisoryCouncilNuclearDivision-Area15RegionalCouncilorNuclearDivision-1979ConferenceChairmanEdisonElectricInstitute-'PrimeMoversSoutheasternElectricExchangeQualityAssuranceCommitteeInternationalAtomicEnergyAgency(IAEA)U.S.RepresentativeforStandardon"QualityAssuranceforFuelCladdingDesignandHanufacture"ElectricPoverResearchInstitute(EPRI)RotatingElectricalMachineryTaskForceJ.WilliamBroomManaerQualitAssurance,AlicationsB.S.,IndustrialManagement-AuburnUniversity-1954ManufacturingTrainingProgram-GeneralElectricCo.-19S9ProfessionalBusinessManagement-19661950-19521955-19571957-19741974-19751975-19791979-PresentU.S.SteelCo.-Co-opStudentUnitedStatesAirForce-Research&DevelopmentCommand,1stLt.GeneralElectricCo.Manager,InventoryControlHanager,PurchasingReliabilityEngineerSeniorQualityAssuranceAnalystFPGLSeniorQualityAssuranceEngineer,ProcurementGroupAssistantHanagerofQualityAssurance,SystemsManager,QualityAssurance,ApplicationsMemberof:AmericanSocietyforQualityCont'rol(ASQC)Qualifications:CertifiedPrincipalAuditor-June,1975ProfessionalEngineer,QA-197813.1-18 0 SL2-FSARTheodoreFssingerAssistantManaerofualitAssuranceDesinH.E.StevensInstituteofTechnology-1953H.B.A.Hanagement,XavierUniversity-1962HanufacturingTrainingProgram,GeneralElectricCo.-1959ReliabilityEngineering,GeneralElectricCo.-19621953-19561957-19631963-19661966-19681968-19721972-19731973-19751975-PresentUnitedStatesAirForce-PilotandGroundSafetyOfficerGeneralElectricCo.-Manager,LargeJetEngineTestwestinghouseElectricCorp.-Manager,QualityAssurance,AtomicEquipmentDivision(CommercialandNavyNuclearProgram)ToledoScaleCo.-Manager,QualityControlControlDataCorp.-ManagerQualityAssurance,HilitarySystemsDivision(PoseidonSubmarineandF14PhoenixPrograms)HazeltineCorp.-Director,QualityAssuranceFPGLAssistantManagerofQualityAssurance-ProcurementFP&LAssistantManagerofQualityAssurance-DesignMemberof:AmericanSocietyforQualityControl(SeniorMember,ChairmanofLocalChapter)AmericanSocietyofMechanicalEngineersEdisonElectricInstituteChairmanofDesignSub"CommitteeofQualityAssuranceTaskForceQualifications:ProfessionalEngineer,PQU2627CertifiedPrincipalAuditor,June,1975CertifiedQualityEngineer,',/1873-1969AlanE.Siebe,AssistantManaerofQualitAssurance-SstemsBS,U.S.NavalAcademy,Annapolis,MD,1965HBA,UniversityofMiami,1978U.S.NavalNuclearPowerSchoolandNuclearPrototype,1966U.S.NavalSubmarineSchool,19671965"1973CommissionedOfficer,U.S.Navy;USSMarianoG.VallejoSSBN658:AssignedasReactorControlOfficer,ElectricalOfficer,HainPropulsionAssistant,RadiologicalControlsOfficerandCommunicator.CommanderSubmarineFlotillaSeven:AssignedAssistantOperationsOfficerVSSLafayetteSSBN616:AssignedasEngineerOfficer.Responsiblefornuclearpowerplantoperations,mainten-anceandoverhaul.13.1-19 1973"1974)974-)9751975-1979.1979-PresentMemberof:SL2-FSARFP&L:QualityAssuranceDepartment,QualityAssuranceEngineer'.Responsibleformanagementauditsofnuclearpowerplantsandsupportingdepartments.,FP&L:.LicensingDepartment,Sr.LicensingEngineer.Responsibleforpreparationandreviewofnuclearplantlicensingdocumentsandforlicensinghearingprepara-tions.FP&L:QualityAssuranceDepartment,AssistantManagerofQualityAssuranceforOperatingPlants.FP&L:Quality,AssuranceDepartment,AssistantManagerofQualityAssurance-Systems.)AmericanNuclear~SocietySoutheasternElectricExchangeQACommittee(CommitteeChairman~N45.2.6vlorkGroupforANSIStandardonQualificationsofInspection,ExaminationandTestingPersonnelforNuclearFacilitiesAmericanSocietyforQualityControl,EnergyDivisionRegistration:RegisteredProfessionalEngineer(StateofCalifornia>N.T.WeemsAssistantHangerofualitAssuranceforConstrbctionO'.S.ElectricalEngineeringGraduatestudyinEngineeringManagementVanderbiltUniversity1949UniversityofSouthFlorida1951-19571957-19681968-19711972-19731973"19751975-19751975-Present'esternElectric/BellTelephoneLabsTestPlanningEngineerGeneralElectricCo.NeutronDevicesDepartmentManager"TestEquipmentEngineeringGeneralElectricCo.,NuclearInstrumentationDepartmentManagerofQualityAssurance.J.A.JonesConstructionCo.CorporateManagerofQualityAssuranceMotorola,CommunicationsDivision-ManagerofQuality'ssurance'ProjectManagementCorp.ManagerQualityEngineering&"ImprovementFP&LAssistantManagerofQualityAssuranceforConstruc-tionMemberof:NationalSocietyofProfessionalEngineersFloridaEngineeringSociety=AmericanSocietyforQualityControlInstituteofElectricalandElectronicsEngineers13.1-20 SL2"FSARAmericanNuclearSocietyQualification:RegisteredEngineer-'lorida88751RobertF.EnglmeierAssistantManaerofualitAssuranceProcurementBSHEVirginiaPolytechnicInstitute-1955ManufacturingTrainingProgram,GeneralElectricCompany-1962ManufacturingProblemsAnalysisCourse,GeneralElectricCompany-1966BusinessAdministration,Internati:onalCorrespondenceSchool-1972NuclearPowerReactorSafety,GeorgiaTech-19771955-19581958-19601960-19621962-19661966-19711971-19741974-19751975-PresentUnitedStatesAirForce-PilotandCommunicationsOfficerGeneralElectricCompany-ManufacturingEngineerGeneralElectricCompany-ManufacturingTrainingProgramGeneralElectricCompany-ProducibilityEngineerGeneralElectricCompany-UnitManager,ShopOperationsGeneralElectricCompany-ManagerShopOperationsFP&LSeniorQualityAssuranceEngineerFP&LAssistantManagerofQualityAssuranceProcurementMemberof:AmericanSocietyofAmericanSocietyofAmericanSocietyofAmericanSocietyof1978-79)CoordinatingAgencyAtomicIndustrialQualifications:QualityControlQualityControl(EnergyQualityControl(EnergyQualityControl(EnergyDivisionSecretary1976-77>DivisionSecretary1978-79)DivisionVice"ChairmanforSupplierEvaluation(ChairmanNuclearSection>ForumLeadAuditorJune12,1975CertifiedProfessionalEngineerofCaliforniaQU3653 SL2-FSARM.H.Rogers,Jr.ChiefEninaar-PaaarPlanta~nFunction,ResponsibilitiesandAuthorityResponsiblefordirectingPowerPlantEngineeringDepartmenttoensuredesignofefficient,economicalandreliablepo~erplantsmeet'Company'srequirementsforpowergeneration.'Ihiaincludeschangestoexistingunitsas.wellasinstallationofnewunitsaPesponsibilitiesincludeestablishingandimplementingdesigncriteria,meetingcodesandregulations,formulatingandimplement-ingengineeringpolicies,practicesandproblems,resolvingengineeringproblems,establishingequipment,technicalspecifica-tionsandequipmentacceptance,andallsimilarengineeringfunctions.AlsoresponsiblefortheNuclearAnalysisDepartmentinvolvedinareasofHeutronics,NuclearFuel,,HanagementSafetyAnalysisandtheNuclearFuelCycle.We(hiefEngineer-PowerPlantshasauthorityforadministrationandtechnicalguidanceofthePowerPlantEngineeringand'uclearAnalysisDepartments.HeisaRegisteredProfessionalEngineer.Educational'ackgroundBQfERensselaerPolytechnicInotiteteCraduatecourses,BeatTransfer,BrooklynPolytechnicinstituteWestinghouse,NuclearPowerSeminarNuclearFuelManagement,NUSNuclearPowerReactor,UniversityofFloridaRadiologicalHealth,PHS'eactorSafety&,RszardsEvaluation,PHSAdvancedNuclearTechnology,UniversityofFloridaNuclearPowerReactorSafety,HassachusettoinstituteofTechnology.C.Experience(l)NuclearDesignandconstructionofTurkeyPointNuclearUnits3and4andSt.LucieNuclearUnits1and2.(2)Other-ForfiveyearsworkedforFosterWheelerResearchandDevelopmentinsteamgenerationequipment~For27yearsworkedforFP&Londesignandconstructionofnuclearandoilfiredpowerplantsandgasturbineunits.Totalof.32yearsinengineeringareas,relatedtotheelectricutility.13.1-22 0/ SL2-FSARE.H.O'NealA.Function,ResponsibilitiesandAuthorityResponsib)efordirectingandcoordinatingPowerPlantEngineeringDepartmenteffortsinprojectrelatedareas.Handlesthedepart-mentalfunctionsandaffairsintheabsenceoftheChiefEngineer.DirectsengineeringProjectManagerstoensurethedesignofef-ficient,'economicalandreliablepowerplantstomeettheCompany'srequirementsforpowergeneration.OtherfunctionsparallelthoseoftheChiefEngineer.HeisaRegisteredProfessionalEngineer.EducationalBackgroundBSMEUniversityofFloridaGraduatecoursesconductedbyUniversityofFloridainElementsofYibration,NuclearEngineering,AdvancedNuclearTechnologyandNuclearPowerReactors.C.Experience(1)Nuclear-EngineeringProjectManagementforSt.LucieUnits1and2forsevenyearspriortobeingpromotedtoAssistantChiefEngineer.(2)Other-WorkedforGeneralElectricCo.for1l/2yearsonjetenginesandsteamturbines.For29yearsworkedforFP&Londesignandconstructionofnuclearandoilfiredpowerplants.Totalof30yearsinengineeringareasrelatedtotheelectricutility.L.F.PabstManagerPlant"Mechanical&NlneareEn~ineerinA.Funct'on,ResponsibilitiesandAuthorityResponsibletodirectandcoordinateMechanical/NuclearpowerPlantEngineeringdesigntooptimizecost,availability,maintainability,efficiencyandoperability.'Iheprincipleaccountabilitiesareasfollows:(1)OrganizeandmanagePlantMechanical/NuclearEngineeringandselect,developandevaluatethemechanical/nuclearpersonneltoensurethattechnicalandprojectcompetencemeetthemechanical/nuclearengineeringdesignobjectives.(2)CoordinateanddirectPlantMechanical/NuclearEngineeringinestablishingdesigncriteriaandinprovidingtheexpertisefordecisionmaking,intheareasofplantsyst'm;fornewpowerplantstoensurethedesignoptimizescost,availability,maintainability,efficiencyandoperability.13.1<<23 kkaa,,,if'aSL2-FSARB.1)ylaaQl(3)'y"Train,coordinateanddirectPlantMechanical/Nuclear~,"Engineeringpersonnelintheefficienttechnicalperformance'of'"procurfwentactivitiessuchasvendortechnicalqualifica->.ti'on,specifications,bidreviews,changecontrol,acceptance,,activities,-etc.(4)'irectmechanical/nuclearengineeringpersonnelinensuringmechanical/nuclear.designscomplywithlocal,stateand'feder'alcodes,rulesandregulations.ka>>"X(5)lCoordinate"anddirectpersonnelintheevaluationand"nauthorizationofarchitect"engineeractivities;provideFP&L""'"di'r'ectio'n.o'fcoursesofactionandevaluationofthetechnical"'.'a'nd'ostaspectsofscopechanges;andevaluateandimplement~'k'."as'requiredinputsfromPowerResources,NuclearandGeneralEngineering,ConstructionandotherswithinFP&L.kk~k(6)*Dir'ectthepreparationofFP&LPowerPlantStandards'orthe,purposeofstandardizingdocumentation,design,constructionpractices,storageofequipmentandtesting.P,(7)D'irectmechanical/nuclearpersonnelinprovidingtechnical"assistancetooperatingpowerplantsfordesignmodifications,tests,orproblemsolving.kEducationalBackgroundBSMEUn'iversityofFloridaGraduatecoursesconductedbytheUniversityofFloridainIndoctrinationtoNuclearEngineering,NuclearEngineeringLaboratory,andAdvancedNuclearTechnology.CompletedWestinghouseReactorTrainingProgramandqualifiedonthefSaxtonReactor.TrainedatTurkeyPointasstudentandinstr'uctorandqualifiedforSeniorReactorOperatorLicenseonTurkeyPointNuclearUnits.C.Experience-NuclearIWorked'innuclearrelatedworkatFP&Lfor13yearsintheoperatingand,engilneeringdepartments.WorkedforeightyearsforFP&Linstart-u'p,testingandspecialprojectsonmodernfossilfuelgenerat'ingunits.Totalof21yearsinengineeringareasrelatedtotheelectricutility.'kD.M.YanTas'sell,Jr.~Manaar-PlantElaatriaalEninaarinA.,Function',Responsibilities,andAuthorityThebasicfunctionoftheManagerElectricalEngineeringistodirectandcoordinateelectricalpowerplantengineering13.1-24 ll SL2-FSARdesign,tooptimizecost,availability,maintainability,efficiencyandoperability.'ITheprincipleresponsibilitiesofthispositionare:(1)Organize.andmanagePlantElectricalEngineeringandselect,developandevaluatetheelectricalpersonneltoensurethattechnicaland-'projectcompetencemeettheelectricalengineeringdesignobjectives.II(2),CoordinateanddirectPlantElectricalEngineeringinestablishingd'esigncriteriaandinprovidingtheexpertisefor='electricaldecisionmakingintheareasofauxiliarypowe'rsyst'ems,controlsandinstrumentationfornewpowerplantstoen'su'rethedesignoptimizescost,availability,maintain-ability,efficiency,andoperability.'~p~II'3)Train,coordinateanddirectPlantElectricalEngineeringpersonnelintheefficienttechnical-performanceofprocurementactivitiessuchasvendortechnicalqualification,specifica-tions,bidreviews,changecontrol,acceptanceactivities,etc.(4)Directelectricalengineeringpersonnelinensuringelectricaldesignscomplywithlocal,stateandfederalcodes,rulesandregulations.(5)Coordinatesanddirectpersonnelintheevaluationandauthor-izationofarchitect-engineer,activities."ProvideFP&Ldirectionandcoursesofactionandevaluationofthetechnicalandcostaspectsofscopechanges,andevaluateandimplementasrequiredinputsfromPowerResources,NuclearandGeneralEngineering,ConstructionandotherswithinFP&L.(6)Direc'tthepreparationofFP&LPowerPlantStandardsforthepurposeofstandardizingdocumentationdesign,constructionpractices,storageofequipmentandtesting.(7)Directelectricalpersonnelinprovidingtechnicalassistancetooperatingpowerplantsfordesignmodifications,testsor"problemsolving.EducationalBackgroundReceivedaBachelorofScienceinthePowerOptionofElectricalEngineeringfromDrexelUniversityin1962.ContinuededucationbycompletingsuccessfullyaRectifierCircuitTheoryCourse,anElectronicCourse,aReviewMathematicsCourseforEngineers,aMaterialApplicationsCourseforEngineersandaHighVoltageDielectricBehaviorCoursewhilewiththeGeneralElectricCompany.AlsocompletedsuccessfullythePowerSystemAnalysisCourseatFP&L.13.1-25 I0Ih0 SL2-FSARC.'xperience,(1)NuclearH(a).-.DirectlyrelatedFUponjoiningFP&LinApril,1971,untilNovember,1973wasdirectlyresponsiblefortheelectricaldesign,reviewofFP&LNuclearGeneratingfacilitiesunderconstruction.FromNovember,1973tothepresenthasbeen.responsible'<forthesupervisionofallelectricalworkanddesignreviewperformedonallFP&Lpowerplantsbothnuclearandfossil.(b')"OtherDuringthetimehewaswithGeneralElectric'srelaydepartmentworkedonseveraljobsassociatedwithnuclearpower.(2)OtherFrom1950throughaportionof1967wasemployed,bytheGeneralElectricCompany;duringthisperiodaseries-of;positionsofincreasingresponsibil'itywereheld.ServedasatesteroiAKcircuitbreakers;requisitionengineerforcontrolswitches,indicatinglampsandwiringdevices;requisitionenginnerforprotectiveirelays;requisitionengineerforpowerrectifierequipment;designengineerfortypeAKDloadcenterequipment;andmagneticdesignengineerfortherelaydepartment.From.l967throughapor'tionof1969,wasemployedbytheElectromagneticCompatibilityBranchofITT-Federal'ElectricCompanyatNASA-KennedySpaceCenter.Was,employedasanengineerandservedforoneyearasBranchChief.From1969toearly1971wasemployedbytheElectricUtilitiesBranchofTransWorldAirlinesatNASA-KennedySpaceCenter.WasfirstemployedasaSystemEngineerontheNASAPowerSystemandservedthelastyearassupervisorofengineeringresponsibleforauxiliarysystemsconsistingofstandbydieselgenerators,protectiverelays,thesupervisorycontrol'ystemandfaultandtransientrecorders.Totalof25yearsinengineering.13.1-26 SL2-FSARH.H.JabaliSuervisor-PlantCivilEnineerinFunction,Res'ponsibilitiesandAuthoritySuperviseandmanagetheCivilengineeringsectionwithinPowerPlantEngineeringDept.DirectcivilengineeringpersonnelinpreparingdesignmodificationsandadditionsatoperatingpowerplantsandinprovidingtechnicalassistanceinthecivilareastootherFphLdepartments.Establishscopeanddesigncriteriaofpowerplantsinthecivil,structuralandarchitecturalareasanddirectstheengineeringactivitiesofthearchitectsengineersandconsultantstoensureimplementationthereof.EducationalBackgroundBSCE,1968,UniversityofMiamiMSCE,1970,UniversityofMiamiMajor:StructuresMinor:AppliedMathematicsMSTheoretical&AppliedMechanics,,1971,NorthwesternUniversityMajor:SolidMechanicsC.Experience(1)NucfearWorkedforSargent6LundyEngineersinstructuraldesignworkfornuclearplantsforfiveyears.WorkedforFP6LincivildesignareasandSupervisor,CivilEngineeringforthreeyears.(2)WorkedinstructuralresearchanddevelopmentareasforthreeyearsinAcademic-Teaching6Researcharea.Totalofeightyearsinengineeringareasrelatedtotheelectricutility.F.G.FluggerA.Function,ResponsibilityandAuthority:ResponsibleforensuringthatnuclearplantdesignsareincompliancewithNRCregulations.Responsibleforregulatorydesignfeaturesinnewplantdesignandformodificationstoexistingnuclearplants.ResponsiblefordevelopmentandimplementationofthePower,PlantEngineeringDepartment'sQAProgram.ApprovalofdesigninareasinvolvingNRCjurisdiction.13.1-27 SL2-FSARB.~EducationalBackgroundBache1orofMarineEngineeringMSinEngineeringScience(AECFellow)GraduateworkbeyondMS,42creditsHITReactorSafetyCourseNUSAdvanceNuclearFuelHanagementCourseC.Experience-Nuclear(a)Directlyrelated.MorkedforsixyearswithConsolidatedEdisonCompanyinnuclearengineeringandmanagementareas.VorkedfortwoyearsonnuclearprojectsforLongIslandLighting.VorkedforNUSCorporationforl-l/2yearsinnuclearareas.MorkedonnuclearplantsinengineeringanddesignforFP&Lforsixyears.Thisisatotalof16yearsinnuclearrelatedwork.(b)OtherWorkedfortwoyearsinotherworkrelatedtoutilities.Total10yearsutilityexperience.J.R.TomontoManaer-NuclearAnalsis.A.Function,.ResponsibilityandAuthority:ResponsibleinprovidingdirectionoftheNuclearAnalysisDepartmentinthefollowihgareas:Technicalassessmentsofnuclearfueldesigns,nuclearplantsafetysystemsandpreparationofreloadlicensingreports.Functionalreviewsofvendorsuppliednuclearphysics,thermal,hydraulicandsafetydesignsofnuclearcorestoensurethattheymeetoperational,regulatoryand.qualityassurancerequirements.Performsafety,analysestosupportplantoperationandrecommendprocedurestomeetestablishedcriteria.Performanaly'sesofreloadnuclearfueldesignstoensurethatallparametersarewithinestablishedlimits.Devel'.proceduresandmethodsusedtoverifythatnuclearplantpowerdis-tributionsarewithintechnicalspecificationlimits.AssistandaugmentnuclearplantReactorEngineeringstaffsduringrefueling,start-upsandspecialtestevaluations.AuthorityisintheadministrationandtechnicalguidanceoftheNuclearAnalysisDepartment.EducationalBackgroundBSinphysics,VillanovaUniversity,1954MSinReactorPhysics,RensselaerPolytechnicInstitute,)959.13,1-28 SL2-FSARAdvancedReactorEngineeringProgramconductedbytheKnollsAtomicPowerLaboratory,1960-62.EngineeringManagementSki11sCourse,1969.DoctoralStudent,inNuclearEngineering,N.Y.University,1967to1970.GulfCorporationManagementTrainingProgram,1973.Experience(1)NuclearHanager,NuclearAnalysisDepartment,FP&L,Hiami,Florida,Harch,1974topresent.Manager,NuclearEngineeringDepartmentGulfUnitedNuclearFuelsCorporation,ResearchandEngineeringDivision,Elmsford,N.Y.,January,1970toHarch,1974.Manager,NuclearDevelopment'ection,UnitedNuclearCorporation,Elmsford,N.Y.,March,1964toJanuary,1970.Nuclear'hysicist,KnollsAtomicPowerLaboratory,Schenectady,N.Y.,November1959toHarch,1964.NuclearEngineer,AlcoProducts,Inc.,NuclearPowerEngineeringDivision,Schenectady,N.Y.,June,1958toNovember,1959.(2)OtherElectricalEngineer,AirborneInstrumentLaboratory,HodoeDivision,Thornwood,N.Y.,June,1957toSeptember,1957.ChiefEngineer,DD775,V.S.Navy,Norfolk,Va.,June,1954toJune,1957.13.1.-29 0 SL2-.FSARfC.S.Kent~EnineerinProectManaer-StLucieNuclearUnits1and2a)Function,Responsibilities,andAuthorityResponsibilitiesforcoordinatingPowerPlantEngineerdesign/reviewactivities.Responsibleforengineeringbudgetsand'chedules.Responsiblefordirectingthearchitect"engineerandNSSSvendors.I~b)'-EducationalBackground')BSChemistry-Florida'SouthernCollegeHSENuclearEngineering,UniversityofFloridaExpeiience1)NuclearWorkedindesignandprojectengineeringrelatedareasforFP&Linnuclearplantrelatedassignmentsfor10years.2)OtherTwoyearsTotalof12years'utilityexperience.Dr.RobertE.UhrigVicePresident-AdvancedSstemsandTechnoloB.S.(withhonors)MechanicalEngineering,UniversityofIllinois1948~'.S.Theo.andAppliedMechanics,IowaStateUniversity1950Ph.D.Theo.andAppliedMechanics,IowaStateUniversity1954C1948-1951IowaStateUniversityTeachingStaff1951"1952InstituteforAtomicResearch,'IowaStateUniversity,ResearchAsst.1952-1954InstituteforAtomicResearch,IowaStateUniversity,GraduateAsst.1954-1956DepartmentofMechanics,U.S.MilitaryAcademy,WestPoint,(onactivedutywithU.S.AirForce)1956-1960InstituteforAtomicResearch,IowaStateUniversityAssociateProfessorofTheoreticalandAppliedMechanicsandNuclearEngineering,NuclearReactorSupervisor,'roup'eaderofNuclearEngineering,GroupIII1960-1967UniversityofFlorida,ProfessorandChairman,DepartmentofNuclearEngineeringSciences1967-)968DepartmentofDefense-DeputyAssistantDirectorforResearch(onleaveofabsencefromUniversityof,Florida>1968"1973Univers'ityofFlorida,Dean,CollegeofEngineeringandDirector,Engi'neeringandIndustrialExperimentsStation13.1-30 SL2-FSAR1973-PresentFP&L-VicePresident-AdvancedSystemsandTechnologyRegisteredProfessionalEngineer-FloridaandIowaStatesMemberof:AmericanSocietyforEngineeringEducationAmericanNuclearSocietyAmericanSocietyofMechanicalEngineersNationalSocietyofProfessionalEngineersAmericanAssociationforAdvancementofSciencesAmericanInstituteforAeronauticsandAstronauticsFloridaEngineeringSociety0.F.Pearson,-IIIDirectorLicensinandEnvironmentalPlannin
DeartmentEducation:
GeorgetownUniversityLawCenter-JurisDoctorCornellUniversity-MasterofEngineering(Nuclear)CornellUniversity-BachelorofEngineeringPhysicsHarvardUniversity-CompletedaprogramforManagementDevelopmentExperience:1966-1972:Reactor'EngineeringBranchHeadintheDivisionof'NavalReactors.1972-1973:ExecutiveAssist'anttoVicePresidentPowerPlantEngineeringandConstruction.1973-1975:ExecutiveAssistanttoVicePresidentStrategicPlanning,FP&L.1976'Present:DirectorofLic'ensingandEnviron-mentalPlanning,FP&L.Memberof:Ameri'canBarAssociationDistrictofColumbiaBarThe'FloridaBarAIFSteeringCommitteeonLicensingandSafetyAIFEnvironmentalCommitteeAmericanNuclearEnergyCouncilJ.A.DeMastry,,AssistantManaer,NuclearLicensinEducation:OhioStateUniversity-GraduateSchoolMetallurgicalEngineering-OneYearOhioStateUniversity-B.Sc.1953Experience:1974-Present:AssistantManager,NuclearLicensingToplan,coordinateanddirectoverallcompanylicensingprograminordertoobtainandmaintainthevariousnuclear
SL2-FSARregulatorylicensesandapprovalsnecessaryfornuclear-powerplantsiting,constructionandoperation.GeneralExperience:'Twenty-threeyearsexperienceinnuclearlicensing,engineer-ingmanagement,reactorplantdesign,nuclearfueldevelop-ment,nuclearmarketing,nuclearsafety,generalnucleartechnologyandqualityassurance.Experienceinpreparingplantlicensing.documents.Last10yearsexperiencehasbeenatvariouslevelsofengineeringmanagementsuchasnuclearapplications.Specificexperienceindesignofreactorcon-tainment.Experiencedindevelopingmaterialsandcomponentsforusein,nuclearreactors.Activeinstudyingliquidmetalsandtheirinteractionswithmaterialsandcomponents.Exper-ienceinfracturemechanicsstudiesofmetalsandceramics,weldingandeffectofweldsonmaterialsproperties.Adminis-teredmechanicalpropertieslaboratoriesconcernedwithstudy-ingtheeffectsofenvironmentalsuchastemperature,radia-tion,vacuum,etc.onmaterialsandcomponents.Authorand/orcoauthorofmorethan30technicalpapersandinaccessof50technical'eports.Activeinprofessionalsocieties.AugustL.HeilAssi'stantManagerforNeutronicsandFuelrianaementBS,MetallurgyandMaterialsScience,CarnegieMellonUniversityI~1950-1968Supervisor,CoreManufacturing,.WestinghouspBettisLaboratory;fabricationofreactorfuelandcorecomponentsfortheNavalNuclearProgramincludingShippingport.Developmentofnewfabricationprocessesandpreparationofin-pilefueltestsamples.1968-1970'ISupervisoryEngineer,NuclearMaterialsandEquipmentCorporation;processengineeringresponsibilityforthefabricationoftheportablemilitarytypereactor'oresandqualificationfuelassembliesforcommer-ci'alreactors.1970-1974ProjectManager,WestinghouseNuclearFuelDivision;projectmanagementandadministrationofthecommer-cialnuclearfuelcontractsinthesoutheast.1974-PresentFP&L,NuclearAnalysisDepartmentAssistantManagerforNeutronicsandFuelManagementMemberof:ANSandASME13.1-32
SL2-FSARtJ.E.CarsonManaerofFuelSu1BSEE,DukeUniversity,1949UniversityofFloridaExtensionNuclearEngineering,1966HUSNuclearFuelHanagemerit,19691949-1955CityofDanville,Virginia,PowerEngineer;engineeringelectricalpowertransmissionanddistribution1955-1957FP&L;SeniorFieldEngineer;distributionengineeringandcommercialservice1957-1964FP&L;AssistantSupervisor;transmissionanddistributionconstructionsupervision,metering,overhead,underground,trouble1964-)968FP&L;IndustrialRelationsSupervisor;laborcontractadministrationandnegotiations196B-PresentFP&L;ManagerofFuelSupply;oil,gasandnuclearfuelprocurementandcontractadministrationMemberof:ANS,IEEE,FederalPowerCommissionTechnicalAdvisoryCommitteeonFuels13.1-33 Page10SL2-FSAR'3~1.2OPERATINGORGANIZATION13,1.2'Plant,Oranization8Figure13.1-$providesa-chartshowingthetitleofeachposition,thenumber'foperatingshiftcrews,andthepositionsforwhichreactoroperatorandseniorreactoroperatorlicensesarerequired.Table13.1-1displaysplantstaffingchangestotheexistingSt.LucieUnit1organisationtoaccommodateoperation,administrationandmaintenanceofSt.LucieUnit2~ThesechangesfollowmanpowrrequiremntstosupportSt.LucieUnit'andmayvaryslightlydependentuponprospectprogressandschedule.13,1.2.2PlantPersonnelResnsibilitiesandAuthoritiesThefunction,responsibilities~andauthoritiesofplantpositionsaredescribedbelow.ThesepositionsareindicatedontheorganizationalchartofFigure13.1-$.~'lantManagerThePlantManagerreportstotheAssistantManagerPowerResources<<9tloclear(refertoyifcra33.1-P)scdbasdtrectrespoasfbilityforo~ratingandmaintainingtheplantinasafe,reliableandefficient.manner.Heisresponsibleforprotectionoftheplantstaffandthegeneralpublicfromavoidableradiationexposureand/oranyotherconsequencesofanaccidentattheplant.He"bearstheresponsibilityforcompliancewithChefa'cilityoperatinglicense..HehastheauthoritytoCakeanyactionnecessary,withoutconsultaCion,topreventormitigatetheconsequencesofanaccident.OperationsSuperintendentTheOperationsSuperintendentreportstothePlantManagerandactsinhisbehalfduringhisabsence.HeisresponsibletothePlant'Managerforoperatingandmaintainingtheplantinasafe,reliable,andefficientmannerHewillassumethedutiesandresponsibilitiesofthePlantManagerastheprimaryalternatetothatposition.
PagellSL2-RSkROperationsSupervisorTheOperationsSupervisorhastheresponsibilityfordirectingtheactualday-to-dayoperationofCheunitandholdsaSeniorOperatorLicense.HereportsdirectlytotheOperationsSuperintendentanddirectstheplantoperatingsCaff.Hecoordinatesoperationsrelatedactivitieswithalldepartmentalsupervisors.Heassumesallofthe~OperationsSuperintendenC'aresponsibilitiesandauthorityinhisabsence.Heisresponsibleforoverallsupervision'offuelhandlingoperations.Hehastheauthoritytoshutdowntheunit,initiatetheEmergency'Plans,'andissuestandingordersonaday-to-daybasis.'PlantSupervisorThePlantSupervisorisresponsiblefortheactualoperationoftheplantonhisassignedshift.HereportstotheOperationsSupervisoranddirectstheactivitiesoftheoperatorsonhisshift.Hemustbecognizantofallmaintenanceactivitiesbeingperformedwhileheisonduty'hePlantSupervisorondutyhastheauthoritytoshutdowntheunitif,inhisopinion,conditionswarrantthisaction.HehastheauthorityandresponsibilitytoinitiatetheEmergencyPlansandtoissuestandingordersforoperationincon)unction"withtheOperationsSupervisor.ThePlantSupervisoristheEmergencyCoordinatorwhen,theEmergencyplanisineffect'uringfuelhandlingoperationshemaydirecttheoperationoroperatefuelhandlingequipment.Responsibilitiesarespecifiedbyanadministrativeprocedure.rWatchEngineerTheWatchEngineeristheworkingoperatingforemanandisresponsibleforplantoperationsonhisshift.HereportstothePlantSuprvisor.UponassignmenthemayassumetheresponsibilitiesofPlantSupervisor.Duringfuelhandlingoperationsheshalldirectoroperatefuelhandlingequipment.Heisalsothefireteamleaderandmaintainsproperqualificationsforthisposition.TheWatch
Page12SL2-PSAREngineerondutyhastheauthoritytoshutdowntheunitifinhisopinionconditionswarrantthisaction.HehastheauthoritytoinitiatetheEmergencyPlans.Responsibilitiesare'specifiedbyanadministrativeprocedure./AControlCenterOperatorTheControlCenterOperatoroperatescontrolsandmonitorsinstrumentslocatedinthecontrolroomcontainingreactor,turbine-generator-andtransmissionlinecontrolboards,andunder.directorgeneralsupervisiondirectstheoperation'fallplantequipmentas.requiredtomaintainproper'operatingconditions.HeexecutesordirectstheexecutionofordersreceivedfromthePlantSupervisor,HatchEngineer,andDispatcher.Hehastheauthoritytoshutdowntheunit'ifinhis'pinionconditionswarrantthisaction.During.fuelhandlingoperations,hemayoperatefuelhandlingequipmentundergeneralsupervision.Hemayoperateradiationsurveyinstruments.Responsibilitiesarespecifiedbyanadministrativeprocedure./AShiftTechnicalAdvisorTheShiftTechnicalAdvt,sor.providesanindependent,dedicatedconcernforthesafetyoftheSt.LuciePlant.ThisisaccomplishedbyprovidingdiagnosticsupportinanadvisorycapacityonlytoOperationspersonnelduringoff-normaleventsandbyadvisingthePlantSupervisoronactionstoterminateormitigatetheconsequencesofsuchevents.TheShiftTechnicalAdvisorisresponsibletotheTechnicalSupervisor.ResponsibilitiesarespecifiedbyanadministrativeprocedureTheShiftTechnicalAdvisorpositionmaybeeliminatedifthePlantSupervisormeetstheShiftTechnicalAdvisoreducation,trainingandqualificationguidelines./A Page13SL2-FSARNuclearOperatorTheNuclearOpratoioperatesnuclearreactorauxiliaryequipmentandturbine-generatorauxiliaryequipmentunderthedirectionofalicensedOperatororSeniorOperator.HeperformsinspectionsofoperatingequipmentandsystemsincludingbutnotlimitedtotheReactorCoolantSystem,ChemicalandVolumeControlSystem,ComponentCoolingWater,ShutdownCoolingandSpentFuelPoolCoolingSystems,WasteManagementSystem,engineeringsafetyfeaturessystemsandcomponents,radiationdetectionequipment,containmentandradioactiveareaventilationandpurgesystems,PrimaryWaterMakeupSystem,refuelingwatertank,gassupplysystems,liquidandgassamplingandanalysisequipment,andchemicalfeedadditionequipmcnt.Heperformsoperatingadjustmentsandservices,recordsoperatingdata,andoperatesradiationsurvey.instruments.Duringfuelhandlingoperationshemayoperatefuelhandlingequipmentunderthesupervisionofalicensedoperator,HemayoperateotherplantauxiliaryequipmentunderthedirectionofaPlantSupervisor,WatchEngineer,orControlCenterOperator.Responsibilitiesarespecifiedbyanadministrativeprocedure.tNuclearTurbineOperator/RTheNuclearTurbineOperatoroperatesturbinecontrols.andservesasturbine-generatorattendant..Heactsunderthedirectionofalicensedoperatororsenioroperator,maybeassignedadditionalduties,canassisttheNuclearOperator,performsoperatingad5ustmentsandservices,andrecordsoperatingdata.Heisamemberofthefireteamandisproperlyqualifiedforthisposition.Responsibilities'arespecifiedbyanadministrativeprocedure.AuxiliaryEquipmentOperator/RTheAuxiliaryEquipmentOperatoroperatesplantauxiliaryequipment,suchastheWaterTreatmentplantandtheIntakeCoolingWaterSystemequipment.Hemayoperateotherplantauxiliaryequipmentunderthe 0 Page14SL2-PShR'IdirectionofaPlantSupervisor,Nu'clearHatchEngineer,oraControlCenterOperator.Heisamemberofthefireteamandisproperlyqualified.forthisposition.Responsibilitiesarcspecifiedbyanadministrativeprocedure.TechnicalSupervisor/RTheTechnicalSupervisorreportstothePlantManagerandisresponsibleforsupervisionofthestaffengineersanddirectsactivitiesconcerningtechnicalanalysisandadvisoryservices.TheTechnicalSupervisorisresponsible,fortheoperatingexperiencefeedbackfunction.ReactorSupervisor/RTheReactorSupervisorconductsorsupervisestests,accumulatesandcvaluatesdataandmaintainsrecordsoftheperformanceof~plant~~uipmeatincludingcoreperformanceandfidelrecords.He.reportstotheOperationsSuperintendent.Hehastheresponsibilitytorecommendthattheunitbeshutdownifinhisopinionconditionswarrantthisaction.HehastheauthoritytoinitiatetheEmergencyPlans.HealthPhysicsSupervisor'RThcHealthPhysicsSupervisorconductsorsupervisessurveysandmonitoringprogramstodetect,measure,and,assessradiationlevelswithinthefacilityandmaintainsrecords'ndreportsofallradiationsurveysandmonitoringprograms.Heinstructsorassists.intheinstructionofallpersonnelinthebasicprinciplesofradiationprotection.Heassistsorsupervisesdecontaminationoperations.Hehastheresponsibilitytor'ecommendthatthe,unitbeshutdownifinhisopinionconditionswarrantthisaction,andhehastheauthoritytoinitiatetheEmergencyPlans.TheHealthPhysics Page15SL2-PSARSupervisorreportstotheOperationsSuperintendent.HealsohasanauthoriseddirectlineofcommunicationtothePowerResourcesStaffHealthPhysicsSectionSupervisorandtothePlantManager.Theselinesofcommunicationgivehimaccesstouppermanagement'toassurethatexposuresareasIowasreasonablyachievable.XnstrumentandControlSupervisor/RThe,XnstrumentandControlSupervisorreportstotheMaintenanceSuperintendentandisresponsibleforsupervisionofmaintenance,calibrationandinstallationofallinstrumentandcontrolequipmentandformaintenanceofinstrumentandcontrolrecords.Hehastheauthoritytoshutdowntheunitifinhisopinionconditionswarrantthisaction,andhehastheauthoritytoinitiatetheEmergencyPlansoChemistrySupervisor/RTheChemistrySupervisorconductsorsupervisesthechemicaland4'adiochemicalanalysesofwateryg,gas~nd-sM&Isamples.Heevaluatestestresultsanddirectscorrectivemeasuresincidenttotheanalyses.HehastheauthoritytoinitiatetheEmergencyPlansMaintenanceSuperintendentThe,MaintenanceSuperintendentreportstotheP1antManagerandisresponsibleforsupervisonofthemaintenanceofallequipmentandfacilitiesandformaintainingallrequiredmaintenancerecords.AssistantSuperintendent-MechanicalMaintenance/RTheAssistantSuperintendent-MechanicalMaintenancereportstotheMaintenanceSuperintendentandisresponsible,forsupervisionofthemechanicalmaintenanceofallequipmentandfacilitiesandformaintainingall.mechanicalmaintenancerecords. Page16SL2-PSARAssistantSuperintendent-ElectricalMaintenance/RTheAssistantSuperintendent-ElectricalHaintenancereportstotheHaintenanceSuperintendentandisresponsibleforsupervisionoftheelectricalmaintenanceofallequipmentandfacilitiesandformaintainingallelectricalmaintenancerecords.QuailtyControlSupervisor/RTheQualityControlSupervisorreportstothePlantManagerandisresponsibleforthecoordinationofthoverallqualitycontrol(QC)effortwithintheSt.LuciePlantorgan&ation.RefertoFPLTopicalyfitsgQualityAssuranceReport(PPLTQAR)1-76A>foramoredetaileddescriptionoftheQualityControlSupervisor'sresponsibilities,Thefollowingdescribesthelineofsuccessionofauthorityandresponsibilityfortheoverallstationoperationintheeventofunexpectedcontingenciesofatemporarynature:llc)PlantHanager1)OperationsSuperintendent2)OperationsSupervisorOperationsSuperintendent1)OperationsSupervisor2)Plant'Supervisor3)'atchEngineerOperationsSupervisor1)PlantSupervisor2)PatchEngineer Page17SL2-PSAR13.1.2.3~0eratinpShfftGreethenormaloperationsshiftfortwounitsconsistsofaPlantSu~~or,WatchEnear~,~oControlCenterOperators~~hi'ftTechnicalAdvisor,NuclearOperatorandTurbine-OfeiatoxThePlantSupervisorisdirectlyresponsible..totlieOperationsSupervisorforall-operagionsonhisshift.gers'onnelvillholdNRClicensesasshovninFigure13.1-9,.Duringandfollovinginitialcoreloading,alicensedSeniorOperatorvillbeonsiteatanytimefuelisbeinghandledintherefuelingfacilitiesand/orinthereactor,orwhenfuelisineitherreactor.Duringfuelhandlingoperationsoneitherunit,oneseniorreactoroperatorisassignedtheresponsibilityoffuelhandlingwithnootherconcurrentduties.Alicensedoperatoroperatestherefuelingmachineandanotherlicensedoperatormonitorsfuelhandlingoperationsfromthecontrolroomoftheaffectedunit.Theotherrefuelingstationsaremannedbylicensedandnon-licensedoperatorsasrequiredtoperformtheevaluation.Theminimumshiftcrewhasfivemebersdedicatedtofightfiresduringacontrolroominaccessibilitysituation.Theminimumshiftcrew,compositionisgivenin%'able-13.1-2-for-St.-Lucie.%nits-b-and"S5<Ii(~'L~"'".""'-'""~'af5<.<.TC<<..tt~(r(r~(rt(-(e~Cgtr~P'<.CAN<A(p(v>te\(.t-$I~Qi)~2rrSt.LucieUnit1presentlyschedulesqualifiedradiationprotectionmen(RPM)onshift24hoursperday,sevendaysperweek.Thisschedulewillbe'expandedtoincludeUnit2vhennecessary.13~1~3QUALIFICATIONSOFNUCLEARPLANTPERSONNELPPLcomplieswithRegulatoryGuide1.8,"PersonnelSelectionandTraining"September197SwhichgenerallyendorsesANSIN18.1-1971'hisRegulatoryGuideisa'ddressedbyPPLTQAR1'-76A,Rev.4.
Page18SL2-PSAR13.1.3.1ualifications'ReuirementsANSIH18.1-1971describestheminimumqualificationsforseveralofthemanagement,operating,.technicalandmaintenancepositioncategories.specifiedinSubsection'3.1.2.Inadditiontothesequalifications,seniorreactor.,operatorlicensecandidateswillhaveoneyearofexperienceasareactoroperatororequivalentexperience.Table13.1gprovidesthecorrelation~-I-betweenthepositiontitlesspecifiedinANSIN18.1-1971andtheactualSt.LuciePlantStaffpositions./97/QualificationsforpersonnelnotspecificallyaddressedinANSIN18.1-~arespecifiedbelow:/RTheShiftTechnicalAdvisorshallhaveabachelor'sdegreeorequivalentina.scientificorengineeringdiscipline.Specifictrainingisprovidedinresponseandanalysisoftheplantfortransientsandaccidents;detailsofthedesign,function,arrangementandoperationofplantsystems;andresponseofinstrumentationandcontrolsintheControlR'oom./A131.3.2ualificationsofPlantPersonnelThequalificationsofincumbentsinkeyplantsupervisorypositionsandalllicensedpersonnelaresummari'zedinresumeformatbelow.ThequalificationsoftheStartupSuperintendentwhoseresponsibilitiesarediscussedinSection14.2arealsoincluded. SL2-FSARAlfredD.SchmidtVicePresident.-PowerResourcesBME,Univers'ityofFlorida,1942NuclearEngineeringcour'se,UniversityofFloridaManagementofRadiationAccidentscourse,EPA,1972FP&LManagementDevelopmentcourses,1972-PresentCarnegie-He1IonProgramforExecutives,1973.1937'-19421942,-19451946-19481949-19511951-19541954-19571957-19701970-19721972-PresentFP&L;Co-opstudentFP&L;JuniorEngineer,OperationDepartmentFP&L;BettermentEngineer;Sarasota,Lauderdale'ndMiamiPlantsFP&L;AssistantPlantSuperintendent;MiamiPlantFP&L;PlantSuperintendent;responsibleforoperatingandmaintainingthefossilfuelunits,PalatkaPlantFP&L;SuperintendentofOperations,PowerPlants;responsibleforsafe,efficientoperationofallpowergeneratingplantsinFP&LsystemFP&L;RegionalSuperintendentofPowerPlants;responsibleforoperationandmaintenanceofallunitsinhisregionFP&L;SuperintendentofGeneratingStationsFP&L;VicePresident-PowerResources;responsibleforthesafeandefficientoperationandmaintenanceofallpowerplants,includingstaffsupport.Since1978alsoresponsiblefortheSystemOperations,SystemProtectionandPowerSupplyTechnicalServicesgroups.RegisteredprofessionalengineersMemberof:ASHE,NSPE,EEI,EPRIJ.RussellBensenAssistanttotheVicePresident-,PowerResourcesBHE,TulaneUn'iversity,1946NuclearEngineeringandNuclearEngineeringLaboratorycourses,UniversityofFlorida,1966NuclearFuelHanagementcourse,NUS,1966AdvancedNuclearTechnologycourses,UniversityofFlorida,1967WestinghouseReactorOperationTrainingProgramandDesignLectureSeries,WaltzMillandSaxton,Pa.1968-1969ManagementofRadiationArcidentsCourseandEnvironmentalRadiationLaboratory,EPA1972FP&LManagementDevelopmentcourses,1973-Present13.1-40 0 SL2-PSAR1947-19481948-19491949-19511951-19541954-1.9551955-19571957-19671967-19721972-19731974-19761976-19781978-presentFP&L;Mater.Tester;MiamiBeachPlantFP&L;InstrumentMechanic,HiamiPlantFP&L;BettermentEngineer,ResultsDepartment;HiamiPlantFP&LAssistantPlantSuperintendent-OperationandMaintenance;MiamiPlantFP6L;AssistantPlantSuperintendent-Maintenance;CutlerPlantFP&L;SuperintendentofHaintenance;PowerPlants;responsibleformaintenanceofallsteamgeneratingpowerequipmentinFP&LsystemFP&L;RegionalSuperintendentofPowerPlants',responsibleforoperationandmaintenanceoffivepo~erplantsinhisregionFP&L;RegionalSuperintendentofPowerPlants-NuclearFP&L;ManagerofPowerResources-Nuclear;responsibleforstartuppreparationandoperationofallnuclearpowerplantsinFP6LsystemFP&L;AssistanttotheVicePresidentofPowerResources1'P&L;ManagerPowerResources-NuclearFP&L;AssistanttotheVicePresident-PowerResourcesRegisteredProfessionalEngineerMemberof:ASME,ANS,NSPEwisE'ooke,*Jr.ManerPowerResources-ServiceBME,Univ-.ityofFlorida,1942194-19451945-481948-19501950-19641964-19731973-19741-PresentU.S.Navy(LCDRRCT)FP&L;OperationsandBettermentEngineer,SarasotaPlantFP&L;BettermeEngineer,LauderdalePlantP6L;AssintSupt.,LauderdalePlantF;ntSupt.,CapeCanaveralPlant,reibleforalloperationsandmainte-ance~FP&L;PlanManager,CapeCanaveralPlant,responsiblealloperationsandmainte-nanceatthatplaFP6L;ManagerofPowResources-ServicesRegistedProfessionalEngineer-StateofFloridaberof:ASME,NSPE13.1-41AmendmentNo.0>(12/80)
JosephLt.Dickeyflanaer-PowerResources-ServicesBSCl)E-t)assachusettsInstituteofTechnology-196611SCE-MassachusettsInstituteofTechnology-1967U'tyofYirginia-ColgateOardenGraduateSchoolousinessnlversi-"i978Administration-TheExecutiveProgram-11967-19681968-19711971-19721972-1973~1973-19761976-19801980-presentFP&L;AssistantPlantEngineer,PortEveroladesPlantFP&L;PlantEngineer,PortEvergladesPlantFP&L;AssistantSuoerintendent-Operations,PortEvergladesPlantFP&L;AssistantSuperintendent,TemporaryassignmenttoIndustrialRelationsDepartmentFP&L;Plantftanager,LauderdalePlant,respon-sibleforallplantoperations,maintenanceandadministrationFossilFP&L;AssistantManager-PowerResourcesFossiresponsibleforallplantoperations,maintenanceandadministrationforPortEverglades,Lauderdale,Ft.tiers,ManateeandCutlerplantsFP&L;Nanager-Power.Resources-Services.RegisteredProfessionalEngineer-FloridaMemberof:ASCE,t<SPE,FESEEIPrimetloversCommitteeEEISteam&CombustionTurbineSubcommitteeEEIGasTurbineOperationsTaskForceEPRIAdvancePowerSystemsTaskForce SL2-FSARMGrosswaldPowerResourcesSectionSuervisor-MaintenanceManaementSectionManagementDevelopmentCourses1973-19781957-19581958-19661966-,19731973-PresentFP&L;Helper,MiamiPlantFP&L;Mechanic,MiamiBeachPlantFP&L;MaintenanceForeman,CutlerPlantFP&L;PowerResourcesSectionSupervisor;MaintenanceManagementC.E.BrarmingPower'ResourcesSuervisor-0eratinSectionBSME,UniversityofFlorida,Gainesville,Florida,1954USAF,PrimaryandBasicMulti-EngineFlyingSchool-ReeseAFB,Texas,1955AcademicInstructor'sCourse-LacklandAFB,Texas,1956ManagementandDevelopmentProgram,FP<OPCourses,1955-Present1951195319541954-19551955-19571957-19601960-19661966-,19701970-19721972-1974l974-PresentFP&L;HelperattheMiamiPlant(SummerEmployment)GeneralMotorsPlantLayout,ChevroletGearandAxleCo.,Detroit,MichiganFP&L;StudentEngineer,FieldServiceRepresentative,CoralGablesOfficeFP&L;FieldEngine'er,RivieraPlantU.S.A.F;,RatedPilot,CandidateSchoolInstructor,Advancedtorankof1stLieutenantFP&L;PlantTestEngineer,RivieraPlant;Conductedplantequipmentperformancetests,supervisedinstallationandoperationofsystemsaddedtoexistingplantFP&L;PlantEngineer',RivieraPlant.SupervisedResultsDepartmentforwatertestingandtreatment,plantinstrumentationandcontrol,performancetestingandevaluation.FP&L;AssistantPlantSuperintendent,RivieraPlant.ResponsibleforPlantOperationsandResultsDepartments.FP&L;Start-UpCoordinatoratTurkeyPointPlant.ResponsibleforcoordinationofMechanihal,ElectricalandInstrumentControlStart-UpGroupsintheflushing,cleaning,pre"operationaltesting,andotheractivitiesnecessarytomaketheplantreadytoreceive.fuel.FP&L;PlantManager,TurkeyPointPlantFP&L;PowerResources,SectionSupervisor-Operations13.1-42
SL2-FSARtE.D.ScroginPowerResourcesSectionSuervisor-AdministrationAssociateofArts,UniversityofFlorida,1938BachelorofMechanicalEngineering,UniversityofMichigan,1941FP&LManagementDevelopmentcourses,1973"Present1941-19451945-19471947-19481948-19491949-19691969"19721972-PresenU.S.Navy(Commander-Ret.);shiprepairSupervisorBlalockMachinery&EquipmentCo.;SalesEngineerFP&L;SpecialEmployee,SarasotaPlant,training,FP&L;SpecialEmployee,.CutlerPlant,trainingFP&L;PlantSuperintendent;experienceintheoperation,maintenanceandsupervisionofmodernoilandgasfueledsteampowerplants;participatedinstartupofsixhighpressureboilerandturbinegeneratorunits.FP&L;PowerResourcesDepartmentSupervisingEngineer;SupervisedProcedureswritingGroup',TurkeyPointPlanttFP&L;PowerResourcesSectionSupervisor-AdministrationRegisteredProfessionalEngineerMemberof:ASHE,FES,HSPE13.1<<43 SL2-FSARtR.A.watsonPowerResourcesSectionSuervisor-TestsandPerformanceMashingtonComptometerSchool,1936B.S.Chemistry,UniversityofMaryland,1942NavyCommunicationsandRadio,1943RadiologicalMonitoring,U.S.DepartmentofInterior,1961MeteorologicalAspectsof'AirPollution,U.S.PublicHealthService,1965NuclearEngineeringandNuclearEngineeringLaboratorycourses,UniversityofFlorida,1966BasicRadiologicalHealth,U.S.PublicHealthService,1966.RadionuclideAnalysisbyGammaSpectroscopy,USPHS,1966AdvancedNucleartechnology,UniversityofFlorida,1967FP&LManagementDevelopmentCourses,1972-19731942-19461945-19481948-19491949-19521952-1972'.S.Navy;(Lt.)CommunicationsDepartmentNationalBureauofStandards,AnalyticalChemistV.S.Navy;(Lt.)CommunicationsDepartmentArmedForcesSecurityAgency,ResearchandAnalyticalChemistinOrganicandinorganicChemistry.FP&L;ProductionTestGroup,PowerSupplyDepartment,AssistantEngineer,Engineer,SeniorEngineer,ProductionTestSupervisor.Establishedanalyticalchemistrylaboratoryforfuelanalysis.ConsultwithPlantResourcesDepartmentonwaterfortreatmentandcontrolprocedures.Setupprogramsforevaluatingfueladditives.Designsamplingandanalyticalprogramsforenvironmentalanalysisof'airandwater.NorkwithEnvironmentalEngineeringDepartmentinsettinguplongrangesamplingandtestprogramsforsurfaceandgroundwater.Design,construct,purchase,calibrateandoperatevariedinstrumentationusedfor.equipmentacceptanceandperformancetests.Setupcomputerprogramsforcalculationandreportingofresults.Coordinate.activitiesofpowerplantpersonnelandconsultantsinobtainingclimatologicalandmeteorologicaldata.1972-PresentFP&L;PowerResourcesSectionSupervisor-TestsandPerformanceMemberof:HealthPhysicsSociety13.1-44 0 SL2-FSARM.S.GonzalesPowerResourcesSectionSuervisor-Instrument&ControlandElectricalMaintenance"BEE,UniversityofHavana,1953AdvancedNuclearTechnologycourse,UniversityofFlorida,1967FP&LManagementDevelopmentcourses,1973-Present1956-19611961-19661966-1967,1967-19731973-PresentCubanElectricCompany;JuniorEngineertoResultsEngineerBaileyMeterCompany;ForeignServiceEngineer;controlsystemsdesignandelectricpowerplantsstartupFP&L;PlantEngineer,ResultsDepartment;TurkeyPointPlant;Calibrationchecksandstartupofinstrumentsandcontrols,TurkeyPointUhits1and2FP&L;AssistantPlantSuperintendent;TurkeyPointPlant;checkoutanddocumentationofallinstrumentationandcontrols,TurkeyPointUnits3and4PowerResourcesSectionSupervisor;SupervisesPowerResourcesI&CandElectricalStaffRegisteredProfessionalEngineerMemberof:ASME,ISAClarence0.MoodyManaerPowerResources-NuclearU.S.Army,CorpofEngineersElectrician,1956ICSElectrical'Engineering/PlantElectrician,1957-1960ElectronicTechnology,MCC,1964FP&LElectricalApprenticeship,1961UniversityofMiami,MBA,1977MassachusettsInstituteofTechnology>>ReactorSafety,1978FP&LManagementDevelopmentcourse,1972-present1956-19601956-19571957-1960U.S.Army:StaffSergeant(E5)ActiveandReservestatus;U.S.CorpsofEngineersElectricianInstructor,Ft.Leonardwood,MO;U.S.Sig.CorpsActiveReserveresponsibleforsignalequipmentoncompanylevelasSupplySgt.FP&L;entrancelevelpositionthroughAuxi-liaryEquipmentOperatorintwofossilfuelplants-MiamiBeachandMiamiFP&L;PlantApprenticeElectricianunderthestandardapprenticetrainingprogram-completedApril,1961.Instructorinprogram1965-196913.1-45
SL2-FSAR1960-19641965-19691969-19721972-19731974-19761976-19781978-presentFP&L;,JourneymanElectrician,CutlerPlantperformingalltypeselectricalmaintenance.Approximately30percentofthistimespentatotherplantsonmajoroverhaulwork.FP&LChiefElectrician;CapeCanaveralPlant:primaryresponsibilityforcheckout,startupandmaintenanceofallelectricaldevicesandcontrolsontwo400MH'fossilfuelunits;maintainedall.equipmentandadministereddepartmentpersonnel.FP&L;AssistantSuperintendent,CapeCanaveral,Plant:.Responsibleforkballmechanicalandelectricalequipmentandpersonneladminis-trationofsaiddepartment.FP&LSuperintendentofMaintenance,PortEvergladesPlant:.Dutiesinvolvedallmechanical-electricalandinstrumentresponsibilities..FP&L;AssistantManagerofPowerResourcesFossil:Responsiblefortheoperationandadministrationoffourfossilfuelplants.FP&L;AssistantManagerOfPowerResourcesNuclear:.Responsibleforoperation,mainte-nanceandadministrationofonenuclearplant.FP&l.;ManagerofPowerResourcesNuclear:Responsibleforoperations,maintenanceandadministrationofallnucleargeneration.K.N.HarrisAssistantManaerPowerResources-NuclearGraduate-AcademyofAeronautics,LongIsland,N.Y.1959IndustrialElectronicscourse,CentralTechnicalInstitute1963AwardedSR0-912,1967,SR0-1612,1972ManagementDevelopmentcourses,1972-Pres'entStanfordExecutiveprogramAugust)977gyre.pg/4g'pj-I...~.,~~I,~<pailPl,lycjfIt&~d'(>1961-1966CombustionEngineering,NavalReactorDivision;AssistantShiftSupervisor;qualifiedasEngineeringOfficeroftheWatch,trainednavalpersonnelonSIC,nuclearprototypeplant;supervisorofoff-hulloperations.Responsibleforoperation&maintenanceofallSICprototypesupportsystems.1966-1970ConnecticutYankeeAtomicPowerCompany;ShiftSupervisorandRefuelingSupervisor;participatedinplantconstruction,initialstartupandfullcommercialpoweroperation;heldAECSeniorOperatorlicense.13.1-46 0 SL2-FSAR1970-1972I1972-19781978-Present.FP&L;PowerResourcesDepartment:AssistantPlantSuperintendent-Operations,TurkeyPointPlant;attendedNuclearOperatorsTrainingProgramandreceivedAECSROTurkeyPoint3and4.ResponsibleforPlantOperations.FP&L;PowerResourcesDepartment;PlantManager.Responsibleforoperations,maintenanceandadministrationoftheSt.LuciePlant.FP&L;AssistantManagerPowerResources-Nuclear.Ceorg~~~b+er-naerPower-.Resources-NuclearServicesThreeMileIslandTaskForCoordinatorBSEE,ResselaerPolytechnicInstitute,1938Managementevelopmentcourses1953,1954NuclearEngieringandAdvancedNuclearTechnologycourses,UiversityofFlorida1966,67NuclearPowerReaorSafetycourse,MIT,1967MestinghouseReactoOperationTrainingProgramandDes'LectureSeries,MaltaMillandSaxton,a.,1968-196919391946-1943"1954195411960-1960-19671967-197213-1979.-1979Regiered'profe-presentssionalengineerFP&L;FiremanandMahEngineer,BradentonantFPBettermentngineer,PlantEngineer,AssisntPlanSuperintendent,MiamiBeachPlantFP&L;PlanSuperintendent,PalatkaPlant,supervisdsrtupFP&L;antSurintendent,PortEvergladesPla,supervisestartup,responsiblefororationandmainnanceoffossilfuelnitsFP&L;Coordinating'Engreer,ProductionDepartment,nucleartrain'programandparticipatedinhotfunctioaltestsandstartupofGinnaNuclearPlanActingPlantSuperintendent,responsibleforstartupofTurkeyPointUnit3FP&L;ManagerPowerResources-NucearServ'icesFP&L;ThreeMileIslandTaskForceCoornatorPemberof:,ASME,IEEE,ANS,13.1-47 SL2-FSARH.N.Paduano,Jr.H~aoaerofposerResources-NuclearServicesSCHE,UniversityofVirginia,1964U.S.NavyNuclearPowerSchool,1965Env'ironmentalManagementofNuclearPowerPlant,1972FP&LManagementDevelopment,1973-Presenta1964-19691969-19721972-1973,1973-1977'f.f";'977-1979'1979-presentU.S.Navy,NuclearPowerSchool,NuclearPlantMatchOfficer,ElectricalDivisionOfficer,NuclearShipSuperintendent,constructionandtestingofreactorplantWestinghouseElectricCorporation,FluidSystemsEngineer,PMRSystemsDivision.Systemsdesign,multi>>projectsystemsfieldfollow-upduringplantconstruction,startupandhotfunctionaltesting;memberofteamthatestablishedmodificationstoECCStomeetAECinterimcriteriaPotomacElectricPowerCompany,SeniorFluidSystemsEngineer,NuclearEngineeringManage-mentCroupresponsiblefordirectingactivi-tiesincidenttoNuclearSteamSupplySystemlicensability,radwastesystems,EmergencyCoreCoolingSystem,steamgeneratorsandmiscellaneousreactorauxiliarysystemsFP&L;PowerResourcesSpecialist,Nuclear'rojectsFP&L;PowerResourcesSectionSupervisor-PlantSupport;Providestechnicalassist-ancetooperatingnuclearpowerplantsintheareasoftroubleshootingmaintenance,safetyevaluations,responsestoNRCquestions,andspecialprojectcoordination.FP&L;ManagerofPowerResources-NuclearServices;responsiblefortheoveralldirec-tionofthePowerResourcesGeneralOfficeNuclearStaff.HarveyF.StoryPowerResourcesSuervisor-HealthPhsicsBCHEGeorgiaInstituteofTechnology,1967Summer'ourse,Radiochemistry,UniversityofMissouriatRolla,1968SummerCourse,RadioisotopeMethodology,,Texas'A&MUniversit'y,1969MNE,TexasA'&<MUniversity,1970AdvancedHealthPhysicsCourse,AtomicsInternational,1975FP&LManagementDevelopmentcourses,1973,1975.1967-19691970-1971ColumbusCollege;ChemistryInstructorFP&L;PlantTestEngineer,Procedures,preparationandreviewofpreoperationalandoperatingprocedures13.1-48 000 SL2-FSAR1971'19731973-1974f1974-PresentFP&L;PlantSupervisor,HealthPhysics,TurkeyPointPlant,AssistanttoPlantHealthPhysicist;wrotehealthphysicsprocedures,assumedHealthPhysicist'sresponsibilitiesduringhisabsenceFP&L;HealthPhysicsSupervisor,St.LuciePlant,initialplanningofSt.LuciePlantHealthPhysicsDepartmentFP&L;PowerResourcesSectionSupervisor-He,althPhysicsMemberof:HealthPhysicsSocietyandPowerReactorHealthPhysicist'sGroupAmerican.BoardofHealthPhysics-He'althPhysic'ertificationGregoryA.PatrissiPowerResourcesFireProtectionAdministratorA.S.FireScienceTechnology,SpringfieldTechnicalCollege,1972B.S.FireProtectionAdministration,UniversityofNewHaven,1976IndustrialFireProtectionEquipmentOperationCourse,IndustrialRiskInsuresInstitute,1977NuclearPowerFacilitiesLossPreventionCourse,NELPIA,19771964-19681969-19781977-1978(parttime)1978-PresentU.S.Army;AviationElectronicsSpecialistHartfordFireDepartment,'artford,Conn.,FireFighterNuclearEnergyLiability-PropertyInsuranceAssociation;FireProtectionEngineerFP&L;PowerResourcesFireProtectionAdministratorMember"of:NationalAssociationofFireScienceandAdministration,NationalFireProtectionAssociation,FireProtectionEngineersAssociation-'SoutheasternChapter,DadeCountyChiefFireOfficersAssociation,SouthFloridaFireSafetyAssociation,InternationalAssociationofFireServiceInstructors,SocietyofFireProtectionEngineers'3.1-49
SL2-FSARC.M.WethyBME,UniversityofMiami,1952NuclearEngineeringCourse,UniversityofFlorida,1966WestinghouseReactorOperatorTrainingProgram,1968TurkeyPointOperatorTrainingProgram,1970MBA,UniversityofMiami,1975BusinessLaw,Miami-DadeCommunityCollege,19751943-19451950"1954V1954-19681968-19751975"19761976"'9781978-PresentUnitedStatesNavy;AircraftCarrierFP&L;CutlerPlant,Helper,WaterTenderandInstrumentMechanicFP&L;ProductionTestGroupFP&L;TurkeyPointPlant,ReactorEngineer,AssistantPlantSuperintendent-'echnical,andOperatingSuperintendent'P&L;PowerResourceOperationsandMainte-nanceconsultantforSouthDadeNuclearPro-jectandmemberofevaluationteamfornuclearplanttobebuiltinDeSotoCountyFP&L;StLucieUnit2PowerResourcesTeamMemberPlantManager-StLuciePlant.RegisteredProfessionalMechanicalEngineer,StateofFlorida,1967NRCSeniorOperatorLicense-TurkeyPointUnits3and4,1972RegisteredProfessionalNuclearEngineer,StageofCalifornia,1977Memberof:ASME,AmericanNuclearSociety,FloridaEngineering.,Society,NationalSocietyofProfessionalEngineers,'ndAirPollutionandControlAssociation.,J,E,-BowersMaintenanceSuerintendentAdvancedEngineeringcourse,U.S.MaritimeSchool,1946ManagementTrainingandMathematicscourses',AppalachiaPowerCo.,1958,1959,1967AppliedElectronicscourse,Indiana&MichiganElectricCorp.,1963BusinessManagementMotels,Inc.,1966ElectronicsCourse,RCA,1969ManagementSeminarcourse,FP&L,19721955-19581958-19591959-1967Indiana&KentuckyElectricCorp.,Asst.ControlRoomOperator;AuxiliaryEquipmentOperatorAppalachiaPowerCo.;ControlRoomOperator/UnitForemanIndiana&MichiganElectricCo.;UnitForeman;AssistantShiftEngineer13.1-50 SL2-FSAR1967-19691967-19701970"19721972"-19731973-PresentPanAmericanWorldAirways;LoadDispatcher,Supervisor,CoordinatorandSchedulingUnitedEngineersandConstructors;NuclearStart"upEngineer,Constructionanddesignstandardsverification,DresdenUnits2and3;preoperational"testing&start-up,nuclearandsteamsystemsFP&L;MechanicalStart-upGroup;PlantSuper-visor;TurkeyPointUnit3.FP&L;Asst.PlantSuperintendent-Haintenance,TurkeyPoint;MaintenanceSupervisorofUnitsNo.3and4FP&L;PowerResourcesDepartment;MaintenanceSuperintendent,St.LuciePlantA.J.CollierInstrumentationandControlSuervisorArmyElectronicsSchool,1949ArmyNuclearPowerPlantOperator&InstrumentationCourse,1957-1953ForboroProcessInstruments,1959RensselaerPolytechnicInstitute,NuclearPowerPlantOperatorsTrainingProgram,1967GE,Boiling.WaterTechnology,1968GE,Nuclear&ProcessInstruments,19681945"19571957-19661966-19671967-19711971-19721972-19731973-PresentU.S.Army;Communications,Electronics;InstructorU.S.Army;NuclearPowerProgram,Sen'iorInstructorInstruments&Control;ShiftSupervisor&NCOICPWRSimulatorsMartinMariettaCorp.;ShiftSupervisor,PWRMillstonePointCo.;Instrument&ControlSupervisorFP&L;PlantSupervisor,Instrument&Control;TurkeyPointPlantMillstonePointCo.;Instrument&ControlSupervisorFP&L;Instrument&ControlSupervisor,St.LuciePlantH.B.Vincent"-'ssistantSuerintendent-ElectricalMaintenanceB.SElectricalEngineering,UniversityofFlorida,1971VariousvendortechnicalschoolsFP&L-NuclearPowerEngineeringProgram,1976FP&L-ManagementDevelopmentCources,1974-present1971-1976FP&L;Overheadandundergrounddistributionengineer.Responsiblefordesigningelec-SL2-FSAR1976-,Nu1978<<1978Presenttricalservicefacilitiesfornewandexist-ingresidentialandcommercialcustomers.FP&L;ElectricalStartupandMaintenanceSt.LuciePlantFP&L;AssistantSuperintendent-ElectricalMaintenanceT.A.DillardAssistantSuerintendent-MechanicalMaintenance'SME,LetourneauCollege,1969I4t1969-1973,c~19.73-19741974-PresentWestinghouse.PowerGenerationService,FieldEngineer,ServiceSpecialist,Start"upEngineerTurkeyPointUnits3and4FP&L;PlantSupervisor,MaintenanceDepartment;SanfordPlantFPL;AssistantSuperintendent-MechanicalMaintenance,St.LuciePlantR.R.JenningsTechnicalSuervisorBSHE,VanderbiltUniversity,1969GeneralElectricCo.,OperationsManagementCourse,19721969-1973p,"0'~1973-1976,.1976-1977'V1977-PresentKnollsAtomicPowerLaboratory;ShiftSuper-visor;qualifiedasEngineeringOfficeroftheWatchandPlantEngineer.Trainednavalandcivilianpersonnelinoperation,maintenanceandtestingofS3G,nuclearsubmarineproto-typeplant.SeniorTrainingAssistant;pre-paredvarioustrainingmaterialsandproce-duresforsafelyconductingemergency-drillsforstudentandstafftraining;responsibleformanloadingandworkpriorities.FP&L;Start-upEngineer,StLuciePlantMechanicalStart"up.Responsibleforstartuptestingofvariousemergencycorecoolingsafetyrelatedsystemsandcontainment/ShieldBuildingVentilationSystems.FP&L;StaffEngineer,StLuciePlantTechnicalStaffDepartmentFP&L;Supervisor,StLuciePlantTechnicalStaffDepartmentMemberASME13.1-52 ffO. SL2"FSARJohnCordonWestSecuritSuervisorB.A.PoliticalScience,St.Mary'sCollege,1973.Variousmilitarycoursesincluding:AreaIntelligenceSpecialist,DefenseAgainstMethodsEntry,InvestigativePhotography,CounterintelligenceAgent1955-19751975-19791979-PresentU.S.Army;CW3retired,PersonnelSpeci:alist,AreaIntelligenceAgent-JapanandVietnam,Instructor-U.S.ArmyIntelligenceSchool,DefenseAgainstMethodsEntryandPhotoTech-nician,SeniorCounterintelligenceAgentFP&L;SeniorSecuritySupervisor-ConstructionfortheMartinCountyandSt.LucieUnit2units.FP&L;SecuritySupervisorSt.LuciePlant..M.Vaux,Jr.ua'tControlSu~ervieorBS,PhysicUniversityofNewMexico,1969Nuc)earPowerElectrician'sHatecourses,U.S.Navy1956-196'1965-19661966-1970'1970'19721972-119-1974974-PresentU.S.Navy;Electric'sHateFirstClass,InstructoratS3Gclearplant,certifiedasrator,S5WS3GnuclearplantsEber'IrumentCorp.;ElectronicTech-nicianSchlergerellServ'ices;FieldEngineerGeralElectrio.,IdahoFalls;PlantEngineeratS5Gnucarplant,certifiedasSeniorReactorOperatoFP&L;PlantSupervisor,ManicalStart-upGroup,TurkeyPointUnitsNo.&4FP&L;StaffEn'gineer;St.LucientFP&L;QualityControlSupervisor,StciePlantberofANS,ASQCJ.H.Barrow0erationsSuerintendentBachelorofMechanicalEngineering,AlabamaPolytechnicInstitute,Auburn,Alabama,1957IntroductiontoNuclearEngineeringandNuclearEngineeringLaboratory,Universityof'Florida,Gainesville,Fl.,1966ManagementDevelopmentCourse,BasicsofSupervision,1967WestinghouseReactorOperatorTrainingProgram,WaltzMillandSaxton,Pa.,196S13.1-53 SL2-FSARIWestinghouseDesignLectureSeries,Monroeville,Pa.,1969Completedtheon"sitetrainingprogram,TurkeyPointUnit2,Westinghouse,SeniorReviewSe'ries,andpassedtheWestinghouseexaminationforSeniorOperator.CombustionEngin'eeringCo.,NuclearSteamSupplySystemLectures,86hours,1974195.7-19581958-19591962-19661966-19671967-196819681972"19731973-PresentFP&L;EngineeronRotation,ResultsDepartment,MiamiPlantFP&L;PlantTestEngineer,ResultsDepartment,CutlerPlantFP&L;PlantTestEngineer-Maintenance,LauderdalePlantFP&L;AssistantPlantEngineer"Maintenance,LauderdalePlantFP&L;AssistantPlantSuperintendent-Main-'enanceandOperation,LauderdalePlantOperatortraining.fortheSaxtonNuclearExperimentalCorporation,Saxton,Pa.FP&L;Rece'ivedSeniorReactorOperator'sLicenseforTurkeyPointUnit3FP&L;ReceivedSeniorReactorOperator'sLicenseforTurkeyPointUnit4FP&L;OperationsSuperintendent,StLuciePlant;HoldsSROLicense,St~LucieUnit1U.S.Navy;NuclearPlantMechanicalOperator,EngineeringLaboratoryTechnicianonSICprototype-S5W(SSN-625)nuclearplants.Staffinstructor(1971-1974)atSICPro-totype.R.J.Frechette~i".ChemistrSuervisorHachinistHate,'Submarine;NuclearPowerandEngineeringLaboratoryTechniciancourses,U.S.Navy(1965-1974>IRCC60Creditsinvariousmathandsciencecourses1965"19741974-1979FP&L;PlantCoordinatorchemistrydepartmentduringStart-upofStLucieUnit1andoperat-ingsince1976.Assistantplanttechnician,IIPlanttechnician,Resultstechnician,andSeniortechnician.1979-PresentFP&L;ChemistryDepartmentSupervisor,StLuciePlant13.1-54 R0 SL2-FSARH.F.BuchananBS,AdelphiUniversity,19681962-19681968-19711971-19771977-PresentBrookhavenNationalLaboratory,Brookhaven,NewYorkHealthPhysicsTraining,TechnicianandSeniorStaffHealthPhysicistTechnicianUnitedNuclearCorp.,HealthPhysicistNuclearMaterialsManagementYankeeAtomicElectricCompany,NuclearSer-vicesDivision,SeniorEngineer-RadiationProtectionGroup.Supportedsevenplantsinareasoflicensing,FSARpreparation,auditing,computerizedrecordkeeping,OSHA,Title10-CodeofFederalRegulationsandoverseeingallHealthPhysicsTraining.Responsiblefores-tablishingandimplementingpolicyforthe"ALARA"program,allEmergencyPlanningandtheentireTLDpersonnelexposuremonitoringprogram.FP&L;St.IuciePlant,HealthPhysicsSupervi-sor.MemberfHealthphysicsSociety,powerReactorHealthphy'sicsCroup,WorkingGroupN343,AmericanNationalStandardInternalDosimetryStandardsforMixedFissionandActivationProducts,AtomicIndustrialForumVorkingGrouponOccupationalExposure.R.Rya11Reactoue'rvisorBS-Physics,"oridaInstituteofTechnology,1972MBAProgram,Flo'InstituteofTechnology,prelyenrolled1973"19741974-1975-PresentFP&L;EnginTrainee,ReactorEngineeringepartm,assistReactorEngineerininitialcooadingandphysicstesting,TurkeyPointantFP&L;PlaTestEngineer,AssistantPlantEngineer,RetorEngineeringDepartment;St.LuciePlantFP&L;ReactorSupevisor,St.LuciePlantSenOperatorLicense,St.LucieUnit1,1979mberofANS13.1-55 II,1hqh0 .SL2-FSARCombustionEngineeringCo.,NuclearSteamSupplySystemlectures,86hours,1974sl1961-19621962,.i',,"<,1962..-,;-1.9691969.'-,,'il9731973%-19751975p=,.'PresentAerode,Inc.,Miami;InspectorFansteelMetallur'gicalCorp.,No.Chicago;HydraulicPressOperatorU.S.Navy;MachinistMateFirstClassFP&L;PlantResultsTechnician,NuclearControlCenterOperator;TurkeyPointPlantUnits3and4-SROLicenseFP&L;NuclearPlantSupervisor,St.LuciePlantFP&L;TrainingSupervisor,St-LuciePlant,HoldsSROLicense,St.LucieUnit1-~A.Wells~0~tionsSuervisorWestinghouseniorOperatorReviewSeries,1971CombustionEnginingCo.,NuclearSteamSupplySystemturcs,86hours,19741954-19661966-'-19701970~"'731973-PresentHr,AuxiliaryEquipmentOperator,PitsTechnician;PalatkaPlantFP&L;Turbinerator,ControlCenterOpera-tor,TurkeyPointntFP&L;WatchEngineer;LdSeniorPeactorOperator,TurkeyPointUnitsNo.nd4FP&L;OperationsSupervisor;St.LucientG.J.BoissyStartuSuerintendentUniversityofOrlando,oneyear,1964U.S.Navy,IC"A"School,NuclearPowerSchool,NuclearPowerTrainingUnit,Noiseand-VibrationAnalysisSchool,1964-1969'~,S.NavySub-marineSchoolGranthamSchoolofEngineering,ElectronicsEngineeringcourse,1973DiplomaElectricalEngineering(PowerOption),ICSSchoolofEngineering,1976LeaderDevelopmentInstitute-KepnerTregoe,1977'achelorofIndustrialTechnology,FloridaInternationalUniversity,1980y$1960'--'19651965-19671967-1970U.S.Navy;ICTechnician1stClassU.S.Navy;MotorRoomEngineeringSupervior;USSMoctobiU.S.Navy;ElectricalOperatorandElectricalInstructor,S5Gfacility;ElectricalOperatorandControlPanelOperator,U.S.S.GeorgeW.CarverSSBN656;ReactorPlantShutdownMan-ueveringbreaWatch,S5GandSSW,PlantsCer-tifiedOperatoronS5GandS5W13.1-56Amendment.No.0,(12/80) SL2-FSAR'1970-19731973-PresentFP6L;PlantTestEngineer,TurkeyPointPlantElectricalStartupFPSL;ElectricalDepartment,AssistantSuperintendent,ElectricalMaintenance;St.LucieUnit.2,StartupSupervisor,StartupSuperintendentMemberofIEEE,PowerEngineeringSociety,andASMESubcommitteeonEquip-mentPerformanceTesting.13.1-57.AmendmentNo.0,(12/80)
Page21'DAVIDA.SAGER-OperationsSupervisorSL2-PSARPDUCATION:BachelorofScienceNavalEngineeringU.S.NavalAcademy1968MasterofScienceMechanicalEngineeringV.S.N.PostGraduateSchool1969MasterofBusinessAdministrationFloridaInstituteofTechnology1979EXPERIENCE:1970-197SU.S.NaryEngineeringOfficeroftheWatchDamageControlAssistant,ReactorControlOfficer,OperationsOfficer,SonarOfficer,SubmarineSchoolOfficerInstructor.1975-1977PPLQualityAssurance,St.LuciePlant1977-1981FPLSeniorEngineer,St.LuciePlantTechnicalStaff,licensedseniorreactoroperator.1981-PresentFPLOperationsSupervisor~~N.G.ROOS-QualityControlSupervisorEDUCATION:U.S,NavySubmarine,,NuclearPowerandPrototypeSchoolsEXPERIENCE:1954-'1957U.S.NavyDieselSubmarinesEng.Dept.1957-196SU.S.Navy(Enlisted)NuclearSubmarines-QualifiedEngi,neeringOfficeroftheWatch.1966-1974U.S.Navy(Officer)-HavalReactorsRepresentativeOffice:EngineerTechnicalAssistant;ProJect1975-1981FPLQualityControlEngineer,St.LuciePlant,SeniorReactorOperatorLicense,St.LucieUnit1.1981-PresentQualityControlSupervisor,St.LuciePlant
A,'ellofCentralPl'976ride,1975olDataCratioCourse,ContrdRoDi1978RensselaerPolytechnicns1e~1975-1976ainee,CoreModeling,PRN,PPLEngineerTrainee,orealOffice.tandCoreGenerAnalyst,ReactorSupportanPPL'ssociateAnyRNGeneralOfce.Hodeling,PrII,ReacoRctorEngineeringFPL'lantEnginee,RcoSt.LuciePlant.artment,1976-l9781978-1980DepineerI,ReactorEngineeringgdtiitdinlantefficiencyandstrec1980-1981Prvisor,St.LuciePlant.FPL;ReactorSupervisor,1981-Present
)GCHAELCARRYALTERHATT-NuclearMatchEngineerEDUCATION:1965-1967LiberalArtsDgreeProgram-Completedeouivalent40semestercredits1967-1973.U.S.NavyNuclearMachinistHateandPomrtraining.1973-1981HathematicsDegreeProgram-Completedequivalent40semestercredits1973-1975FPLSt.LucieUnitPlColdLicenseProgramEXPERIENCE:1957-1973U.S.NavyNucleax'rogram1973-1981St.LucieReactor'ontrolOperatox,NuclearHatchEngineert1'LLIAHJ.BLOESER-ReactorControlOperatox'DUCATION:3yearscollege-Electronicstechnology,Aerospacetechnology.FactoryschoolsfromBendixCorp,andFZngRadioDealing+1thElectronicsEouipment.EXPERIENCE:RorkedinNavyandcivilianavionicsfield,innavigation,communication,radar,autopilotrepairandcalibrationandinstallation.6/76toPresentFPL-Electrician,InstrumentandControlSpecialist,SeniorPlantTechnician,ReactorControlOperator.Go~eati7Intrainingforreactoroperatorlicense.
J.R.B01KN-ReactorControlOperatorEDUCATION:HighSchoolGraduateBachelorofScie'aceinMarineEngineeringHassachusettsNsritimeAcademy-1978ThirdAsst.EngineerLicense(USCG)EXPERIENCE:1978-1979OneYearseaexperienceonsteampoweredshipsasawatchengineer.600PSIBoilersdrivingsteampropulsionturbinesandauxiliaries.1979-1980AuxiliaryEquipmentOperatoratFPLPt.HyersPlant1980-1981ReactorControlOperatoratPPLSt.LuciePlant.IntrainingforReactorOperatorLicense.Expected-X4ceAN'i4V.BEFALL.;,ReactorControlOperatorfEDUCATION:,HighSchoolGraduateAA,DegreeEdison.CotnmunityCollege-1971f"'BA.Mathematics-PloridaAtlanticUniversity-1973PostGrad.Courses-FloridaAtlanticUniversity-1974'IEXPERIENCE:)975-l.980FPLPowerPlantLaboratoryTechnician1980-PresentReactorControlOperatoratFPLSt.LuciePlant.IntrainingforReactorOperatorLicense.ExpeetMMC
C.L.BURTON-NuclearPlantSupervisorEDUCATION:HighSchoolGraduate-tHi~Mhsm-County~entnnkg~College:UniversityofKentucky-40semesterhoursU.STNavy-El'ectronicsTechnicalandNuclearPowerTrainingFPLSt.LuciePlant"ColdLicensedOperatorTrainingProgram"CombustionEngineering-Oneweek"PHRSimulatorTrainingCourse"coveringaccidentanalysisEQ?ERIENCE:1969-1975U.S.NavyReactorOperator1975-PresentFPLSt.LuciaNuclearControlCenterOperator,PatchEngineer,ShiftSupervisor.CPdQGZSF.CALLP~-ReactorControlOperatorEDUCATION:HighSchoolGraduateSoutheasternCommunityCollege39CreditHours-1978to1980U.S.NavyNuclear.PowerTraining4EXPERIENCE:1973-1977U.SNavyReactorOperntor11977-1980CarolinaPower&Light,BrunswickUnitsPl62AuxiliaryOperator.1980-PresentFPL.St.LuciePlantReactorContxolOperatorIntrainingforReactorOperatorLicense;empeet~~~aW CHARLESRUSSELLGRXFFXTH-ReactorControlOperatorrDUCATXOAttendedwesternKentuckyU.for2semesters(Aug'71-May'72)AttendedtuoXRCCnightclasses(Aug.'80-Dec.'80)USNNuclearPowerProgramFZZERXENCE:1976to1980U.S.NavyReactorOperator1900toPresentPPLSt.Lucie&nicee-(%ay-%0&fay~-Kxpacted~ceaaing~P(~gg,fP~Cq~IYn/g<<gr<yrg~~ROMRTHAMILTONCLEMEFL'S-ReactorControlOperatorEDUCATXON:1971-197227hoursCentralFloridaCommunityCollege,RadiologicalHealth19816hoursXndianRiverCommunityCollege,Communications,Algebra1.973-1974NavyMachinistMateNuclearPowerTrainingEXPERIENCE:1972-1979U.STNavyMachinistmate,engineeringwatchsupervisor1979IngallsShipbuilding;submarinetestengineer(Nuclear&Non-nuclear)1979-1980FPLPowerPlantMechanic1980-PresentFPLReactor-ep/C,60/Q~/g CARLG.CRIDEP.'-ReactorControlOperatorEDUCATION:3yearsCollege(OhioState,IRCC,FloridaInstituteofTechnology)1974-1979PursuingIndustrialEngineering-B.S.I.E.=16monthsHotLicenseTraining-FPLIfKPERIENCE:1971-1974FourYears-HydraulicsSpecialistapprentice-(FordHotorCo.)1975-1980PowerPLantNechanic(FPLSt.LucieNuclearPlant)1980-PresentFPLReactorOperatorJ.QMUZSCOUTURE-ReactorControlOperatorEDUCATION:Sradua4e4.High,School1975G-~~~lGeneralEngineeringatFloridaCommunityCollegesPBJC6BCC-completed1/2years.Ertracurricular,trainingduringhighschoolintelevisionproductionelectronicsIEXPERIENCE:'ITelevision.productiontechnicalsupport,(electronic)for1CATVand2CableTVstationsFPL-2years1&chanicalMaintenanceDept.3yearsOperatingexperienceinoperatingpositions:AuxiliaryOperatorBoilerAttendantTurbineOperatorFossilControlCenterOperator(1year)gr~I,~1980<<PresentReactorControlOperatorPLSt.LuciePlan4trainingforReactor
~FFW,ltwPAULMICHAELCURRY-ReactorControlOperatortlwFlEDUCATION:1973-1977UniversityofCaliforniaatIrvine-B.S.Physics1975-1976FullertonCollege-Statistics,BusinessMathCourses,Ilw1978"1979SouthernCaliforniaEdisonReactorOperatorTrainingProgram1978AtomicsInternational-1weekreactortrainingprogram(L-85Reactor)Certificatereceived.Included4start-ups.Fw~EXPERIENCE:'1978-1979SouthernCaliforniaEdisonCo.SanOnofreNuclearGeneratingStation.ReactorOperatortrainee.Approx.4start-'upsperformed./P<vlJ~1981toPresentFPL'o.Reactor'ControlOperator.IntrainingforReactorOperatorLicense.wtlinSept.1981.p)"cywJOSEPHBURNUl4DELRUE-ReactorControlOperatorEDUCATION:J~"FHichiganTechnologicalUniversity-BSEE1980.lw,Ua;W~'eie~&Toiedla=Soimnaw~79-Mo~eMounty~<~llagEXPERIENCE:'ler19781978Consumer'sPowrPlantCompany-J~R.WhitingPlant14aintenance1979lDetroitEdisonCompany>>MonroePowerPlantStudentEngineer1980-1981FPL-Ft.MyersPlant1981-PresentFPLSt.LuciePlantOperatorLicense.AssistantPlantEngineerl,~ReactorControlOperator.IntrainingforReactornf,~4~a-r~2. r'<"aI..RICHARDS.GOLDSTEIN-ReactorControlOperator'EDUCATION:28creditsStateUniversityofHexE,,EXPERIENCE::1979-1980..PPLItinerant~Electrician1980-Present',*St.LucieReactorControlOperator1982-AA~~y~Mv4>r~~onUnit81in~h~York-StonyBrookJan.'75-Sept.'75'ENNISD.DRYDEN-ReactorControlOperatorEDUCATION:/fy4,Ac~~~~74JLIocton,Kansas,Graduate'OhloneJr.College,FremontCa,9/73to2/74,English,'sychology,PhilosophyBasicElectricityElectronicsSchool,SanDiego,CA-USN5/74-7/74InteriorCoaununications"h"School,SanDiego,CA-USN7/74-10/74I,NavalAcademyPrepSchool,Newport,R.I.,USN10/74-6/75U.S.N.A.Annapolis,HD,7/75-10/75"}nuclearPoMrSchool,HareIsland,CA-10/75-5/76-SSGPrototype,HRFIdaho6/76-5/77EXPERIENCE:1974-1977U.STNavy-NuclearPowerProgram,1981St.LucieUnit1LicensedReactorOperator 0 GREGORYA.EVANS-ReactorControlOperatorEDUCATION:Basiectyans,eCompletedthefollowingNavySchools:NavyNuclearPowerSctro~rnduaced-4n-th~pp~X"tN4-ups%InteriorCommunicationK.Orupp~$ISOGTridentdesigncourse.Comettherscellouscousuchanectsyadran0CompletedthefollowingUtilitySchools:PPLLicensedOperatorTrainingProgram)980CombustionEngineeringPMRSimulatorTrainingProgram:5weeLsof~operationspracticeincluding,normalandemergency/off-normaloperationsandstartupcertification.PPLSeniorReactorOperatorTraining1981.EXPERIENCE:1975-1980UnitedStatesNavyNuclearPower'rogramElectrician)980-Presentr~,re+rZcc(few4y<~6Pr-r<ccHICHAELBRUCEGIL~d)RE-ReactorControlOperatorEDUCATION:HighSchoolGraduate-RA+era-BeatiRelatedTechnicalTraining:Hot'icenseOperatorTrainingatPPLSt.LuciePlant-1978CombustionEngineering"PMRSimulatorTrainingCourse,"includingReactorStartupCertification-1979.EXPERIENCE:1971>>1972ApprenticeElectricianMilmoreElectricCo.1972-1975'echanic'sHelper,AuxiliaryEquipmentOperator,BoilerAttendant,TurbineOperator)975-1978PPLSt.LuciePlantNuclearTurbineOperator,NuclearControlCenterOperator ROBERTS.GLAZE-PlantCoordinatorEDUCATION:HighSchoolGraduatngwooCollege-SeminoleJuniorCollege1969-1971A.A.LiberalArtsFPLCo.St.LuciePlant"ColdLicenseOperatorTrainingProgram"1975CombustionEngineering"NuclearSteamSupplySystem"lectureseries1974CombustionEngineering8-rock"PWRSimulatorTrainingCourse"coveringgeneralplanttechnologyandoperationCombustionEngineeringl~eek"PHRSimulatorTrainingCourse"coveringaccidentanalysisHr.GlarehasparticipatedasrequiredintheSt.LuciePlant"LicensedOperatorRequalificationProgram.EXPERIENCE:1971U.S.NAVY1971-1972HaltDisneyworld-Host1972CentralExterminatingCo.,Haitland,PL-TermitePretreatment1972-1973HelperSanfordPlant>>PPL1973-1976PPLCo.St.LuciePlant,NuclearControlCenterOperatoratSt.LuciePlant1976-1980LicensedNuclearControlCenterOperatorinvolvedinthepoweroperationofSt.LucieUnitdl.SBO-%ceca~+~rp~~.cMw~~v~~=r~1980-1981PPLSt.Lucie.PlantTrainingInstructor.Conductingtrainingforlicerisedoperatorrequalificationtrainingprogramandinitialhotlicenseoperatortraining. 0 THOMASA.GONZALEZ-ReactorControlOperatorEDUCATION:HighSchoolGraduate-VeequahicHighSchool,Newark,NJ1957College-SantaariaJr.CollegeAADegree1963FPLCoTurkeyPointPlant"ColdLicenseOperatorTrainingProgram"FPLCo.St.LuciaPlant"ColdLicenseOperatorTrainingProgram"CombustionEngineering8-veek"PWRSimulatorTrainingCourse"coveringPlantTechnologyandOperationCombustionEngineeringone-veek"PQRSimulatoxTrainingCourse"coveringAccidentAnalysisEXPERIENCE:19S8-1966USAF,teletypeoperator,supplyspecialistandgroundcontrolledapproachradartechnician1968-1970InstrumentTechnicianatPratt6WhitneyAircraft.1971-1972FPLPlantResultsTechnician,Aux.EquipmentOperator,BoilerAttendant1972-1974FPLCo.TurkeyPointPlantNuclearOperator1974-PresentnuclearControlCentexOperatoratStLuciePlant 0 WILLIAML.HACAR-ReactorControlOperatorEDUCATION:HighSchoolGraduatenCorreopondenceCourse(Navy):assEHathPartI1976HathPartIIA1977HathPartIIB1977DieselEngines1976Ship'oStoreAfloat1977U.S.NavyHachinisto1fate.andNuclearPowerTraining'XPERIENCE:1973-1981U.S.NavyNuclearPowerProgramMachinistHate1981-PresentFPLCoeactorControlOperator+aTrainingforReactorOperatorLicenoe.~~~l~WILLIAMBRADFORDHALL-ReactorControlOperatorEDUCATION:BQK-University,ofFlorida1968Airframe6PowerPlantHechanic1975EXPERIENCEFPL5yearsFossilPlantExperience2,yearsperformancetesting2yearsplantretrofit1yearmaintenanceplannerCaertnrtkygntratntngforReactorOperatorsLtcenseEeedlicennin~82~ 0 O'RIEND.HAYES-NuclearPlantSupervisorEDUCATION-HighSchoolGraduatefeLincolnCollege(NortheasternUniversity)1year-nodegreeobtainedU.SoNavyNuclearPowerSchool-1967FPLCo.St.LuciePlant"ColdLicenseOperatorTrainingProgram"1975CombustionEngineering1-week"PWRSimulatorTrainingCourse"coveringAccidentAnalysisFPLCo.St.LuciePlant"LicensedOperatorRequalificationProgram"EXFERIENCE:1964-1966ChatamMfg.Co.-LabTechnicianTextileChemistry1966-1974U.S.NavyNuclearPowerProgramHachinistHste.:QualifiedEngineering.Officerofthe'Patch.'I1974-1975Stone6QebsterEng.Corp.,EngineeringAssociateIFr1975-PresentFPLCo.St.LuciePlantControlCenterOperator,ShiftSupervisor I RL.HAVES-PlantEngineerIEDUCATION:FloridaAtlanticUniversity,BocaRaton,FL,B.S.M.E.1974'XPERIENCE:I1974Rogers6Associates,Inc.,EngineersandSurveyors,PalmCity,FlBusinessandOperationsManager1973-1974VariouslandscapearchitectsinPalmBeachandBrowardCounties.FreeLanceDsignEngineer1973AmericanIrrigation,Inc.,BoyntonBeach,FLDesignEngineer1975-1977FPLSt.Lucie1TechnicalStaffMechanicalEngineerSROLicenseNo.SOP-29571977-1980KOHaPInc.,President,Ft.Piercc,Fl.-OwnerofSportingGoodsandMarinebusiness1980-PresentFPLCo.,St.LuciePlant(CE-PMR)ShiftTechnicalAdvisor/StaffEngineer/LicenseTrainingInstructorSOP3771PROFESSIONAL,ACTIVITIES:AmericanSocietyForMechanicalEngineersRegisteredEI.T.,FloridaCertificateNo.199ET76GERALDJ.IMBRIALE-ReactorControlOperatorEDUCATION:U.STNavyElectricianandHateSchoolNuclearPowerTrainingFPLCo.St.LuciePlantReactorOperatorHotLicenseTrainingProgramCombustionEngineeringPRRSimulatorTrainingcourse:5weeksofoperationspracticeincludingnormal/emergencyoperations.EXPERIENCE:1976-1980U.S.Navy:NuclearPowerElectricalOperator1980-PresentPPLCo.Rt.locfePlantReactorControlOperatorfntrafnfngforReactorOperatorLicense. 0 HUGHHJOHNSONJR.ReactorControlOperatorEDUCATION:HighSchoolGraduateU.S.NavyElectronicsandNuclearPowarTrainingEPERIENCE:.1977-1980UiS.NavyReactorOperator<~~z-iy'~1980-Pres4-FPLCo.eactorControly'peratorQtrainingforReactorOperatorLicensepaESL~~J.~~zp~<licensing.~~zch~982.GEORGER.BEF~SA-ReactorControlOperatorEDUCATION:HighSchoolGraduateClinicalLaboratoryCourse-U.S.Army1970EXPERIENCE:1978-1980DukePowerCo.-PowerPlantTechnicianNuclear6Fossil1980-1981TurkeyPointPlantNuclear6FossilMaintenanceNachnnic.(Rg//<kC~&St.LuciePlantReactorControlOperator~gtrainingforReactorOperatorLicense'on-Ue~kin-,1982. DENNISJ.FRING-PlantCoordinatorEDUCATION:.c.-!-!Ill.l'UnitedElectronicInstitute-Louisville,KentuckygreeUoS~ArmyBasicElectronicsTrainingCourse-1967AdvancedInterceptEquipmentCourse-1967InstructorTrainingCourse-1969AuxiliaryEquipment'peratorTrainingatPPLTurkey:PointPlant-1971NuclearOperatorTrainingatPPLTurkeyPointPlant1972'PatchEngineerTrainingatPPL-St.LuciePlant1974HotLicenseOperatorTrainingatFPLSt.LuciePlant1978;1979C.E."PMRSimulatorTrainingCourse,"includingStartupCertifi'cation-1979EXPERIENCE:1966-1970U.S"ArmyInterceptEquipmentRepairman1970-1978FPLMechanicsHelper,Aux.,EquipmentOperator,NuclearOperator,HatchEngineer1978-PresentSr.PlantTechnicianresponsiblefordevelopingandconductingtrainingprogramsforallnon-licensedandlicensedoperatorpositions.NRCOperatorLicensedonUni0' 13lfqCHARLESDHARPLE-'~NuclearPatchEngineerEDUCATION:HighSchoolGraduat~arf~W+~~t-,~~College-BrevardCountyCollege-61credithoursinElect.Eng.Tech.PPL'Co;Introduc'tiontoSteamPowerPPLCo.St.LuciePLant"HotLicenseOperatorTrainingProgram"C.E.oneweek."pMR.SimulatorTrainingCourse",includingStartupCertificationEXPERIENCE:1973'FPLApprenticemechanic,boilerattendant1974-PresentPPLSt.LucieNuclearOperator,NuclearControlCenterOperator,NuclearMatchEngineer.RICHARDL.McELROY-ReactorControlOperator14EDUCATIONHighSchoolGraduatefUS~NavyandNuclearPowerTraining4i~MBt.indianRiverComm.College1980"PresentAssociateofScience(MoheganComm.College)1980EXPERIENCE:1976-1981U~S,NavyReactorOperator1900-PresentPPLCo.Inst.6Cont,Spec.Reactorcontroloperator,intrainingforReactorOperatorLicenseonUnit8' I' 3.U.KKELL-NuclearplantSupervisorEDUCATIONHighSchoolP34v-Qn.~+"~+ElectricalSchool-U.S.Navy1949InternationalCorrespondenceSchool-Mech.EagineerCourse1956VestinghouseReactorOperatorTrainingProgramVestiaghouseSeniorReactorOperatorTrainingProgramIIC.E.Co.NuclearSteamSupplyLectures86hours1974'neweektrainingiaReactorTheoryatUniversityofFloridaThreeweekst'rainingatC.E.SimulatoriaViadsor,CT.EXPERIENCE:1947-1948FPLCo.-AuxiliaryOperator-Lauderdal'eplant1948-1950US.N,Electrician'sMate1950-1951HikellPlumbing,Co~-Hollywood,Fl:PlumbersHelper1951-1972ppLCo.-AuxiliaryOperator,FiremanAA,TurbiaeOperator,ControlCenterOperator,VetchEngineer1972-1973TurkeyPointPlantNuclearMatchEngineerduringmuchofthelowpowerphysicstestingandinitialoperation1974-1977Participatedin,,writingoperatiagproceduresforSt.LuciePlantUnitfl.OperatedUnitPlthroughinitialstartupandoperetion.oprme~1978-preseatStLuciePlantOutageCoordinator,Responsibleforschedulingaadcoordinationofalloutage'ctivitiesforSt.LuciePlaat. HILTONH.M)SLEY-ReactorControlOperatorEDUCATION:~Rock~~HighSchool-~roSacramentoStateUniversityN.amiDadeJr.College'ndianRiverComm.CollegeRiscellaneousU.S.Air'orceTech.SchoolsPPLReactorTheoryCourseObservationTrainingatTurkeyPointPlantUniversityofFloridaReactorTheoryReviewC.E.NuclearSteamSupplyLectureSeriesC.E.SimulatorTrainingProgramFPL21weekseries-SystemsTraining12meksupervisedself-studyprogramcoveringthefolloving:PrinciplesofReactorOperation,GeneralOperatingCharacteristics,ControlStationInstrumentation,SafetyandEmergencySystems,StandardandEmergencyOperatingProcedures,PlantOperationandTransientResponse,ReadingandInterpretingControlInstrumentation;EXPERIENCE:2monthshelperatTurkeyPointPlant.InvolvedinRxpreparationandinitialcoldload.<<8monthsAux.Equip'peratoratTurkeyPoint.OperatingAux.equipment<<I<<7monthsTurbineOperator,HiamiFossilPlant.Operatingturbinegeneratorandsecondaryequipment.6yearsSt.LucieNuclearplant.Coldlicense,NCCOClassandNCCOforcoldhydroandhotOpsSeniorReactorOperatorLicensedonUnit01. 0 R-JhHESEDVARDO'NEIL-ReactorControlOperatorEDUCATION:UniversityofHartford-1967-1968HathHa)orHartfordStateTechnicalCollege1969-1971-AS-NuclearEngiaeeringTechnologyFPLCo.Reactor,OperatorHotLicenseTrainingProgram1980-1981EXPERIENCE:1972-1975KaolinAtomicPo~wrLabVindsor,CT.RadiatioaControlsTech.(H.P.)1975-1980FPLHealthPhysicsTech.1980-PresentReactorControlOperatorSt.LucieUnitdl.L.V.PEARCE-NuclearPlantSupervisorEDUCATION:HighSchool&&i~Zv+~5IISt.John'sRiverJuniorCollege1967g1VestinghouseOperatorsTrainingProgram1970QestinghouseSeniorOperatorsTrainiagProgram1972C.E.NuclearSteamSupplySystemLectures86hours1974C.E.Simulator.Training60hours1974FPLCo.on-sitetrainingprogram1975EXPERIENCE:1968-1970FPLHelper,Aux.Equip.Operator,BoilerAttendant1970-1973FPLTurkeyPointPlantNuclearControlCenterOperator,VetchEngineer1973-PresentFPLSt.LuciePlantNuclearVetchEngineer,PlantSupervisor
MICHAELALLENPERRYEDUCATION:2YearsOfCollege(EEHa)or)1970-1972Ho-Begree-U.S.NavyElectronicsandNuclearPowertraining'XPERIENCE'972-1978U.S.NavyReactorOperator1978-1980Operator(non-license)atCPSLBrunswickPlant19802/3ofHotLicense'ClassatCP&L1981-Present~~acto~perEZorRotP/CSrl.~c~Qi~~tQ$YcenseCandidate/f~gaghsgc~//~4jALDOLOUISRAHIREZ-ReactorControlOperatorEDUCATION:U.S.NavyMachinistMateandNuclearPowertrainingEXPERIENCE:1977-1979US.NavyNuclearPovrPrograa1980-PresentPPLCo.HaintenanceMechanic.ReactorControlOperator,gTrainingforReactor LAMPZNCE.H.RICH-NuclearVetchEngineerEDUCATION'ighSchoolGraduate-Ru~~'a-%48-FPLCo.St.LuciePlant"HotLicensedOperatorTrainingProgram"1976-1977'C.E.oneweek"PRRSimulatorTrainingCourse",includingstartupcertification.EXPERIENCE:1968-1972UseNoHachinistHateSecondClass-operatedandmaintainedsteampowercomponentsandauxiliaries.1972-1977FPLApprenticeMechanic,NuclearOperator,NuclearControlCenterOperator(unlicensed)1977-PresentSt,.Lucie81LicensedReactorOper'ator,NuclearVetchEngineerJAMESJ.SHANNONJR..EDUCATION:U.S.NavyMachinistMateandNuclearPowerTrainingBrowardCommunityCollege'(Assoc.inBusinessAdministration)1977JohnsonPneumaticControlsSchool1979EXPERIENCE1965USSDestroyerForrestShermanDD931SteamPlantOperator1967-1971USSSubmarineNathanHaleSSBN623(g),SteamPlant6Primarysystemsoperator.1981FPLBoilerAttendant1981-PresentStiLucieNuclearPlantpReactorControlOperatorTrainee-. 4MARKD.SHEPHERD-PlantCoordinatorEDUCATION:CHighSchoolGraduatmEarm~~~1981-BachelorofProfessionalStudiesinTrainingManagementinNuclearTechnology,MemphisStateUniversitySeminoleCommunityCollege,SanfordPL,EarnedAssociateofArtsdegree1978NortheasternUniversity,Boston,MA,earned65hoursCollegeofEngineering.Z4a~veragU.S,NavyElectronicsandNuclearPowerTrainingFPLCo.SeniorReactorOperatorTrainingProgram.C.EPWRSimulatortrainingprogram:Fourweeksofoperationspracticeincludingnormal,off-normalandemgergencyoperationsandreactorstartupcertification.EXPERIENCE:1974-1978U.S.NavyReactorOperator.alifiedasEngineeringWatchSupervisor1979-1980Instructor,CenterforNuclearStudies,MemphisStateUniversity,MemphisTennessee.Responsibleforthedevelopment,deliveryandadministrationofvariousprograms,of,studyrelatedtotheNuclearIndustry.1980-PresentInstructorPPL,Co.St.LucioPlant.SeniorReactorOperatorLicense
LAWRENCEAeSPALDXNG-DXNG-NuclearMatchEEDUCATION:ngneerHighSchoolGraduate~mf;8eeLCollege-UniversityoferstyofFlorida1963-1966,72crGeorgeT.EaterAviation,72credithoursf1551561andPrinrivatePilot's,Fl,AirframeaITLCo.St.LucisLicense41548856s,1962andPomrPlantLicenset.LuciePlant"ColdLiicenseOperatorTraC.E.NuclearStearnSuI"currrainingProgram"C.E.8reek"ppySystem"lectur975andCeEoperation,eries1974rainingCourursecoveringetnggplanttechnatorTrainingCecology0eHr.SpaldinghangCourse"coversparticioatngC"tingaccidentanalanysis,edasrequirdinentheSt.Lucieplant"EZPERXENCEen.eant"Licensed1966-1972U.S'oastGuardRescrves1967"1973PanAmericanWorldAirays>>airframeand19?3eandpomrplantmchanicFPLCo>Tu,TurkeyPointPlantaux.ui1973-n-Presentantaux.equip.operator.PPLCo.St.LuciecePlantNuclearCoontrolOperatorNucngneerr,uclearWatchEngi ~ppREYA.SPODICK-PlantSupervisorIIgPtJCATION:IIA4.~chanl-+%6g~tegF!alaBeachJr.Colleg-AAinLiberal.Arts1968IFgf,Co.St.LuciePlant"ColdLicenseOperatorTrainingProgram".'Hr,Spodickhasparticipatedasrequiredinthe"LicensedOperator/@qualificationProgram"atSt.LuciePlant.g,g,NavyElectronicsandNuclearPoverTrainingP~PERIENCE:$97/.-1974Q>Q,NavyReactorOperator3975-1977FPg-NuclearControlCenterOperator.4,g<gg/7-PresentFppCo.St.,LuciePlanttrainingstaffinstructor.Responsibleforpreparationandconductoflicensedoperatortrainingprograms.4)C<aQA'gWMDK.SPURGIN-ReactorControlOperatorgQUCATION:5'./c-~~MPaytonaBeachCommunityCollege-NoDegreegearyRiddleAeronautical.Inst.AircraftAirframe/PoxrPlantCertification$90'PgsminolcCommunityCollege-completedrequirementsforAAinEducation-Ref.atedTechnicalTraining:LicensedReactorOperatortrainingatSt.LuciePlant1978-1979C.ED"PMRSimulatorTrainingCourse,"includingReactorStartup.Certification-1979PQPERIENCE:$977.-1978FP4Mechanic'sHelper,Aux.EquipmentOperator,ApprenticeElectrician)f78-PresentNgqgearCon'trolCenterOperatoratFPLSt.LuciePlant.8108100005
)NBPDLTh.STOPZE-NuclearPatchEngineerEDUCATION:MghSchoolGraduate-learwaterPPLCo.St.LuciePlant"HotLicenseOperatorTrainingProgram"1976-1977AC.E.oneweek"PMRSimulatorTrainingCourse"includingReactorStartupCertification,1976.EXPERIEtiCE:1960-1968U.S.AirForceJetEngineBechanicandJetEngineTechnician.Testrunvarioustypesofaircraft,operatedenginetestcellsandgroundequipment,includedtroubleshooting,repairandoverhaulofvarioustypesofgetengines.1972-1977PPLAuxiliaryEquipmentOperator,BoilerAttendant,NuclearTurbineOperator,NuclearControlCenterOperator(unlicensed)1977-PresentSt.LucieUnitflLicensedReactorOperator,NuclearPatchEngineerKEVXNHALLTHONAS-ReactorControlOperatorEDUCATION:PalmBeachJr.College1969-1971BusinessCoursesapprox.50semesterhours.US.NavyElectricianandNuclearPowerTrainingJjPalmBeachCountyJourneymanElectricianLicensed1978hirConditioning/Refrigeration/HeatingCorrespondenceCourseCertificate1980KPERZENCE'I1972U.S.NavyServedaboardUSSAlamogordoARDH2asapowerplantelectrician.1974-1977USNavyNuclearPowerProgramElectrician1978-1980PPLElectrician1981-Presentst-c-wc~ReactorControlOperator~U~lWhcpectodMM~~/~IntrainingforReactorOperatorLicensea
KATHLEENDOLORESPARD-ReactorControlOperatorEDUCATION:CertificateLowellTech.InstituteHealthPhysicsTraining,1971DegreeLotmllTech.InstituteB.S.inHealthPhysics1975.~License(pending)ReactorOperatorSt.LucieUnitI1981.Degreepresentlyinprogress,FloridaInstituteofTechnology,M.B.A.EKPERIENCE:1975-1978DosimetryEngineer,YankeeAtomicElectricCo.,NuclearServicesDiv.,RadiationProtectionGroup.1978-1979RadiationPhysicistYankeeAtomicElectricCo.,Nuclear'ervicesDiv.,EnvironmentalLaboratoryGroup.1979-1980HealthPhysicsSeniorTach.St.LucieUnitl.1980-PresentReactorOpo~~iningJAN/0+~~~ROGERD.DWELLER-ReactorControlOperatorEDUCATION:HcCluerHighSchool,Ploriooant,PO1973.RelatedTechnicalTraining:UiS,Navy.Machinioto)hteandNuclearPowerTrainingUtility:PPLLicensedOperatorTrainingProgram-1980C.E.HERSimulatorTrainingProgram:5weeksoperationspracticeincludingnormalandemergency/off-normaloperations,andotartupcertification.EXPERIENCE:1973-1980U.S.NavyNuclearPowerProgramMachinistMatequalifiedasengineroomsupervisor~1980-PresentReactorControl'OperatoratPPLSt.'LuciePlant JEFFA.HEST-ReactorControlOperatorEDUCATION:1967-1972-B.S.E.E.'niv.ofTenn.(ControlSystems6Computers)41972>>1974-30hoursgraduateworkonMSEE8Univ.ofTenn.SpaceInstitut'e.Topic:NetworkTheory.JoinedNavypriortocompleting,degree1980-Present-15hourscompletedonMBAatFloridaInstituteofTechnology.EstimateddegreedateDecember1982'972EngineerXnTrainingCertificateFPLSt.LucieUnitPlShiftTechnicalAdvisorTrainingProgram.EXPERIENCE:~1975-1979NavyNuclearPowerProgram,qualifiedEngineeringOfficerofthePatch1980FPLSt.LucieUnitf'1Shift1980-PresentFPLSt.LuciePlantReactorLicenseonUnit81'echnicalAdvisorggi~/rXControlOperator.nTrainingforReactorOperator
NORRISD.HEST-HuclearPlantSupervisorEDUCATION:/udrewJuniorCollege1year1960U.S.NavyElectricianandNuclearPowerTraining,1960-1962BettisAtomicPowerLaboratory,1962C.E.NuclearSteamSupplySystemLectures,86hours,1974.C.E.SimulatorTraining,60hours,1974ParticipatedintheSt.LuciePlantOn-SiteTrainingProgramFPLReactorOperatorTrainingprogramPTP-1970-71FPLSeniorReactorOperatorTrainingProgramPSL-1973-74%PERIENCE:1960-1967Q.STNavyNuclearPowerprogramElectrician1968-1974PPLHelper,AuxiliaryEquipmentOperator,ReactorOperator,NuclearHatchEngineer1974-PresentFPLHuclearHatchEngineer,NuclearplantSupervisor;St.LuciePlant. iKENNETHJ.VIECZK'NuclearMatchEngineerEDUCATIONHighSchoolGraduate-PittsburghInstituteofAeronauticsAADegree1970FPLCo.St.LuciePlant"ColdLicenseOperatorTrainingProgram"C.E."NuclearSteamSupplySystem"LectureseriesC.E.8veek"PWRSimulatorTrainingCourse"coveringplanttechnologyandoperationC.E.onevaek"PVRSimulatorTrainingCourse",coveringAccidentAnalysis.UniversityofFLorida3seekcourseinReactor,OperationandReactorTheoryRr.MiecekhasparticipatedasrequiredintheSt.LuciePlant"LicensedOperatorRequalificationProgram"~EXPERIENCE1962-1967U.S.NavyAircraftHydraulicsMechanicSecondClassAirCrewmemberonHU-46DHelicopter1967-1968U.S.NavalPrintingOffice,printersapprentice1970-1973Pratt&MhitneyAircraft'etEngineTestCellMechanic1973FPLCo.RivieraPlant,Hechanicshelper1973-PresentStLuciePlantNuclearControlCenterOperator,NuclearMatchEngineer Q.S.QXNDECKER,.-SupervisorPlanning6SchedulingEDUCATION:HighSchool4949-~v~~~FPLCo.TrainingOpportunitiesPz'ogramcoursesinmathematics,physics,chemistry,steamgeneratorsandauxiliaries,steamturbineandauxiliaries,simplifiedelectricity.WestinghouseReactorTrainingProgram,TurkeyPointPlantC.E.NuclearSteamSupplySystemsLectures,66hours,1974'eactorTheoryReviev,UniversityoZFlorida,40hoursParticipatedintheSt.LuciePlanton-site'trainingprogramFPLCo.ReactorTheoryCourse,3veeks.EXPERIENCE:1957-1970FPLCo.Helper,AuxiliaryEquipmentOperator,Fireman,TurbineOperator,ControlCenterOperator,WatchEngineer1970-1973FPLCo.ControlCenterOperatorandWatchEngineer,TurkeyPointPlant1973-1979FPLCo.WatchEngineerandNuclearPlantSupervisor,'t.LuciePlant1979-PresentPSLUnitf2Planning6SchedulingSupervisor SL2-FSARTABLE]3.]-1ST.1UCIEOPERATINGORGANIZATIONSTAFFINGPLANMaintenanceDept.(Inc]udeitinerantandspecialcrewpersonnel)I&CMaintenanceEngineers.&TechI&CSpec.3018608]88882]2828MonthstoFuelLoadCommercia1~aeration1428ElectricalMaintenanceEngineers&Techs.ChiefElec.Elec.JourneymenAppr.Elec.MechanicalMaintenance777344]2)5AD]9121042]2]042]2Engineers&TechsMaintenanceForemanMackinistMechanicAppr.Mech.HelpersTechnical
Deartmentll422591412145622253591214']5-146247l720]46253]926Engineers&Techs.SecuritDeartmentAsst.SecuritySupervisorAdministrativeDeartment101]1212Asst.,
Admin.SupervisorClerks)6]661-6QualitControlDet.Engineers&Techs.0erationsDeartmentChemistryEngineers&Techs.HealthPhysicsEngineers&Techs.RadiationProtectMen]2]516778877]4'15]5]516]2]4]7]6]2]4ReactorEngineerEngineers&Techs.TrainingDepartmentInstructorsDraftsman4334'14']I13.1-58 SL2-FSARTASLEl3.l-l(Cont'd)30MonthstoFuelLoad1860CommercialOperationPlantSupervisorMatchEngineerControlCent'erOperatorNuclearOperat'orTurbineOpratorAuxiliaryEquip.Operator66666629293499l26lll)5556634l5)l5663415ll5Technicians~Seari-.UEngineers&Techs.395356131-59 SL2-PSARTABLE13~1-2Page19r>HNIHUMSHIPTCREMCOMPOSITIONSTLUCIEUNITS1AND2LICENSAPPLICABLENODES**r'ATEGORYPlantSupervisorNlearNuclearMatchEngineeNuclearControlCenterShiftTechnicalAdvisorNuclearOperatorTurbineOperatorls2s3<48RO-'SRO1~RO2re15662011/A+DoesnotincudethelicensedSeniorReatorOperatororSeniorReactorOperatorLimitedtoFuelHandling,qpervisingCOREALTERATIONSaftertheinitialfuelloading.I*AsdefinedintheTechnicalSpecifications Page20SL2-FSARTABLE13~1-'CORRELATIONOFST+LUCIEPLANTSTAFFPOSITIONSMITHANSIN18.1-1971TITLESANSIN18.1-1971PositionTitleANSIN18.1-1971SectionNo.STLUCIEPLANTSTAFFPositionTitlePlant.Manager42.1PlantManagerOperationsSuperintendentOperationsManagerMaintenanceManager44.4.3Operations'SupervisorMaintenanceSuperintendentAssistantSuperintendent'ech.Maint.AssistantSuperintendentElec.Maint.TechnicalManagerReactorEngineeringandPhysicsInstrumentation&ControltRadiochemistryRadiationProtectionSupervisorRequiringNRCLicense4.2.44.4.14.4.2~4'.34.4.44.3.1TechnicalSupervisorReactorSupervisorInst.&ControlSupervisorChemistrySupervisorHealthPhysicsSupervisorPlantSupervisorVatchEngineerSupervisornotRequiringNRCLicenseOperators4.3.245~1TrainingSupervisoralityControlSupervisorSecuritySupervisor-ReactorControlOperatorUnlicensedOperatorTechniciansIRepairmen45.24.5.3TechnicianMechanicInstrument&ControlSpec.ectrcx CTOCXHOLOE44COAAOOIIOIRECTOT(SCHAT(IS(AftOFTHEDOARO4CHI'EFEXECUTIVEOFSIC(f(5(NIDNI(ANAO(sl(Nft(ANNINOCOVfADLttNIOAVKtM(LNNTltlROIIVICItRISID(NT~(NrORVllttAtllDtNTStNIOAVICCtA(SIDINTtRECIOEHT4CHIEFOTERATIHQOFFICE(lStNf01'KIM(SIDtNTVKSM(40(NT~VSLICAltAI15Atfll'fMTItlfll(ARY1DIAICTDRMAIIAOIVt11CONTIIOL5tNIOAVKttrltfD(lfftk(CO(IV(VI(ItRt40(NI'X(CUTIVtVIC(tl(40(NTttNIORVIC(trtlIDINTYKttt(SIO(NTSTAATIOIC~LANfrlNO~5(NIORrVKIHI(40(NT~Atl'5,l(CA(TANYOIA(CIONCOAt.CORIAACTI~VSIICAITAIAS1(t.STAT(~VS(IDAflAIRSAlt.IIOIAALAftlITANT'IOVKtt1(MDIV(Iye(ICATTAINSMANAS(1Ot(AT(ANALAttAIASVICIM(IIO(llfINOINI(1INOtAOIICTIMPIAOIM(NT~CCN5fAVCTIDNOIAtCfOROtC(III'IRVCTICÃlON(l(NCINt(A~DNt1TLAN'I(NOIR(tSINORAIC(oflOttflOltCTSOil(5(NCfN((RO(1(RALtNCfNIIAINOVICtt1('HOINTADVANCI0STST(MS1T(tfrNOLOOTVIC(Mf40(Nt~ON(A1(IOV1CtlDIII(C'f01~ON(ASlfftLVVIC(t1(40tNTtVSIIMtlANNINOOIRICTOA~01tllSfftt(Yt(ANNINOVI(IM(40(NT50(L1(SOVAC(t1'OAFORATS0(V(LCtrtNTDIRtCIOROtFO(LStVtlAftOVRC(5INIKL(AAIVKITA(40(NTC(SIFOAAT(S(AVKflRA(cfoNCOMIIIf(1Otf1AllONSDNI(C(01tIIRCNA4Nrf4tlV(NTCRVAIAI5NMANAO(1TA(ASM1IJIA55ISTANTTA(AQI1tIICOMt(10(Et1(NA(C(01OtCOAtORAIIAC(00IITlNO.VIC(Mt(f0(rfCORt01AICCDVANINKATNÃIOIA(CTORttAIONAILVICItfl(IID(NfICONONSC0(V(LOIN(NTOIR(CTORRA(tl~A(5(ARCHASSI5TANTSt(R(MAT1DIRICTOAOtSTOCRNOLD(RINIOIIVATIONVK(tRISIOtNTOIVIMONSDNI(CllllCOMMtACIALOt(RATIONSDf1(CTDNLAlf0IIANAOtINNTDlfltCTD!II(ID(IS(RIALR(LATKMSOfR(CTDRTRAN5.1Oltf,OIAICTOADIVISION~IAIINlffORA(CTOArATIARt<<(ravCONS(RVATIONDIA(CTORDIIIRISOIIONtNOIN(tRIIIOYK(tAIPDINTSOSITINANOIVIHRIVIC!tRISIDINl'A(TIANRVINONVICtMt40INTNORTH(ASTIRNRYIIIDNVIC(tAtHD(NTSRITINASIIANRYISIONVICtM(CD(NTRill(RNRYIMONMANAS(1MANAOtr(Nf5(AVICttMANAO(RLtOAI.AllAIRSMANAO(RCLAIMS(11(CTOIILK(NSINO~INVIRONM(1TALt(ANNINO(11(CTORRIALITYASSVRANCfA5(lfTANTCOMtlROLL(R~MANAC(1ACICCOST4MOC(RIR(5MANAOtROfACIDAIODIAIORY0(CI0ASS'T.tfCACTARTCOAtOIIATI5(CA(TARTFLORIDAPOWER4LlGHTCOMPANYST.LUCIEPLANTUNIT2ORGANIZATIONCHARTGENERALORGANIZATIONFIGURE13.1-l tPOSCCTOQICRALSKANAOKRCOSTANOSCttKDVLKSTATSCat~St55AVICCSSaltMONCTSTAT1SVttOIITSttANISIANADKRTIICVKCTattfflal~aISKCTNNIfO&W5OJALITYAaVAANCCKNODttCAKNCINTCAINOtllaltCTIIANAOCR~afKRRCSOVltCKSTKANNKNSCIITVIICNAVtaTfAllINCIISCNCVALITYASSVIIANCCKNCINCKRASSI5TANTMOIKCTSIANAOKRSDSNTANTtSIKLNCfIIANAafA1IIORCTtttaDIKCR~VIICNANNODCttfDISINOCOIÃtaNATtNOKNaNCtDtlaaSCNLINKSNTCSIANAOKR~IIOICCTOlNCCTIONfSTI5ICONSTltVCTIONTASKSVttllTNTtNatNTAtlltTANfNANADCNQTKaIALITYASSVAANCCDUALITYCONIIIOLSVtfIlVIIVIIMOXCTSVIKAINTtlCltNTCONSTIIVCTIONCOVtllOL5VltAINTKNDCNTStIIVtCt5OlttltlNTKNOCNTSfCVIlITVSVIK5VISORStNCRRtSIDtNTKNOINCKNFLORIDAPOWER6LIGHTCOMPANYST,LUCIEPLANTUNIT2ORGANIZATIONCHARTST.LUCIEUNIT2PROJECTTEAMFIGURE13.1-2 vKSsst)sot>stCst)ov<<CCSA)eotkstTOI>KTKI>atsotefL>AAACI~>>>~Oet~~>LovetlI~011Kskskcla0>~0kI~~I>a<<actIas>>KI~va>>>asotI10Iaallovcls~AKIIIa0>AICtoeOe~OatI~Le>>It~><<LIVI>kefsae>CI~~0>KA~ILO<<eel)~>OIVL~elk)I~~)Lef~Tfta>>>>ISOIIIIICasketIALelect~Qa>>aaa~llalke1tsk>>>OI~~OsI~~IIovatf)>>>KLtks~saskct~0>~e~~ft'oeta~1>os>actiSSIsvcllka<<k>>a>la~Oatsal>OVLCIS~IVCLIAAIts>>KI~I~>~I~>>et>11aAO~>11~0CILcooooaoasaots00I>ItisOtlIII>0>K~taakota00~>Stf<<~>>0nCf>OOQa>>kola0111Ce<<KALaa>>KIIfI~Oat<<tfetLafIIITIeLIaotI~Ia>>1~Ok>>kolaf~vtsk>e>Iaafvk>>LCII~>TtleA~\ae~saseol~tfIVCK~IaafIeqkiyPsmo')L)r~fse>~>sea<<eye+1'"ICV>II0leLasf~>)I~sea<<aStlAvofLOAIIsk>>kola1~as>OAO~IWIoksLolIskIf>0~IaafIP)vrf'(yPLgr.))k'ss>~~~f/est~~O>l~~IIOVACI).aCT>O>>IV>vI~>fCsa>>KAIr-e0>nI~Ilovsct~ffcfe)<<fv>vO>fakfSO>>I~OetISIIOVACtlac>K<<fv>vLoses<<Steat>caTosta~Ilos>acIIactK<<lv>v~III~)la>OL<<<<ett~oatsstlovacllact>O>>Iv>v~etfIV>saSI~CoeTAOL~ItC<<A>et~ostaetio>>acctact>0>>tv>V'IA>>tfv>>oaf,fcttfIsttoo>>ctsatTsoeIv>v.WLLT>>t>tt)sc)~Oaf~II1>IL<<fvaf>etl<<>ICk>>KLIWf>1>ASII~~~IICI~CLLWsa>kasll~tave>vealLss>IVL~<<Ie1OSSOtIItIII<<<<a>>tf>>L'Kl~~a>>OLa0I<<atIaTOOL~t>>>OL>01IL~Ilr~IL<<A>>kolacaf1>IC'LI'teo>lC~I~Osl~~I~~CIA1~>IC'Ll>11~~~(C<<CII~~>)>II0>tskf>o>ssfaksesso~OllIala>>iO>lest>O>>IItl>I<<ICO>>0>>e~sansCsf>>>>IreeolIK<<coosos<<a>os~o<<I~~Ilovecf~IfLOSI<<el'foeta~I~cts~>IC>A\sltl~tfC<<cits>I)s'Nsotfn'nsIO>>st\I~As>>s>>CIos<<e>eoctovalICIILKAI~>lc>AI>eo>ICI)~0AII~IIOVLCIItnC>>Isis~~~IC>>Clla1~I>vt)>owe>KIaft>so~111Laloeatos>>f>>tssose>1'>1>\fIII>soLee>i~k>>>1>IIFI~I~t<<IS1~nc>AI>eo>ICn~Os>I~~ICIVICIIalc>AI>I>I~ttcs>KII~~OIIK>LaststftavIwatt~cosreotfI.s>KIILLTIL>>f>>>IIIVee>>1~~co>>1col~(IIC<<k<<sn>>L>>CItealsaSOIS>SaltsCO>>>1esllOsattalI>In>KL"~~Ost~af)OVLCI~1>IC>kl>11~~TIC<<KII~>1>~osf~II)ovscttItasta<<LI'I>>VIIIA>>I'tltl>tl~~>>OCIIII)t>>O<<KIass>Ooso>>a>>A>oaaft>LI<<OKCTS~OafI~IIOvsclIafC>AI>)fl~nC>>KIII>4ttsfattscf>st>>s>0Walt<<><<>IKIsealovofat~LOKK<<<It~at~osl~sIa>>actsS>las0IIIInc<<CIILI~1ICT>os>ISIIII>KL<<IIINVSCT~ILVIL>oetCta>>L>ksct1st~A~>eoelk>>1LKI>>I">>C>sat>LO>>C>K>~otl~a>el<<lA>>LIT)>Soval>t~co>>isla,Iteo~L<<lLt>tc>AI>>>OKC>)ef1SS)'Set>LOTSavt>tekfkCK>fsffS>k>fSIPTOATFLORIDAPO)TER8LIGHTCOMPA)I'fST.LUCIEPLAIITVIIIT2ORGAIrIZATIOMCHART!PC'<ERRESOURCESFIGURE13.1-3 t,~ EXECUTIVEVICEPRESIDENTVICEPRESIDENTFUELRESOURCES5CORPORATEDEVELOPiViENTVICEPRESIDENTENGINEERING,PROJECTMANAGEMENTSCONSTRUCTIONVICEPRESIDENTSYSTEMPLANNINGVICEPRESIDENTADVANCEDSYSTEMS&TECHNOLOGYVICEPRESIDENTPOWERRESOURCESDIRECTOROFFUELSDIRECTORPOWERSUPPLYDIRECTOROFCONSTRUCTIONCHIEFENGINEER.GENERALENGINEERINGDIRECTOROFPROJECTSCHIEFENGINEERPOWERPLANTENGINEERINGFLORIDAPOWER5LIGHTCOMPANYST.LUCIEPLANTUNIT2ORGANIZATIONCHARTOPERATIONSFIGURE13.1-4 VICEPRESIDENTPOWERRESOURCESASSISTANTTOVICEPRESIDENTPOi'WERRESOURCES'ANAGERPWRRES-FOSSILMANAGERPWRRES-NUCLEARMANAGERPWRRES-SERVICESDIRECTORPOWERSUPPLYASSTMANAG'ERPR-FOSSILASSTMANAGERPR-NUCLEARMANAGERPR-NUCSERVSECTSUPV-ADMMANAGERSYSTOPERPLANTMANAGERSFOSSILPLANTSPLANTMANAGERNUCLEARPLANTSECTSUPV-HPSECTSUPV-l5CMANAGERSYSTPROTPLANTMANAGERSFOSSILPLANTSPLANTMANAGERNUCLEARPLANTSECTSUPV-PLTSUPVSECTSUPV-MAINTMGRPCsYSUPPLYTECHSERV'SSECTSUPV-OPNS'ECTSUPV-TESTFLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2ORGANIZATIONCHARTPOWERRESOURCESDEPT.FIGUREI3.1-5 VICEPRESIDENTENGINEERING,PROJECTh'lANAGEhlENT6CONSTRUCTIONDIRECTOROFCONSTRUCTIONADMINISTRATIVEASSISTANTIPiANAGERCONTRACTORLABORRELATIONSSUPEIUNTENDENTGENERALCONSTRUCTIONPROJECTCONSTRUCTIONSUPERVISORPUTNAMPROJECTCONSTRUCTIONSUPERVISORTURKEYPOINTSUPERINTENDENTPLANTCONSTRUCTIONhfANATEESUPERINTENDENTPLANTCONSTRUCTIONST.LUCIESUPERLNTENDENTPLANTCONSTRUCTIONMARTINSUPERINTENDENTCONSTRUCTIONQUALITYCOiITROLPROJECTCONST.SUPV.GENERALCONST.AREACONST.SUPV.hlARTIN.FUELSUPPLYCONSTRUCTIONCOORDINATORCONST.METHODSAREACONST.SUPV.CONTRACTCOORDINATIONAREACONST.SUPV.EQUIP.MATERIALS5TOOLSAREACONST.SUPV.BUDGETS5FUTUREPROJECTSFLORIDAPOWER4LIGHTCOMPANYST.LUCIEPLANTUNIT2ORGANIZATIONCHARTPLANTCONSTRUCTIONFIGURE13.1~,'~ VICEPRESIDENTENGINEERING,PROJECTMANAGEVIENTaCONSTRUCTIONCHIEFENGINEERPO'cYERPLANTENGINEERINGASSISTANTCHIEFENGINEERPROJECTSQO~Om~-~2C)CZCpN~IllOznm~nIO~'QCgCOITl'09ogIxIn0hJaPROJECTMANAGERST,LUCIEPROJECTPROJECTMANAGERTURKEYPOINTPROJECTPROJECTMANAGERSPECIALPROJECTSPROJECTMANAGER-MARTINPROJECTPROJECTMANAGERPUTNAMPROJECTSUPERVISORPLANTENGINEERINGLICENSING'UPERViSORPLANTCIVILENGINEERINGADMINISTRATIVEASSISTANTMANAGERPLANTNUCLEAR/MECHANICALENGINEERINGMANAGERPLANTELECTRICALENGINEERINGMANA'GERNUCLEARANALYSIS 0 tI~~~~~~0'~~'l~I.~ SLA'IfTIAIIAotrtIeaeafIkaktf~vrf~111lkfllkTt(eekkatsvetpvrlokttcvrlrTToretpfrvklAOeevrrTfalfrVtIvelavrsokeeeOVANfVCORTAOLSOPSIVIIOAOefA1fr(wlItrtArketkotrrfAIIIIAtvftkrrC'rakfvp~VelatkrlROJkf~win)A/i71PAMo4()ASSIII1kfPI1RITvetarkrtkolkrt(SCIPKALAISIITAkfPIAIIIIVet1IR'eeOTkfv((laicalSROrktl~I~Tt(cere(eallAll111Akflr(VaeffOklAVIIOOAllIlfArrf-A(W>T.Orel1vlToklkfek1I1I~TlteekeNAASCekeeetfkf'katrrrAIACIOAfaaer1114OefAaTIOeettvetpvrlokMTSe(SIeelyTIIIOrfteVIIOA~vrl1vrToaSVPIAVVOOTVPIAVISOAIRSlktt!S~IISeeke(eaRTtktektI~I1TlCreegIaekteekeklIll~ft(eekCIAAStktektIlllttCeeke(1AASSh'5ITreltlfran'VAAOSCttalltkOIRTIP~Oltteeke(eaktSROekrtal1ITCepeecIAIPIf1OekIIIII1IIC1ele(IARIIIVNTAA~(ARTTVPIPVISOSCkkflISCt1e(IAJItaaekfIAaActIORIeavlAAOIATIOR~ROISCIKAI~e(I~Oar(erOaaIloeaolVSIhIt1ISltCTSICIAASeSIACeeeealffCOVIAOLClkrlaortaAIoltOVCISAAOelalrTOPS%111LettektO(OtkaTOOLICSRTIOSterokoptkafooSlrtlfotttfeORIPAPOAOtraelfCORNpkeksfeetSTAPIVPDreaerekRTeoecaRIIAreckfeetpotrfIovAIIVITAVIIAS1flakSkektaOetllf1VtI'ISA1fIOreeetkIOPI11IOUSARK'(ISMATITIIO.OIItl90lFLORIOAPOTSER8LIGHTCOMPAIIYST.LUCIEPLAHTUHIT2ORGANIZATIOHCHARTPLANTORGAIIIZA~IOHFIGURE13.l-g"~
Page1SL2-FSAR132TRAININGPlantprsonnelhave'a.combinationofeducation,training,experience,healthandskillssothattheir'decisionsandactionsthataffecttheplantaresuchthattheplantisoperatedinasafeandefficientmanner.Thetrainingprogramsupplementstheindividual'sbackgroundtogivehimtherequiredknowledgeandability.13.F1PLANTSTAFFTRAININGPROGRAMI'heoverallobgectiveofthetrainingprogramistoprovidetechnicaldevelopment,specializedtrainingandoperatingexperiencetoFPLoperatingandmaintenancepersonnel.ThePlant'anagerisresponsiblefortheconductandadministrationoftheinitialonsitetrainingprogramandforthetrainingofreplacementplantpersonnel'lanttrainingprogramsareconductedunderth'edirectionoftheplanttrainingstaff.ThoseprogramsconductedforlicensedoperatorcandidateswillbesupervisedbypersonnelwithSeniorOperatorLicensesonUnit81~Wherespecialknowledgeorexpertise,isavailable,non-licensedinstructorpersonnelmaybeusedforteachingportionsoflicensetrainingprograms.ThePlantTrainingSupervisorprovides/Adirectionandassistancetodepartmentalpersonnelwhereneededtoinsureimplementationoftrainingplans.FPLhasover10yearsofnuclearunitstartupandoperatingexperiencewithTurkeyPointUnits3and4andSt.LucieUnit1.Functionalandongoingtrainingprograms,primarilyconductedonsite,aredeveloped'ortheSt.LucietPlantandarebasedontheguidanceofRegulatoryGuide'18"PersonnelSelectionandTraining"May1977(Rl-R)whichgenerallyendorsesANSIN18.1-1971,4Si~~mQf~It Page2SL2-PSAR13.2.1.1ProramDescrition13.2.1.1.1LicensedPersonnelTrainingObjectiveItisplannedthatcoldlicensepersonnel.forSt.LucieUnit2willbedrawnfrompersonnellicensedonSt.LucieUnit1andthatalllicensedpersonnelattheSt.LuciePlantwillbelicensedonbothunits.Tothisend,all=oftheinitialgroupofcoldlicensecandidateswillhaveobtainedanNRCreactoroperatororseniorreactoroperatorlicenseonSt;LucieUnit1.ColdlicensecandidateswillbedrawnfromthefollowinglistofpersonnelwhocurrentlyholdNRCoperatorlicensesonUnitflorareintrainingforlicensingonUnitIf1~,Seesection13.1.3forexperiencesummariesofthesepersonnel.
Page3.SL2-PSARJ.H.BarrovD.A.SagerOperationsSuperintendent(SRO)Operations'Supervisor(SRO)C.L.BurtonP.G.DavisO.D.HayesL.V.PearceN.D.VestNucleaxPlantSupervisor(SRO)NucleaxPlantSupervisor(SRO)NuclearPlantSupervisor(SRO)NuclearPlant'Supervisor(SRO)NuclearPlant-Supervisor(SRO)H.G.AltermattC.D.MarpleL.H.RichL.A'paldingR.A.StorkeK.J~MiecekNuclearWatchEngineer(SRO)NuclearWatchEngineer(SRO)Nuclear'WatchEngineer(SRO)NuclearWatchEngineer(SRO)NuclearWatchEngineer(SRO)NuclearWatchEngineer(SRO)V.J.BloeserJR.BovenA.V.BramhallCDE.CallahanR.H.ClementsCJCoutureC.G.CriderP.H.CurryJ.B.DelrueD.D.DrydenG.A.EvansM.B.GilmoreR.STGoldsteinT.A.GonzalezC,GriffithW.L.HagarM.B.HallG.J.ImbrialePEB.IsaacsH.H.JohnsonReactorControlOperatorReactorControlOpeiatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactoxControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperator Page4SL2-PSARG.R.B.KassaR.L~HcElroyH.H.HosleyJ.E.O'eilH.A.PerryA.L.RsmirezJ.J.ShannonDiK.SpurginK.H.ThomasK.DWardR.D.WellerJ.A.WestReactorReactorControlOperatorControlOperatorReactorControlOperatorReactorControlOperatorReactoxControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorReactorControlOperatorPL.PincherB.W.NikellNiGiRoosR.L.HayesJ,A.SpodickR.S.GlazeD.J.KringH,D.ShepherdW.S.WindeckerTrainingSupervisor/OutageCoordinatorQualityControlSupervisorPlantEngineerPlantSupervisorPlantCoordinatorPlantCoordinatorPlantCoordinatorPlanning6SchedulingSupervisorFollowinglicensingonSt.LucieUnit1,aminimumofthreemonthsoperatingtimewillbeprovided,ifpossible,forthesepersonneltogainoperatingexperiencepriortocoldlicensingonSt.LucieUnit2.Subsequenthot.licensecandidateswillbetrainedforSt.QucieUnits1and2concurrentlyInitialTraininga)I'hetrainingprogramforlicensecandidatesfollowstheformatforhotlicensetrainingusedforSt.LucieUnit1butalsoincludesinformationpertinenttoUnit2licensing.Specialclassesemphasizingdifferencesbetweenthetwounitsaxeheldforthose'personnelalreadylicensedonSt.LucieUnit1.RefertoSubsection13.1.2foradescriptionofpositiontitlesandlicensestatus' KPage5SL2-PSARThelicensedoperatortrainingprogramencompassesthefollowingCoutlineforColdLicenseCandidates:PhaseI:HotlicensetrainingonUnitPlinaccordancewithSt.llLuciePlantAdministrativeProcedure"HotLicensePhaseII:OperatorTrainingProgram"~ThreemonthsofUnitdloperation,wherepossible,togainoperationexperiencepriortocoldlicensingonUnitf2.PhaseIII:Unit4'1/82differencestrainingprogram.AtrainingPhaseIU:PhaseV:programdescribingdesigndifferencesbetweenunits1and2willbepreparedandpresentedtoeachcandidatecoveringthefollowingareas:(a)CoreMechanicalDesign(b)CoreThermalandHydraulicDesign(c)ReactorPhysics(d)InstrumentandControlSystemsDesign(e)MechanicalSystemsDe'sign(f)ElectricalSystemsDesign(g)NSSSResponse(h)SafetyAnalysisandTechnicalSpecifications(i)OperatingandEmergencyProcedures())StartupTestProgramTimewillbeavailableduringthisphaseforcandidatestoaccomplishappropriatefieldstudyandequipmentfamiliarization.Simulatortraining:SinceallcoldlicensecandidateswillhavebeenlicensedonUnitdl,nospecialsimulatortrainingwillbegivenforUnitj'2coldlicensetraining.Normalannualsimulatorrequalificationsessionswillservethispurpose.SimulatorexaminationsmaybeconductedbytheNRCattheendofthesesessions.Sequencingofsimulatorsessionswillbedependentuponavailabilityofthesimulatorandmayoccuroutofsequencewiththeprogramphases.ScreeningandNRClicensingexaminations:AnexaminationsimilarintypeandcontenttoanNRC 0-Page6SL2-FSARexaminationwillbe.givenatthecompletionoftheprogramtodetermineeachcandidatesreadinesstotaketheNRCexamination.TheschedulefortheabovetrainingisindicatedbyFig.13.2.1Thescheduledstartdatesandactivitydurationsmaychangeifthecoreloaddatechanges.PriorExperienceCreditSomelicensecandidatesmayhavereceivedtraininginmilitaryservice,otherreactorlocations,college,orotherspecializedtraining..Fortheseindividualssomeofthetrainingprogrammaybeeliminatedbaseduponreviewofcredentials,transcripts,ortestingattheplantsite.ThiswillbedoneonacasebycasebasisandmustbeapprovedbytheTrainingSupervisorandPlantManager.Thefollowinglistrepresentsthoseareasoftrainingwhichmaybeeliminated:1)ReactorTheory2)PrinciplesofReactorOperation3)Thermodynamics4)HeatTransferS)FluidMechanicsTrainingProgramEvaluationPeriodicexaminationsaregiventhroughouttheprogramtogaugethecandidate'sprogressandoverallperformance.TheTrainingSupervisordeterminesthefrequencyoftheseexaminations.AfinalcomprehensiveexamisgiventoeachcandidatetodeterminehisreadinessfortheNRCexamination.ThisexaminationiscomparabletoanNRCexamination,bothinscopeandcontent.Gradecriteriafor.thefinalcomprehensiveexaminationshallbeanoverallscoreof>80Xand>70Xoneachexaminationcategory.LicensecandidatesarecertifiedasreadybyNRCexaminationbytheVicePresident-Power.7/.'/.(,"'-64,Q,.j3'>~~'T.A')J:Gto>L~"~<Resources.rTMIactionplan,(NUREG0737)itemshavebeenintegratedintoUnitPltrainingactivities.(/SincecoldlicensecandidateswillhavebeenlicensedonUnitPltheserequirementswillhavebeenmet.Asadditionalrequirementsareestablished,theywillbefactoredintoUnit81/2trainingactivitiesconcurrently.
Page7SL2-FSAR13.2.1.1.2Non-LicensedPersonnelTrainingNon-licensed'operatorsaretrainedfortheirpositionsthroughacombinationofclassroomle'ctures,on-the-gobtrainingandparticipationinthesystemIg),~.r'('-e~(iy~jeer~cgcheckoutandplant'tartupeffort,7-':e-'<>'Ji"'/'>pC4Xc~~:3>ShiftTechnicalAdvisortrainingisdescribedinAdministrativeProcedures"ShiftTechnicalAdvisorTrainingProgram"and"ShiftTechnicalAdvisorRequalificationProgram"~TheShiftTechnicalAdvisorsvillparticipateintheclassroomportionofthelicensedoperatordifferencestrainingprogram.-TheMechnicaland-ElectricalMaintenanceSupervisorsandsupportingstaffreceivetxaininginappropriatemaintenanceproceduresvhenassignedtotheSt.LuciePlant.TheyparticipateinmaintenancefunctionsduringthestartupandcheckoutofSt.LucieUnit2systemsandequipment.TheyparticipateinalectureseriesconductedbyFPLpertainingtoappropxiatemechnicalandelectricalmaintenancefunctions.actor~gineerhasreceLucnitl.,ncludingtheNSSS1xtensiveexer~opriatesecties.oeratortrainSt.Instrumentation-andcontrol,radiochemistryandhealthphysicstechniciansareassignedseveral.monthspriortoinitialfuelloadingandaretrainedas~requiredintheirrespectiveresponsibilities.Forradiochemistryandhealthphysicspersonnelthetrainingincludesmitigationofaccidentsinvolvingadegradedcore.4'cens&opy+~D.~~T~.ii~gp~"'""'WV"'"PPL/XBEWJointApprenticeTrainingPxogram.1meettherequirementsoftheSelectedsuervisorandmaintenanceersonnelattendapplicableportionsofp~ling+op'arhandoutsofthe-NSSS-1eeture~e~wareusedbySt.LuciePlantdepartmentsasdeemedapplicabletogobfunctionsin~on-goingdepartmentaltrainingprogram~~fortheSt.Luciestaff.1personnpxoceueivetraingrtofuad 1I Page8SL2-FSARPersonnelwhoarenotrequiredtoholdanNRCoperator's.license,includingsupervisors,engineers,technicians,operators,maintenancepersonnelandothers,whosedutiesrequire-themtoworkwithintheradiationcontrolledareaoronsystemsassociatedwiththenuclearplant,receivetraininginRadiationProtection..Uponcompletionofthistrainingtheindividualsconcernedarerequiredtopassanexaminationsignifyingthattheyhavebasicunderstandingoftheprinciplesinvolved.Personnelwithprevioustrainingarerequiredtopassthisexaminationbutmaynotparticipateintheformaltrainingprogram.AllplantpersonnelarerequiredtoeitherhavereadtheplantRadiationProtectionManualorattendtheRadiationProtectioncourse.TheRadiationProtectioncoursecoversthefollowingsubjectmaterial:a)b)-c)d)e)f)RadiationandRadioactiveMaterialsBiologicalEffectsofRadiationandExposureLimitsRadiationDetectionandPersonnelMonitoringPrinciplesofProtectionSiteEmergencyPlanandRadiationProtectionRadiationControlAreacworkGuidelines)'IPersonnelassignedtotheSt.LuciePlant,inanadministrativecapacityandwhoseduties,wouldprecludetheirpresencewithintheRadiationControlArea,receivetraininginRadiationProtection.TheRadiationProtectionTrainingProgramprovidedfortheseindividualscoversthesamematerialasthenon-'icensedpersonneltrainingprogramalthoughnotasdetailedandgenerally"ona,morebasiclevel.Emphasisisplacedon.thesiteemergencyplanandtheSt.LuciePlantRadiationProtectionmanual.Xndustrialsafetyandfirstaidtrainingisprovidedaspartofthegeneralemployeetrainingprogram.EachemployeeisissuedacopyoftheFPLSafetyRuleBookwhichcoversfirstaidpracticesandsafework.practicesrelatedto'heutilityindustry.Includedinthisbookarethelatestfirstaidtechniquesandindustrialemergencyprocedures.Employeesmayalsoattendfirstaidclasses.ThesestandardsandproceduresaredevelopedandadministeredbytheJointAdvisorySafetyCommittee.ThisprogramisaugmentedbythePlantSafetyProgramwhichwillincluderegularmonthlymeetingswithemphasisplacedonthenuclearplantaspectsaswellasthelatestindustrialsafetypractices. Page9SL2-FSARAllnewplant'ersonnelassignedtotheSt.LuciePlantaregivenanorientationtogeneralplantfacilities,HealthPhysicspolicies,qualityassurance,andtheemergencyandsecurityplans.ThisorientationisusuallyconductedduringthefirstweekofemploymentattheSt.LuciePlantandprovidesthmwiththeminimumpracticaltrainingtheyneeduntiltheycanattendtheRadiationProtectionclassorcompletetheRadiationProtectionProgramexamination.13.2.1.13FireProtectionTrainingPireprotection'trainingisdescribedinSubsection9.5.1~13~2~1.2CoordinationVithPreoerationalTestsandFuelLoadinTable13.2>>1showsthescheduleofeachpartoftheTrainingPrograminrelationtothescheduleforpreoperationaltestingandexpectedfuel'/Dloading.Thisschedulealsoshowsexpectedtimeframesforexaminationsandanyvendorsuppliedtraining.Shouldfuelloading'edelayedfromthedateindicated,thelicenseeswillsupplementtheSt.LucieUnit1operatingstaffaswellassupportSt.LuciaUnit2startupandpreoperationaltestingactivities.Section14.2describesthepreoperationalandstartuptestprogram.Section14.2.12.4.Ispecificallyaddressesnaturalcirculationtraining./A13~2~2REPLACEMENTANDRETRATNING13.2.2'Licensed0erators-ReuglificationTrainingTherequalificationtrainingprogramforlicensedoperatorscomplieswithISI-I97ISection5.5ofANSUAN~~+9-,"AmericanNationalStandardsforSelectionandTrainingof,NuclearPowerPlantPersonnel,"toimplementtherequirementsofAppendixAof10CFR55.ThisprogramisdescribedinAdministrativeProcedure,"Lic'ensedOperatorRequalificationProgram"~/A Page10SL2-FSAR13.2'.2Non-LicensedPersonnelRetraining-RefresherTrainingPlantpersonneelnotincludedintheLicensedPersonnelTrainingProgramreceiverefreshertraininginradiationprotectionandoccupationalsafetyasapartoftheFPLongoingsafetyprogram.Trainingprogramsareestablishedforeachdepartmenttoensurethatitspersonnelmaintainfamiliaritywiththeir)obspecificsandkeepabreastofchangesintheplantequipment,policiesandprocedureswhichcouldaffecttheir)obfunction.Thistrainingisconductedperiodicallyatafrequencyspecifiedbytherespectivedepartmentheads.13.2.2'RelacementTraini13.2.1ReplacementTraining-LicensedPersonnelAcontinuingtrainingprogramduringthelifeoftheplantassuresthateachreplacementemployeewhorequiresanNRCoperatorlicensereceivesthesamegeneralmaterial;followsthesamefundamentalprogramusedfortheinitiallylicensedpersonnelandknowshisspecificdutiesandresponsibilitiesfornormalandemergencyoperations.PersonnelfromotherFPLplantsareconsideredforthesereplacementpositionsonaselectivebasis.Thesupervisoryandtechnicalstaffaretheprimarysourceofinstructorsforthe,continuingtrainingprogram,butoutsideassistancemaybeobtainedasnecessarytoassurecompetentreplacementpersonnel.13.2'.32.ReplacementTraining-Non-LicensedPersonnel/RTrainingprogramsareestablishedbyeachdepartmenttoinsurethatnewpersonnelaretrainedsufficientlytomeettheminimumrequirementsfortheirgob.Theseprogramsprovidenewpersonnelwiththerequiredfamiliaritywiththe5obspecifics,suchasplantequipment,procedures,andpoliciesaffectingtheirgobfunction.13.22..PlantDrillsDrillsareconductedperiodicallytoprovidetraininginplantevolutionssuchassiteevacuation,responsetofires,breachesofsecurity,andemergencymedicalresponse. 4tII IIPage))SL2-FSAR13~2,3APPLXCABLENRCDOCUHENTSThefollowingNRCregulations,regulatoryguidesandreportsarediscussedin,thereferencedsections:Section10CFRPart5010CFRPart5510CFRPart)9RegulatoryGuideRegulatoryGuideRegulatoryGuideRegulatoryGuideRegulatoryGuideRegulatoryGuide1~8I~1018.28.88108'33.))3'12.513.1,13.213~312'12.112~512'
SL2-FSARTABLE13.2-1STLUCIEPIANTEMPLOYEETRAININCSCNEDULEPreoperationalTesting51MeeksHotFunctionalTesting7MeeksPreparationforFuelLoading22Meeks2BasicNuclearConceptsTraining-20MeeksStLuciaPlant.SystemTraining.;21Meeks-*NOnShiEtSTrainingSUnitflS9Meeks*S*RIEMV01Operational-02ExamExperience:ExamonUnitfl'2WeeksStLuciePlantSystemTraining21WeeksUnitf2Systems&PlantDifferencesTrainingasPartnfRequal.Program*N~OnShiftSTreininpsUnitalS9Weeks*NUnitf2Systems6PlantSDifEerencesTrainingasSPartofRequal.ProgramS*S*R01Operationalf2IEEramExperienceExamMVonUnitPl12Weekst2Exam6OngoingDepartmentalTrainingandRetrainingProgramsUnitP2SystemLectures-ParticipationinPrcoperationalTestProgramMillProvidetheNecessaryTrainingofUnlicensedOperators.*NOngoingDepartmentalSTrainingandRetrainingProgramsSS8070605040MeekstoCoreLoad272210FunctionalCraus123456PlantScheduleLicenseCandidatesvithnnPriorExp.LicenseCandidatevithPriorExp.PersonnelCurrentlyLicensedonStLuciaUnitNon-LicensedOperatorsNon-LicensedSupportPersonnel*Requirestvoveeks
1981-FSARST+LUCIEPLANTTRAININGSCHEDULE198219836/17/18/1-9/110/111/112/11/12/13/14/15/16/17/18/19/110/111/112/11/12/:COLDHYDROHOTCOREOPSLOADREVIEW1/2DIFF+0-0DESIGN1/2DIFF,PROGRAMUNIT81HOTLICENSETRAININGOPERATINGEXPERIENCEPREP1/2DIFF.TRAININGMATERIALSSIMULATORTRAINUNIT1/2DIFFERENCES/UNIT1REQUAL.TRAININGGROUP-1GROUP-2GROUP-3NRCOEXAMONRC~EKAMOONGOINGDEPARTMENTTRAINING&RETRAINING1/2DIFF+TRAIN.1/2DIFF.TRAIN.1/2DIFF.TRAIN.UNIT81/2HOTLICENSETRAININGPROGRAMFIG132-1 tlII EMERGENCYPLtQlNXNGTheStLucieRadiologicalEmergencyPlanisaseparatedocumentwhichhasbeenpreviouslysubmittedforStLucieUnit1.,DocketNo.,50-335.ThisextantPlantEmergencyPlanwillbeapplicabletobothStLucieUnits1and2sinceitvillberevisedpriortoUnit2fuelloadtoincorporateStLucieUn't2designinformationasappropriate,utilizingtheguidelinesofNUREG-0654,Rev.1(November,1980)"CriteriaforPreparationandEvaluationofRadiologicalEngvg<~~'jResP~<<PA5'repardnessinSupportofNuclearPowerPlants".TherevisedStLucieRadiologicalEmergencyPlanwillbeprovidedinaseparatevolumeentitled"StLuciePlantRadiologicalSme~yencuI 13.4REVIEWANDAUDITFfQgajiCt.(~;A".A~;gggVCth4CkPOVL(I"fLi"tel.)/-7~1,atcConductofreviewsandauditsofoperatingphaseactivitiesisdescribedinSection6.0,Admini..trativeControls,oftheTechnicalSpecifications~asspecifiedbelow.Se~~n~2~ual~~esuran~A~uriwg~operate~~providesgeneralobjectivesandcharacterofthereviewandauditprogram.13.4.1,ONSITEREVIEWOnsitereviewisaddressedinSection6.5.1oftheTechnicalSpecifica-tions.13.4.2INDEPENDENTREVIEWIndependentreviewofoperatingactivitiesisdescribedinSection6.5.2oftheTechnicalSpecifications.S13.4.3AUDITPROGRAHTheauditprogramusedtoverifycompliancewiththeadministrativecon"troisandqualityassuranceprogramisdescribedinSections6.5.2.8and6.5.10oftheTechnicalSpecifications.13.4-1 Page1SL2-FSAR13~5PLANTPROCEDURESThissectiondescribesadministrative,operatingandmaintenanceproceduresthatareusedbytheoperatingorganizationtoensurethatroutineoperating,off-normalandemergencyactivitiesareconductedinasafemanner.ThissectionisbasedontheProceduresProgramutiliredforFPL'sSt,LucieUnit1,anoperatingunit.Thefollowingisalistof-categoriesofprocedurestobeutilizedforSt.LucieUnit2:a)b)c)d)e)f)g)h)i)0)k)1)m)n)AdministrativeProceduresChemistryProceduresEmergencyPlanImplementationProceduresEnvironmentalTestProceduresGeneralMaintenanceProceduresHealthPhysicsProceduresInstrume'ntandControlsDepartmentProceduresLettersofInstructionMaintenanceProceduresOff-normalandEmergencyProceduresOperatingProceduresPre-operationalProceduresSecurityProceduresQualityInstructions"Inordertosimplifyprocedureswritingandtoincreaseoperatorsfamiliarity,basicformatsarechosenfortheprocedurewritingeffort,asdescribedbelow.GeneralAdministrativeandSecurityProcedures:1.0203.04.05.0TitleReviewandApprovalsScopePrecautions-Responsibilities 'o Page2SL2-FSAR.6.07+08.0ReferencesRecordsandNotificationsInstructionsOperationalProcedures1.0'Title2.0'ReviewandApprovals3.0-Purpose4.0"PrecautionsandLimits5.0'RelatedSystemsStatus6.0References7.0RecordsRequired8.0InstructionsOff-NormalandEmergencyProcedures;lo02.03.04.05.06.07.0TitleReviewandApprovalsPurposeandDiscussionSymptoms.ZnstructionsReferencesRecordsRequiredLettersofInstruction:1.02.0304.0TitleApprovalsPurposeandDiscussionInstructionsQualityInstructions:1.02.0ApprovalsPurpose
Page3SL2-FSAR3.04.05.0ScopeResponsibilities'Instructions*.-'"'-'Becauseofthe,natureofplantoperations,anyspecifictaskmayinvolveselectedproceduresfromt'ecategories{a)through{n),aslistedabove.Thisov'erlapisnecessarytosuccessfullyintegratetherequiredworkactivitywithnecessarycontrolsandprovideadequatedocumentation.Whererequiredtheseprocedureswillcross-referenceadministrative,operation,maintenance.orotherprocedures.13.5~1ADMINISTRATIVEPROCEDURES13.5~1~1ConformancewithReulatoGuideI~33TheSt.LuciePlantprocedureprogramdescribedinthissectioncomplieswithRegulatoryGuide1;33,"QualityAssuranceProgramRequirements(Operations)"RevNovember3,1972,asdescribedinFPLTQAR1-76A,~~>4.13.5.1.2PrearationofProceduresTheplantstaffprepares,withinapproximatelysixmonthspriortocoreload;theproceduresnecessaryforplantstartup,operationandemergencies.Section14.2describesthestartupandpreoperationaltestprocedure'rogram.'Thecognizantplantsupervisorensuresthattheseproceduresareproperlyreviewed,bytheFacilityReviewGroup(FRG)andapprovedbythePlantManager.Proceduresshallbeadheredtoandanychangesnecessary,arehandledasfollows:RoutinechangesmustbesubmittedonChangeFormforFRGreviewandPlantManagerapproval.b)TemporarychangesapprovedbytwomembersofthePlantStaff,oneofwhichholdsasenioroperatinglicense.Temporarychangesmaynotbe 0l~ Page4SL2-FSARmadewhi'chchangetheintent'ftheprocedure.Temporarychangesmustbereviewed,within14days(orasspecifiedinthelicense)bytheFRGandapprovedbythePlantManager.ChangestoprocedureswhichconflictwiththeoperatinglicensearenotmadewithoutNRCapproval.13.F1.3Procedures"DutiesandResponsibilitiesofOperatorsonShift"prescribestheminimumnumberoflicens'edoperatorspershift,controlroomaccessandaccesslimitationcriteria,shiftandreliefturnoverproceduresandoperator'sauthorityandresponsibilities,e.g.,SROdirectingreturntopower,shuttingdowntheplantwhen~safetyofthereactorisinJeopardy,adherencetolicenserequirements,reviewofroutinedata,etc.ThisprocedurewillcontaintheII"'requirementsof10CFR.50.54(i),'g),(k),(e)and(m)~GuidanceconcerningshiftsupervisoradministrativedutiescontainedinaCorporatedirectiveissuedbytheVicePresident-PowerResourceshasbeenincorporatedintothisprocedure.Figure~13.5-1showsthoseareasspecifiedas"atthecontrols"."OvertimeLimitationsfo"LicensedOperators"definestheovertimepolicy./ANormallythere,shallbenoAdministrativeProceduresprovidingforspecialordersofatransientorself-cancellingcharacter.CAdministr'ativeprocedures,asaminimum,shallbeprovidedwhichaddresstheadministrativecontrolofvalves,locksandswitchesandforthecontrolanduseofpumper'sanddisconnectedloadsinsafetyrelatedsystems.Tocontrolwork,as*aminimum,proceduresareprovidedwhichcover:Removalofsafetyrelatedequipmentfromserviceandrestoration;verificationofperformanceofoperatingactivities;plantworkorders;thepreventivemaintenance'program;maintenanceofseismiccategoryIsystem;controlofbackfitwork;preliminaryandconditionalacceptanceofsystem.byFPLPowerResources,andtheFacilityReviewGroup. Page5SL2-PSARAdministrativeproceduresareprovidedcoveringtheASHEcodetestingofpumpsandvalves;thescheduleofperiodictests,checksandcalibration;thereactorengineeringscheduleofperiodictestsandreports;andthescheduleofmaintenancesurveillancerequirements.Referencestologbookusageandcontrolareprovidedforproceduresinothercategories.NormallytherearenoTemporaryProceduresintheAdministrativeProceduresCategory.o13o5~2OPERATINGANDMAINTENANCEPROCEDURES13'.2.10eratinProceduresOperatingproceduresdescribingcontrolroomactivitieswillbepreparedforallareasforpressurizedwaterreactorsspecified.byAppendixAofReg.Guidels33~Operatingprocedurescoverthenormaloperationofallsystemsandcomponentsandoff-normaloperationofsafetyrelatedsystemsandareclassifiedintothesetwocategories.TheOperationsSupervisorisresponsibleforthegenerationofoperatingprocedures'perationalprocedurescoverthenormaloperationofaunitfromacoldshutdownconditiontopowerandreturntocoldshutdown.Additionalprocedurescoverstartup,operation,testing,andshutdownofindividualsystemsandcomponents.Theseincludechecklistsforestablishingthenecessaryconditionofsystemcomponentstoperformthespecificprocedure,andprecautionstobefollowedduringtheprocedure.Off-normal/emergencyoperatingprocedurescovertherangeofequipmentandsystemtroubles.Theseareproceduresthatdescribeactionstobetakenwhenequipmentmalfunctionsortopreventaperturbationfromresultinginasituationofmoreseriousconsequence.Typicalconditionsincludedareexcessivesystemleakage,pumpfailure,lossofoff-sitepower,instrumentairfailure,andastuckorfaultycontrolelementassembly.TheCombustionEngineeringOperatingguidelineswillbeincorporatedwhereapplicable.
Page6'L2-PSARTheoperatingproceduresdescribingcontrolroomactivitiesaddressallareasspecifiedbyAppendixA,ofReg.Guide1.33forpressurizedwaterreactors./RAlarmResponseProceduresareintheformofanannunciatorverificationlistindicating'theactionstobeperformedshouldoff-normalconditionsoccurintheoperationofsystemsorequipment.Thislistprovidestheguidelinesforapreplannedcourseofresponsetoalarmsundercertainconditions;however,theparticularsituationgovernstheextenttowhicheachactioniscarriedout.Theseguidelinesinclude(a)thepossiblecauseofthealarm;(b)alarm1setpointsandsignalsource;(c)immediateactiontobetakenbytheoperator;and(d)subsequentactionbasedonoff-normalprocedure./RTemporarycontrolroomoperatingproceduresareusedonlytoalimitedextent.Theseareintheformoflettersofinstruction.Lettersofinstructionareissueddependinguponspecificplantoperatingconditions.Exampleofsuchproceduresmay'ncludepersonnelauthorizedtoholdclearances,Jurisdictionofsystemsduringstartup,orpumpbaselinedatacollection.13'.2.2.OtherProceduresOtherproceduresareincludedwiththecategorieslistedinSubsection13'1.3Theresponsibilityfortheinitiation,developmentandimplementationoftheseproceduresareasindicatedbelow.TheOperationsDepartmentisresponsiblefor:a)HealthPhysicsProceduresThegeneralobgectiveandcharacterof'heseproceduresisdescribed Page6ASL2-FSARinSectionl2.5~Theseproceduresdescriberadiationprotectionand.theHealthPhysicsDepartmentSupervisorisresponsibleforensuringtheseproceduresarefollowed. Page12SL2-FSAKEmergencyPlanImplementationProceduresThegeneralobjectiveandcharacteroftheseproceduressupporttheSt.LucieSiteEmergencyPlanandaredescribedtherein.TheEmergencyPlaniscontainedinaseparatevolume.TheseproceduresdescribeemergencypreparednessandaretheresponsiblityoftheOperationSuperintendent.c)ChemistryProceduresChemistryproceduresareprovidedforchemicalandradiochemicalcontrolactivities.Theyinclude,forexample,'henatureandfrequencyofsamplingandanalyses;instructions.formaintainingcoolantqualitywithinprescribedlimits;andlimitationsonconcentrationsof'gentsthatcouldcausecorrosive,attack,foulheattransfersurfaces,or'becomesourcesofradiationhazardsduetoactivation..Proceduresshallalso'eprovidedforthecontrol,treatment,andmanagementofradioactivewastesandcontrolofradioactivecalibrationsources.TheChemistrySupervisorisresponsibleforensuringtheseproceduresarefollowed.TheHaintenanceDepartmentisresponsiblefor:MaintenanceProceduresMaintenance"proceduresarewrittenformaintenanceofequipmentexpectedtorequirefrequentattentionanddonothavesufficientdetailsintheinstructionmanuals'xamplesofsuchequipmentarecontrolroddrives,pumpseals,importantfiltersandstrainers,dieselgeneratorsets,majorvalvesandsteamgenerators.Asexperienceisgainedinoperationoftheplant,routinemaintenanceisalteredtoimproveequipmentperformance,andprocedureswrittenforrepairofequipmentareimproved,ifrequired.Sincetheprobabilityoffailureisusuallyunknownandthetimeandmodeof 0 Page131~SL2-PSARfailureareusuallyunpredictableformostequipment,specificprocedurescannotbewri,ttenfor.repairofmostequipmentbeforefailures'./R1Radiation'rotectionmeasuresareprescribedbeforethetaskbeginsasnecessary.Permissiontoreleaseequipmentorsystemsformaintenanceisgranted.byresponsibleoperatingpersonnel.Priortograntingpermission,suchoperatingpersonnelverifythattheequipmentor'systemcanbereleased,'and,ifso,howlongitmaybeoutofservice.Afterpermissionisgranted,equipmentismadesafeforwork.Measuresprovideforprotectionofequipmentandworkers.Equipmentandsystemsinacontrolledstatusareclearlyidentified.Strictcontrolmeasuresforsuchequipmentisenforced.Conditions,consideiedinpreparingequipmentformaintenanceinclude,forexample,shutdownmargin;methodofemergencycoiecooling;establishmentofapathfordecayheatremoval;temperatureandpressureofthesystem;valvesbetweenworkandhazardousmaterials;electrical,hazards;andphysicalbarriers,asrequired.Theprocedurescontainenoughdetailtopermitthemaintenancework.tobeperformedsafelyandexpeditiously.instructionsareincludedforreturningtheequipmenttoitsnormaloperatingstatus.Operatingpersonnelplacetheequipmentinoperationandverifyitsfunctionalacceptability.Specialattentionisgiventorestorationofnormal,conditions,suchasremovalofsignalsusedinmaintenanceortesting,andtosystemsthatcanbedefeatedbyleavingvalvesorbreakersmispositionedorbyleavingswitchesin"Test"or"Manual"positions.AllJumpersarecontrolled.Whenplacedintoservice,theequipmentreceivespecialsurveillanceuntilarun-inperiodhasended. 't Page14SL2-FSAR~TheInstrumentandControlDepartmentSupervisor,theAssistantSuperintendentElectricalMaintenance,andtheAssistantSuperintendentNechanical1faintenanceareresponsibleforensuringtheirrespectiveproceduresarefollowed.GeneralHaint'enanceProcedures*/pe)GeneralMaintenanceProceduresareprovidedtocoverwelding,~inspection,personneltrainingandotherconcernsgenerictotheimplementationof'comprehensivemaintenanceprogram.TheHaintenanceSuperintendentisresponsiblefor'ensuringtheseproceduresarefollowed.InstrumentandControlDepartmentProceduresInstrumentandControlDepartmentProceduresareprovidedfortestingandperiodiccalibrationofplantinstrumentationsuchasinterlocks,alarmdevicesqsensors,signalconditioners,andprotectivecircuits.;Theprocedureshaveprovisionsformeetingsurveillanceschedulesqandforassuringmeasurementaccuraciesadequatetokeepsafety.parameterswithinoperationalandsafetylimits.TheInstrumentandControlDepartmentSupervisorisresponsibleforensuring;theseproceduresarefollowed.Thegeneralob)ectiveandcharacteroftheseproceduresaredescribedinSection17.2~OtherPlantStaff;Departmentsareresponsiblefor:a)Quality*InstructionsQuality'nstructionsareprovidedtocoverplantqualityrelatedmattersincludingmaterialcontrolsTheQualityControlSupervisorisresponsibleforensuringtheseproceduresarefollowed.ThegeneralobgectivesandcharacteroftheseproceduresaredescribedinSection17,2. Page15SL2-PSARSecurityProceduresPlantSecurityProceduresdescribespecificplantrelatedsecuritymatters.TheSecuritySupervisorisresponsibleforensuringtheseproceduresarefollowed.Thegeneralob5ectivesandchars'cteroftheseproceduresaredescribedinSection13'andintheSt.LuciePlantSecurityPlan.
-'3').3.(8.2)DescribeindetailhowtherequirementsofGDC5,"SharingofStricturesSvstemsandComponents,"aresatisfiedwher.thestartultransformersforStl.u'cieUnits1and2areparalleled,specifical1ywhenonestart-uptransformerisoutofserviceandtheremainingstartuptransf"rm":.'.arepara1leledtofacilitatecontinuedoperation.Demonstratethatt>>eremainingstartup'transformershavethecapacityandcapabilityofperformingallrequiredsafetyfunctionsir.theeventofanaccidentinoneunit,withsimultannusorderLyshutdownoft>>eotherunit.ResponseGDC5,"Sharingofstructures,SystemsandComponents"concernscompo-nentsimportanttosafetyandthatmustperformasafetvfunction.ThestartuptransformersforStLucie1and2donotperformasafetvfunctionandarenotsafetyrelated.Eachunitissuppliedwit>>twn(2)separat>>start-uptransformerseachsizedwithsufficientcapacityforanorderlyshutdownandcooldownorthemitigationofaDBAinitsrespect've.unit.Duringnormalplantoperationeachstart-uptransformerisinstandbyandtwo(2)areavailah1>>foreachunit.IntheunlikelyeJ8$)fthatone(1)startuptransformeristakenoutofserviceprovisionsareprovidedtoallowonestartuptransformertobeavai1ableforbothunits.Shoulditbenece'ssaryforoneunittoclaimthatstartuptrans-former,administrativeandoperatorprocedurewillpreventthattran~-formerfromh(ingoverloaded.Furthermor>>,s>>oulda]1preferrdpnwerbeinst,bothStl.uciuUnit.1and2,>>avetheirowr100percentcapacityredundantdieselgeneratorsetswhichareavailablefors~feshut.do~~.~p1'0~V(
REQUESTSFORADDITIONALINFORl&TIONFORSTLVCIEUNIT2430.66(8.2)Providephysicallayoutdrawingsofthecircuitsthatconnecttheonsitedistributionsystemtothepreferredpowersupply,andplantlayoutdrawingsdepictingthephysicalseparationbetweenredundantportionsoftheonsitedistrubutionsystem.~Resonse430.66Utilizingthemainonelinewiringdiagram(FSARFigure8.3-1)wehavecolorcodedbothFigure8.3-1andtheassociatedphysicaldesigndrawings.Thedraw-ingsindicatethe"physicalpathbetweenboththelowvoltagesideofthestartuptransformerandoftheunitauxiliarytransformertotherespective4.16kVswitchgears(2A2,2A3/2B2,'B3)andontotheonsiteemergencypowersource,thedieselgenerator.Thesemarkeddrawingsindicatenotonlythepreferredpowersourceanditsconnectiontotheemergencybuses,butalsoindicatetheseparationbetweentheredundantportionsoftheonsiteelectricdistributionsystemwhichmeetsR.G.1.75asdiscussedinsection8.3.1.2.Theattachedlistprovidesthedrawingsbytitlethatarebeingpresented.orpurposesofpresentation>colorswerechosentoindicatethe/de(erredpowerconnectionandnotonthebasisofFSARSection8.3.1.3.ForthesafetyrelatedportionthecolorschemepresentedinSection8.3.1.3isapplicable. DRAVINGLIST2998-G-2722998-G-3402998-G-342"2998-G-3522998-G-3562998-G-3582998-G-3742998-G-3772998-G-3882998-G-408Sh12998-G-408Sh2A2998-G-409Sh2xIHainOneLineh'iringDiagramTurbineBuildingGroundFloor,ConduitTrays&Grounding-Sh2TurbineBuildingGroundFloorConduits,Trays&GroundingArrangement-SwitchgearRoomReactorAuxiliaryBuildingTurbineAreasUnderground-ConduitsandGroundingSh2TrubineAreasUndergroundConduits&GroundingSh4ReactorAuxBldgPenetrationAreaConduitTrays&GroundingSh1ReactorAuxiliaryBuilding-'iUndergroundConduit&GroundingSh1DieselGeneratorBuildingConduit,Grounding&LightingYardDuctRunsandLightingPlan-Scetions&DetailsSh1YardDuctRunsandGrounding-PlansSectionsandDetailsSh2ATransformerYard-PlanTransformerFireProtection&5KV&6.9KVnonsegBusDust0hQ'I~V 430.67Describetheinstrumentationandcontrolsprovidedtotheoperator(8.2)todeterminethestatusofthepreferredpowersystem.Response:Preferred(offsite)powerfromthestart-uptransformers,orfromtheunitauxiliarytransformersisdistributedtothenon-safetyrelatedloadsbytwo,6e9kVbuses(2Aland2B1)andbytwo4.16kVbuses(2A2and2B2).Powerisalsodistributedfromthetwo4.16kVbuses2A2and282tothesafetyrelated4.16kVbuses2A3and2B3,whichsupplyallsafetyrelatedloads.Uponalossofthepreferredpowersources,thetiebreakersbetweenthenon-safetyandsafetybusesautomaticallyopen,andtheemergencydieselgeneratorautomaticallystart,arebroughttospeedandbeginsupplyingpowertothesafetybuses(2A3,2B3).Thefjt'abo3.-((mainone-linemiringdiagram)depintsthepreferredpowersystemarrangemnt.IsAdequateInstrumentationandcontrolsareprovidedonReactorTurbineGeneratorControlBoard201toassuretheoperatorsarefullyawarethestatusofthepowersystem(seeattachtable)~~terconnect-ingbreakers,tiebreakersstatus(openorclose)isclearlydisplayedbyredorgreenlights,locatedrightabovetherelatedbreakercontrolswitch.Amimicbusdisplayisusedtointerconnectallmajorbuses,generatoranddieselgeneratorssothattheoperatorshaveacompleteoverallviewaboutthesystemstatus.Synchronizationbetweenincomingpowerand'unningpowerisachievedthroughanautomaticsynchronizertoassure'frequencyandvoltagearecompatiblebeforeinitiatingtransferofpower.CurrentandvoltageinformationofeachbusismeteredanddisplayedontheRTG,201boardasdetermined.frompotentialandcurrenttransformersattherespectiveswitchgears.Refertotheattached)~))~forades-cription.Frequency,voltage,currentandMWoutputofthemaingenera-tor,emergencydieselgeneratorsarealsocloselymonitoredanddisplayed.Interlocksandannounicationalarmsareusedtothepracticalextenttopreventanyabnormalpowersystemlineup.saaaasJt....'tata~/Ii>1 0' RTSB201DISPLAYINSTRUMENTATION&CONTROLSPREFERREDPOWER~TaNo.VM-888IVH-888RSYN-888AM-918VM-918AM-916.VM-916AN-917R(-917F1-919Vl1-919Parameter-IncomingVoltsRunningVoltsSynchroscope6.9kVBus2AlAmp6.9kVBus2AlVolts4.16kVBus2A2Amp4.16kVBus2A2Volts4.16kVBus2B2Amps4.16kVBus2B2Volts6.9kVBus2B1Amp6.9kVBus2B1VoltsFunctionIndicationg~~t~)InstrumentRane0-1500-1500-20000-90000-30000-52500-30000-52500-20000-9000 cc'~nPc.WS~TaNo.CS-904CS-905CS-906CS-907CS-912CS-913CS-914CS-915CS-934CS-935CS-936CS-937ItemDescrition-,6.9kVStart-upTranaf2A-6;9kVStart-upTransf2B4.16kVStart-upTransf2A4.16kVStart-upTransf2B6.9kVAuxTransf2A6.9kVAuxTransf2B4.16kVAuxTransf2A4.16kVAuxTransf2B4.16kVBusTie2A2-2A34.16kVBusTie2B2-2B34.16kVBusTie2A3-2A24.16kVBusTie2B3-2B2LampsforeachSwitchColorG>RG,RG,RG,RG,RG,RG,RG,R'G,RG,RG,RG,R 430.68.Providethecapacityofeachofthethree240kilovolttransmission(8.2)circuitsthatterminateatHidwayStationfromtheSt.Lucieswitch-yardanddemonstratethateachcircuithasthecapacityandcapabilityofperformingallrequiredsafetyfunctionsineventofanaccidentinoneunit,withsimultaneousorderlyshutdownoftheotherunit.ResponseEach240KilovolttransmissioncircuitconnectingtheStLucieUnit2switch-yardandtheHi'dwaystationconsistsof1-3400KcmilACSR/AM120/37conductorperphaseandisrated952HVA.Theestimatedloadintheeventthatone(1)unitisattheinitialpointoforderlyshutdownWhilethesecondismitigatingadesignbasisevent/approximately68MVAor71%ofone(1)transmissionlinecapacity.Therefore>one(1)transmissionismozathanadequatelysizedtohandlethecombin4safeshutdownandaccidentmiigationloadsoftheStLucieSite.
430.69(8.2)Provideload'lowdiagramsandvoltageandfrequencycurvesassociatedwiththeresultsofthegridstabilityanalysispresentedinSection8.2.2oftheFSAR.ResponseRefertoattachedfigures. 0l ST.LUCIE>2FSAALOADFLOW1983SUYitfERPE'RKBASECASEFSARST.LUClE~2L/OST.LUC1E~2AHG]HART1RAG)SEriiHGLiAN>]LRY5TR~8At4Q1TO'TIAM4CAPFtAH)1M~~~~~goor~~~~~~~~+meo<<'eoma+4cod~eeee~~~eeee~eQ~QQJAJ~0.-ihU.U-u-E3180.-]'%0.0~G1STLUCZE1108IT-190.0~~CI~C~XCl~~~~~~~4~~'~aI~~~~0~~Y'I~~~ttf'\)\IJ!!lrJJULxvMj/JICgrC'CrC~CC~//IIr'~I//~Q.r'f'rrg~$~gg0~~C~Ce~'~rrCIMICICICIIADCICl0II'ICIn'ODCICICI~0ODZP~CUiClClCMDCIIII0DCIDDDIII~'Ct~~C~$fcIC)fszmrma4)~ffDCl P~TLUC!E!1903SUHl'EAPEal(BASECASEFSABST.LUCIEiiZL/Q.ST.LUCIE>>20.017fPQ/$J~IMQLl13%<<<<g+7D~&01YURKPT-Z1J!'.Ol1PQCAPECAN]33+!!!3)~~~~~<<pj(~~~~0~~~~~ig+~<<<<~>~~~~+~<<<<~~~~<<~~~~~-017-0.017-0.17-0.01770OooC3CP~CCoo~otA<<E"<<ACfj<<<<:CI'7COOQaLQ7~tulC7IA054LOI~,r'USHCO4Ctl4A%0~~Ch~tAlA8COlgyooHl4
QQL7ILO170'D~I11983SUNHFRPEAK,8RSECASEFSAAST.LUCREUNtTa.2L/6tAUD-PLANfATIQN-BBQHAAO138KVtLIOi.QRDlSPO~ltAh13'0~Aetteeiat.OPOL5fP~>~PIOBX.-........-xSP01KT2060170nn}7P1u.017CS~0CSnn40CIhlC)C7Itlwe$o O'141 ~~~~~~~g54~I~I 0: 0$PDDOV-NjY+MRt~~w%Aww&+FlLIIu>>DC.<<C,rV@I>WA~VrS.vt4)903SUHtiKRPEAKBASECASE,~~FSRRST.LUCli~2~~L/0ST.LUC1E<2VR~Y~iDL193+e~~~~~rrPIl1'>>t-BA~P77(~roe~s~~r~~IllI"IS'PLUl~PLU~a+1f-QOooC37(00~~70~4rtrtrl(~rrIri~Ilier~0+D.7Dgg'Il.2NNIafCCclIf,D'/r~~~~7000CIaIllCSaClCIl'~r~rgjID.tAJI<<ESEDOD~MESOgcJI-i~i~-CSCIC7D9$ClIIIr~+I.r//jw/0~)r70fJ~'QlCO~0CO45IaCIDaCtg>>0I
000.aHHLOt~l9B3SUhHERPEAKBASECASEFSRRST.LUCIF<2L/0ST.LUCIEo2'gs~~~isisiriCCMJ~Cg~.coE)O.moo~W0-ill0MAY59+WWIW<<+0.9000~QN00~4040%00087.1000V-STLtICIEG.ce001~1~~a'ivle~Ct~ltt4~CSCIlOttt~./~~ta)jI/x/rr~~0~~rr~+rt~~~~hh~e~ClCtCIOC5CtAtCIC7CtCtCtCA4Cl0LrIeICQt~tt~~CQV7C2~~C)C)'XBQURcT ~p.i.00SY.LUCIEII2FSAALOAOFLOE1983SUBHERPERKBASECASEFSRRSY.LUCIEII2L/0ST,LUCIKo2P-NQW-Y}j~~~~~t~r~~~+vvvvvoVvavv+aQ~0(p~E)'P-Tcfp&41ttrhrHor4tttttrlot-KALA-HPf'i5~~)4ja/2t.~Wr~v'ro0vrovovoovrr~vr~~~r)~~~IIII+IIIIIIIIII1IIIII+I1II1III~IIIII1III'IIIIII'ICSc5CJC70$C3CtCSCta<DZc41C7OC~DPlIP4a8f117Pe 000.00900.00>>00.00'983BUY,;:."APERKBASECRSFFSAfh,ST..LU"1EUN".To2L/6LAUD-PLBNTATIOl'-EIRCI'RRD138KVP-H1fN-YAAT'-K]NG-YuLEEfP-HATCH-DL'V2172lP-BREvMALA"7.p-YiAL4-HT$4<<rOLOA'O)~1~~~~~~~~<<<<'<<,<<+~~Iaeot~~e~>>>>C30-lOO0CC00.-100.0~~b100.0>>~>>~~AI~~>>~~II?eII5ItIII4.IIIIIIIIIIIIIIItI4III'ItIIIIIIICICtCIC7IglC7C3CIMtClt>>tOQAII-~~C7ClAI~>>/>>'0~~~I.l'C7ClClC)>>tl'CI ~~~I'383:5Ut":".8PEAK"FSRR'T.tuClEUN.T4'2~'..L/6LOU~-'?~fit4TRTJO~i-B."".G3'r<RO13BKV(L/Ot.ORO)1,4j3000,;"-.VPPLPQAP-57.Z.~~~~~4~~~0g:Il.3000.,':".:..V.-i"t10NAVa1'"$.3000".,V-RANCHIf";""1'~WI'"'"I'1'~1000..........V-STlUCIEl.,)87,IC3~nG-c')0.9000.14)0.900~0.~0000.9000~Tll-1,3000V-.ST'UCIEQ.QCOO14~I-'-K4~f~f~I4~~~~~+~JiC4ClC)IllChCtC7Mlar4~~~~~4~t~~~~~tX~~~~4~~~'o~.400444t4A1/iI~LOI4BMHClnIAtOC'aOoZMl~Pb+OCItAClC7Igl~OO4IoOPnQIXafuMt O. fL/0LQAD)'II'go~~~~r++lo2003V-'FTli>JTllIIll$ro.~o~~~~~~~~ooO'300aI.LV4i".c.~,-.Wr.I.veaura.ueIrr83Su:I":3o:""~ASECASElipFS.-IRST,.'IUilL"Xi".~2lxI/~lIAItg-PlQN'.I'!-~iR("nARn338KV,3.2009',r"'-Rl40"TCr4NI93'1.20DO..'"..",V-'.IRAGAR57r~'f.2900v-~lwar$Q~LU~.-(30.7000c;C)0.7DDO0.700D.7000I.0.7000-1,.2000I"V-OUVALI~f,o'Il~~ItlX:jf)'.'.IItl:!)1o~oIJ~~.:~)}otI273Zr>>Vf:V>>0.7000DDilloCaillDClCIn~tlC9~})+:itl~o)\~6Igg~~}(~.I~,':I.~~3~1)}l'.IiiLINGClClcnD~.~D~DZ~lDClDlMClDDC7DClrlAEACOQrr3C3oDClDMD
430s70ItisnotapparentfromtheinformationpresentedinSection8.2.2of(8.2)theFSARthatthedesignoftheswitchyardcomponentsmeet-therequire-mentsofGDC-18,"InspectionandTestingofElectricPowerSystems."Describe"inmoredetailthisaspectofthedesign.Inparticular,describethecapabilityfortestingtransferofpowerfromtheunit.,auxiliarytransformerstothestarruptransformers(andviceversa)durinpoperatiop.QdgohmE':7&.~XiQ~~~tsvnvm~dUt~VQ&cu-'fqtE.S+Ž~Ptspovided$inplantequipmentratherthanat~.'heswitchyard.Powertransferfromtheunitauxiliarytransformertothestartuptransformers(andviceversa)isdemons>ratedandexercisedperiodicallywhentheplantis'tartedupandshutdown.ug.Thisservesasanadequatebasistoverifytheproperoperationofthetransferbreakersandassociatedequipment.'owever,atestingswitch.isalsoprovidedtofacilitatethetestingofthetransferofpowerfromtheunitauxiliarytransformerstothestartuptransformers(andviceversa)withoutdisturbingthenormalplantoperation.Testingisdoneinthefollowingmanner.1)Turntheapplicabletestingswitchesto"isolate"positionexceptfortheonewhichisassociatedwiththefeederbreakerthatrequirestesting(e.g.4160Vswitchgearbus2A2feederbreaker,6900VStart-uptransformer2A1breakeretc).Byturningthetestswitchestoisolateposition,asimulatedgeneratorlockout~claysignalwillbeisolated.fromtherestofthepowersystem,exceptthatfeederbreakerthatisundergoingtesting.N2)Manuallyactuategeneratorlockoutrelay(86/GP).Thiswillclosethefeederbreakerthatisundertesting,butresultinnodistur-banceontherestofthepowersystem.Duringthetestperiod,thegeneratorisstillfullyprotectedbythebackuplockoutrelay(86/GB).3)Bysystemicallygoingthroughsteps(1)and(2)above,allcircuitbreakersthatarerequiredfortransferofpowercanbetestedoneby'one,withoutdistrubingnormalplantoperationorcompromisingequipmentprotection.fvrpqVQs"it:AUtns~s 'd 430.71(8.2)~ovL5IthasbeenestablishedbytheAtomicSafetyandLicensingAppealBoardthatthetotallossofalternatingcurrent(AC)powershallbeconsideredadesignbasiseventforStLucieUnit2design.Provideananalysisdemonstratingtheabilityoftheplanttooperatethroughsuchanevent.Inaddition,provideyourtrainingprogramsandpro-ceduresforstationoperationduringablackouttransientandfortherestorationofACpower.ThedecisionreachedbytheAtomic*SafetyandLicensingAppealBoard-thatthotallossofalternatingcurrent(AC)powershallbecon-sideredadesignbasisevent'forStLucie2hasbeenreviewedbythecommissionandasubsequentmemorandumandorder(CLI-81-12)wasissued'con'eludingthat:"Forthereasonsdiscussedabove,theCommissionfindsthatALAB-603doesnotestablishanygenericguidelinesfordeterminingthedesignbasiseventstobeusedforplantdesignandoperationanddoesnotestablish"stationblackoutasadesignbasiseventasthattermisusedbythestaff".However,inconsiderationoftheCommissionsconcernthatthereisa"needforprotectivemeasuresagainstlossofallACpowerforsomereason'abletime"(MemorandumandOrderCLI-81-12ParagraphBitem(2)).FPLispresently'analyzingtheaffectofatotallossofacpowerontheStLuciePlant.Intheunlikelyeventofacompletelossofacpower(onsiteandoffsite)forStLucie2and,forthebenefitofaconservativeanlysis,thesimulataneouslossofoffsitepowerandone(1)dieselgeneratoratStLucie'1,theremainingdieselgeneratorinStLucie1willbeabletooperatetheminimumESPloadssuchthatbothuni.tsaremaintainedinasafe,hotstandbycondition.ThepresentStLuciedesigndoeshavethecapabilityofelectricallyconnectingthetwo(2)unitsoffsite4.16KVbuseslA2and2A2(1B2and2B2)through4.16KVbus2A4(2B4).This'tiecanonlybedonemanuallybyrackingandrerackinga4.16KVbreak'erat4.16KVswitchgear2A4(2B4)understrictadministrativecontrol's."Thistransfertakesapproximatelyghour.Duringthistime,operatoractioninbothUnit1andUnit2,inaccordance,withprocedure,loadshedallloadsontheUnit1operatingdieselgeneratornotrequired"forthisevent;verifiesthatallnonsafetyloadsonthe4.16KV1A2(1B2)and'4.16KV2A2(2B2)are'noperative;andpreparesforthemanualinitiationoftherequiredUnit2loadsontheonsitesafetyrelated4.16KV2A2(2B3)bus.Uponcompletionofthemanualloading,bothplantsremaininthesafehotstandbyconditionuntiltheconclusionoftheeventorapproximatelyfour(4)hours.~~~Theanalysisfottheaboveavantwi11g~gttHJ~sTCqa1yy~P<g(1~~~-~r'f'a~3p'.'C";y<<~au -0 ~e'ntetressre;H;"Mores"-erIc"430.72+)Describetheproceduresand/ordesi3nprovisionswhichprotectClassIEDCloadsfromovervoltageconditionsduringeoualizingcharges.Response:Thebatterychargermaintainsaregulatedfloatvoltageof2.17to2.20Voltspercellsothatnorecharging/equalizingchargeat2.33voltspercellisrequired,undernormalplantoperation.Aninvestigationofthevol<agerangeofclassgEequipmentiypresentl~beingconducted4trvtkYah~Iuoc'lkbg.sumac(a-joI<bgsu.fgEl~IID[~'vb.ProvidetheresultsofananalysiswhichdemonstratestheadequacyoftheClas's-1Ebatterysystems.tosustainthetabulatedsafetyrelatedloadsforthetimeneeded.Discussthe'designmarginprovidedintheClasslEbatterysystems.RE5Wntsf'QTworeundantsafetyrelatedbatterieseachrated1800Amperehoursareprovided.,TheworstcaseloadingisthatofDCbus2BandDCbus2ABtogether.Thisloadtabulationisdenotedintable8.3-3.Thebatteriesarerequiredtosupplypowerduringtheintervalfromlossofoffsitepowertillloadingitsrespectivebatterychargerontothedieselgenerator.Theonemiterat'naeresthatthebateru~supplyis924amperes.~<<~cwqof~~<~gy4-pci.[8'QDesimnisproteguaranteedoneminuteratingofthebattery'is1980ampereThisprovidesamargingreaterthan2.0astherequired'3.oadingis.lessthan50Koftheguaranteedrating.cIdentifyallnon-ClasslEcircuitsthatareconnectedtotheemergencybatteriesanddescribehowtheseloadsmeettherequirementsofRegula-toryGuide1.75.Aretheseloadsshedonsafetyinjectionsignal?Response;RK17881It~t,~pit4'ItIItQ.NonClassIE1'oadsareconnectiontosafetr'%aceprovidedwithqualifiedisolationdepz'iortoyelateddcpanels.Thisdesignapproachutilizesfaultcurrentinterruptingdevices(circuitbreakers,fuses)whichhavepreviouslybeenacceptedbytheNRCintheSafetyEvaluationReport.r125VDCbuses,.2A',2Band,2ABand125VDCpowerpanels238,239,240areshowninfiguresg./go/j~ThesefigureslistthanonclassIEloadscon-nectionviaisolationdevicestotheappropriateDCbus/panel.TheseloadsconnectedtoDCbuses2A,2Band2ABhavetheabilitytobemanuallydisconnectedshoulditbesorequired.Noloadsareshedonreceiptofasafetyinjectionsignal.AllnonIEloadsonallbuses,panelsareseparatedbyasteelbarriertoprovideseparation. d.Providethetimeperiodrequiredforthebatterychargertochargethebattery,fromthedesignminimumchargeconditionPoitsfullychargedcondition,whilesupplyingitssteadystateloadsunderanyplantconditions.ResponseThebatterychargeriiscapableofrechargingafullydischargedbatteryinaperiodof12hourswhilemaintainingminimumdesignload.Theminimumchargecondition,isthatofadischargedbatteryhavingavoltageper.cellof1.75Volts.Thebatterychargerisautomaticallyloadedontoitsrespectivedieselgenera-tor@'~gg+/<~~I~<~<~+~,afteralossofoffsitepower.AtthistimetheDCsystemisreturnedtonormaloperation,wherebythechargerprovidespowertothenecessary'oadswhilerechargingthebatterytoafullychargedcon-dition.Asthebatteryhasprovidedthenecessarystoredenergytoitsconnectedloadsithasdischargedorlostsomeofitscapacityduringthedurationpriortoreconnectionofthebatterycharger.Thisprocessofdischargingamperehourswillstopandwillbereversedinordertoreplacethelostamperehoursbyoperationofthebatterycharger.Thesafetyrelatedhetterychargerwillrechargethehatteryinatimedurationof/c>>&i~/iotaeDescribethechargerovercurrentprotectionprovidedinyourdesign.hResponse:Thebatterychargeriscurrentlimitedtoavalueof115%ofitsratedoutput.Itisequippedwithanautomaticloadlimitingfeaturebaichpreventstheoutputfromexceeding115Kofratedoutputamperesregardlessofthetotaldcbatteryloadorthestateofchargeofthebattery.Thecurrentsensingcircuit(locatedinternaltothecharger)receivesa-signalfromsixcurrenttransformers.Whentheoutputcurrentincreasesbeyondthecurrentlimitsetting,thesignalfromthecurrentsensingcircuitoverrides'avoltagesens'ingcircuitandcausesthephasecontrolboardsto,turnontheSCR'satthetimenecessarytolimittheoutputcurrenttothesetlevelof115.0X.,Intheeventoffailureoftheloadlimitingfeature,backupprotectionisprovidedbymeansofoutputcircuitbreakerswhichwilltriptheunitofftheline~
I430.73InadditiontothealarmsandindicationprovidedfortheDCsystem,(8.3.2)providethefollowingalarms:RSPl)Batteryhighdischargeratealarminthecontrolroom.2)Batterychargeroutputcurrentmeterinthecontrolroom.3)Batterybreaker(s)openalarminthecontrolroom.430.73ResponseAdditionalalarmsandindicationwillbeprovidedinthecontrol.roomforthedcsystemasfollows:a)Batteryhighdischargeratealarmb)Batterychargeroutputcurrentmeterc)BatterybreakerinopenalarmThecircuitswillberoutedasClassIEcircuitsinaccordancewiththeprovisionsofchapters7&8oftheFSAR. 430.74'rovideadetaileddiscussionintheFSARastohowtheStLucieUnit.2DCsystemsdesignmeetstherecommendationsofIEEE-Standard4501972.nf~sC,'EEEStandard450entitledRecommendedPracticeforMaintenance,Testing,andReplacementofLargeLoadStorageBatteriesforGeneratingStationsandsubstationsprovidesrecommendationsformaintenance,testschedulesandtestingprocedures.Anacceptancetestwasperformedatthegegdor'sfactoryduringwhichacontinuousloadof225ampereswasappliedfor8hoursand16minutes.Circuitsbreakersareprovidedindcbuses2Aand.2Btofacilitateconnectionstoloadbanksfortestpurposes.ForfurtherinformationwithrespecttotestingofbatteriesrefertoFSARSection8.3.2.1.6.f.-,.pl~4~<4.L(iQgI~s~<<~~f<~lclC.Ln4 Question410.32".(3.6.1)ProvidetheinformationandverificationrequestedforthbfollowiAppendix3.6.Citems:n.Provideanisometricdrawingofth'eturbinedrivenauxiliarfeedwaterpumpsteamlines.b.Showthesteamlinesfromthemainsteamlinesshownondrawings1.7and1.8andincludethisconnectioninyouranalysis.c.Verify'hefollowinginformationondrawing1.5.(1)Nodes275and276shouldbevalvesX-HCV-09-2Band-2AinsteadofI-V-09-258andI-MV-09-8,respectively.(2)Erodes2761and277aretheconnectionsfortheauxiliaryfeedwaterpumps2B(motor)and2C'(Turbine),respectively.d.Verifythefollowinginformationondrawing1.6.(1)Erodes22and21shouldbevalvesI-HCV-09-1Band1AinsteadofI-'-09-258andI-HV-09-7,respectively.(2)Nodes1201and20aretheconnectionsfortheauxiliaryfeedwaterpumps2A(motor)and2C(turbine),respectively.(3)Line14-BF-29'shouldbeI-4-BF-28(seedrawing6.3).e.Ondrawing6.1,wheredoesthelinecontainingvalveI-V-14-625(Nodes760~504~505)goto'?Thisconnectionisnotshownanywhere'lse.po'esthislinctieintonode503(I-V-14-625)ondrawing6.32If"so,theelevationsanddirectionsdonotm'atch,i.e.,drawing6.1hasthelinegoingdownbelowelevation20.75'nddrawing6.3hasthelinegoingupfromelevation42.75'.f.VerifythatvalveI-V-09-310Aondrawing6.2shouldbeI-SE-09-3.g.Verifythefollowinginformationondrawing6.3.>>I(1)llode'9shouldbeI-SE-09-2insteadof'X-V-09-310A.(2)Th'ls'ineisI-4-BF-28not-29asindicatedondrawing6.1.h.Verifythefollowinginformationondrawing6.4.V(1)Inde107shouldbe'I-SE-09-4insteadofI-V-09-310A.(2)Line4"-BF-35continuesonFigure3.6.C-6.5insteadof3.6.C-85.i.VerifythatNode171shouldbeI-SE-09-5insteadofI-V-09-310A.
Response410.32Theisometricdrawingofthe'turbinedrivenAuxiliaryFeedwaterPumpsteamlinesareprovidedonFSARFigures3.6C-1.9,10,.11.coTheconnectionsforthesteamlines(I-4-NS-10and-11)fromthemainsteamlinestotheAuxiliaryFeedwsterPumpareshownonFigures3.6C-1.7and3.6C-1.8,respectively.Theselinesarecontainedwhollywithinthetrestlearea.Theselinesvereconsideredinthegetimpingementanalysisofthetrestleazeae(1)FSARfigure3.6C-1.5providesthepipingarrangementfortheoriginalHainFeedwaterIsolationValves(I-V-09-258andI-,MV-09-8).Figures3.6C-l.5(nodes275and276)havebeenzevisedtoincorporatethefinaldesignwhichutilizesfastclosingHFIV's{I-HCV-09-.2A,2B).(2)Figure3.6C-1.5hssbeenrevisedtoreflecttheAuxiliaryFeedwsterPump2Btie(node2761)andtheAuxiliaryFeed-waterPump2Ctie(node277)~(1)Figure3.6.C-1.6(nodes21and22)havebeenrevisedtoin-cozpozatethefinalfeedwstezdesignwhichutilizestwofastclosingHFIV's(I-HCV-09-1A,1B).(2)Figure3.6C-1.6hasbeenrevisedtoreflecttheAFPPump2Atie(node1201)andtheAFHPump2Ctie(node20).I'3)Figure3.6C-l.6showsthecorrecttiefortheAuxiliaryFeedwsterPump2A(line14-BF-29).ThelineI-4-BF-28shownonfigure3.6C-6.3isupstreamoflineI-4-BF-29.Thelin'e~onFigure3.6C-6.1whichcontainsvalveI-V-14-625isalocaldr'sinlinesndisnotrouted'to'anyotherlineintheAuxiliaryFeedwaterSystem.Figures3.6C-6.1,3,4,5presenttheManualAuxiliaryFeedwaterSystem'ndhavebeenrevisedtoincorporatetheAutomaticASS.Thesef'igureshavebeenrevisedtoincorporatetheadditionofthefoursolenoidvalveswhich'wererequiredfortheAutomaticAFWSystem".'"(1)RefertoResponsetoQuestion410.32(f).~i(2)RefertoResponsetoQuestion410.32(d)(3).h.(1)RefertoResponsetoQuestion410.32(f).(2)Figure3.6C-6.4hasbeenrevisedtoindicatethaZine4-BF-35continuesonFigure3.6C-6.5.i.RefertoResponsetoQuestion410.32(f)- A8AMCZM~gQIslW>>le~~.I~~
- 4Y54424CNSpeelcrt~A(~CP4$TCIcO5g-evor204cccCXlW4INO54g-NVc7ggg555TRTIXOeaaSSTIALeAP5nIWLATINOCOUIFAXNTLCCATZOINT5AIIKAT85115iOll5WOTKOTIC$SIIOCCtil%CINCPCFSKOTISKOTICCBRHLRI4W~~ICIPCIO4QccrcccmceeccatQccoccccctaesencccccccIOaaeeeocccacarrcctaccce~QJeoctcco~aL.nrcccctcczah~cTlcAALIcoocccacccctooolxltsccccIwf~A%lLcccE,FL~OAPl>KR4LIC'ITCQPANTST,LLCKPLA'CTIRRT2TRKSTLESTCXT~OOILERFKKCRATERSREARPOIIITS4,PIPEWlPRESTRAINTSfNUiP).g18 A
4I~M~~ I.II A
4Xccect.ccT~a-14XSRXONCCILtIag,~XSCctCCItt4X!CIVIC0ttlStotc~XSAM)tt'V.lcWCtcccoccf.cocaccc.w44cDcoccocroec>>csaQccoccecca<<occorneseccQcccoococccaccocuxccsoI~SELTgcotcootaevsaensctottct~~~0RMvfLORIDAPOOERNLIGHTCOCCPAKTSToLVGIEP~TIIXIT1AUXILIARYfEEDVATERPIPIHGGREAKPOIHTStPIPEtltlPRESTRALHTSFtQlSE3.K&.1 TAM~t0tRItSSt24S22cwucseawe~C2<<cnecsc~~Qec~aat~~ET~BIJme~~LKKS~IK3samtTC5~I-uacaAtRTCOAL~~'LCD~FLCIIIOAPIXZERdLICHTCQIPAHTST,LIIQEPL%ATVXIT2PVXILIARTFEEt71ATERPIPll40CREAKPOI'IIZSdPIPEWIPRESTRAINSFKURES.K-42 T~1%cdtXIgriefpe~i'CNNAcccco1!cce0T4F11T-V14ZSf.oF.gcciccccaccciccocccccctcncccacccccc~Qceeee~ccccnceBKIIEKKI$CiiCNiCt~M~5'EccBKtIcccctccccliceAclcclcIhccIcccccccficcccccecicce~cocircere+aaaavcic.FLORIDAPOXER6LICIITCXAPAHY,~ST.LUGEPLANTl"AIT1AUXILIARYFEEDeATERPIPIHGCREAKPDIHTSILPlpEeHIpREsTRADPi$FIGJM3.K-43 $%111~$C$0122~~$1122$21T~M$WCP-$CQ%$MM12TSM~~f4124e'~MlingRLWPM%CNPKL",lA~+~tedeeaaQaorseotacacean~0~regvasee@ca~~3858IJres~aaewces~DgEQ~l-~en~OilAtCTCSAL~~flCO~CXCg@$0$1ANT~G.f$22AIJX,PS2,~&~122EI22.$2'OLl-V~1FLCQOAPRIER4UQHT0ÃFPA$$TSTLQOEPLA$TUN$T2AUXILIARTFEEO2ATERQREAXPOINTSAPIPWIPRESTRA$XTSFfCIÃtE3.K&A 0 ff5Ng>>~~~r. @>estion410.33(3.6.1)Arethehold-uptankcompartmentsinthereactorauxiliarybuildingsteellined'lIfthereisnoseismicCategoryIsteelliner,thenprovidetheresultsofananalysisoftheseismicfailureofallfour40,000gallontanksconcurrentwiththefailureofallothernon-seismicCategoryIcomponents,includingallsumppumps,volumecontroltank,associatedpiping,andwiththeworstsingleactivefailure,andtheresultingfloodingofsafetyrelatedequipment.Response410.33Thehold-uptankcompartmentsintheReactorAuxiliaryBuildingarenotsteellined.However,persuanttothestaff'srequirementinsection9.4.1oftheSERdatedNovember8,1974theadequacyoftheECCSpumproomfloodprotectionagainsta1250gpmfiremainrupturehasbeenevaluatedandpresentedintheStLucie1FSARandSL2PSARsection9.5.ThestoragecapabilityofallnonseismictanksintheRABhasbeenconsidered.Ifitwereassumedthateverynonseismictankrupturedduringaseismicevent;waterfromsucharupturecouldeventuallydraintowardtheECCSpumproomsumpslocatedatelevation-,10ft.Each'sumpis4ftx4ftx10ftdeepwithacaps'cityof1',100gallons.Thepumproomisdividedintotwosubcompartmentsbyafloodwallwhichextendsaminimumof9.5fthigh.EachECCScom-partmenthousestheminimum-complementoftherequiredengineeredsafetyfeature'pumps.Thefluidfrom,therupturedtankswoulddrainintothe"A"ECCSpumproomviaasing'le4inchandasingle3inchlinewithatotalcapacityofabout130gpm,whereasdrainageintothe"B"ECCSpumproomisviatwo4inchIines'andasingle3inchlinewithatotalcapacityofabout210gpm.,AnysubstantialreleaseofwaterinventorytoEL-0.5ftwilldrainintobothECCSpumprooms(EL-10.0ft)andintotheReactorDrainPumpRoom(EL-3.5ft)andfloodthe0.5ftleveloftheRAB.Theanalysisof'theECCLFloodingProtectionandtheassociatedse-quenceofeventsarepresentedintable410.33-1.Themostlimitingcomponent'ithin'heECCSpumproomhasbeenfoundtobetheHPSIPumpconduitboxeswhichislocated183/4inchesabovethefloorelevation.Theanalysis'revealsthatthefluidlevelwillnotreachHPSIPumpBconduitboxwithin102minutesandHPSIPumpAwithin145minutesoftertheaccidentwhichisenpletimefortheoperatortoisolatetheECCSpumproomare~s.UponisolatingtheECCSpumproomcubicle,thewater'willaccumulateinthe0.5ftlevel.However,nosafety-relatedequipmenton"this'evelwillbeaffected.Thefollowingdesignmodi-ficationswereincorporatedintotheECCScubicledesignandareavailabletotheoperator:
Response410.33(Cont'd)(1)EachECCSpumproomcontainsaseismicCategoryI,,class1E,levelswitchwhichprovidesbothhighandhi-hisumplevel"alazxosinthecontrolroom.Thelevelswitchesarephysicallyseparatedandelectricallyindependentfromeachother.AbackupseismicCategoryIlevelswitchwithcontrolroomalarmsisalsoprovidedineachsumpinordertoprovidegreaterreliability.Theanalysisshowsthat,withineightminutestheoperatorre-ceivesfour.signalsfromfourindependentsourcesnotifyinghimoftheaccident.(2)AllfloordrainlinesenteringtheECCSpumproomcompart-mentsareprovidedwithredundantseismicCategoryIisola'tionvalves.Theseisolationvalves.havethecapabilityofremotemanualoperationfromthecontrolroom.Theanaly-sisshowsthatthefloodlevelwillnotreachtheIsolationValves(EL-7.5ft)inECCScubicleBuntil142minutesaftertheaccident.(3)EachentrancetotheECCScubicle'isprovidedwithwatertightdoorstherebyassuringthatgrosswatervolumeswillnotfloodtheECCSpumproom.FromtheaboveanalysisitisconcludedthatapotentialfloodingincidentintheReactorAuxiliaryBuildingcannotimpairtheabilityofredundantequipmenttoachieveasafeshutdowncondition.
Table410.33-1RABFloodinAn~alsisTime(Min)Event0FloodisinitiatedbyruptureofalltanlcsintheRAB4.1HighlevelalarminECCSRoom"B"sumpactuatedinControlRoom5.0High-highlevelalarminECCSRoom'-'B"sumpactuatedinControlRoom7.1HighlevelalarminECCSRoom"A"sumpactuatedinControlRoom8.0High-highalarminECCSRoom"A"sumpactuatedinControlRoom102142FloodlevelreachesbottomHPSIPumpgBConduitBoxFloodlevelreacheslovestofECCSRoomBredundantIsolationVaLves145Floodlevelreachesbottom.ofHPSIPump2AConduitBoxFloodlevelreachesbottomofECCSRoomAredundantIsolationValves 0 Question410.34(3.G.1)Specifytheelevationof.thelowestpenetrationbetweenECCScom-partmentAandcompartmentB.Iftheelevationislessthan-7.0feetHSL,verifythatthesealsareenvironmentallyqualifiedfor212oFwaterandareseismic.Category'I.Response410.34EachHCCScompartmenthousesaLPSIPump,aHPSIPumpandaContainmentSprayPump.ECCScompartmentAisphysicallyseparatedfromECCScompartmentBbyareinforcedconcretewallwhichextendsaminimumofninefeetabovethebasefloorlevel{EL-10.0ft).PipingpenetrationsbetweenECCScompartmentsAandBareminimizedwheneverpossible.However,wherepenetrationsbetweencompartments'weredeemednecessary,thepipingwas.providedwithawatertightseal.TheECCScubicledesignpresentlyincorporatessixpipingpenetrations'etweenECCScubiclesAandB.ThelowestECCScompartmentpene-trationispresentlylocatedatEL-6.33ft,whichis3.67ftabovethebasefloorlevel.Althoughthesepenetrationsareprovidedwith.watertightbootsealswhichhaveadesigntemperatureof400oF.>>I>>4 0k Question410.35(3.6.1)Discusswhata1armsandsignalsareavailabletotheoperatorinthecontrolroomtouniquelydefineeachpipebreakorcrackspec-ifiedintheappendicestoSection3.6oftheFSAR.Response410.35Thealarms,signalsorcontrolindicationsthatareavailabletotheoperatorinthecontrolroomtouniquelyidentifyeachpipebreakorcrackisprovidedintherevisedFSARAppendix3.6F.
SL2-PSARAPPENDIX3,6PHODERATEENERGYPIPINGPAIUJREA?%LYSIS3i'-s.AmendmentBo,3~{6/Gl) 't SL2-FSAR3~6FHODERATEENERGYPIPINGFAILUREANALYSIS3oGFo1"HODERATEENERGYPIPINGFAILUREINSIDECOSTAŽ~rSystemsconsfderedformoderateenergyanalysisinsidecontainment+reidentifiedfnSubsection3<<6.1.2.2~DesignbasisenvironmentalconditionsJnsfdecontainmentareestablishedbyhighenergypipebreaksTherefore,theeffectsofmoderateenergypipingfailuresinsidecontainmentare.notcvaluntcd.3o6Fo2HODERATEENERGYPIPINGFAILURES-OUTSIDECONTAINMENTThissectionpresentsresultsoftheanalysisperformedformoderateenergypipingfailuresoutsidecontainment~Thefloodingresultingfrommoderateenergypipingfailuresnreconsideredfnevaluatingtheavailabilityofessentialsystemsandcomponentstomitigatetheconsequencesofthepipingfailure3.6F.2.1CrfterfsandAssumtionsXnadditiontothecriteriagiveninSubsection3.6.1.3thefollovfngassumptionsareusedformoderateenergyanalysis:n)Floordrainagesystem,sumppumps,etc,areconsideredavailabletomftfgntethefloodingconsequencesofthepipingfailure.RateoffloefromcracksisassumedtobeconstantuntiloperatorisolatesthecrackorsourcevolumeisdepletcdoThelocationsofpostulatedcracksfnthemoderateenergypipingsystemsarenotbasedonstresscrfterfn.-Thecrackisassumedtobelocitednnyvherealongtherunofpfpeforthefloodinganalysis.LPaderate'nergyfluidsystempipefnfluresareconsideredseparatelyasnsinglepostulatedindependenteventoccurringduringnormalplantoperation.Hooperatoractionsuchnsclosingoropeningnvalve,stoppingorstartingn'pumpfsassumedfor30minutesfo1lovfngthefirstalarmfndfcntion'fnthe'controlroom.2.6P2.2~Pl<<add<<~Analala36P.2',1EvnluatfonTechniue~<<TheReactorAuxflfaryBuilding(RAB)~FuelHandlfngBuilding(FHB),'ieselCnerntorBuilding(DGB),ComponentCoolingRaterBuilding(CCWB),TrestlekoreanndYardverercvfevedtoidentifynllcompartmentsnndareascontainingsnfety-relatedequipment.vhfchmaybeaffectedbyfloodins<<3.6F-lAmendmentHo.ST(6/81) D SL2-FSARsedonthisrevicv,thefoIIowfngareconsideredfortbefloodinganalysis:a)ECCScompartmentsA65inRABb)SbutdovnCoolfrgHeatExchangerRoomsA69inRABc)BoricAcid?Qke~pTankRoominRABd)Chnrgfng.PumpRoominRABe)~DieselGeneratorBuildingf)DieselOilTankEnclosureg)IntakeCoolingHaterPumpAreah)ComponentCoolingVaterBuilding')LetdownHeatExchangerRoominRAB$)BoricAcfdConcentratorRoominRABk)PipeTunnel'inRAB1)FuelPoolHeatExchangerRoominFuelHandlingBuilding(FHB)~~')'ualPoo1PumpsItoomfaPHB"n)FuelPoolpuriffcationPumpRoominFHBSomeofthesecompartmentsnndareaocontainsafetyrelatedequipment-requiredforsafeplantshutdownvbfleotherscommunfcatethroughthefloordrainoystemandcorridorsviththeroomscontainingsafetyrelatedequipment.Thevolu~eofthecompartmentsandareasaretakenfrom-thegeneral'rrangementdrawingo,Figures1.2-12through1.2-22.a)ECCSRoomin'RABTheECCSroomiolocatedintbeRAB.ntelevation-,10.0feet.Thfo.~.roomiodividedintotwocompartmento,A&3,bynpartialheightvalIEachcompartmentcontainsnhighpressuresafetyinjectionpump,alowpressuresafetyinjectionpumpandacontainmentopraypump.TworeactordrainpumpsarelocatedinECCSCompartmenth.Therearethreevatertightdooro,vithbottomEl0.00ft,betweenECCScompartment9andthemaincorrfdorvbichiontEl~W.5ftThere,ioonevatertightIfoorJvithbottomEl.W.5,ft~betveenECCScomportmentAandthenaiacorridor.'ReaafncorridorfolocatedbetveentheshutdowncoolingheatexchangerroomandECCSrooms3.6F-2AmendmentHo.3,(6/81) 0A SL2"FSAREachECCS.compartmenthasasump,bottomEl-19.0ft,andeachsumpioprovidedwithduplexfullcspscftysumppumps,50gpmeachaLcvIswitchesandleveloperatedmechsnfcslalternstoroareprovidedineachsumpforcontrolling.thepumpoperation.Thelevelcontroliodelineatedf.nthefollowingsteps.JX)Shenwaterrescheothe"highwaterlevel",atEl-Xl'25ftthealternator.startstheselectedpumpandactuatesanalarminthefmsfDcontrolroom~2)Ifthelevelcontfnueotoriseandrescheo"hfgh-high~sterlevel",atEl-10.25ft,thesecondpumpwillotartandactuateaseconda1arminthemaincontrolroom-Pumpsdischargeisroutedtotheequipmentdraintank.gAISEIE9j/+gN<W+gy~+<~~ccSr~"~PPg~ei'dc'o>rrd.XWZKegzar8.>or'floodinganslyoio,thelazgestflowcrackioassumedtooccur,during'no'rmslcoldshutdownmode,inouctfonIfneoftheLPSIpump1-14"SI&24locatedinECCScompartmentA.Thepipeio14in.nominaldiameterand.theoperatingfluidconditionsare300pofgand300'P.Theshutdowncoolingsystemfocategorizedasadualpurposemoderateenergyoystemsinceitiooperatinginthehighenergypressure/ternerstureregionleoothantwopercentofthesystemnorma~operasatttmeThe.rnsulttntpionfromthecrackia330gpm.Asaconservativeassumption,2sumppumpsincompartmentarecoCn~der~cCtoEeoutofoperaon.theanalystaassumesthattheoperatorioalertedbythealarmincontrolroomwhichindicatesa"highwaterlevel"inthesumpandtheoperator<<>eo-correctiveactions30minutesafter'theaIazm.Thefloodlevelintheroomat30minutesfollowingthefirstalarmwillbeI6ftaboveECCSroomfloorleveland+f11reachbottomofHPSIpumpconduitbox.aIfthe'leakagecrackhsdoccurredfntheportionoflinebetweentheLPSIpumpandvalveV-3444inBCCScompartmentA,operatoractionio'oi'oolstetheaffectedshutdowncoolingtrain.bycIosingvalveV-3664(valveV3444iofntheclosedpooitfonpriortoinftfstionofthe.shutdownmode)SeeFigure6.3-las'.AfIoodi'nganslyofowaoalsoperfozmedf'rBCCScompartment8,assumingapipingfailureinLPSIpump,28suctfonlineduringnormalplantshutdownaodeoTheareaforHCCS'compartmentEiolargerthancompartmentA,thereforethefloodlevel&llbeloverAsshownabove,thefloodXevelfnthecompartmentdoesnotaffectanysafetyrelatedequipmentXnaddition,ofncethefloodingiocontainedwithinthecompartment,theredundanttrainionotaffected."Theunaffectedtrainiousedtobringtheplanttocoldshutdowncondftionns3.6P-3AmendmentHo.3,(6/81) 0 Noderateenergycracksarepostulatedtooccuronlywhenthefluidconditionsareequaltoorlessthan275psigand200F.However,forthefloodinganalysis,thecrackwasconservativelypostulatedtooccurat300psigsincethispressureresultedinthelargestflowthroughthepipingfailureandtherebymaxi-mizedthefloodingoftheECCScubicles.w)sf'dPTheleakagecrackinthesuctionlineofLPSIpump'reducesReactorCoolant.loopinventoryandcausesthepressurizerleveltodrop.PressurizerlowlevelindicatorLI-1103inthecontrolroomalongwiththeECCSsumphighlevelalarmwillalerttheoperatorthatthecrackhasoccuredintheLPSIpumpsuctionline.Theoperatorwillisol'atetheaffectedshutdowncoolingloopandcontinuep1antshutdownbymeansoftheredundantshutdowncoolingloop. STZ-FSARShutdovnCooling"HeatExchanger(SDCHX)RoomIThetvoShutdovn,CoolingHeatExchangeroarclocatedinthcRABetEl5ft.Asevenfthighwalldividestheroomintotwoseparatecompartments."BothcompartmentscornmunfcatewithECCScompartmentAthroughthefloordrainagesystem.Adoor,withbottomEl20ft,separateseachSDCHXcompartmentfroathemaincorridor.ForfloodfnganalysisofSDCHXcompartmentB,thelargestflowcrackwouldbeina12'inchnominaldiametershutdowncoolingline(12-SI-164)Pfpure9.2-2.Theoperatingconditionsofthislineis~psigandOOF.Theflowrntcfromthecrackio620gpmofwhich384gpmofthisfluiddrainsthrougha3fnchdiameterfloordrainIfnetothe.sumpinECCScompartmenthTheremafnfngportionof.flufdaccumulatesfntheSDCHXcompartmentBMhenthefluidlevelinECCSCompartmentAsumpreacheo"highlevel"pthclevelsvitchstartsasumppumpandactuatesnnalarminthecontrolroomThevorstfloodingconditionforECCScompartmentAiopostuIatedtooccurvhenthesumppumpdfaf1tooperate.Thevaterlevelcontinuestoriseandreaches"highveterlevel"inthesump.Asecondalarmisactuatedinthecontrolroombythelevelswitch.Thetimerequiredtoreach"highwater-level"fnthesump,assumingthesumpisfnitfally10percentfull,fo21.2minutes.Itisassumedthat30minutesafterthefirstalarminthecontrolroomoperatorisolntcothccrack.Du'ringthfsperiodvaterlevelintheBCCScompartmentAvillreachO.lft.abovefloorlevel.ThisfloodlevelvillnoteffectanysafetyrelatedequipmentinECCSCompartmentA,Thefloodlevelfntheohutdovnco'olfngheatexchan,ercornartmentBwfll'each/i2ft.abovefloorlevel'fnofluidleaksthroughthedoor.~~~@el'oricAcfdHak'e-upTankRoomTheBoricAcidNake-upTankroomfolocatedintheRABatEl.&.5ft.VhioroomcontainstvoDoricAcidNake-upPumps.Theroomioopentoacorridorvhichinturnioconnectedtoanareacontainingthe.condensaterecoverypumps.ThefloordrainintheocareasareconnectedtoECCScompartment8sump+I'orfloodingnnalysfo,acrackfopostulatedina4inchdfochargelineofBorichcfdHake-upTonk29~Tank20ioconsideredtobe92.5percentfull~Thiorepresentsnormaloperatingconditfono,Thecapacftyofeachtanki:o9755galTheoperatingfluidconditionsforthefourinchIfneare0,0poigand170P,Theflowfromthecrackio17,0gpm.36FWAmendmentIw.S,(6/8l) Hoderateenergycracksaretobepostulatedtooccuronlywhenthefluidconditionsareequaltoorlessthan275psigand200oF.However,for'hefloodinganalysis,thecrackwasconservativelypostulatedtooccurat450psigsincethispressureresultedinthelargestflowthroughthepipingfailure.gjP/STheoperatorisolatesthecrackbyclosingthevalvesinthesuctionlineofLPSIpumpandstoppingthepump.Iftheaccum-ulatedfluidintheSDCheatexchanger-isallowedtodraintotheECCSroom,thewaterlevelintheroomwillreach3.1ft.TheoperatormayclosethevalvesI-HCV-25-5andI-HCV-25-SAtopermitdrainingofthewaterfromtheshutdowncoolingheatex-changerroom.Theseisolationvalvescanbe'closedfromthecontrol,.room;~TheunaffectedSDCtraincanbeusedtoshutdowntheplant.TheleakagecrackinthedischargelineofLPSIpumpreducesflowrateinthesystem.FlowelementFI-3306orFI-3301intheLPSIpumpdischargelinewillshowareductionintheflowrate.ThetemperatureelementsintheLPSIpumpdischargelinesdownstreamofshutdowncoolingheatexchangerswillreadtemperatureslower.thannormal.Basedonthisdata,theoperatorcanidentifythelocationofpipingfailure.
ggy+/gass/ICAAn+jfsVk,snarl/%Stpeo~s/~PATE</vs%/IJ~wi4~cref<~p~y~~JysA~XRThe.vorotfloodingconditionforHCCScompartmentBvillexistvhentheentirefloufromthecrackisdrainedtothcECCSsump-Thesumpisassumedtobeinitially10percentoffull.The"highvatcr'level"inthesumpioreachedafter67.6minutesfromthebeginningofpipefailure.Th'ehighlevelsvitchinthesumpactuatesanalarminthecontrolroom.Ztisconservativelyassumedthatthesumppumpsfailtooperatea'ndthatoperatorvillisolatethccrack30minutesafterthefirstalarminthecontrolroom.'.~ringthe30minutesthefloodlevelinECCScompartmentBvillbe0.4.inchhigh'hisvaterlevelvillnotaffecttheoperationofanysafetyrelatedequipmentinECCScompartmentBeXfthepipingfailureislocatedintheupstreamsideofValve-V2142,theoperatorcannotisolatethecrack,TheentirecontentofthetankisconsideredtobedrainedtoECCScompartmentB,Theresultingvatezevelint%~c"V~compartme~nttFCQ~~QThisfloodlevelvillnotaffecttheoperationofsafetyrelatedequipment.ThethreechargingpumpsarelocatedinRES.otElW.5ft.Thechargingpumproomisdividedintothreeseparatecompartmentsby6.5fthighvalls.Eachchargingpumpislocatedinaseparatecompartment."Doorsareprovidedbetveenthechargingpumproomand.the.pipetunnelatEl+0.5ftandRABmaincorridor.Eachcompartmenthasa6inchhigh"curbattheentrance.Porfloodinganalysis,thelargestflovcrackvouldbeinthefourinchchargingpump2Csuctionline4~&67vithoperatingconditions27psigand120P(scePigurc9.3-5c)~Theflovratefromthecrackio'31.1gpme'TheentirespillagevilldraintoECCScompartmentBsump.Theoerator%salertedbthesumpB"highvaterlevel"alarminthccontrolrooomor5.Omminutesnrcrtep.ipetsure.Itisassumedthat30minutesafterthealarm,correctiveactionistaken.ThefloodlevelinECCScompartmentBafterthe30minutesvillbe0.06ft,ifthesumppumpsareassumedtobeoutofoperation.ThinfloodlevelinECCScompartmentBvillnotaffectoperationofanyequipmentinthc<corn.TheoperatorisolatesthepipingfailurebyclosingvalveV-2501onthedischargelineofthevolum'econtroltank.sThcfloodinganalysisforchargingpumpcompartments2hand2Bproducesexactlythcsameresultasthatofchargingpumpcompartment2C.<~epFewrdp/ecri/'</g~/dlerwcaAd0'<>~~CO~rred'~WkLard/a8ZCrCrr>rr~gy/sSjx-gzzg.3.6P-5AmendmcntHo.3,(6/81)su\"~<<nw"t 0 SL2"FSARDieselCeneratorBuildingTherearc-tvodieselgeneratorsinstalledinoeparatcroomsatel22Iftfnthedieselgeneratorbuilding.Forfloodinganalysfo,thela<cotflovcrackvouldbr.intheServfcePaterSyotemline'-SB"108(SeeFigurc92-6)~Thepipeio2in.nominaldiameterandoperatingConditionsare75pofgand95F.The'erviceMaterSystemservenosafetyfunctionsinceitionotrequfredtoachievesafeplantsbutdovnnortomitfgatetheconsequencesofadesignbasisaccident~Theflovratefromthecrackfo18gpm.Theentireflovfromthecrackdrainsthroughthedrain'agesystemt'otheexisting36in.diameterpipevhichisdirectedtotbeexistinggrade.ISincetherefonoaccumulationoffluidinthedieselgeneratorroom,theoperationofthedieselgeneratorionotaffectedbythisaccidentsForfloodinganalysis,thereisnocrf;ticaltimeforthcoperatortoisolate'hepipefailure.DieselOf1TankEncl'ooureTherearetvodieseloilstoragetanksviththeirpumpslocatedintvoseparatecompartmentsintbedieseloiltankenclosure.TanksandpumpsareinstalledatEl19.0feet.Forfloodinganalysisthehighestflovcrackvouldbeinthe3in.nominaldiameterdieseloilpumpsuctionline3-E'0&7(SeeFigure9.5-6)~Theoperatingfluidconditionsare25psfgand100F.Thedrainlineineachcompartmentionormallyclosed'achofthecompartmentoiodesignedtoboldtheentirecapacity'offtorespective'tankshouldaleak.occur.XntakeCoolingHaterPumpAreaTherearethreeXntakeCoolfngTfaterPumpslocatedintheICMPareaatEl16.5feetForfloodinganalyoiotbelargestflovcrackvouldbeina30in'iameter'XCQPdischargelineX-30-tÃ-11(SeeFigure9~2-1)~Theoperatingconditionsare90psigand95F.Theresultingflovfromthecrackis604gpm.Theentireflovfromthecrackiodrainedthroughtheannularareabetveenthedischargepipe,andthe42inchdiameterpipesleevetotheouctionveilfntheintakeotructureiNosafety-relatedequipmentioaffectedbytbiofloodfng.TheXntakeCooling"PaterPumpiodesignedfor14500gpmat130fthead.Lossof604'gpmthroughthecrackvillnotaffectthesystemoperationNormalplantoperationandsafeplantohutdovnionotcompromisediS.6F>>6AmendmentHo.3,(6/81.)" 0 SL2-PSARgpoXO+44CWEgAA'D&r.PowpI'Ipresdipng.r~Z~F4ComponentCoolingIntakeAreat'heComponentCoolingVaterAreacontainsthreeCC4pumpsandtwoheatexchangero.Thcfloorelevationofthecompartmentio12.0ftThepumpsandheatcxchangeroaremountedonpedestalsataboutEl24.0ft>>Therearetvosumpsinthisarea>>0nesumpiolocatedinsidethecompartmentwithitibottomElat9.67ft.Theothersumpiolocatedatthepipetunnelareavithbottomelevationat1.0ft>>Thepipe.tunnelsumpioprovidedvithasumppumpwithcapacityof25gpm.ThisumtransfersthefluidfromthepipetunnelsumptothesumpntheCCVcompartment.ThefluidfromtheCCQcompartmentsumpdrainstotheexisting36inchdrainpipeviaa3inchdrainline.The36inchlinedischargestoexistinggradectEl0.0ft.Forfloodinganalysis,thelargestflowcrackvouldbeinthc30ia.CCMheatexchangercirculationvaterinletlincI-30-CM-78operatingat60poigand95F'(SeeFigurc9.2-1)>>-XIII~IIgdnJZll9STheflovratefromthecrackio490gpm-Theentireflowspillsonthefloorandfillsupthepipetunneloumpto"high&ighwaterlevel"insevenminutes.Thelevelswitchinthesumpstartsthesumppumpandactuatesanalarmiathecontrolroom.Thcsumppumpdelivers25gpmtotheCCMcompartmentsump.AllthewatervillbedrainedfromtheCCRcompartmentbecausedraincapacityiomorethan25gpm.Xtioassumedthat30minutesafterpipefailure,correctivactionistakenby'heoperator.I@ringthis30minutesthefluidlevelinthepipetunnelareavillreachEl8>>0ft'>>Ãosafetyrelatedequipmentiodesignedfor14500gpmat130fthead.Kosoof490gpmthroughthecrackvillaotaffecttheoperationoftheoystem.Thereforeplantohutdovnionotcompromisedbythiopipingfailure.Evenifthepipingfailureioisolated,theunaffectedcomponentcoolingwaterloop5isavailableaadcapableofsupplyingtheminimumsafetyfeaturerequirementsforoafepleatohutdovn.letdownBeatBcchangerHoonTheletdownheatexchangerroomiolocatedinthcRABatEl19.5feetandcontainsthelctdovnheatexchangerandassociatedpipingandvalves."Adoorconnectsthisroomviththecorridor.ThisroomcontainsnoequipmentneededforsafeplantshutdownbuttheroomioconnectedvithECCScompartmentA,throughthefloordrainageoyotcm.Forfloodiaganalysis,thelargestcrackiointheIetdovnheatexchangercomponentcoolingvoteroutletline8-CC-134(SccFigurc9.22)>>Thepipeiseightinchnominaldiameterandtheoperating3.6F-7AmendmentHo.3,(6/81) 0 SL2-FSARfluidconditionsare100poigand150F.Theresultingflovfromthecracki.o160gpmofwhich38.4gpmdrainsthroughnthreeinchdiameter.floordraintotheequipmentdraintank.Theremaining121.6gpmaccumulateointhe,letdownheatexchangerroom.E4fwithin7.6minutesafterthepipefailure,thevoterleveliatheXctdovnheatexchangerroomreachesthecurblevelnndotnrtoopilliag'intothecorridorsQithin11.4minutesafterthepipefailure>thefluidlevelinthe'equipmentdraintankrencheo"highvoterlevel~TheŽhighvnterlevel"switchintheequipmentdraintankactuatesanalarminthecontrolroom~Itioassumedthat30minutesafterthealarmtheoperator'isolatesthelinebyclosingvalve2"SB-14241~Boringthis30minutes,theequipmentdraintankandthechemicnldrain$'urrp~nrefilled'heoperatoralsoclosesvalvesI-HCV-25-5andI-H~CV"25-5AfnECCStemp'srtmentAsumpdrefn1fne,sethatthef1ufd~villnotreachECC"compartmentA.ThefluidvillopillintothefdicC/zcorridoratEl19.5ft.Partofthefluid%XXdraintotheequipmentdraintank,nndp'artofthefluidspillotothecorridor'atEl-0.5ftthroughthestairveil.NosafetyrelatedequipmentioaffectedbyChicfloodingcondition.BoricAcidConcentratorRoomTwoboricacidconcentratorroomsnndonevasteconcentratorroomnreXocntedinRABntEl.19.5ft.EachroomioconnectedviththecorridoratEl19.5ftviaadoor.Theboricacidconcentratorandwasteconcentratornrenotsafetyrelated.Hovever,theseroomsareconnectedthroughthe'rainagesystemwithECCScompartmentAs\I,\Thcfloodingannly'oitspvasperformedforapostulatedcrnckiatheboricacidconcentratorcomponentcoolingvnterline.Typicallineiosixincheoiadiameter&thoperatingconditionsof100poignnd120FTheflovfromthecrack"io106gpm.TheresultoftheanalysisindicatcoChattheoperatorhassufficienttime(ie30minutesfromthefirstalarminthecon'trolroom)to,isolatethecrackbeforethefluidreacheoECCScompartmentA.However,iftheoperatorfailstoclosetheEC%sumpAisolationvalvesI-HCV-25>>5andI-HCV-25-5A,thcaccumulatedfluidincon"entratorroomeventunllyvilldraintoECCScompartmentAandthe"waterwillreach0.07fthigh.Thefloodlevelioinsufficienttoaffecttheoperationofsafetyrelatedequipment.PipeTunneloinRADTheuppertunneliolocatedatEl19.5ftandthelovertunnelhaobilevelfloorsatEl-0.5ftandateX0.5ft.Anopeninginthefloor+ftheuppertunnelcofnnectothelovertunnel.Tvonirtightdoorsseparateuppertunnelfromthesvitchgenrroomandthe82,recombiaaraupplypanelXAILRTpanel,room.AdoorioprovidedbetveeatheXover3.6P-SAmendment14.3,(6/81) Thealarmin,theControlRoomdueto"high-highwaterlevel"in.thepipetunnelsumpalertstheoperatorthattheremaybepipingfailureinthepipetunnelarea.TheCirculatingMaterSystemandComponentCoolingWaterSystempipingarelocatedinthisarea.IfthecrackoccursintheCUTSystem,thelowlevelinthsurgetankwillinitiateanalarmintheControlRoom.Ifthealarmisnotdue'othesurgetanklowlevelthentheoperatorcouldidentifythepipingfailuretobeintheCCMSystem.~~aI/us'sXNsF<<'hetemperatureindicatorTI-04-5andflowtransmitterFT-14-6intheComponentCoolingWaterlinewillallowtheoperatortoidentifythepipingfailureinthesystem.InadditiontherewillbeanalarmintheControlRoom,duetolowlevelinCQ<Surgetankafter5.3minutesafterthepipingfailure. 0 SL2-FSARtunnelandthc.,chargingpumproom.AnotherdoorisprovidedbetweenthelowertunnelandthccorridorwhichisbetweentheECCSroomandshutdowncooIingheatexchangerroom.ThelowertunnelcommunicatcsthroughthedrainagesystemwithECCScompartmenth6B~rPu7'd.dSCcircarndtS~S"JAr2&~gCfg0'f'fryalen~dppdrA'dfWft~WPigr~gi/~re~ccfdF~TheleakagewiththegreatestcrackinthelowerpipetunnelioapostuIatedcrackincontainmentspraylineI-24-CS-41(seeFigurc6e241)~Thcpipelineia24inchnominaldiameterwithoperatingfluidconditionsat30psigand120P.Theflowfromthccrackis180gpm.Therearetwo3inchdiameterdrainlinesJnthelovertunnel.OnedrainlinedeliversfluidtoECCScompartmentAsumpandtheotherdrainlinedrainsthefluidtoECCScompartmentBsump.Plowratethrougheachdrainlineis38.4gpm.Xtisconservativelyassumedthatall4sumppumpsarenotavailable.Theoperatorisalertedbythesump"highwterlevel"alarm'iathecontrolroom21minutesafterpipefailure.pXtisassumedthattheoperatortakescorrectiveaction30minutesafterpipefailure.Duringthis30minuteperiod,thefluidlevelinECCScompartmentAwillreach0,1ft.Thisfluidlevelwillnotaffecttheoperationofsafetyrelatedequipmentinthecompartment.TheoperatorcanisolatethebreakbyclosingvalveI-HV-07-lh.Theoperatorcouldalsoclosercpt~u'alvesI-HCV>>25"5,X-HCV-25-5A,I-HCV-25-3andX-HCV-25-3AinthedrainuiclPvvw.11nedtopreventfurtherfloodlndduetodrelnfedoffluideccunuletedinthepipetunnel.However,theworstconditioniotoletallfluidinthepipetunneltodraintotheECCSsumps.".Xnthiscase;thewatertlevelinboththeECCScompartmentswillreach0.374ft'Thisf1uidlevelwiIInotaffectoperationsofanysafetyrelatedequipment.ThelargestflowcrackinthetunnelatEl.19.5ftwouldbeinComponentCoolingPaterlinc20&C"27(SeeFigurc9.2-2)~Thepipeis20inchnominaldiameterandtheoperatingconditionsarc100psigand180P.Theflowfromthecrackin433gpmofwhich82gpmofthisflowisdirectlydrainedtotheequipmentdraiatank.Theremainderdrainstothelowerpipetunnel.Promthclowerpipetunnel,thefluidisdrainedtothes'umpsiaECCScompartmentsA69.TheoperatorisaIertedbyCCHSurgetank"Iowleveleealarmoneminuteafterbeginningofleakagefromthccrack.TheCCWmakeupsystemwhichdelivers100gpmtosurgetankiotakenintoaccounttodeterminethctimeforlevelalarm.Xtisassumedthattheoperatorrequires30minutesafterthealaraiathccontrolroompriortoinitiatingth"-cor<<ctiveaction.'SheoperatormayisolatesthecrackbyclosingvavesI~H-16-10I-NV-1642I-SB-14487,2X"SB-14133,2X-SB-1412I~SB14531~21~-14-19and2X-V-14301oThc,fIoodlevelintheECCScompartmentsatthistime(i.c.,31minutes)willbe0'1ftandsafetyrelatedcquipmcntsisnotaffected.XfthcfIuidaccumuIatcdiathcAmendmentHo.3,(6/81) tPTheCCVSyste'msurgetanklowlevelaIarmsLS-14-IA&1B,flowelementPE-1410Aand1410BindicatinghigherflowandtemperatureindicatorTl-09-5registeringlowertemperaturethannormalwillassisttheoperatortoidentifythe,piping'ailure1ocatioa. I0 pipetunnelEZW.5ftisallowedtodrafntotheECCScompartmentot4thoutoperatorisolatingthem,thefluidlevelufllreach0.49ft.Thefloodleveldoesaotaffectanysafety.reIatedequipment~Theheightfromthefloortoneareotsafetyrelated-item,conduit:boxforBPSXpump,io1.6ft~Pu1PoolHeatExchangerRoom'EheFuelPoolHeatExchangerroomfolocatedintheFuelHandlingBuildingatEl~19.5ftandcontainsthefuelpoolheatexchangerandassociatedpfpingandvalves.AdoorconnectsthisroomwiththeFuelPoolPurificationFilterroom.AoixinchhighcurbseparatesFuelPoolHeatExchangerroomfromFuelPoolPumproom.5/~(W//Ã/jot4groga'Oem;fdfWeForfloodinganalysis,thelargestfloecrackwouldbeinCCWlinc,12-CC-130fromfuelpoolheatexchangertoreturnheaderB(SeeFigure9.2-2)~Thepipeio12in.nominaldiameteranditsoperatingconditionsare100psfgand150'heresu1tfngfloefromthecrackio2I5gpm.A4in.diameterdrafnlinedelivers82gpmofthefluidfromthisroomtotheequipmentdraintank.TheequipmentdraintankroomioconnectedthroughthedrainagesystemwiththeECCScompartmentA.TheoperatorioalertedbyCCMsurgetank"Xovlevel"alarmtvominutesafterbeginningofleakage.TheCCVmake-upsystemwhichdelivero100gpmtosurgetankiotakenintoaccounttodeterminethetfmeforalarnlevelintheourgetank.Operatorioolateothecrackbyclosingvalves*2-X~-14-17and2-1.%-14-19.7/pglairJrw,~>g<+d'nSP~gwir~~~fvryA'oe/J'a/lob4'/ggg~PPgUPS4~8/cY2SFuelPoolPumpRormThcfuelpoolpumproomiolocatedinFuelHandlingEufldfngatEl.19.5ftandcontainstvofuelpoolpumps.OnedoorwithaoixinchcurbconnectsthinroomMfthfuelpoolpurificationfilterroom.Thereioaoixinchhfghcurbbets>eathforoomandthecorrfdor.Thiscorridoralsohaoaoizinch.highcurbtooeparatcthcfuelpoolheatexchangerroom.Thefloodinganalysis'indicatesthatduringthis30mfnuteperiod,thcequipmentdraintank,chemicaldrainoump,chemicaldraintankarefilledandoverflowtotheroomcontainingtheequfpmeatdraintankandchemicaldraintankFromthisroomtheoverflovdrainstothcECCScompartmentAoump.AotheaccumuIatedfluidcontiaueotodrainfrom.thcfuelpoolheatexchangerroom,theoumpvtlloverflouintoECCScompartmentAtoadepthof1.29ftMhichdoesnotaffectsafetyrelatedequipment.Forfloodinganalysis,thelargeotflov.crackmouldbeinfuelpoo1pumpsuctionline12-FS-501betweenfuelpoolandvalvesV&203orV~202(seeFigure9.1-6).Thepipeio12in.nominaldiameterand%to36F10AmendmcntBo.3,(6/Ol) GL2-FSARoperatingconditionsare11psigand120F.Theresultingflov1a43.6'pm.Thisbreakcannot,beisolatedbyshuttingoffthevalvesinthebrokenXinc.FloodingmillatopMhcnleveloffluidinfuelpooldropsbelowthefuelpoolpumpsuctionline.atEl.56feet=Thisvilloccur925minutesaEterleakinitiation.Althoughnormalsurveillancemoulddetectthe,leakagebeforethefluidleveldropsbelowsuctionlevel,thisanalysisassumesthefluidlevel"dropsbelowsuctionXevel'luid.fromleakfillsfuelpoolpumpsroom,overfloMstothecorridorandfuelpoolheatexchangerroom.Thereafter,allfloMrunsthroughafourin.diameterdrainlinetotheequipmentdraintank.TheoperatorequipmentdraintankroomMhichrunstoHCCSsumpA.PiththesevalvesthechemicaldrainsumpoverflowsontoEl&.5ft,floodingthefloortoadepthof0.2ftbeforetheeaterlevelinthefuelpoolfallsbelo~fuelpoolpumpsuctionline.Therefore,floodingvillnotaffectanysafetyrelatedequipment~MhentheenterlevelfallsbeloMthefuelpoolpumpsuctionline,'heaccidentissimilarCoXossofallexternalcooling.TheanalysisforthisaccidenthasbeenoerformedandtheresultsarepresentedinPSARSubsection9.Xi3~FuelPoolPurificationPumpRoen.:FuelpooXpurificationpumproomislocatedin.theFuel"HandlingBuilding,atL~I19.5ftandcontainsfuelpoolpurificationpump.Onedoorconnectsthisroomvitbfuelpoolpurificationfilterroom.A~all,topBI26.27ft,providesseparationfromthefuelpoolpumpsroom.ForfIoodinganalysio,thelargestfloecrackio.thefuelpoolionexchangeroutletline3-PS-524(SeeFigurc9.1-6)~Thepipeinthreein-nominaldiameterandoperatingconditionsareZ5psigand120FoLneresultingflovio21gpm.Allflovfromthecrackrunsthroughathreein.diameteidrainlinetotheequipmentdraintank.Theoperatoriaalertedbyequipmentdraintank"highlevel"alarm23minutesafterbeginningoEleakageandhas30minutestoisolatetheleakagebyclosingvalveV&220iffailurehasoccurr'eddownstreamofthisvalve.Theoper'atorcannotisolateleakageifcrackislocatedinsideoffuelpoolpurificationpumproomupstreamofvalveV&220ThecrackMillbeisolated595minutesafterbeginningofleakagewhenXevelofEluidinfuelpoolvilldropbelowfuelpoolpurificationpumpsuctionatEl'59.0ftAl'thoughnormalsurveillancewoulddetecttheleakagebeforethefIuidleveldropsbelovsuctionlevel,thisanalysisassumesthefluidXevcldropsbelowauctionlevel.Atthistimefluidhasfilledequipmentdraintankandchemicaldrainsump.TheEluidMllnotreachchemicaldraintankorHCCScompartmentouapA.Therefore,floodingvillnotaffectsafetyrelatedequipmento5.6P-Xl.AendmentN.3,(6/81) SL2"FSARHP,~'I';,~GP.2,3'nvironmentalEffoctaThisisaddressedinCESARSection3.11.3~6F2i6SummaandCo'nclusionTheconsequencesofflooding'duefromthepipecrackwercevaluated.Theeffectsoffloodingon'syste'msandcomponentsrequiredtoshutdownthereactorandmitigatethecons'equencesofopostulatedpipingfailurewereanalyzed.Asindicatedintheanalysis,moderateenergypipefailuredoesnotaffectessentialequipmentandcomponentsrequiredforsafeplantshutdown.t(VAmendmentHo.5,(6/81) W0 'IkqlVI~'y~I~~I~
Question410.36(3.6.'1)Verifythatthevolumeandareaofthecompartmentsformoderateenergypipecrackanalysisdoesnotincludethevolumeandareaofequipment,foundations,sixinchandlargerpipes,andwatertightcabinets.XftheanalysisinthePSARAppendix3.6.Pdoesnotaccountforthevolumeandareaoftheseitems,providetheresultsofarevisedanalysiswhichdoestaketheseitemsintoconsideration.Response410.36'henetfreevolumeofthecompartmentsforthemoderateenergycrackanalysisdonotincludethevolumeandareaoccupiedbytheequipmentorequipment.foundations.Themoderateenergyanalysishasshownthatinallcases,thefloodingiscontainedwithinoneECCScompartmentandtherefore,theredundanttrainisnotaffected.Thevolumesofthe'ipingsystemwerenotconsideredsincethean'alysishasshownthatinallcasesanalyzedthefloodlevelwaswellbelowthebarrierwallsbetweenthecubicles.Theunaffectedtrainisavailableandisutilizedtobringtheplanttoasafeshutdowncondition.
Question410.37-(3,6.1)Assumingahighenergypipebreakorcriticalcrackofthemainfeedwater(HFM)pipelocatedabovethe'motordrivenauxiliaryfeed-water(PZP)pumpsincombinationwithfailureoftheturbinedrivenAPPpump,demonstratethatsafeshutdownandcooldowncanbeachievedbyoperationofatleastonemotordrivenAFVpump.ShowthattheoperabilityofthemotordrivenAFWpumpswillnotbeaffectedbythepotentialgetimpingement,floodingandenvironmentaleffects-causedbytheNFPpipefailure.Response410.37ThefeedwaterlinesupstreamoftheValvesI-HCV-09-lAandI-HCV-09-1Bareclassifiedasnon-seismiccategorypiping.HowevertheselinesareseismicallyanalyzedaspartofthesamestresscalculationthatincludestheASMEXIIClass2SeismicCategoryIpipingfromvalvesI-HCV-09-1Band-2Bkothefluedheadanchorsonthetrestlestructure.BasedonthestressanalysisandasoutlinedinSRP3.6.2highenergylinebreakswereassumedathighstresspointsandterminalendsoffeedwaterlinesinthevicinityoftheAuxiliaryFeedwaterPumps{AFP).InnocasecantheAFPs'bedirectlyimpactedbytheresultantgets(seeSK2998-M-764).Theweatherproofenclosureofthemotorspro-tectsthemfromindirecteffectssuchasspraying.Theopennatureofthetrestleandthestormdrainagesystemprecludesflooding.TheenvironmentaleffectsofahighenergylinebreakinthisareawillbeaddressedaspartoftheEnvironmentalQualificationprogramtobesubmittedinNovemberofthisyear. Question410.38t(10.4.9)Xnac'cordancewithPos$tionC.2ofRegulatoryGuide1.29,verifythatanyfailureoftheturbinebuilding,,includingcompletecollapseofthebuildingordamagetoitsfoundation,basemat,piping,andcondenser,duetoanearthquakewillnotresultinfloodingofsafety-relatedequipmentordamagethetwolinesfromthecondensatestoragetanktotheauxiliaryfeedwaterpumps.Response410.38=Thebasematandsteelsuperstructureofthetux'binebuildinghasbeendesignedtowithstandtheeffectsofaSafeShutdownEarthquake(SSE).Thisinsuresthesafetyofallessentialcomponentsinthevicinityoftheturbinebuildingbyeliminatingthepossibilityofcatastrophicfailure.Thelocalfailureofnon-seismiccomponents-locatedintheturbinebuildingcannotadverselyaffectplantsafetysincenoessentialequipmentislocatedthere.The,opennatureoftheturbinebuildingprecludesthepossibilityofflooding.leakagesresultingfromthefailureofnon-seismicpipingwouldbepreventedfromaffectingessentialequipmentbythestormdrainagesystemandsitegrading.ThesuctionlinesfortheAuxiliaxyFeedwaterPumpsareprotectedovertheix'ntirelengthfrom,theCondensateStorageTank(CST)tothetrestle.FromtheCSTtotheturbinebuildingandfromtheturbinebuildingtothetrestlethelinesaretotallyenclosedinapipetrench.Thepipetrenchisdesignedtowithstandtheeffectsofseismiceventsandtornados..Mthintheturbinebuildingthesuctionlinesareburied<~class1fill. ~I~'20.T.f.o'~!rlrctssof'!!on-lass.Ins.ru."..~ntationandConrolPc"e'erSvstBusOurinaPower0"eration~i=Bui)etin79-27)sI~."IefreactorcontrolsandvitalinstrunantsderivepowerfromcomoneTectricaldistributionsysms,thefailureo.seo.suceecrical-.onsysemsmayresultinaneventrequiringoperatoract-conc!.'entwithfailureofimportantinstru;,zntationupo'hhporactionsshouldbebased.Thisconc.nwasaddrssedinlKBulletin79-7.Cn.Noverr."er30,1979;IEBulletin79-27wassenttoop'cratinglicense(OL)holders,thenearternOLapplicants(Northdna2,OiabloCanyon,McQuir,Salem2,Sequcyah,ard2ir,-...r),and0thrholdrsofcons-ruction"e~its(CP)incldStLheserecipients,heCPholderswerenotgivenexplicitdirectionormakingasubmitalaspartoihelicnsingreview.'eaver,they~srinformdthattheissuewouldbeaddrssedlater.Youarerequestedoaddressthseissuesbytak'nlEB11~hru3underAct',onstobe.TakenbyLicnsaes"(a.copyof79-27isprovidedin.heattachk-anttothI)~..=.7through3andrvid~y,.8.cmo1et.herviewandevaluaionrequiredb'iy~consandactions.7ni~;-.gpovideawr..tten.responsecescribingyourreviews~.'iportshould~einthe'formofanan~nd.-..entto.yourFSARandsubmittedtothe,'<RCOfficeofNuclearReactorRegul-.*.'asalicensingsubmittal.~~~~~C~ 0/ p,Lp,pIAling)CAYlogFKLDSSckPQ4IKg5AF~a.VIdNON-MKTYPOWEP~SUSTABLE42.0.I-ta)zd/2dgrPPZOICl2d/zdg)/PZ/5Agr)ZO/Zdc/PP205/d7IZd/20ZVPP287/Zd/ZOZI'rPZdg/ZO/Zd2/PPZDg/2%2gVP/2)0II)go/z&Pfzzl/.IZ/Zo/zdgu0'2/2/2/I)70$JPP2/g/2%ogvPPzfrII5/2o/2dgVPpZ/S/Zo/ZoguPPZ)al7/2%ogVPpZIZA/zd/2OZIl/PZZo/7fzf2dgrPPzz/ZOlzo/zogupp222Zl)zf)/zogvPPZg/Zo/>>ZVPP28SZS/Zo/Zo)ZVPPZZS2d/zo/zozvP/'Ai)Zo/zdgVPP2'2%dgVPPZCOIZu/zc2t/P+2$/2I/27IfifgISu5OgP/$7gPAPE/If/2o/zdguPPZ/Ip/20ZafYP~Z~ZPfzo/zdZrp.ZOSCz5/F/S4IPSB/5/Sda.//S//OAtus//)/AgS48A)S(///)//S(f/A8/s///Ai/VS/oa'5(fs/I/2/s8/Ig/)V8',//s///A/fs/faIr(,tus/k'A45/il8/fs(//AIfd/A/donfS/n'/I://8/)J)8//8(Aru):us,/>~/I/sA/r/sfdPrP/A~R~f.h'op/op/0ufoufop/oufoP/0dcloA'aJY0A'c4'u4'0//aNo8odoBUSF/gggcg.PCmrltl/Ij'PFDJ'~'-:</li8>5IIccZI\llgttggz/l'I~gl'ggltl'I'-ZI6PP-2'"ttjVAHEPP-2D/lgPP-ZZyigO'//.J<40Af6PP-296pp-zaS-242.pP-z4/Pw-.~~Ipp-:~IFggggr.-"gyp:"g4'apr9gF'P-2PZItilclg.F'P-.PIpP-2~I<PP>>Zctj'P-2D7PP20~8gtPPZo<8PP-2~fPP-2o9pP-zo8'gPP-214pp-z]Zaa-~I/No/JZ.PP-BID
/oh305Sl.sz9595',~lr379I2~rcgoSI52,l-5CATS+galo/'/~p~~/Z5VDcGUSgp/rA'j$8,Aocflrr/rgPgJoftg~Zg'/N//gjF//4/E/<8,II5g,lOh'SfHAS/V'~/iQeS/AA.es/waFS/Sa.gs/saiZ/uaAE/~ik(/E+8.ir//IIC.e/AADAS/Alae5h8'EPi'4.IEjI;.IlFk((jJ'E/<iDje/~IIyF/saageFF/=FrleVDcPPZI'j/PP2'llrr./rpp28'll/ri'PZ9$/jA/'+Z40IZ5'k'CSospf8/A/r/lfr8/j(r('fCrrn/j.PfDu/sw:;All/Sg'/5/AIIipor~zds--Przc4-SP2~7/'8240~p~zd9'r/w/S/s8/2ot/AcYIMLOh'E/Q/2PM4O'IAg'PA'fl7Z8/ZOtrN'rip..84~&fg.Jf///jZW~ljlr/r2t~Cll~/rmpry12)/I'dr'/I'I/CDpzzy//PiZ92pP29%llPPgpssSE'Pj//VS8(rj/EAfr/fo'fg5YES-4o'fzs//o80//0jl/0doQOnloaleneoAaA/oNoNOA(OP,'o4'040h/0Il8'/adaIIrglllltl~P.lljjppzingI/pp.z~plrPP-23rA/PFZSj'/lA'/r/.Ij//(/(r//(jjl/I.'i//(r/'/gAIA/$FIIllOFI'ID~0'lrjllun.0l/I'EP/uujiSP~C8'/fr</AS//CD/oupreJilt.-'4A-g,CIPI"8-P8//ÃCPP28rrP<DlfADAP/oE8'gOf/~4lIII.auricSiZC//Z'~-4~'4"<~aErW~p&.;BUS,d/.PPRr/A'gCRI/./AFNDIC~l2<rprDrI-FH/lUR6/AF/jj>/C,'ltalI4j(zfFi.//rej]/o//pepqajs~qFA/(rjpr=eF/j/use,.Njj/)rjrllr/2QC~815ZA>/IrIIrtrorjilloP/r/Dj'4,fCO'rYPP-Z/gvtpP-Z/p
TABLE'BD.I-Ia(canucksrzw,a~sowsisr<~eggd>SSA'Ass<BvSfAi4vEEPC'f'gcg/pyR'Fucur~~'>S480/(2oy'Md'-2AE.ygo/IFDV,elec-282N/4'8/go/jzptlWc-zp$~ga'&iE/5~'IF~gg<c'~e%XAK<CAb<~&hule.Ck+MF~>>.~AX.ah<<Wi~ahaNI Lo~s990IN-CLARKIEEU~AFFEcTo~INST(0MENTQ(ONTMKeLO.[-lb>/$74.Bt>S.BUoCCAgPBurA/tAce~/ivy////grRIOICSPR.l+~.iloopc'cg]/IPSE'WJdW"8OerFooQNA~I'YlgtfPcot>f>CctfC>yCocaS4b~4CV/tt/t>l/Mttltie4VA/I'~>PcAvcAAcf."OfttIOPP'82o./igloo(tSPIIII',/MRC'PZ."(iICSCuc(oos./20artccIPPC2OIInevIIPP.1X(I/2evALiPPMJNYAc(fr.n(IIS/a4IYs/ao-I/S/aAc(s/e(OIPigZY-50&.'r.g.TT-Seb...4~iXl-I.:XI~i't~~'I.RRS;gQf.'~gHg,'.'igR5'":V%I(os'oSYc>~$7)'>((//IPSE'csvciqg).'/4O'-III(P(ClVO(3g}i(cttl!II7)7(((alp'::'c'p/ceI)g)HS/>/Iaa>PAttS/llbt(6/H87S-I(>y.-((S/(Ie(Cc"C>-(P7)'I~I/QfsljRVS/otPcs,'i*~.;'IIPAc12>ICcooCA>/7'.r,I.:".loopfPTTpFcoyr@I':>:",4'A.-,.P..;A~.;..t...~~~rIT(/2"ly'ptsfSPR>IyCoup"t(PPRPRCSS,oo>>vgeL).'I~ip:Ir'i4~(Peconyzst(goPo>vcr)iiNba'+llII(P1'ii;"~'gent%.-'l(p(P-1",...":"\~'I"~~~~.I~~Irtii.'I:,-~~,;I~.Scop.tAI(ortece(PCS).QPPjyHe'PQy(P.C$)(IgSoLc>.h'fop(eg>tLf(gcII)I""LOOPtP>2geLDSee>(gee)IIIFAs5INJTCf//Air@/cs~r4.~~~Rc~~9C~//o~e,42c,'DQ~~'cgr/ptMpcry~~g~K4)9R//.CC/l(~Z>4ICP)~~Icee>Ct.'.PP-NZoI20TACPP.rS4ICDVIICfP-ZtoI'ItttIC,eecolI1OYCcPPiS'LIl?oY(I(PP-coC(/s/h'4->IS/>V>IyICS/<</SIIfcS/e>y(lifesr-'/aLT~I~XT-/9XTgti~~Peg(SCCCoerceL/4MP?-37>7.P.~~.'t'tgjI.P/"%-3',C.tr-Ill(>X<cwce-qp)LK/((bjy,.(CWO~I(p)5Pgp((q/(co(//(e'dP/IP'ea~/I'iI((>I((csJ(LIfg('.'I;yg("tICel'gk'>2PlfCSScoNr>cut(Hlp/aye/cLCIcIct)$4~aWOgAPCrPg/IA>TMQ"(P7-///>XA),Xteeel<tSAPCpyc//AD>fC.8(ttttoIs)'-
&Sr'.Ztiif~~a/A~"65FAt..w~dd.w~yiwce.'m'C4'R.f4+~liar~,c'~55r!55HSRiptidnIACR&%85."m~otiF69B9b9II<d'gttg:LRPAC,sarpoi47'Izi-RCd/Vus~,04gyc$('IttgvldI)~t~,'!S4lMP"'I(Cgu-/df)"I~II~ItWt//7tI'-((eo"Q$').:.rzoYneppzzoh'S/nrppz2jHS/NSxt-/grr-rf~F~101/lf4c)07?CotSAtttprimpdeH5/r?4(SIISgA'/f~wtpcg~/5!@Der)jan~Iiw~~I'/3jnrroc[ALIIS25Ih'5/HIsXtj'-218I',~I'.t/~..e.p/l0'7.(CIttDis-//A'cttoo/dr)E<a~Ic?/5)/?>P-2'r-ISIzsrdcjj/5///Agf'gltlsosQA5/g(iAl/5//PFg$55svvEAPado&(RR5/ogdniorzd5<5dstumeTrHiggs'erdt-RHtd/SopggwtrdtrcodsANTport$75Ittt'Ptaortsslv/s~',t..d(lCtot/tttotPI~>J7AWII5topdynrggg4(OFvVPStol/lW)'I~~I:o~v.~eejg<';I~~tOIIttI~rIIi'~',I,,~'I:.R,ekv-,-4.)VII4dte~4)IAe.~p4z.hs(gcj~t6'I~~R<P2A2V~~I~'t.e-as/]R~"tooIr-A>"'.gc/.282.I2IIt4Cpp4IDl?yS4C/P-2ylit/HO/Is/Nygt<<t.HI/HaPP-~(4XT-/OZT-I0.xr-I4SS;l/82(cwo-I0'I)xS-I/7k,(cars->oS)Ijf5~//f'L.(Cop-/j+I5ggISgP05/l/jIl..IoII~~1~I!~I/ICSI~24glI!CP'II)/ReP~g~
/eVSfg,BvfF>lL/leo///Vl///v///c.,+CVCfw'oCON.A4eepl)rgeC'orloinmannarina/pJPVlgorto(.*IM+r44vvrgrafgA'f<<ovcNcP3llov4C,t'p-~o5/25'vpc5VS'or+Hccg2oV4C/ICCftrod/fcAcctioVAC//ccrc>IoiVACacct'6/PWL7g//5/NkgS/o//5Z1'-S'fl7<<Fff7'P//S/uezT-EojfpgoofdprrnOL/87mCcvcs)lo/v5/o/AMlles'z@uid~'lrl=fib/(covp-ggl)i~i....~eIPps~s2!4"(Cove/py)nS2.d4-':"Cc~o/A'p'yg,f101'...'IwI//I)'m82pgQIwiIN)r.'Eg,g,p/1;"$Covp/1Q/F/>>Nfpr,~~ii/iai*4'~I),rIej/ee/IIV),lbogII"'-/lyg,"cIhlt'i'm.$m>:eW/8':),'.!',:"-:.rl,L.e..'.f';'..;:.~~~~eIII.~.:Ieer).g"l.~I'I"I~I.,//,;ler.;t=~~~~~,~~Ie~-"~'tfetO',ll"'.!tIdler'/ewe'g".'qdI":.t">f--'"~~eeOI/VOIe'Saa,p-2.2/~,.//SfNjjt7Arv/C-,t'kraal'~otPov'OlP@dan:,.rI~e"~'e~e~,w~'l'~e~'~elQ/I(.'.~e~~~PetA'cups)le'e'IJ~'IIQO<<7ppw/vCI/II+)EEII8g//PAP01vaordvPTgo//C.~~~'I~'III~4e'Ioo//47cot/oo+TVOht4~'ee~~~~/aovgc*pr.uolgOViCPl.aIo/5//los,rr-/bl5/NoXT-./f0-2QfI(cwo]ra)Im-~i%3.!(Cwp/gi)pig-u/SI~~~IeI~'.Oe"I//5/Nl.RC4coA/ccAdIa(CCeVdce~~gcAMddorner(cgsooo~)~vlf'(P//r$II I IVSTg.B4$~CLAgsupFi//.WCVC'f-'ttfrd.geo'.'gLlAJf/tkdtcfYbl&fCWartnrOa/C'Irlvl~Ialhttrdatgg.lvaaraeVryCdNttiaeWpIVp4EfiCVN'C.ltdVAcrr22Ojj'S/Hi/2hruC//3/IVO/P'2'2ovh//5/NCPP-22/5/'V$QIgt~@galDCI)Vfg$III/C/Si/f/f//ovv¹:/pj~d4vlglhn~<<//S/uerr-22lt~OJV/icAlaL'Ng,2Pff5/upIjest,/ltVACiVS/tthrrllozr-laZP-(CI/~aCPttMI/.SfsTEt/(CVCCP.~a2224(CIP.AS't/I~Cp~b/r~)X7-f'tl:.IT.2'r-agA77-s04~~lt~ItCJi421'7'CarDIA)I:~'Q2RQW".(Cwo/S7)',Lf.a+3%V,)Cteatb/g7),Il5429$g:~(CarDII7).Xr-II/8'22/DPC.(Q"o/'lt)I~fr'22/Og(cwp/~~~-Ii.///c-gaul"getoTSAR)ISr-If:(~El'r<ya,sr~a'tHVaacrA'4/uh~K//$/WSMfgtt'lD/'/.v'."t~aIIII~:t.,~'IIliIttttlHrc~~I'~</VS~lt~aV'iX>vtal<fdCDIIIi.i.-.".~'I,',,~'~'.;~~~V'II'.C:.;t<<,Iesy..nt;I@ditiongAVOACp/.OfttO>a(ttaaS~Paavtdplf~p:I/v'WS/VCyFtn/4-;PlI/ERSlt/th/IrI~,~~~~.rr.P':SilrCtEP.w/Rcp8)'cPyauoltg',,STuFANtltgpy"-'-'.'~,~~I~~a~'.I~tS,~g,~jI.'('a"at.I~'~'I:-II.I,I..I'.~'~~t,.I.I<<It~~II,'~~~I~~r~a~~plltttrVP/thpltr'I70VC7I~Ie~Igt4.rlattgvp:gcpwTrVjg.~g~II~.7vgyitttg.gl/tP4IVOrocawbyp<<rII~'~~~IIiukrat2.l.avel.cpttftph...>I.-.'caaiqlttqrvttry~I~III.j"~Q":."I..~I(sI~I'.t~'~~"~YC7/C7I,Ctv'4g~atg~f'ltrvP'4IIIeIeelI1~,-.ll*tvCgNPV&SC.HM~>~III~//P/4',AvePt+ltauP~I~iCPYDaIH"//l/Vrrurfear~
- gt!g..gjvqI'4PztI8C/CFAgdzer+pucvc,&was~.~g.rm..war~.jSan~ICcda/Dfict!Pf!Mr~4DBfOH~Prhttfautlgr!SCht'qoPe~~rwc~WlttctccJJJJcrOCJC'2cJrr"occooc.o97,PHLI,.Iff1jtwll'IIllIt&'Ac;ty/ggV!fgI,gp'IZPIIjc;AIS/~!VI~A!~IttViCItIS/Ity)I74$fHL$5Zf-VXI~~~!IoiryjIH2ZT0LS74It7j~Ccowf4oQRIoSgVS>7ttS/ltd,gcwo74C)HIC-&S03II</HOCcwotct)I'.~o~'glCrggjjg~'l(/ttCcwoceo)j.I.:;",::,.PIc~&0IO'gS/~S~=,,:.;":.':g'c~pggn);SfaDISAPfKAttIVCVAc0'ti.'t.ItIitI~.~trI:,-tt-tt.WV,.~.'rJ~~~~~.-.."~...~FH'gs5'4<A.'..Ft.gall,fr.gpgI,t>>crt'Vt4!-Nlp~~H'Igsc4pcSgggjQItssllctlvdvgLp'f-g(0jAS/qyi-'~':>>"~CC~P7dg)jPW-8oZ.OSSIIIIS(gawp7df)jcs.Jj.~~:;.c!",.-!.j~.!.~tI.'"~.,c~~oJ1~~;uCee'aguacf!fciLZeoST'-gSP!84~//CoCtogg/g~MPmRCPDFI/-f<dcjtut~ljIztgnCnZzo4SI+~If-IgRQ-PrxZIPS(eBIT-lfICIIVyNC>inrst!~ccacaarIogageyRxiI.rcZ>~IfcttAcscftdtt~RRCIrgb
.zeH14/j'g,B4~~<<r~eeryus/-.//orbal>>f>4'NlAcfl4gy+a~soiv',Ns/-/toehCViPLIPn'ClhIec/u4n'<<ylFAeACrNg74I+srcrn'l-tooS(c~o4t~)'4's/us1(lyY4LtilhCIp<<I~@or+,p>>LPiI;IQVPCIVITAL.PuLgyA/NbxTgg,ST:4/;'.NS/NhhfS/hfOgI.gg,~ItOVhCNfhtA'VffAL.IPIC24I~<<pg/uaAPLP~CZS."~f-4ir-4a.~II~~~I<<~..IC7-'goo4I:(Iwbggf)IpII~I~'2.7~'foll'."Cc&oSIN)-foil,,:('cwo4%43I~PT~gOII')(cwoClg)'l-gOZI)(CUP4IP)g/ug~p<<Ni/rip]/j~sitsyIpfs/Ny.auŽsw~a.Aeroc.ucvc'.~,".,<$8%,'ere(iuce.Syne(;~--:)WL.'rzcClnrcLal!-,1orhrc;ayJ1c>>I.SdaIOP'.@gage..~.derrht'pc~auoyI~I.I".,>>..:.II<<.f."<<t,I'f<<;~~',(.:4,~~g~~~P~~E~III'<<.'I~I;~-g(I<<<<'$jp.',tI~<<":.~'"'..~~*IErr=~(.I.rt>>i..'4>>VSgH'P~yguM,Bhcu.@tungcpI.7o$045(gag-.eggljI~~II<<~1~~IVi)@lcdIAfE'pCNE8'~V4PIWn~%<<.trecsvct'ostaeea>>v'S'pwgganFA'oH.ggsfccwvcF~~:cae5a8gm".:f,'.i.'..ll"<<I-tf;.'~~I,'I'<<'~'.I~N~~I~J~II'IIII~<<1p~<<I"'1~I0~~~<<Phf0lestIGgoAHbQOhVIiForO+IVf4'zmzNc~I:Il.,w~~<<<<I~<<~~gE~'I'~~<<<<l'1<<E<<..:)~~giVh4Ayel.IPuLWg5/t0hFT.@oil(CaoGI't)ps/gapAt8S'A'odhltC~11,orOTICPrvC28NS/eexr-<g.Pr-foalgS/BIO(twoCay)w0 sanr+SJR.B4~O~g.,NxCFWII.'am~/~.syphCrP)5I'I(C~~i.~~'proter.r)y45))tc.IeHAOp'.pWu8,.:pJellvley(rc~rItcecty'vjIlrp4EZAPPNcIItfACparRotj2IIf-/H4f(e(2tvgc!III$rltbv$'dIS>',normII)!ST%,Bvj2I(F/MB)8:~II)x/r+.Iles+4eSLD$P<l!I2~I's/NbSP$2ebI,IIIIII/NO2'C2II2IVVfmuP..I)hrrICll~/~~~Ibt!$25IgtdZ~I2tVCC'gg/p/g}SufZI$ce))rlICSyC7ICex(~~Ipe4g~~lr~l$rIIlr-42If'-4If-gVfT-2Sg3I'f2.0B*4IC(oQ)get>4(C>>'gtP.)I.q,.:....I'.r'l.,'I~a...;.II'-"'C'.:.)'J~IIt.I~~~Cb7RarIu/xx(/~qQAI-AA/.8/ll:Sagagf/lpgaI)'olc)vARclotcPPIIII4I'lbNPC.CSVICCII~v/~s)8/I)II~..':l"~eIv!I)~~~g/<v-,:(),'.~-...~g'RIS.reer~euolcp~~AI5/S+I/x/AgrCXgarHC&red'PCfOxc($,coemrW-PEIIIgSPS$PA)e;4gmukCWrCVrgs/Hg~AI~gclrRrlelvCrP)gS/WfatIodrgF~~I)~'e~II~)'I:'I\~'A.'~II))'.~)~~rIi'I.'-:'.".I"-I.'-',.III-II'.I.~,I~~~~'I'.~~~I.:~I,'.~~~'&}~~~'),:)I~~,~I'!~~~f(-yIC~~III'IP~I~t~~SI(toCgyCIIh~uRL I.ILTD/lk'P'g.+CDl.84~~4tAQ.7.elfFAll.Auey/iona,$)SVPQIIcta5TA'.~~,~reI.'mSCtlirrdPJS~ps~a.pyle/%II'y'.pgVACg.r,Vlf)gerPeIlVTpNrSAplflfCSSflSAg~54erSNIAlCbI~C7II.lpI~'7z73VIVI2A'SVVln!IZlVShA~enfqi]~pV3flrAI.e//$/u4NS/eCS.IriV',vile/Zl/ftVV~IghIt'5V/'Ale'IVlf+gbI!/ms'~'ralV5/Sy/IS/br~IZOVVlaWsI'4I'"IIT-4/eI1-gz.lr-'g/,eIr'/lIf'4//f-'4/:.1.'.~~p1'-cy-]a.,M-~/QI,~~I"Cyaeemae.Err/Afp/$/PiNS/Ngll/$/4+)lf44lH$/ISINGA/g4<7AFCNSat~rrZlcm~Pertdlp'sVD/II7S/P21PC/A4.@AVER'pLI4D/tc4CPgJgiftcC'dAOX54e~~~~~ARIAL~~~lCdClose//M-.Xencei$dAw~gEre.CaploCeralrf~g~~+pgprIrcacW+RtlMPHM~IIl.j:.j...:t,'iI.,:~.i!I.'.!~..I'Il."-'!el~.'.)~,IrIIII,e~~l~r\~llI~I~I~e-sipeeSe~*~~~'."~~I~.~~'I~rl'~ere~I-r.~'.7677I'lZONYgee!gIl1pVII.I24IeIe/LOel!flerrglll7po/ISWA~lIf-4/.IH7.P'elg~lm5'Y//~osVuICIOIsgpa4al/VS/no]gal~gpIgbflt~ftufpgA8<AIVQg<r>>ZPlrrltllVDlC.uzwaySe~~ ~'/WIg,84aeag'HC4Q//14'PCAVA'<Nc,'pogrom,itttb;S+%f:I'a.~'I/sitsirscPimrcu/'~~~~~~arly)r~.AdaOy..proem)~q'~/estttrdNI!rt~r.suey.ca'pAA~<<<<$IN+f4iAzwzus.~I~~e.lo,'II.Sl~.Ie~aI:l'ggea~~~~e~~e~Ie~~~~I25VPC80Ctt)Pe/zgttÃStdAeei/2frSoszA/251&OA/2irlCfP-Sf~~seeIIns//~W.'I~e~IIh'Ih4III1//b/'.jj'//5///)S':IeII~a~IIIII~~~IIIsIee~asIIsIiiIIeII'XV.'I..:~I"I//'-')/r-IAI-IeI'/r/st(II~sIII~IItIIIiI!eI~IiIIIgN'Ag7I..I..I.)~!..II~eI.I~IIl~III.IeI~I1~Is~eIt"loI':1II.~..I1IIse~IIgtto/II[,i('//cqrj4nrpci5$IeI-I~I'f6fbgee2tiC~(I-iI-40//4/erat/+"gA/)llI>8'svykgBp~iza/:fspr,Pg]I~~.Acc-(-g$I;I1I.k$/z~2/u:IIr/Jn8Is~~i()~eeI~~C~ssa~L:Ii'L~~<+~<i~'~I-I.ey4eeeor,Ra'4jIIa'eaker4<~'-I-~!.I-I/VWM/~~-4:.d~rcnc,!/irWgmire.r~s.'ssssees@.!/tetr8/~<gb.--./SA/)l"IIIIIjIIIoIII'IIIeeeIIieIes)eI(II~II~~~I~~e1~mtt.'O~mRA:"eNPZe'W~II.IeI1.,I'lIr~.)IIIeeIeeeeIIII'I'1IIeI~Ieg~gj:4ie~I~IIeI-("T11~-'gII.i~1II-~'II1IeIIe~IIIee~II~sI1~i,")eIIII~aaa~IeI~I)ItAcy!j"4$.!IL.;eI~~II1~Ie~~Iaa~lL~s~IIII'1IIIIIe~ee~~'i~~e~oIeisIIIeIeiI~)e~eI1IIIIe11Ii1(I~eIeI.IiIeII"seiIeiI~l~lIIIsie~~~~~I~'a1e~~~~~eIIIe1I1~e~al~~a,~e~~e e Vt'.~'4wes6j:-':~~-@z.k4MM'='--<~~)'lb)Thebuses'identifsedinTablelbwerereviewedandthebusespresentedinthesecondhalfofthisresponseweredeterminedtobethelimitingt-itemsfntheirinpactonachieving"coldshutdown.Safetyrelatedinstrumentationandcontrolsaredesigned,asdescribedinthefirsthalfoftheresponsesothattheimpactoflosingabusorsafety'elatedinstrumentationwillnotimpacttheabilitytoachievecoldshutdown.1SafetyrelatedinstrumentationandsystemsconformtothecritieriaofIEEE-279-1971,"CriteriaforProtectionSystemsforNuclearGeneratingStations".Thismeansthatthesafetysystemsandinstrumenta-tionaredesignedforhighfunctionalreliabilitysuchthatnosinglefailureresults,inlossofthesafetyfunctionanddoesnotresultinlossofthe.requiredminimumredundancyunless'cceptableoperation.canbe.'.demonstrated.-:;=The.sifetysy'stemsaredesignedtoassurethatthe=.effectsofnaturalphenomena,rformalojeratingmaintenance,testing..--,~--..andpostulatedace)dent.conditionsonredundahtchannelsdonotresultinlossof:"thesafetyfunction.':'TheSafety=systemsareseparated.fromcontrol.systemsto-the:-extentthat..failure:-.of-any-singlecontrol:system:component',power.,supply',-or"channel*whichiscarmantothecontrolandsafetysystemleavesintactasystemsatisfyingthereliabilityredundancy,andindependence.requirements.ofasafetysystem.--"..c=Thefollowingidentifies-thenon-safetyrelatedinstrumentation"andcontrolsystemsandcorrespondingpower'supplieswhoselosscouldaffecttheability,taachieveacold.shutdowncondition.Anevaluationoftheeffectofthelossofpower.supplyon'theabilitytoachieveacoldshutdownconditionisalsoprovided:'--=.:-.gower.Panel-220120NC-'--~-='--'-'<:.-~;..-'.-"--.'-~,"-.~%-,.."=-"===Systems,affectedare:.-pressurizeryre~sur'ontrolsystem(PPCS).:=-';--~-"--.-.':-:.-.';;reactorregulatingsystem(RRS).'---.-"..-,+-.~'-'-'..=~-.;.--..baron:.cantrol.syste;s.-(BCS)-.-".<=.--,.~.~=-~";:-.===':=-'-.;.:-;=='steambypass.contra'i..system(SBCS)~"..=.:,>~-.-.'~-:-=-:.'-',~~,=,"',;=,':-"-='='pressurizer,.'levy>control:systemfPLCS)'--".=".--~~".--~'---Evaliiation,for-achievingcoldshutdown::-Du'etothe.'lossofpower.theRRScannotmovetheCEAsunlessthe;operator.==.-.-.-'=-.>witches,-t1Ieselector-to"-theothercha~nel~iijch;is=,'stillpowered.,-.--w-'"-:,-.+aniialc'ontrol-ofthe.'gods$i"alsoavailab>e.',:-On'e'he'reactor-is=.-:tripped;=the."RRS'illjiot=)mpa'ct.achievemen~of-cold-'sh>down.-One"~.=~~'channel.ofthe.-PLCS.gi.l.l-.lose,power,;however'.the'operatorcanswitch=--..-'=.-=-tothe'otherchannel-for1eyel-contr'ol..f,",~charjinjpumpsdonot=lose--.----~--~.-.-.yowed(manualconti,o1".'avelab1e)"and'letdci'-'ssisolated"(control;=;,,:=--"-"--'"'v'alyesclosj)should;the.-operator'otswirlchannels.-,Theoperator"==.+can,'cond'uct'.ap'ianna".coo1down.and'chieve'..t,:eshutdownboronconcen.~-=.=.p-.--"--.;%ration.'-in:the9CS:without-letdownbybalancijtg-cljarging:flowwith;----='=-.-:~--'"R-'volum'eshri'nkageofthe-'reactorcoolant.ThePPCSi(illalsolose-.=-.-"-'powerbutcan..bere-energjzedby-switchingthecharm'el.-Shouldthe.,-',:'-'-:-operytor,not',switch'channels,-'the'-pressurizer=,Heaterscanbemanuaj.3y,','.-.':-~'~:operated.and;a'uxiliary.s'prays"can'.-beope'r.ted'-fn'placeofthepres-'.='--"..-..=-:su'rizersprays-.',,Tuse-systemscan'beus~0;-to=achieve-acoldshut-::-'-s~,.-';-down.condition-.='The-.iiiipac'0"'-to"theBCS.a~d-SBCS-.will'otimpact"".-=<'C.-'1~
achievementofcoldshutdown.Reactormakeupwaterflowcontrolwillnotbeavailable,butboricacidflowcontrolis'availableforachiev-ingacoldshutdownboronconcentration.Additionally,emergencyborat'ioncanbeimplemented.HanualoperationoftheSBCSisavail-able,ortheopera'torcouldchoosetousetheatmosphericdumpvalvestorelievesecondarysystempressuretoshutdowncoolingconditions.PowerPanel221120VAC)Systemsaectearetesameasthoseofpowerpanel220(120VAC)Evaluationforachievingcoldshutdown:Theevaluationforpowerpanel220(120VAC)applieswiththefollowingexceptions:Theboricacidflowcontrollerandvolumecontroltanklevel(VCT)indicationwillnotbeavailablethereforethe,operator,byprocedure,willemergencyboratebygoingdirectlytothechargingpumpswiththeboricacidflowtoachievethecoldshutdownboronconcentration.480VHCC2A6non-essentialortion)Systemsaffectedarethesameasthose.ofpowerpannel220(120VAC).Evaluationforachievingcoldshutdown:Theevaluationforpowerpanel220(120VAC)applies.480VtiCC2B6non-essentialortionSystemsaffectedarethesameasthoseofpowerpanel221(120VAC).Evaluationforachievingcoldshutdown:Theevaluationforpower,panel221(120VAC)applies.VitalPanel2A120YACThesystemsaffectedare:feedwaterregulatingsystem(FWRS)steambypasscontrolsystem(SBCS)turbinegeneratorcontrolsystem(TGCS)Evaluationforachievingcoldshutdown:Duetothelossofpower,controlpowertoone-halfoftheFWRSwillbelost(onefeedwaterregulatingvalveandonebypassvalve),theSBCSwillnot
operate-,.buttheturbinewillrunbackinresponsetothereducedfeedwaterflow.Abackupmechanismonvitalpanel28(120VAC)controlstherunback.Shoulditnotrunbackareactortriponlowsteamgeneratorpressurewouldresult.Manualoperationofthemainor.auxiliaryfeedwaterandturbinebypassoratmosphericdumpvalvesisavailabletocontrolRCSheatremovalduringcooldowntocoldshutdownconditions.VitalPanel2B120VACThesystemsaffectedarethesameasthoseofvitalpanel2A(120VAC).'valuationforachievingcoldshutdown:Asintheevaluationof.vitalpanel2A(120VAC)onehalfoftheFHRSwillbedisabled(ccntrolpowerlosttooneregulatingandbypassvalve).ControlpowertotheSBCSwillbelostandtheturbinerunbackbackupmechanismwill.bewithoutpower.Nanualoperationofthemainorauxiliaryfeedwaterandatmosphericdumpvalves(SBCScontrolpowercompletelylost)tocontrolRCSheatremovaTduringcool-~downtocoldshutdownconditions.\VitalPanel2AandVitalPanel2B120VACThesystemsaffectedare:feedwaterregulatingsystems(FMRS)steambypasscontrolsystem(SBCS)turbinegeneratorcontrolsystem(TGCS)Evaluationforachievingcoldshutdown:ControlpowerwillbelosttotheBlRSandSBCS.TheTGCSwilllosepowertotheturbinerunbackmechanism.Areactortriponlowsteamgeneratorlevelwillresult.Automaticactuationofauxiliaryfeedwaterandopeningofthemainsteamsafetyvalveswillrelievesecondarysystempressure.TheatmosphericdumpvalvesandauxiliaryfeedwaterwillbeusedtocontrolRCSheatremovaltocoldshutdown.Bus2AB125VDC)Thesystemsaffectedare:reactorregulatingsystem(RRS)pressurizerpressurecontrolsystem(PPCS)turbinegeneratorcontrolsystem(TGCS)
0Evaluationonachievingcoldshutdo'wn:TheRRSwouldnotcontroltheCEAs.TheywouldremaininthepositiontheywereinbeforethepowerlossandcouldbecontrolledthroughtheCEGGSbytheoperatororautomaticallytrippedbytheRPSisatripsignaloccurstoshutdownreactor.ThelossofpowertotheTGCSwouldnotpermittripping'oftheturbineelectronically.Howevertheturbinecouldtiiponamechanicaltrip(e.g.overspeed)orcouldbeisolatedonamainsteamisolationsignaltoclosethemainsteamisolationvalves.RCSpressurecontrolwouldbemaintainedbythemanualcontrolofchargingandletdownauxiliaryspray.RCSheatremovaltoshutdowncoolingcouldbecontrolledbyauxiliaryormainfeedwaterandSBCSoratmosphericdumpvalves.
9,esonce.4'2o.n<(km+(n'T+em~zia..W~~=~mAa-wE/C~~.~~~..~%H>~wE'M'aMo.L!l...~W~.aQacr.'ar,0~I
gewgaw,se.420.8I(<k~~<~~>)Thenon-safetyVitalA-CPowerSuppliesarefedfromtwoStaticUninterruptiblepowersupplies(SUPS).Theseareusedtopowernon-safetyinstrumenttidlcircuits,communication,security,firedetectionandradiationmoni-20KVAand30KVA.toringsystems.Theyarebothrated120V+twopercentic60HZsinlehgpQseiy,5'vJc.The20KVASUPSfspoweredfromMC2ABforthemainfeed6MCC2ABforthebyfromMC'passsource.Thedcissuppliedfrombus2AB.The30,KVASUPSisdspowereomC2ABforthemainfeedandMCG2Cforthebypasssupply.Thedcissuppliedfrombus2C.ThebypassesfortheseSUPSareprovidedthroughaste>>downfregulatfngtransformer.TheSUPSaresodesignedtoprovidepowertoitsloadsnormallyfrthiom,emaneroughtherectifier/inverter.FailureofthismainACpowerfeedwillcausetheSUPStobepoweredfromthebattery.'hesafetyrelatedinstrumentsfortheReactorProtectiveSystemandtheEngineeredSafetyFeaturesActuationSystemispoweredfromfoursafetyrelatedinverters.'ZhefnvertersarepowereddirectlyfromtheDCbus.Xnverters2A62Carepoweredfrombattery2AandXnverters2B&2Darepoweredfrombattery2B.Eachinverterisprovidedwithamaintenancebypasstransformer.Thismustbemanuallyswitchedusuallyduringmaintenance.AtransferCircuitryisprovidedinthenon-safetySUPStoshutowntheinvertertidtothealternatesource,ononeoftheEol1wingconditions1)Lferporonanageoupu,2)Highconvertervoltageoutput3)Xnverteroutputofffre-onsownver-conditionquency.Theinvertervillalsotransfertothealternatesourcesourceonanovercurrent"conon.Twotimingrelaysare.providedinthisprotectiveciritcurytopreventieladelasppngeunitonspurioustransientsofthekindlistedabove.0tiiove.netmngTheotherconylaysthetrippingofthe.unitandissetatapproximatela60sdd1yaseconeay.10secondntrolsthetransferrinEtheunittothebypasssourceadiuceanssetat'tarseconds.IfoneoftheabovetoubleconditionsissensedthtiiIttotimeoutandat10secondstheunitvilltransfertothealternatesource.Theotherrelaycontinuesrunningfor60secondsandthenwillshuttheinverterdown.Thisschemeisemployedtoallowtransferringtothealternatesourcebeforetheunitshut/down.Allthesemalfunctionsarelarmed.automatishThesafetrelatedfnvertersarefeddirectlfromtheDCBusThimeus.enverterswilluornaysutdownonthefollowingcondifons1)LowDCvoltageinut2)HihDCinutopvltage,LowACvoltageinverterutput.TheinverterisdesignedtooperatewithintheDCsystemvoltageswinAtiming'relayisprovidedtopreventshutdownoftheinverterons'purioustransientsofthedindlisedbmngreayfssetat10seconds.Thereisnoautomatictransfertoabypasssourceonthesafetyinverters.~/voltaetovanTheACSUPSinputfsfedthrougharegulatedrectifier.ThisallthACiaowsenputgovaryandnotaffecttheDCoutput.TheregulatorwillallowtheinputACvoltage,tovary-15X+10XandnoteffectSUPSoperation.6ThesametypeunitsareemployedonUnit1withsucssfuloperation.1 0812M-1QuestionNo.420.2EngineeredSafetyFeatures(ESF)ResetControls(IEBulletin80-06)Ifsafetyequipmentdoesnotremaininitsemergencymodeuponresetofanengineeredsafeguardsactuationsignal,systemmodification,designchangeorothercorrectiveactionshouldbeplannedtoassurethatprotectiveactionoftheaffectedequipmentxsnotcompromisedoncetheassociatedactuationsignalisreset.ThisissuewasaddressedinIEBulletin80&6.ForfacilitieswithaconstructionpermitincludingOLapplicants,Bulletin80-06wasissuedforinformationonly.TheNRCstaffhasdetermined'hatallCPholders,asapartoftheOLreviewprocessaretoberequestedtoaddressthisissueAccordingly,youarerequestedtotakeactionscalledforinBulletin80-06Actions1through.4under"ActionstobeTakenbyLicensees"(acopyof806isprovidedintheattachmenttothisenclosure)~ByJuly6,1981,completethereviewverificationsanddescriptionsofcorrectiveactionstakenorplannedasstatedinAction1through3andsubmitthereportcalledforinActionItem4.ThereportshouldbesubmittedtotheNRCOfficeofNuclearReactorRegulationasalicensingsubmittalintheformofanFSARamendment.~ResonseMehavereviewedthedrawings(i.e.,CMD's)asrequiredintheBulletin80-06andhaveidentifiedthefollowingsystemsthatreturntotheirnormalpositionafteranESFASreset.Pa.SITankCheckValveLeakoffValvesHCV-3618,HCV-3628,HCV-3638andHCV-3648(CMD's280,281,282,and283)b.D.G.LockoutRelaytripblockbyESFAS(CMD's956and966)c.VCTDischargeValveV-2501(CMD161)d.StartinhibitRCPOilLiftPumps(CMD's103,107,ill,115)ControlMiringDiagrams(CMD's)areprovidedinFSARSection1.7.CORRECTIVEACTIONS&RESOLUTIONS1.Thecontrolcircuitsfortheitemsa,canddcurrentlyereundergoingmodificationfortheconformancewiththeBulletin80-06.CompletionofthismodificationisanticipatedAugust31,1981. 0812W-22.Itemb-DuringanemergencymodeofoperationsallDieselGenerators(DG)trips,exceptdifferentialcurrentandoverspeed,arebypassedbyanESFAS.ESFASresetwillrestoretneDGtripcircuitsprovidedtheemergencybustiebrea(versareclosedmanuallyuponrestorationofoifsitepower.SincetneESFASresetrestoresallDGtripsonlyiftheemergencybustiebreakersareclosed(offsitepoweravailaole),nochangesareplannedforthesecircuits.3.AllcircuitryforresetwillbetesteaandveritieoperIEBulletin80"06Etem2priortopoweroperationduringplantstart-up.
420.3gualificationofContro~lSstemsIEInformationNotice79-22OperatingreactorlicenseeswereinformedbyIEInformationNotice79-22,issuedSeptember19,1979,thatcertainnon-safetygradeorcontrolequipment,ifsubjectedtotheadverseenvironmentofahighenergylinebreak,couldimpactthesafetyanalysesandtheadequacyoftheprotectionfunctionsperformedbythesafetygradeequipment.IntheattachmenttothisEnclosurethereisacopyofIEInformationNotice79-22,andreprintedcopiesofanAugust30,1979WestinghouseletterandaSeptember10,1979PublicServiceElectricandGasCompanyletterwhichaddressesthismatter.OperatingReactorlicenseesconductedreviewstodeterminewhethersuchproblemscouldexistatoperatingfacilities.Weareconcernedthatasimilaipotentialmayexistatlightwaterfacilitiesnowunderconstruction.Youare,therefore,requestedtoperforma-reviewtodeterminewhat,ifany,designchhngesoroperatoractionswouldbenecessarytoassurethathighenergylinebreakswillnotcausecontrolsystemfailurestocomplicatetheeventbeyondyourFSARanalysis.ProvidetheresultsofyourreviewsincludingallidentifiedproblemsandthemannerinwhichyouhaveresolvedthemtoNRPbyJuly6,1981.Thespecific"scenarios"discussedintheabovereferencedWestinqhouseletteraretobeconsideredasexamplesofthekindsofinteractionswhichmightoccur.Yourreviewshouldincludethosescenarios,whereapplicable,butshouldnotnecessarilybelimitedtothen.ApplicantswithotherLWRdesignsshouldconsideranalogousinter-actionsasrelevanttotheirdesigns.Re~sonse:~'reviewofpotentialcontrolsysteminteractionsduringhighenergy.~pipebreakshasbeenconducted'forSt.LucieUnit2.ThereviewisbasedontheCombustionEngineering(C-E)genericrevieweffort.ThereviewconsideredboththespecificsystemslistedinIEInforma-tionNotice79-22andothernon-safetysystemswhichcouldpossiblyinteractwithsafetygradesystems.nA B St.LucieUnit2(InstrumentationandControlSystemsBranchguestions)Despitethelowprobabilityofahighenergylinebreakagenericreviewhasbeenperformedofthirteencontrolsystemsinvolving'fouraccidentsscenarioswhichencompassthespectrumofpostulatedhighenergy=linebreaks.Amatrixwasestablishedofthehighenergylinebreaksandcontrolfunctions(Attachment1).Inthetimeavailable,the'atrixwasreducedtoincludeonlythosesystemsandeventswhichrequirefurtherevaluation.Ageneraldescriptionoftheprocedureusedtoreducethismatrixislistedbelow:I.AninitialreviewofeachpostulatedControlFunctionfailureforeachpipebreakwascompletedandservedasthebasisforconsideration.Whereapostulatedfailurecouldpotentiallyincreasetheseverityofahighenergypipebreak,thefollowingcriteriawereemployedtoresolvetheconcern:l.IsthepostulatedControlFunctionfailuremodecredible?2.IstheControlFunctionEquipment(Sensor,Cable,etc.)qualifiedtooperateproperlyinthepostulatedenviron-ment?3.WherethepostulatedControlFunctionfailureiscredible,coulditsimpactpotentiallyaffecttheconclusionspre-sentedintheSAR?ConsiderationssuchasMaximumControlFunctioncapabilities,anddelayed,butproperoperatoractionwereemployedinthiseffort.Inseveralcases,mostnotiblythePORVfailureintheopenposition,nospecificfailuremechanismhasbeenidentified.Theonlymannerforsuchafailuretooccurwouldbeforpowertobeinadvertentlyappliedtothevalvesolenoidandnotberemoved.Partoftheshorttermrecomnendationsistoevaluatewhetherornotafailuremechanismofthistypeiscredible.Thepotentialadverseimpactofhighenergypipe'breaksonreactorcoolantpumpswasconsidered.Boththeseizedshaftandthesimultanteousthreeorfourpump'lossofflowwereeliminatedfromconsiderat>onbasedonjudgementthatthesefailuresarenotcon-sideredcrediblewithinthetimeframelimitedbyoperatoraction(30minutes)duetoenvironmentalimpactalone.Theimpactofotherpotentiallossofflowevents(e.g.,oneortwopumplossofflow)duringhighenergypipebreakswasreviewedanditwasjudgedthattheresultingrapidreactortripwassufficienttoensurethattheconclusionsoftheSARwouldnotchange.JUL248m
St.LucieUnit2(InstrumentationandControlSystemsBranchquestions)Attachment2.detailsspecificevent/interactionsscenarios.anddefinesspecificshortterm.recoranendationswhichhavebeenestablished,onagenericbasis,tominimizetheprobabilityandimpactofthepostulatedevents.Thisattachmentalsodiscussespotentiallongtermalternativeswhichhavebeenidentifiedonagenericbasis.TheresultsofareviewoftheC-EgenericevaluationappliedtotheSt.LucieUnit2,designarealsoprovidedinAttachment2.Theseresultsarediscussedafterthegenericshortandlongtermrecommendationsforeachpostulatedeventaddressed.Basedontheseresultstheitemsshownonthegeneric-matrix(Attachment1)havebeeneliminated.ThereforenodesignchangesarenecessarytoassurethathighenergylinebreaksdonotcausecontrolsystemfailurestocomplicateeventsbeyondtheFSARanalysisforSt.LucieUnit2.0J0L24%81 CONTROLFUNCTIONSANDEVENTSControlFunctionsConsideredPressurizerLevelPressurizerPressurePowerOperatedReliefValves&BlockValves;ReliefandClosureReactorCoolantFlow(RCPs)RodPosition(RRS,CEDMCS)BoronConcentration(BoronControlSystem)FeedwaterFlow(FHRS)SteamFlowtoTurbine(TGCS)SteamBy-PasstoCondenser(SBCS)SteamDumpstoAtmosphereUpstreamofMSIVsSteamDumpstoAtmosphereDownstreamofHSIVsSteamGeneratorBlowdown(SGBS)SafetyInjectionTankDepressurization/IsolationThelistedfunctionswereevaluatedinconjunctionwiththefollowingevents:SmallSteamlineRuptureInsideContainmentSmallSteamlineRuptureOutsideContainmentLargeSteamlineRuptureInsideContainmentLargeSteamlineRuptureOutsideContainmentSmallFeedlineRuptureInsideContainmentSmallFeedlineRuptureOutsideContainmentLargeFeedlineRuptureInsideContainmentLargeFeedlineRuptureOutsideContainment'mallLOCAInsideContainmentSmallLOCAOutsideContainmentLargeLOCARodEjectionc) JennieHcKenzie(202)363-92892800QuebecStreet,N.W.Washington,DAC.20008EXPERIENCECommunicationsCreatingandproducingpublicaffairsprogrammingindiscussionandaudienceparticipationformats.Initiatingandimplementingprogrammingideasintheareasofpublicaffairs,'thearts,andcommunityinvolvement.ProducinganEmmyaward-winningpublicaffairsspecialprogram.Securingandinterviewingparticipantsforon-airdiscussions.Creatingfilmandstillmontageopeningsandwrap-aroundsforprograms.PublicRelationsDevelopingcontactandmaintainingliaisonwithprintandbroadcastingmediaconcerningstationandprogramming'publicity.Ascertainingprogrammingneedsandfundingallocationsofmemberstations.Initiatingandimplementingideasforpublicitycampaigns.Researchingandsecuringpromotionalmaterials.Coordinatingandwritingpressreleasesandnewsletters.Respondingtoinquiriesreceivedbytelephoneandbymail.Administrative/HangementDirectingproductionofficestaffofthreeassi'stantsandfourstudentinternsandvolunteers.Analyzingofficeproceduresandcommunicationmaterialsduringreorganization.Creatingnewmethodsandrestructuringexistingprocedurestofacilitatecommunicationduringreorganization.Evaluatingandupdatingpreviouscorporationliteraturetofacilitatecommunicationwithmembership.Supervisingtheacquisitionandpreparationoffilmsforbroadcast.EMPLOYMENTPublicBroadcastingService,NationalPublicRadio,andotherproductioncompaniesConsultantin'rogramming,Pub1icRelationsMay1977-October1979'INationalPublicRadioWashington,D.C.Assistant-totheVicePresidentforCorporateRelationsOctober1976-Hay1977PublicBroadcastingServiceWashington,D.C.ConsultantinProgramming,PublicRelationsJanuary1976-October1976WTTG,HetromediaWashington,D.C.ProducerofPanoramaandotherproductionstaffpositions'February1973-October1975PromotionAssistantJanuary1971-February1973EDUCATION-B.A.,CatholicUniversityofAmerica,Washington,D.C. ATTACHMENT1MATRIXOFEVENTS/CONTROLFUNCTIONSdUl.24>g8)PipeBreakControlFunctionPressurizerLevelPressurizerPressurePilotOperatedReliefValvesCEAPositionFeedwaterFlowBoronConcentrationTurbineControlSteamBypassSteamDumpUpstreamofMSIYSLBXXXXXFWLBXXX,.CEAEjectionSBLOCAXLBLOCASteamDumpDownstreamofMSIVXSteamGen.BlowdownSafetyInjectionTankIsolationReactorCoolantFlowX ATTACHMENT2fJ>>DESCRIPTIONSOFRENININGEVENTSANDCONTROLFUNCTIONSI.AssessmentofControlSystemFailuresonSteamLineBreak'EventA.SequenceofEventsforGenericSARSteamLineBreakatFullPower,InsideorOutsideContainment1.Double-endedsteamlinebreakoccurs2.Reactortriponlowsteamgeneratorpressure3.HSISinitiatestoisolatethesteamgenerators,4.RCStemperaturedecreasesduetoexcessivesteamremoval5.Totalreactivityincreasesduetomoderatorcooldowneffect6.MSIVsclose7.Pressurizerempties8.LowpressurizerpressureinitiatesSIAS9.NFIVsclose10.Safetyinjectionboronreachescore,ll.Affectedsteam.generatorempties,terminatingcooldowneffect,thetransientreactivityreachespeakanddecreasesgraduallyduetoboroninjection12.Limitedornopost-tripreturn-to-power13.NofuelinDNBB.SteamLineBreakHithPORVControlSstemFailurel.SignificantInteractionEffects:a.IncreasedContainmentPressureb.AstuckopenPORVincombinationwithasteamlinebreakhasnotbeenanalyzed.2.Assumptionsa.Steamlinebreak(largebreakinsidecontainmentforItem1.Aabove,anysizeorlocationforItem1.Babove).b.InadvertentlyPORVsopenandremainopenc.PORVBlockvalvealsofailstoclosewhenrequiredd.Initialcondition:fullpower3.ItmustbeemphasizedthatnomechanismhasbeenidentifiedforthePORVtoinadvertentlyopenandremainopensinceitssignaltoopencomesfromsafetygradeequipmentandtheGarrettvalvesandsolenoidsarequalifiedforanenvironmentinexcessof400F. 4.SequenceofEventspf.a1J~a.Largesteamlinebreakoccursinsidecontainment.b.Reactortl;ipoccursonsteamgeneratorlowpressurewithin~<>98>5seconds.c.ShouldtheadverseenviroanentcausethePORVtoinadvertentlyopenandthenremainopen,thefollowingstepsmayalsooccur.Itshouldbenotedthatnomeachnismhasbeenidentifiedwhichwouldcausethis'tooccur.d.SteamfromPORVfillsquenchtankandburstsrupturediskreleasingsteamtothecontainmentandcuasingadditionalcontainmentpressurization.e.NassremovalviaPORVcauses.additionalvoidformationwithinthereactorcoolantsystem.5.Actionsa.Shortterm:2.UtilitiescontinuetoinvestigatequalificationlevelsandlocationofpowercablestoPORVsandPORVblockvalvestoassesscredibilityofthisfailuremode.EnsureoperatorstakeactiontoshutPORVandPORYblockvalveifPORVfailsopen.b.Longterm:1.CompleteassessmentofPORVsandblockvalves.Dependentontheresultsofthatassessmenta.upgradeenvironmentalqualificationlevelofPORVsandblockvalves;orb.performdetailedanalysisofeventifrequired.6.EvaluationforSt.LucieUnit2C-Ehasnotidentifiedafailuremechanismrelativetothisconcern.Furthermore,thissystemprovidesinputtotheReactorProtectiveSystemand,assuch;issafety-gradeandpost-LOCA,qualified.WedonotbelievethisitemisapplicabletoSt.LucieUnit2.C.SteamLineBreakWithFeedwaterFlowControlSstemFailure1.SignificantInteractionEffectsa.Steamgeneratorfilling-causingpotentialpipingstructuralproblems2.Assumptionsa.Smallsteamlinebreakinsidecontainmentthatdoesnotcauseaniranediatereactortrip
4.SequenceofEventsa.Largesteamlinebreakoccursinsidecontainment.gg~~b.Reactortripoccursonsteamgeneratorlowpressurewithin-~41S85seconds.c.ShouldtheadverseenvironmentcausethePORYtoinadvertentlyopenandthenremainopen,thefollowingstepsmayalsooccur.Itshouldbenotedthatnomeachnismhasbeenidentifiedwhichwouldcausethistooccur.d.SteamfromPORVfillsquenchtankandburstsrupturediskreleasingsteamtothecontainmentandcuasingadditionalcontainmentpressurization.e.MassremovalviaPORVcausesadditionalvoidformationwithinthereactorcoolantsystem.5.Actionsa.Shortterm:1.UtilitiescontinuetoinvestigatequalificationlevelsandlocationofpowercablestoPORVsandPORVblockvalvestoassesscredibilityofthisfailuremode.2.EnsureoperatorstakeactiontoshutPORVandPORVblockvalveifPORVfailsopen.1b.Longterm:1.CompleteassessmentofPORVsandblockvalves.Dependentontheresultsofthatassessmenta.upgradeenvironmentalqualificationlevelofPORVsand-blockvalves;orb.performdetailedanalysisofevent-ifrequired.6.EvaluationforSt.LucieUnit2C-Ehasnotidentifiedafailuremechanismrelativetothisconcern.Furthermore,thissystemprovidesinputtotheReactorProtectiveSystemand,assuch,issafety-gradeandpost-LOCAqualified.He.donotbelievethisitemisapplicabletoSt.LucieUnit2.C.SteamLineBreakMithFeedwaterFlowControlSstemFailure1.SignificantInteractionEffects'a.Steamgeneratorfilling-,causingpotentialpipingstructuralproblems2.Assumptionsa.Smallsteamlinebreakinsidecontainmentthatdoesnotcauseaniamediatereactortrip b.Feedwaterflowexceedssteamflowduetofailureofsteamgeneratorlevelinstrument,indicatingflowc.SARconservatismnooperatoractionwithin30minutes3.SequenceofEventsoes:notcauseanSmallsteamlinebreakoccurswhichdpb.imnediatereactortripJULgSteamgeneratorlevelinstrumentfails,causinganincreaseoffeedwaterflowinexcessofsteamflowc.Steamgeneratorbeginstofillcausingincreasedmoisturecontentofsteamd.Ifnooperatoractionoccursundefinedpipingstructuralproblemscouldresult..e.Itshouldbeemphasizedthatthiseventcanbepreventedbypromptoperatoraction.Safetygradesteamgeneratorlevelinstrumentationexists,enablingcomparisonwithcontrolgradelevelinstrumentsofthefeedsystem.4.Actiona.Shortterm5'.i.Ensuretheoperatorisawareofthispotentialinteractionsothathemaytakepromptcorrectiveactionshouditoccurb.Longtermi.Assesstheneedofupgradingsteamgeneratorlevelindi-cationtothefeedwatercontrolsystemii.AssesstheneedtoinstallasafetygradehighsteamgeneratorlevelalarmEvaluationforSt.LucieUnit2TheconcerninthisareaassumesafailureinasteamgeneratorlevelinstrumentcausingtheFHRStosupplyfeedwaterinexcessofsteamdemand,therebyfillingtheaffectedsteamgeneratorpotentiallyleadingtoexcessivemoisturecarryover.TheSt.LucieUnit2designincorporatesadesiqnfeaturethatautomaticallyclosesthefeedwaterregulatingvalvesatthehighsteamgeneratorlevelandtripstheturbineandmainfeedwaterpumpsatthehigh-highlevel.Theinstrumentationtransmittingthesignalisafourchannelsystemwithportionsqualifiedtowithstandtheadverseenvironment.Thoseportionsnotqualifiedwillnotbeexposedtotheadverseenvironment.Methereforeconcludethatthisconcernisnotapplicable-toSt.LucieUnit2.
D.SteamLineBreakWithFailureofMainSteamPathsDownstreamofMSIV's1.SignificantInt'eractionEffectsa.Increasepost-tripreturn-to-power2.Assumptionsa.Largesteam1-inebreakinsidecontainmentb.HSIVonunaffectedsteamgeneratorfailstoclose.Thissequenceofeventsispertinentonlyifthisassumptionismade.c.DownstreamofMSIV'smainsteampathsfailopend.Initialcondition:fullpowere.SARconservatismsi.endofcyclecoreii.themostreactiveCEAstuckoutiii.steamblowdownthroughsteamlinebreakJ8L2c<gs<3.Thenumberoffailureswhichmustoccurduringthiseventaresignificant.Firsttheremustbethelargebreak.ThentheMSIVontheoppositesteamgeneratormustfai1toclose.Thereisastuckrodonreactortrip..Thensteampathsdownstream'oftheHSIV'smustbeaffected.Theseincludeturbinecontrolvalvesandsteamdumpandbypassvalves.Theprobabilityofthiseventoccurringismuchlessthan10-6perreactoryear.4.SequenceofEventsIa.Large'steamlinebreakinsidecontainmentb.Reactortriponlowsteamgeneratorpressuretripsignalc.HSIVonunaffectedsteamgeneratorfailstocloseonMSISd.MainsteampathsdownstreamofHSIVopenorfailtocloseduetocontrolsystemmalfunctioncausedbyadverseenvironemntfollowinglargesteamlinebreak.e.Openmainsteampathsincreasethesteamblowdownandincreasemoderatorcooldowneffectwhichaddspositivereactivitytocore.Apost-tripreturn-to-powerismoresevereundertheseconditions.
5.Actionsa.Shortterm~S8shouldasteamlinebreakoccur,ensureoperatortakes8factiontoisolateallalternatesteamflowpathsdeterminewhetherthiseventwarrantsfurtherconsideration,inlightoflowprobabilityofallconsequentialfailureswhichmustoccurfortheevent,tobesignificantb.Longtermutilitiesinvestigateenvironmentalqualificationlevelofthesystemsinvolvedii.upgradequalificationlevelofaffectedequipmentifthisisdeterminedtobenecessary6.EvaluationforSt.LucieUnit2Thesystemswhichmustfailinordertoopenthemainsteampathdownstreamofthe1<SIVaretheturbinegeneratorcontrolsystem(TGCS)and'teambypasscontrolsystem(SBCS)';ReviewoftheSt.LucieUnit2designshowsthattheTGCSandSBCSwouldnotbeexposedtotheadverseenvironment.However,theTaveinputtotheSBCSgeneratedbytheRRScouldbeexposedtotheaccidentenvironment.TheTaveinputthough,isusedonlytoblockinitiationofaquickopeningsignalandcannotcausetheSBCSvalvestoopen.AquickopeningsignalwouldnotbegeneratedduetothelowsteamflowandpressureinputstotheSBCSsothevalveswouldremainclosed.WethereforeconcludethatthisisnotapplicabletoSt.LucieUnit2.E.Ste'amLineBreakwithAtmoshericDumValveControlSstemFailure1.SignificantInteractiona.Post-accidentcontrolledcooldown2.Assumptionsa.SteamlinebreakoutsidecontainmentandupstreamofllSIVb.Atmosphericdumpvalvesonoppositesteamlineopenandremainopen*c.SARconservatismi.nooperatoractionwithin30minutes3.SequenceofEventsa.Asteamlineb'reakoutsideofcontainmentbutupstreamoftheHSIVoccurs*Thefailuremechanismidentifiedisafailureoftheinputsignalsthatwould'ausethevalvetoopenifoperatingintheautomaticmode.Althoughnooperatoractionisassumedfor30minutespromptoperatoractiontoshuttheopenvalvewouldmitigateanyeffects'fthisevent.
b.Reactortriponlowsteamgeneratorpressurec.AtmosphericdumpvalvesupstreamofHSIV'sopenandremainopenduetocontrolsystemfailured.Ifnooperatoraction-takesplacetherewouldbethepotentialfordry-outanddepressurizationofbothsteamgeneratorse.Failuretoshutatmosphericdumpvalvescouldinhibitacontrolledplantcooldownbylimitingtheabilityoftheauxiliaryfeedpumpstodelivertothesteamgenerator(s)4.Actionsa'.Shorttermi.operateatmosphericdumpvalvesinmanual."Ude,orii.ensureoperatorshutsatmosphericdumpvalvesonsteamlineuntilcontrolisassuredJUl.2qga58>b.Longtermi.Continueinvestigation.todetermineifthisfailuremechanismisplausibleii.upgradeatmosphericdumpvalvecontrolsystemtowith-standtheadverseenvironment,ifrequired5.EvaluationforSt.LucieUnit2TheatmosphericdumpvalvesarelocatedupstreamofthemainsteamisolationvalvesatSt.LucieUnit2,andthepostulatedfailureinthisareawouldbeavalid:concernwerethesystemtobeintheautomaticmodeduringpoweroperations.However,consistentwiththeanlaysesintheFSAR,thissystemismaintainedinthemanualmodeduringnormaloperations.Mebelievethismethodof'perationadequatelyaddressesanyconcerninthisarea.II.AssessmentofImactofControlSstemFailuresonFeedLineBreakEventandCEAEjectionA.SARFeedLineBreak1..SequenceofEventsa.Hainfeedlinebreakoccursdownstreamofreverseflowcheckvalve,dischargingmainfeedandsteamgeneratorfluidb.RCSheatupduetolossofsubcooledfeedflowc.Reactortripoccursonsteamgeneratorlowwaterlevelorhighpressurizerpressure.Turbinetripoccursonreactortrip.
d.RapidRCSheatupandpressurizationduetolossofheattransferastherupturedsteamgeneratoremptiese.DepressurizationoftherupturedsteamgeneratorinitiatesHSISandisolatestheintactgeneratorf.RCSpressurizationterminateswithopeningofprimaryrelief/safetyvalvesanddecreasingcoreheatfluxg.RCScooldownbegins,controlledbythemainsteamsafetyvalvesh.AuxiliaryfeedisinitiatedautomaticallyorbyoperatoractionB.FeedLineBreakMithRCSInventorControlFailure1.SignificantInteractionEffecta.IncreasedRCSpressurizationduetoliquidfilledpressurizer2.Assumptionsa.Smallfeedlinebreakinsidecontainmentb.Adverseenvironmentimpactspressurizerlevelinstrumentcausingindicationtofaillowwhichcausesthecontrolsystemtoincreaseinventory(andpressurizerlevel)c.Initialconditions102Kpower'i.steambypasscontrolsysteminmanualmodeiii.beginning-of-cyclecoreparametersd.Analysisconservatismsi.nooperatoractionforatleast30minutesnocreditforsteamgeneratorlow.waterleveltripinrupturedunituntilemptyheattransferinrupturedsteamgeneratorinstantaneouslyterminatedonemptyingiv.failureofthefeedlinereverseflowcheckvalve,ifJgpthebreakoccursupstreamofthevalve34@8<
3.SequenceofEventsa.Feedlinebreakincontainmentb.Mainfeedspillsfrombreak3'ivJU)pg]c.AdversecontainmentenvironmentcausespressurizerlevelindicationtofaillowcausingRCSinventorytoincreased.Reactortripoccursonsteamgeneratorlowwaterlevelonhighpressurizerpressure.Turbinetripsonreactortripe.RCSheatupresultsfromrapiddecreaseinSGheattransferduetolossoffluidfromtherupturedsteamgeneratorf.Pressurizerreliefand/orsafetyvalvesopeng.Potentialforpressurizertofillwithliquidexistsduetohighlevelinpressurizerpriortoheatup.Relief/safetyvalvereliefcapacityreducedbyliquiddischargeh.ExtentofincreasedRCSpressurizationisdependentontimeofpressurizerfillingrelativetotherapidheatup4.Actionsa.Shorttermalertoperatortothispotentialfailuremode,sothatpromptcorrectiveactioncanbetakenb.Longtermi.PerformplantspecificanalysestodetermineupperlimitallowableforpressurizerlevelwhichisconsistentwiththemaximumrateoflevelincreaseandthemaximumRCSexpansionduringthepotentiallyrapidheatupassociatedwithfeedlinebreaksii.upgradepressurizerlevelinstrumentation5.EvaluationforSt.LucieUnit2TheC-Econcernpostulatesthefailureofapressurizerlevelinstrumentinthecontrolsystem,which,intheabsenceofoperatoraction,causesthepressurizertofill,thereby'llowingthereactorcoolantsystemtogosolid.AsdiscussedinourresponsetoIEBulletin79-01,thelevelinstrumentsarepost-LOCAqualified.Hethereforedonotbelievethereisaconcerninthisarea.
C.FeedLineBreakWithPORVControlFailure1.SignificantInteractionEffect'sJULp~24881a.AfailedopenPORincombinationwithafeedlinebreakhasnotbeenanalyzed2.Assumptionsa.Feedlinebreakinsidecontainmentb,PORV'sinadvertentlyopenandremainopenc.PORVblockvalvealsofailstoclosewhenrequiredd.Nooperatoractionuntil20minutes3.PORVwouldnotbeexpectedtoremainopenduetoactuationmalfunctionsinceGarrettvalvesandsolenoidsarequalifiedfortemperaturesinexcessof400'F4.SequenceofEventsa.Feedlinebreakoccursinsidecontainmentb.Steamgeneratorfluidand/or,mainfeedspillfrombreakc.RCSheatupandpressurizationresultsfromlossoffeedflowd.PORVopensonhighpressureandfailstorecloseduetoadverseenvironmente.Reactortripoccursonhighpressurizer'pressure.Turbinetripsonreactortripf.RCSdepressurizationoccursifPORV'sfailtorecloseg.tossremovalviaPORVcausesvoidformationwithinRCSh.FeedlinebreakincombinationwithafailedopenPORVhasnotbeenanalyzed5.Actionsa.Shorttermi.utilitiesinvestigate.qualificationlevelandlocationofpowercablestoPORV'sandPORYblockvalvestoassesscredibilityofthis.failuremodeii.ensureoperatorstakeactionstoshut'ORV'sandPORVblockvalves,shouldthisfailureoccur 0 'Cb.Longterm'.CompleteassessmentofPORV'sandblockvalves.DependentonresultsofthatassessmentrA.upgradeenvironmentalqualificationlevelofPORV'andblockvalves,orc~j'.performdetailedanalysisofevent,ifrequired6.EvaluationforSt.LucieUnit2C-Ehasnotidentifiedafailuremechanismrelativetothisconcern.Furthermore,thissystemprovidesinputtotheReactorProtectiveSystemand,assuch,issafety-gradeand-post-LOCAqualified.MedonotbelievethisitemisapplicabletoSt.LucieUnit2.D.FeedLineBreakWithFeedwaterControlFailure1.SignificantInteractionEffectsa.Overfillingofthesteamgenerator(s)causingpotentialstructuralproblems2.Assumptionsa.'mallfeedlinebreakinsidecontainmentb.Feedcontrolinautomaticmodec.Adverseenvironmentcausessteamgeneratorlevelindica-tiontofaillowwhichcausesthefeedcontrolsystemtoincreasefeedflowabovethesteamflowd.Nooperatoractionfor30minutes3.SequenceofEventsa.Asmallfeedlinebreakoccursinsidecontainmentb.Hainfeedspillsfrombreakc.Steamgeneratorlevelinstrumentfailsindicatinglowandcausesincreasedfeedflowinexcessofsteamflowd.Steamgeneratorbeginstofillcausingincreasedmoisturecontentofsteame.Ifnooperatoractionoccursundefinedstructuralproblemscouldresult 0S enef.Itshouldbeemphasizedthat.thiseven="cnbypromptoperatoraction.Safetygradelevelinstru-.mentationexiststocomparetocontrolgradeinstruments.Thefeedsystemcanthenbecontrolledmanually4.Actionsa.Shortterm+~>4I>~i.ensure-the'peratorisawareofthepotentialfailuremodesothehemaytakepromptcorrectiveaction,shoulditoccurii.assesstheneedtoinstallsafetygradehighsteamgeneratorlevelalarm5.EvaluationforSt.LucieUnit2TheconcerninthisareaassumesafailureinasteamgeneratorlevelinstrumentcausingtheFWRStosupplyfeedwaterinexcessofsteamdemand,therebyfillingtheaffectedsteamgeneratorpotentiallyleadingtoexcessivemoisturecarryover.TheSt.LucieUnit2designincorporatesasafetygradedesignfeaturethatautomaticallyclosesthefeedwaterregulatingvalvesatthehighsteamgeneratorlevelandtripstheturbineandmainfeedwaterpumpsatthehigh-highlevel.Theinstrumenta-tiontransmittingthesignalisafourchannelsystemwithportionsqualifiedtowithstandtheadverseevnironment.Thoseportionsnotqualifiedwillnotbeexposedtotheadverseenvironment.WethereforeconcludethatthisconcernisnotapplicabletoSt.LucieUnit2.E.FeedlineBreakHithAtmosphericSteamDumpControlFailure1.SignificantInteractionEffectsa.Controlledplantcooldown2.Assumptionsa.Feedlinebreakoutsidecontainmentanddownstreamofreverseflowcheckvalveb.Adverseenvironmentimpactstheatmosphericsteamdumpcontrolonunaffectedsteam.-generatorcausinganun-controlledsteamreleaseupstreamoftheHSIY'sc.Nooperatoractionuntil30minutes**Thefailuremechanismidentifiedisafailureoftheinputsignalsthatwouldcausethevalvetoopenifoperatingintheautomaticmode.Althoughnooperatoractionisassumedfor30minutes,promptoperatoractiontoshuttheopenvalvewouldmitigateanyeffectsofthisevent.
3.SequenceofEventsa.Feedlinebreakoccursoutsidecontainmentdownstreamofcheckvalve.b.Steamgeneratorfluidand/ormainfeedspillfrombreakc.Reactortripoccursonsteamgeneratorlowwaterlevelorhighpressurizerpressure.TurbinetripoccursonreactortripJ0$g4$98)d.Steamgeneratorpressure'increasesfollowingturbinetripe.EnvironmentcouldcauseatmosphericdumpvalvesupstreamofHSIVinunaffectedsteamgeneratortoopenandremainopenf.Ifnooperatoractiontakesplacetherevrouldbeapotentialfordryoutanddepressruizationofbothsteamgeneratorsg.Depressurizationofbothsteamgeneratorsmaylimittheabilityoftheauxilairyfeedpumpstodelivertothesteamgenerator(s)4.Actionsa.Shorttermoperateatmosphericsteamdumpvalvesinthemanualmode,orensurethattheoperatorisawareofthispotentialinteractionsothatpromptcorrectiveactioncanbetakenb.Lonqtermi.continueinvestigationtodetermineifthisfailuremechanismisplausibleii.upgradeatmosphericdumpvalvecontrolsystemenviron-.mentalqualificationifrequired5.EvaluationforSt.LucieUnit2TheatmosphericdumpvalvesarelocatedupstreamofthemainsteamisolationvalvesatSt..LucieUnit2,andthepostulatedfailureinthisareawouldbeavalidconcernwerethesystemtobeintheautomaticmodeduringpoweroperations.However,consistentwiththeanalysesintheFSAR,thissystemismaintainedinthemanualmodeduringnormaloperations.,Mebelievethismethodofoperationadequatelyaddressesanyconcerninthisarea.
- fIx.:iIII.PotentialEffectofReactorReulatinSstemBurinHihEnero~PiesBreakEventsA.CEApositionmalfunctionsduetosteamandfeedlinebreaksandCEAejectiondtJL24i98fl.Significantinteractioneffect:a.Potentiallyhigherreactorpowerlevelspriortoreactortripthanpresentlyanalyzed2.Assumptionsa.Smallhighenergypipebreakinsidecontainmentb.Reactorregulatingsysteminautomaticmodec.'dverseenvironmentresultsinalowindicatedpowerlevelfromtheex-coresensorinputtotheReactorRegulating.SystemcausingCEAstobewithdrawn3.Sequenceofeventsa.Highenergypipebreakinsidecontainmentofasmallenoughsizewhereiranediatereactortripdoesnotoccurb.Controlgradeex-coresensorindicationfailslowduetoadverseenvironmental.impactc.ReactorregulatingsystemcausesCEAstobewithdrawnd.Reactorpowerexceedsthepowerpreviouslyassumedduringthetransiente.Reactortripoccursduetohighenergypipebreakatconditionsnotconsideredinpresentanalyses4.Actionsa.Shorttermi.placethecontrolelementdrivesysteminmanualii.Modifyemergencyprocedurestostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeex-coredetectorsduringhighenergypipebreaksb.Longtermi.evaluatetheconsequencesofsmallhighenergypipebreaksincontainmentwithCEAwithdrawl,ifrequiredii.ifrequired,upgradetheenvironmeritalqualificationlevelofthecontrolgradeexcoredetectorsystem 5.EvaluationforSt.LucieUnit2TheC-Econcernregardin'gcontrolrodwithdrawalwiththeReactorRegulatingSystem(RRS)inautomaticcontrolisconsideredvalid.However,consistentwiththeanalysesintheFSAR,thissystemismaintainedinthemanualmodeduringnormaloperations.Webelievethismethodofopera-tionadequatelyaddressesanyconcerninthisarea.'JULzg]98)
"t~B.SmallBreakLOCAWithCEAControlSystemMalfunctioSignificantinteractioneffects'J>>~a.Potentialexistsforincreasingpower.Thiswouldcausepressuretoremainabovelowpressurizerpressuretripforalongerperiodthanpreviouslyassumed2.Assumptionsa.SmallbreakLOCAinsidecontainmentb.CEAcontrolsysteminautomaticmode'.AdverseenvironmentimpactsCEAcontrolsystemorrelatedsensorsresultinginconsequentialfailured.ControlsystemcausesCEAtowithdrawe.StandardLOCAlicensingassumptions3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainmentb.CEAcontrolsysteminautomaticmodec.Adverseenvironmentcausedbyrupturepotentiallycausesexcorepowerindicationto'indicatelowpowerleveld.ShouldCEAsbegintowithdraw,themagnitudeoftheover-powerexcursionpriortoscramwouldbeincreased.ThiscouldproduceahigherprimarysystempressurewhichcouldthendelayreactortripandSIASandresultinhigherpeakcladtemperature4.Actiona.ShorttermIi.Placethecontrolelementdrivesysteminmanual.ii.ModifyemergencyprocedurestostatethattheoperatorshouldnottakeanycontrolactionbaseduponreactorpowerasmeasuredbythecontrolgradeexcoredetectorsduringaLOCA.b.Longtermi.EvaluatetheconsequencesofasmallbreakLOCAwith-CEAwithdrawal,andifrequiredupgradetheenvironmentalqualificationlevelofthecontrolgradeexcore.instrumentation
5.EvaluationforSt.LucieUnit2TheC-Econcernregardingcontrolrodwithdrawalwiththe~24fg~ReactorRegulatingSystem(RRS)inautomaticcontrolis8fconsideredvalid.However,consistentwiththeanalysesintheFSAR,thissystemismaintainedinthemanualmodeduringnormaloperations.Hebelievethismethodofoperationadequatelyaddressesanyconcerninthisarea.C.SmallBreakLOCAwithSITIsolationMalfunction1.Significantinteractioneffectsa.Potentialexistsforinjectionofnon-condensiblegasintotheRCS.Thiscouldcauseproblemswithnaturalcirculationandheattransferinthesteamgeneratorsshouldthegascollectthere.2.Assumptionsa.SmallbreakLOCAinsidecontainmentb.Adverseenvironmentimpactssafetyinjectiontank(s)isolationresultinginconsequentialfailure,-c.,Operatorcannotisolatethesafetyinjectiontank(s)d.StandardLOCAlicensingassumptions3.Sequenceofeventsa.SmallbreakLOCAoccursinsidecontainmentb.AdverseenvironmentcausedbyrupturedisablesSITisolationmechanismc.OperatorisunabletoisolatetheSIT(s)andnon-condensiblegas(nitrogencovergas)enterstheRCS.d.Possibilityexistsfordegradednaturalcirculationflowand/orbuildupofgasesinthesteamgeneratorscausingheatupofRCS.4.Action,a.Shorttermi.InstructoperatorthatthepossibilityofgasformationexistsifSITsare.notisolated.'ii.IdentifydrainlinesthatcouldbeusedtodraintheSITsandtheirqualificationlevels 0 b.Longtermi.Evaluateoptionsforprovidinganothermeansof'isolatingtheSITsandrevisethedesignasnecessarpPLQ4g@EvaluationforSt.Lucie2Thevalvesandinstrumentationandcontrolsystemsareenvironmentallyqualifiedtowithstandtheadverseenvironment.Backupmeansarealsoavailabletode-pressurizetheSITsandtherebypreventnon-condensiblegasesfromenteringtheRCS. 0 0804W-1uestionNo.420.4ControlSstemFailures~CTheanalysesreportedinChapter15oftheFSARareintendedtodemonstratetheadequacyofsafetysystemsinmitigatingJgganticipatedoperationaloccurrencesandaccident's.BothCongress~4f/']andACRShaveraisedanissueinthisarea.CommissionerAhearnehasrespondedtoCongressregardingthisissue(refertoIattachmenttothisenclosure)andpartofhisresponsereferredtocontrolsystemreviewstobeperformedinconnectionswithOLlicensing.BasedontheconservativeassumptionsmadeindefiningtheseChapter15design-basiseventsandthedetailedreviewoftheanalysesbythestaff,itislikelythattheyadequatelyboundtheconsequencesofsinglecontrolsystemfailures.Toprovideassurancethatthedesign'basiseventanalysesadequatelyboundothermorefundamentalcrediblefailuresyouarerequestedtoprovidethefollowinginformation:(1)Identifythosecontrolsystemswhosefailureormalfunctioncouldseriouslyimpactplantsafety.(2)Indicatewhich,ifany,ofthecontrolsystemsidentifiedin(1)receivepowerfromcommonpowersources.Thepowersourcesconsideredshouldincludeallpowersourceswhosefailureormalfunctioncouldleadtofailureormalfunction-ofmorethanonecontrolsystemandshouldextendtotheeffectsofcascadingpowerlossesduetothefai:lureofhigherleveldistributionpanelsandloadcenters.(3)Indicatewhich,ifany,ofthecontrolsystemsidentifiedin(1)receiveinputsignalsfromcommonsensors.Thesensorsconsideredshouldinclude,butshouldnotnecessarilybelimitedto,commonhydraulicheadersorimpulselinesfeedingpressure,temperature,levelorothersignalstotwoormorecontrolsystems.(4)Providejustificationthatanysimultaneousmalfunctionso'thecontrolsystemsunidentifiedin(2)and(3)resultingfromfailuresormalfunctionsoftheapplicablecommonpowersourceorsensorareboundedbytheanalysesinChapter15andwouldnotrequireactionorresponsebeyondthecapabilityof~operatorsorsafetysystems.420.4-1 0804M-2~Resense:Thecontrolsystemswhosefailuresormalfunctionsmayimpact,plantsafetyareshovnbelow:FeedwaterRegulatingSystemrTurbine-Generator.ControlSystemSteamBypassControlSystemADVControlSystemBoronControlSystemReactorRegulatingSystemControlElementDriveMechanismControlPressurizerPressureControlSystem~sPressuriperLevelControlSystemReactorControlPumps.PowerOperatedReliefValvesSteamGeneratorBlowdownSystem~~><fS8i(2)a(4)Thecontrolsystemsidentifiedin(1)thatreceivepowerfromcommonpowersourcesareidentifiedbelow.Theeffectoflosingthepowersourcesandanevaluationofplantresponsearealsoprovided.Theresultsofthisevaluationprovidejustificationthatanysimultaneousmalfunctionsof'controlsystemsidentifiedherein,resultingfromcommonpoversupplymalfunctionsareboundedbytheanalysisofChapter15andwouldnotrejuireactionorresponsebeyondthecapabilityofoperatorsorsafetysystems.ImactofLossofCommonPowerSourcesLossof120VACfromPowerPanel220ThispowerlosswillimpactthePressurizerLevelControlSystem(PLCS),thePressurizerPressureControlSystem(PPCS),tneReactorRegulatingSystem(RRS),theBoronControlSystem(BCS),andtheSteamBypassControlSystem(SBCS).Specifically,thePLCSwilllosecontrolpover,assumingtheselectorswitchisonthat'channel(itwillbeunaffectedifontheotherchannel).Theletdowncontrolvalvevillgotoitsfailclosedpositionandthe420.4-2 chargingpumpswillremainpowered,andavailableformanual'ontrol.ThePPCSwilllosecontrolpower,assumingtheselectorswitchisonthatchannel.Thepressurizersprayvalvewillgotoitsfailclosedpositionandthepressurizerheaterswillremainpoweredandavailableformanualcontrol.Additionallythelow-lowlevelautomaticcut-offofthepressurizerheaterswilllosecontrolpower.TheRRSwilllose.powerassumingtheselectorswitchisonthatchannel(itwillbeunaffectedifontheotherchannel).Thecontrolelementassemblieswillremainintheirpositi'onpriortothepowerloss.TheBCSwillnot,completelybelost.Thereactormakeupwaterflowcontrollerwilllose'powerwiththeboricacidflowcontrollerunaffected.Theletdownlinewillbeaffectedwiththetemperatureelementsfortheregenerativeandletdownheatexchangerslosingpower,however,the.letdownlinewillbeisolatedbytheletdowncontrolvalvesmentionedpreviously.TheSBCSwillnotreceiveaTaeinputfromtheRRSwhichmaycausetheturbinebypassvalvestoremainclosed.SecondarypressurereliefandRCSheatremovalcontrolcanbeaccomplishedthroughthemainsteamsafetyvalvesandatmosphericdumpvalves.EvaluationofPlantResponse:ThelossofthePLCS,PPCS,RRS,BCS,andSBCSduetolossof120VACfrompowerpanel220willnotseriouslyimpactplantsafety.Thereactorcouldfunctionforatimewithoutoperatoractionbeforeareactortripwouldresult(mostlikelyonhighpressurizerpressure).The.operatorcanchoosetoselecttheotherchannelforcorrectoperationofthePLCS,PPCS,andRRS.However,manualcontrolofthecharging.pumps,pressurizerheaters,auxiliarysprays,andturbinebypassvalvesisavailable.Theoperatorwillstillhavecontroloftheboricacidflowtothechargingpumpsandhecanchoosetoaligntherefuelingwatertanktochargingifnecessary.Lossof120VACfromPowerPanel221ThispowerlosswillimpactthePressurizerLevelControlSystem'(PLCS),thePressurizerPressureControlSystem(PPCS)andtheReactorRegulatingSystem(RRS),theBoronControlSystem(BCS),andtheSteamBypassControlSystem(SBCS).'pecifically,thesameimpactaswiththelossof120VACfrompowerpanel220willoccurwiththefollowingexceptions:Thereactormakeupwaterflowcontrolwillremainpowered,however,'heboricacidflowcontrollerwilllosepower.420.4-3
0804W-4Additionallythetemperatureelementontheletdow'nheatexchangercontrollingthecomponentcoolingwatercontrolvalvewilllosepower.ThevolumecontroltanklevelinputstotheBCSwilllosepower.Alsothestationalarms(annunciators)willtransferto125VDCpower.EvaluationofPlantResponseTherewillbenoseriousimpacttoplantsafetyfortheeventpresentedabove.Intheabsenceofoperatoractionthereactorwouldeventuallytrip(onhighpressurizerpressure).However,theoperatorwouldbealertedtosuchaneventduetoincorrectpressurizerpressurelevelindicationsinthecontrolroom.HemaychoosetoswitchtheredundantchannelforcorrectoperationofthePLCS,PPCS,andRRS.However,manualcontrolofthechargingpumps,pressurizerheaters,andauxiliaryspraysisavailable.Theoperatorcanalsobypasstheboricacidflowcontrollerandprovideboratedwaterdirectlytothechargingpumpsoraligntherefuelingwatertank.Lossof480VACC2A6(non-essentialortion)Theimpactoflosingthismotorcontrolcenter(MCC)issimilartothelossof120VACfrompowerpanel220,sincepowerpanel220receivespowerfromthisMCC.EvaluationofPlantResponse:Theplantresponseforlossofpowerpanel220(120VAC)applies.'ossof480VMCC2B6(non-essentialortion),TheimpactoflosingthisMCCissimilartothelossof120VACfrompowerpanel221,sincepowerpanel221receivesitspowerfromthisMCC.EvaluationofPlantResponse:Theplantresponseforlossofpowerpanel221(120VAC)applies.Lossof120VACVITALPANEL2AThislossofpowerwillimpacttheFeedwaterRegulatingSystem(FWRS),SteamBypassControlSystem(SBCS)andtheTurbineGeneratorControlSystem(TGCS)~Specifically,intheFWRScontrol'powertooneregulatingvalveandbypassvalvewillbelost.Additionally,mainsteamflowinputtotheSBCSfromtheFWRSisnottransmittedfromonechannel.Theturbinerunbackmechanismwillbewithoutpower.420.4&
0804W-5EvaluationofPlantResponse:Thefeedwaterregulatingsystemwillstillcontroloneregulating~andbypassvalve.Thelossoftheturbinerunbackfunctionisbackedupbyinstrumentationon120VACvitalPanel2Bwhichwillrunbacktheturbineinresponsetothedecreasedfeedwaterflow.Shouldtherunbacknotop'crateproperly,areactortripmayresultonlowsteamgeneratorpressure.Manualoperationoftheatmosphericdumpvalvesandauxiliaryfeedwaterisavailable.ShouldtheSBCSoperateproperlyorreactortripnotoccurtneplantwouldstabilizeatadecreasedpowercondition.120VACVitalPanel2BThislossofpowerwillimpacttheFeedwaterRegulatingSystem(FWRS),SteamBypassControlSystem(SBCS),andtheTurbineGeneratorControlSystem(TGCS).Specifically,intheFWRScontrolpowertooneregulatingvalveandonebypassvalvewillbelost.Additionally,controloftheSBCSwouldbelost.TheTGCS'ouldremainfunctional,butwouldsufferalossofthebackuptotheturbinerunbackfunction.EvaluationofPlantResponse:TheFWRSwillstillcontroloneregulatingandonebypassvalve.TheSBCSwillbewithoutcontrolpowerandtheturbinewouldrunbackinresponsetodecreasedfeedwaterflow.Shoulditnotrunbackareactortripmayresulton'lowsteamgeneratorpressure.Theauxiliaryfeedwaterandatmosphericdumpvalvesareavailable.forRCSheatremoval.Shouldareactortripnotbe-generatedanewsteadystateatadecreasedpowerlevelwouldoccur.Loss.of120VACVitalPanels2Aand2BThispowerlosswillimpacttheFWRS,SBCS,andTGCS.Specifically,feedwaterandsteambypasscontrolwouldbelostandthe,turbinerunbackmechanismwouldlosepower.EvaluationofPlantResponse:Areactortriponlowsteamgeneratorlevelwillresult.Automaticactuationofauxiliaryfeedwaterandopeningofthemainsteamsafetyvalveswillrelievesecondarysystempressure.TheatmosphericdumpvalvesandauxiliaryfeedwaterwillbeusedtocontrolRCSheatremoval.4!C420.4-5JUI.24198$. 0804M-6Lossof125VDCBus2ABThispowerlosswillimpacttheRRS,thePPCSandtheTGCS.Specifically,controloftheRRSandPPCS,bothchannelswouldbedisabled.Theturbinetripsolenoidsandgeneratorunderfrequencylockoutrelayswouldbedisabled.Theturbinetripsolenoidsandgeneratorunderfrequencylockoutrelayswouldbewithoutpower.EvaluationofPlantResponse:TheCEAswouldremaininthepositiontheywereinbeforethepowerlossandcouldbecontrolledthroughtheCEDMCSbytheoperator.MithoutthePPCS,pressurecontrolwouldbemaintainedbymanualcontrolofthechargingpumpsandletdownandauxiliarysp'ray.Shouldareactortripresult,theturbinewouldnottripelectricallybutwouldbetrippedautomaticallyonamechanicaloverspeedtrip.IfrequiredthemainsteamisolationvalveswouldcloseisolatingtheturbineandmaintainingRCSheatremovalfunctions.420.4-6 0810M-1QuestionNo.420.43.a4.~lmactofFailureinCommonSensorsThecontrolsystemsidentifiedin(1)thatreceiveinputsignalsfromcommonsensorsareidentifiedbelow.Descriptionsoftheeffectofthemalfunctionsonthecontrolsystemsandanevaluationofplantresponseandbackupsystemavailabilityarealsoprovided.Prudentengineeringjudgementbasedonknowledgeofsystemdesignandtransientanalysiswasusedtodevelopthesedescriptions.Theresultsofthisevaluationprovidejustificationthatanysimultaneousmalfunctionsofcontrolsystemsidentifiedherein,resultingfromcommonsensormalfunctionsareboundedbytheanalysesofChapter15andwouldnotrequireactionorresponsebeyondthecapabilityofoperatorsorsafetysystems.MalfunctionofPressurizerPressureSinal(fallslowtotheRRSandPPCSIfmalfunctioncausesalowpressurizerpressuresignaltobetransmitted,thepressurizersprayswouldshutoffandtheRRSwouldadjusttheCEAstoaccommodatealowpressureinput,therebyincreasingpower.EvaluationofPlantResponse:Thereactorwouldtriponhighpressurizerpressureorhighpowerduetocontrolsystemactions.Theoperatorcouldde-energizetheheatersmanuallyandcontrolpressurewiththechargingandletdownsystemsandauxiliarysprays.Shouldthereactornottrip,becausetheappropriatetripsetpointswerenotreachedbytheaffectedparameters(pressureandpower),anewsteadystateshouldbereached.Operatoractioncouldmaintainpoweroperationuntilthesensorcouldberepaired.EvaluationofPlantResponse:TheincreasedheatoutputfromtheRCSduetoraisingtheregulatingCEAsincreasesthesteamflowtotheturbine.TheSBCSreceivesahighTavesignalfromtheRRS.AmismatchbetweenTaveandpressureinthesteamheaderasmeasuredbytheSBCSopenstheturbinebypassvalves.TheopeningofthesevalvessendsanautomaticwithdrawalprohibittothecontrolelementdrivemechanismcontrolsystemstoppingCEAwithdrawal.TheoperatorcanmanuallylowertherodsorswitchtotheotherRRSchanneltoresumeastablecondition.'"K%3420.4-7JUL2488$
0810W-2MalfunctionofMainSteamFlowSinal(fallslow)totheFWRSandSBCSIfthemalfunctioncausesalowsteamflowsignaltobetransmitted,theFWRSwillreducefeedwaterflowandtheSBCSwillnotopentheturbinebypassvalves.EvaluationofPlantResponse:Themismatchbetweenfeedwaterflowandturbinedemandwouldproduceareactortriponlowsteamgeneratorlevel.TheauxiliaryfeedwatersystemandmanualcontroloftheSBCSoratmosphericdumpvalvesisavailabletoachieveastabilizedplantcondition.'alfunctionofMainSteamFlowSinal(fallshih)totheFWRSandSBCSIfthemalfunctioncausesahighsteamflowsignaltobetransmitted,theFWRSwillincreasefeedwaterflowandtheSBCSmayopentheturbinebypassvalvestorelievesteamflowbasedontheTaveinputfromtheRRS.EvaluationofPlantResponse:Thesteamgeneratorlevelwillincreaseandtheremaybeasteamgeneratorpressuredecreaseiftheturbinebypassvalvesopen.TheoperatorcouldmanuallycontroltheFWRSandSBCSbasedon'teamgeneratorlevelandpressureindicationsinthecontrolroom.Shouldtheoperatornottakeactionahighsteamgeneratorlevelsignalwouldclosethefeedwaterregulatingvalvesandtriptheturbine.Areactortriporturbinetripwouldfollowwithactuationofauxiliaryfeedwateronsteamgeneratorlowlevelsignal.AuxiliaryfeedwaterandmanualoperationoftheSBCSoratmosphericdumpvalvesprovideamechanismforRCSheatremovaltostabilizetheplant.420.4&
- 0.
0810W-3CommonLines/Sensors13172-310-110Rev.10CommonTa3/4-RC-127Ins.P,TLFPDT-1121'CPDT-1124ZPDT-1124Y(p)Process/Saf'et(S)SIndicationOnlyIndicationOnly1-RC-1041-RC-1051-RC-1301-RC-1072998WW74Sh.1SG2B1PT-1104PT"1102(C)PT-1103PT-1108PT-1102(A)PT-1100(X)LT-1105LT-1110XLT-1110YPT-1100YPT-1102(B)PT-1107PT-1105PT-1106PT-1102(D)SSSIndicationOnlySPIndicationOnlyP6SP6SPSIndicationOnlySSSI-1"WS1-1082998M-079Sh.1SG2AlI-1"MS1-100LT-9023ALT-9021LT-9013A"LT-9011SPindicatesSPI-1"MSl-101PT-8013ALT-9013ALT-9011SSPI-1"Msl-102PT-8013BLT-9013BSSI-1"MS1-103LT-9013B420.4-9 0810W-4CommonTaI-1"Msl-104Ins.P,TL,F~PT-8013CPT-.8113LT-9013C(P)Process/Safet(S)SSindicationSI-1"Msl-104I-1"Msl-106LT-9013LPT-8013DLT-9005LT-9013DLT-9113LT-9012SSPSSindicatePI-1"Msl-116LT-9012LT-9013PSI-1"MS1-107LT-9005LT-9013DPSI-1"Msl-109I-1"MS1-110LT-9021LT-9023APT-8023APT-8023BLT-9023BPindicatesSSI-1"MSl-illI-1"MSl-112I-1"Msl-113I-1"Msl-114'T-9023BPT-8023LPT-8123LT-9023CLT-9023CPT-8023DLT-9006LT-9023LT-9022LT-9123SSindicationSSPindicatesSPPindicatesI-1"Msl-117I-1"Msl-115LT-9123LT-9022LT-9023LT-9006420.4-10PindicatesPindicatesSPindicatesPg(lf4i).~~<a<]ss>
0810W-5MalfunctionofPressurizerPressureSignal(fallshih)totheRRSandPPCSIfthemalfunctioncausesahighpressurizersignaltobetransmitted,thepressurizersprayswouldcomeonandthepressurizerheaterswouldbede-energized.TheRRSwouldadjusttherodsinresponsetothehighpressuresignaltherebydecreasingreactorpower.EvaluationofPlantResponse:Thereactorwouldtriponlowpressurizerpressure,andaSIASmayresult.Theoperatorcouldclosethesprayvalvesandusethechargingandletdownsystemsandauxiliaryspraytocontrolprcssure'houldthereactornottripduetoaffectedparametersnotreachingthetripsetpoints,,anewsteadystatewouldbereached.Operatoractioncouldmaintainpoweroperationuntilthesensorcouldberepaired.MalfunctionofPressurizerLevelSignal(fallslow)tothePLCSandPPCSIfmalfunctioncausesalowpressurizerlevelsignaltobetransmitted,thechargingflowwouldincreaseandletdownflowwoulddecrease.Thepressurizerheaterswould.bede-energizedifalowenoughsignalwastransmitted.EvaluationofPlantResponse:Increasingpressurizerlevelwooldbeidentifiedbytheoperatoronlev'elindicationandalarminthecontrolroom.Manualcontrolofthechargingandletdownsystemscouldpreventtheoverfillingofthepressurizerandprecludeareactortriponhighpressurizerpressure.MalfunctionofPressurizerLevelSignal(fallshih)tothePLCS'andPPCSIfmalfunctioncausesahighpressurizerlevelsignaltobetransmitted,thechargingflowwoulddecreaseandletdownincrease.Evaluationof.PlantResponse:Adecreasingpressurizerlevelmaylead'toapossiblereactortriponlowpressureandSIASiftheoperatordoesnotintervene.TheSIASwouldisolateletdownandchargingwouldbeavailabletorestorepressurizerlevel.OperatorcouldavertareactortripandSIASthroughmanualcontrolofchargingandletdownbasedonlevelindicationincontrolroom-420.4-11jijiwf
0810W-6MalfunctionofFirstStaeTurbinePressureSinal(fallslow)totheRRSIfthemalfunctioncausesalowpressuresignaltobetransmittedtheRRSwilllowertheCEAstoproduceaTavecommensuratewiththelowpressuresignal.ThisTaveoutputsignalistransmittedtotheSBCSaffectingitsoperation.,EvaluationofPlantResponse:ThereducedheatoutputfromtheRCSduetotheloweringoftheregulatingCEAsreducesthesteamflowtotheturbine.TheSBCSreceivesalowTavesignalfromtheRRSsothevalveswillnotopen.Areactortripwouldoccuron'lowsteamgeneratorpressurewithapossibleMSIS.ThemainsteamsafetyvalvesandatmosphericdumpvalvesareavailableforcontrollingRCSheatremoval.MalfunctionofFirstStaeTurbinePressureSinal(fallshih)totheRRSIfthemalfunctioncausesahighpressuresignaltobetransmittedtheRRSwillraiseregulatingCEAstoproduceaTavecommensuratewiththehighpressuresignal.ThisTaveoutputsignalistransmittedtotheSBCScausingitsvalvestoopen.ImactofFailureofCommonInstrumentLineorTaTheattachedTableidentifiestheCommonLine/Tapforprotectionchannelandcontrolchannels(ormultiplecontrolchannels)thatareservingmult'iplechannels.Thistablehasbeenreviewedandthoselinesortapswhichweredeterminedtobelimitingintheireffectonplantresponseareidentifiedbelow.Theeffectoflosingprotectionchannelsduetoasinglefailureonacommoninstrumentlineortap,asidentifiedintheresponsetoQuestion420.06doesnotdefeatrequiredprotectionsystemredundancy.Thereforetheeffectoflosingprotectionchannelsisnotaddressedhere.Descriptionsoftheeffectofthemalfunctionsonthecontrolsystemsandan.evaluationofplantresponseandbackupsystemavailabilityarealsoprovided.Prudentengineeringjudgementbasedonknowledgeofsystemdesignandtransientanalysiswasusedtodevelopthesedescriptions.Theresultsofthisevaluationprovidejustificationthatanysimultaneousmalfunctionsofcontrolsystemsidentifiedherein,resultingfromcommoninstrumentlineortapmalfunctionsareboundedbytheanalysisofChapter15andwouldnotrequireactionorresponsebeyondthecapabilityofoperatorsorsafetysystems.PressurizerPressureSinal(Pl'-llOOX)andPressurizerLevelSinal(LT-lllOX)Ta1-RC-105JULQgfg3iSystemsaffectedareRRS,PPCS,PIGS,andSBCS420.4-12 0810W-7InstrumentTaDamaeonPlantResonse:Ifmalfunctioncausesalowpressureandlevelsignaltobetransmitted,thepressurizerheaterswouldturnon,thepressurizersprayswoulddecreaseflow.TheRRSwouldadjusttheCEAstoaccommodatealowpressureinput,therebyincreasingpower.Thisincrease,inpowercausesTavetoincrease.TheSBCSreceivestheTaveinputfromtheRRSandmayopentheturbinebypassvalves(TBVs)whenit'ensesamismatchbetweenTaveandturbinepressure.TheopeningoftheTBVssendsanautomaticwithdrawalprohibittoCEDMCSstoppingCEAwithdrawal.Howevershouldthisnotoccurthereactorwouldtriponhighpowerduetorodwithdrawalorachieveanewsteadystateathigherpower.IftheTBVsdidnotopentheMSSVswouldrelievesteamgeneratorpressureshoulditgothathigh.ThePLCS,meanwhile,woulddecreaseletdownandincreasecharging.Duetotheincreaseincharging,andpressurizerheatingandincreaseinpowerthereactormaytriponhighpressurizerpressure(ifnotonhighpowerasmentionedearlier).Theoperatorhassafetygradeinstrumentationfromwhichtoevaluateeventprogress.Manualcontrolofcharging,atmosphericdumpvalvesandauxiliarysprays,withouttheuseofPLCS,PPCS,andSBCSwillbringtheplanttoastablecondition.InstrumentTaDamaeonPlantResonse:Ifmalfunctioncausedahighpressureandlevelsignaltobetransmitted,thepressurizerheaterswouldde-energize,thasprayswouldincreaseflow.TheRRSwouldadjustrodsinresponsetothehighpressuresignaltherebydecreasingreactorpower.TheSBCSwouldreceivealowerTaveinputduetothedecreaseinreactorpowerandnotopentheTBVs.ThePLCSwouldincreaseletdownanddecreasecharging.AlowpressurizerpressuresituationwouldoccurleadingtoapossiblereactortripandSIASonlowpressureoranewsteadystateatlowerpowerandpressure.Theoperatorhassafetygradeinstrumentationsfromwhichtoevaluateeventprogress.IsolationofletdownonSIASorbytheoperatorandmanualcontrolofchargingwithpressurizersprayinsolationwillbringtheplanttoastableconditionwithoutusingthePLCS,PPCS,andSBCS.EvaluationofPressureSinalFailinHihandLevelSinalFailinLowduetoInstrumentTaDamaeonPlantResonse:TheplantresponseissimilarforthePPCS,RRS,andSBCSasdiscussedaboveforthepressuresignalfailinghigh.ThePLCS,howeverwouldincreasecharginganddecreaseletdown.Theincreaseinchargingandpressurizersprayflowwithnopressurizerheatersmayleadtoalowpressureconditionora'
0810W-8steadilyincreasingpressurizerlevel.Theoperatorhassafetygradeinstrumentationfrom'whichtoevaluateeventprogress.Manualcontrolofchargingandturningoffpressurizersprayswillbringtheplanttoastablecondition.EvaluationofPressureSignalFailingLowandLevelSinalFailinHihduetoInstrumentTaDamaeonPlantResonse:AsdiscussedintheevaluationforbothsignalsfailinglowthePPCS,RRS,andSBCSresponseissimilar.ThePLCS,howeverwouldincreaseletdownanddecreasecharging.Anincreasingreactorpower,duetoarodwithdrawalanddecreaseinRCSinventorywouldleadtoareactortriponhighpowerorthermalmargin/lowpressure.Theoperatorcanmanuallycontrolchargingtoincreasepressurizerlevelandisolateletdownflow.Theplantcanbebroughttoastableconditionthroughoperatoractionandnon-relianceonautomaticcontrolofthePPCS,PLCS,RRS,andSBCS.PressurizerPressureSignal(PT-1100Y)andPressurizerLevelSinal(LT-1110Y)Ta1-RC-130Thesystemsaffectedandtheevaluationofplantresponsearethesameasthosedescribedaboveforpressurizerpressuresignal(PT-1100X)andpressurelevelsignal(LT-1110X).SteamGeneratorLevelSignal(LT-9021andLT-9011)TaI-1"MSl-108SystemaffectedistheFWRSEvaluationofLevelSignalsFailingLowduetoInstrumentTapDamageonPlantResponse:Ifthemalfunctioncausesalowsteamgeneratorlevelsignaltobesentfrombothtransmittersthentheflowcontrolvalvewouldopentoincreaselevelforbothsteamgenerators.AsfeedwaterflowincreasedtheFWRSwouldnoteamismatchbetweenmainsteamandfeedwaterflow.Thiswouldclosetheflowcontrolvalvetomatchfeedwaterandsteamflow.Anoscillationoftheflowcontrolvalvewithi'ncreasingsteamgeneratorlevelresultsleadingtoahighsteamgeneratorlevelsignalbeingsentfromthereactorprotectionsystemtoclosethecontrolvalvesandtriptheturbine.Shouldthecontrolvalvesnotcloseandturbinenottriptheoperatorcouldtakemanualactiontoclosethevalvesorstopthefeedwaterpumps.Finallyahigh-highsteamgeneratorlevelsignalwouldclosethefeedwaterpumpdischargevalvesshouldtheaboveactionsnotoccur.420.414
0810W-9EvaluationofLevelSignalsFailingHighduetoInstrumentTaDamaeonPlantResonse:Ifthemalfunctioncausedahighsteamgeneratorlevelsignaltobesentfrombothtransmittersthentheflowcontrolvalvewouldclosetodecreaselevelfor.bothsteamgenerators.AsfeedwaterflowdecreasedtheFWRSwouldnoteamismatchbetweenthemainsteamandfeedwaterflow.Thiswouldopentheflowcontrolvalvetomatchfeedwaterandsteamflow.Asoscillationoftheflowcontrolvalvewith.decreasingsteamgeneratorlevel.Auxiliaryfeedwaterwouldbeautomaticallyactuatedtoaccountfortheinsufficientfeedwaterflow.EvaluationofOneLevelSignalFailingHighandOneLevelSignal~FailinlowduetolndtrumentTapDamageonPlantResponse:Onesteamgeneratorwouldexperienceadecreasinglevelduetoclosingofthecontrolvalveonreceiptofthefailedhighlevelsignal.Theothersteamgeneratorwouldexperienceanincreasinglevelduetoopeningofthecontrolvalveonreceiptofthefailedlowlevelsignal.Theresultwouldbeeitherareactortriponlowsteamgeneratorleveloraclosureofthecontrolvalveonhighsteamgeneratorlevelwithaturbinetrip.Additionally,theoperatorcantakeappropriateaction(manualreactortripwithauxiliaryfeedwateractuation)basedonsafetygradesteamgeneratorlevelinstrumentation.SteamGeneratorLevelSinaia(LT-9005andLT-9012)Tap1-1"->jSI-106SystemaffectedistheFWRSEvaluationofLevelSignalsFailingLowduetoInstrumentTaDamaeonPlantResonse:Widerangesteamgeneratorlevelwillindicatealowlevelconditionononesteamgenerator.Theoperatorwillstillhavesafetygradesteamgeneratorlevelindicationstorelyon(onesafetychannelofthefoursafetychannelswillalsobelostforthatsteamgenerator).Additionally,onthesamesteamgeneratortheinstrumentationandcontrolofthefeedwaterbypassvalvesendsasignaltoopenthevalveandactuatesalowlevelalarminthecontrolroom.Howeversinceaturbinetripsignalisnotpresentitwillnotopenthevalve.Forconservatismitisassumedtoopenincreasingflowtothesteamgenerator.TheintactportionoftheFWRSonthatsteamgeneratorwillseetheincreasedlevelandclosetheregulatingvalveenoughtomaintainlevel.Shouldthisregulatingvalvecontrolworkimproperlya420.4-15 0810W-10highsteamgeneratorlevelwillcauseclosureofthefeedwaterregulatingvalvesandturbinetrip.Theoperatorcanusetheauxiliaryfeedwatersystemtomaintainadequateinventoryintheaffectedsteamgeneratorandmaychoosetomanuallytriptheplantbasedonsafetygradeinstrumentationreadingsconflictingwithprocessinstrumentationandcontrolactions.EvaluationofLevelSignalsFailingHihduetoInstrumentation~TaDameeonPlantResense:Widerangesteamgeneratorlevelwillindicateahighlevelconditionononesteamgenerator.Theoperatorwillstillhavesafetygradesteamgeneratorlevelindicationstorelyon(onesafetychannelofthefoursafetychannelswillalsobe-lostforthatsteamgenerator).Thecontrolandinstrumentationforthebypassvalvewillseethehighlevelsignalandactuateahighlevelalarminthecontrolroom.TheoperatorbasedonsafetygradeinstrumentationwillseenormallevelbecausetheFWRSvalvesarenotactingimproperly.'owever,duetoerroneouslevelsignalshemaytakemanualcontroloftheFWRSandeventuallytripthereactorusingauxiliaryfeedwatertocontrolthesteamgeneratorinventory.EvaluationofOneLevelSignalFailingHighandOneLevelSinalFailinglowduetoInstrumentTaDameeonPlantRasense:Widerangesteamgeneratorlevelindicationdoesnotcontrolasystemandtheoperatorwillcompareittosafetyrelatedinstrumentationtoascertainthetruereading.Failureoftheinstrumentationandcontrolofthefeedwaterbypassvalveisadequatelydiscussedpreviously.Steam..GeneratorLevelSignals(LT-9006andLT-9022)Tapl-l"MSl-114'sahesystemsaffectedandevaluationofplantresponsearethesameasforsteamgeneratorlevelsignalsLT-9005andLT-9012forinstrumenttapl-lŽMS1-106.Condenser'torageTankLevelSignals(LT-12-llAandLT-12-llB)TheothercontrolchanneltransmitterssharingacommontapnotidentifiedinthetablearetheCondensateStorageTankleveltransmitterLT-12-11AandllB.Individualrootvalvesandexcessflowcheckvalvesareaddedtoensurethatinstrumentlineruptureinonechanneldoesnotaffecttheotherchannel.Theonlyfailureaffectingbothchannelsisthebreakofthetap.Fordiversity,twosafetyrelatedlevelswitchesprovidelowlevelalarmsonthesafetyannunciators.SincethefunctionofLT-12-11AandllBisonlyindicationandalarmandsincealarmbackupisprovidedatapfailurewouldnotcausesystemactionsrequiredtobeanalyzedbyChapter15oftheFSAR.420e4-16 792W-1cationNo.420.05(7')Theinstrumentationandcontrolsystemcomparisoninformationof.PSARTable1.3-1andPSARSubsection7.1.1.6isinsufficient..Theinformationsupplieddoesnotcompletelyshowthateachinstrumentation,controlandsupportingsystemis:l.Identicaltothatofanuclearpowerplantofsimilardesignwhichhasrecentlyreceivedanoperatinglicense,or2.Differentfromprevious/recentdesignswithadiscussionofthedifferencesandtheireffectsonsafetyrelatedsystems.Theaboveinformat'ionisrequiredbyRegulatoryGuide1.70~ItRevision3,Standardformatandcontentofsafetyreportsfornuclearpowerplants",Section7.1.1.Therefore,inconformancewithRegulatoryGuide1.70,Section7.1.1,provideacomparativediscussionforeachSt.Lucie2instrumentationandcontrol.,system.ResponseChapter7villberevisedtoincludethefollowinginformation:StLucie2instrumentationandcontrolsystemsaredesignedandbuiltidenticaltothosesystemsprovidedforStLucie1(DocketNo.50-335)~RPSStLucie2doesnotincorporateAsymmetricSteamGeneratorTilt(ASGT}aspartoftheTM/LPPVARcalculationasStLucie1does.StLucie2hasalossofCCWtripforRCP(Equipment)protection.Thistripisneitherpresentlynorpreviouslylicensed,andisnotcreditedintheSafetyAnalysis.~~>7e.'0+-OveralltheNuclearInstrumentationportionoftheRPSisnctionallyidenticaltothatofSt.Lucie'.Howeverthe.sub-function,zeropowerModeBypass,enablesthelowpowersectionoftheLinearPowerRangeSafetyChannelratherthantheWideRangeLogChannels,asinSt.Lucie1.(l).,*..'...:,ITheSt-Lucie2LogicfunctionsidenticaltoSt.Lucie1,butalsoincludesfusesinallmatrixinterbayconnectionsaspartofimprovedfaultprotection.Inaddition,atestcircuitisprovided,forcheckingthefusesassociatedwiththismatrixfaultprotectionperiodically-(2)Matrixfuseintegritywillbecheckedperiodicallyinaccordancewithtechnicalspecifications.420.05>>1 792W"2St.Lucie2matrixrelaysaredryreedtypes,forimprovedreliabilityovertheoriginalSt.Lucie1mercurywettedreedtyperelaydesign.St.Lucie2incorporatesanewRPSbistabledesignwhich,whilefunctionallyidentical,ischaracterize'dby:greateraccuracy,inputbufferingforimprovedcircuitisolation,improvednoiseimmunity"viaanadjustableresponsetime,lesscyclingduetoavariablehysterisisfeature,andapullup(down)circuitdesignwhichforcesabistabletriponalossofinputsignal.Consequently,contrarytotheSt.Lucie1FSARSubsection7.2.2.2,theSt.Lucie2auctioneeredInputBistablesutilizingnegativeinputswilltripinanopencircuitconfiguration.(3)StLuciehasincorporatedReg.Guides1.53,1.22,1.75,IEEE323,344,384inRPSdesign,asthesestandardswerenotineffectwhenSt.Luciewaslicensed.SystemsRequiredforSafeShutdownCEequipmentsuppliedforStLucie2conformstoR.G.1.75,whichidentifiesa6inchspatialseparationrequirement,vicethe12inchcriteriaofStLuciel.I~SaferRelatedDislaInstrumentationTheupperandlowerCEAlimitsareindicatedontheCEDMCSpanelforStLucie2,whileStLucie1displaysthisinformationonthecoreMIMICdisplay.TheStLucie2designisidenticaltotheSONGSdesign.(docketno.50-362).ManyaspectsoftheSt.Lucie2designforPostAccidentMonitoringaredifferentfromSt.Lucie1.St~Lucie2isidenticaltoSONGSwiththeexceptionofinvokingBTPEICSBNo.23,QualificationofSafetyRelatedDisplayInstrumentationforPostAccidentandSafeShutdown.However,theassociatedchangesinthisareaforinvokingR.G.1.97areforthcoming.St.Lucie2utilizestheAnalogDisplaySystem(ADS),whichwhilefunctionallyidenticaltotheSt.Lucie1Metroscope,exhibitsimprovedreliabilitydesignfeaturesandincorporatesimprovedhumanfactorscharacteristics.ThisindicationisnotlEindicationandisfurtherdescribedinSubsection7.7.1.1.6.420.05-2 792W-3NOTESThisdesignreflectsthatoftheCESystem80*design,whichisqualifiedtoIEEE323/74and344/75.2.ThefusesofthissectionareutilizedintheSystem80PlantProtectionSystemDesign.Thetestcircuithoweverisnotincludedinpriorplantorsystemdesigns.3~ThebistabledesignisamodifiedSystem80design,sincetheSystem80designdoesnotutilizeauctioneering.*System80(CESSAR)LicensingDocketPSTN-50-470F.')Q420.05-3 0812W-3TheSafetyEvaluationReport(andsupplements)fortheSt.Lucie2constructionpermitdescribesinstrumentationandcontrolsystemitemsvhichrequireresolutionattheoperatinglicensestage.Also,severalcommitmentsweremadebytheapplicanttomodifytheStLucia2design.pleasegivethestatusforeachitemwheresuchresolution/commitmentsveremade.RefertoattachedTable420.06-1.~\'CpCJULS4<9S< TABLE420.6-1DOCUMENTSECTIONRESOLUTION/COIfII'IDENTSTATUSSERSection7e2.4SERSection7e2.5Duringouroperatinglicensereviewwewillrequirethattheapplicantdemonstratethatresponsetimesassumedintheplantaccidentanalysisarevalidonthebasisofexperiencewithlikeplants,orwewillrequirethatheprovideatestprogramtoperiodicallyverifytheresponsetimesoftheprotectivesystemsandtheirassociatedsensors.TheapplicantwilldocumenttheinformationrequiredbyNASH-1270byDecember1,1974.Identificationofresponsetimeswillbeprovidedinthetech.spec.InformationwasprovidedinletterdatedMarch31,1975.RefertoSERSupplementSection725forstatus.SERSection7.3.2PorthemotoroperatedisolationvalvesbetweenthesafetyLn)ectiontanksandprimarycoolantsystemwewillrequire,asonrecently-licensedplants,thatthedesLgnincludeprovisionstoautomaticallyopentheisolationvalvesontheoccurrenceofasafetyinfectionsignalandontheoccurrenceofareactorcoolantpressuresignalinexcessofapre-selectedvalue,andthatredundantandindependentindicatingsystemsforeachsafetyLn)ectiontankisolationvalvebcprovided.RefertoControlWiringDiagram(CM))269S-272SinPSARSectionli7eSERSection7e3e3UseofasLngle,electricallyoperatedvalve,atthedischargeofre-dundantlowpressuresafetyLn)ectionpumpsdoesnotmeetthesinglefailurecriterionofIEEEStd279-1971forsafetysystemsnorthere-dundareyrequirementsofCeneralDesignCriterion35.Newillrequirethattheapplicantprovidoaredundantvalveatthcdischargeofthepumps.InAmendmentNo.27tothePSAR,theapplicantcmmittedtoprovideamanuallyoperatedvalveinparallelwiththeflowcon-trolvalvoatthedischargoendoftheLPSIpumps~SubsequenttoAmendmentNoe27thesystemdesignwesmodifiedtoincluderedundantflowpathsforeachoftheLPSIpumpseRefertoPSARPiguro6.3-1A&BESERSection7.3e3SERSection7.3.3TheproposeddesignandmodeofoperationofthehighpressuresafetyLn)ectionpumps"B"and"C"locatedinthesamewatertightroom,donotprovidetheindependencerequiredbetweenredundantsafety-relatedsystemsandwasfoundunacceptable.TheapplicanthsscommittedtomodifythedesignandmodeofoperationofpumpCsuchthatpumpcannotbealignedtotheredundantsystemhatanytime.Theproposeddesignofthecomponentcoolingloop,includingthealignmentofcomponentcoolingwaterpmp"C",doesnotprovidethein-dependencerequiredbetweenredundantsafety-relatedsystems.TheapplicanthascommittedtomodifythedesigntoprovideannunciationforimproperalignmentofthepumpCmotorpowerinrelationtoanyofLtsmotoroperateddischargevalvespositions.InAmendmentNo.27,theapplicantpresentedamodifieddesign,inwhichpumpCcannotbealignedtotheredundant.systemhatanytimeeSubsequenttoh"endmentNo.27thedesignwasmodifiedinwhichpumpCwaseliminatodiRe-fertoFSARFigure6.3"1ASBRefertoCND361attachedandtoQID204and208inPSARSection1.7.Thetechnicalspecifi-cationwillLncludeaminimumperiodoftimewithinwhichanyimproperalignmentofthesevalvesmustberectifiedfollowingannunciationofmisalignment.j7c1$~,~Pg(ee 0811W-2ThSLE420.06-1(Cont'd)ITEMDOCUMENTSECTIONRESOLUTIONCOÃ4ITMENTSThTUSSERS.ction7o4SERSection7o5Inthoproposedauxiliaryfecdwatersystemtherequireddeliveryoffeed-watertothesecondsteamgeneratorcouldbeprecludedbyasinglefailureintheplant125Vdcsystemfollowingafeedwaterlinobreaknearasteamgenerator.Theapplicanthasagreedtomodifythe125dmsystemcontroltoenableacontrolroomoperatortoisolatethefaultedsteamgeneratorandestablishauxiliaryfcedwatertotheintactsteamgeneratorwithinthetimelimitspecifiedintheaccidentanalysis,WevillrequirethatredundantsensorsboincludedinthodesignoWowillalsorequirethatthesensorsandassociatedcablesforthesteamgeneratorpressureandlevelandpressurizerpressureandlovelbequalifiedforthelong~onecontainmentenvironmentfollowingaLOChorasteamlinebreakaccidentinadditiontobeingqualifiedfortheshort-termenvironmentasproposedbytheapplicant~Wewillrequirethata,monitoringsystembeprovidedtomonitoralltheparametersmonitoredinplantsofasimilardesignthathavebeenreviewedandacceptedIntheproposeddesign,thecontainmenttemperatureisinferredfromthocon-tainmentsumpliquidtemperature,Wovillrequiretheapplicanttoestablishthereliabilityoftherolationshipbetweenthecontainmentanditssumpliquidtemperaturesoforvariousconditionsofoperation.Iftherolationshipcannotbeestablished,wowillrequiredirectmeasure-mentofthecontainmenttemperature.ThehuxiliaryPoedwatorSystemdosignmodifi-cationhasbeenpresentodinthoPSARhsendmentNo.4.ThiscmondmentincludesadescriptionofthehFWactuationsystemrequiredtomeetNUREG0737ItemII.E.1.2andalloviatosthocon-cernpresontodohaendmentsNoo27andNo.39providedresponsototheseresolution/commitmentsoRofortoSERSupplementSoction,7.5foracceptancooftheaboveamendments.InMondmentNo,27thelimitingcasewasLOCh.TheapplicantvillalsoevaluatemainstocmlinobrookforEnvironmentQualification.Containmentatmosphereandcontainments~directtemperaturemeasurementwillbeprovidedoEquipmenthasbaonpurchasedandispro"sontlyplannedforinstallation.Thomeasuro-montequipmentisdescribedinPSARTablo7SS-loSERSection7S5TheapplicanthasdecantedinhisPShRthatbypassedandinoperable~tatusindicationforprotectionsystemsvillbeprovidedinthocontrolroomtomeettherec~ndationscontainedinRegulatoryGuide1.4'efertoPghRSubsection7N5S2S7o10SERSection7.5TheapplicanthasdocumentedinthePSARthecriteriathatvillbousedinthedesignofthecontrolcircuitsforthevalvesprovidedtoonsurotheisolationofthelowpressureresidualheatremovalsystemfromtbehighpressureroactorcoolantsystem.Thesecriteriaaroconsistentwiththoserequiredinotherrecentconstructionpermitreviews,TheredundantinterlocksprovidedtopreventoponingandautomaticclosureofthesevalvesaredesignedtoIEEEStd279-1971RefertoPShRSubsoctions741~3and74,22oSERSection7o7ToterminatespuriousvithdrawalofcontrolrodsandmaintainfueldesignlimitsasrequiredbyhECCenoralDesignCriterion25,thoappli-cantroliesontheintelligencefromtheabovesystems.Thoabovecon-trolsystemsinturnderivetheirinputsignalsfromthatwoCEhpositionindicationsystems.SincotheCEApositionindicationsystemsarenottotallyindependentotcchnicalspecificationswillspocifylimitingconditionsforoperationontheloseofoithoroftheCEhpositionindicationssystemso,vi~NBjwThetechnicalspecificationwillspocifylimitingconditionsforoperationonthelossofeitherofthoCEApositionindicationsystems.PEI 792W-4QuestionNo.420.07(7.1)Uariousinstrumentationandcontrolsystemcircuitsintheplant'includingthereactorprotectionsystem,engineeredsafetyfeaturesactuationsystem,instrumentpowersupplydistributionsystem)relyoncertaindevicestoprovideelectricalisolationcapabilityinordertomaintaintheindependencebetweenredundant'afetycircuitsand"betweensafetycircuitsandnon-safetycircuits.Therefore,pleaseprovidethefollowinginformation:1.Listallparametersandsystemsthatinterface/interconnectbetweenredundantsafetycircuitsandbetweenthesafetycircuitsandnon-safetycircuits(controlsystems,associatedcircuits,etc.)~2.Identifythetypeoftransmission(i.e.,analog,digital,electric,optic,etc.)whichisinvolvedwitheachinterfacethatisidentifiedinresponsetoPart1above.3.IdentifythetypeofisolationdevicewhichdefinestheClasslEboundaryforeachinterfacewhichwasidentifiedinresponsetoPart1above.4.ProvidetheacceptancecriteriaforeachisolationdevicewhichisidentifiedinresponsetoPart3above.5.DescribethetestprogramfortheisolationdevicestoinsureadequateprotectionagainstEMI.~ResenseReactorProtectionSstemTheisolationandindependenceoftheReactorProtectiveSystemisdiscussedbelowwithintwoclassifications:1)Isolationofexternalnon-ieinterfacesignalsand1)Internalisolationtomaintainindependenceofredundantchannels.l.BelowisalistingofthesignalswhichinterfacewithsystemsexternaltotheRPS.RBP~es420.07-1 792W-5~SinalTransmissionIsolationDeviceReactorCoolantPumpBreakerStatusContactsDigitalRelayReactorTripSwitchgearTripCircuitBreakerCurrentDetectorsDigitalRelayBistableTripToSequenceofEventsDigitalRelayBistableTrip&PreTriptoPlantAnnunciatorDigitalOperatingBypassandMisc.AnntoPlantAnnunciatorDigitalCEAWithdrawalProhibit10"4~PowertoAnalogDisplaySystemDigitalDigitalPowerOperatedReliefValveClosureDigitalSignalRelayRelayRelayRelayRelayh~isc3'j~~:A~xetc~'P""'~gpss.y.w+.~NOTEWhenreviewingtheabovelistitshouldbenotedthatsignalswhicharelistedasnotrequiringanisolationdeviceare2gtColmaintainedseparatefromsignalsclassifiedasIEorassociatedinaccordancewiththerequirementssetforthinReg.Guide1.75.Also'theisolationdeviceidentifiedasRelayisphysicallyarelayi'ncon)unctionwithafuse.Therelayprovidescontacttocoilisolation(dialectricstrength)whilethefusemaintainstheintegrityofthewire.Thetwodevicestogetherareconsideredtobetheisolationdevice.IEachtypeisolationdeviceisqualifiedforafaultof480Vacand325Vdc.Theactualtestvoltagesare60Vacand400Vdc..ThegeneralacceptancecriteriaforRPSisolationdevicesisasfollows:a.Applicationofthefaulttotheappropriatesideoftheisolationdeviceshallnotpropagatetotheothersideoftheisolationdeviceoradverselyaffecttheoperationofcircuitryconnectedtotheothersideofthisisolationdevice.SUEP,4f95420.07>>2 792W"6Theintegrityofthewireinsulationmustbemaintained.TheaboveacceptancecriteriameetsReg.Guide1.75andIEEE384.2~ThefollowingisadiscussionofthemeansbywhichindependenceofthefourRPSchannelsismaintained.ProcessinputsignalsaresenttobistabletripunitswithintheRPSwherethesignalisfirstbufferedandthencomparedtoasetpointtocreateanon/offtypesignal.Thissignaldeenergizesfiveseparaterelayswithinthetripunit.Atthispointallsignals,cablings,modules,dedicatedpowersuppliesandanyassociatedtestcircuitryaremaintainedtotallyindependentacrossthefourchannels.Onecontactfromeachtripunitiswiredinseriestogetherwithineachchannel.Thisseriesstringisproducedthreetimeswithineachchannel.Thestringsarethencombinedwithanotherchannelsuchthateachcontactisinparallelwithacontactfrom.anotherchannel.ThisformsthesixpossiblecombinationsoflogicmatricesAB,AC,AD,BC,BD,C.Allconnectionsofrelaycontactsbetweenchannelsarefuseprotectedinthechanneloforiginandthechannelofdestination.Thisfuseinconjunctionwithitsrelatedcontactandcoilprovidetherequiredisolationbetweenbistableandmatrix.EachmatrixispoweredfromtwodiodeisolatedpowersupplieslocatedintwodifferentchannelsoftheRPS.Eachpowersupplyhaswithitanisolationcircuitwhichlimitsthefaulttoacceptablevaluesandpreventsthefaultfromdisturbingtheindependentvitalbuses.Eachlogicmatrixdrivesfourmatrixrelays.Onematrixrelaycontactfromeachofthesixmatricesareconnectedinseriestodriveaninitiationrelay.Thiscircuitislabledthetrippath.Allconnectionsofrelaycontactsbetweenchannelsarefuseprotectedinthechanneloforiginandthechannelofdestination.Thisfuseinconjunctionwithitsrelatedcontactandcoilprovidetherequiredisolationbetweenthetrippathandeachmatrix.Testingwithineachchannelismaintainedindependentthroughtheuseofatestinterlockcircuitwhichprovidestheintelligencetoallowtestinginonlyonechannelatatime.Thetestisperformedinthreelevels:1.bistableorcalculatortest,2.Matrixtestand3.Trippathtest.Thebistable/calculatortestisperformedusinganindependenttestsourcewithineachchannelsuchthatafaultwouldeffectonlyonechannel.Thematrixandtrippathtestisperformedthroughthematrixtestmodulebyenergizingbistableand/ormatrixsecondaryrelaycoils.Acombinationofcontactto420.07-3 792M-7contact,contacttocoil,coiltocontactandcoiltocoilisolation(allinconjunctionwithafuse)areusedtoensureafaultwithinthetestcircuitwillnotcompromisethefourchannelredundancy.Allisolationdevicesdiscussedabovearequalifiedto480Vacand325Vdcandtestedto600Vacand400Vdc.TheentiresystemisalsosubjectedtoanEMItestinaccordancewithMIL-STD-4CIA"ElectromagneticInterferenceCharacteristicsRequirementsforequipmentforbothconductedandradiatedsignalsusingtestsCSOl,CS02,CS06,RS07andRS03.Inadditiontotheabove,thesafetyportionofthepressurizer,levelchannels;(LlllOX,L1110Y)areisolatedfromthenon-safetyportionbyananalogvoltagetoanalogvoltageisolation.Thisisolationutilizestransformercouplingasitsisolating/signalcouplingmediums.Shortcircuits,opencircuits,andhighvoltages(4800ac)areappliedtotheoutputcircuitryascrediblefaults.Thefailureofthesefaultstoperturborpropagatetotheinputcircuitryformthebasisoftheacceptancecriteriaforthisisolation.Therearenoadditionalsafetytonon-safetyinterfacesnorprocessinstrumentationinterconnectionsbetweenredundantsafetycircuits.EngineeredSafetyFeaturesActuationSstemRefertoattachedTable420.07-1foralistofsystems,typetransmission,isolationdeviceandinterfacing/interconnectchannels.ThegeneralacceptancecriteriaforESFASisolationdevicesisasfollows:a.Applicationofthefaulttotheappropriatesideoftheisolationdeviceshallnotpropagatetotheothersideoftheisolationdeviceoradverselyaffecttheoperationofcircuitryconnectedtotheothersideofthisisolationdevice.b.Theintegrityofthewireinsulationmustbemaintained.TheaboveacceptancecriteriameetsReg.Guide1.75andIEEE-384.Inadditiontotheabovegeneralacceptancecriteriathevendors'ompliancetothefollowingIEEEStandardsandGuidesprovidesthebasisfortheacceptancecriteria.420,07-4 792W-8Reg.Guide1.75-IEEE-323-1974-IEEE-344-1975-IEEE-384-1977-IEEE-381-1977-IEEE-383-1974-IEEE-279-1971-IEEE-308-1974-IEEE-379-1972-IEEE-338-197510CFR50AppendixAcriterion22and25Variousfabricationandinstallationtechniqueshavebeenemployedtotheisolationdevicestoalleviateanyproblemscausedbyelectromagneticinterference.Thefollowingisalistofafewsuchitemswhichaccountforthis:a.Allexternalcablestoandfromtheisolationdevicesareroutedincontrolcabletraysorconduitsandareseparatedfrompowercables.b.AllisolationdevicesareencasedinmetalenclosuresandseparatedfromanymajorsourcesofEMIsuchasmotors.c.IsolationcabinetandisolationrelayenclosuresaredesignedClasslEandseismicCategoryl.d.Metalfirebarriersareprovidedtoseparatesafetyandnon-safetychannels.OnsitePowerDistributionSstemForadiscussionofthepowerdistributionsystemrefertoFSARSubsection8.3.1.420.07-5 PROJECT;STLDCIE2PSARDATE0781,TYPIST:RoxPagefnDATEPRINTED:07/181DISKETTENO,:SD609PACE10102030405060708091011121314151617181920212223242526272829303132333435363738394041424344454748495051525354ITEMNO~ISOLATIONSYSTEH/PARAMETERESFAS-SIASCIASMSISCSASRASTYPETRANSMISSIONOptical2ESFAS-SIASCIASHSISCSASOptical3ESPAS-HSISAElectro-Msgentic3CEDMCoolingFanElectro"2NVE-21BHsgnetic6RABEnergencyExhaustFsn2HVE-9hElectro-Hsgnetic4CEDMCoolingFanElectro-2NVE-21AMagneticTABLE420.1IsolationModule:OpticalCouplersIsolationRelayINTERFACE/INTER-CONNECTIONCHANNELSMh/ShMA/SBMB/SAMB/SBHC/SAHC/SBHD/SAMD/SBHA/NSMB/NSHC/NSMD/NSASA/NSASB/NSASAB/NSSA/NSSB/NSSAB/NSSA/SBIsolationRelayASA/ASBIsolationRelayASB/ASAIsolationRelaySA/SBTYPEISOLATIONDEVICEIsolationModuleElectro-opticallyledcoupleddevices.REUIREDFORInitiationof2/4logicfor--SIAS-CIAS-MSISCSAS-RASAnnunciation6Sequenceofeventsrecorder,inter-lockssClosureofneinsteanandfeed-vaterisolationvalvesbyChannelh!KV-08-1hHCV-08-1BNVC-09-IBNVC"09-28MV-08-IBInterlockingwithCEDMCool-ingFan2NVE-21BInterlockingwithCEDMCool-ingFan2NVE-21hCloseRABECCSChannel"B"dsnpers.LOCATIONESFASLogiccabinets-HAMBHCMDIsolationCsbinet-RABEleva-vation43'solationRe-layEnclosureBox-B2066RABElevation43'solationRelayEnclosureBox-82G66RABElevation43'solationRelayEnclosureBox-BZG43RABElevation43'solationRelayEnclosureBox-82066RABElevation43' PROJECT!STLUCIK2FSARDATEPRINTED:07/17/~DATE07/l~TYPIST:RoxPagefnDISKETTEHO.:SD609~20102030405060708091011-12131415161718192021222324252627282930313233343536373839404142434445464748495051525354TABLE420.01(Cont'd}ISOLATIONTYPESYSTEM/PARAMETERTRANSMISSIONITEMNO.TYPEISOLATIOHDEVICEElectro"IsolationRelayMagneticRABhaergencyExhaustPan2HVE-9BIsolationRelayKSFAS-MSISBElectro-MagneticIsolationRelayElectro-MagneticBoricAcidFlowControlValvePCV-2210XIsolationRelayReactorSunpIso-Electro-lationValveMagneticLCV&7-11h10ReactorSunpIso"lationValveLCV-07"118IsolationRelayElectro"Magnetic124160VSfGR2A3.Electro-inconingFRRfraaMagneticBus2A2134160V%GR2A3Electro-IsolationRelayinconingFDRfranMsgneitcBusZA2IHTERFACE/INTER-CONNECTIOHCHANNELSSB/SASB/SASh/NSSB/NSSA/NSREUIREDFORCloseRABKCCSChannel"A"dsmpersClosureofMainSteanandPeed-waterisolationvalvesbyChannelBHCV-08-1BHCV-08-lbHCV-09-lhHCV-09-2AMV-08-lhInterlockwithvalveFCV"2210XProhibitsstartingofReactorCavitySunpPunp2Ashen-everSIASorCIASsignalclosesReactorSunpIso"lationValvesLCV-07-11BandllhProhibitsstartingofReactorCavitySunpPunp2Bwhen-everSIASofCIASsignalclosesReactorSumpIso.ValvesLCV-07"1lbandLCV-07-11BTrips2A2Bustiebreakerwhen2A3BustiebreakeristrippedPcmissivetoclose2A2Bustiebreakertobus2A3LOCATIONIsolationRelayEnclosureBox-B2G43RABElevation43'solationRelayEnclosureBox-B2G43RABElevation43'solationRelayEnclosureBox-82G24RABElevation43'solationRelayEnclosureBox-B2G64RABElevation43'solationRelayEnclosureBox-B2075RABElevation43'solationRelayEnclosureBox-BIC64RABElevation43'solationRelayEnclosureBox-B2C64RABEle-vation43' PROJECT~STLUCIE2FSAR~DATEPRINTED:07/17/81DATE07/15/S~PIST:RoxPagetnDISKETIENO.!SD609PAW3010203040506070809101112131415161718192021222324ITEHNO.14151617ISOLATIONSYSTEM/PARAMETER4160VSWOR283incomingFDRfromBus282TYPETRANSHISSIONElectro-MagneticTYPEISOLATIONDEVICEIsolationRelay4160VSWOR283Electro-incomingFDRfromMagneticBus282IsolationRelayComponentCoolingWaterPump2AElectro-MagneticIsolationRelay4160USWCR2ABElectro-IsolationRelayincomingFRDfromHagneticBus2A3TABLE430.1(Cont'd)INTERFACE/INTERCONNECTIONCHANNELSSB/NSSB/NSSAISABSA/SAB.REUIREDFORTripe2SZBustiebreakervhen283busciebreakeristrippedPermissivetoclose282SuetiebreakertoBus283Interlockwithcom-ponentcoolingwaterPump2CInterlockingBus2A3to2ABSWGRLOCATIONIsolationRelayEnclosureBox-82G75RABElevation43'solationRelayEnclosureBox-82064RASElevation43'solationRelayEnclosureBox-82073IsolationRelayEnclosureBox-82073RABElevation43'52627282930313233343536373839404142434419IntakeCoolingElectro"IsolationRelayWaterPumpZAMagnetic20=IntakeCoolingElectro-WaterPump28MagneticIsolationRelay214160VSWOR2A-3Electro-MagneticIsolacionRelay184160VSWCR2ASElectro-IsolationRelayincomingFDRfroaHsgneticBus283SB/SABSAISABSS/SABSA/SABInterlockingBus283Co2ABSWCRInterlockvithin-takecoolingvaterpump2CInterlockvithin-takecoolingwaterPump2CInterlocking4160VSWOR2h-3to4160VSWOR2ABIsolationRelayEnclosureBox-82C73RABElevation43'solationRelayEnclosureBox-82G99RABElevation43'IsolationRelayEnclosureBox-82898RABElevation43'solationRelayEnclosureBox-82G99RABElevation43'546474950515253542223DieselGeneratorElectro-ZALoadingMagneticDieselGeneratorElectro-28LoadingHagneticIsolationRelayIsolationRelaysgvt'Sh/SABSB/SABInterlocksvithEmer-gencyDieselGenera-tor's2AlasdingLightsInterlockswrathEmer-gencyDieselCenera-tor'2SLoadingLightsIsolationRelayEnclosureSox-82099RASElevation43'solationRelayEnclosureBox-82E99RABElevation43' PROJECTiSTLUCIE2FSARDATEPRINTED:07/17/81~DATE07/15/8PIST:RoxPagetnDISKETTENO.!SD609~401020304050607080910ITEMNO.24ISOLATIONSYSTEM/PARAMETERTYPETYPETRANSMISSIONISOLATIONDEVICE4160VSNGR2B-3Electro-IsolationRelayMagneticTABLE420.1(Cont'd)INTERFACE/INTER-CONNECTIONCHANNELSSA/SABREVIREOFORInterlocking4160VSNGR2B-3to4160VSMGR2AB.LOCATIONIsolationRelayEncloiureBox-B2099RABElevation43'l1213141516171819202122-~23242526272829252627ReactorTripbyTurbineChargingPunp2CActuationfrosPressurirerConponentCoolingMaterPunp2BElectro-MagneticElecto-MagneticElectro-MagneticIsolationRelayIsolationRelayIsolationRelayNS/HhNS/HBNS/HCNS/MDNS/SABSh/SABInterlockingMcasure-nentChannelsHS,HB,MC,andMDtoRPSCabinetInterlockingwithstartandstopcircuitsofChargingPunp2CInterlockwithCon-ponentCoolingMaterPunp2CIsolationRelayEnclosureRABElevation0.5HA-BoxB2044MB-BoxB2045HC-Box$2G46HD-BoxB2047IsolatxonRelayEnclosureBox-B2065RABElevation43'solationRelayEnclosureBox-B2E98RABElevation43'031323334353637383940414243444546474849505152535428RadiationMonitor-OpticalOpticalIsolator29PressuriserHTRElectricalFuses1/8AHPTransf.2A34160VFDRBreaker-HattTransducerNS/SANS/SBSA/SBNS/HANS/HBNS/HCNS/MDNS/SAComputerC~un"icationLOOPIsolationIsolating/Inter-facingthedataprocessorterninalcabinet1andthewatttransducersignal(1ma)pressurirerHTRtransf.2A34160VFDRbreakerRhB,FuelHandlinglingBuilding4160VSNGRBUS2A3CUB4 0793M-6estionNo.420.08(71)FSARSubsection7.1.1.6statesthattherebeenminorchangesinthecoreprotectioncalculator(CPC)software.Describethechangesin"software"usedforthe"analog"CPC.~ResonseThesoftwareofacalculatorisitsprogramorsetsofinstructions.Thesoftwarefortheanalogcoreprotectioncalculatoristhecoefficientsettingforthefunctionmoduleswhichmakeupthe'calculator.Thesecoefficientsettingsaretreatedassetpointsandmayvaryfromonefuelcycletoanother.F88~420.08-1 0793W-5QuestionNo.420.09(7.1)Identifyallinstrumentation,controlcircuits,andcomponents(bothsafetyandnon-safety)thatmaybecomesubmergedasaresultofaLOCA.Forallsuchcomponentsandcircuitsthatarenotqualifiedforserviceinsuchanenvironment,providetheresultsofananalysistodeterminethefollowing:(1)thesafetysignificanceofthefailureofthecomponentsandcircuits(e.g.,spuriousoperation,lossoffunction,lossofaccident/postaccidentmonitoring,etc.)asaresultoffloodingand(2)theproposeddesignchanges,ifany,resultingfromyouranalysis.~ResenseStLucieUnitNo.2willaddresssubmergenceasaresultofaLOCAeventanditsimpactoninstrumentation,controlcircuits,andcomponents(bothsafetyandnon-safety)incompliancewithSection3.11.ALOCAevent,anditsresultantflood,isaharshenvironment.SpecificinformationforharshenvironmentsingeneralaccordwithNUREG0588AppendixEwillbesubmittedtotheUSNRCbyNovember30,1981asstatedinSection3.11,Appendix3.11B,"EquipmentEnvironmentalQualificationProgramforStLucieUnitNo.2"paragraph3.11B2(c),AmendmentNo.4(7-2-81).ThissubmittaltotheEQBwillspecificallyverifythatsubmergencewillnotdegradesafetyfunctionbyidentifyingequipmentlocations,equipmentfunctions,maximumfloodlevels,andimpactofsubmergence.stgiet420.09-1 121314151617181920212223242526272829303132333435363738394041424344454647484950515253544%(i31480VSACR2A2netering/relaying32480VSACR2B2netering/relaying5ElectricalPuses3AMPElectricalFuses3ANP~VQ~YI~NS/SANS/SB~ost~yt>ii~iSv/Ablg~,sortefrafa%cv'rsignal(1ua}forpressurirerHTRTransf.2B34160VPDRBreaker480VSACR2A2nonsafetyloadshedding480VSACR2B2non"safetyloadshed-dingIsolatingPuseBox-B2E64IsolatingPuscBox-B2E60 DATE07/14/81,TYPIST:ekPage'7nDISKETTENO.:SD610TED:0//l//5lPAGE4010205060708091011121314151617181920,212324252627323334.353637383940414243454647484950515253CommonTa1-RC-1041-RC-1051-RC-1301-RC-1073/4-RC-1272998-G-079'Sh.1SG2AlI-1"MSl-100I-1"MS1-101I-1"MSl-102I-1"MS1-103I-1"MS1-1O4I-1"MSl-105I-1"MSl-106I-1"MS1-1O7TABLE420.10-1COMMONLINES/SENSORS13172-310-109Rev.3Ins.PTLFPZ-1104PT-1102(C)PT-1103PT-1108PT-1102(A)LT-llloXLT-1110YPT-1102(B)PT-1105PT-1106PT-1102(D)PDT-1121CPDT-1124ZPDT-1124YLT-9013ALT-9011PT"8013ALT-9013APZ-8013BLT-9013BLT-9013BPZ-8013CLT-9013CLT-9013CPT-8013DLT-9005LT-9013DLT-9113LT-9012LT-9013D(F)Process/Safet(S)SSSIndicationOnlySP&SP&SSSSIndicationOnlyIndicationOnlySPSSS'SSPSSindicateP DATEFSARDATEPRINTED:07/17/8107/17/81,TYPIST:RoxPage?nDISKETTEHO.:SD610PAGE50102CommonTa'ABLE420.10-1(Cont'd)Ins.P,T,L,F(P)Process/Safet(S)050607080910111213141516171819202122232425262728313233343536373839404'14243444546474849505152532998-G"074Sh.1SGZB1I-1"MSl-108'I-1"MS1-109I-l"Msl-110I-1"MS1-111I-1"MS1-112I-1"MS1-113I-1"MS1-114I-1"MS1-117I-1"MS1-115LT-9023ALT-9021LT-9021LT-9023APT-8023APT-8023BLT-9023BLT-9023BPT-9023CPT-8123LT-9023CLT-9023CPT-8023DLT-9123LT-9022LT-9023SPindicatesPindicatesSSSSSIindicationSPindicatesPindicatesSfgFBf'iwgJU(py~8 0793M-4QuestionNo.420.10(7')(7.3)Identifywhereinstrumentsensorsortransmitterssupplyinginformationtomorethanoneprotectionchannelarelocatedinacommoninstrumentlineorconnectedtoacommoninstrumenttap.Theintentofthisitemistoverifythatasinglefailureinacommoninstrumentlineortap(suchasbreakorblockage)cannotdefeatrequiredprotectionsystemredundancy.~ResonseTable420.10-1liststheCommonLinefTapforprotectionsystemchannels(S)thatareservingmultipleprotectionchannels.ListedarePAIDnumber,LineNumber,ChannelNumberandCategory.Singlefailureinacommoninstrumentlineortapdoesnotdefeatrequiredprotectionsystemredundancy.J)420.10-1 QuestionNo.420.11'(7.2)(7.3)Identifywhereinstrumentsensorsortransmitters'upplyinginformationtobothaprotectionchannelandcontrolchannelortomorethanonecontrolchannelarelocatedinacommoninstrumentlineorconnectedtoacommoninstrumenttap.Theintentofthisitemistoverifythatasinglefailureinacommonins'trumentlineortapcanneitherdefeatrequireds'eparationbetweencontrolandprotectionnorcausemultiplecontrolsystemactionsnotboundedbyanalysescontainedinChapter15oftheFSAR.~ResenseIdentificationofinstrumentsensorshavingcommoninstrumentlinesortapssupplyinginformationtomorethanonesystemisprovidedintheresponsetoQuestion420.4(3).881420.111 i 0793W-2QuestionNo.420.12(7.2)Recentreviewofaplant(Waterford)revealedasituationwhere.heatersaretobeusedtocontroltemperatureandhumiditywithininsulatedcabinetshousingelectricaltransmittersthatprovideinputsignalstothereactorprotectionsystems.Thesecabinetheaterswerefoundtobeunqualifiedandaconcernwasraised'incepossiblefailureoftheheaterscouldpotentiallydegradethetransmitters',etc'leaseaddresstheabovedesignasitpertainstoStLucie2.Ifcabinetheatersareusedthendescribeasaminimumthedesigncriteriausedfortheheaters.~ResanseAl'1electricaltransmittersontheStLucieUnit2plantaremountedonopeninstrumentracks.Insulatedcabinetswithheatersarenotutilizedonthisproject.~\g420.12-1 0803M-lestionNo-420.13(7.2)(7.3)IntheFSARitisstatedthatfourmeasurementchannelsareprovidedforeachparametermonitoredintheprotectionsystems'heapplicantproposestooperatevariousprotectionsystemswithoneofthefourchannel'sinbypassThesysteminvolvedwouldthenfunctionasa2of3channelprotectivesystem.(Withonechanneltripped,thesystemwouldfunctionasa1of3channelprotectivesystem).Theproposalisbasedonassertedfourchannelindependence.Todemonstrateindependencetheapplicantmustdemonstrateseparationofpowersupplies,logicandsensors.StLucie2hasbeendesignedasatwobatterysystem,thatis,thefourprotectivechannelsobtainpowerfromfourseparatevitalacinstrumentbuses,whichinturnobtainpowerfromtwoac/dcpowerdivisions.Hence,thedemonstrationof4channelindependenceis,apriori,incomplete.Onpreviouslyreviewedplants(Waterford)wehaverequired(byplantTechnicalSpecification)thattheprotectivesystembeusedasafourchannelsystemwithbypassofaknowndefectivechannelfornomorethan48hoursandrequiretripofaknowndefectivechannelafter48hours.Pleasebepreparedtodiscussthisdesignconcept.~ResenseResponsetothisquestionisintwoparts:part(a)demonstratesacceptabilityandstandard"ac/dcpowerdivision"design;part(b)describesindependenceandoperabilityofthefourchanneldesign.Part"A"-Aresponsetothisquestionontheadequacyof'four(4)channelbasedacUPSsystemderivingitsstoredenergypowersourcefromtwodivisionsofdcpowerrequiresabriefreviewofthephilosophyofacUPSpowerforRPSandESFASpowersupply.TheacUPSpowersupplyfourchannelconceptisselectedforplantavailabilityandnotplantsafetyasthelossofpowertotheRPSandESFASwillresultinchanneltrip.Furthermore,thenumberofchannelswhetherthreeofour,providesadesignbasisinexcessofthatrequiredforsafetybyprovidingforspuriouschanneltripsortestingduringplantoperationwithoutplanttripforthespecificpurposetoenchanceplantavailabilityorprovidetestingduringoperations-'nfactptherequirementfortheacUPSsystemisactuallytheabilityto"ride-through"amomentarypowerlosswithout'lanttrip.SoilingWaterReactorsincludingthosepresentlyinconstruction(e.g.WPPSSNo.2)utilizenon-ClassIE"ride-throughflywheelmotor~eneratorpowersystems"topowerthereactordogprotectionsystems.I.488>420.13-1 0 0803M-2Table7.3-7,"EngineeredSafetyFeaturesActuationSystem-FailureModesandEffectsAnalysis"clearlyindicatesthatthelossofabatterywillnotprecludecompletionofsafetyfunction.Furthermore,thetworedundantClassIEdivisionsofonsiteACpowerderivingitsonsitepowergenerationfromClassIEdiesel~eneratorsformsthebasisforcompliancewith10CFR50'ppendixAGDG17.ThesetwodivisionsprovidethesourceofpowertotheACUPSRPS6ESFASpowersuppliesthroughtheDC'owerdistributionsystembatterychargesinLightMaterReactors.Provisionoffourbatteriesforutilityconvenienceorsymmetry,eachinsupportofaRPSandESFASchannel,wouldtypicallyonlysupportRPSandESFASloadsfortheshorttimenecessarytoresequencethebatterychargesontheClass1EacsystemsubsequenttoaLossofOffsitePower.Areviewofrecentlylicensednuclearplantsdemonstratestheacceptabilityofthetwosafetymelatedbatterydesignasfollows:1)ArkansasPower6Light,ArkansasNuclearOneUnit2,FSARSubsection8.3.2.1describesthetwobatterydesign,2)AlabamaPowerCompany,JamesMFarleyNuclearPlantFSARSection8.3describesthetwobatterydesignOnthebasisoftheinformationdescribedabovetheStLucie2designisconsideredacceptable.Part"B"-Thefourchannelindependencebeginsattheoutputofthe4acUPS'inverters,designatedInve'rter2A,2B,2Cand2DortheMaintenanceBypassTransforper2A,2B,2Cand2Dandtheir~associatedInstrumentBusfes2MA,2MB,2MCand2MDasshownonFSARFigure8.3.3.IndependenceofthefourchannelsofRPSorESFASismaintainedinaccordancewithFSARSubsections8.3.1.3,8.3.1.4,7.2.1.1.7,and7.3.1.1.lh.IndependenceoffourmeasurementchannelscanandwillbedemonstratedduringthedrawingreviewdescribedinEnclosure2totheICSBquestionsThisdrawingreviewisexpectedtoduplicatethesuccessfuldrawingreviewandactualsiteinspectionsbytheNRCstaffperformedonStLucie1whichverifiedthefourchannelindependence.ThepositionoftheNRConpreviouslyreviewedplantsthatachannelbypassmustbeplacedinatrippedmodewithin48hoursisnotconsideredapplicabletoStLucieUnit2forRPS,SIAS,MSIS,orCIASduetothefullindependenceofthefourmeasurementchannels.420.13-2 ~Infact~theplantbasis(Figure7.3-l)isathreechannelESFASwithan"installedspare"fortheRPS,SIAS,MSIS,andCIAS.However-thedesignbasisforRASandCSASistheenergizationofactuation-relays(Figure7.3-3)tomakeitincredibleforspuriousactuationofContainmentSprayorRecirculationwhichcanbedetrimentaltoequipmentinanon-accidentcondition.Therefore,theNRCpositionoftripinsteadofcontinuousbypassforoneofthefourchannelsusedforRASorCSASisacceptabletotheapplicant.~jpeJUl.gygg)420.13-3
0803M-4QuestionNo.420.14(72)Thereactorprotectionsystem(RPS)includestwotripinputs,(turbinetripandlossofcomponentcoolingwatertrip)whichareclassifiedasnotbeingrequiredforreactorprotection.Itisthestaff'sposition(BTPICSB26)thatallreactortripinputstotheRPSarerequiredtomeetthedesignrequirementsof,IEEE279withoutexception.ThisincludestheentiretripfunctionfromthesensortothefinalactuateddevicesFSARChapter15showsthattheaccidentanalysistakescreditforreactortriponturbinetrip-FSARSubsection7.2.2.2.11statesthattheturbinetripistakenfromnon-ClassIEhydraulicoilpressureswitches.Theuseofnon"ClassIEswitchesisnotacceptableAlso,itisnotclearthatthecomponentcoolingwatertripmeetstherequirementsofIEEE-279.Therefore,provideadescriptionoftheseandothersuchRPSinputswithrespecttotheirconformancetoBTPICSB26.Thisdesigndescriptionshouldbesupportedwithelectricalschematics,logicdiagrams,pipingandinstrumentdrawings,testproceduresandtechnicalspecifications.ResponseTheChapter15accidentanalysisdoesnottakecreditforreactortriponturbinetriptomitigatetheresultsofanyeventsThisissostatedinnote7toTable15.0-7.ThesequenceofeventsanalysespresentedinChapter15recognizethatsuchatripexistsandmayoccur.FortheIncreasedFeedwaterFlow(withfailureto'achieveafasttransferata4.16kV-bus)eventpresentedinSubsection15.1.2.1,itwasmoreadversetotripthereactoronturbinetrip.ThiswasdonetoincreasethecooldownforthisincreasedheatremovaleventsThiseventisdiscussedintheresponsetoQuestion420.11.Although,thetwotripsarenotrequiredforsafety,theCMtripisClassIEinaccordancewithIEEE-279.IsolationdevicesareprovidedfortheturbinetripinputstotheRPSinaccordancewithRegulatoryGuide1~75.(/SERT420.14-1 )95EKC"A'yQgwo8)IsolationdeviceareprovidedforeturbinetripinputstotheRPSinaccordancewithRegulatoryGuide1.75.Theelectriccablesthatareroutedfromtheisolationdevicestotheturbinetripinputsensorsarerouted'intheirowndedicatedracewaysystems.Thesesystemsareclassifiedasnonsafetymeasurementchannel'A(NMA),nonsafetymeasurementchannelB(NMB),nonsafetymeasurementchannelC(NMC)andnonsafetymeasurementchannelD(NMD)respectively>thesededicatedracewaysystemscontainonlytherespec-tivecablepernonsafetymeasurementchannelthatprovide/thetripinputsignaltotheReactorProtectionSystem(RPS).Theyareseparatedandenclosedthroughouttheentireroutingoftherespectivecablebytheuseofbothrpgidgalvanizedsteelandliquidtightflexibleconduitsuchthateachcableisisolatedfromallothercablesthroughoutitsrouting.'4 0793'-1420.15(7.2)(15.0)FSARSubsection15.2.1.1~2statesthattheoperatormanuallytripsthereactorafterreceivingtheturbinetripalarm.Thisisnotconsistentwiththeotheraccident'analysiseventswhichtripthereactorautomaticallyonturbinetrip.Pleaseclarifythisinconsistency.~ResonseSubsection7.2.1.1.1.10discussestheturbinetripinputtothereactorprotectivesystem.Abypassofthistripduringlowpoweroperationisoneofits"features.Thisbypassisdesignedforstartupandlowpoweroperationwhentheoperatorislikelytotakemanualcontrolofimportantplantfunctions'orthepurposesofalimitinganalysis,Subsection15.2.1.1.2assumedthi'sbypasswasoperationaluptothe20Xpowerlevel.Thus,fortheanalysispresentedinSubsection15.2.1.1.2thereisnoautomatictripwhichwilloccur.Forthismoderatefrequencytransient,itisassumedthattheoperatorhasmanualcontroloftheplantandisalertedbytheturbinetripalarm.Tenminutesforoperatoractionisconsideredappropriateforsuchanevent.Thisisespeciallytruewheretheeventisonewhichheisanticipating,suchasaturbinetrip~SeeSubsection15.0.4.2.AsdiscussedinthesecondparagraphofSubsection15.1.2.1.3.b,areactortriponturbinetripissimulatedtoincreasetheexcessheatremovalaspectofthiseventbyreducingtheheatinputfromthereactor.ThismaximizesthereactorcoolantsystemcooldownasshownonFigures15.1,2.1-5,Wand-7.Reactortripisassumedtooccuronlowelectrohydraulicpressurefollowingturbinetrip.Ifthereactortripdoesnotoccuronturbinetrip,areactortripwouldoccuronhighpressurizerpressure.Theconsequencesofthiseventwillbesimilartobutlessseverethanthelossofcondenservacuum,whichisdescribedinSubsection15.2.2.420.15-1
cationHo.420.16(7.2)ThereactorprotectionsystembringsthefourClass.IEindependentandredundantinstrumentpowersupplycircuitsintocommonlogicmatrices.Thisresultsinthepotentialforcompromisingthephysicalandelectricalindependenceofthesecircuital'herefore,describethedegreeofphysicalseparationandelectricalisolationprovidedfortheredundantinstrumentpowersuppliesattheselogicmatricesandalsoatanyotherpointsofconfluence.~ResenseEachchanneloftheRPSreceives120VacfromseparateClassIEinstrumentbussMA,MB,MCandMD.ThisIE,powerremainsvithinitsrelatedchannelanddoesnotcrossthechannelbarriers.The120Vacwithineachchannelpowersdcpoversupplies'hedcsideofthepowersuppliesisauctioneeredbetweenchannelstopowerthematrices.Independenceofthesebussesismaintainedthroughtheuseofqualifiedisolators.Theseisolatorsareconnectedtotheoutputofeachmatrixpowersupplysuchthatafaultappearingwithinthematrixvouldnoteffectthe120VacClassIEinstrumentbus~PALvillcommittotestingthepowersupplyisolatersandsubmitthetestreporttotheNRCforreview.SUL2488$420'6-1 0795-7QuestionNo.420.17(7.2)(7.'3)PleasedescribehowyourtestproceduresfortheprotectionsystemsconformtoRegulatoryGuide1.118(Revision0)PositionC.13guidelineswhichstatesthattestproceduresforperiodictestsshallnotrequirejuryrigtestsetups,theuseoftemporaryjumperwires,or.theremovaloffuses.Identifyandjustifyanyexceptions.~ResenseTheperiodictestsoftheRPSandESFASutilizethebuiltintestcircuitry.Noadditionaltestequipmentorfuseremovalproceduresa'erequired.Theinstalledtestequipmentcontainsitsownpowersupplyandchecksalllogicandtriprelays.Unit2also,incorporatesamatrix"fusetestcircuit.AQ420.17-1 0 0795-6Statewhetheropen-columnreferencelegsareusedinthelevelmeasurementsystemsforthesteamgeneratorsandthepressurizer.so,discusstheeffectonthemeasurementaccuracycausedbytheheatupofthereferencelegduetoahighenergylinebreakinsidethecontainment.QuestionNo.420.18(7.2)If~ResonseBothsteamgeneratorsandpressurizeratStLucie2haveopen-columnreferencelegssusceptibletocontainmenttemperaturechanges.TheeffectofaHighEnergyPipeBreakinsidethecontainmentwouldbetoheatupthereferencelegsandcauseadecreaseinthedensityofthewatercolumns.Theresultantaffectonthelevelmeasurementsystemwouldbeanindicatedlevelthatisre'adingsignificantlyhigherthantheactuallevel.Themainconcernforanaccuratelevelreadingduringanaccidentsuchasamainsteamlinebreakwouldbetomaintainaninventorylevelintheintactsteamgenerator(s)usingtheauxiliaryfeedwatersystemtoallowacontrolledcooldownand.alsotorecordanaccuratepressurizerlevelasameansofreactingtochangingRCSconditions.Thelevelerrorisaccountedforinthedeterminationofsafetysetpoints.CurvessimilartoFigure420.18-1areprovidedtotheoperatorsforlevelcorrections.Additionally,boththepressurizerandsteamgeneratorsemployexternalcondensatepotstomaintainreferencelegfullofsubcooledliquid.Assuch,"flashing"withinthereferenceleguponvesselpressurereductionhasanegligibleeffectonindicatedlevel.hJUL24eo420.18-1 h0 REFERENCELEGTEMPERATURE~300F800I(g040DICPIfn~C)(rnrllahaQrn4hZ7Z~wmrnPrmah>COQRmnIQRl+OaCnQrnrnmDrgoWAKK~hM"0K10405060INDICATEDSTEAMGENERATORLEVEL(%TAPSPAN)70 0S 0795-4420.19(7.3)TheStLucie2designconsistsofinterconnectionsforABsharedsystemequipment.Forexample,FSARTable7.3-2showsthattheintakecoolingwaterpump2Candcomponentcoolingwaterpump2ceachreceivebothSAandSBactuationsignalsfromtheredundanttrains'IbisresultsinthepotentialforcompromisingthephysicalandelectricalindependenceoftheredundantESFAScircuits.Therefore,describeallsituationswhereinter-connections(thirdchannel(SAB)equipmentactuatedbyredundantactuationtrainsSAandSB)forSABsharedsystemequipmentexist.DiscusshowthisdesignconceptmeetstherequirementsofIEEEStandard279-1971andIEEEStandard384.Meareparticularlyconcernedwithphysicalandelectricalindependenceofredundantsafetycircuits~Also,describethephysicallocationofthethirdchannelactuatedequipmentinrelationtoChannelAandBactuatedequipment.~ResonseInterconnections(thirdchannel(SAB)equipmentactuatedbyredundantactuationtrainsSAandSB)forSABsharedsystemequipmentareasfollows:1)IntakeCoolingMaterPump2C2)ChargingPumps2C3)ComponentCoolingMaterPump2Cb)Thedesignconceptswhichmeetthe.requirementsofIEEEStandard279-1971andIEEEStandard384areasfollows:Channelindependenceisachievedbyelectricalandphysicalseparationbetweenchannelsasdescribedbelow.EngineeredsafetyfeaturesAandBactuatingcircuitsaremaintainedindependentwithrespecttosignalinterconnectionsfor.theABsharedsystemequipmentcontrolbybothphysicalseparationandelectricalisolation.FSARFigure7.3-11showsthisarrangement.AweldedsheetmetalboxislocatedineachESFASlogiccabinet'andcontainsABequipmentactuationrelays.theserelayswith24voltdccoilsarehermeticallysealed.TheABcablesareroutedfromanABtraythroughsteelconduittotheAB1andAB2boxesandconnectedtotheterminalboards~Tefaelinsulatedwiresconnecttheterminalboardandrelaycontacts.%hetworelaycoilsareconnectedtoa2outof4actuationmodulewhichisusedfortheABrelayonly.AfailuremodeandeffectsforESFASABsystemisgiveninFSARTable7.3-8.AllotherdesignconceptswhichmeettherequirementsofIEEEStandardJUL8~$8~279-1971andIEEEStandard384-1977arediscussedinFSARSubsection7.3.2.1.2.420~19-1kl
0795-5'Theisolationboxislocatedinboththe9N38-5and9N38-6cabinetsandasinglenormallyclosedcontactisusedtoprovideastartsignaltotheCpump.Theisolationcharacteristicisprovidedbyarelay(coiltocontacts)ineachoftheisolationboxes.Theapproximateisolationbarrieris500voltsacordcbetweenthecoilandcontactsofthisrelay.Theresponsetimeisapproximately12millisecondsandtherelaycoilandcontactwiringwithintheisolationboxisroutedsothattheinput(coil)andoutput(contacts)wiresdonotcomeinproximity.c)Additionalsafety-relatedequipment(e.g.,thirdintakecoolingwaterpumpmotor)arearrangedtofunctionasa"thirdservice"(swing)-'loadgroupAB.Thisloadgroupconsistsofequipmentwhichcanbeusedforbackuporreplacementpurposestotheequipmentineitherofthemainredundant,loadgroupsAorB.AlltheABbuses(4.16kV,480Volts125Vdc)areconnectedtoeitherthecorrespondingAdivisionorBdivisionatanyonetime.Inthecontrolroom,alarmsareprovidedtoalerttheoperatoriftheABbusesonallvoltagelevelsarenotalignedproperly.Electricalinterlockingschemesareprovidedonthe'incomingbreakers(twoinseries)topreventtheABbusfrombeingsimultaneouslyconnected'oAandBdivisions.Onceanythirdservicebusisassignedtoasafetydivision,eitherAorB,theloadsservedbythatbusarecommittedtothatsafetydivision.'Ihethirdbusesaremanuallyswitched'otheappropriatedivisionAorBbus.PhysicalseparationisprovidedbetweenloadgroupAandload,groupBandbetweenloadgroupABandbothloadgroupsAandBsinceloadgroupABmayatvarioustimesfunctionaspartofeitherloadgroupAorB.Separatecabletrayandconduitsystemsareprovidedforeachoftheredundantloadgroups.AllSABcablesarepermittedtoberoutedonlywithitsownsafetyclasscablesandnotsafetyAorsafetyB.Thisisadesignrequirementtowhichcablesareroutedintheirrespectiveraceways.Separatetrayandconduitsystemsarefurnishedforthefollowingclassesofcable5kV,600Voltpower,600Voltcontroland300Voltshieldinstrumentcable.PhysicalseparationisfurtherdiscussedinSubection8.3.1.2,"RegulatoryGuide1.75Rev.1."TherearenoABinstrumentationprotectivesystems.ThephysicallocationofthethirdchannelactuatedequipmentisshownonPSARFigures12-12(Chargingpumps),1.2-20(CGfpumps)and1.2-22(IntakeCoolingMaterPumps)~JUL34~gg1420.19-2CPRj 0795-3QuestionNo.420.20(7.3)Discussdesignfeatureswhichinsurethattheblockingoftheoperationofselectedprotectionfunctionactuatorcircuitsisreturnedtonormaloperationaftertesting.Isrelianceplacedupontheoperatordoingthisandthenobservingtestlightsinthesafeguardstestracks,oraretheremorepositivemeanstoinsurethatsystemsarereturnedtonormaloperationf~ResenseThedesignfeaturesoftheESFAStestingisdescribedintheFSARSubsection7.3.1.1.1.Thebistablet'estcircuitusesamomentary,springreturn"Auto"calibrationswitch.Aftercalibrationtest,thebistableisreturnedtoitsnormalautomaticposition.Thebistabletriptestusesamomentary'pringreturnpushbuttonlocatedonthebistable.Afterobservingtriptestlightsandreleasingthebutton,thebistablereturnstoitsnormalposition.Thelogicmatricesaretestedbydepressingatriptestmomentarypushbuttonlocatedontheindividualmodules.This,inconcertwithfunctionandtestgroupselectorswitches,providesonetripinputtothematrixandasecondinputisprovidedbythetriptestedbistable.Thiscausesthelogicmatrixtotripandactuatetheoutputrelaysconnectedtothematrix.Thematrixdoesnotresetafterthetestandrequiresoperatorsaction'onthemaincontrolboardtoactuatesystemresetswitch.7420,20-1
0795-1QuestionNo;420.21(7.3)M>uiregardtotherecirculationsystem(RAS),providearesponsetothefollowingitems:(1)Forallmodesofplantoperation,evaluatetheconsequencesofaninadvertentswitchoversignalwhichcouldcausetheRASto.operateandrealignthepumpsandvalveswhennotrequired.Ifanyoftheconsequencesarefoundtobeunacceptable,describethedesignfeatureswhichareprovidedtohelpinsureagainstsuchanoccurrence.(2)Discussthesafety-relateddisplayinstrumentationassociatedwiththipactuationwhichisavailabletotheoperator.(3)Canther'eeetofsafetyinjectionactuationpriortoautomaticswitchoverfrominjectiontorecirculationdefeattheautomaticswitchover?~Resanse<<P(1)TheRASmeasurementchannelsandlogicsaredesignedto"energizetoactuate".BydesigningtheRASas"energizetoactuate,"alossof'poweronone125VdcbuswillnotcausespuriousRASinitiationwhichcouldpossiblyinterruptcoolingwatersupplytothecoreandcontainmentbeforeadequatewaterisavailableinthesumpforrecirculation.ConsequencesduetospuriousRASinitiationaresummarizedbelow:(a)NORMALPLANTOPERATION:TheLPSI,HPSIand-containment'sprayarenotoperating.OnaspuriousRASinitiation,(LPSI,HPSIandContainmentSprayPumpsremainnotoperating)oneoutletvalveopensandonerefuelingwatertankoutletvalvecloses.Thisshouldnotaffectnormalplantoperation'becausetheotherESFASchannelwillremainoperational.Adequatevalveposition,sump/tanklevelsinstrumentation,andalarmsinthecontrolroomareprovided.Theoperatorsarealertedtocorrectthe,abnormalconditionpromptly.(b)EMERGENCYREACTORSHUTDOWNCONDITION(i.e.SIASAND/ORCIAS):TheHPSI,LPSIandContainmentSprayPumpsarerunningwiththeirsuctionheaderslinedupwiththeRefuelingHaterTank(RMl).IfRASsignalof'one(1)safetychannelactuated,thecorrespondingLPSIpumpwillb'estopped.TheHPSIandContainmentSprayPumpsofthatchannelwillbeconnectedtothedrysump.However,theremainingredundantsafetypumptrainswillremainintactandperformtherequiredsafetyfunctions.Thecontrolroomoperatorhasadequatealarmsandinstrumentationstorecognizetheabnormalpump-valvelineupandcorrectitmanuallyfromthe'ontrolroompriortopumpdamage.420.21-1
0795-2(c)NORMALSHUTDORlCO(GENG:TheLPSEpumpsareisolatedfromRMTandcontainmentsumpbyV3444andV3432.Pumpauctionsareobtained.fromRCS.SpuriousRASswitchoversignalshouldnotaffecttheIhcayHeatRemovalSystemordamagethepumps.(2)RedundantsafetyclassinstrumentationsareprovidedforRVZlevelandcontainmentsumplevel.Annunciationsareavailabletothecontrolroomoperatortoalerthimofabnormalvalvepositions,andpumpoperatingconditions.Furthermore,RASannun'ciationisprovidedinthecontrolroom.1(3)TheresetofSEASpriortoautomaticswitchoverfrominjectiontorecirculationwillnoteffectRAS.'IheRASactuationstrictlydependsonRWTlevels(2outof4channels)andisindependentofSEAS.420.21-2
0799M-5QuestionNo.420.22(7~3)FSARSubsection7.3.1.1.3statesthat,"TheSIASandhigh-highcontainmentpressuresignalsarecombinedinfourANDcircuitswithintheESFASinitiatinglogic."However,FSARFigure7.3-3showstwoANDcurcuits.Pleasecorrectthisdiscrepancy.~ResonseRefertorevisedFSARSubsection7.3.1.13.Jy~C420~22-1 PROJECT:STLUCIE-FSARDATE07/13/81,TYPIST:PageosnTAPEHO.DATEPRINTED.:07/13/81SD445PAGE1SL2-FSAR01005060708091011121314151617181920212223242567'0012359'1'2'34:68907i3ilili3ContainmentSprayActuationSignalThisdescri.ptiondeals-withtheinstrumentationandcontrolsforthecontainmentsprayactuationsignal(CSAS)iRefertoSubsection62<2foradescriptionoftheContainmentSpraySystem(CSS)~ThecontainmentheatremovalfunctionisalsoperformedbytheContainmentCoolingSystemwhi.chisactuatedbySIAS,TheCSASautomaticallyactuatestheCSS~TheCSASisinitiatedbyacoin-cidenceoftwo-out>>of-fourhigh-highcontainmentpressuresignals(ratherthantwo-out-of-three,becauseitisdesignedtoenergizetoactuateratherthan,.de-energizetoactuate)andasimultaneousSIASsignalasshownonFigure7'-3~Thefourmeasurementchannelsforhigh-highcontainmentpressurearephysicallyandelectricallyseparatedandallfourchannelsareactiveduringplantoperation,Amanualbypassformaintenanceofoneofthefourchannelsplacesthischannelinatripconditionandthetripofone-out-of-threeremainingchannelsinconjunctionwithaSIASactuatestheCSAS.Thesystemiscomposedoffourredundantchannels,MA,MB,MC,andMD.Theinstrumentationandcontrolsinachannelarephysicallyandelectricallyseparateandindependentoftheinstrumentationandcontrolsinotherchannels.ThisindependencemaintainstheredundancyrequiredtoensureequipmentfunctionalityfollowinganydesignbasiseventsThetworedundantCSASactuationchannels(SAandSB)initiatetheoper-ati.onofthecontainmentspraypumps(AandB)andtheirassociatedvalves(seeFigure6i2-41),Eachspraysystemisolationvalve(FCV-07-1Aand1B)isopened'yi.tsassociatedCSASactuationchannel(SAorSB),TheCSAScontainmentpressuremeasurementchannelsandCSASactuati.onlogicsaredesignedas"energizetoactuate"topreventspuriousspraysystemoperationonlossofpowertooneofthetwo125Vdcbuses'he125Vdcsystemi.sdesignedsuchthatnosinglefailureresultsinlossofpowertoeitherofthe125Vdcbuses(seeSubsection8<3,2),Intheeventoflossofpowertoonebus,CSASi.sinitiatedwhenrequiredbythemeasurementchannelsassociatedwiththeunaffectedbus,EachCSASac-tuationchannelcanalsobeinitiatedmanuallyfromthecontrolroom.Thus,nosinglefailurepreventspro'perCSASactuation,e)-InitiatingCircui.tsInitiatingcircuitsaresimilartotheinitiatingcircuitsdescribedinSubsection7g3rlylelaforSIASexceptthatthepara-metermonitorediscontainmentpressureonly,TheSIASandhigh-highcontainmentpressuresignalsarecombinedin5twoANDcircui.tswithintheESFASiniti.stinglogic.TheANDcircuits420,22preventinadvertentoperationoftheContainmentSpraySystemupongenerationofanSIASonly.JULa~e8~7.3-10AmendmentNo.5,
0799W-6QuestionNo.0(7.3.2.l.1)TheinformationsuppliedinFSARSubsection7.3.2.1.1forGDC24isinsufficient.Therefore,provideadditionalinformationonseparationofprotectionandcontrolsystemsandclarifythestatementthat,"TheESFASisnotaprotectionsystem."ResponseTheESFASisseparatedfromthecont'rolsystems.NosinglefailureofanycontrolsystemcomponentcanimpairthesafetyfunctionsofESFAS.FSARSubsection7.3.2.1.1hasbeenIevisedo420.23-1 II0 06/09/81,TYPIST:ekPage?nTAPENO.rhAtSD446PAGE6SL2-FSAR0102o5050607080910ll1113141516171819202122232425262728l3132333435363738394041424344454647484950515253Mhereprotecti.veacti.onisrequi.redunderadverseenvironmentalconditionsduringcertainincidentsofmoderatefrequency,infrequenteventsandlimit-ingfaults,the,ESFAScomponentsaredesignedtofunctionundersuchcondi-ti.one~Criterion24;Sep'arationofProtectionand,ControlSystemsTheESFASsystemsioseparatedfromthecontrolsystems,Nosinglefailureofanycontrol'ystemcomponentcanimpairthesafetyfunctionsofESFASr420Cri.teria34,35,37,38,40,41,43,44and46TheESFsystemsandtheESFsupportsystemaredesignedtocomplywiththeabovecriteria.TheinstrumentationandcontrolforthesesystemsarediscussedinSubsection7.3.lrl.Criteri.a54,55,56,57:Theinstrumentsensinglinesformonitoringcontainmentpressurearedis-cussedinSubsection7rlr2r2rDLZy68t7.3-20AmendmentNo.5, f) 0799W-4estionNo.420.24(7'.2.1.3)(7.2)Subsection7.3.2.1.3referstocertainactuateddeviceswhicharenottestedduringreactoroperationbutaretobetestedduringreactorshutdown.SuchdevicesarenotsufficientlydiscussedintheappropriateportionsofSubsections7.2.2.3.9and7.3.2.1.3.Therefore,identifythespecificequipmentandprovidetheJustificationfornotincludingthisequipmentinthetestsduringreactoroperationinlinewiththerecommendationscontainedinRegulatoryGuide1.22andBTPXCSBf22inAppendix7AofStandardReviewPlan.~RessessPithregardtoESFAStesting,refertorevisedFSARSubsection7.3.2.1.3.AlsorefertotheFSARTable7.3-9forlistingofactuateddeviceswhicharenottesteddirectlyfromtheESFASduringnormalreactoroperation.Thetablealsoindicatesdegreeoftestingduringoperationandaneffectoffailureofcomponenttoassumeaccidentposition.AllRPSFunctionscanbetestedonechannelatatimewhile~theplantisoperatingbyusingthebuiltintestcircuits,withthefollowingexceptions:11)PORVActuation-ThislogiccircuitrequirestwooutoffourtripactuationsandthereforecanonlybetestedduringplantshutdownwhenthePORVcontrolcircuitexternaloftheRPScanbedefeated.TestingthePORVwillalsoinitiateareactortrip.2)CEAtfithdrawalProhibit(CVP)-Thislogiccircuitrequirestwooutoffourone-tripactuationsandshouldbetestedonlyduringplantshutdown.3)ResponseTimeTesting-ThistestrequirestwooutoffouractuationsoftheRPSandcanonlybeperformedduringplantshutdown.NIdetectorsandpreamplifierswhereutilizedarenotcapableofbeingtestedduringoperation.Properoperationofthesechannelsisverifiedbyperiodicchannelcomparisons.-ProcesstransmittersandsensorsfeedingtheRPSnotaccessableduringoperationarealsocheckedforproperoperationbyperiodicchannelcomparisons.h\,s~(3h;420.24-1
PROJECT:STLMiIE-2DATE03/)4/80,TYPIST:cwPage?nTAPEHO.DATEPRINTED:07/20/81SD608PAGE5SL2-FSAR4.20"InformationReadout"04050607080910111213141516171819202122232425263132333435,",Le~38pg,"tv~)<.'Qymv4v~t,4748495051524.22"Identification"TheESFASequipment,includingpanels,modulus,andcablesassociatedwiththeactuationsystem,areuniquelyidentified.Interconnectingcablesarecolorcodedonachannel.basis(seeSubsection8.3.1.3).7.3.2.1.3,TestingCriteriaIEEE338-1971,"CriteriaforthePeriodicTestingofNuclearGeneratingStationProtectionSystems,"andRegulatoryGuide1.22,(RO)providesguidancefordevelopmentofprocedures,equipment,anddocumentationofperiodictesting.Thebasisforthescopeandmeansoftestingaredescribedinthissection.TestintervalsandtheirbasesareincludedintheTechnicalSpecifications.SinceoperationoftheESFsystemisnotexpected,thesystemsareperiodicallytestedtoverifyoperability.Thesystemistestedfromthesensorsignalthroughtheactuationdevices.Completechannelscanbeindividuallytestedwithoutinitiatingprotectiveaction,withoutviolatingthesinglefailurecriterion,andwithoutinhibitingtheoperationofthesystems.TheorganizationfortestingandfordocumentationisdescribedinChapter13.~~~~~~~~Minimumfrequenciesforchecks,calibrationandtestingoftheESFASins-,trumentationaregivenintheTechnicalSpecifications.Overlapinthecheckingandtestingisprovidedtoassurethattheentirechannelisfunctional.Theoperabilityofthemeasurementcha'nnelsensorsisverifiedduringreactoroperationbycross-checkingbetweensensoroutputsignals.EachoftheESFASsensorshasacontrolroomreadoutandtheoperatorcandetectsensormalfunctionthroughanomalousindicationofthefailedsensor.Thoseactuateddevices,whichare.nottestedduringreactoroperationasdescribedinSubsection7.3.1.1.1(e.g.,mainfeedwaterisolationvalves),aretestedduringscheduledreactorshutdowntoassurethattheyarecapableofperformingthenecessaryfunctions.Table7.3-9listsallactuateddevicesnottestedfromESFASduringnormaloperationandindi-catesdegreeoftestingduringreactoroperation.DuringrefuelingtheESFASsensorsarecheckedandcalibratedagainstknownstandards.Thetestequipmentwhichisusedtoverifythesensorac-InstrumentsareprovidedinthecontrolroomtoallowtheoperatortomonitorESFASmeasurementchannelinputs.ThespecificdisplaysthatareprovidedforcontinuousmonitoringaredescribedinSubsection7.5.1.t4.21"SysternRepair"tIdentificationofadefectivechannelisaccomplishedbyobservationofsystemstatuslightsorbytestingasdescribedinSubsection7.3.l.l.ld.Replacementorrepairofcomponentsisaccomplishedwiththeaffected'hannelbypassed.5420,2473-25AmendmentNo.5,
PROJECT:STLUCIE-2DATE07/13/81,TYPIST:RoxPage?nTAPENOiDATEPRINTED:07/13/81SD608PAGE6SL2-FSAROl00050607080910ll121314151617181920212324252730313233343536373839-404142434445464748495051253'uraciesischeckedperiodicallyagainstshopreferencestandardstraceabletonationallyrecognizedstandards,Thepressureandelectroniccalibra-tionstandardsareasaccurateorbetterthanthedevicestobecheckedinaccordancevithANSIN45i2,lb+TestingofESFASsensorresponsetimesisinaccordanceviththerequire-'entsof,theTechnicalSpecifications<FailureHodesandEffectsAnalysisFailuremodesandeffectsanalysesfortheESFASareprovidedinTable7.3-7+Figures7i3-6,7and8areusedasatypicalESFASshovingbistablesandisolationmodules,Figure7,3-9showsthetypicallogic,7'e2rle47i3.2.1~5ConsiderationofSelectedPlantContingenciesa)LossofInstrumentAir.SystemNoneoftheinstrumentationandcontrolsrequiredforsafeshutdownrelyoncoolingvaterforoperation<'Airconditioningsystemsre-quiredtomaintaintheenvironmentwithin,theinstrumentdesignparametersareredundantanddescribedinSections6,4and9<4,elf/(~~68)Honeoftheessentialcontrolormonitoringinstrumentationispneumatic.Electricalinstrumentationispoweredfromtheemergencypowersystem.Therefore',thelossofinstrumentairdoesnotdegradeinstrumentationandcontrolsystemsrequiredforshutdovnoftheplant,Kb)LossofCoolingMatertoVitalEquipment7'-26AmendmentNo,5, 1s'lV 0799M-2QuestionNo.420.25(7.3)InthediscussionoftheMainSteamIsolationSignal(MSIS),inSubsection7.3.1-1.5oftheFSAR,itisstatedthataMSISoneitherchannel(steamgeneratorAorsteamgeneratorB)closesthemainsteamisolationvalve,themainfeedwaterisolationvalveandthebackupfeedwaterisolationvalveinthatchannel,andsendsasignalthroughanisolationdevicetoclosethesamecomponentsoftheotherchannelUponreviewoftheassociatedlogic,schematic,andwiringdiagrams,thefollowingdiscrepancieswerenoted:a)TheMSISlogicdiagram,Figure7.3-5,doesnotincludethelogicinwhichthesignalfromonechannelactuatesthecomponentsintheotherchannel.Modifythisfigureaccordingly.b)Ontheschematicdiagramsforthemainsteamisolationvalves(2998-B-326sheets312and315,Revision1)thetwoMSIScontactsarebothshowninthenormallyclosedposition.However,inthecontrolwiringdiagrams(2998-B-327sheets312and315,Revision6)thetwoMSIScontactsareshownasonenormallyopenandonenormallyclosed.Resolvethisinconsistency.c)'lso,intheschematicsandwiringdiagramsidentifiedinb),itwasnotedthatthe4YAcoilisconnected,directlytothepositivebusthroughtheSA/SBcontactwhilethe4YBcoilisconnectedtothepositivebusthroughseveralcontacts.Pleaseclarifythisdifference.Responsea)RefertorevisedFSARFigure7.3-5.b,c)RefertorevisedSchematicdiagrams2998-B-326sheets312and315.JULZ4>So<420.25-1 IO-TDEEITOTEIHDICgt17IESTOAHt$SNOEIITOREAPRDSOLIROICIIASuttttHONZCHANNELS4~OOIIAPIAQCvsD$7$)M(cvlO37y)74CgrD37b)SOD(CISO37b)STEANEEBat4ATeaZDFOSSItaaStaA~ntmCQyaOLS4EOIIANA(CVD$79)MD(CVO3'79)SIC(CWD379)SID(CVD577)TOOT$14NAL.TOSTSIGNALITRSTASIGNALTE5TSlNAL~yAICSIGNAL~AStGKlLLOLO()LO"lILOL))LOLOGIG4LOGIC-ISOLATIONHODIILC5/4LOGICICOTWLIIISOLATIONFIIOIICONTAINHENT<<grIeOg.HICKPRESSORElsoiATloNHoouLES.'SASH.ILOICACTVATOKNSLATT<<(DEETIWIIITOACTOATOOCOCIC5tl<<EXKOTETILO~QtAOTWAIIISOLATIONFIIO14CONTAIIINENTHIIINFRE5suttf"IISISONISOLATIONIIOOOLESttttOEESET<<SQSIII'ILSIACTUATIONRELAYSOE4rettSIEEOToAcTvlTE~~g~:i.~ISTVA'5bTPASSZSOLVAAIOFWZSOLlAVAISISOLATION~DRVICILSCLOSELtb?LtESN'5bYPACLTSOLVIL'JSLIFWTSOLTSVAI5I~~Ki'NOTElt.JOIISVSNOLSSEESIOVIIETAI.4WCIASSLCCK14AIITCAIATICALLTIltalOVIOAltaVSLO'STEAtaOTILSIIESTVIIhIIESOWOlCK.TSSSILSNI4IREVtlFLORIDAPOwER5LIGHTCOMPANYST.LuCIEPLAHTUHIT'2MSISLOGICDIAGRAMFIGURE13-5 0799M-3QuestionNo.420.26{7.3)ThesecondandthirdparagraphsofSubsection7.3.115statethattheMSISsignalisinitiatedbylowsteamgeneratorpressureorhighcontainmentpressureHowever,inpartsa)andh)ofthissection,itisstatedthatonlyoneparameter,steamgeneratorpressure,initiatesthatsignal.Resolve'hisinconsistency.ResponseRefertorevisedFSARSubsection73.115.420.26-1 PROJECT:STLUCIE-FSARDATE12/04/80,TYPIST:glkPage2nTAPENO.DATEPRINTED:07/13/81SD445PAGE5SL2-FSARG4050607GSG910ll121314151617181920212223242526of-threelogicforautomaticactuation.Thetwo-out-of-threelogicmeets,fullsafetyrequirementsincludingtherequirementofthesinglefailure'riterion.ThemeasurementchannelslogicandactuationchannelsassociatedwithsteamgeneratorAareseparatedfromthoseassociatedwithsteamgeneratorB.AnMSISsignaloneitherchannelclosestheMSIV,themairifeedwaterisola-tionvalve,andthebackupfeedwaterisolationvalveonthatchannel,andsendsasignalthroughanisolationdevicetoclosetheMSIV,themainfeedwaterisolationvalve,andthebackupfeedwaterisolationvalveoftheotherchannel.ThisensuresthatintheunlikelyeventofasteamlinebreakaccidentupstreamoftheMSIVs;theMSIVscloseandlimittheblow-downtothefaultedsteamgenerator.Theconsequencesofsuchanoccur-rence-areevaluatedinChapter15.AmanualblockontheMSISisprovidedtopermitshutdowndepressurizationoftheMainSteamSystemwithoutinitiatingMSIS.Thisprocessisunderstrictadministrativecontrolwithblockandblockpermissiveannunciatedandindicatedinthecontrolroom.Itisnotpossibletoblockaboveapresetpressure:ifthesystemisblockedandpressurerisesabovethispoint,theblockisautomaticallyremoved.TheblockcircuitisdesignedtocomplywiththesinglefailurecriterionspecifiedinIEEE279-1971.EachMSISactuationchannelcanbeinitiatedmanuallyfromthecontrolroom.AlistofcomponentsactivatedonaMSISisgiveninTable7.3-6.a)InitiatingCircuits023031323334353637383Q40414243444546474849505152TheinitiatingcircuitsfortheMSISissimil'artothatdescribedinSubsection7.3.1.1.1aforSIASexceptthattheparametersmonitoredarethesteamgeneratorpressurefor'achsteamgeneratorandcon-tainmentpressure.5420.26b)Logicc)TheMSISlogicisshownonFigure7.3-5.OutputRelaysManualandautomatictestingforMSISissimilartothatdescribedinSubsection7.3.l.l.ldforSIAS.e)'ypassesBypassesforMSISaresimilartothosedescribedinSubsection7.3.1.l.leforSIAS.InterlocksInterlockprovisionsforMSISaresimilartothosedescribedinTheoutputrelaysforMSISaresimilartothosedescribedinSub-section7.3.l.l.lcforSIAS.Jgg~Manual'andAutomaticTestCircuitrygg88]7.3-14AmendmentNo.5,
PROJECT:STLUCIE-FSARDATE07/13/81,TYPIST:ekPage7nTAPENOrDATEPRINTED:07/13/81-SD445PAGE6SL2-FSAROl0506070809101112131415161718192021222324252627~31'2333435367,.389404142434405Mi'>7t9i0jl$23Subsection7,3,1,1,1fforSIAS,g)RedundancyRedundancyfeaturesforHSISaresimilartothosedescribedin'ubsection7'il+l,lhforSIASih)DiversityTheonlyparametersbeingmeasuredaresteamgeneratorpressureandcontainmentpressure;thereforefunctionaldiversi.tyieapplicable,i)Sequencing5420.26Sequenci.ngequipmentandfunctionsforHSISaresimilartothosedescribedinSubsection7'rlelrlgforSIAS.Auxili.arySupportingSystemsRequiredTheauxiliarysupportingsystemsrequiredareidentifiedand,des-cribedi.nSubsection7.3+i'i6~7e3il.1~6ESFSupportingSystemsTheESFsupportingsystemslistedbelowaredescribedinthereferencedsections:b)c)Com'ponentCooli.ngWaterSystem(Subsection9i2~2)Intake.CoolingWaterSystem(Subsection9.2.1)OnsitePowerSystem,includingthedieselgeneratorsystem(Section8.3)7'ilili7SystemsNotActuatedbyESFASa)CombustibleGasControlSystemTheCombustibleGasControlSystemisprovidedtocontroltheconcentrationofhydrogenthatmaybereleasedintocontainmeptfollowingaLOCA;seeSubeecti.on6i2~5iJUL.2458~LIV@d)DieselFuelOilStorageandTransferSystem(Subsection9.5,4)e)Heating,VentilatingandAirConditioning(HVAC)Systemsasrequiredforareascontainingsystemsandequipmentrequiredforsafeshut-down(Section9+4)~7'3-15AmendmentNo.5,
0799M-1cationNo.420.27Thedisc'ussionconcerningthelossoftheinstrumentairsysteminSubsection7.3.2.1.5statesthatnoneoftheessentialcontrolormonitoringinstrumentationispneumaticHowever,Table6.2-53,whichliststhecontainmentisolationvalves,showsthatmanyoftheESFactuatedvalvesarepneumaticallyoperated.Reviseyourdiscussionoftheconsequencesoflossofinstrumentairaccordingly.Thisdiscussionshouldincludethefollowing:(1)Alistofallpneumaticallyoperatedvalvesandcontrolswhicharesafetyrelated.(2)Thenormaloperatingpositionforeachpneumaticallyoperatedvalveandcontrolandthesafetyfunctionposition.(3)Identificationofallpneumaticallyoperatedvalvesandcontrolsthatdonotmovetothesafetyfunctionpositionuponlossofair.ResponseFSARSubsection7.3.2.1"EngineeredSafetyFeaturesActuationSystem"providesthecriteriafortheESFASandstatesthattheessentialcontrolandmonitoringinstrumentationfortheESFASsystemiselectricallypoweredfromtheemergencypowersystemand,thus,doesnotrequiretheuseoftheInstrumentAirSystem.TheInstrumentAirSystem,whichisdescribedinFSARSubsection9.3.1servesnosafetyfunctionand,therefore,isdesignedtonon-safety,non-seismicrequirementsSafetyrelatedairoperatedvalvesaredesignedtofailinthepositionrequiredtoperformtheirsafetyfunctionintheeventalossofinstrumentairsupplyoccurs.ThepneumaticsafetyrelatedvalveswhichrequireairtoperformsafetyfunctionsareprovidedwithseismicCategoryIairaccumulatorsforvalveoperation(referSubsection9.3.1)~Therefore,thecompletelossoftheinstrumentairsystemduringfull-poweroperationorunderaccidentconditionsinnowwayreducestheabilityoftheReactorProtectionSystemortheEngineeredSafetyFeaturesandtheirsupportingsystemtosafelyshutdownthereactorormitigatetheconsequencesofanaccident.Allvalvesgototheirsafepositionasaresultoflossofinstrumentair,lossofpowerorsafetyactuation.ThosevalvesrequiredtochangestateafteranactuationsignalpreprovidedwithseismicCategoryIairaccumulators.tJU(py$98i420.27-1cQs' 0796-5QuestionNo.420.28(7.4)(5.4o7)SHUTDOWNCOOLINGSYSTEM(SDCS):PSARSubsection5.4.7.2.6statesthatmanualactionsforalignmentoftheSDCSrequirethattheIPSIpumpsuctionvalvesfromtherefuelingwatertankandthecontainmentsumpbeclosedwithahandwheellocatedinthesafeguardspumproom(outsidethecontrolroom)~ThisdesignisnotsuitablyjustifiedasrequiredbyPositionA.3ofBTPRSB5-1.Therefore,describeallareaswheresystemoperationisrequiredoutsidethecontrolroomto"aligntheSDCSandprovidesufficientinformationtojustifysuchadesignasrequiredby'theaboveposition.~~sS>onseA)TheLPSIpumpsuctionvalvesfromtherefuelingwatertankandthecontainmentsump,V3432,V3444,respectively,areintheprocessofbeingchangedtomotoroperatedvalveswithremotemanualactuationfromthecontrolroom.B).Manualactionoutsidethecontrolroomisrequiredtorestorepowertothesafetyinjectionisolationvalvesmotoroperators.Oncethepressurizerpressureisabove500psigtheSITvalvesareopenedandthepowertotheoperatorsisremoved.InordertoisolatetheSITsfromtheSDCStheseisolationvalves(V3614,24,34>44)musthavetheirpowerrestoredandclosed.Thepowerisrestoredinthemotorcontrolcenterwhichislocatedoutsidethecontrolroom.C)TherearenootherareaswherenormalactionsarerequiredinordertoaligntheSDCS.JUL241s84420.28-1
0796-4QuestionNo.620.29(7,4)'PSARSubsection7.4.2.3statesthatthesafeshutdownsystemsareperiodicallytestedtoverifyproperfunctioningduringnormalWlplantoperation.Describehowthesafeshutdownsystems~cformtotherequirementsofIREE338andtherecommendationsofRegulatoryGuidel.22sincetheexistiagFSARinformationisinsufficient.~ResonsePumpsandvalvesforsafetyandshutdownsystemsaretestedmonthly.Pumpsarerunforaminimumof15minutes.Ualvesareactuatedforfulltravelverification.Thesafeguardsactuationsystemhasanautomatictestcircuittomonitortripsetpoints.,At18monthintervalsanintegratedtestoftheESFisperformed.Thistestassuredoperationandresponseofallsafetyequipmentandcircuits.Testingwillbedoneinaccordancewithtechnicalspecifications.~st420.29-1
0796-3uestionNo.420.30(74)Controlwiringdiagramsfortheatmosphericdumpvalvesshowcon-trolswitchesonthehotshutdowncontrolpanelwhicharenotlistedinPSARTable7.4-2.PleaseclarifyandamendthePSARwherenecessary.'ResonsaRefertorevisedPSARTable7.4-2~420.30-1 PROJECT:StLucieFSARDATEPRINTED:07/17/81DATE07/17(81,TYPIST:.Page2nDISKETTENO.:SD-179PAGE1SL2-FSAR0105060708091011i12~131415)617181920212223.242526272~830-3132333435.3673839'0~elS243'84I56'l7f8i9012)3~InstrumentsTaNo.LI-9113PI-8113PIC-08-1A1,3A1PI-1108LI-1105TI-1115-1TI-3351YFI-3306VM-1606-1WM-1606-1JI-001A1JI-001B1LI-9123PI-8123PIC-08-1B1$3B1PI-1107LI-1104TI-1125-1TI-3352YPI-3301VM-1616-1WM-1616"1HIC-09-1ClServiceSteamGenerator2AWaterLevelSteamGenerator2APressS.G2AAtmosphericSteamDumpPressurizerPressurePressurizerWaterLevelReactorColdLegTempShutdownCoolingTempShutdownCoolingFlowDiesel-Gen2AVoltsDiesel-Gen2AWattsNeutronPowerLevelNeutronPowerLevelSteamGenerator2BWaterLevelSteamGenerator2BPressS.G.2BAtmosphericSteamDumpPressurizerPressurePressurizerWaterLevelReactorColdLegTempShutdownCoolingTempShutdownCoolingFlowDiesel-Gen2BVoltsDiesel-Gen2BWattsAux.P.W.Pump2CTurbineSafetySectionSASASASASASASASASASASBSBSBSBSBSBSBSB~SBSBSABScaleRane0-100Z0-1000psia0-1200psig0-3000Psipsia0-100X.0-600F0-350F0-5000gpm0-5250V~0-5000kWI2x108X-200X2xlO.X-200X0-100X0-1000psia0-1200psig0-3000Psipsia0-100X0"600F0-350F0-5000gpm0-5250V0-5000kW-6000gpmSwitchesandIndicatinLams~Ta.NoServiceSafetySectionCS-610-2CS"608-2CS-629-2CS-189-1CS-157-1CS-194-2CS-177CS-176-1CS-246-3CS-1625-2CS-1626-2CS-1628-2-CS-1627-2CS-609-2CS-611-2AuxPW2ADischTieMV-09-13AuxFW2ADischMV-09%AuxFWPump2AAuxSprayValveSE-02-3LetdownContainIsolV-2516ChargingLineIsolV-2523ChargingPump2AChargingLineValveISE-02"02SIAS"A"BlockStmGen2AAtmStmDumpValveMV-08-19AStmGen2AAtmStmDumpValveMV-08-18AStmGen2BAtmStmDumpValveMV-08-18BStmGen2BAtmStmDumpValveMV-08-19BAuxFW2BDischMV-09-10AuxPW2BDischTieMV-09-14aSASASA'ASASASASASASBSASASBSBSBTABLE7.4-2INSTRUMENTATIONANDCONTROL-HOTSHUTDOWNPANELOUTSIDETHECONTROLROOM5420;307.4-22AmendmentNo.5, PROJECT:StLucieFSARDATEPRINTED:07/15/81DATE07/14/81,TYPIST:ekPage?nDISKETTENO.:SD-179PAGE2SL2-FSAR0104050607080910ll1213141516171819202122232425262+2930313233343536373830404142434445464748495051CS-630-2CS-189-2CS-157-2CS-194-1CS-178CS-176-2CS-248-3CS-612-2CS-179CS-652-2CS-653-2CS-632-2CS-124CS-125CS-126CS-127CS-128CS-129AuxFt<Pump2BAuxSprayValveSE-02%LetdownStopValveV-2515LetdownContainIsolU>>2522ChargingPump2B.ChargingLineValveISE-02-01SIAS"B"BlockAuxFVi2CtoSG2AMV-09-11AuxFll2BDischValveSE-09-3AuxFM2CDischValveSE-09%ChargingPump2CSteamfromSG2AtoAuxFM2CTurbineMV-08-13SteamfromSG2Bto'uxFM2CTurbineMV-08-12AuxFMPump2CTurbinePressurizerBack-upHtrBankB-lPressurizerBack-upHtrBankB-2PressurizerBack-upHtrBankB-3PressurizerBack-upHtrBankB-4PressurizerBack-upHtrBankB-5PressurizerBack-upHtrBankB-6TABLE7.4-2(Cont'd)SwitchesandIndicatinLamsServiceSafetySectionSBSBSBSBSBSBSBSBSBSABSBSBSABNoneNoneNoneNoneNoneNone,I,3~~t.34f98f(1)InformationidentifiedasLaterwillbeprovidedinafutureamendment.7,4-23AmendmentNo.5, 0 08038-5cationNo.420.31(7.41)AccordingtoSubsection7.4.1,monitoringofthereactorcoolantboronconcentrationisrequiredforshutdown.Pleasedescribetheinstrumentation/systemstobeusedtomeasuretheboronconcentration.Besuretoincludeadescriptionofthepowersources(s)anddesigncriteria.Electricalschematicsandone-linewiringdiagramsshouldbeincludedassupportdocumentation.Also,explainwhythisinstrumentationisnotincludedinTables7'-1and7.5-1.ResponseTheboronometerisprovidedtopermitdatatobeavailableasabackupandtoassistintrending.PrincipalboronmonitoringisattainedbylocalandremotewetchemistrysamplesTheboronometerisnonsafety-related,non-IEandisisolated(onletdownline)forpost-accidentconditions;itisthereforenotincludedintheTable7.4-1.Thistableincludesminimumrequirementsformonitoringsafeshutdown.Table7.5-1providesforIEequipment,theborono'meterisnotsoqualified.Theoronometerreceivespower'from120VPP220.420.31-1 0796-2QuestionNo.420.32SectionB.l.(a)ofBTPRSB501,Designrequirementsofthe(IF1.3)residualheatremovalsystem,"requiresthatvalvepositionsbe'ndicatedinthecontrolroom.Pleaseprovideadescriptionofhow(limitswitches,indicators,etc.)theshutdowncoolingsystemmeetsthisrequirementAlso,providetheacceptancedesigncriteriausedforvalvepositionindication.ResponseBranchTechnicalPositionRSB5-1,B.l.(a)readsas:RHRSystemIsolationRequirementsTheRHRsystemshallsatisfy"theisolationrequirementslistedbelow.1ThefollowingshallbeprovidedinthesuctionsideoftheRHRsystemtoisolateitfromtheRCS.(a)Isolationshallbeprovidedbyatleasttwopower-operatedvalvesinseries.Thevalvepositionsshallbeindicatedinthecontrolroom.Thedesignsatisfiesthebranchpositionwiththefollowingfeature..FortrainAthepoweroperatedisolationvalvesinseriesinsidethecontainmentboundaryontheshutdowncoolingsuctionlineareV3480andV3481.FortrainBtheyareV3651andV3652Eachvalvehasan"open"light,A"closed"light.420.32-.1 0796-1QuestionNo.420.33(7.4.1.3)(7.6'l.l)QithregardtotheShutdownCoolingSystemInterlocks(Section7.'6.1.1),thedescriptionofthemea'surementchannelsdoesnotestablishthatthereisanydiversityamongthechannels.Thestaffs'ositioninthisarea(seeStandardReviewPlanAppendix7A-ICSBBTP3Item2)requiresdiversityintheinterlocks.Provideadiscussionofyourconformancetothisportionoftheposition.Inaddition,identifyallotherpointsofinterfacebetweentheReactorCoolantSystem(RCS)andothersystemswhosedesignpressureislessthanthedesignpressureoftheRCS.Foreachsuchinterface,discussthedegreeofconformancetotheabovecitedBranchTechnicalosition3.ReseoasaOverpressureprotectionisprovidedbyinterlocksandhighcapacityreliefvalves.Diversityoftheinterlockchannelshaenotbeenprovided.Thereissufficientredundancyandadequatecontrolsonoperatoractionthatoverpressureprotectionie'rovided.Theoperatorisnotsolelydependentonpressurechannelscontrollingtheinterlockstomakethedecisiontoopentheshutdowncoolirgvalves.Twootherreactorcoolantsystempressureindicationsexistforcomparison,PI1107andPI1108.40Lg4Ise>420.33-1 0 0797W-6+cationNo.420.34(7')(7.4)(76)BranchTechnicalPosition(BTP)ICSB18,"Applicationofthesinglefailurecriteriontomanuallymontrolled,electricallyoperatedvalves,"givesthestaff'spositionondisconnectionofpowertoelectricalcomponentsoffluidsystems.Pleaseidentifysuchareasofdesignandstateyour,conformancetotheBTPICSB18.~BeoonceDisconnectingpowerelectricalcomponentsasrequiredbytheBTPICSB"18isprovdedforthesafetyinjectionstankisolationvalvesV-3614,V-24,V-3634andV-3644(ReferencedrawingsB-327Sheets269,270,27K,and272)~'heremovalofelectricalpower(byrackoutandlockoutofthebreakers)istoassuretheopenpositionofthesevalvesandtoprevent,bysinglefailure,isolationofthesafetyinjectiontanks.IsolationofthetanksisnotrequireduntiltheRCSisdepressurizedbelow600psi.Ampletimeinexcessofthe10minutecriterionisavailableto.restorepowerforthisaction.Inaddition,themotoroperatedvalvesinthesafetyinjectionsystemwhichhavethepowerremovedaretheSITisolationvalvesandthehotleginjectionisolationvalves.(Valves:3614,3624,36343644,3551,and3550,respectively).ThehotleginjectionvalvesV3551andV3550meettheBranchTechnicalPositionfortheirabilitytohavepowerrestored.Becausehotleginjectionisnotmanuallyinitiateduntiltwohours(perPSARSubsection6.3-2.8)aftertheeventof'safetyinjectionactuationthevalvesmeetthe10minutecriterionforhavingpowerrestored.The=positionindicationredundancyrequirementismetbyhavingpositionindicationdisplayedinthecontrolroomfortheisolationvalvesandthethrottlingvalves(V3540andV3523)whichareinseries.420.34-1 i cationNo.420'5(7.4.2.4)InthedescriptionofsystemsrequiredforsafeshutdowninSubsection.,7.4.1,nodiscussionofthepressurizerheatersandspraysystemispresented'owever,controlsforthesesystemsareincludedonthehotshutdownpanelsPleaseprovideadescriptionofthepressurizercontrolsasrequiredforshutdown.~ResonoeAdescriptionofthepressurizersystemwithadiscussionofthepressurizerheatersandthepressurizermainspraysyst:emissuppliedinFSARSubsection5.4.10.Themanualoperationofcertain'ressurizerheatersfromthehot,shutdownpan'elisprovidedforoperatorconvenience.~Thepressurizerheatersystemisnotrequiredforsafeshutdownassufficientstoredenergyisavailableinthepressurizer.Safety-related,ClassIEpressurizerauxiliarysprayisavailableforrequiredRCSdepressurizationfollowingplantcooldown.ThepressurizerauxiliaryspraysystemispartoftheChemicalandVolumeControlSystems.FSARSubsection7.'4.1d)5)willberevisedtodesignatetheauxiliaryspraysubsystem.f.'l~1\420.35-l PROJECT:St.LucieDATEPRINTED:07/22/81~DATE03/14/80,TYPIST:nrPageosnTAPENO.':.SD447PAGE201050607080910ll121314.15167189012,67~O012345SL2-FSARd)ReactorCoolantSystemcooldown'tocoldshutdownvhichrequires:1)ActuationandcontrolofShutdownCoolingSystem2)ControlofComponentCoolingMaterSystem3)ControlofIntakeCooling-MaterSystem4)OperationandcontrolofboronadditionandchargingsubsystemofCVCSI5)MonitoringofReactorCoolantSystempressurizertemperature,pressureandwaterlevel6)Availabilityofauxiliarysprayflow,asfurtherdescribedin'ubsection5.4.7.5(itemA.2).However,RCSdepressurizationduringcooldowncanbe.accomplishedvithoutauxiliarysprayflov(seeSubsection5.4.7.5(itemA.2).Foroff-normalshutdowns(e.g.,lossofoffsitepower,cooling),theatmosphericdumpvalvesareutilizedforuntilshutdowncoolingisinitiated.TheOnsitePower8.3)providespoweruponal,ossofoffsitepower.Forconditions.thecapabilityexistsforemergencyactions7.4.1.5)outside,ofthecontrolroom.lossofcondenserheatremoval.System(Sectionallshutdovn(seeSubsectiona)AuxiliaryFeedwaterSystemb)ChemicalandVolumeControlSystem(Boronadditionandchargingportionsonly)c)ShutdownCooling.Systemd)AtmosphericDumpValves(orSteamDumpandBypassSystem)Basedontheabove,thefollowingistheminimumequipmentrequiredtobeoperableforsafeshutdown:520,3556789012e)ControlRoomf)InstrumentationlistedinTable7.4-1.a)OnsitePoverSystemb)DieselFuelOilStorageandTransferSystemcVggg~c)IntakeCoolingMaterSystemd)ComponentCoolingMaterSystemJg]p~Thefollowingsupportsystemsarealsorequiredtobeoperableforsafeshutdown,includingshutdownwithaconcurrentlossofoffsitepower:(05\7.4-2AmendmentNo5, PROJECT:St.LucieDATEPRINTED:07/22/81DATE07/22/81,TYPIST:RoxPage?nTAPENO.:SD447PAGE3SL2-FSAR0105060708.0910ll1213141516171819202122232425262728'03132'33435363738390'12'34I'5'6f78f9012e)Heating,Ventilating,andAirConditioning(HVAC)Systemsforareascontainingsystemsandequipmentrequiredforsafeshutdown'ISTheinstrumentationandcontrolsystemsrequiredforsafeshutdownofthereactorareinthesubsectionswhichfollow.74-2oAmendmentNo.5, lgOuestionNo.420g36(7.47TheFSARstatesthatmanualtransferswitchesareprovidedat'ppropriatelocationsoutsidethecontrolroomsothattherequiredcircuitsforhotshutdownareisolatedfromcircuitsinthecontrolroom.Pleaseprovidethefollowinginformation:~.I-~c)Designbasisforselectionofinstrumentationandcontrolequipmentonthehotshutdownpanel.1)Locationoftr'ansferswitchesandremotecontrolstation~.(includelayoutdxawings,etc.).c)Designcriteriafortheremotecontrolstationequipment'includingtransferswitches.d)Descriptionofcontrolofaccesstothedisjlaysandcontrolslocatedoutsidethecontrolzoom.0)Discussthetestingtobeperformedduringplantoperationtoverifythecapabilityofmaintainingtheplantinasafeshutdownconditionfromoutsidethecontrolroom.f)Descriptionofisolation,'eparationandtransfer/overridepzovisions.Thisshouldincludethedesignbasisforpre~ventingelectricalinteractionbetweenthecontrolroomandremoteshutdownequipment.g)Descriptionofanycommunicationsystemsx'equiredtoco-ordinateoperatoractions,includingredundancy,separation,andenvironmentalaualification.h)Descriptionofcontrolrocmannunciationofatecontrolarcve~ideofdevicesunderlocalcontrol.I~I~~~~~~~taj,T¹instz~ntationandcontrolequipnentlocatedont¹hotshutdownpanelhasbeenselectedtoallowtheoperatortoshutdownandmaintaintheunitathotstandbyorcooldcwn'.conditionsfnxnoutsidethecontrolroan.Section7.4.1.5providesthebasisforselectionofequipmentforthehotslmtdownpanelasfollows:1)Achievepraopthotshutdownofthereactor.2)5hintaintheunitinasafeconditiondurinhotshuble~.3)SonitorcooMown4)Controlroomevacuationisnotacct~edbyanyDBA.5)Anysinglefailuredoesnotpreventsaeplantshutdown.6)Channelindependenceismaintainedbyelectricalandphysicalseparationbetween'edundantchannels.7)Zkpiprent,inclmiingelectriccables,relatedwithre-dundantsystansareuniquelyidentifiedwith.colored,markersorn-meplates.8)%hasystemsaredesionedtowithstandsafeshutdown~1~'II'I19)T¹systanscanbetestedwiththeplantshutdown.10)Ecplipnentisprovidedinappropriatelocationsoutsidethecontrolrocmtobri~theplanttoahotstaniQrZconditionwithcapabilityforsubsequentcoldshutdown. 1'.7-1page1.7-5.0HOP80WfWP%P'8PB~~~b)Transferswitchesandisolationswitchesarelocatedontransferpanel2A,28,2ABandvariousMCC,Switchgear,'respectively.Thesepanels,tCCsandswi.tchgearsareconcentratedinthemiddlesectionofRABatElevation43andRABatElevation19.5tofacilitate'ransferfrcmcontrolroontoHotShutdownControlPanel(HSCP).HSCPislocatedinaxoanat.thesouthwestcorneroftheRABatElevation43.Forspecificlocations,seeattachedTable430.36-1anddrawingsinFSAR~le})g~c&dTomeettheinteatofRegulatoryGuide1.68.2forReactorremoteshutdowncapabi1ity,thefollowiagareremoteshutdownproceduresunderthreedifferentplantconditons.Thethreeplantconditionsare:X)RemoteHotShutdown(HoDXIP)::XX)RemoteHotShutdown(EOOP)XXX)RemoteCooldownandShutdown(withoxwithout(DXIP)eTheshutdownproceduresaredeveloped,basedontheavai1abilityofthreetofouropezationalpersonnels.EI.'X)ConditionX:RemoteHotShutdownNoPXPBeforeleavingthecontrolx'oom,theoperatorsassuretheReactorandTurbinehasbeentzipped.Onthewaydowntothehotshutdownpanelstation,oaepersonwillbesenttotheturbinebuildinggroundfloor(0KVand4KVSwitchgearroom)totripthereactorcoolantpumps,feedpumps,etc.Meanwhile,'personswillhavetheresponsibilitytoactivateallthetransfer(isolate)devicesmountedoatransferpanel2A,2B,2AB;480voltswitchgear2A2,232;MCC2A5,2B5,2A-6,2B-6,2AB;4KITswitchgears2A3,2B3;pressurizerHeaterMCC2A3,2B3;480-voltswitchgear2AB,and.4KVswitchgear2AB.Hostof,theaboveMCCs,switchgeazs,transferpanelsarelocated~intheReactorAuxDiary3uildiag,'floorel'evatio'n43ft,scattexedonthewesthalfofthefloor.The480voltewitchgear2ABaad4KVswitchgear2ABareE.ocatedonthe196ftfloorelevation.Approximately56transferswitcheshavetobeactiviated.Xttakestwopersonsapproximately10minutestocompletetheabovetransferfunctions.-Fromthetimetheoperatorsleavethecontrolzoomtothemomentthehotshutdownpanelisfullyoperational,itrequiresapproximately15to20minutes.Oncethe-hotshutdownstationisoperational,theseniorlicensedoperatorisstationedtheretomonitorandcontzol~t~iotshutdownprocess,whereastheothex'wooperatorsarestrategicallystationedattheMCCarea43frfloorelevarfonsectorAuriliary,Building)aadintheturbinebuildingCommunicationismaintainedbywayofsoundpowerphone/(headsees)atrequiredstatiaas. csd(cont'd)II)ConditionII:RemoteHotShutdown(EGOSl!,ofh-sitepowerisnotavailable(or'lost),theReactorCoolantsandmainPWpung,willbede-energized(ie.,nofurtherswitchgeaztrippingisnecessary,intheturbinebuilding).UnderLoopconditions,oaeoperatorproceedsdirectlytothedieselbui1diagtoassureproperinitialloadingofthediesels>whereastheothertwooperatorswillperformallthenecessarytransferfunctionsasmentionedintheaboveHoLoopcoadition(ConditionI).Someedditionalmanualswitchgeazloadingmightberequiredinorder'oconnectcertainplantinvestment1oadontotheemergeacybuses.Upon,completionofallthenecessarytransferfunctions,thehotshutdownpanelismannedcoatinuouslybythesenioroperator,whereas.theothertwooperatorsarestationedinDieselBuildingaadtheReactorAuxiliaryBuilding,respectively,awaitingforfuztherinstructions.III)CoaditioaIII:RemoteCooldownandShutdownwithorwithout8~ForfurtherplaatcooldownaadshutdownfromHSP,several.systemsarerequiredtobeoperated.Theyareidentifiedasfollows:~atS)ChemicalSVolumeControlSystem(CVCS).'(Q.E.Q)5KKS)ShutdownCoolinSSystem(5,Ir.))S4%5C)ReactorCoolantSampliagSystemAD)OthersupportingSystemssuchasCCQ,ICNSystemetcthatareneededforA),B),andC)above.A,~FromtheHotShutdownPanel,theseniorlicensedoperatordirectstheline-upsoftheabovesystemswhichzequiresmanualvalveoperation,"lockedclosed"aad"lockedopen"valves,coolantsamplingtocheckproperreactivity.Twooperatorsareassignedtoaccomplishthesetasks.Accessandregresstothedisplaysm9controlslocatedoutsideoftheoontrolrnxnismonitoredandcontmlledbythesecuritysystans,card-keyedinarxKoutoftheseadams.ControlBoardannunciationofswitchpositionsarealsoprovidedand,lockedaccesstoiso1ateswitchesaremaintainedoRallhisrer65V'wp~r'5o)stTJlss'in)cheerossoi-gQeQtonsM~g&s~se4o~mQg~n45o.5& e)sNgMyte'oforntrol's'%raure051nipositioningt1mtransfer/isolationswitchto"ZSOU3TK",~~theinstnarentandcontrolontheHSCPcanbetestedtoassuretheiroperability.This.kirdoftestwillbeper-foxnedona"nottodisturbthnormaloperation"basis.~eaxeafewotherinstrumentsonHSCP(suchaspressurizerpressure)whichhavet1mixowndedicateddetectorsanddonotrecuretransferactionbecausetheyarecontinuouslyfunction-Ingef)AllinstrumentsandcontrolsofredundantchannelsarephysicallyandelectricallyseparatedinaccordancewithReyQatoryGuide1'5a>>.a1/EIEthecontrolsandinstnmentationfranthecontrolrocmtotheHSCP.Duringnormalplantoperation,constantsu1~isionofthetransf~/iationswitchpositions(asdiscussedinparagraph5)}assuresthatnore@etcshutdownstations-actionwillaffectthecontrolroanoperation.Afterthetransferring,thremoteshutdowncontrolsandinstrumentationsareirdependentofthecontrolroantothemaximumpracticalextent.v4hgjbeefertereeirieeete%Cquestion430.5>lucereieeu4/san~$,~~gpr@eX.L~+shgu~0~~4r(154'a<)h)Eachlocaltransferswitch<<hichrenderscontrolroaninoperableintheisolationpositionisalanredinthecontrolrccm.lPgRg,gqgl+He>>AAybe*i>>~ispr4r>>iD05)et'IIIrtck~igrocekur~mr3aZ~i4,>4rrun~~huWke~>>riie>>A;r,~>>5hhrri'iraeirii>>aC.cc,ssiweh~h~>karaieUaildkprier Table430.36Transfer(isolate)devicesareontransferpanel2A,2B,2AB;480VSWGR2A2~2B22ABMCC2A5j2B5~2A6>>2B6~2AB>.4KVSWGR2A3~2B3~2AB~tPressurizerHeaterMCC2A3,2B3.Thefollowingarethelocationsoftheaboveequipment:ControlTrasf.Panel2BControlTrasf.Panel2AB480VSWGR2A2480VSWGR2B2480VSWGR2ABMCC2A5MCC2B5MCC2A6MCC2B6MCC2AB4KVSWGR2A34KVSWGR2B34KVSWGR2ABN'IPressHeaterMCC2A3PressHeaterMCC2B3~EUIPMENTControlTrasf.Panel2ABUILDING/ELEVATIONRAB(43RAB/43RAB/43RAB/43RAB/43RAB/19.5RAB/43RAB/43RAB/43-RAB/43RAB/43RAB/43RAB/43~RAB/19.5RAB/43RAB/43EBASCODRAWINGNO.G394Sh1G394Sh1G394Sh1G394Sh1G394Sh1G393G394Sh1G394Sh1G394Sh1G394S?LIG394Sh1G394Sh1G394S}11G393G394ShIG394Sh1IsPg SL2-FSARatmosphericdumpvalve.7.4.1.5CONTROLROOM(orHotandColdShutdownCaabilitfromOutsidetheControlRoom)Asdiscussedintheabovesubsections,therequiredinstrumentationandcontrolsutilizedforsafeshutdownareinitiatedfromtbecontrolroom.Howeveremergencyinstrumentationandcontrolsareprovidedtoenabletheoperatortoshutdownandmaintaintbeunitathotstandbyorcooldowncon-ditionsfromoutsidethecontrolroom.The'ontrolroomandallClass1Eequipmentthereinaredesignedfordesignbasisaccident(DBA)scenariosdiscussedthroughouttheFSAR;thusthepostulatedcontrolroomconditionsand/oreventwhichwouldmakeitinaccessibleandresultinitsevacuation,remainundefined'omechanismispostulatedwhichrequirescontrolroomevacuation;thereforeacontrolroomevacuationisnotaccompaniedbyanyDBA.Instrumentationandcontrolsforequipmentrequiredforthebotorcoldshutdownoperationsareprovidedoutsidethecontro'1room.Controlsandinstrumentationforredundantequipmentaremountedinseparatesectionsofthehotshutdownpanel(HSDP)suchthatnosinglefaQurecanpreventthesafeshutdownofthereactor-Alistofindica-tors,controllers,controlswitchesandindicatinglampslocatedonthe'i3'swan'A"Intbeeventofanon-mechanisticevacuationofthecontrolroom,theoperatortripsthereactorbeforeleavingtbecontrolroom.Manualtransferswitchesareprovidedatappropriatelocationsoutsidethecontrolroomsothattberequiredcircuitsforhotshutdownareisolatedfromthecircuitsinthecontrolroom.Aftercompletionoftherequiredcircuittransfers,theHSDPbecomesfullyoperational'nalarmisinitiatedinthecontrolroomwheneveranyoneofthetransferswitchesareoperatedintothetransferposition.Operabilityofcontrolsforequipmentrequiredforshutdownarebasedontheassumptionthattheyarenotaffectedbythedestructionofcircuitrywithinthecontrolroom.Sufficientinstrumentationandcontrolsareprovidedoutsidethecontrolroomto:a)Achieveprompthotshutdownofthereactorb)Maintaintheunitinasafeconditionduringdescenttof)Ifrequired,monitorcooldownandachievecoldshutdowntheuseofsuitableprocedures.'I7'.1~6SuortinSstemsforSafeShutdownhotshutdownpthroughf0Thesupportingsystemsrequiredforsafeshutdownoftbereactorlistedbelowaredescribedintbereferencedsections:a)ComponentCoolingWaterSystem(Subsection9.2.2)b)IntakeCoolingWaterSystem(Subsection9'.1)7.4-9AmendmentNo.0,(12/8O) Ids~k(Allsafetyclass,(classIE)componentsonHSDParequalifiedtoIEEE323-1974.ThepaneldesignmeetstheseparationrequirementofRG1.75andtheoveralldesigncriteriaofIEEE279-1971forprotectionsystem.ToactivateHSDp,transfer-switchesandisolationswitcheshavetobeturnedto"isolate"position.Transferswitchesandisolationswitchesarelocatedontransferpanel2A,2B,2ABandvariousNCCsandswitchgearsareconcentratedinthemiddlesectionofRABatElevation43andRABat,Elevation19.5tofacilitatetransferfromcontrolroomtoHotShutdownPanel(HSDP).HSDP"islocatedinaroomat.thesouthwestcorneroftheRABatElevation43. 0797M-5QuestionNo.420.37PSARTable7.5-1,"Safety-relateddisplayinstrumentation,"does(7+5)not.describethedisplayinstrumentationontheplantauxiliarycontrolboard~Therefore,pleasedescribethefunction,designcriteriaandlocationofthiscontrolboardandamendTable7.5-1appropriately.~ResonsaPlantAuxiliaryControlBoardisonepanelsectionofHeating"VentilatingandPlantAuxiliariesControlBoard~Thisboardisphysicallylocatedinthesoutheastcornerofthecontrolroom,totherighthandsideoftheReactor'urbineGenerator(Rl'G)controlboard201.TheboardcanbeobservedbytheRTGBoardoperatorsfromtheircontrolstations.Plantauxiliariessuchasoutdooraviationlightingswitches,instrumentaircompressorcontrolswitches,etc,'relocatedonthenonmafetysectionoftheplantauxiliaryboard.Onthesafetysectionsoftheboard(SAandSBsection),twosafety-relatedredundantannunciatorLAandLBandatmosphericsteamdumpcontrolsarelocated.TheatmosphericsteamdumpcontrolsareduplicatedhereasabacIcuptothecontrolslocatedonRTGboard202andHotShutdownpanel.ThesafetysectionisseparatedfromthenonmafetysectionoftheplantauxiliarycontrolboardinaccordancewithRegulatoryGuide1.75.RefertoFSARTable7.5-1whichwasrevisedinAmendmentNo.4,July2,1981toincludethe'teamdumpcontrols.Jggg~420.37-1 guestionNo7heFSARstatesthatsufficientinstrumentationandcontrolsare420,38providedoutsidethecontrolroomtoachievec'oldshutdownthrough(7.4.1.5).theuseofsuitable'rocedures.Pleaseprovidea'summaryofthe..proceduresusedtoachievecoldshutdownfromoutsidethecontro1roon.TheseproceduresandassociatedequipmentshouldensurethatcoldshutdowncanbeaccomplishedbeforeTechnicalSpecificationTimitsonhotshutdownareexceeded.Besuretoincludealistofthesystemsrequiredfor.coldshutdownfromoutsidethecontrolroomandthelocationofthepanelswherethesesystemcontrols,arehoused.Discussthedesigncriteriaappliedtothesesvstemsandcontro1s.Also,ifcoordinationofcontrolatthehotshutdownpane1andthelocalpanelsisneededtoachieveandmaintaincold.shutdown,discusswhatcommunicationfacifitiesareavailable.g~~sv.bf.ThesystemsTtstedbeTomarerequiredtoachieve~dshutdoenconditionsfromoutsideofthecontrolroom.'hesesystemsarediscussedinsection7.4.1.a)Auxi1iaryFeedwaterSystem.1)ChemicalandVoTumeControlSystemBoricAcidSystemRCSCharging45<h~c'yPRssurip~Sp~gc)ShutdownCoolingSystem.d)AtmosohericDumoValves.m)K++SolppoSvT+~creControlsfortheabovesystemsareTocatede~>b<Ega,livf54&do~lm~eIovlocpl)f.Thedestgncr<ter$afortheabovesystemsareprovidedintheFSARsectionsas1istedbelow:~SstemFSARSectionAuxiTiaryFeedwaterSystem7.4.1.1ChemicalandVolumeContro1System7.4.1.2ShutdownCooTingSystem7.'4.1.3AtmosphericDumpVaTves7A.1ArddMIty.th*etYdI"t~dhtdtth.onTysafetygradesystemsarediscussedinFSARSection5.4.7asrevisedtngmsendmenta.a-sg<e.Recognizingthecomplexityooutsidethecontrolroomppgzpgnormal/whenthecontrolroomisinaccessible.Th&h.ergencyProcedureN0030141 4~>~S*5~W~sC,reQQyj.~,go~~g'Sgc~)Qg~~gNod,GgQ4ra.errvL.'Lrcwc4cQs4m,~<48Xn~h,i,~4k~Qw.z,gz.M(orch4,>..%@edSdeem.Q.8&iqSake.wy,enh,i'rgehhi~ip.Sf~i4t<Keno0A4Limg.SQS..ws.aw.qo)~chap.~d.9rMSll<k)LOAA 0812M-4cationHo.420.39(7.5)(7.5.1.1)Pleaseprovidethefollowinginformationonbypassandinoperablestatusindication(Regula.atoryGuide1.47):1a)RegulatoryGuide1.47recommendsautomaticindicationattnesystemlevelofbypassedordeliberatelyinducedinoperabilityoftheprotectionsystemandsystemsactuatedorcontrail~aoytheprotectionsystem.TnesecondparagrapnozSubsection7.5.l.6impliesthatsomeprotectionsystemsdonothaveautomaticinitiationofbypassedorxnoperaolestatus,butrequiremanualinitiation.Identiiyallprotectionsystems'otprovidedwithautomaticinitiationoibypassandinoperablestatusattnesystemlevelandprovxaejustificationforthismanualinitiation.b)StatehowthebypassandinoperablestatusindicationsystemconformstoRegulatoryPosit~onC.2ofRegulatoryGuide1.47.Discussthedesigncriteria(bases)usedintneselectionoiequipment/systemstobemonitored,andprovidethecriteriatobeemployedxnthedisplayofinter-relationships,anddependenciesonequipment/systems.Tnxsistoinsurethatbypassingordeliberately'inducedinoperabilityofanyauxiliaryorsupportsystemwillautomaticallyindicate,allsafetysystemsaffected.c)ThetitleofTable7.3-10suggeststhatthetableincludestneRPS/ESFbypassesorinoperablestatusindication.However,noRPSequipmentxsincludedxnthetable.Also,thecombustxolegascontrolsystemandthedieselfueloilstorageandtransfersystemarenotincluded.RevisetnetaoletoincludeallRPS/ESFsystemsforwnichbypassorinoperablestatusindicationisprovided.d)Informationsuppliedisinsufficienttodeterminecompleteconformancetotnedesigncriteriaoiorancntecnnicalposition(BTP)lt;SB21.Therefore,pleaseprovideadaxtxunaxinformation'nhowthebypassandxnoperaolestatusindicationsystemcompliestoPositionsB.3,B,4,andB.5oiBCPIvSB21.~Be8oncea)St.LucxeBypassIndicationSystemxsbasicallyactuatedautomatically.Tneeffectivenessoithisautomaticindicating*systemisfurtherencnancedbyincludingamanualactuationcapabx.lxty.ThemanualcapabilityoithebypassindicationsystemxsendorsedbytheRegulatoryGuide1.47position04. 0812M-5TheFSARTable7.3-10identifiesallsystemsforwhichbypassindicationsareautomatic.However,somepartsoftnusesystemsrequiremanualactuation,e.g.closureofthemanualHPSIpumpsuctionvalve(bypassindicationwindowA2)fortnemaintenanceofHPSIpump2A.b)ConformancewiththeR.G.1.47PositionC2.TheBypassIndicatingSystemisautomaticallyactivatedbythebypassingordeliberatelyinducedinoperability"ontnesspperttegsystems.FRARTable7.3-lOreflects~gg~requirements(e.g.,LPSafetyinjection"Al"automaticallyactivatedbythediesel'generatorand/ortnecomponentcooling"'aterunavailability).c)RPStripchannelbypassesarenotautomaticallyannunciateaonthecontrolboardbutareindicatedontheRPSwhichisintnecontrolroominviewoftheoperator.Taole7.3-10listsonlytheESFASsystemsanditwillbeemenaedtoindicatethis.ThecombustibLegassystemsareassignedtothebypassindicationwindowsA-13andB-l3as"H2systems".TneDieselFuelOilStorageandfueloiltransfertotheaaytankssystemsarenotindicatedautomaticallyontnebypassindicationmodule,buttheyareannunciatedintnecontrolroombyredundantClassIEannunciators.Refertodrawing2998-B-327sheetsll4261143*nFSARSect~onl.7.d)CompliancetoICSB2lPositionB.3,B.4,andBs5canbesummarizedasfollows:B.3)StLucie2ESFbypassindicatingsystemprovidesavailabiLity(orbypass)indicationsofallESFQsyftems.Tneseindicationsareatasystemlevel.Qg}cansarenotprovidedtocancelerroneousbypassindication.However,theoperatorcanalwaysassurethesystemstatusbycrosscheckingtneassociatedcomponentoperatingstatusthrougntneircorrespondingannunciationwindows.B.4)TheESFbypassindicatingsystemisstrictlystatusindicationavailabletotnecontrolroomoperator.Basedonthebypassinformationsandotnerrelateainstrumentations,theoperatorcenintelligentLycoordinateallmeintenance/testactivitiestnrougnouttheplant,withoutcompromisingtheplantsafety.Jg~'<~98>$9 0 OB12V-68.5)Properisolationdevicesareprovidedbetweentnebypassindicatingsystemandallsafetyrelatedsystemstoassureadverseeffectscannotpropagatefromtheindicatingsystemstotheplantsafetysystems.IsolationdevicesareinaccordancewithRegulatoryGuide1.75.Thebypassindicationsystemisnotessentialtosafetyanaisprimarilyusedasaugmentedindicationtootnersafety-rel.atedindicators(i.e.,motorindicating,lignts,valveposition,ClassIEindicators,etc.).Aaministrativeproceduresdonotrelyonbypassindicationforimmediateoperatoractions.JOLgy)gfg8f 0797M&420.40(7.5.F1)TheFSARstatesthatavailableinformationfortheengineeredsafetyfeaturessystemsconsistofvalvepositionindication.PleasedescribethedesignfeaturesusedtoprovidedirectindicationofESFsystemvalves.~ReaonseAllESFvalveshaveredandgreenindicatinglightsinthecont'rolroom.Theredlightindicatesopenvalvepositionandthegreenlightindicatesclosedvalveposition.Thelightsarepoweredfromthesamepowersourceasthevalveactuatingcircuitandarelocatedabovethecontrolswitch,exceptforvalvessuppliedwiththevalvepositionindicatorsInthiscase,thevalvepositionindicatorislocatedabovethecontrolswitchwithlightslocatedontheverticalsectionoftheboard.'Ihefollowingvalveshavepositionindicatorsandindicatinglightsinthecontrolroom:(refertoTable420.-1,attached)~98420.40"1 PROJECT:STLUCIE2FSARDATE07/14/81,TYPIST:ekPage2nDATEPRINTED:07/17/81DISKETTENO.:SD610PAGE2V3634HCV-3626HCV-3617HCV-36370102004VALVETAG00506V36140708V362409101112V3644131415HCV-36151617HCV-36251819HCV-36352021.HCV-364523HCV-361624252627HCV-36362~HCV-364630313233HCV-36273435'637HCV-36473839V35404041V35234243FCV-3306444546FCV-330147.,4849HCV-3657505152HCV-351233yTABLE420.40-1VALVEDESCRIPTIONSIT2A2IsolationValveSIT2A1IsolationValveSIT2B1IsolationValveSIT2B2.IsolationValveLPSIFlowControlValveLPSIFlowControlValveLPSIFlowControlValveLPSIFlowControlValveHPSIFlowControlValveHPSIFlowControlValveHPSIFlowControlValveHPSIFlowControlValveHPSIFlowControlValve-HPSIFlowControlValveHPSIFlowControlValveHPSIFlowControlValveHPSItoHotLeg2AValveHPSItoHotLeg2BValveShutdownCoolingBypassValveShutdownCoolingBypassValve,ShutdownCoolingControlValveShutdownCoolingControlValvePOSITIONINDICATORPOWERTYPESeparate.fromcontrolpowerSeparatefromcontrolpowerSeparatefromcontrolp'owerSeparatefromcontrolpower2701255269,255271,255AnalogAnalogAnalogAnalog272,255AnalogSameascontrol257Sameascontrol~260AnalogAnalogSameascontrol263Analog,Sameascontrol266AnalogSameascontrol261AnalogSameascontrol258AnalogSameascontrol264AnalogSameascontrol267AnalogSameascontrol262AnalogSameascontrol259AnalogSameascontrol265AnalogSameascontrol268AnalogSameascontrol233AnalogSameascontrol235AnalogSameascontrol1516AnalogSameascontrol1517AnalogSameascontrol1514JOE~control1M'98fAnalogSameas PROJECT:STLUCIE2FSARDATE07/14/81,TYPIST:ekPage2nDATEPRINTED:07/17/81DISKETTENO.:SD610PAGE'30102TABLE420.40-1(Cont'd)POSITIONINDICATORVALVETAG0VALVEDESCRIPTIONTYPEPOWERCMD050607080910Il12131415161718192021222324252627313233343536373839404142434445464748495051525~3V3536V3539V1474V1475V1200V1201V1202ShutdownClgLine2AWarm-upValveShutdownClgLine2BWarm-upValveAnalogAnalogSameascontrol1510Sameascontrol1511PressurizerPowerOper.Relief(PORV)-PressurizerPowerOper.Relief(PORV)Acoustical-LightsAcoustical-LightsSeparateSeparateNote(1)Note(1)PressurizerReliefValvePressurizerReliefValvePressurizerReliefValveAcoustical-LightsAcoustical-LightsAcoustical-LihtsSeparateSeparateSeparateNotte(1)Note(1)Note(1)rJNote(1)-WillbeImplementedby10-15-81 11dj/f'/QuestionNo:420.41'7.5)."Instrumentationforlight-water-coolednuclearpowerplants,toassessplantandenvironsconditionsduringandfollowinganaccident,"RegulatoryGuide1.97(Rev.2),SectionD,Implementation,statesthat"PlantsscheduledtobelicensedtooperatebeforeJune1,1983,shouldmeettherequirementsofNUREG-0737and.theCommissionMemorandumandOrder(CLI-80-21)andtheschedulesofthesedocumentsorpriortotheissuanceofalicensetooperate,whichoverdateislater.ThebalanceoftheprovisionsofthisguideshouldbecompletedbyJune1983."Provideacommitmenttocomplywiththisschedule.Response:420.41TherequirementsofRG1.97Rev.2areimplementedasdescribedinAttachmentCfortypeB,C,DandEvariables.TypeAvariableswillbeidentifiedanddescribedinaccordancewiththestatementprovidedinAttachmentB.DefinitionsoftypesA,B,C,DandEas,wellasCategory1,2and3variablesareprovidedinAttachmentA.EnvironmentalqualificationofRG1.97Rev.2equipmentinaccordancewithNUREG0588willbehandledinthesamemannerasalltheotherequip-mentintheplant.Theresultsoftheenvironmentalreview.willbesubmittedoravailableforreviewinaccor'dancewithSection3.11oftheFSAR.ThesubmittalforequipmentinharshenvironmentisscheduledforNovember30,1981. Pagelof4ATTACHMENTATypeA-ThosevariablesthatprovideprimaryinformationsothatoperatorscantakethespecifiedmanualactionsforwhichtherearenoautomaticactionssothatsafetysystemscanaccomplishtheirsafetyfunctionforDBE.Thisdoesnotincludethosevariablesrequiredforcontingencyactions.TypeB-Thosevariablesthatindicatethatsafetyfunctionsarebeingaccomplished.TypeC-Thosevariablesthatindicateabreachorpotentialtobreachofbarrierstofissionproductrelease.(fuelcladding,RCSpressureboundary,containment)TypeDTypeE-Thosevariablesthatindicatetheoperationofindividualsafetysystemsandothersystemsimportanttosafety.-Thosevariablesthatindicatethemagnitudeofradioactivereleasesandforassessingsuchreleases. Page2of4Category1a)Providesthemoststringentrequirementsforkeyvariables.b)QualifiedtoRG1.89c)SeismicallyqualifiedtoRG1.100d)Theinstrumentationsystemswillbesinglefailureproof.c)Aminimumof-twochannelswillbeprovidedwithadditionalbackupinstruments(sameordiverse)toverifycorrectchannelintheeventofa"mid-scale"instrumentfailure.d)Redundantordiversechannelswill=beindependentandphysicallyseparatedinaccordancewithRG1.75.e)TheinstrumentationwillbepoweredfromStandbyPowerperRG1.32andbackedupbybattery.(UPS)f)Theinstrumentationwillbeavailablepriortoanaccident.g)TheproperQArequirementsapply.h)Continuousindicationwillbeprovided(maybearecorder).i)Nherevariabletrendingisrequiredforoperatorinformation,dedicatedrecordersorcontinuouslyupdatedandstoredincomputermemoryanddisplayedondemandinformationwillbeprovided.j)ThesevariablesareconsideredPAMinstrumentationorpartofeffluentmonitoringinstrumentation.k)TypesA,B,andCwillbeidentifiedonthecontrolboardsforeasyrecognitionbytheoperator. Qi Page3of4hCategory2a)LessstringentrequirementsthanCategory1andappliestovariableswhichindicatesystemoperatingstatus.b)QualifiedtoRG1.89.c)SeismicqualificationtoRG1.100,ifthedeviceispartofasafetyrelatedsystem.nd)Xnstrumentationwillbepoweredfromahighreliablilitypowersource.e)TechnicalSpecificationoutofservicerequirementsforthesystemtheprocessvariablecovers,applyalsototheprocessvariablecomponents.f)TheproperQArequirementsapply.g)ThesignalmaybedisplayedonanindividualinstrumentorCRT(demanddisplay).h)Thedisplaymaybedial,digital,CRTorstripchartrecorder.i)Wherevariabletrendingisrequiredforoperatorinformation,adedicatedrecorderorcontinuouslyupdated,storedincomputermemoryanddisplayedondemandinformationwillbeprovided.j)ThesevariablesareconsideredPAMinstrumentationorpartofeffluentmonitoringinstrumentation.k)TypesA,B,andCwillbeidentifiedonthecontrolboardsforeasyrecognitionbytheoperator. Page4of4Category3a)providesrequirementsforhighqualityoff-the-shelfinstrumentationandappliestobackupanddiagnosticvariables.b)providestherequirementsforequipmentwherestate-of-theartcannot.meetCategoryl62levels.c)Willbehighqualitycommercialgradeandcapableof'thespecifiedserviceenvironment.d)Displaymaybedial,digital,CRTorstripchartre-corder.e)Wherevariabletrendingisrequiredforoperatorin-formation,adedicatedrecorderorcontinuouslyup-dated,storedincomputermemoryan'ddisplayedondemandinformationisprovided. ATTACHMENTBFP6LisconductingaprogramtoidentifyR.G.1.97',Rev2Category"A"variablesbytheendofthefirstquarterof1982.Anynec-essarychangestoinstrumentationwillbeinstalledbyJuneof1983,butinallcaseseffortswillbemadetocompleteinstallationattheearliestpossibledate.C-EOwnersGroupgenericemergencyguidelineswillbereviewedtoidentifyallpreplannedmanualactions.TheguidelinestobereviewedarecontainedinCEN-152:CombustionEnineer~in~EmerencproceduresGuildelineswhichwassubmittedtotheNRCbytheC-EOwnersGrouponJune30,1981.Instrumentsneededtoperformactionswillbeidentifiedbytagnumber.Therange,andqualificationstatesofeachinstrumentwillalsobeidentified.ThenecessaryrangewillbedeterminedfromexistingSt.Lucie2FSARandC-EOwnersGroupcal-culation.Insummary,bytheendofthefirstquarterof1982FPRLwillprovidethefollowing-A.B.C.CategoryAvariableslist-Instrumentationidentifiedbvtagnumber.-Requiredandactualranges,andqualificationWhatchangeswillbemadebyOctober1982WhatchangeswillbemadebyJune1983 ~~~Q~j~II~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~e~~I~oIII~~III~~~0~~~~~~~<~I~IIs~I~I~~~~~~0~~~~~ ~~~~~~II~II~~~~~~~0~~~~~~~~~~~~~~~~I~~III~~IIIIs~~~~~~~~~~~~~~~~~I'II~~0~II~II~~~~~~~~I~~~~~~~~~~~~~~~~-~~~I~III~~~~~~~~~~~~~ ~~~~j~~~~~~~~~iIIIIIs~~~~~~~~~~~~~~~~~e~-~sIoI~~~~~~~~~~-~I~~~~~~0~~~~~~~~~~~~~~~~~~0~~I~~~~I~I~~~~~~~~~~~~~~4~~~~~~~~~~4~4~~~~ ~~lI~~II~II~~~~~~~~~~~~~~I~I~~~~~~~I~I~~I'III~~~~~I~I~~~~~I~~~~eIII~I~ I~~~~~~~~~~~~~I~~~~~~~~0~~~~~I~~~~~~~~~~~~4~~~~~~0~~~~Iballl~~III'.~~-~~~~I~~~~~~~I~~~~I~~~~~~0~~~I~~~~I~~~~~~~~~I~~~~~~~~~ TAGNO.'VARIABLEDESCRIPTIONB.G.1.97Rev2RANGEREQUIREDEXISTINGRANGECOMMENTS6RS-26-13RS-26-14ContainmentEffluentRadioactivityNobleGasesfromidentifiedreleasepointsC12102Ci/ccto10,QCi/cc10~Ci/ccgo10~Ci/ccTherangeprovidedcoverstherequirements.RedundantsafetyrelatedmonitorsareprovidedwithindicationandrecordingintheCR.Thisisanoff-linemoni-torontheplantstackthatcon-formstoANSIN13.1-1969.SameasE2RadiationEx-posureRateC1310R/hrto10R/hrSameasE2SeeE2methods.RS-26-90RS-26-LaterRS-26-LaterEffluentRadioactivityNobleGasesC14103~CD./CCto10PCi/cc10/Ci/ccto10~i/ccEquipmentxsbeingaddedtosatifyTMIrequirements.Therangesprovidedcovertherequirements.Plantventindicationandrecord-ingisprovidedintheCR.Re-dundantindicationandrecordingwillbeprovidedfortheECCSvents.Formoredetailsseere-sponseNUREG0737ItemlI.F.l.FIC-3301FIC-3306FR-3301FR-3306RHRSystemFlowDl0-1104designflow0-5000gpmSafetygradeindicationandre-cordingisprovidedinthecontreroom.Designflowis3300ppmthereforetherangeprovidedisacceptable. R.G.1.97Rev2TAGNO.VARIABLEDESCRIPTXONRANGEREQUIREDEXISTINGRANGECOMMENTSTR-3303MTI-3303XTI-3303YTR-3303ZRHRHeatEx-changerOutletTemperatureD232Fto350F20-350FSafetygradeindicationandre-cordingisprovidedinthecontrolroom.LIA-3311LXA-3321LXA-3331LIA-3341PIA-3311PIA-3321PIA-3331PIA-3341AccumulatorTankLevelandPressureD310%to90%0-750psig26.5Rto93.520-700psigMeasurementsarenonsafety.Theenvironmentalqualificationofthesensorswillbeevaluatedagainsttherequirementsoftheguide.Therangeprovidedfortankpres-sureshouldbeacceptable.700psigexceedstankdesignpressureandtanksafetyvalvesetpoint.AccumulatorD4IsolationValvePositionClosedorOpenClosedorOpenSafetygradeopen/closedpositionisprovidedintheControlRoom.FIA-2212BoricAcidChargingFlowD50-110%designflow20-150gpmThemeasurementprovidedmeasuresflowfromthechargingpumps;itdoesnot,measuredirectlyBoricAcidflowtothechargingpumps.Designflowis132gpmsorangeprovidedisadequate.FI-3311FI-3321Fl-3331FI-3341FlowinHPISystemD60-110%0-352gpm20-400gpmSafetygraderedundantindicationisprovidedinthecontrolroom.0-110%designflowcorespondsto0-352gpm,thereforerangepro-videdisacceptable. ~5~~'I'.~-II~~~~~~~~~~~~~;~-~~I~I~~~~~~~~~~~~-~I~~~I~~~0~~~~~~~~~~~4~II.~I'-~~~~~~~IIII-~-~-~~~~~~~~~~~~~~~~~~~~~~~I~~~~~~~~~~~-~I~~-~~~~~~~ I~0~~~~~~~I0~~~~~~0~~,~~~~~~~~~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~~~~~~~~I~II~II~~~~~~II~~~II~~~~I~~~~~ ~~~II~~-~~II~~~-o~~~-~~~~II~~~~~~~~~I~~I~~~~~'~~I~~I~~~~~~~~'II~~~~~~~I..~~IIII~~~~~~~~~~~~II~II~II~~~~~~~~~~~III~-II~II~~~~~~~~~~~ TAGNO.VARIABLEDESCRIPTIONR.G.1.97Rev2RANGEREQUIREDC0C9AVEXISTING'RANGECOMMENTS~11FR-9011FR-9021MainFeedwaterFlowD190to110%designflow30to@ax10Non-safetyflowrecordingispro-v'idedinthecontrolroom.Sincetheexistingrangeof0to6x10lb/hrisclosetotherequiredrangeof0-6.2x106lb/jprangeisconsideredadequate-.FI-09-2AFR-09-2API-09-2BFR-09-2B/2CFI-09-2CAuxiliaryorEmergencyPeedwaterFlowD200-110%designflow20-300gpm0-300gpm0-600gpmSafetygradeindicationandrecoringisprovidedinthecontrolroom.Therangesprovidedforthemotordrivenpumpflowareinadequatebasedontherecalcu-latedpumpcapacitiesandSGcoolingrequirements.Forthemotordrivenpumpsthemaximumflowis350gpm.Theturbinedrivenpumpis500gpm.PI-09-2A,2Bwillbechangedto0-400gpmrange.ForFI-09-2C,0-600gpmisadequate.LIS-12-11CondensateLIS-12-11$StorageTankLR-LaterLevelD21lantSpecific10-50Therangeprovidedcovers1.18to190%ofbottomtotopofvesselheight.Sincethisisacategory1measurementredundancyisrequired.RedundancyisalsorequiredduetoNRC'sgenericreŽviewoftheAFWS.Aredundantmeasurementisadded,LIS-12-11B.BothsafetyrelatedchannelswillbeindicatedandonechannelwillberecordedintheCR. R.G.1.97Rev2TAGNO.VARIABLEDESCRIPTIONRANGEREQUIREDC0UVEXISTINGRANGECOMMENTSFI-07-lAFR-07-1AFl-07-lBFR-07-1BContainmentSprayPlowD220-110%designflow0-5000gpmMaximumflowis3600gpm.Therangeprovidedcoverstherequirements.Safetyrelatedindicationandrecordingisprovidedinthecontrolroomforeachspraypumpflow.TI-07-3A/5AContainmentTR-07-3B/5BAtmosphericTemperatureD2440Fto400F50-350PTherangeprovideddoesnotcovertherequirements.ConsideringthatduringaMSLBthecontainmentcanreach420Fthescalerangewillbechangedto50o-450P.TR-25-lATR-25-1BHeatRemovalbytheContainmentFanHeatRe-.movalSystemD23PlantSpecific0-300FContainmentcoolingFans2HVS-1A,1B,1CandLPCoolingCoilinletandoutlet'emperaturesarere-cordedintheCR.Themeasuremenissafetyrelated.Thescaleran<providedcoverstherequirements.TI-07-3A/5AContainmentTR-07-3B/5BSumpHaterTemperatureD2550Fto250F50-350FTherangeprovidedcoverstherequirement.OnechannelisindicatedandtheotherisrecordedintheCR.SameasD5MakeupFlow-InD260-llOSdesignflowSeeD5SeeD5 ~~~~I'.~-~II~~~~~~~0~~0I~~~I~~~~~~~~~~~0~~~~~~~~~~~IIIII~~~~~~I~~0~~~~~~~~~~~~II~I'.~-~~~~III~~~~~~~~~~~~ ~I~~~~Q4~i~I~~II~oI'eI~~~~~o~0II~~~0~~~~~~~~~~~~~~~~~~0)I~I'.~-~III~~~~~~~~III~~~~~~~~~~~~I~~~)~I~-~~~-~~~-~~~~~~~~~~~~~~~)~~~~~~~~~~~I~~~~ ThefollowingstatusofStandbyPowerandOtherEnergySourcesXmportanttoSafetyaremoni-toredinthecontrolroom:1-Startup/StandbyTransformers-a-Transformerprimarywindingvoltage(230KVEast-NestBus)240KVRecorder/888**,DVM/888**b-PrimaryandSecondarybreakers-statuslights(closed-open)**c-Transformersecondarywinding(4160VBus2A262B2)voltage(VS-916,VS-917)**,Busenergizedlights(XL-916,XL-916)**,current(AS-916,AS-917)**,Watthours(WHM-916,WHM-917)**2-Emergencyonsite4160V2A3,2B362ABBuses-a-BusTieBreakersStatuslights*b-4160VBus2ABvoltage,current6status(VM-942,AM-942,XL-942)*c-4160VBus2A3a2B3voltage(VM-954,VM-564,XL-954,XL-964)*3-Emergencyonsite480UBus2A2,2B2and2ABa-Xnc'omingfeederbreakerstatuslights(open-close)*4-EmergencyonsiteDiesel-Generators2A&2Ba-current(AM-955,AN-965)*b-voltage(UM-1606D,UM-1616D)*c-frequency(PM-1606,PM-1616)*d-vars(VARN-1606,VARM-1616)*e-.watts(W-REC-1606,W-REC-1616)*f-Watthours(WHN-955D<NHM-965D)* 4-(.Cont')g-dieselgeneratorloadinglights-4160Vfeeders(XL-996A,-B,-C,-D,-E,-F,-G,-H,-X,XL-997A,-B,-C,-D,-E,-H,-P,IL-998B,-C)*480Vfeeders(IL-996K,-L,-M,-P,-Q,-R,-T,IL-997S,-T,-U,-V,-Q,-R,-M,-N,XL-998D,-E)*5-125VDCBatteriesa-voltage(VM-1001,VM-1002,XL-1001,XL-1002)*b-batterychargescurrent(AM-1001,AM-1002)*c-batteryhighdischargeratealarms(1)d-batterybreakersinopenpositionsalarmse-groundalarms(')6-l200ACnon-interruptahleinstrumenb)usesMA,MB,MC&MDcontrolroomannunciationvialocalannunciatora-lowDCvoltageb-highDCvoltagec-lowACvoltaged-.outoffrequencye-groundf-DCbreakertrip*-Category1**-Category3(1)-Non-Safetyannunciators-theisolationdevicesareprovidedbetweenannunciatorsandanassociatedClasslEactuatingdevices. s~~~~~~~~~~~~~~~I~~~~~~I~I;~~~I~~I~I'.~~~I~~~~~~~~oI~~~~I~I.~~I~~~0~~~~~j~~I~~~II~I'~I~~~~~~~~~~~~~~ ~~~~~~~~~~~~II~I'~~~~I~~~~~~~~~~~~~~~0~~I~~0~~~~I~I'~IIII~~~~~~~~~~e~II~I~~~tI~~~~~~~~~~I~~0~~~~~0~~~I~~~~~~~III ~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~~~0~~~~II~~I~~I~~~~~~~~~4~~I~~~~~I~~~~~~I~I~~~~~~I~ ~~~~~~~~~~0~~~~~~~~~~~0~~I~~~~~~I~~~la~~~~0~~I0~III~~I~I~~~~I'~I~~~~~IIIIsill~~~~~~~I~I~~I~~~-I~0~~~~~~~I0II~I'.~~~~)~-I~I~~~)-~0~~~~~~~0 estionNo.420.42(7.5)BothTables7.4-1and7.5-1listinstrumentationrequiredforshutdown.However,thelists'renotconsistent.Auditbothtablesandmodifythemsothattheshutdowninstrumentationisconsistent.~ResanseRefertoFSARTables7.4-1and7.5-1whichwererevisedinAmendmentHo.4July2,1981.u'Ugg~420,42-1 07978-2420o43SAFETYINJECTIONTANK(SITISOLATIONVALVEINTERLOCKS:(76.2.2.2)1)Describehowvalvepositionindication(i.e.,limitswitches,visualindicators,etc.),isaccomplishedforthesafetyinjectiontankisolationvalves.asrequiredbyPosition2ofbranchtechnicalposition(BTP)ICSB4.2)Describethedesigncriteriaappliedtothispositionindicationsystem.3)DiscusshowtheSITisolationvalvesystemconformstoPosition3ofBTPICSB4.Asaminimum,describetheindependenceofpowersuppliesforthevisualindicationsystemandalarmsandprovideelectricalschematics,onelinewiringdiagrams,etc.,assupportinformation@4)TheFSARinformationsuppliedforItem4.22ofIEEE279-1971statesthat,"TheinstrumentationandcablesassociatedwithSITisolationval~vinterlocksisnotuniquelyidentified."ItisthestafASpositionthatamethodbeusedforidentifyingsafetyrelatedinstrumentationandcontrolcircuitsandequipmentwhichisinconformancewiththerecommendationofRegulatoryGuide1.75andtherequirementsofIREE384.Therefore,pleasedescribehowtheinstrumentationandcablesassociatedwiththeSITisolationvalveinterlocksconformtotheaboverecommendationsandrequir'cmental~,~Resonse1)EachSITisolationvalvehastwomeansofpositionindicationdisplayedinthecontrolroom.'Chereisanopenlightandaclosedlightdisplayforeach.Alsothereisa0-lOOXpositionindicator.2)-.-3)Thedesigncriteriaappliedforthissystemis1CSB18whichrequiredredundantpositionindicationinthecontrolroomforvalveswhichhavetheirpowerrackedout.Audibleandvisual.alarmsare"whichmeettherequirementsofICSB4,technicalpositionitems2and3.4)GheSITisolationvalveinterlocksareuniquelyidentifiedasClasslEcircuitsandareinconformancewiththerecommendationsofRegulatoryGuide1.75andtherequirementsofIEEE384.TheFSARSubsection7'.2.2'paragraph4.M,willbeamendedtoclarifythis...44k24883420.43-1 0797M-3TheSITlevelandpressureinstrumentationisnotuniquelyidentifiedasClassIEinstpumentation-TheseSITlevelandpressureinstrumentationar'enotutilizedforSITisolationvalveinterlocks.Therefore,theseinstrumentsare-locatedonthecontrolboardinanon-safetysection.However,theredundantinstrumentcablesareroutedinthephysicallyseparatenon-safetycabletraysandtheinstrumentpowerissuppliedfromaseparatenon-,safetypowersource.AEc)<fPJULgy68]42043-2 lCVJ64Lbl'Uulh2libDATEPRINTED:07/17/81.DATE07/17/81,TYPIST:Page2nDISKETTENO.:SD610PAGE10102~O05"36780123567890.135.671235678901234,567890123TABLE420.43-1SITINSTRUMENT2A2LIA-3311LevelNarrowRangePP220(NA)LIA-3312LevelWideRangePIA-3311PressurePS-3312PS-3313PressurePressurePP221(NB)PP220(NA)PP209(NB)PP209(NB)2A2LIA-3321LevelNarrowRangePP220(NA)LIA-3322LevelWideRangePIA<<3321PressurePS-3322PS-3323PressurePressure2BlLIA-3331LevelNarrowRangeLIA-3332LevelWideRangePIA-3331Pressux'ePS-3332PS-3333PressurePressure2B2LIA-3341Level"NarrowRangeLIA-3343LevelWideRangePIA-3341PressurePS-3342PS-3343PressurePressurePP221(NB)PP220(NA)-PP209(NB)PP209(NB)~'P221(NB)PP220(NA)PP221(NB)PP220(NA)PP220(NA)PP221(NB)PP220(NA)PP221(NB)PP220(NA)PP220(NA)NBNBNANANAIndication&Hi-LowAlarmIndication&HH-LLAlarmIndication&H-LAlarmLLAlarmHHAlarmIndication&H-LAlarm,Indication&HH-LLAlarmIndication&H-LAlarmLLAlarmHHAlarmIndication&H-LAlarmindication&HH-LLAlarmIndicationH-LAlarmLLAlarmHHAlarmIndication&H-LAlarmIndication&HH-LLAlarmIndicationH-LAlarmLLAlarmHHAlarmNA"Non"NuclearSafety"DivisionANB-Non-NuclearSafety-DivisionBCWD-EbascoDrawing2998-B-327VOL2dp~~S$.NON-SAFETYCABLETRAYINSTRUMENTSITTAG0DESCRIPTIONPOWERSOURCESYSTEMSFUNCTIONCWD280,6471521,647280,64715221522281,6471521,647281,64715221522282,647.1521,647282,6471522~1522283,6471521,647283,.64715221522 PkOJECT'TLUCIEDATEPRINTED:07/13/81DATE03/01/80,TYPIST:jmPage7n,TAPEHO.:SB450PAGE7SL2-FSAR01%004050607080910Il121314151617161920"212223242530313233353637.36'9404142434445464748495051~4.15"MultipleSetpoints"Thisrequirementisnotapplicable.4.16"CompletionofProtectiveActionOnceInitiated"Thisrequirementisnotapplicable.4.17"ManualInitiation"Thevalvesarelockedopenduringnormaloperation.Thecontrollersarepermissivecontrolswhichpermittheoperatortoclosethevalvesbelowacertainpressure.Thecontrollersalsoopenthevalvesaboveacertainpressure.'Thekeylockrequiredtoclosethevalvesdoesnotoverridethecontrollers.4.18"AccesstoSetpointAdjustments,CalibrationandTestPoints"Accessiscontrolledbyadministrativeprocedures.4.19"IdentificationoftheProtectiveAction"Thisrequirementisnotapplicable.4.20"InformationReadout"Thereadoutconsistsofpressureindicatorsandpositionindicationforeachvalve.Thisprovidestheoperatorwithclearandconciseinforma-tion.4.21"SystemRepair"Thecomponentsareaccessibleforrepair.Onechannelcanbeplacedoutofser'vicewithoutjeopardizingtheavailabilityoftheSITs.4.22"Identification"7.6.37.6.3.1Refueling7.6.3.2ADDITIONALSYSTEMSREQUIREDFORSAFETY~RefnelfnlneenlnelcfeinterlocksaredescribedinSubsection9.1.4.FuelPoolCoolinandPurificationSstemJUL2FuelPoolCoolingandPurificationSystemisdescribedin.1.3.TheSpentsection9Sub-ThecablesassociatedwithSITisolationvalveinterlocksareuniquelyiden-tified.TheinstrumentationcablesassociatedwithSITlevelandpressureindicationarenotuniquelyidentified.Thechannelsareidentifiedtodis-tinguishbetweenchannelsofsafetyrelatedequpipment(seeSubscription7.1.2).5420.437.6-7AmendmentHo.5, 0802"1QuestionNo.420.44(7.7)a.TheFSARSubsection7.7.1.1.1discussestheautomaticwithdrawalprohibitsignal.Describethelogicusedto'mplementthissignal.Includelogicdiagramsandelectricalschematics.PSARSubsection7.7.1.2.1statesthatthewithdrawalprohibitsignalcanbebypassedattheoperator'smodule.DiscusstheoperationalprocedurestobeusedtoactuatethisbypassanddiscussthepossibleimplicationsresultingfromactuationoftMsbypass.Besuretoincludeasaminimum,suchitemsasadministrativecontrol,controlroomindication,effectsuponthereactorprotectivesystem,effectsuponfueldesignlimits,etc.ResponseThedesignoftheAWPandCWParefunctionallyidenticaltoStLucieUnit1.ReceiptofanAWP(AutomaticWithdrawalProhibit)signal,wMchisacontactclosureinterface,energizestheAWPrelay.TheenergizedAWPrelayopensthecontactinterfacingtheAWPsignaltothecontrolAWPraise/loverlogic.WhenthelogicpowerisremovedfromtheAWPinput,thecircuitrycannotgenerateaCGR(controlgroupraise)signalwhichisnecessaryforCEAmotion.IndicationsofAWPinitiationareasfollows:l.AttheCEDMCSsupervisorypanel2.PlantAnnunciatorThefollowingisafunctionaldescriptionoftheAWP:TheAWPProMbitsthewithdrawalofallRegulating.CEAsintheAutomaticSequentialmodeofcontrol.1.TheAWPinterlockdoesnotproMbitCEAmotioninanyothermodeofcontrolexceptAutomaticSequential.2.TheAWPinterlockdoesnotprohibitCEAinsertion.b.AnAWPinterlockisgeneratedbytheCEDMCSwheneveranyoftheconditionsofSections1through4occur.420,44-1AmendmentNo.5,(7/81) 0802-21ReactorCoolantLooPColdLegTemPerature(Tcold)exceedingasetpointasindicatedbyacontactclosingfromeitheroneorbothoftwochannelsof(Tcold)instrumentation2Mismatchbetweenaveragereactorcoolanttemperature(TA~)andtheprogrammedtemperature(TRFF)exceedingasetpointasindicatedbyacontactclosurefromtheReactorRegulatingSystem.3.TurbineBypassDemandasindicatedbyacontactclosingfromtheSteamBypassControlSystem.4.Adroppedrodcondition,asindicatedbyacontactclosurefromaReedSwitchPositionTransmitterDroppedRodContact(ReferenceSubsection3.4.1).TheQIPsignalfromtheRPSisinterfacedtotheCEDMCSviaanormallyclosedcontact.hCWPconditionopensthecontactde-energizingtheQPPrelayintheCEDMCSCommonLogicRelayInterface.Thisremovesalogic"1"inputtotheindividualCEAenablelogicwhichpreventsa"withdrawCEA(WCE)signalfrombeinggeneratedtotheCEDMcoiltiminglogic.TheWCEsignalisnecessaryforCEAmotion.TobypasstheQPPsignal,attheCEDMCScontrolpaneltheoperatormust:a.DepressandmaintaintheBypassEnableswitch.b.DepressandmaintaintheCWPBypassswitch.ControlroomannunciationisprovidedtoindicateaCWPcondition.Feedbacksignalsfromthe'CEDMCSilluminatethebypass,pushbuttonontheCEDMCScontrolpaneltoindicateoperationofthe<override.ThefollowingisafunctionaldescriptionoftheQIPsignal:a.TheQ7Pinterlockprohibitstheallmodesofcontrolregardlessb.ACWPinterlockisgeneratedbyopeningsignalfromtheReactorThissignalisinitiatedbya2anyoneofthefollowing:withdrawalofallCEAsinofanydemandformotion.theCEDMCSuponacontactProtectionSystem(RPS).of4pre-tripactuationinl.21304.LocalPowerDensityHighStart-upRateThermalMarginLowPressureHighPower420.44>>2AmendmentNo.5,(7/81) 0802-3c.Localindicationandacontact,openingoutputforremoteannunciationoftheCMPinterlockareprovided.d.TheCCPinterlockmaybeoverriddenfromtheCEDMCSControlPanelbydepressingboththeBypassEnableandCMPBypassPushbuttons.TheCWPbypassPushbuttonmustbehelddepressedwhiledemandingCEAmotion.TheoverridewillallowallCEAmotioninallmodesofcontrol.TheCWPfunctionisnotrequiredbytheSafetyAnalysistopreventexceedingcoresafetylimits.TheCHPBypassismaintainedunderstrictadministrativecontrolviaplant'peratingprocedures.Ci40~241981420.44-3AmendmentNo.5,(7/81) ~0$:ESSINSTTCtAtYPTC2RELAYPOWERSUPPLYA'WPCEDMCSIIrMOTIONDEMANDSIGNALSI~AWPlOGtCP/S~OPENSTOINHIBITMOTIONCONTROLGROUPRAISE/LOWERLOGICAS-AUTOSEQUENTIALAR-AUTORAISESP-SEOUENTIALPERMISSIVEUGS-UPPERGROUPSTOPMR-MANUALRAISECONTROLGROUPRAISE(CGR)SIGNALTOIND.CEAENABLEANDCEATIMERLOGIIIIIIIASSPIIIILAWP.ARhtRUGSCGROUTIIIIIIIIIIIIIBASICCONTROLGROUPRAISE/LOWERLOGIC4~FLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2420.44-1 CEAMCSCOtITROLPANELCWPBYPASSSV/.BYPASSENABLESV/.iQ>>>>~PgB.1LOGICP/S+B3B-3IND.CEAENAS/~uLOGICWCESIGNALTOTIMERBDII.IO2IC()0~mrtlg>>~IHCl~AM~0X"+RELAYP/S~OPENSONltlTERLOCKCONDITIONSICGRCONTROLGROUPRAIS'ECWP-CEAlYITHRANALPROHIBITCT-CYCLETIMEWCE-WITHDRAWCEAEiYABLEUEL-UPPERELECTRiCALLIMITMI-MANUALINDIVIDUALMiR-MANUALRAISERPS-REACTORPROTECTIONSYSTEMSCGRIIIIIIIIIIICEASELECTMRIL1IIIIIIWCEIIILATCHRESETIICTIIBASICIND.CEAENABLECIRCUITRYJ
0797M-1QuestionNo.420.45(7.7)ThelaststatementinSubsection7.7.2statesthatthesafetyanalysesofrapter15donotrequirethesystemsdiscussedin.Section7.7toremainfunctional.However,thefirstparagraphofSubsection15.0.2.3statesthatseveralnormallyoperatingcontrolsystems(includingsomediscussedinSection7.7)areassumedtofunctionduringcertainaccidents.Resolvethisinconsistency.~Resonse:OperationofthecontrolsystemsdescribedinSection7.7isnotrequiredinordertomitigatetheconsequencesofthetransientsanalyzedinChapter15.TheanalysesinChapter15includetheassumptionthatthesecontrolsystemsrespondnormallytoeachtransientandthattheiroperationalmodeisthatwhichwouldbemostadverseforthetransientunderconsideration.'?hecon"sequencesproducedbyamalfunctionofthesecontrolsystemswouldbelesssev'erethantheadditionalfailuresconsideredinthetransientsanalyzedinChapter15.ThesequenceofeventsdiagramsaccompanyingtheChapter15analysesclearlydemonstratethatthereisasafetygradebackupforeverycontrolsystemaction,orthatthecontrolsystemactionisnotrequired.Althoughthecontrolsystemsarenotrequired,creditistakenfortheirnotfailingintheirmostadversemodeduringeachevent~Specificcontrolsystemfailuresareevaluatedaslow-probabilityindependentoccurrencesandarelistedinTable15.0-3.Ourtreatmentoftheselow-probabilityindependentoccurrencesisdiscussedinSubsections15.0.1.5.2and15.0.2.3.TheChapter15analysisdemonstrates"thattheprotectionsystemsarecapableofcopingwithall(includinggross)failure.modesofthecontrolsystems"asrequiredbySubsection7.7.2ofRegulatoryGuide1.70,Rev.3.StandardReviewPlan7.7requiresthereviewer"b.ToverifythatnocreditistakenfortheoperabilityofthesecontrolsystemsintheplantaccidentanalysesofChapter15oftheSAR"~The(Rapter15analysesdoesnottakecreditforthesecontrolsystemsbeinginaparticularlyfavorablemodetomitigatetheconsequencesofanevent.Forthebaseeventwithoutanycoincidentoccurrences(exceptpossiblyastuckCEAorsteamgeneratortubeleak,asapplicable)thesecontrolsystemsareassumedtooperate,asdiscussedinSubsection15.0.2.3.Theeventwithanaccompanyinglossofoffsitepowerfollowingturbine.-trippresentstheplanAPresponsewithoutthesecontrolsystemsfunctioning(exceptfortheturbinetrip)~420.45-1 0800m-2uestionNo.420.46(7.7)InthediscussionoftheDigitalDataProcessingSysteminSubsection7.7.1.2.10,thestatementismadethatthesystemisfunctionallyidenticaltothesystemsuppliedforSt.LucieUnit1.StatewhetherthesystemprovidedforUnit1providedgroupsequencingforthecontrolelementassemblies.ListallotherfunctionsprovidedbytheDigitalDataProcessingSystemforUnit2thatwerenotprovidedforUnit1,andviceversa.~Resonse:ThebasicfunctionalrequirementsestablishedforbothUnit1and2DigitalDataProcessingSystemsarethesame,andaresummarizedasfollows:1.Providecurrentrecordsoffluxandtemperatureseenby"eacnin-coredetector,andofCEApositions.2.Displayinformationperiodicallyorbyoperatordemand.3.Prov'idealarmmessagesifundesirablefluxandtemperatures,orCEApositioncombinationsaredetected'.ProvidelogicsignalsintheformofContactclosureoutputs(CCO)totheCEDMCSwhencertaincombinationsofCEApositionsaredetected.5.Computesecondaryplantcalorimetricdataonaperiodicanddemandbasis.6.ControlandprocessinformationfortheMovableIn-CoreDetectorSystem.420.46-1 0800W-1uestionNo.420.47..OurLetter(R.L.TedescotoDr.R.E.Uhrig)datedMay5,1981requestsadditionalinformationpertainingtofourinstrument'ationandcontrol'systemconcerns.Theseconcernsareentitled.'.Lossofnon"Cl'assIEinstrumentationandcontrolpowersystembusduringpoweroperation(IEBulletin79-27);2.Engineeredsafetyfeatures(ESF)resetcontrols(IEBulletin80-06).3.Qualificationofcontrolsystems(IEInformationNotice79"22),and4.Controlsystemfailures.Pleaseprovidetherequestedinformation.~Resense:ThesubjectconcernsareaddressedintheresponsetothequestionsintheletterofMay5,1981toDr.R.E.UhrigfromR.L.Tedesco,"St.LuciePlantUnit2FSAR-RequestforAdditionalInformation."1.Lossofnon-Class1EinstrumentationandcontrolpowersystembusduringpoweroperationconcernisaddressedintheresponsetoQuestion420.1.2.Engineeredsafetyfeatures(ESF)resetcontrolsconcernisaddressedintheresponsetoQuestion420.2.3.Qualificationofcontrolsystems(IEInformationNotice79-22)concernisaddressedintheresponsetoQuestion420.3.4.ThecontrolsystemfailurescontrolisaddressedintheresponsetoQuestion420.4.fbiK~MJUL2488~420.47-1 QuestionNo.420.48FSARSubsection1.9.1statesthattheFSARwillbeamendedasappropriatetoaddresstheTMXActionplanItemsasdescribedinNUREG-0737.TodatenoresponsestoNUREG-0737TMXItemsII.B.1,XX.D.3,XI.E.1.2,II.F.2orXX.K.3elhavebeenreceived.Therefore,pleaseprovideinformationontheaboveTMIitemsasrequiredbyNUREG-0737.~ResonsePreliminaryresponsestotheaboveitemswereprovidedinFSARAppendix1.9AinAmendment0(December1980)andAmendment1(April1981).AdraftrevisiontoAppendix1.9A,whichprovidesadditionalinformationontheTMIItems,wassubmittedinformallytotheNRConJuly21,1981.Thedraftrevisionwillbeincor-poratedintotheFSARbyAugust1981. ENCLOSURE2DRAWINGREYIEMITEMSFORST.LUCIE,fJ,ICN'Electricalschematicsandphysicallayoutdrawingsshouldbeusedbytheapplicantto"walkthrough"allequipmentfrominitiatingsignalstoactuateddevices.TheapplicantshouldbepreparedtofollowenergysourcesforthisequipmntbacktoelectricalbusesdiscussedinChapter8oftheFSARandinstruaentairsuppliesdiscussedinChapter9oftheFSAR.ConformancewithIEEEStandard279,RegulatoryGuide1.53,RegulatoryGuide1.75,RegulatoryGuidele47,andRegulatoryGuide1.32shouldbedemonstrated..gueS4~Ao./go.cffDiscusstheroutingoftheinstrumentationwiringforthefourpressurizerpressuretransmitters(PT1102A,PT1)02B,PT1102C,andPT1102D)usedinthereactorprotectionsystem.Thediscussionshould(a)identifythephysical1'.'.locationofthetransmitters,(b)tracethewiringfromthetransmittersthroughconduittothepenetrations."(c)describethepenetrations,.(d)tracethewiringfromthepenetrationsthroughconduitand/orcabletraystothereactorprotectionsystemcabinets,and(e)continuetracingthewiringthroughthetriplogicwithin.theRPScabinetstoandincludingtheRPStripbreakers.Identifythephysical1ocationoftheequipmentthatactuatesthereactoitriponturbinetrip.Tracethewiringfromthisequipven.tothereactorprotectionsystemcabinets.ggO.SJDiscusstheroutingofthecontrolwiringforthethreecomponentcoolingwaterpumps.Thediscussionsho'uld(a)identifythephysicaI1ocationofthecontrolsj(on.-maincontrolpanelaswellaslocalpanels),(b)tracethewiringfromthemanualcontrolsandfromtheautomaticactuation(SIAS)logiccabinetstothefinalactuatedequipmnt.and(c)tracethewiringwhichannunciatesirrproperalignmntofpump2cmotorpowerinrelationtoanyofitsmotoroperateddischargevalvepositions. DiscusstheroutingofinstrumentationandcontrolcircuitriesbetweentheQvM~hotshutdownpanelandthemaincontrolroomcontrolboards.Identifythelocationofthemanualtransferswitches.ggg,~~.Vab1e7.3-10oftheFSARlistssevera1componentsintheChargingandBoronSystemthatautomaticallyprovideannunciationwhentheyarebypassedorbecomeinoperable.Thesecomponentsincludethechargingpumps,boricacidmake-uppumps,boricacidmake-uptanks,andreturnvalves.Describethebypassorinoperablecircuitryforeachofthesecomponents.Thedescriptionshouldincl,ude(a)howthebypassorinoperablesignalisgenerated;(b)thelocationof,thecircuitrygeneratingthesignal,(c)theroutingofthesignal.wiringtotheannunciatorpanels,and(d)thelocationandlayoutofthe-variousannunciatorpanels.Iftheplantcomputersystemisusedtomonitorthestatuseofthesesignals,theroutingofthesignalwiringtothecomputersystemshouldbetraced.~sgpg$g+[~~)g)QQI,~p,J,~~~ggQ~j.N.tncI17$<~~gg(Qdefi<(~S~a-~77~l8 00 uestionNo.420.54FSARSubsection7.6.3describesadditionalsystemsre-quiredforsafety.Overall,theFSARinformationsuppliedtodatedoesnotsufficientlydescribetheinstrumentationandcontrolsassociatedwithmostofthesesystems.There-fore,please'providethefollowinginformation:a.Identifyanddescribetheinstrumentationandcontrolsassociatedwitheachsystemlistedbelow:-Fuelpool.coolingandpurification.system-Processandeffluentradiologicalmonitoringandsampling.system0-Containmentvacuumreliefsystem-Shieldbuildingventilationsystemb.Foreachinstrumentandcontrolidentifiedin(a)above,designatewhethertheequipmentisClasslEornon-Class1E.c.Foreachsystemlistedin(a)above,discussthequalificationcriteriaappliedtoitsassociatedinstrumentationandcontrols.Asaminimum,youarerequestedtoincludeforeachsystem,adis-cussionofhowtheinstrumentationandcontrolsforthatsystemconformstotherequirementsofIEEE279-1971,IEEE308-1974,IEEE323-1974,andIEEE344-1975.~Resonse6)I)FUELPOOLCOOLINGANDPURIFICATIONSYSTEMThefuelpoolinstrumentationsystemisdescribedinSection9.1.3.2.4.AtabulationoftheinstrumentchannelsisincludedinTable9.1-7.II)PROCESSANDEFFLUENTRADIOLOGICALMONITORINGANDSAMPLINGSYSTEMTheradiationmonitoringsystemiscomposedofthreeprocess,seveneffluent,fortyonearea,andfourinplantairbornemonitors.TabulationsofthesemonitorsaregiveninTables11.5-1',12.3-2,and12.3-3.III)CONTAINMENTVACUUMRELIEFSYSTEMTheinstrumentationprovidedforthissystemisinaccordancewiththerevisedFigure3-.8-8andcontainsthefollowingequipment:-PDT-25-1A(lB)withitselectronicPDIS-25-.1A(lB)isinterlockedwithpCV-25-7(8)byenergizingSE-25-10(ll)toopenFCV-25-7(8)whenthedifferentialpressurebetweenthecontainmentandannulusreaches-9.75"H20+0.25"H20PDIS-25-1A(lB)alsopro-IvidesindicationontheHVCBforQPrangeof-25"H20to+25H20.-PDT-25-13A{13B)withitselectronic,PDS-25-13A(13B)isinterlockedwithFCV-25-7(8)bydeenergizingSE-25-10{11)tocloseFCV-25-7(8)whenthedif-ferentialpressurereaches-7.75"H20.-PDIS-25-llA(llB)provideslocalfullrangeindicationandahighalarmontheHVCBat1le5H20~-PDT-25-15A(15B)withitsPDI-25-15A(15B)providesfullrange{-25"H20to25"H20)indicationon~theHVCB.IV)SHIELDBUILDINGVENTILATIONSYSTEMTheShieldBuildingVentilationSystemisR,VLE5FSystemandislistedinSection7.3oftheFSAR.TheSBVSswitch0ye<fromFuelHandlingBuildingistheonlyportionofthissystemlistedinSection7.6.~~gQVQisdescribedinSection6.2.3.2oftheFSAR.Theinstrumentationrequirementsareprovided-inSection6.2.3.5andTable6.2-51oftheFSAR.b)I-CEtoprovideinputII-TheClasslEeffluentmonitorsaretheplantstack,asdescribedinsubsection11.5.2.2.8,andtheECCSexhaustmonitors,asdescribedinsubsection11.5.2.2.10.TheClass1EareamonitorsincludethefourCtgSand6spentfuelpoolmonitors,aswellastwopost-accidentmonitors.Allthesemonitorsaredescribedinsubsection12.3.4.1.4.TheClasslEin-plantmonitorsincludethecontainmentat-.mospheremonitors,asdescribedinsubsection.12.3.4.2.3.1,thecontrolroomairintakemonitors,describedinsubsection12.3.4.2.3.2,andtheECCSexhaustmonitors,asdescribedinsubsection12.3.4.2.3.3.III-AllPDT's;PDIS's;PDS'sandPDI'sdiscussedinitema)aboveareClasslE.IV-InstrumentationandcontrolsdiscussedaboveforSBVSsystemareClasslE.Alarmsareahnou~<Wonnon-safetyannunciationwindowSthroughproperisolationdevices.'4;,4'+v c)IEEE323-1974ANDIEEE344-1975I-CEtoprovideinputII-AllClass1EmonitorsarequalifiedtoXEEE323-1974andIEEE344-1975.llIXI-Allpressuretransmitterslistedinitema)abovearequalifiedtoIEEE344-1975andIEEE323-1974intheenvironmentinwhichtheyoperate.TheremotemountedindicatorsandbistablesaremountedcrttheseismicallyqualifiedHVCBinthecontrolroom.'IV-AllcontrolsandinstrumentationsforSBVSisIEEE279-1971%elk>ein+e.EEifnecglf$tcc.t'4Q/PM/1Tii<Q~oThefourcontainment,areasradiationmonitorswhichinputintotheet)Sa4/Aes8/5XEEE279-1971similarlywiththeESFASasdescribedinScti.3.1.2oftheFSAR.C~Q0TheregniamenTIEEE79-1971$oigoffie+5$57Eiw5)gegiueeJQcnWcfye-Eate~t'leaf(opiccklegc.ceusithisinstrumentationisnotpartofaprotectionsystem.However,theintentofthedesigncriteriacontainedthereinhasbeenappliedinthedesignofthesesystemstothefollowingextent:4.1-GeneralFunctionalRequirementsThesafetyrelatedinstrumentationfortheabovesystemsisdesignedtoprovidemonitoringandactuationasapplicableduringnormaloraccidentconditions.Theinstrument.performancecharacteristics,responsetimesandaccuracyareselectedforcompatibilityfortheparticularfunction.4.2-Single'FailureCriterionThisisfunctionallyidentifiedtothatdescribedinSubsection7.4.2.2.4.3-QualityControlofComponentsandNodulesSeeChapter174.4EquipmentQualificationTheinstrumentationandcontrolsforthesesystemsmeettheequipmentqualificationrequirementsdiscussedinSections3.10and3.11.t3 0(,t 4.5-ChannelIntegrityThe"ChannelIntegrity"isfunctionallyidenticaltothatdiscribedinSubsection7.3.2.1.2.4.6-ChannelIndependenceThechannelindependenceisfunctionallyidentifiedtothatdescribedinSubsection7.3.2.1.2.4.7-"ControlandProtectionSystemInteraction"Noportionofthesesystemsisusedforbothcontrolandprotection.4.8-"DerivationofSystemInputs".Themonitoringsignalsfortheabovesystemsareadirectmeasurementofthedesiredvariables.4.9-"CapabilityforSensorChecks"Themonitoringsensorsarecheckedbycomparingthemonitoredvariablesofredundantchannelsorbyob-servingtheeffectsofintroducingandvaryingasub-stituteinputtothesensorsimilartothemeasuredvariable.4.10-"CapabilityforTestandCalibration"mIEEE338-1971andRegulatoryGuide1.22,"PeriodicTestingofProtectionSystemActuationFunctions"2/72(RO)providesguidanceforthedevelopmentofprocedures,equipmentanddocumentationofperiodictesting.Themeasurementsignalsrequiredfortheabovesystemshavethecapabilityofbeingtestedandcalibratedunderthedesignrequirementsofthesystem.4.11,,-"ChannelBypassorRemovalfromOperation"Anyoneofthechannelsmaybetested,calibrated,orrepairedvithoutdetrimentaleffectsontheotherchannels.4.12-"OperatingBypasses"Thereareno"OperatingBypasses"forthesesystems.4.13-"IndicationofBypasses"AdiscussionofbypassandinoperablestatusindicationisprovidedinSubsection7.5.1andalistingofin-operableorbypassedcomponentsiscontainedinTable7'-10.4.14-"AccesstoMeansforBypassing"Thissectionisnotapplicable.g'g 4.15-"MultipleSetpoints"Thissectionisnotapplicable.4.16-"CompletionofProtectiveActionOnceitisXnitiated"Thissectionisnotapplicable.4.17-"ManualInitiation"Manualinitiationofthecomponentsinthesesystemsisavailable.4.'18-"AccesstoSetpointAdjustments,Calibration,andTest,Points"Thissectionisnot,applicable.4.19-"XdentificationofProtectiveActions"Thissectionisnotapplicable.4.20-"XnformationReadouts"Themonitoringandcontrolchannelsforthesesystemsareindicatedinthecontrolroom.4.21-"SystemRepair"Replacementorrepairofcomponentscanbeaccomplishedinreasonabletimewhenthesystemsarenotactuated.OutageofsystemcomponentsforreplacementorrepairarelimitedbytheTechnicalSpecifications.4.22-"Xdentification"Safetyequipmentandcablesassociatedwiththesesystemsareuniquelyidentified.XEEE308-1971TheStLucieUnit2FSARiscommittedtoRegulatoryGuide1.32Rev.0whichaddressesXEEE308-1971.ForafurtherdiscussionofXEEE308-1971refertoFSARSection8.3.1.2.AllclasslEelectricalcomponentsareelectricallyandphysicallyseparatedinaccordancewithRegulatoryGuide1.75asdiscussedinFSARSection8.3.1.2.Electricallyredundantandphysicallyindependentpowersuppliestotheabovesystems,electricalcom-ponents,andtothesafetyrelatedpowerpan@isthatprovide'powertocontrolandinstrumentationdevicesareprovided. AllClass1EelectricalsystemcomponentsareuniquelyidentifiedinaccordancewithFSARSection8.3.1.3..The'fuelpoolpurificationpumpisanon-safetypumpandassuchisphysicallyindependentandelectricallyseparatedfromClasslEcomponents. SL2-FSARh)PipingandValvesAllthepipingintheFuelPoolSystemisstainlesssteelwithmostlyweldedconnectionsthroughout.AllthevalvesintheFuelPoolSystemarestainlesssteeel,atleast150poundclass.9.1.3.2.4InstrumentationRequirementsAtabulationofinstrumentchannelsisincludedinTable9.1-79.1.3.2.4.1TemperatureInstrumentationa)Fuelpooltemperatureindicationsareprovidedlocallyandhightemperatur'ealarmsareactuatedinthecontrolroomtowarntheoperatorofasystemmalfunction.Twoseparateinstrumentchannelsareusedduetotheimportanceofpreventingthefuelpoolwaterfromboilingresultinginalossoffuelpoolwater.b)FuelPoolHeatExchangerInletTemperature:Localindicationofthefuelpoolheatexchangerinlettemperature(tubeside)isprovided.Thisindication,inconjunctionwiththeheatexchangeroutlettem-peratureandcomponentcoolingwatertemperature,servesasameasureoffuelpoolheatexchangerperformance.c)FuelPoolHeatExchangerOutletTemperature:Localindicationofthefuelpoolheatexchangeroutlettemperature(tubeside)ispro-vided.9.1.3.2.4.2PressureInstrumentationa)FuelPoolPumpDischargePressure:Thedischargepressureofeachfuelpoolpumpisindicatedlocally.b)FuelPoolPumpsDischargeHeaderPressureAdischargeheaderpressureswitchforthefuelpoolpumpsservestoactivatealowpressurealarminthecontrolroomtowarntheopera-torofsystemmalfunction.c)FuelPoolPurificationPumpSuctionPressureSuctionpressuretothefuelpoolpurificationpumpisindicatedlocally.Thisindication,inconjunctionwiththefuelpoolpurifi-cationpumpdischargepressuregageservesasameasureoffuelpoolpurificationpumpperformance.FuelPoolPurificationPumpDischargePressureDischargepressureofthefuelpoolpurificationpumpislocally.indicated~UL,34<ggj9.1-12 SL2-FSARe)FuelPoolPurificationFilterandFuelPoolIonExchangerDiiferen-tialPressureDifferentialpressureofthefuelpoolpurificationfilterandthefuelpoolionexchangerareindicatedlocally.Periodicreadingsoftheseinstrumentsindicateanyprogressiveloadingoftheunits.9'.3.2.4.3LevelInstrumentsa)FuelPoolWaterLevelThefuelpoolwaterlevelismonitoredbytworedundantlevelswitches,Theseswitchesactuatehighorlowalarmsinthecontrolroomtowarntheoperatorofsystemmalfunction.Twoseparatelevelinstrumentchannelsareusedduetotheimportanceofmaintainingfuelpoolwaterlevel.9.1.3.3~SafetEvaluationWithone-.thirdofacorebatch,whichisassumedtohaveundergonefinite,irradiationofthreeyears,placedinthespentfuelpoolsevendaysafterreactorshutdownandsixpreviousannualrefuelingbatches,theheatloadis12.4Sx,10BTU/hr.'ndertheseconditions,withonefuelpoolpumpoperatingandthefuelpoolheatexchangerinservice,thespentfuelpooltemperaturedoesnotexceed125F.Duringafullcoreunloading,itisassumedthatonefullcoreisplacedinthefuelpoolsevendaysafterreactorshutdown.One-thirdofacorefromapreviousrefuelingisassumedtohavebeenstoredinthespentfuelpoolfor90dayswithsixpreviousannualbatches.Theresultant)eatloadfromonefullcoreandsevenannualrefuelingbatchesis2.99x10BTU/hr,themaximumheat.loadinthefuelpool.Undertheseconditions,boththefuelpoolpumpsareinservicetolimitthemaximumfuelpoolwatertemperatureto150F.Withonefuelpoolpumpinoperable,thefuelpoolequilibriumtemperatureis160F.Allconnectionstothefuelpoolaremadesoastoprecludethepossibilityofsiphondrairlingofthefuelpool.Anyleakagefromthefuelpoolcool-ingsystemisdetectedbyreductioninthefuelpoolinventory.Makeuptothefuelpoolis'fromtherefuelingwatertank.MakeupinventorytothefuelpoolisprovidedinSubsection9.1.3.3.1.Duringaccidentconditions,theFuelPoolCoolingSystemisisolatedfromtheComponentCoolingWaterSystem.However,multiplesources(seismicandnon-seismic)ofmakeupwaterexistasdiscussedinSubsection9.1.3.3.1.Thepurificationloopnormallyrunscontinuouslyduringfuelpooloperationtomaintainthefuelpoolwaterpurityandclarity.Itispossibletooperatethepurificationsystemwitheitherthefuelpoolionexchangerorfuelpoolfilterbypassed.Localsamplepointsareprovidedtopermitana-lysisoffuelpoolionexchangerandfuelpoolfilterefficiencies.~8LS4)ge)9.1-13 2-FSARTABLE9.1-7FUELPOOLSYSTEHINSTRUMEl!TATIONInstruct:entIdentificationNunberTI"4420TI-4421Tl-4404SysteaParacieter6LocationFuelPoolTeripcratureFuelPoolTemperatureFuelPoolBeatExchangerInletTemp.LocalControlRoa>>IndicationAlamLocalControlRooriHiHiInstrument~R>>la0-200F0-200F0-200FNormlOperating~R>>lC120-150P120-150F120-150PInotruacnt~RR>>lraa+4P+4P+4PTI-4405FuelPoolHeatExchangerOutletTenp.0-200F108-128P"+4PLS-4420LS-4421P1-4402P1-4401FuelPoolMaterLevelFuelPoolMaterLevelFuelPoolPuap2BDischargeFuelPoolPuap2ADischargePressureHi6*LoHi6Lolil+1<<0<<60psig40-50psig+1.2psig0-60psig40-50psig+1.2psigRrRr'.24lR?~RRRR~rrR>>~leaf~>>xj'~>>Pl-4411PS"Ai403P!.-4412PDI"4415IfuelPoolPurificationPunipSuctionPressureFill.1PoolPen.iDischargeB.:ader!'ressiireFuelPci~1PurificationPuRRP,~'..'chargeYrensR:reFeelYoulPurificationFi1(cr')ifferentiafireilsJe0-25psig6-100psig0-30psid5-10psig+.5psig40-50psig+1psig75-90psig+2psig5"30paid+.6psidPD!"44l6FuelRolionSxc'.R:.RR;.RrDif!'Rr-iia;'!r".:.<<R-e0-30psid7-10psid+.6psid PJKK~I~~LLK'Im~~rvlmam~mr'~~~H<mweeIIPD~'IgI'O~g-rC<%$7PIITi5-ISf'ohZ-peg>~-g.POT<<5ISAIC+LIt"Vt%7PI3T'Z5'laLO~T"VS0eIPQO25t5A,IdrZSCV.Ra-T/OS't5'<3OF&SfWtf'5dNHVALACK01!~nI>%5.QjPIg.'4.00IfC,Vt,<r,~TOIL25-IVIX-VCI-ZSqjZPIS25-I57%2:-ICV-Qg0.owuv=5P4-.%MKACY-lSTh~.t.il'o.X.Kv2)4gera-~l.~sn)QRACC,WIIlATOI.X'IKPSIII~~RCOATSERAI)V,~r.gg~SH~Gt'(~-I)ARR!IllÃEOd~Z-PCl~e.+r-'7~7$-IIr.l'"--rCV-"r&r:VOe".:6~~;.C,.TOg'..=.g+>~>Z5'AC.IOANOt5$+~II'852'...M'".'.ggd-5~~"f?-P'75sNwArAlclT83frtac+creeggFCVT.57.:I.C~1-c.~~5r.eOOK-2RmCPJIll0coC".mImn.nIOr>I=Oh~Inm'7I.~IHC)~OrIaCy~f"K'MKCOROT7VTTCHnr.xs-isAlViT-aS-I3OJrex-ri'sai."..-;~-reOc4lbfCO~I.'5-I7I--m~'aZ-Zc<-t'g-8M'ZSlf'ALZ+CV-t~<.TtiI3,~:W~/KI;QIIY.'Rf'.I1'K'P%AlarX.FCV-25-740f-fC@go.-gOblHVCg. SL2-FSARvalveisopenedautomaticallywhentheannulusdifferentialpressurereachesonein.wgnegative.Thecheckvalveinthecoolinglineisdesignedtohaveapressuredropofnotmorethan2.5in.wgandtoo"'.nat1.4in.wgnegativetoprovidevacuumcontrolinthesystemandtoa'owoutsideairtocool-thefilters.TheSBVSisalsointerconnectedtothespentfuelpoolareaexhaustduct.Uponreceiptofahigh-highradiationsignalinthefuelpoolarea,theexhaustairisdirectedtotheSBVSfiltrationunits.Themotoroperate;IbutterflyvalvesI-FCV-25-30and31openandtheexhaustfansstart'utomatically.ThemotoroperatedvalvesI-FCV-25"32and33clos"..isolatetheannulus.Althoughafuelhandling.caidntin"id"thconcurrentwithaLOCAisnotconsideredadesignL"isvent,aCi.'i".>overridesthe.Fuel.HandlingBuildinghig!>-.>ighradiationsignala..'nitiatesthedepressurizationoftheSliieldBuildingann1-.'ihcFu.-lHandlingBuildingVentilationSystemisfurth"rdiscussedinSub"cti:>.a.4.2.EachoftheSBVSintaketrainsisalsoconnectedtotheContinuousCon-tainment/HydroenPurgeSystem.Thisconnection,manuallyi"..'.tiatedfromthecontrolrocm,provideshydrogenpurgecapabilityi.~ilcmini:.:iz-ingoffsiteradiologicalconsequences,TheContinuousContainment/HydrogenPurgeSystemdescriptionisprovidedinSubsection9.4.8.8.BothSBVSsubsystemsareautomaticallystartedbyaCIASorhi"h-hignradiationsignalfrcnthe'uelHandlingBuilding.Orec"nbemanuallyshutdownandplacedinthestandbymode.Thestandbysubsystemauto"matically'estartsiftheoperatingsubsystemshouldfail.Th'rosscon-nectionvalveisopenedfromthecontrolroo>>toassureairflowthrc~-hthefailedsystem.Detectorsinthecharcoalbedsannunci"tetern.er".":..exceeding200F.6.2.3.3~DesinDvaluaeien6.2,3.3.1PerformanceRequirementsandCapabilitiesEachofthetwofullcapacityfan-filtertrainsoftheShieldBuJ'-..VentilationSystem,alongwiththeShieldBuilding,aredesignedtofulfilltheperformancerequirementsstatedinthedesignbasesinSubsection6.2.3.1.Theanalysisofthefunctionalcapabilityo;t:;"S3',Sto'-.>r=s".andmaintainauniEo-.negativore."-."withinth"Sh=!"..~sr'h~annulusisperformedforthe9.02f-.doublec-.d".dsu=cionlgsl;:breakLOCAusingtheVATEMPTcomouterco',edes;2'..'.!Thedescriptionofthedevelopmentofthep'-ebrea'.:;,ra>as><<nd'.nr.s,;releaserateandthecontainmntinitialconditionsarecontain:.,lsection6.2.1~Anyadditionalinitialconditionsorchangesirc",t'.:-:clistedinSubsection6.2.1arecontai>>cdinT-'..2-49'ii"8:.transfercoefficientsareappliedwhetherthesurfacetemperaturecxc-.'.dstheannulusatmospherentheannulusatmo""herct...;:"erato:.n"x:"!sti;3surfacetemperature..JULay88)6.2-47/sagss O.0 SL2-FSAR6~2.4COllTAIHiZKXISOL;"aTIOllSYSTEHThecontainmentisolationsystemprovidesthemeansofisolatingfluidsys-temsihctpassthrou,-hcont=-i".;..cntpcnctrationesuchthatanyradioactivittl<ctr.-yberelea<<dintotheccntainmentatmospherefollowingapostulateddesignbasisaccir!rnt(DDA)isconfined.Thereisnooneparticularcy!;t.'..f:"rco:..!'lctc<:ontain>>~:<<'!nlationbutisola'"iondesignieprovidedapplyin-:,"-ncecr-'teriac.;.-.:.ontopenetratio:<cinmanydifferentfluidsystems.6.2.4.lD~sx.gnlieeeThedesignbasesgo;c:ningthecontainrrentisolationsystemarediscussedbelow.Thccontain:~enticolctnnvalvesaredesi<natedseismicCategoryIandde-signedtoAS)K.Code,Sc"tonIIIandQualityGroupBrequirements.Con-tainmcntisolationvalvesaredesignedtoensureleak-tightncssand-rc,li'=-1tyofopcratnn.Containmentisol"tionglobe)checkandgatevalvesme-ttherequirementsofmanufacturersstandardsYiSS-SP"61"HydrostaticTestinofSteelValves"andcontainmentisolationbutterflyvalvesmeettherequire:-..cutsofmanufactu'crsstandardcVSS-SP-67,"ButterflyValves".6.2.4.l.1ConditionsReqrriringContainmentIsolationAutomaticinitiationofacontainmentisolationactuationsignal(CIAS)occurswhenah'ghcontainmentpressureof5pcigo"ahighcontainmentradi"tionlevelgflOR/hrisdetected.Thisprovidesdiversityofparameterssensedfortheinitiationofcontainmentisolation.b)TheCIASclosesfluidlinepenetrationisolationvalvesnotrequiredforoperationoftheEngineeredSafetyFeatures.c)Thecontainmentisolationsystemisoesignedsuchthatnosingleac>>tivefailure(inconjunctionwithloseofoffsitepower)couldresultinoffsitedosesordosestooperatorsinthecontrolroominexcessoflOCFR100andGDC19,respectively.d)ThemainsteamandfcedwatervalvescloseonHSISandthevalvesforthecomponentcoolingwaterforthereactorcoolantpumpmotorscloseonSIAS(eeeSection7.3andSubsection6.2.4.3.2).6.2.4.1.2CriteriaforIsolationofFluidSystemPenetratingtheContainmenta)Thecontainreentisolationprovis-'onsfor(excludingtheESFsystems)aredesignedDesignCriteria54,55,.56and57(refertionstoGDCprovisionsarediscussedinthefluirlsystempcnetrationsinaccordancewithGeneraltoTable6.2-52).Exc'cp-Subsection6.2.4.3.6.2-52P~~98<tI)4 SstemParameterSLnratinnSHIELDBUILDINGIndicarinnCnnrrnlSeraiRAlarmCnntrnlRCnntrnlRnna~nerale.hutnaaticCnntrnlPunrtinnR'L2-FSARTABLE6.2-51VENTILATIONSYSTEHINSTRUHENTATIONAPPI.ICATION'y'.tl~r'lInstrument04ting~Rane"~eaneInstru"ent~arrrar1~~Annulus/atanspherepressuredifferentialEnergiesfsndischargedamperssnrnrsndrendularesflnvcnpresetvalueandenerg,izenulsidernnlingacrvalve-10tn+30in.H20-1tn-3in.H20r+1.0X2~3~4.Fuelpnn1arcs/atansphercpressuredifferentialhirflnvreaperarurednvn-streeanfdeairterInlettcaperatureupstreaanffiltertrainHi-LnEnerg,isesfsndisrhargedamperantnrsndregu-latesflnvtnpresetvalucsndenergizenursidc'nnl>ngacrvalve-10tn+30in.H200-250F0-250F-1tn-3in.H2040-177F40-177F+1.QX+2.0X+2.0Z5.6.7-Deaister6ElcrtrirHeaceradifferent'ialpressureAirflnvtemperaturednvneestreaanf10Kvh';tingcnilPre-HEPAfilterdifferentialplessufcHi0"250Fa-10in.H2040177F1tn3inH20+2.0X+t.OX8.After-HEPAfilterdifferentialpressure0-10in,H201tn3in.H0+l.oX9~hirflnvanisturednvnsrreaanfHL'PAfilterHi0-lOOX50-70X+2.0X'10.12,CharrnaladsnrberdiffercntialpressureindiratnrCharenslcdsnrberriwper~rurchirflnvtemperaturedn;n-streaanfrharrnaladsnrbersHi0-loin.H20a-250F0-250F+2.0X+2.0X40-177F40-177F1tn1.15in.+1.0XH2Q
$1.2-FSARTA51EA~2-Sl(Cnnt'd)SareaPrraeercr&twcn>innIndirarinnCnntrnlL*ralIIAlarmCentralR*.CnntrnlRnnnRer*e'en"AutnearirCnnrrRRIFunrrinnIn~rrumentR"eNnrnaIOperaring~nneInstrument~errrr13.AirflnudnvnRRtreaRRRnllannrAirflewnffilterrrainEnergixeRRidlefantnRRrarratlnMflnuandalarraa0-10,000rfa6000cfnI4.FiltertraindifferentialpreRRaureCrnrRR-runnertflnucnntrnlvalvepnaitinn0-15in.H204tn8tn.82016.OutridernnlingairflnucnntrnlvalvepnritinnShieldbuildingaurtinnvalvepnaitinnRnRI~eRI18.19.FuelhandlingbuiIdingaurrinnvalvepnRRitinnPurgedischargevalvepnaitinn estionNo.420.55Subsection6.2~3.2.2oftheFSARstatesthatahigh&ighradiationsignalfromthespentfuelpoolareaisusedtoactuatetheSVBSsubsystems.However,Figure6.2.5-1andcontrolwiringdiagrams2998-B-327,Sheets513and516indicateahighradiationsignalisused.Clarifythisdiscrepancy.Also,accordingtoTable12.3-2,sixradiationmonitorsareprovidedinthespentfuelpoolarea.Describethelogicusedtogeneratethetworedundanthighradiationsignals(RAandRB)fromthesixmonitors.~ResonseTheShieldBuildingVentilationSystem(SBVS)isinterconnectedtothespentfuelpoolareaexhaustduct.Uponreceiptofahighradiationsignalinthefuelpoolarea,theexhaustairisdirectedtotheSBVSfiltrationunited'SARSubsection6.2'.3.2.2willberevisedtobeconsistentwithControlWiringDiagrams513,516andFigure6.2.5-1.Sixradiationmonitors,strategicallylocatedaroundthespentfuelpoolarea,areusedtogeneratethehighradiationsignalsforRA,RBrelays(locatedintheHVCBinthecontrolroom)asshownontheattachedsketch,"2outof3logic"isusedtogeneratethesehighradiationsignals'20.55-1
- 0'5 PROJECT:STLUCIEDATE02/12/80,TYPIST:nrPage2nTAPENO~DATEPRINTED:07/17/81SD504PAGE4SL2-FSAROl0~0405060'7080910111213141516171819202122232425627f9%30313233435373839012t3445+708S9505152valveisopenedautomaticallywhentheannulusdifferentialpressurereachesonein.wgnegative.Thecheckvalveinthecoolinglineisdesignedtohaveapressuredropofnotmorethan2.5in.wgandtoopenat1.4'in.wgnegativetoprovidevacuumcontrolinthesystemandtoallowoutsideairtocoolthefilters.TheSBVSisalsointerconnectedtothespentfuelpoolareaexhaustduct.Uponreceipt,ofahigh'radiationsignalinthefuelpoolarea,theexhaustairisdirectedtotheSBVSfiltrationunits.ThemotoroperatedbutterflyvalvesI-FCV-25-30and31openandtheexhaustfansstartautomatically.ThemotoroperatedvalvesI-FCV-25"32and33closetoisolatetheannulus.AlthoughafuelhandlingaccidentinsidetheFHBconcurrentwithaLOCAisnotconsideredadesignbasisevent,aCIASoverridestheFuelHandlingBuildinghigh"radiationsignalandinitiatesthedepressurizationoftheShieldBuildingannulus'heFuelHandlingBuildingVentilationSystemisfurtherdiscussedinSubsection9.4achoftheSBVSintaketrainsisalsoconnectedtotheContinuousCon-tainment/HydrogenPurgeSystem.Thisconnection,manuallyinitiatedfromthecontrolroom,provideshydrogenpurgecapabilitywhileminimiz-ingoffsiteradiologicalconsequences.TheContinuousContainmentJHydrogenPurgeSystemdescriptionisprovidedinSubsection9.4.8F8''DesinEvaluation6.2~3~3~1PerformanceRequirementsandCapabilitiesEachofthetwofullcapacityfan"filtertrainsoftheShieldBuildingVentilationSystem,alongwiththeShieldBuilding,aredesignedtofulfilltheperformancerequirementsstatedinthedesignbasesinSubsection6.2.3.1.TheanalysisofthefunctionalcapabilityoftheSBVStodepressurizeandmaintainauniform.negativepressurewithintheShieldBuildingannulusisperformedforthe9.82ftdoubleendedsuctionlegslotbreakLOCAusingtheMATEMPTcomputercodedescribedinAppendix6.2B~ThedescriptionofthedevelopmentofthepipebreakmassandenergyreleaserateandthecontainmentinitialconditionsarecontainedinSub-section6.2.1.AnyadditionalinitialconditionsorchangesfromthoselistedinSubsection6.2.1arecontainedinTable6.2-49.Thesameheattransfercoefficientsareappliedwhetherthesurfacetemperatureexceedstheannulusatmosphereortheannulusatmospheretemperatureexceedsthesurfacetemperature.BothSBVSsubsys'temsareautomaticallystartedbyaCIASorhighradiationsignalfromtheFuelHandlingBuilding.OnecanbemanuallyshutdownandplacedinthestandbymodeThestandbysubsystemautomaticallyrestartsiftheoperatingsubsystemshouldfail..Thecrossconnectionvalveisopenedfromthecontrolroomtoassureairflowthroughthefailedsystem.Detec-torsinthecharcoalbedsannunciatetemperaturesexceeding200F.5Ic2o.55520.55520.556.2-47AmendmentNo.5,(7/81) 0' uestionI'ios42056PositionC.SofRegulatoryGuide1.45statesthat"leakagedetectionsystemsshouldbeequippedwithprovisionstoreadilypermittestingforoperabilityandcalibrationduringplantoperation".DiscusshoweachofthesystemsdescribedinSubsections5.2.5.1.1thru5.2.5.1'1complywitntheaboveposition.~ResenseAsrecommendedbyPositionCe3ofRegulatory,Guide1.45,thethreeseparateunidentifiedleakagedetectionmethodsutilizedonSt.Lucie-Unit2are(1)sumplevelandflowmonitoring,(2)airborneparticulateradioactivitymonitoring,(3)airbornegaseousradioactivitymonitoring'heContainmentAtmosphereRadiationMonitoringSystemwnxch.includestheairborneparticulateandgaseousradioactivitymeasurementshaveradioactivecnecksourcesforthedeterminationoftheoperabilityofeachoftheradiationchannelsduringfulloweroperation.'Calibrationcanalsobeperformedduringpoweroperationin'theReactorAuxiliaryBuildingat19.5ftelevation.Theinstrumentationforthethirdmethodofleakdetection,sumplevelandflowmonitoring,cannotbetestedandcalibratedduringplantbperationduetothelocationoftheequipment(insideContainmentBuilding).However,acomparisonwiththereadingsoftheothertwomethodsdescribedaboveprovidestheoperatorwithsufficientinformationtodeterminechannelinoperabilityormalfunction.420.56-1 estionFigure6.2-9andFigure6.2-10,withrespecttocontainmentpressureandtemperatureresponsesfollowaMSLBaccident,shouldberevisedtoshowthecon-tainmentpressure/temperaturepressure/temperatureresponseprofiles{fromtime=0secondto105secondsfollowingtheaccident)foruseinequipmentqualification.ResponseFigures6.2-9and6.2-10hasbeenrevisedtoreflectthecontainment.pressureversustimeandtemperatureversustimeprofiles(fromtime=0to105seconds)followingaMSLBaccident.Seerevisedattachedfigures6.2-9and6.2-10.
7ICr'TIhidIIliIjOO{{0 ,j4(Ii.'It()1toj)jfqgjlja'!4ijili,t))IIj]j)))4))I))~tt),j)jj)0000 Forthecompartment(i.e.reactorcavity;secondaryshieldwallarea;andpressurizerarea)structuraldesignpressureevaluation,providethedesigndifferentia1pressureanddiscusswhetherthedesi'gndifferentialpressureisuniformlyappliedtothecompartmentstructureorwhetheritisspatiallyvaried.Designdifferentialpressuresare24PSIand14PSIforsecondaryshieldwall,andpressurizercompartmentaboveelevation62-00>respectively.ThepressuresareuniformlyappliedtothecompartmentstructuresPressuresintheprimaryshieldwalldesignshallbeprovidedbyJuly16,l981.
EP.'PQInterofficeCorrespondenceTO,P..E.GrossmanDATEJune29,1981FILEREF.OFFICELOCATION80/2+TCFROMC~H.SheltonOFFICELOCATION88/2'ETCSUBJECTFLORIDAPONERANDLIGHTCO~ST.LUCIEUNITNO.2TECHNICALBASIS:GDC51COMPLIANCEDuringthemeetingwiththeNRConJune17,1981,JoeHalaptzdesignatedcertainCertifiedMaterialTestReportstobesubmittedtohimforuseassupportingdocumentsindemonstratingcompliancewithGDC51.ThoseCMTR!sarelistedbelow,andcopiesareattachedheretofortransmittaltoJoeHalaptzthroughJohnSheetz.1.ContainmentShell.LukensSteelCo.SA516Gr70,54"thick.2.Penetrations.Sleeves(1)LukensSteelCo.SA516Gr70,3"thick.(2)ArmcoSteelCorp..SA333,Gr6,1.3"thick.b.ProcessPipes(1)MainSteam.TubeTurns,SA155KCF70,(SA516Gr70)2"wall.(2)Feedwater.U.S.Steel,SA106GrB,l.031"wall.C~Fluedhead.MainSteam,TubeTurns,SA105,104"thick.3.MainSteamandMainFeedwaterPipingSubassembliesa.'ainSteamPiping(PieceMark.MS1-1)(1).Piping.Tube.Turns,SA155KC65,Cl.1,2.125"thick.(2)Fittings4'eldolet,BonneyForge,SA105,2"thick.b.MainFeedwaterPipingSubassembly(1-20-BF-14-1)(1)Piping.U.S.Steel;SA106GrB,'.031"thick. P.E.GrossmanJune29,19814.MainSteamIsolationValvea.Body'ockwellInternational,SA216HCC,1.98"thick.b.Bonnet.GulfForgeCo.SA105GrII,c.Disc.GulfForgeCo.SA182,GrF-ll,d.Bolting(1)Studs,VictorProductsCorp.,(Copperweld)SA540,Gr23.(2)Nuts,VictorProductsCorp.,(Timken)SA194,Gr75.MainFeedwaterIsolationValvea.Body.Quaker'AlloyCastingCo.SA216Gr4CB1.9"thick.'Drawingattached)b.Bonnet.LenapeForgeSA105,2"thick.(Drawingattached).c.Disc.BethlehemSteelCo.SA516yGr70p25thick.(Drawingattached).d.Bolting.Nopressureboltingused.CHS:jlAttachmentscc:F.Puchman-H/0AttachmentsL.M.PetrickR.Keilbach (y~~~-~~~~~9~~~~.~~~~~k+.~Efy1C1AL4g~<<\<<>>~ I'URCHAS~RI>'~r,I~4,.Chic2>>s"idgehenrollCo.6~LlrBGQIOreenvi13.e,Pa.16125MILLORDERNo.13833-1CLISTOMERP.O.'~O73-7302U-MTIP43.75DCt.UXl:~:.S.")m-'"C."APACE~r.0l'l4lit'wali>>J4J~DATE:Q/Q/750-0399/CONSIGNEE:Chicgo=-ridgeEcIronCo.IBira>ingham,A3.a.35201WSMA'IERtALIIASRE\NMANUfACTVREDANDTESTEDINACCORDANCEINIIHPURCHASEORDERREOVIREfAENISANDSPECIfICATION(S)C3E;ZYS-60"2Rev.01974QA.S-347Bev.0SA-516GH.70ASYECodeSect.28c3CL.YLC1971ZditionTnrv.Samuer1973Addenda8EMDLLLL0gIIOOGi'(IYtESiShee>>clof2CHEMICALANALYSISMELTNO..lCMHpCv5>NlCRMOALI'D9071D"1572625!1.02010009025023r2320QNC)7-87-8PHYSICALPROPERTIESMelTNO.S'LABNo.C~<<zfr390711YIELDPSIXI00TENSILEPSIRIQO56>~,82855ov'12612'42846r816T'75..8?'8/'81/838<ELONG.IN272726/goR.A.BHNgenre~IMPACTSr62'62is6ncesLe.teraIIg2.48I57"s~c'fh.in1nchesEater".046l.oboI.o6oIII...I70I68I6-ansion'ininches.052l.050I.056IIIILatera1ExpExpiinZnh.046l.ol,8I.o39rac.ureILppe.aznc~CShear50-50-50DESCRfpilON1-5-1/4"x76-1/2x.35t-.'0-00-001-5-1/0"z7ox36850-50-50p5Weherebycertifytheaboveinformationiscorrect.erg.~reSUPERVISORTESTING ..PURCMASERI..Cc<c>>grageENIronCoo6Greenv~11e,~.1612'ILLORDERNoLUX"-L.'55"',COPAPAV!'I=GTC:-RIi;lCATCCVSIOMERP.O.73-7342U-XDATElQLI7g~:~IIQ03.OgCONSLGNEbChic"ooT,rkdge8:Iront:o.Mr.".~n~h-m,A3.8.35M1IHISMATERIALHASSEENAIANV/ACLUREDANDTESTEDINACCORDANCEWITHPVRCHASEORDERREOVIREALENTSANDSI'ECISICAIIONLS)iRQH6ENDTESTHOMOGENEITYLESISheet~2of'CHEMICALANALYSISMEETNO.CCUSINICRMOIVTIAL8IMELTNO"SLABiNO.YIELD.PSIRIOOTENSILEPSIXIOOINELONGPH%R.A.YSICALPROPERTIESIMPAC'ISIIIc~CJ'Cf/~T4-iNII.II-he-<<;"125-1675.g,hec1/g;per~<chma.OPl-teaandhostssuralppreJ.i.evg0'1..i~Rh'~'I'ICi>/MT~rl'T~irIA~uo~g>>i~pi.I~C-PZi.~~Of100'.'.':~srhr'L".DO'rcc"wa.tcqccQccc.-+<<".'ItcBgr'zoicaP10-140Z'~Iield1i2Ilz,pc/5ncn""$.n."a"v"-uercu"=neo"dJII<<.:~teanQtests.endue".~2~675'..p.,heV<</2-4r.ye+zzxch~.e~LE:W"uerL~enCredith"=..tv=~:.i"~Gj.200M~207'.,hei>/2jar.~'rIIIIylu-a~Ttkth~nareueof100P.varIIl@netQrw"-ceE'.ool6cvXtpf.r.agate/lifer..."EianGsvbscrlbotibefclra~~6~aAPIwooL'r'/IL:<<IlcgCC~r.il',rC.CrCIAiri:I.I~'l5WeherebycertiT'ytneaboveinT'ormationiscorrect.SUPERVISORTESTINGT.C'i~~~ ~~~~4~ PL'RCHASERI'ChicagoBridgekZronCo.6Greenville,2'a.1615LUiiE{t".'55~COEVLPAtlt~coATES~.rA.I9.".oMILLORDERNO.79625-2CUSTOMERP073-7302U-8hip51775DNDATE:53075CONSIGNEE:*.tFILEN~~$0-03-'99TChicagoBridgeIlcIronCo.Bir~in+azl~AlaoJ<<5IAATERIAlHASbfENMANUFACTUREDANDTESTEDINACCORDAIICEIeqTHPURCHASEORDERREQUIREMENTSANDSPECITICATION{5)'BdcTHei-6042Rev.0197LIS3L'7Hev.0SA-516GR.70AS>IECodeSect.283CL.KC1971EditionThruSurfer1973AddendaBENDTEST0HOMOGENEIIVTESICHEMICALANALYSISMELTNO.A3655231.06Oll018CvSINICRMOAl.""CL-rainze7-8dX-PHYSICALPROPERTIESMELTNO:A3655SLABNO.TIEIDPSIX100TfNSIlElailXIXfIONG.IN525'23'5595se83o'9%R.A.BHNIMPACTS~XCh=-tO'T"IIE{2I11688FractureQpGRzanc.eShen,r60-60-60DESCRIPTION1-3"x60x192DLter1Expans$oninInches.052I.058I.068II~II.6~12601625-1I@erePalr);hPlaeend"estseatedITe.t.'aterqushed,f"~enteTat"rquenched.Iess~t-'re'ssreijpred.ld1Wars.pyhea{,.ndxu~1~$0.,heto6007,in/bnice~thinooledh/2ld1IIhr.~rincchr~IRriIxM.andchmin.andtoperhr.rataol)3'P.erhrLilithnah,teof167hfIrmcdondsvhfcrIQ<dI.<Oyo(BAY,'30j,"-jgNotaryPvuIicthyCommissloIIExpiresApr{IIf976Weherebycertifytheaboveinformationiscorrect.IecSUPERVISORTESTING.cR. ~sf:II.I:oAf,'t,',0)Sl":l'L(:Ol'POHAf'IONs'f'orsnI'n032I-5(3/Ijldf~REPORTOl.Tl(STS'll,'Bi~lu"Ei;ORl;5,AWD;;;DCE,P/.~~C,,r,.,Qg/r,csPr/CYgiLrsl<orrrrclrIMQ.~j),s,,Q-/m-7ZSpecifico'off'.HplQf/t333-7I/l~s/tS/'rfC.J/t-333/ssfnfcoOrder]o,OOR44ZPcr's'-I-0/7(rcriol:ursusr,Gz1.nrrn(srtIr.Srcor./rricurio.ccrorrscrIso.rrn(0rA34O~/rt'+ooo<//SgXcir4Z-54)o/2/rf~/.3/ZDg,o~ZGrsoI~QYSlC/>Lll5TS(f(ATIIPI/LIIORMALIZCOAT165rsI')47/<f-'~r/-~"o4~I>aorrIWroLtols2ofiohIleolsvr'sber,rIdonlsfscolionYieldIrorsr3rh,UiffrnofePS!tln2l>>ch~73('IO6Iripf!onnd1'sonsvoss'elLonsffudihrsl]IIrtroTesf~r'5'~Zoo'!enl.sfuobrergag~oeyO/(2o/E'HEt(iCAL/'H/'1YSIS/g'CMn/P/5Si7v'rf.foOfhsrc>/cn'/I"/I/=rel//u/.zs,w>rrn,'.~owns,one~so~~s,<<rnpo.g.zriorAs!ChicagoBridgeRX3.onCapitolS.O.-'.-:RX-102tl-P.O.-'.sG80184-7302flChrP18893Xterf.'t15~/6~IssI~.3rI~sr.~~,ffsll~ssl'"fLEf:l.s'\us(~osl.l1"~lMPACTCon(liIionConditionSiressRclicvedot1100FatSoMinutesSook,FurnoecCooled.3:impactTest",toterQuenched8Temperedolt.iinifnufnSockof,onelloiirPerinchofYloll,ConditionfTESTS-LongirudinolX'Trorrsvcrs+Size'l0r.IQriir.1:ImpoclTestHorfnolizingTcmpcrolurc1650.Fol8'~t(iffutcsSoot:,SlillAirCooled.2:lmpoctTestHolfnoliiflgTemperature1650Fattcs'AinutesSock,StillAirCooledolidV-tfofctsg<<IirirnyTrstrlenslleofIfurher~I~sIgg'/oggFT/LOIrnpoctYoIupofSef6/7=.A3/@/5=Av,5fluffleFrcluro5gu57os(J/O,aoZl.'.erolCxf.onsfon0/<j-,,/3/;7Condsfion~-578~/I:c../cr."rrJIers~rnfv4i50'o"~~rsr,osry5/j'jgr,....,.f',rrB,r.)p,rr-~rr17~+Jr~.I!!T'r'.I'Ji(I3tl)13lyff:I'rc,strr"'T".~I)(1"crC).ItffCclsselsrouluslr.s,"uSOe(lii'sec('s191ssFlolleflingTestl3ndingTestThechrfnicolonof>scson(iphysicolormrchonic<ll'testsfctlofledoboYeofccorrectoscoll!oinedillthetccof7softhecorporolion.MclollufgicolLaboratory I'k.---Pll<cE<9Vip'~~-c-~~~~~'*~~~I~tt(
S~QLQ'SiiYlQPelbe~co.s0.i'-.987's'r'"'e,Ky.402017P0SvQIo28ul>>SLP~t"~u;(-"~:o;~r~~:.Ky.00211OLqxT0'.AS*tP~e1of~*ETVVOtgiuCVCTOillCAS'RDERNO.""3.61'TUPlF.YVPiNS~w4@31'LRIttfAT2KATBICttfTtALE.EPtRc5TRINtTKtLOOCAt'CRPOLIAEtl'IIOtNCIIIRtT:LLBPOINTttRSOOARCtaCkPHYSlCALSOPIIATEOIiLsIROY.YIRICRI~ASSCH~MLCALANA'S)5CMlsPSSl1tt'lOCBHCATLOTNO,SPClF!CtLPFT:O.'lOFhl:ITCtt:ALFROALTttCEVAO>>ten0011Pie"es57b008230029.0.21.99PMys"".010L016t.10~J2254KC-5"60-7035.500P="o~essT.".(v=-=~seKP3.Qtet6CvL~CLL~VL'U.e.21Ci:e'997ciLlGOoL1/.3.978335~.~'~i'+'~"~~"e')".5.503O.D.=4xK):J22Ã-l.-8ADi~7?73-0".12C~eelt1oIgJIZLZZ~-:V~~~Ii4fM~".~lCrr'.IL".~9~~~me35.A3~m~~or,I'./g,>9;OJ57~n02~3002Q.eI'V'to)~ctt".:50Il.A.ZEVe~SGTA~3.6teALSJ.,-.Pii~'X'i);Ltl2~+A'.16A-.wva~9)010t.t)16l.18Lm.i.21.9jCv~iA.lKLvsik.21t.99l006t.017.19th'I,E+o+~32056SA-516Gr.70'7835.3Lbs'!~<:-!Ii.H>.silA5~.'.6=>AY".l0I'.~RTn~g~+ngP==.D::;-.OIN-A"-.'--!OO-.>!.=7="-.,STANDAttDltOViCD'TESTSiPiC:t!CNJFLElRNO(tttAILIZEt)jt2iohNNCAIEDSUDGCRto-DtttIIXDSIVQRNYGBEFQILC,IVI'ItHISDAYDF~oo-~'S~73HEATACATEDPERORDERSPECIFlCA'ZtON.jINERPBY~=RTIF"fIlIS.I'SPORTTOBETRUANDCORRECAGODRDINGToEcoRDYikj'7ossEBBIDNDFTIllscoRPoRATloNROTARYPUOOOR.Avex'a,~layCo-..tel6~.
CCgVt~IgytO(~ljsi'SjJIss<<r~SSnLlzipOHtC1kcsrrwiostoreXs~~~~s~~~Re"lRk4INrssicc110COICCClotOO,litC0O,SsIIIrOOIsSLriis(liCllrrsrS'~CCII','s$0,lrlrIII'I1'iIII.l~,rirlsOl~IICfslI'I1./Ios'IrllrSSSCISV'.I~~Ib'Nlisd',l.l,CI'IICI.o-.}EjtotiIstcsr+~lierIIsllcsrr'Icrls:5CssraSICAIJrsslTIIt1~r/o>S!rCS<j72IC.:<WSc~S0'SBY:Q.1(.f/.g)<<N'c>>P,QEfCO.1CC"I'5'ibad;~ssrA'H>r/)IX.'CQ't'~~~gAP.E?ys)'I1IIt'/,)Or~1Col.IiP.~)ft.OOPEV}t::iVI.-:DUYSVOhll)sgIrsl~<gshsls4\riess~~ts')vsr~I...I.;.t......(.).et>-I'g~]t"0F@ASCOVpj~f<LC~~~~~~~~ ~~ .~SOTLOD.:.P.<8-987~-~~,'iy.DESCRIPTIONSHT78Sc;~28~S~.QI-ycIO59/'POIIousroNtTcxhs~~Tun!tTunnsonortnNd,cusrothcns'AOEANO.'=~V49".G92@392~It~IItIIYSIGALSOFMATERIALSFROViINIGHhfADEttfhrrttrnrt(fNrvtraornvr~rlsonnet~nettTrt.tIILF.5'rttl"crttI'crtcoUNtc!ItCIrrrvcrvtrrncrntloltcrrtovtvAllnCCHEIVIICALANALYSISMNPSSlCRNlViOsc5nTOALOT.rt'o.-SFCCIrroh-T!OtrOF5!ATERIALFROss'crII:CIIssherq,(Ii3R.GLI"DAIOYS"8RI"PORTTIJOUlIli(svSDtvloltttrorcttcttottmKcotttvtohvtoK~I."Jrc~,,,>(/e,n,s..'tmCQ~2PI~9033t79GCO,"0.0o2.6i1.'OH~I70x6047x.3.5z"='>I.30.gn'I(<(v.(2gJp.gi(i'~6og~tc5S.iLOBCc"'"~G~(MVt2+n-IticZm0I-"~~V)"Eo,l.I"z-:MI('G--.;ryIE<=--O~esrnr'ohnonovnorcsrsrccIII'."..wv~sNonhInLIaoSUDSCriiDEDANDSWORNTOBEFOREViETHISDAY0'InO~.O49+<444~~~VICKIDIYIHgPLI;;~ttrIIqtHD(t:rCCIIYTcXD'ICI81978lII'y'CortrttsstcntxptrcsNave!IIbt,!NOTAAT!USLI'c.~~R.hNNSALCO3HCATTAnTCOrtCAOAOCA!tndlrICATICN.IHFREDYCERTIFYTHISREPORTTOBETRULI.ANDCORRFCTACCORDINGTORECOttDSIVTHF-SSESSIONOFTHISCORPORATION-r'~/Ye.'i illSQ'ppjppj June30,1981To:,CSheltonFrom:)JFlaherty/TSSahansra
Subject:
FLOR1DAPGt'ER&I.TCHTCOHPANYSTLUCIEPLANT1983-890m;(e)EXTENSION-UNIT2NRC-GDC-51'HAINSTEhifPIPINGFRACTUREPREVENTIONOFCONTAINMENTBOUNDARYRef:YourmemodatedJune18,1981,itemf/3TheDetailedAnalysisReportformainsteampipingpiecemarkgl-35~~-NS-1-1issuedbyTube-,TurnsonAugust16,1977wasinerroranddidnotindicat:ethenormalizingofthesepieces.RevisedDARissuedbyTube-TurnsdatedJune30,1981att:achedherewithindicatesthatthepiecesverenormalizedat1650oFandstressrelievedat1150F.Thiscompletestheinformationrequested.1TSS/lfAttachmentscc:EZuchmanw/oattachDChinv/oattachCFHTrappw/oattachKNChoww/oattachJFlahertyw/oattachPGrossmanw/attachRValpolew/oattachTSSahan.raw/oatt:achDB-15v/oat:t:achR-23w/at:tach~f-2w/att:ach
'CCQIAiC~~Pe7aaaI<<4ITI.VP0'022~~(1"3.u'n~COn,3laC,=are19899~3.F.S"~~a7COY~7Ah"z~0GldLc,axe=a."4'rpoxPL~QXCTT7avCDZS'360~lss4alvLLE'A'A.'ApeeiaWOeca~'~rf'.=DaWAV".'~rxroarg)aa.~daace,)<<a~Iwa+v4ChCaTT7a-,fb~CO;Of~Pnm"loC39ca~~aeat'aa3P~aaftC.OU7VTL7.,KY.~'IIa"i::o.".:JZ3"cv.>:oQ..:As'.",'o..o."~a'2~SCAN.laaaQCLL>>~ra-~aph~j'TTLTfcOaa"TT(TpJpD~TCR)a4a)ON~TRAVTaaTT.T.aaTYaTJa,aaaC4TaaI'.ua7Taa+Va7aav~aapeaa~~~~I'I'LTaafAaafaaaa,~aI~aiwaar.la,,IIO'Zta'T'lCfa..Ta".03;tb0012PCS35.500"0.'0.72,125"H.iJ;K.F.V.P5iqePbSAU5KC6545~00I73800T-.anv.)-.se"bl7Ii000Sor"cllHo'S:33..5'08D20/8l-CA).20~222-8L>axChcc.70C7aAI-010-009.023.13lysis.027.17j~2078II82044re-515CR.Cl.3.Sec"..ZXJ.C3..2.F<XC1<<CELed,'Cf>>a.~leCanarhAaa(O"nebb~ollovini7IquantX"'cc7andle<<c'hs:3.Pc.3'-li""7PCc>Z-"-3.1Pc.3'-1/2"Tao:p'I-""7.+)Xh"iaido8-3.6D>Rreplace~Tait>>TerryFioLscon2~and277a~cIATab'aa'A.'9Oa.o-Iced77003,Xha.<<Dkea.eebXcorp~ocab7.ecoas<<4fio~eeee:Iono~cocdVo",.-alienean48"z'eeael77Clio(aN'1'a!Dna.7.evonlc'sCNav"eIrbi3c'r"ad;:ncorr'.eelyIOra-..Onohe.i'b-'Ct-eataenh~I8,.377Ho::,cAc,cordingAC>~'vM~~aaaaaa<<eaalaat'eaaaaaaeeaeaaaeat+0$%$kt.~;i44iY.".':.J-,JT.V4~""t4JI'I'aT~~ICT:..'faP""'la[~'t'I'a~/TaaI~T.;aC:~.a~a;2.T'.a'""...'-0ipse",padTC,."Oe~&.XalCCah~afaOX~TP~\aCTaYmfa~iaI..,y.CC;.r.mi:~l07i7yglZÃ:=Ti.";.;aa'J'l'Daaf:>fg]75l=-2-'-~~ayA.."'-col=-".Xcc'..-ctCo-..croh~'7~Ia4CTaaaaa44vAaaT3CaXQa'TgtiaapaiiaII44ITiaia)Iira.7aalu".fraf<fgTigx)faab".T.CCaalVaTJaITC":rTCCI'aa>>a7baTWHO%Ca 40 c't.0~r4~3.:.'~,i'ti'-.?Ah'lP.0.OX2284'13.~ngtcn,DelawareUM9DATA";".'"DA;?P.i."""3HHPQR.TI~~:-]a<-/-./(',:IYi'i5A8eViI4)ell.OUCVLL-.fW~Qw'0~8.:.SKK'i')CRP.VPZ0OldLal'XQ:".9A1xpo"tEa.-.i-".,S.C.2":.".60GICrnOLCorl~lyly~Pa~e2of3Peplacclc'h%Rc'.ates8-23-77i:o,<(,iLg7rlOMCRIPTIGAbOTES:CCi'III.'.014:;0'09(1,(gggij2)pi>"oIIrc.ee"dedpcr42dL.3z1L.c.ea".1pe20<30/Lot2<3Z-11-.0106lv7(J))Veld!I<Let~I~e.cr.IiL'vrIi~IA%hC4C&t~~~~JMWJLC~iv~~lxeviXNC2400ss!Fitfng(SPAttozladl815.1C)IrcE?018CR.i,r.Q1OALCkhllStS&~~it,I(-~-..03:,113)%C'~r~'%k~iv'iliiiird"lP~'vs'J~QI.55-lCO8'",c"blI2)~peMa~pfactgrecperAppl,3)pondceo"pexfor..adprSIt"IiII4)L'o3de'dpc.7oatRedooraphq0:Sat~ofac:ofZopoxXovloSack<<factr8?3~0-7375Sn3.a'x4,SG-74.d-T7.03-081Il5)gapa':6)1~pe.I7)hvjd<<otoozoBoxw3.~rod?50.'SXpiItl6~0'P"or1".SAZ55-fac-oryndoo3.edSac1houpertachpIt11IO'P'chandc-X08PALl1.VedicPor1hooxperpeS~I<vridA~8500)tedprtkcleceglCerEpaoctlae3.GOi.Ultracc0>>73Zba>co875vonic";clos"00i"Y"acIi11a"z.olad~zCLt375xdSec-,iongSat'Ea'.ItorJ~i'J~~~~I~I~~wetw*~JuK.p'Tr'V"CvriiOti~Akrvvl&irL:rCQAr(&rLL<'HLIr.~~Jl~rA~t~v~diJisr.i'riirv.iivvviC"r're@'0!I1!ro~~CIli.."iCow.ÃYTC"-C"l"YL'0~'!7':Li':,iCiI".r.C/.~iCDWMj'gRa).l~i.ozcalf,'~'doctCoil<<xol i sI~seI"If(IC'gIP70P.0.T:ox22oV~1~'a;-o~,Da2.;"."za3.969S<<r~FI>>CaW'IICCSPISttSrh.dLa'-'r-"-o<i"-7o="-P1<<estD4'3L"02'P.LYS'fSRcOiiTP"a3o".3Rc,p1acacDAR6acad8-23-77(.OVICV((.~8KY.WQ'hp(tre~$G."IO'"'W40.".Mlb35,lliAIlCV~47L67-1>>>>>>r~~~>>e~kwr<<s~~08&CFdPVIONO'IC+seQTee~<<gPfItl'.aV'wt~4Iee'sC<<'S<CVIer'<<4'I>>Cvi'ivsIsICLv"(IerekIeLh+Ttls4sXMellIC4e,lIIS)4<<,JLTe4'SeICR,It;.PICuItTi".RCOCC'%Ye&tksseCDeWKRKSAQSAihP,Yss.>NQTKSCG'QXiiUEDlI.'i~TCl-3hsgees<<IbCoecrX~caddoc'".o1lo(:ewist1ovc=zecASKtSA3,55C3..XXera%de(lcsea.oiQ500"t."i"taxz(.'ehR1%TT7,.D.X2.12:oaT~wm35."'a"ta3."o'Phdcert,fÃf,as2750PSXeZCIlnOLDE~~peck>>~1977XR<<pLTrcuba7n't0.c.d5".(C4'aCl'5.rt;t~~sscbpC!'eql'~aaCaOf""xl"-e;="~raxaolI)...<<e(.Ak~(ac~ill,>coI(c.rcic'c',eV'.IcdÃ500a~2000e.lid~1icabg.e.IAj'73]d.}{197l~d.(/S~.:~ac"",lac,novo"taz,'a3.:.aceb'I'0"i*a"Cib.I'1tlat>>I'r'CL~L<<eer.%~sees>>ssha&%!'rssssseshaO'T~awe<<4eolls3Xs"Tel'I>Cll'J,ll:!.-<0~re'P~~1'Cw.,(;r:stOAIIOCTA"l(4'Iel"QIlO'4(l;PI<<3SI'O.(~((aI<<'8'YtIC':I'=57(MY'tn&TWACI(IAlIMCCe(ICSTOt~/tgJ)$'e~~(~~~~tV43CII4ICOhsICeU'eNO<sl(OI'OPCVITItl3o,/'/Ijr,"Jl~~~'.-Ctl"Wts.-vT~ACPPTTO3C~'teSevOCO+ACCTIIeCCO~ert'ICIIIO'TOWr'eCIII'eO3lsl'Teez+OC(8OVCl'III3CO4+O">Tee7II.l/I,I{,j\~l~'e~ras>>'kI,~0t<<e>>lCOG<<nb S00' 44~~~~4-~ 0CI,0 '~<<W,~~<<44@"<<l4AI4%8J~~<<'~><<4U<<<<V~C><<C'~,~~<<<<rr>>>><<><<>>K>r<<%>r<<Vlf'Tr>>J<<I<<T<<>~TI<<g<<g>T~PTEAV><<~J'CIITV~C4CACKlQ4F42L~AJI<<I<<'TI~~TPIIO'IP217"'-"SlIc.'IfrLINYILLE,!LLTNolsIP:'<jI>-/-/Jjg'~~l-l.-:.'CUSZpxtZR-.B.F.Shaw...:.......,.DateJanuary25,1979'USTO.'fER'SOrderNo.:.L-8938.'.:.'.:'."".".;,.~.'...".BonneyOrdcrito.0512~~':SIGPPhDTO:..:,:."':':'.~::,~'h'ra&<<}II+ltcmiso.Quantityho.BonncyLOtITO.270BBCr.dcorS!7'>>wtionho.~OremiulJ'lnslysts,I"}Iysfcc'"rngc!ties,l<crlrmlfs}~W4~~'ITS?CXJ~~4%>T><<<<~T~$~~~~4XY~....AS('ESA10iV...'I35.5(2.00t"I)x10{1,125)NeMoletUT-PT<<1-22-79-1and2LadleAnal.ysis:C.Z8r'e>.82P;010S.pigSi.28'I'/S"j'5,lg!'iY)S53,303El.3~[.5Ra67".2i~lii.lV!ati'to:11>202..LabChemical:rC.25Si;21.S.014tn.77P.011I~~rco"ORlIIVlf'IfA(~lDCp(tr(:TEITOSS(+~/A5C~E"'liY4'll'i-~Grf(DBYIr-'<pvQ.'i~4Er>r~,I>~rJI>>>r<<<<>><<N1<<>>><<)SICCR.KPThiscertifiesthatthefittingssupolied~!ereno<'.:a-liz~lbyha~ix!oo<"ithin1625oand!675ofo.3/,hr.perinchofthick.".tess(1hr.nin.)followedby.coolin~in..till-air.Thiscertifiesthatthefi"~Singssupoliedareca@ableof',withstandingsiithoutbulgin~,crac'cinl-,.orleafin','hydrostaticaresuretestof11/2~i!"sthefittin~gsr:.azimuthperL!issible4"orwingpx'essux'e~rTieabovefittin".-sareinaccordanewithpt.i"chas.eorderL-8938andEbasco872-75and873-75;Lic,uidPentrantTestperBr."-D}'-2Rev.BS-1dtd.12-8-'.andEoasco87375UltrasonicTestperBl"-'UT-1Rev.1dtd.11-29-72and..LIDasco873-75+Thiscrtifiesthatthefittit-'ssuppliedarein'o."Irpletaccordan"e!I;ItntheAS',lH7~~.'lerand"-'ressu"VesselCode,SectionXXX,Class2,1971editionth"usuJrlf"er1973addendaandSA105(t.IIlL1I~T,~,IT11~J,T)>I~4J'N'Jll'I,Jlf<<IT'lII4I'NLAPP}-l0t.ri"0r;>Vfr'IUiYI)i;i'l.l'ROUr"r'/o.(Z-~.~i'..i>>1((lie)'r)frD!wi':I)!r)-:J.I)r.<.to4:r)"....~r)-g~}I'}IIu\~8I( D00 154/iV.!-C~llu/p~gRp~p~pg>'I*f.~R\~-~~~04 ~sr>>~r~6~~Ps,'rrge~s>>e>~'I~.'le)s>P>RFNs>>PscerLLL)nce)>.hL~>>srT>>BU'-AII>F<OFUCtorUi'.)fe."AIIRLOROERMO.~I'O7IIOIII'0IOAOIAIIYOR.Rer((sr;>It>a.>><<'I->v4Hrt;:('.~dc.];iV'-.).i(I'.r-Pf.(~Nr:,~./SOt)r.>>>'r'>.'~.,rI~,rr))5(t...'gs~sV~Iqt's'Qr>>>FFERr>0.rO*t(Tf>P'Z>SreC)CUS))g>sŽhrj1%2Ht).l.('"'iifi)f)q).V.I2:".~HOIJg~gf<TC).77042l',vTWQ>1~.'0"~~)<."0C,)}JCP$>lIe)~r~~~seerK7L70,".f)7~T'.07TArsriNts)>r")rM~.I~.Vr+>>'-~Mit>"c->+r.i>F1'i/'j~r.fL-g-i.YgE,;;gF'Y)i:.AT>',)F.AffECU>>,Hf),'T7>)>$)-)".II:"It4f'-QTll"><<>"Offo0'QNi'Ai)Y6ler~\>~~~s7~L,~Li45;ggr7~Al>isesI20e,')LS0Ss>A>lit>(e>)5Assr,)i~<IOCSCRIFT)cr5>GRhDcrs3c-LrC3)iF..r".0TOpS>7c~>c)ci.AMT"Ego}oNo:'A10t)i.,1-6.')i'0STh>sdo(gn>en))ralistn>))cd~>)h(he(klist.p-Z,(-72DatedI$)s>:('.Ir)CAT)>I'",)if,h.'05AsTHA40~.ASTHAiOS-,eHIAIttL>>I>6cR;;i2577V,i<09t'qih09~eesss>.I>errR'01(STFRISSIAR)rsl.RT'Q~F402?'10:'t>IIOSRRfel(el>>se,>~ts>~revses)>Mrs>Iv5>...IIts(t>)r~ZSOOO.Zr,'lI'O.L)Ik,l)'2)rg;QT5$f~I)4c)f->6TI.si~s~IreI~V~'ts~r.'~>L,/I-e~)V+<iy'.).).CVS,fr.'C.~P~~oc,r)7~'jCr>,'(~rIIIIIIIIIIIIIeII~,Ii"tl~I,.".*r>gMnl!>~Ta(ryAT'atos(g>>,apses'.(RI;>(.(a'r>>tcth)NTs(>6)l>Lsre(>r>(hT>atsL>rl)o70Il~~~e'?;TII~i";)lllI~ssAT>aI7es.'R,I>s>t-)V;~Ig'rse)eJA>Asrs>AYJee~~~e~I4I>7>1IIIII/s?r~:s~rin1<<~I~>~)>sr~f>IIIIIII1IIIIIICRMIIII'I'IIIISAIII~IIII~I"I.,'IIII1IIIIIIIIIhi)>I~VIIItIIII,IMrIIIII'IIIt>(;;)IIIIC),,>I.'rr>-/82~&~':pp,"=~OP~P.O.IIE.".I>40.~APPP.OV"D9i~-:.>I:J-r'+77.... \(0--~BIO~7(=,'r~"(3Sa/,1=gu4Vt$L'll=00
HALLrXGH~CttttostttI+pnpAp~AyIhtt,ttt~t36-<RY<C103';3595'01024lt183!t~74(519.Sh>>216-"CC'IlIti-.H".hT.TREATXNFO'PllhTXQCTtmitt>>iasswiwsp01inIStSI46000r.~rr'IStSI83000I'nnttnI2g0lSYit00ISiCbrippInpal'IIl.Ib..ASOIISOII.XAIISAS..i~Inn'<<nnnr%'lhwwNYiOtItlIIOCIIAtIiIIiIZt"C0T.0)2014.410716~7l031C0TransportationEaulpmentDlvlslonRockwellInternationalt0Cnilttlnnilbpndtntp<ttnws.MuiII00IIII)lNItitiAtiAt.YSISI-ttGG'FEnrtt-hnu'zv;-1225'Frior11;hovrs;norm~H:zc-Thefolio"inocrocionsnocczformedI~I'I'(h)FXnolStress.RelieveI-(5)-Finol-PT-EnsectionotTED'I'fthm'KL'/KOY"NMrgs~lJAeQip!97I~~~I<octpvcGAht.El"-;IO':I'CXAi'LKIGIC.I<.C,At'PROVED~g-QG-pg-.C.S'..a~i.'cr.p".oc.co::r.r~g5l ~~CLf11llI'1LTS1'iLVOfCTGUL,FFGRG:CQMPA~AV8081KEMPSTEADHWY.P.L7.BOX2926?13'06936AI3HOUSTON,TEXAS77001'~=-'+>~z34-ggp7/QCPcv-GUSTO.'.E'ER'5ORDERNo.36-7243t'1IIDATE10-74-74JOBORDERNo.SOLDTOQUANTITYRoc';wellI~ianufacturingCompany1900SouthSaundersStreetRaliegh,Nortl>,Carolina2760+3CO!k.SHIPPEDTOSamePart8A-135150REYII."c'1cEOBYAI+~DATEGUST.NSP.CHEMICALANALYSIrll~A'IESTIIEIIQD~DE5CRIPTI0NRoughiIIachinel32".1612-YbonnetDI~~.'A-18S15043.25"ODx12.12,Lg.ASllHSA10S-XI,AlsoComplyswithEfC01112JO$1-7'-'11.LIPLFII!'T'PZLIGH,H.C.APPROVED0-/8CcD---IIET.PROC.CO)<T.49194Fin>:1T2v01025I,':I~cYlici,iP~'-.=:.','.-.-.-:.;"-':-.-.,--........;,'.PHYSICALPROPERTIES~I>'!C'f;.I437007565031,059.0HEATTREATMENT\SF~F7~FvFirF~FSn'DYi~v"I~TFSsSAl~OTQ'fl'!OrnalizTemi17er1600125014hrs.ii~11SSCRIBEDANDSWORNTOQEFOREMESSNO.462-92-3210THlsIAU.,DAYOFIIOJQII(~-if~/J,7~r(~~S//.I.r"/:'r1.7Fr,Jr'COTAIIYIAVIILIC'r/ICCRCIFTTHATTHISISA,TRVCCOPYOFOIIIOIHAI.TCSTSHCCTIIOWO:~FII.CATTHCOFFICCOfOVLFFOROCCO.AHVTHATTHISSTLTLWAfAc:~UFACTVACOAIIOFOACCOIKTHCVIIITCOTATCSOFAHCRICA.F'A.II~A 00 O.IADEMETAKiefer-Prowell6Assoc.Inc.DATEAuust161974QUWTIA'Pcs.S.04840274-2119-H34X34i(~25000lbs,Ao~roz,EF-1026HadificdAsCastEn~otsAIrivfI'8BalsaCcASubsidiaryoftf<iIU4f<-"StBetLLURCtCALREPORTFORGEDSURFACEECIFICATI0NHectNo.Nil!ClassMnPSSiNiCrMoGroinSize.249194.28.79.010.019.25hominy56S9101213IC15161820222A26283032~qviredrTestDia.TestDirectionorI.occlionYieldSlrenglhPSITensileSlrenglhPSIElongation'/rn2"ReductionofAreaFracloreRalingHardnessBHNfinpactFt.-C.bs.Seri"INo..atTreatnientprHTRALEIGHPLARALEiGH,H.C.APPROYEDLS-7PRemarksnr.~,4'1'Pi~;Joovcagreeswithlhcofiiciofcompanyrecords,YCITNESSEDPHYSICALSURFACErc-~11ic0FORDATEFORDATEC'I CU"t.f-O'-'L~CQ""">P>~888'IHEMPSTEADHIVY.P.O.OOX29267)3.-869-3643HOUSTL'I,TEXAS77P015CrC~8F.+(~CVSIOIIER'SORDERF(o.36-7262<<1DAEEJan.-31,1975JOIIORDERF(o.73633'OLDTORockwellManufacturing1900SouthSaundersStreetRalaia3!a,I!orthCarolina27603I-SHIppEDRockve11i4anufacturingTO1900SouthSaundersStreetReleigh,NorthCarolina27603.LOVAI(IIIYDEscrIPTIOf(Rough.IJachineDisc.Dwg.A-18387629.62"OD215.0Lg.AS/KSA182F-ll~Height29309.Theseforgings'Con>plywithRL4C022r,.~CHHa'alCALAIPALYSISRIVI=-~VZOBYAlI~iE,DATCg-C!F'gCVST,INSPaDATEr'IlP.QC.i.f~aPP,LEIQII~P..C.PPr3QQRFEOw+~>~~~t,';EI;PI"0".CotfT.EIliO-l,4cQ,~ar>>aaaa>>aa>>>>ta6alt,,taigar~'3310SiaaXOn.14"Iraa44>>a~aal~aaMlrrr.5O.0111.013.64malAa1;23;48'a~~i~a.ISi":::!-l6000j'14670083.342ming81000,~..3..',','.~tala'9.5'3.0174-P-2-.5'6.0"'HYSICALPRO?E?TIESF~~.a',-,=~a,";-".aa.a.......aHEATTREAT/a'IENT).'ioxBa1't?.'-.'-.~Tennra~160012504L'~Uk4d&w~>>r16hrs.16hrs.r////2,atj'laFI!~tatarja~~f,J(,/i'liOIARTVVatlaC/'ISEDA(ADSYFORi(10BEFOREMEN..SNO.462-92-3210rlJanuaryDAYOFI'P75EICta!IIFTlllalI!I!SISAI.UECCVTGFORIG!ItalI(SISa'.(EltiO'NOtiI"EAlItt(OFFICEOFGU'IFORGECO.At!5IllalItt!SSIE(tTTASFIAIIUFACIUF(DAtt5fORCEDItllllEUtlll(5SIAI(SO'MEFICA.IIY~aIIral$5,M0.a OH~I(RD.'>To~(g~It'X5/7"4~~20,R-3043OVROROCRNOI'h0f('hCC2'03~~R~fRi{0~36-7531CV5T.RCC.tiO,'tilityProductsGroupKoclcw>11Xnternationa11900S.SaundersSt.LRaleigh,HC27603f-'TheAbove~~r7-46O5-3IIISII8!III!tl5FOR.-IGTroP,P'i80~0UCTreG00BPO<BDttILI>3CHICAGO,ILLINOISGOGISTELFPHONE(312)539-5c)4).D-V-N-S00503-3539.)SXZZ2.00-8UHx14,82B~PA183785A~.,;:.CgXgTXOqSA-540Gr23Cl.RHC02861(5).Specia1StudAppalSct;XXX/718,ginter'72Add.Nucl.Cl.2"lE~ilIpRefer'opagef].i'KT""RXAL""HXLLHEATNo,.VPCHEATNo.4340HRAnnldA.QGasLle2:250RdCopperfield768987674DOCU.ATK.l(-(.~'.IXCA~AKALYSXSC~~In.P,SSi.HiCr40.78.015.023.28.(.1.75.86Pit").'SXCALPROP'=B.TXES.Mo.22VaCu.14:TensileStr.150,800148.751YieldStr.133;800133,300Elongationln218.0~18.5.-.Reductionofarea%59.1.59.6"HardnessRc...3131/32TEATTR"-AT!.("hTHardenedat'rs.1550'o:-2~)~~Quench3((5diaatSalt400oFTemperedat1100~xhrs.I.'x.'~SOAXCXNSPECTXOHNotReq'diAllbarstesteda)Zoreportableindicationdetectedb)D=.ectivportionsofbarscutoffandscrappedC."'-B.D"V-'AOTCHX!le~.CTTESTTeatinTe-.pereture+33-oI."l+1gDX-...pac,tEnergy),'t-'1bs94-162.0uct.Fracture~55.0I2-.?'4-3&XII63.05055.0'-':I.':--""'C!I.'"XC!j:l':CTX0!.!-59-HT-01100'i/'.c(:(.':)ted(.AYno:lcont:0si.i.(((~jAtellsAeaoZ11/14/73'~apped)035BECHTIfJI?Il:,I~7!l<<!'f0?W~?~5Later"1Expansion~nchc'e'S(-i('IIC:IIi<<II'IZf,a'ai.ix.iC(x()iidellt').cat).onJ(ldtiaceilbt.l).tiy)I~QKsA.ac@:.p,p,.(>~)e 00 rOCRORETCItOVttOhotnttO.t20R-3044CUNT,llCQ.NO,13/7~t'AOCAt40,36-7532~I~~ti1ityProditctsGrouplc'.oclc';)el1,.Xnt:erna,t..-'na11900S,S"'i)nd..rs..S'".:-',4a'".ei"h'HC:27603..r0~~~~1The.r'rbove:,.':ri.~~~~~~~~r*oct~ac2o~3~7-4605-3IGT98O'KOtU~Ucvsjl0>0i~}>26358ELMONTAVENUFCHfCAGO..fLLfNOIS60638TELEPHOiRE(3127530-59MPU-H-S00-509-3539I3,"i33IjpPOP.SXZEc80V"'0F6/'BTr8TAL'y',-L.l(.0Ho//PT3.750PdDESCRXPTXOH.klan.>>SFH~>:1"ut:,MELLHEAT.hlOEiy-Alloy,T.'at;en4))n3SA-194Gr.7Rt';C01291(3)ASiF;Sect.XXX/73:inc1.Pin'-er'2Add.1ilucl.Cl2.VPCHEATNo.t'667TTEHL;,alef.ert.opj~oeOCU:EHT.Ho.CiiZ1)TGALA>i'ALYSTSCHnp4341.012.014Si~30~~NiCx.MoVaCu.94.18.09~"I'X"STiXr~XXGTEST<!o'.".eq'din'20degreesha"denedsteeleeficeder.cone,nutsexceededthelbs.riitf'outstripping:~JIHAH':!ESSTEST'in"1condition26-'27oafter24hxsat1100PRB-'103T~PHardenedathxs.',QuenchMedia1550F2~)0~1fl5CNLPLEO.r"BTZ"SopTeMipexedthrs1050.Z6P.e-te".>peredC~1100"F-4hrsL2ZTensileS".YieldStx.Elongationin2".~~Reductionozarea%Hardness.Rcpt:-~'Ci-'~~pYV-i'0CfiX.>PACTTESTTest'ngTe;.,exatue-'.33S"role1'xac70ft-lbs~'tu,.>50.0ft~rx~~X~pactEnergyDuct~tuxeAreaLateralExpansioninches.O4O3atOe~~-/rGiiiTTCPi'riiTICLETNSPr";CTTO're39-irT-01?e7:11/1(/73100iTnsoecced./r./>irr1n'i:cc"::'~rin"xLeix=ce0/~nr'.0n~ms"cxn00~nd)~~~~~~'r~a~'~.'"iiiXNG(foridentificetionandtxaceabilit:) I~'~I.......PA/,.I".~~9wfTr=!+5~/-rVOa,<kg-v'i:-.04I"f!I 0 QUAKERALLOYCASTINGCO.~Jiiio4a~INA1$<OtoffNIIR)IOwN.RA.110alIIISIOPAIRRn<RNO.MATERIAL.TESTREPORTPAIIERNNAOAItAnchor/DarlingValveCo.S1314SI'ICIIICAIION1-20F-14A10290OIIARIROESICi.CONIROLHO.IIEAISERIALRI.NO.ASIDESA216Gr.MCBADDITIOHALIHFORIAAIIOH:Q70CMnSiCrHiMoCvCHEMICALCOMPOSIIIONr~'OO<Bendtestsatisfactorypermaterialspecification.rPhysicalpropertiesdeterminedaftersimu$atcdPIlHT.oftestcouponsat1150F+50Ffor15hours.IEHSIlE.XsiENYIELD,EIlSCLOHG.%lRED.olAREA.SEIIRGY,IIll>ILAI.CXP.ms>ARSNEAIESIIEIAP.,I~A'.EC}IANICAL00~l1-~ii-rI'IPROP""RTIESPIECES~IUPIEo~QF.Lgja.vAIQ<I70~iP'IHEREbYCERTIFYIIIATIIIEASOYEIIIFORAIAIIONISCORRECT."AIIIIICPIIIIR<'ULLTHISDAYOFSIAIEOffENNSYLYALRA.COUNTYOfLERANON,S.S.SWORNIOANOSUSSCR!EEObEFOREPAET9CsQCO IIpQgzg-,j-)ANC)OF/DARLINGVALVECGHPAt<Yg-<<v-'a~-I~MILLIAHSPORT,PA.SO~gk~ITEH(ATTACHE6)T4GateValveBody(PrissureSeal)NL'lE'10.sHEAT~/~IIISERIALZPgp~LlIl,I~-II'IIIA12o'lockg3+43o'lock2@~~2"d5/~2813Q6o'lockXFd'<~39o'lockH/AHfn.Ac.ualMeasurement4,.'.Ld-0'saarks:4WQ3/G.Q~ARQQUlredNeasur.trent~'7wIQC7r/aGust.c,r.erInspectorInspectedBy.~oaaeaaa'.OA'RSDateDec,1P,~'-> ~~lQENERGYPRODUCTSGROUPGUUieVESTEIIHMANVFACeultlNGCO>eIPANYPlant35P.O.Box536,IVestChester,Pennsylvania)9360-IHAlERIALTESTREPORTS.O.NO.Anomo/Dali.~ValveCompanyS<<2569PURCHASER'SORDERNO~atPhone;(2151193.1590+$3oe-rr:ree'AVX:5106630372Telex:B3Sc53p>~'o~LEMPE;Telecopier:(2)5)793)500Ext.264~POF,'GgpcoauctsIVESTCHESTER,PADISTRIBUTORDISTRIBUTOR'SORDERNO.19')~<V7"t'wtf-:-31-'sQTYNO.PROOtICTSPEC.HEATORCOOCNO.REteIARKS18"X90C-;',tHornetPo~ssi"o,Fr&pe~voop~o0218.1l~kdaved3/10/80a.t-',2-18=-14k,.MrsP.O.;-'S-2-69PaMg2-18".-14kM171'LSA105Joal'zedhTease"edperX/DSpecPU..-11,ZevCand~~i""SectionliiCl.2'77Mtaxw'78A6d-i~gr0576SIIHEATeNO.21NSINIreioCHEMICALAii)ALYSiSAiMD~;IECHAiVICALPROPERTIESRE1rIARKSr~21123.011.013~20~i~p+non'oieelII~16po'"+2~'=5--W=s.'.C.1150'+25'.10'mA.C.QA.Aareonr,23'U.'2.RGPa=tI/ZwaxŽ~es'ta.tiePp-t.HcATNO17:iTcCTENSILE74,5GOYlcLO46,500LONGIN2"r30~Pe6tiB.H.i4I"PACT~).or105-105-90RE!iIAItKST.S119.OI9-.083-.07360-cC-50S.tvltWtIPer+oK,j9tAV~T'Ceireve.~te,elp\e~29~~~2fenrr>fToJT$~~ltit,sly'eiT)=$ZO"-P'Veherebycertifytheaboveresultstob.correctascontainedintherecordsot:neCompany.+oNn%or. 00~t~~~~0~~ reelsSteepeASBHHtrHcMSTiit.CCRPORATtONtctyALLs'zc>SCALcttppy>>>tcyREPORTOFTESTANDAMAt.YS)SS>>e>>>O>tr>ttOeIS>>dSpccsu&>OiSPAF.'ROMSF'T.409-15308/$0/79GTRCGEOCETFP.PG1LfiSTSOLOTOHILLS-ALLOYSTEELCOWINTERSTATERDBEDFORDOH44346SHlPTOHILLS-ALLOYSTEELCOMINTERSTATERDBEDFORDOH44i46ttt>rSCO~256tStS>cps~cr>>scoSttfAt>OCltAtctitY>>ecsr>cctc>>A,$609077GDv0$-S85SBt'>S'4Slim"iseIllCCere.e>,57.203664ASTS6TFSTItEESAS<6GF'CSt<OF:HACCOF;DMSELS70TNCAPVQSUHMBR70ADD50DEG6HFLD3/23800ASH,SFCT3NRPERINCHCLEAROFTHIKttEScH960642$H927$2586444.574.5fs~."J~Y~tl'4nl'l~tssUrii0hrSwnREDUCTIO>VOrAREAFORIt<F0Ot(LYsVAnVDlroc;russs:tstrAsres~>>wiltO>>r0>'lefstta,I~te~IlttL>>rC>sorrys>>>repte'>.I".l.ss~A~\J,~~aa>Ar~v~CSCOTS>CALANALYSSSts>>CuttsCrAsoAt~--W425H8271e>3$.0.00.03~rArIt]ElAND2'>aco-thOSse!OF.'!ARYkTOUDLX"FO>rHiHCOtTHIHISS~eDAYOt(Fr.PIRE~Tp>cj(tt/p~ts0530tce>otyp>ets>>eabo~re>et>eereoteeoetco>eeetcopyotrecer>tsprem>e.teel>el>tetr>e>tlyLe>e>te>>eo>ecanptloscevl>>>P>er>Oetraoee>SOt>>>eSpeeAce>enc>>e>teeoe,~~~e~ttp>'CCSt:t>esttttgt.tgE-.).Ct ATTACHMENT16GATFVALYEDISCIHEATQ>Q~rSERIALA..12o'lockA'o'clbck6o'lock9o'cldckIiin.ActualIteasureeentRemarks:.RequiredNeasuremen.~PoMinQ+PIiI,QA'0t.dbgDater/r3~4 IPInterofficeCorrespondenceTOPGrossmanDATEJuly2,1981OFFICELOCATIONFILEREF.FROMAPLetiziaCg/"-C.PGHummerI'-AOFFICELOCATIONENVIROSPHERESUBJECTSTLUCIEUNIT2CENLATIVETEPERATURESATVESTPALMBEACHAcumulativefrequencyanalysisofdry-bulbtemperatureswasperformedonavailableWestPlamBeachsurfacedata.ThesedatacoveredtheperiodJanuary1,1948throughMarch21,1960andrepresentedover107,000hourlyobservations.ThedataweretakenattheNationalWeatherServiceOfficeatWestPalmInternationalAirport(2641'orth,8006'ast).Thetemperaturesensorwaslocated18feetabovetheground.Theanalysisconsistedofcountingthenumberoftemperatureobservations(temperatureswererecordedinwholedegrees),summingthenumberofobservationsfromthelowesttothehighestobservedtemperature-anddeterminingthecumulativefrequencyofeachtemperaturebasedonthetotalnumberofobservations.Attachedisaplotofthecumulativefrequencydistributionderivedfromtheaboveanalysis.Asthediagramshows,90%oftheobservedtemperaturesfortheperiodatWestPalmBeachareabove62F..APL/PGH:dascc:JFerrisNWilding 99.999.89590SD706050403020iO52I0.50.2O.l0.050.01OCA:TOI~-MhI~~W-L-IIl~~4~tI'I'IFg}-"'IMI+}4~II~~ItlI~}-'LT%iPf~~f-,-}LrjIAJAAI'LH+t.AT-f.IA.I~'lLj:rII."'I7I'IAlI~'lIl.i.'I~~L.lLjLIjI~~~Iim'I.L~li:iTj:~~0Sb4LhSP"f'tI~I~AIAt+LJ-L.l't'.010,050,10.20.512510203040506070809095989999Af99.999.99CliN}JI.ATTVHFR}'.OUFNCYOFOCCURANCE(PERCENT) ~i Question2ProvidesufficientshieldingtomeettherequirementsofGDC-19assumingReg.Guide1.4sourceterms.Response:Sufficientshieldingwillbeprovidedaroundthepost.accidentsamplingsystemcomponentstolimitpersonnelexposuretotheGDC-19limits.RegulatoryGuide1.4sourcetermswillbeused.Question4Verifythatallelectricallypoweredcomponentsassociatedwithpost.accidentsamplingarecapableofbeingsupplied-withpowerandoperatedwithinthirtyminutesofanaccidentinwhichthereiscoredegradation,assuminglossofoffsitepower.Response:Thepostaccidentsamplingpanelwillbepoweredfrompowerpanel2ABwhichis'apableofbeingpoweredfromthedieselgeneratorintheeventofalossofoffsitepower.TheelectricalcablesassociatedwiththepostaccidentsamplingpanelandassociatedinstrumentswillberoutedinaccordancewithReg.Guide1.75,physicalindependenceofElectricalSystems(Rev1),asassociatedcircuits.HeattracingcircuitswillbeelectricallyconnectedtotherespectiveBoricAcidHeatTracingPanelswhichareelectricallyindependent,physicallyseparatedandareconnectedtothedieselgeneratorintheeventofalossofoffsitepower.Question5Verifythatvalveswhicharenotaccessibleforrepairafteranaccidentareenvironmentallyqualifiedfortheconditionsinwhichtheymustoperate.Response:4Postaccidentsamplingsystemvalveswhicharere-quiredtooperateafteranaccidentandarenotac-cessibleforrepair,willbequalifiedtotheaccidentenvironmentinwhichtheyoperate.EnvironmentalqualificationisaddressedinFSARSection3.11.
~~~460.1Figure11.2-9oftheFSARshowsa"volumetank"whichreceives(11.2)evaporatorconcentratesfromthewasteconcentrator.In'ninformalcommunication,youindicatedthatyouareinprocessofengineeringtheadditionofthisvolumetanktotheliquidradwastesystem.DescribethetankinappropriatesectionsoftheFSAR."~ResonseSection11.2.2'andTable11.2-5oftheFSARhavebeenmodifiedtodescribetheLiquidl~asteConcentratorBottomsStorageTank. Sh2-FSAll'11.2.2.1.2'HasteSurgesTheho]duptanksaresizedwithsufficientcapacitytohandlethewastesulgeswhichwouldoccurduringthenormal'operationoftheplant,andbereceivedintheBHS.Thereisalsosufficientredundancyandintercon-nectionstoallowthecontentsofoneholduptanktobeprocessedthroughtheboricacidconcentratorswhileanotherisbeingrecirculatedpriortoprocessing,andtheremainingtwoarereceivingincomingwastes.ThisflexibilityallowstheB.'lStocreateadditionalholdupcapacitybysimul-taneouslyeliminatingstoredwastewhileacceptingnewwasteTheholduptankcapacityisadequatelysizedtohandlethereliefvalvedischarge(seeinterfacesonFigure11.2-1)intheunlikelyeventthattheyshouldlift.11.2.2.1.3BoricAcidConcentratorOperationTheholduptankcontentsaretransferredtoeitheroftheboricacidcon-centrators(Figures11.2-3or11.2-4)bytheholdupdrainpumps(Figure11.2-2),whichfirstpassthefluidthroughapre-concentratorfilterandthepre-concentratorionexchanger(Figure11.2-2).Oncethewastestreamenterstheboricacidconcentrator,itxsseparatedintotwoeffluentstreamsbyasimpleevaporationprocess.Theboricacidconcentratorisdesignedtoconcentrateadiluteboricacidsolutionwitha.boronconcentrationof30to1720ppm,intoabottomsstreamwitha,con-centrationof10g900to21,000ppmboronandadistillatestreamwithaconcentrationof10ppmboronmaximum.11'.2.1.3.1DistillateThedistillateiscondensedbeforeitleavestheboricacidconcentratorandisthenpumpedtotheboricacidcondensateionexchanger(Figure11.2-5)whereanytraceimpuritiesremaininginthedistillatearere-moved.Thewatercontinuesontotheboricacidcondensatetanks(Figure11.2-5),whereitisstoredpriortosamplingand.reuseordischarge.Shouldhighlevelsofimpuritiesstillbepresentinthecondensatethereareprovisionstorecycleitbackthroughtheboricacidconcentrator.11.2.2.1.3.2gotten"ggg5+Pyheconcentratedboricacioiutioncavingthortcgtrgconcnrapumpedthroughthebor'cidatrainerandentotheboricacididingtank(Figure11.2-5A)lpiping,componts,andtankswhich,hidletheconcentratedboriacid-solutionareattracedtokeep,theb'icacidin>solution.nceinthboricacidholdinganktheconcentrate(ttoms)xsrecircu-latedus'ngtheboricacid1dingpumps(Figure1.2-5),toinsureaJniforchemistry.Asameistakenandanalyztodeterminethepurity,andoncentrationofthboricacidsolution.ependingontheanalysisanlantrequirement,theboricacidcanPeitherreusedintheplant(ansferredtotheroricacidmakeuptan'.CinthcCVCS),senttotheSoli~oLa11.2-4hAmendmentNo.1,(4/Sl) SL2-FSAFitogt>oricacidconccntratorsfor=fur[,herconcentrationif(heso)>(eoniW~4~11,2.2,2'iquidMastcSobsstemLiquidwastefromsourcesoutsideofcont.ainmcnt,usual)yoflowactivityandlowpurityareco)lect.cdineither.theequipmentdraintank,chemica)draintank,or]aundrydraintanks.Priortoprocessing;thecontentsofthesetanksarethorough)ymixedviarecircu)ation,andrepresentativesamp).esaretaken.Thesamplesareanalyzedtode(ermirewhat,ifany,processingisrequiredforthat.).iquid.ln~thccaseofwastegoingtothewasteconcentrator,chemica)adjustments(primari),yph)mayhavet.obemade.llew2'olNorma)BodeThecquipmcntdraintank,asshownonFigure11.2-6,receiveswastesfromthevariousequipmentdrainsoutsidecont.ainment.Whenthetankreachesapreset]eve)itisemptiedviatheequipmentdrainpumps(Figure1].2-6),Thcwaste)iquidisfirst.fi)teredviathewastefilter{Figure]1,2-6),toremovesu."pendedso]ids,thenprocessedthroughthewasteconcentrator(Figure11,2-7)~ThechemicaldraintankseenonFigurell;2-6,receives)iquidwasteinputsfrom(he)abdrainsanddecontaminationareadrains,whicharenorma].]yhighinimpurities.Thechemicaldraintankisemptieduponreachingapreset.level,bythechemica)drainporno.Thewaste).iquidisfirstfi)teredviathewastefi](er(Figure11.2-6),thenprocessedthroughthewasteconcentrator{Figure11,2-7).The)aundrydraintanks,onFigure11.2-6,storetheinfluent,sfromtheplantshowers,contamina(edsinks,)aundryoperations,andpotentialinputsfromtheSteamGeneratorB).owdownSystem.Whenalaundrydraintankreachesapresetlevel,itisemptiedbya)aundrydraintankpomp(Figurc11.2-6)andfi)teredviathelaundryfi)ter(Figure11.2-6).Fromthereitgoesontothecircu)atingwaterdischarge.(Figure11.2-5)andi'e)easedfromthep]<nt.Shouldtheneedarise,itispossib]etoroutethecontentsofthe]aundrydraintanktothewasteconcentratorforprocessing.11.2.2.2.2WasteSurgesWhenwas(esurgesoccurintheinfluentvolumestotheL3'HStanks,thereissufficientcapacity,redundancyandsysteminterconnectionstoprovideadequatehand)ingofthesewastes.Sma))erquantitysurgeswou)donlycausethcwastetankstofillquicker,hencemorefrequentprocessingofeachtank'scontents.Largerquantitysurgeswhichwouldexceedthecapacityofthosetankscou]dberoutedtotheaeratedwastestoragetank{Figurc]1.2-S),forho)dupuntiloperationspermititsprocessing.11.2-5rAmendmentNo,4,(6/81) SL2-FSARThca<<ratedwast.cstoraget.ankspccifica))yactsasasurgetankforthcbast<<FianagcmcntSystemequipment,draintank.Thcwasteinthcequipmcn(draint.ankispumpedtot.heaeratedwast.es(oragctankif:0(2)thechcmica)draint.ank-isbeingprocessedandt.heequipmentdraint.ankisfi).)ed(2}theinf)uent.stotheequipment.draintankexceedtheprocessingcapabi)itiesofthcwast.econcent.rat.orsuchthat:overf)owofthetankcou)drcsu)t.~Thecqu~pmen(t.ank'maybecomefi))edat.anytimeandrequireemptyingt.ohand)cfurthcrinput.s.Iheequipmentdrainpumpwi))beautomat.ica))ystartedonh'hequipmnt.draintank)cve)andtheconI.cnt.svi)lbepumpedtot.heaerat.edwastestoragetank.Theaera(edvast.est.oragc(ank'conI.entswou)dbemixedusingt.heequipment.drainpumps(Figure11.2-8},Arepresentativcsamp)ewou)dbeobt.ainedandana)yzedt.odet.ermine'vhatprocessing,ifany,isrequiredfort.hewaste)iquid.Theliquidwouldbepumpedfromt.hea'erat.edwastestoragetankviatheequipment.drainpumpstocit.herthecircu)atingwaterdischarge,ort.hrought.hewast.efi)t,ert.o(hewasteconccntra(or(seeFigure11,2-6forprocessrout.cs),dcpendingonthevat.crqua)ity.11.2.2,2.3HasteConcentratorOperationLxquadwast.esent.erthewast.econccnt.rat.or(Figure11.2>>7),andthewastest.reamissepara(cdintotwoeff)uen(streamsbyasimp)eevaporat.ionprocess.Onestream,thedistil)at.c,isaverypurewaterst.ream.Theother,thebo(toms,isahigh)yconcentratedso)utionofimpurit.ies,11.2.2.2.3.1Dist.i))at:e~~Thedzst>i)a(emayst.illcontainsometraceimpurities,Itisthencon-densedandpumpedfryt.hcwast.econcentratort.ot:hecondensateionex-changer(Figure11.2-6),wherethoset.raceimpuri(iesareremoved.Thecondensateisstoredinthevastecondensatetanks,mixedviathewast.econdensat.epumps(Figure11.2-6),andsamp)cdtoanalyzeforpuri(yeThecondensatemaythenbeeit.hersent,tot:hecircu)at.ingwat.erdischargeforre)easefromt.hep)ant.,orroutedbackt.hroughthevast.esystemforfur(.hert.reat.mcnt.ifneeded.Reusewit.hintheplantisalsopossible(sceFigures11.2-1,2and6forprocessrout.es)~11.2.2.2e3.2Bot(omsSr1(rPwh='xha5.is..r~~~c6iH~cnP~cceW~hcen(rator)veinthebot~t,ss(ream.Bccturseofthehigl~>nccn(ra(ionfboron.epiping,copa5nenta,andtanaareheal.tracpdtokeepthemnso)tion(sceFigures11,2-6and7rheattracedprocessrouteshePt.(omsarepump@8fromtheconc'>(rat.or(Figu1),2"7)dirytohy'drumminget~atifl(Figurc21~2,whereit~preparedforoffeitctd'~~st~~11.2-5aAmendmentNo,4g(6/Sl} 11.2.2.1.3.2Bottomsllieconcentratedboricacidsolutionleavingtheboricacidcon-centratorispumpedthroughtheboricacidstrainerandthentotheboricacidholdingtank(Figure11.2-5).Allpiping,components,andtankswhichhandletheconcentratedboricacidsolutionareheat-tracedtokeeptheboricacidinsolution.Onceintheboricacidholdingtanktheconcentrate(bottoms)isrecirculatedusingtheboricacidholdingpumos(Figure11.2-5),toinsureauniformchemistry..Asampleistakenandanalyzedtodeterminethepurityandconcentrationoftheboricacidsolution.Dependingontheanalysisandplantrequirements,theboricacidcanbeeitherreusedintheplant(transferredtotheboricacidmakeuptanksintheCVCS),senttotheliquidwasteconcentratorbottomsstoragetanksoftheLiquidlasteSub-systempriortosolidificationintheSolidllasteHanagementSystem(Figure11.2-9),orrecycledtotheboricacidconcen-tratorsforfutherconcentrationifthesolutionistoodilute.11.2.2.2.3.2BottomsHostoftheimpuritieswhicharepresentintheinfluentstreamtotheconcentratorleaveinthebottomsstream.Becauseofthehighconcentrationofboronthepiping,componnts,andtanksareheat-tracedtokeeptheminsolution(seeFigures11.2-6and7forheat-tracedorocessroutes).Thebottomsarepumpedfromtheconcentrator(Figure11.2-7)viatheconcentratepumpsintooneofthetwoliquidwasteconcentratorbottomsstoragetanks(Figure11.2-9).Once.intheliquidwasteconcentratorbottomsstoragetanktheconcentrate(bottoms)isrecirculatedusingaliquidwastecon-centratorbottomspump(Figure11.2-9)toinsureauniformchemistry.Bothtankstogetherwillprovideupto120daysofholdupunderexpectedprocessingconditions.Duringliquidwasteprocessingtheconcentrateispumpedviaaliquidwasteconcentratorbotto,spumpdirectlytothedru~ingstation(Figure11.2-9)whereitispreparedforoffsitedisposal(seeSection11.4). SL2-FSAR7.5120ManufacturersStandardTABLE11.2-5(Contd)MssteCnnden"ruteP~ums(Cunt'd)MntorHorsepowerOperatingTemperature,FCodeResinD~eusterin~PumTypeQuantityDesignPressure,psig"DesignTemperature,FnNormalOperatingTemperature,FCapacity,GPMRatedHead,Ft.HPSHAvailable,Ft.MntnrHorsepowerNettedMaterialsCodeBoricAcidConcent'ratnrsQuantityDe~ignDF(Bnttnms/Distillate)DesignPressure,psi~De~ignTemperature,FNormalOperatingPressure(process),psigNormalOperatingTemperature(prncess),FDesignFlnw(process),gpmHormalOperatingFlow(process),gpmCodeMaterialMarteConcentratnrQuantityDesignDF(Bot'toms/Distillate)DesignPressure,psig(Process)HnrmalOperatingPressure(Process),prigDesignTemperature,F(Prncess)NormalOperatingTemperature,F,DesignFlow,gpmNnrmalOperatingFlow,gpmMaterialCodePrecnncentratnrInnExc~hanersQuantityTypeDesignPressure,psigDesignTemperature,FNnrmalOperatingPre~~ure,psigNormalOperatingTemperature,FResinVolume.*(Useful)Required,ft'erignFlow,gpmNnrmalFlnw,gpm'11.2-20Centrifugal15020012010095210SSManufacturersst'andard24lo(Minimum)80250271202020ASMEVIIISS11080272501202020SSASMEVIII2Flushah1e15025060120324020 >e5Pg7~quantityTypeInternalYolume,gallonsDesignPressure,psigDesignTemperature,oFNormalOperati.ngPressure,psigNormalOperatingTemperature,FCodeMaterial2Vertical,Cylindrical2,300Atmospheric250Atmospheric160Class4,ASHEYIII,1974EditionSSLiuiduasteConcentratorBotto~mspumquantityTypeDesignPressure,'sigDesignTemperature,FNormalOperatingTemperature,FCapacityRate,gpmRatedHead,feetNPSHAvailable,feetHotorHorspowerWettedMaterial.sCode2Centrifugal502501606050305ssSHanufacturerstandard QuestionNo.460.2(11.2)Listoutdoorstoragetanksthat,maycontainpotentiallyradioactiveliquidanddescribeprovisionsdesignedtoprevent,collect,,andprocessspillsfromoutdoorstoragetanks.ItisourpositionthatoutdoortanksshouldbedesignedinaccordancewithRegulatoryPosition1.2inRegulatoryGuide1.143,Rev.1.Resonse:ITheRefuelingWaterTank(RWT)CondensateStorageTank(CST),PrimaryWaterStorageTank(PWST)andtheSteamGeneratorBlowdownMonitorTank(SGBMT)areoutdoorstoragetankswhichcouldcontainpotentiallyradioactiveliquid.TheRWT,CSTandPWSTareprovidedwithcontrolroomlevelindicationandhighlevelalarm.The"CSTandPWSTareprovidedwithlocalhighalarmandtheSGBMT,isprovidedlocallevelindicationandhighlevelalarm.TheSGBMToverflowanddrainsareroutedtotheequipmentdraintankintheLiquidWasteManagementSystem.TheCSTissurroundedbytheCSTbuildingsothatoverflowandleakagearecollectedinthebuilding.TheRWTandPWSToverflowiscollectedincab'hbasins.ThecaWbasinoverflowstotheplantstormdrainagesystem.ForthetankswheredrainandoverflowarenotroutedbacktotheLiquidWasteManagement.System,StandardTechnicalSpecificationwhichwillbepreparedandsubmittedtotheNRCatleast6monthspriortothefuelloadingwillrequireperiodic'nalysistoverifythat,radioactivecontent(incuries,excludingtritiumanddissolvedorentrainednoblegases)willbebelowaspecifiedvalue.Thecurielimitofthetankswillbedeterminedbase'donthemethodologypresentedinAppendicesAandBofNUREG0133. 460.3InSection11.2.1(g)oftheFSAR,you=statethatseismicandqualitygroupclassificationoftheLt<HScomponentsandpipingmeetorexceedtheguidelinesofRegulatoryGuide1.143.ItisourpositionthattheLRlSdesignalsoshouldbeinaccordancewithRegulatoryPosition4.0"theadditionaldesign,construction,andtestingcriteria"andRegulatory'Position6.0"qualityassurance"inRegulatoryGuide1.143.~ResenseSection11.2.'1(g)hasbeenmodifiedtodescribecompliancewithRegulatoryGuide1.143,includingPositions4and6. QuestionNo.460.4.(11.2)1InSection11.2.2.3oftheFSARyoustatethatyoucollecttheTurbineBuildingfloordrainsandmonitorforradioactivitypriortodischarge.Describethe'provisionstocollect,monitor,anddischargeofthebuildingdrains.Duringnormaloperation,theTurbineBuildingfloordrainsaredischargedtothesettlingpondwithoutpro-cessingormonitoring.Ifthecondenserairejectororsteamgeneratorblowdownradiationmonitorsdetectexcessivelevelsofradioactivityinthemainsteamline,aprocedureofgrabsamplingthesettlingpondfor.tracesofradioactivitywillbeinstitu'ted.Subsection11.2.2.3willberevisedinAmendment5toreflectthisinformation. ~46O.5InSection11.3.1(g)oftheFSAR,youstatethatseismicandqualitygroupclassificationoftheLMt)ScomponentsandpipingmeetorexceedtheguidelinesofRegulatoryGuide1.143.ItisourpositionthattheLHt<SdesignalsoshouldbeinaccordancewithRegulatoryPosition4.0"theadditionaldesign,construction,andtestingcriteria"andRegulatoryPosition6.0"qualityassurance"inRegulatoryGuide1.143.Re~senseSection11.3.1(g)oftheFSARhasbeenmodifiedtodescribecompliancewithRegulatoryGuide1.143,includingPositions4and6. SL2-FSAR11.2LIUIDt'ASTESYSTEM11.2.1DESIGNBASESRadioactiveliquidwasteswhicharedischargedfromthcp)antarefirstprocessedbytheLiquidBasteManagementSystem(LATHS)..TheLATHSdesignbasesareasfollows:Thcdischargeactivitylevel.isinaccordancewith10CFR20criteria.Aneva)uationisprovidedinSubsection11.2.3.Thcana)ysistakesintoconsiderationnorma)anddesignbasisoperations.*b)XhcprincipaldesigncriteriaforthcL't@lSisthatitprovidesforhandling,ofliquidwastesinsuchamannerastomeettherequire-mentsof10CFR20and10CFR50,AppendixI')TheSt.LucieUnit.2Environmenta)Report(CP)inAmendment7,datedOctober1975andAmendment8,datedJune1976providesadetai)edeva)uationtoshowthattheUiHSiscapableofcontrol).ingre)easesofradioactivemateria)swithinthenumerica)designobjectivesofAppendixIto10CFR50,Areviewoftheplantdesignandsiteusagecharacteristicsrevealthatnochangehasoccurredwhichwou)dre<<quirearc-evaluation(seeSubsection11.2.3).Amendmcnt8oftheER(CP)alsoprovidesacostbenefitanalysisinSubsection10.7.8whichissti1lapplicable.TheestimatedtotalLhi)SreleasesaresummarizedinTable11.2-1.AssumedequipmentdecontaminationfactorsarcshowninTable11.2-2.Theconcentrationofradi'ologica)releasesatthesiteboundaryandecomparisonwith10CFR20)imitsfornormalanddesignbasiscon-ditionsareshowninTables11,2-3and4,TheRCSactivitiesaregiveninSection11,1.Theindividualcomponentdesignparametersaregivenin.Tab)elle2<<5eTheexpectedliquidboratedwasteinputsaredescribedinTable11.2-6whichgivestheyearlyinputs.Non-borated)iquidwasteinputsareshowninTable11.2-7.TheLM1Ssdesignedtohandlebothsets,ofinfluentsonabatchmodebasisforf)exibi)ityofoperation."Batching"a)).owstheLt:HSsystemtohandle"surges"intheinfluentrate,whichmayexceedtheannualaveragef)owrate.ypsEVcosmicanqua)itygroupcsificationof)~iudradwaste~c~ponentsndpipingmeetexceedtheguidgHnesofRegu)ryGuide1.143ndareprovideinTable)1.2~5ndSection3,2A)).the)igxdradwastesycmcomponentselocatedineicrtheRfactorBui)dinorthcReacrAuxi)iaryBui)'hichare6+Qne&C~~/+t'ote:"Des>gn"means2700H)rtand1percentfailedfuelforsourceterms,"hormal"means2560NtandNUREG0017,April1976,(Rl)sourcetcrmso11.2-1AmendmcntNo.4,(6/81)
SL2-FSAR11.3GASEOUSWASTESYSTEMllo3olDESIGNBASESRadioactivegaseouswasteswhicharetobedischargedfromtheplantarcfirstcollectedbytheGaseousWasteManagementSystem(GWMS),TheGWMSdesignbasesareasfollows:a)TheprincipaldesignobjectiveoftheGWMSistoprotectplantpersonnel,thegeneralpublic;andtheenvironmentbyensuringthatallreleasesofradioactivegasesbothintheplantandtotheenvironmentareaslowasisreasonablyachievable(ALARA).c)TheprincipaldesigncriteriafortheGti'HSisthatitprovidesforthehandlingoftheplant'sgaseouswastesinsuchamannerastomeettherequirementsof10CFR20and10CFR50,AppendixI.kTheStLucieUnit2EnvironmentalReport(CP)in,Amendment7,datedOctober1975andAmendment8datedJune)976providesadctai)edevaluation'oshowthattheGWMSiscapableofcontro)lingreleasesofradioactivematerialswithinthenumericaldesignobjectiveofAppendixIto10CFR50,Areviewoftheplantdesignandsiteusagecharacteristicsrevealsthatnosignificantchangehasoccurredwhichwouldrequireare-evaluation(seeSubsection11,3.3),Amendment8oftheER(CP)alsoprovidesacostbenefitanalysisinSubsection10.7.8whichisstillapplicable.d)TheestimatedannualGWMSreleaesaresummarizedinTablesll~3"1and2.Thesearcbased'ontheprocesspointsactivitiesfortheGWMS,(seeitem(j))specifica)]yth'einventoriesforthegasdecaytanksa'djustedtoaccountfordecayduetoholdup,(ThebasisfortheseactivitiesaretheReactorCoolantSystemactivitiesgiveninSection11~1andreleasesfromliquidtankstothegascollectionheader.)e)TheindividualcomponentdesignparametersaregiveninTable11e3-3eg)TheexpectedinputstotheGWHSarelistedonTable11.3-4,SurgestotheGWMSarehandledbymorerapidfi'llingofthegasdecaytanks.nrsc~TTheseismicdes'andqualityg~rpc)assification~theGl"'iSandtheseismicsignclassifica+xonofthestr'ucturdhousingt~h">>MSaredoneomeetorexceecLtheguidelineso~fe~gulatoride1,143Generaldesigncriteria60and64aremet~Redundantcompressorsinsurethatatleastonecompressorisavail-ab]etokeeptheGWMSfunctioningproperly,Multiplegasdecaytanksallowforsufficientflexibilitysothatonetankcanbefilledwhileanotherisdischargedandathirdho]dsupgasfordecay.11.3-1AmendmentNo.4,(6/81) g)Thedesign,qualityassurance,constructionandtestingcriteriafortheLkiISmeetorexceedtheguidelinesofPegu-latoryGuide1.143particularlyPosition1(SystemsHandlingRadioactiveVaterialsinLiquids)Position4(AdditionalDesign,Constructionand-TestingCriteria)andPosition6(equalityAssuranceforRad.vastef/anagementSystems).Further-more,theseismicdesignandqualitygroupclassificationofLllHSandthe-seismicdesignclassificationofthestructureshousingtheLlhSaredonetomeetorexceedtheguidelinesofRegulatoryGuide1.143andaredescribedinSection3.2andinTablell;3-3.g)Thedesign,qualityassurance,constructionandtestingcriteriafortheGll)SmeetorexceedtheguidelinesofRegu-latoryGuide1.143particularlyPosition2(GaseousRad:iasteSystems)Position4(AdditionalDesign,ConstructionandTestingCriteria)andPosition6(equalityAssuranceforRadvastellanage-mentSystems)..Furthermore,theseismicdesignandqualitygroupclassificationoftheGHATSandtheseismicdesignclassificationofthestructureshousingtheG':.'ASaredonetomeetorexceedtheguidelinesofRegulatoryGuide1.143andaredescribedinSection3.2andinTable11.3-3. QuestionNo.460.6(11.3)InTable9.4-16oftheFSARyouhavetakenanexceptiontoRegulatoryPosition2.binRegulatoryGuide1.140exceeding30,000CFMairflowlimitfortheRABMainExhaustandContainmentPurge.StateifyoucangenerateenoughDOPtotest84,000and43,000CFMairflowsinsuchquantitythattheconcentrationdownstreamoftheHEPAfilterissufficienttotestinaccordancewithRegulatoryGuide1.140.ItisalsoourpositionthatashroudwillberequiredinordertotesttheHEPAfiltersandthattheshroudbeusedsuchthattheentirefaceoftheHEPAfilterisultimatelytested.Resonse:TheRABMainExhaustandContainment,Purgearedesignedtobe"Inplacetested"asperANSI-N510-1975andERDA-76-21..Provisionshavebeenmadeforinjectionandsamplingconnections.InordertobesurethatenoughDOPwillbegeneratedamultipledischargedistributorwil'1beprovidedtointroducetheagentthroughashroudtoeachfilterelementindividuallyasperERDA76-21paragraph8.3.3. QuestionNo.460.7(11.3)InTable9.4-16oftheFSAR,youhavetakenanexceptiontoRegulatoryPosition3.1ofRegulatoryGuide1.140.statingthatthedampersandbalancingdampersaredesignedandconstructedinaccordancewiththeindustryandmanufacturersstandardsratherthanANSIN-509Section5.9.Comparethedifferencesindesignandconstructionofdampersbetweenthesetwostandards.Resonse:Table9.4-16oftheFSARstatesthat:"Dampersandbalancingdampersaredesignedandconstructedinaccordancewiththeindustryandmanufacturer'sstandards"asrequiredbyANSI-N509-1976paragraph5.9.3.2forconstructionclassBdampers.NeconsiderthatwecomplywithRegulatoryGuide1.140Rlposition31.ThevalvesutilizedasshutoffdevicesaredesignedinaccordancewithASMESectionIIIandANSIB31.1;thereforewecomplywiththerequirementsofANSI-N509-1976paragraph5.9.3forconstructionclassAdevices.FSARTable9.4-16hasbeenrevisedtoindicatecompliance. estion460.8InSection11.4.1(c)oftheFSARyoustatethatthehandlingofthe'solidradwastewillbedonewhilemaintainingtheexposureleveltoplantpersonnelwiththepermissiblelimitsof10CFR20.Itis.ourpositionthatthe%PSdesignandoperationshallbeinaccordancewiththeguidelinesofRegulatoryGuide8.8Rev3.Response:ThesolidwastemanagementsystemdesignandoperationwillbeinaccordancewiththeguidelinesofRegulatoryGuide8.8Rev3.TheFSARwillbeamendedtoreflectcompliancetotheguidelinesofRegulatoryGuide8.8Rev3
Question460'InSection11.4.1,(a),oftheFSAR,youstatethattheSWMSstorageareaiscapableofprovidingsufficientspacetoallowlinersanddrumstobetemporarilystoredtoallowdecaypriortoshipmentoffsite.XtisourpositionthattheSWMSstorageareafortemporarystoragepriortoshipmentoffsiteshouldbeinaccordancewithSectionIIIinBranchTechnicalPositionETSB11-3,Rev1."Response:ThedrummingstorageareawillhavesufficientstorageareatomeetthestoragearearequirementsofESTB11-3Rev1.TheFSARwillbeamendedtoindicatecompliancewiththestoragearearequirements.ofEQ11-3Rev1.II Question460.10XnSection11,4.1,(e)oftheFSARyoustatethatallradioactivewasteispackaged(includingtheshippingcontainer)inamannerwhichwillallowshipmentanddisposalinaccordancewith49CFR170-179,10CFR20and10CFR71.ShipmentanddisposalofpackagedsolidradwasteshouldalsobeinaccordancewithapplicableDOTandstateregulations.Response:49CFR170-179aretheDOTregulationscoveringtheshipmentanddisposalofradioactivewastes.TheFSARwillbeamendedtothefollowing:"Allradioactivewasteispackage(includingtheshippingcontainer)inamannerwhichwillallowshipmentanddisposalinaccordancewith49CFR170-179,10CFR20,10CFR71'ndapplicablestateregulations.
+estion460.11InSection11.4.1,(g)youstatethattheSUMSislocatedintheReactorAuxiliaryBuilding,whichisaseismicCategoryIbuilding.Statewherethe'contractor'smobileunitequipmentwi11belocatedwhileprocessingandpackagingwetradioactivewastes.Response:Thecontractor'smobilesolidiHcationunitwillbelocatedinoradjacenttothedrummingstorageareawhenprocessingandpackagingwetradioactivewastes. Question460.12InSection11.4.2oftheFSAR,youdescriberadioactivewetwastesolidificationprocess.ItisourpositionthatthesolidificationprocessshouldbeinaccordancewithProcessControlPrograminBranchTechnicalPostionEZSB11-3,Rev1Response:ThepurchaseorderfortheportablesolidificationsystemwillrequirethattheProcessControlProgrambeinaccordancewithETSB11-3Rev1andanyexceptionsmustbeidentifiedtoandapprovedbyFP&L.TheFSARwillbeamendedtoreflectthis. Question460.13InSection11.4.1oftheFSAR,youstatedthatSeismicandqualitygroupclassificationoftheSWMScomponentsandpipingmeetorexceedtheguidelinesofRegulatoryGuide1.143.ItisourpositionthattheSWMSdesignalsoshouldbeinaccordancewithRegulatoryPosition4.0"theadditionaldesign,construction,andtestingcriteria"andRegulatoryPosition6.0"qualityassurance"inRegulatoryGuide1.143.Response:Section11.4oftheFSARdoesnot;atthistime,makeanyreferencetoRegulatoryGuide1.143.ThepermanentlyinstalledequipmentandpipingisinaccordancewithRegulatoryPosition4.0ofRegulatoryGuide1.143withthefollowingexception:nonconsumablebackingringsareusedinthe3inchlinewhichtransfersresintotheportablesolidificationsystem.QualityassurancerequirementsforthepermanentlyinstalledequipmentandpipingareinaccordancewithRegulatoryPosition6.0withexceptionofthedrywastecompactorwhichisacommericallyprocureditem.ThepurchaseorderfortheportablesolidificationsystemwillrequirethatthesystemcomplywithRegulatoryGuide1.143andanyexceptionsmustbeidentifiedtoandapprovedbyFP&L.TheFSARwillbeamendedtoreflectcompliancewithRegulatoryGuide1.143withexceptionsasnotedabove.
Qxestion460.14InSection11.4.2.4oftheFSAR,youdescribethequalityassuranceprogramfortheSWMSdesign.ItisourpositionthatthequalityassuranceprogramshouldbeinaccordancewithRegulatoryPositionc.(6)ofRegulatoryGuide1.143(Rev.1).Response:+alityassurancerequirementsforthepermanentlyinstalledequipmentandpipingareinaccordancewithRegulatoryPositionc(6)ofRegulatoryGuide1.143Rev1withthe'xceptionofthedrywastecompactorwhichisacommericallyprocureditem.Thepurchaseorderfortheportablesolidificationsystemwillrequirethatthesystemcomply-withthequalityassurancerequirementsofRegulatory~Guide1.143Rev1andanyexceptionsmustbeidentifiedtoandapprovedbyFP&L.TheFSARwillbeamendedtoreflectcompliancewiththequalityassurancerequirementsofRegulatoryGuide1.143Rev1withexceptionsasnotedabove. Questions460,75InTables11.4-.1and11.4-3oftheFSAR,youindicatedtheexpectedamountsofwasteinputsandoffsiteship-mentofsolidifiedwaste.Reviewofthesemi-annual-reportsfromoperatingnuclearpowerplantsthrough1979indicatesthatapproximately13,000ft3/yrofsolidifiedwetwastewouldbeexpectedfromtheprimarysystemwet,waste(concentratorbottomsandspentresin)andapproximately10,000ft/yr,ofdrywastewouldbeexpectedfroma3400MPtPWR.DiscusstheprocesscapabilitvnfyourSWRStohandlethesequancxrxesofwasteatvtLucie.2.Response:ITheinputstothesolidificationsystem,Table11.4-1,isintheprocessofbeingrevisedandbasedonthisinputdatathesolidwasteoutputs,Tablell;4-3willalsoberevised.TheinputswillbeshowntocompriseasmallfractionofthesolidificationsystemcapacitydiscussedinSection11.4(Table11.4-2andFigure11.4>>1).Thiswillbedemonstratedinatablesimilartotheoneattached.Thistablewillalsodemonstratethatthesolidwastemanagementsystemwillbecapableofprocessingmorethan13000ft/yrofsolidifiedwetwasteand10,000ft/yrofdrywastes
<<CI'SOLIDWASTEMANAGBKNTPROCESSDATASolidificationSystemCapabilitiesTypeofWasteOutputofSolidifiedWasteFt/YRProcessPlowRateGPMSystemOutputFt/YRFractionofProcessCapacityUsedStLucieNo.2DesignBasisSpentResinsConcentratorBottomsFiltersTotalCompressibleSolidsValuesGivenbNRCSolidifiedconc.DryWaste*PerTable11.4-3ofFSARI +estion460.16InTable11..4-3oftheFSAR,youestimatedthequantitiesofoutputfromtheSUMSarebasedontwovolumesofwetwastepervolumeofsolidificationagent.StatethesolidificationagenttobeusedatSt.Lucie2andprovideoperatingsolidificationexperienceutilizingthesameagentandmixingratioatanyoperatingnuclearpowerplants.Response:Sincetheportablesolidificationvendorhasnotbeendeterminedatthistime,thesolidificationagenthasnotbeenestablished.However,thesolidificationagentwillmostprobablybecement,cementplussodiumsilicateorDoebinder.Theratioofwetwastetosolidificationagentwilldependonthetypeofwastesbeingsolidifiedanthetypeofsolidificationagentbeingused.Thisratioisincludedaspartoftheprocessparameterswhichareincludedintheportablesolidificationvendor'sProcessControlProgram. 460.17InTable11.5-4oftheFSARyouindicatethecapabilityofanalyzingradioactivityingasdecaytanks,gassurgetank,containmentYV<-.>header,volumecontroltankandflashtankvent.Describethepro-'isionsformonitoringradioactivityinthesecomponents.Includeaprocessflowdiagramand/orPEID.~ResonseTable11.5-4(items24through30)hasbeenmodifiedtofurtherdescribetheprovisionsformonitoringradioactivityinthesubjectcomponents.ThegasanalyzerisshownintheP&IDofFigure11.2-S.AmoredetaileddrawingofthegasanalyzerisshownintheattachedPEID,whichwillreplaceFigure11.2-8. SL2"FSARTABLE11.5-4(Cont'd)toeattonBasisforSelectionExectedConcentrationSamlinFtcuencSamleAnalsia22)FuelPoolionExchanger1/2-FS-543,53123)FuelPoolPurificationFilter1/2"FS-531,52524)YolumcConttolTank-GasSamplea)CasAnalyzer25)MHSFlashTank-gassamplea)CasanalyzctDetermineDFperformanceoftheionexchangerIDetermineperformanceofFiltetefficiencyoAnalyzeforpotentialexplosivemixtureandradioactivitycon-centrationAnalyzeforpotentialexplosivemixtureandradioactivitycon-centtationTable12.2-34Table12.2-34~95IH2+henoperating95INuhenshutdownharequiredHonthlyforradiationlevels;asrequiredbyMaterqualitymeasure-mentsofspentfuelpoolMeeklyhsrequiredCrossactivityorIsotopicanalysisRadiationsurveysH2,02,N2isotopicorGrossActivityH,0andisotopic2'26)HoldupTanks-gassamplea)CasAnalyzer27)SpentResinTank-gassampleCasAnalyzer28)ContningtentpentgasSnmplcCasAnalyzer29)CasSurgeTank-CasAnalyzerHcadetgassamplea)30)GasDecayTankgaasamplea).CasAnalyzerAnalyzeforpotentialexplosivemixtureAnalyzeforpotentialex-plosivemixtureandradio-activityconcentrationAnalyzeforpotentialex-plosivemixtureandradio-activityconcentrationAnalyzeforpotentialexplosivemixtureandradioactivitycon-centrationAnalyzeforpotentialexplosivemixtureandradioactivitycon-centration95XH4I024I04X04I02MeeklyAsrecuiredbyoperdfionMeeklyMeeklyMeeklyH2~0H2,02H~0H~0H2,02andisotopicIandisotopicscdisotopiciandisotopica)Themonitoringofradioactivityisaccomplishedbyobtaininga-grabsampleofthegastobeanalyzedatthegasanalyzer.Provisionsareprovidedonthegasanalyzertomanuallymountanddismountagrabsamplebottlesothatitca>>befilledandthenremovedforlaboratoryanalysisofitscontents.
~<<>>~W>>~AtO~>>~IK:'IV,~VVfQWO~IIVV~.:I~III<<IIoA4J4-'giI~~ILi'I"E!J(VOOIotVI0vatooVVIIOA~I~>>te>>Aoooe~~O9A~[~>>O111~)rOlII<<ItCG>QVIIO+lot~pcsQtj~l~II:f~o"@4..i)j.~IIIO118~~~OOAAAOI~I0VjV)GKlII'AAAO~L:a'~l't'>et~)V~~~tEaaIA)Ct))@s.~fs-~CONSTRUCTION~IOOtWoaoetl+OpVAlovvAVVIItoAAeAool~~IKIDCI)11JJJJ~I1C~gl'IAoIVat~VIgoatteaAA)QqqaqqlY.~"l~(K~~a~ovwI>>IvtteIII>>VWAAVa~I~~<<IVOtVVOAeAIVaIAeHVttVVlIVII~OO<<AO'<<otvooleoI,vea~voo~INI<<ItooIvle<<IvtIvaaAI~4V~'WOtVe'ltVVVO\IO~AIVAO~I'~.~4VO<<VtV<<<<atIIIIet~+I~~Itatvataaaop\Iao~I'ItoeAAvIo<<evvtAA~~~IAOtl1312VE:0'ltolI~~t'I!:..'.."....."AOOV',I<<I~~~~~S/~~~~1~'AIOI~II'V~~~~~OJA2I~~~
QuestionNo.460.18(11.5)InTable11.5-5oftheFSAR,youlistradiationmonitoringsystemprovisions.Showtheplantstackmonitor,thecontainmentpurgemonitor,andthecon-tainmenthydrogenpurgemonitoronappropriateP&IDs.Resonse:ThevariousmonitorswillbedescribedorlocatedontheappropriateattachedP&IDs.Figures9.4-5and9.4-8showtheplantstackradiationmonitors.Figure12.3-13ashowsthelocationoftheCIASradiationmonitorsthatareusedforthecontainmentpurgeandhydrogenpurgeprocessmonitors.FSARwillberevisedtoincludethesechanges. CL0100~~%ZOCaeIf000&FRlI.Y.".~e>>vF..~i'eCrtt!4O'4Oa0004>>I~a=IsaCe>>Ssrsrao~4~fg~---ct~va~I~6.4C,~>>sarevrasaas>>>>/'arose>>LLsovorraooctlae>>40~0re>>~a>>cacLaecaala~L4s>>oce>>CCCKaCLOCaw.Ia1000co>>II-'i..0LscLcs~corI~~orccvlscoce>>~V~slaooclv~4~al~av~0ro~Ps~>>4~~~44~>>laaolOIOCe>>steaOOrrava'lLvaa~4VssoocoIsrC~vos~st~I~~I'Aceatv4.-,sooCs~aoCavPleoeleveI~~IcI~~c0rt~~Los1000Crv'snor--.aact>>f14'll'vsallaIoort>>4V.vvvrrav".APCLL'sll>>~~4~~4'aav~lroIMNL~c~LossaLacOv~estVsroa~sa4A'ltv0+~'~~044ataa'Io+4III'~usaacr>>a>>O4total~0'CLVLscotal~i~~cooct>>IIQCOOLIL~CseCeCQaaOoloct>>)tlvreorascelsecoccootooctvlv,OH~'V.C4VL&rsrcoaaLTLL+g>SasLOIIIIPk=A~I-rra60trIINLsoav>>~oac44444at0IBNvILCata>>OOTI~L&~row0III-'-I~r~40rvas.>>VSCLVtsoastrotrsott>>VCLPICLO0>>40aaLLOOCrea~aaol,v~VVO4fPa~I~s.~IslaooCa>>Is04~a>>SSSIIal>>Cattrvrroal>>Q>>.R44-ZIl39~44-2.L-1g'Rs-2l9Ojva~~Jvr\v>>l~~I~svv~4tee>>~van4~asm.I~Lroc>>VL~sge4ovr~VILLSlatsar,I4'0SCevCreatLast>>raaaI~4~OrarraLHI~<'W~aa~040rvaroI'100Ille~LastcalcareLLLLta~veoc>>e4[Leaseo>>csvsatalsccpsettsnrstL,~I'~~v>>R'a4~~Is~.-'OCesaI~so4a~i~I)lIOCC~COrsawaotI4~LOMwtera>>leoaassveIc~eLrrfaIaaaLltI'%v14vl~vtpIaI>>opsleoCr>>I~>>vrspvoecIoa$)$IPvvpI'2-'IgQltetoooHoeaavIaotl)..assocf>>f.,IIf"'~Z)v-IvrAC6XILIAexDVILOIPICoooooaLLtsretALCI.,IlLOOCroalC4CIIO~p8-hOAT9cQ44vFsr0SOIsoADsunray~sg,'+'LCAVOT*sqPA>>PAIL~OArlf1OL>>pcqCA>>tcspvoALrataACIALOAPoorccccqPAelHOOPOVTCSPE.AIAl>>TALCOacrvoroacOPCCLTOC,rlotolaOperAtop,~LOTOSopcqATOslCVCCCVALVgpvttctrLTTALVA~ATS1ALV0,1>>lr~Cctgg~SOCasc'1>>CCQCCalI's~OOLOVyoqFILTIALperlrAv{osvvt(IKstsKTVCPRFILTCACssnocpslLQSCescdcayOCAIISTCATLICTOICsoatsafyCOILTFLLwbrCqRIAFAOIVOArEXOAIAFaCACIAAOMCTetsCOAMOCAOPKKOCIRrrOAMopgIPIAC.OAestrrgq~ACCESSOOOACI'A1FLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2~~~~REFDiVG:PARTOF2998G.862(REV.4)AIRFLOWDIAGRAMRABVENTILATIONSYSTEMFIGURE9.4-5 Pgs2(.'-I3QgZ-.Z<.-II((CC-CL-coIFCOMFITCKXICAVSTPCŽi'TIIlIIl<I'IIxt,I>l4WM.AO<<FORCOHtOCCDVCGtPT1IQNDC9.00OIIAQI/iOCTERATIOAIVALVtOIIfH))ORMAZDCICERGCHCV~C%.~PVRCLVALVE.CL056IFCV25.1THRIII.FCV254IFCV25IT)IRVIFCV254I~FCV.25ITHR(lIFCY.254FAvCOPERATION<<CWVCCIACC~CONC~I~AT)2IIV5IATIIR(J2ICVSIDNVIIt<<vcAl~tie+coII<<'rANrEtrPVRGLIFCV2SITHRCIIFCV2542Icv(ohcc)b(cacsIDCTRC.ACTOROTSTfMSSEC(CICIICCOF0(6RATIOH!l.lIll'(we&...~Pa%~iI'C(AIL~DDT)t4ACV.IC-GL--'RHVf2)AI'a)4lglik'IMQ5CPILL(I)0ONILT~NoocpMITORCACTORCAIttotTSPIHCIIKACooLIw<<S'w<<QoIL2IT<<CSAIIIIO~OTAT(CTA>CST)TOCRAG[ORCAVITy42,000CIIPIIICSACICEbLbd.ICKHACIdT)COOLIH4COII.S2gVVlDCO.OOOCtICVACUUMRCLICF25Io2'~IOOOCIPINII5I1CP'SCCtlgAv/OOL14GITCV.CS5$COILS8TSCVLIiv~2~N~CCPWcPcbooocPACCOOLIIICICOI'L51KvCSPCVC5o.A".l.ic,oooC~Iv.TSCC7"='P~++~CCHP(IFC'ICd<Csud.D.COOLIHCCOll5~IIITCOTVALLAHHIJI,II52K(IL~falcoocrwTIOOOSCIVA<<CIOSGSQDCICCOOLIICG)<BL~<alcoocell3OOO<<IV<<~l~r'p(STAwDI)CT)7LIVSICCO.OOOCPTC~ILCCKAIDcoll5T.IlhjFCV4f5VACUUICILCLITF(DfAIIDby<<<<<<NIPNNDOO~PLI~Ig.caI<<AUSTAIRe*<<1V.col,wlvOlweac.CCW1kIPVCALPMIA<<IALdtPCOPCLLCKPARRE.AC/OR8UILDIIAI(5OATCQ>>~%tvoOOI'0AOHOOOOVTCIDtAlkIWTAKCOIAPNCAAI<<OPCCATOC,tllTOWOPCCATOCIrdtotPPCCATO<<lCNCCCVALTCDvt1CC~L'TTALTt~A1aTALVC.Vwll'CATCC'I~IllwllWCCCCCII~<<aoLow<<COIIllCC'owIICUCININICCNOCNCTWCPAFILTCRCWACCO<<IAOSORSCRDCMISTCICCICCTCICNTATNNCCOIITRA"<<SI'CRAIRFAHVERFCXCAAMPCFCbARON<<CFICICOAMOCRISAACORAPI'AA<<OCRFIRCOAIIIAd4ACCCSS0004C,PAlRfFDWG:PARTGF2998%462(RfV.4)PFLORIDAPOWER@LIGHTCOMPANYST.LUCIEPLANTUNIT2AIRFLOWDIAGRAMRBVENTILATIONSYSTEMSFIGURE9A-8~~
SL2-FSARTABLElie5-5RADIATIONMONITORINGSYSTEMPROVISIONSNo.ProcessSystemMonitorProvisionsInProcessInEffluentContinuousACFContinuousSampleProvisionsInProcessInEffluentGrabGrabContinuous1,WasteGasHoldupSystem.2CondenserEvacuationSystem3iVent&StackReleasePt.SystemNNNNTNIT4.ContainmentPurgeSystemsV5.Aux.Bldg.VentilationSystemI6iPuelStorageAreaVentSystem<7~RadwasteAreaVent.SystemsGiGxN(N)(NI)NT(NT).(I)80-.SiTurb.GlandSealCond.VentSystem9.-MechanicalVacuumPumpExhaustHoggingSystem10.EvaporatorVentSystems(N)(N)(NT)(NT)(NIT) (I '~~SL2"FSARTNLE11.5-5(Cont'd)Noi'rocessSystem11're-TreatmentLiquidRadwasteTankVentGasSystemsMonitorProvisionsInProce'ssInEffluentContinuousACFContinuous~(N)SampleProvisionInProcessInEffluent~GrabGrabContinuous(NIT)(I)12'lashTankandSteamGeneratorBlowdownVentSystems13'urbineBldg.Vent.SystemsN/AN/A.N'IAN/A,N/A14~PressurizedBoronRecoveryVentSystems(N)(N)(NT)..(I)ACF-AutomaticControlFeatureN-Noblegasradioactivity'ritiumradioactivity(carbon14analysis'ingaseouseffluen'tsmay.beconsidered)RadioiodineradioactivitesandradioactivityofmaterialqXnparticul'ateformandalphaemitters-GrossradioactivityTheautomaticcontrolfeature.isprovidedbytheprocesscontinuousradi'ationmonitor.MonitoredandSampledbyUnit1equipmentTheseprovisionsarerequired:onlyforsyste'msnotmonitored,sampledoranalyzed(asindicated)priortoreleasebydownstreamprovisionsP@dccb~Mo~i4oc'i~q~g>~c-~~~~~II~ eactaeae'41.4I45~PodA~'4+-I"R.9-Z.g-6Cat)4%tacAOo'>>It'4>>rara<<4)Q>><<44II~4>>a>>r>>a>><<ta\ala4rc~retiertlirtCa44.)S4>>trWa'<<D<<IO>>rtIITCail>>44e>>ttcc>>IIItttCCCOlet>>OIID~oor'I/ISCC..r=-~+-".>>'llra!~II.~I44rac~lrI-4-OccacarrDeoo<<It<<~arctrat)14rea>>a<<-~teatIPO>>O)Iac44.P~-Ij~;I,.t').Q,Q-2(-'i'.~IOrlltcr44I14IIOatI~I'lleae>>Il~t'>>III~C.rC)SWgg.c)4@L3<<.~I>>leI~t~~acr4~ICIIa!IIOO)Ai'14teat\4taDttVDC."claym$IOttcrorc)),Iaa>>a~h)~II<<>>)Iigrll)4~eae~IIIO<<raa)rr)rere.4~)4rlC4.\~1C-:AIC.')~I'jC,as~Ic.ITri<<Ii~r>>.aar)-,'\II~Ia4gI~'Iowa~I~IIlwr'I4IO4I~I)~.I4'aei144<<I~gr~I&4IOt&eC2'~~~4TC<<r>><<44I44'lreI>>::P~AL.jRb-ibE'I4<<r'v9O,OOItl,tC44rag~rl~4car~ar~aClee'~~t'realIaiicarri~'"rI$>>\1IIaol>>i<<teacr<<OCICtt~artC4>>IIac~I~~.l'jatcOa~OI>>cle>><<IagODrC>>SltOCC<<$1>>lg,~CeaIC~~tesw.)cattcaMot>>'<<)SNOTE).Ct&a)4r4$4OCCC\aXkCra)4$.044C)V)e.%50ClOCTOhB~~)CC~4~RQ-'2I)-8OPERljTI))GFLOORPEA))EL.6200'LORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2L.OCA~iE)MOf-0iSA9~POSTAtm>%MYPhbCIcX~<o")T~-FlGUREn,B->sA, QuestionNo.460.19(11.5)InSection11.5.1oftheFSAR,youdescribeprocessandeffluentmonitoringsystemdesignbases.ItisourpositionthatthesystemdesignshouldalsobeinaccordancewiththeguidelinesofRegulatoryGuide4.15,"QualityAssuranceforRadiologicalMonitoringPrograms".Response:Thedesignoftheeffluentmonitoring.systempillfollowtherecommendationsofRegulatoryGuide4.15.FSARSubsection11.5.1.2willberevisedtoincludethis.
tQuestionNo.'460.21(ll.5)InTable11.5-1oftheFSAR,youindicatedeffluentradiationmonitorrangesforthecondenserevacuation,thevent-stack,andthefuelhandlingbuildingreleases.ItisourpositionthatthesemonitorrangesshouldbeinaccordancewiththerequirementsofNUREG0737.Resonse:FSARSections11.5and12.3willberevisedinAmendment5toincorporatetheNUREG0737widerangeeffluentmonitors.AdraftwriteupwasinformallytransmittedtotheNRConJuly21,1981.
tQuestionNo..460.22(10.4.8)InSection10.4.8;5oftheFSAR,youdescribetheSGBSinstrumentationandcontrolsforradiationmonitoring.Describe'theprovisionsformonitoringradioactivegasesintheSGBSmonitortankventsshouldprimarytosecondarysystemleakageoccur.Itisourpositionthatallpotential'pathwaysforreleaseofradioactivematerialstotheenvironmentshouldbemonitoredin'ccordancewithGeneralDesignCriteria64.Resonse:TheSteamGeneratorBlowdownMonitorTankhasaventthatexhaustsdirectlytotheatmosphere.Theoperationofthis.tankwillbewithintheguidelinesof10CFR50,AppendixI,regardingthereleasefromthevent.Thetankradioactivitywillbemonitoredpertheapplicabletechspecs.Inaddition,uponhighradiationintheblowdownline,thetankcanbeisolatedtopreventcon-taminationtoaccumulate. QuestionNo.460.23(6.5)InTable6.5-1oftheFSAR,youhavetakenanexceptiontoRegulatoryPosition2.binRegulatoryGuide1.52de-signingtheECCSAreaVentilationSystemwithoutdemister,prefilterorHEPAfilteraftercharcoal'adsorbers.Withoutprefilter,howmuchmoredoyouanticipatere-placementofHEPAfilter.Provideanisometricsketchshowinganypotentialsourcesofmoistureinthe=.area,distancesfromthefilter,overheadlocation,andex-pectedairvelocities.Statehowyouintenttomonitoradecreaseincharcoaladsorberspressuredifferentialandexpectedrelativeamountsofradioactivityincarbonparticles.a.TheonlysourceofdustinsidetheECCSAreaistheatmosphericdust,broughtintothebuildingwithventilationair.Thesupplyairsystemhasprovisionfora.prefilter.Thereforethereisnoneedtoprovideaprefilterintheexhaust,systembecauseitisalreadyinstalledonthesupplysystem'asallowedperERDA76-21paragraphs2.3.3and2.3.4.b.Thevelocityoftheaircomingintothefiltrationunit,is2500FPM.Duetotheincreaseinductcrosssectionalarea,thevelocityintotheunitisreducedfrom2500FPMto700FPM.Theductiscomingfromelev-0.50'o43.00'ia19.5'.Consideringthechangesinairdirectionandthereductionintheairvelocity,what-evermoistureiscarriedoverisseparatedbeforetheairstreamreachestheHEPAfilter.Amaximumrelativehumidityexpectedintheareaincaseofpostulatedpipebreakwillnotexceed73.5%.ForeachpostulatedpipebreakcaseinthisareaoftheRAB,wedonotrequiretheserviceoftheESFfiltrationunittomitigatetheconsequencesofthisparticularaccident.c.Acombinationofdifferentialpressuretransmitter-recorderacrossthecharcoaladsorber(loopaccuracyisgiveninTable7.5-1)andradiationmonitorwithahighalarmintheControlRoominstalleddownstreamofthefiltrationunit(setpointandaccuracygiveninTable11.5-1)willmonitorthedifferentialpressureacrossthecharcoaladsorberandtheamountsofradioactivity. QuestionNo.AdditionalNRCQuestionverballytransmittedinJune19,1981Meeting:Whatisthecharcoalefficiencycriterion?WSES3hasidentifiedcompliancewithgg%criterion.Whoisthesupplierofcharcoaltested(588FS>g,oage6.5-17)forSL-2?Resonse:CVICorp.,thesupplierofthecharcoaladsorberindicate'sthatthenewcharcoaladsorberwhichtheyaregoingtosupplywillmeettherequirementsofReg.Guide1.52Rev.2.(Charcoaladsorberefficiencywillbeminimum99%).Table6.5-1willberevisedtoreflectthischange. 0826W-1estionNo.220.1Table3.3-1liststheAuxiliaryBuildingasbeingdesignedforatornadovelocityof300mphwhiletheotherbuildingsaredesignedfor360mph.TheContainmentShieldBuildingisomittedfromthistable.Subsection3.3.2.2statestheShieldBuildingisdesignedfor300mphCorrectTable3.3-1toreflectyouractualdesignvelocities-Justifyindetailwhythevelocityof300mphisusedinsteadof360mph.Submityoursupportingcalculations.ResponseFSARTable3.3-1hasbeenrevisedtoincludethehurricaneandtornadowindspeedsusedinthedesignoftheShieldBuildingandCondensateStorageTankBuilding.Theexternalpressurecoefficientsforthesedome-cylinderstructuresaregivenonFigures3.3-1and3.3-2,respectively.The300mphaveragecombinedtangentialvelocityandtranslationalvelocitytornadodesignandwindspeedspecifiedfortheShieldBuildingandReactorAuxiliaryBuildingwasbaseduponconsiderationofthehorizontaldimensionsofthosestructuresandwindspeedbanwidthsandconclusionspresentedinFSARSection3.3References3and4.The.tornadodesignwindspeedsspecifiedforthestructuresareconsideredconservativesincethetangentialvelocityversusheightabovegroundisheldconstantatthemaximumaveragevalues'asedupondatapresentedinReferences3and4,thetpngentialvelocityreducessubstantiallyclosetothegroundand,inparticular,intheheightrangeofStLucieUnit2structures' 0826M-2QuestionNo-2202Provideyourbas1sandmethodofcalculationsto'supportthePressuredifferentialintheDieselGeneratorBuildingof2.25psi.Ifventingisconsideredinanyotherbuildingprovidemethodofcomputingdifferentialpressures'esponseThepressuredifferentialvalueof2.25psi,usedinthedesignoftheDieselGeneratorBuildingforStLucieUnit2,wasestablishedduringStLucieUnitldesignandacceptedbytheNBCduringUnitloperatinglicensereview.Baseduponthelargeventilationandcoolingopeningsintheexteriorwalls,thereduceddifferentialpressurewasconsideredaconservativeassumeddesignvalue;nocalculationswereperformedtodeterminethatvalue.Eachofthetwoequipmenthous1ngcompartmentswithintheDieselGeneratorBu1ldingcontainsapproximately49,200cuftof'airvolume(beforedeductingequ1pmentvolume)andeachcompartmenthasapproximately618sqftofavailableventilationareaafterdeductingwirescreenarea.Venting1snotconsideredinanyotherstructure..220.2-1AmendmentNo,5,(8/81) 0826M-3estionNo.220-3YoustatedinSubsection3.5.3.1.1thatthemodifiedPetryFormulawasusedtoevaluatetheconcreteformissileprotection.The'urrentrequirementforcomputingrequiredconcretewallthicknesesistheNDRCFormula.SubmitatableshowingtherequiredwallthicknessescomparedwiththeactualwallandroofthicknessesforallCategoryIstructures,basedontheNDRCFormula.ResponseFSARTable3.5-11listsro'ofandexteriorwallthicknessesforallCategoryIconcretestructures.Theattachedtablesummarizesdesignvaluesobtained.byuseoftheNDRCFormulaformissilepenetration(x),thicknessrequiredtopreventscabbing(s)andthemaximumthicknessofconcretewhichamissilewillcompletelypenetrate(e)~PleasenotethattheNDRCFormulaisonlyapplicabletohardmissilesandnotthesoftmissiles;i.e.,theautomobileandwoodmissiles.220.3-1AmendmentNo.5,(8/81) 0 TABLE2203-1TORNADOHISSILEIMPACTIVEANALYSISPenetrationofConcreteforDesignBaseSpectrumofTornadoMissilesUsingHodifiedNationalDefenseResearchCommitteeFormula(NRDC)MissileNo.Missil'eWh2~lb)~in.)dVo~)n.)~felsenxxesediddRequiredConcretesThickness125S~in.~in)-ActusIMinimumConcrete'IhicknessforRemarks14"x12"Plank12'ong21"diax3'teelRodSNO48.0322ON78510163ln58ln583o284o273n284'75n34WallorRoofSlabofhllClassIStructures(in.)Soft++Missile6"diaSch40x15'ipe12"diaSch40x15'ipe284o5743o45o5814.62n671164n311164n691.763.504.519e3512.0515o066.271.453.124.0913.4417'322.04>24"CriticalCasels)c)ls)5llel13.5"diax35',497longWoodenUtilityPole143.0153Soft**Missilehutomobile4,000',88084Soft*Hissile2"x4"Plank10'Nong27.88.0403Soft**Missile22.04"<24"minimumvaliorroofslabconcretethickness'o0*MissiledoesnotpenetratebasedonASCEReferencePage6-28**NRDCFormulaisnotapplicablebasedonASCEReferencePage6"41References-DesignBasedSpectrumofTornadoMissilesTable3.5-10SL2-FSARTornadoHissileConcreteBarrierMinimum'thicknessTable3.5-11SL2-FSARASCE"HanualofStandardPracticesforDesignofNuclearPoverPlantFacilities"Chapter6COCO 0826W-4QuestionNo.220.4InSubsection3.4.1youstatedthatpolyvinylchloride(PVC)waterstopswereusedintheconstructionpoints.WhenPVCisexposedtoradiationitconvertsintohydrochloricacidwhichwillattacktheconcrete.Showthatthewaterstopswillnotbedegradedbyradiation.ResponseFSARSubsection3.4.1addressesfloodpenetrationprovidedfordesignfloodwaterlevel.ThefloodpenetrationprovidedonandwithinexteriorwallsofseismicCategoryIstructureswithbasements(ReactorBuildingandReactorAuxiliaryBuilding),consistsofwaterproofingmembranesandpolyvinylchloride(PVC)waterstops,respectively.RadiationlevelsatexteriorwallsofthosebuildingsarewellbelowthelevelswhichPVCcantoleratewithoutappreciabledamage(5x105rads)andthelevelatwhichcorrosivegasescouldbeliberated(approximately106-107radsbaseduponthebehaviorofsimilarcompounds)TheonlyareaonStLucieNo.2whereradiationlevelscouldbehighenoughtocausedamagetoPVCwaterstopswaswithintheShieldBuildingSteelContainmentStructure.Rubberwaterstopswerespecifiedforuseinconstruction)ointsbelowEL23withintheSteelContainmentStructure.Rubberhasathresholdtodamageabove2x10radsanddoesnotliberategasesuntilveryhighradiationlevelsarereached(above108rads)whichisconsiderablyabovethemaximumradiationlevelspredictablefortheplant.220,4-1AmendmentNo,5,(8/81) 0826W-5QuestionNo.220.5OnPage3.5-24youstatedthemaximumthicknessofconcretebarriersistwofeet.WhatisthemaximumthicknessprovidedandshowthatthisisenoughtostopthepotentialmissileusingtheNDRCFormula.ResponsePage3.5-24incorrectlystatedthemaximumthickenssofconcretebarriersistwofeet.Thepagehasbeencorrectedtoread"theminimumthickness.....etc."RefertoresponsetoQuestion220.3fordiscussionofrequiredconcretewallthicknessesbasedupontheNDRCFormula.220~5-1AmendmentNo.5,(8/81) 0826W-6QuestionNo.220.6Describeyourprocedureusedtopredictthicknesseswhichpreventspallingorscabbingofconcretebarriersandgenerationofsecondarymissiles.ResponseTheprocedureusedtopreventthegenerationofsecondarymissilesbyspallingwastoprovideaminimumconcretethicknessoftwofeet,andtocheckthatthecalculatedmissilepenetrationdepthscalculatedwiththePetalformula,werelessthanhalfthewallthickness'eepestpenetrationforsteelmissile(1"diax3'teelrod)wascalculatedtobe3.13in.andthedeepestpenetrationforawoodmissile(2"x4"plant10"long)was5.10inches.TheFSARreferencestestswhichshowthatwoodmissilesplinterintopieceswithoutcausinganylocaldamageforconcretebarrierthicknessesof12inchesormore.Therefore,thesteelrodshouldpenetratethedeepestofallthemissiles.Theratioof2ft.eallthicknesstomaximumdepthofpenetrationwouldbe7.6.7.~NOTE:Thecalculationresults,presentedonthetableinresponseto'Question220.3,indicatethatthe24inchminimumthickenssofconcretewallsandroofslabsismorethanthe1.25sminimumrequirementtopreventspallingascalculatedwiththeNDRCFormula.220.6-1AmendmentNo.5,(8/81) 0826W-7estionNo.220.7-ProvidelabelonordinateofFigure3.7-5~~ResonseFigure3.7-5hasbeenrevisedbyaddingreferencestoobtainordinatevalues.220~7-1AmendmentNo.5,(8/81) 0826W-8estionNo.220.8{3.7.1)'tatewherethedesigntimehistoryisappliedtothemathematicalmodelrelativetothefinishedgrade.Ifdeconvolutionproceduresareused,describetheseproceduresandfurnishtheresponsespectra.computedfortheinputtothemathmodelsshownonFigures3.7-30thru'.7-51'ResonseThedesigntimehistoryisappliedatthefoundationlevelofCategoryIstructuresinthefreefield.Deconvolutionproceduresarenotused'20.8-1AmendmentNo.5,(8/81) 0826M-9QuestionNo.220.9(3.7.1)Someoftheresponsespectrapo'intscomputedfortheartificialtimehistoriesfallbelowthedesignresponsespectra.Showthatnomorethan5pointsfall.morethan10percentbelowthedesignspectraforeachdampingvalue.~ResenseComparisonsbetweentheresponsespectrapointscomputedfromtheartificialtimehistoriesandthedesignresponsespectrasuggestedinR.G.1.60hasbeendone.Bothhorizontalandverticaltimehistoriesareconsidered.Thespectravaluesaregeneratedat1/2percent,2percent,5percent,7percentand10percentdamping,as'suggestedinR.G.1.60.ThefrequencyintervalsusedarethatsuggestedinSRPTable3-7.1-1~Resultsshowthatonlyforthe1/2percentdampingcurvemorethan5points(outof75points)fallmorethan10percentbelowthedesignspectracurve.However,forStLucieUnit2,thelowestdampingvalvespecifiedis1percent{forsteelpiping)sothecaseof1/2percentdampinghasnoeffectontheseismicanalysis.Moreover,thelowestfrequencyvalueforStLucieUnit2is1.22cyclespersecond(SL2-FSAR-Table3.7-18,ReactorBuilding),therefore,pointsfallingbelowdesignspectraforfrequencieslesstha'n1.22HZdonotaffecttheresults'fseismicanalysis.Fortheotherpoints,thedesignspectraforthetimehistoriesshowsubstantialhighervaluesthantheR.G.1.60designspectra.Thusthepositivevaluesshouldcompensatetheeffects,ifany,ofthenegativevaluesandinsureaconservativedesign.)5Insummary,the1/2percentdampingcurveisnotusedforanydesignpurposeonStLucieUnit2andtheremainingresponsespectracurvesmeetthecriteriaofnomorethan5pointsfallingmorethan10percentbelowthedesignspectra.220.9-1AmendmentNo.5.,(8/81) 0826W-10estionNo.220.10(3.7.2)Yourseismicmodelsincludeprovisionsforstructuraltorsionhowever,thesoilspringsdonotincludeatorsionalcomponent.Describehowyouaccountforthetorsionatthefoundationsoilinterface.ResponseTwodimensionalseismicmodelsareusedforanalyzingtheCategoryIstructures,sincetheCategoryIstructuresaresupportedindependentlyandthegeometriesofthestructuresarelargelysymmetrical.Inthetwodimensionalmodels,torsionaldegreesoffreedomofmasspointsareconsideredasfixedconditions'orthesoilsprings,thetorsionalcomponentisalsofixedbutmaybevisualizedtohaveaspringwithverylargetorsionalspringconstant.OriginalanalysisofWaterfordNo'.3alsoutilizedtwodimensionalmodelswithouttorsionaldegreesoffreedom.InresponsetoNRCquestions,anewthree-dimensionalmodelwithtorsionaldegreesoffreedomandtorsionalsailspringwasdeveloped..1heaccelerationsobtainedfromthenewmodel(withtorsionaldegreesoffreedom)comparedtothoseoftheoriginaltwo-dimensionalmodelaresmaller.220.10-1AmendmentNo.5,(8/81) 0830MNodeEWEARTHQUAKETABLE220.10-1NATURALFREQUENCIESINCYCLESPERSECOND(CPS)N-SEARTHQUAKENeoG6,400PSIWithout'MithEbasceTorsionTorsion>>T>>snfoGsn16,050PSIWithoutWithEbascoTorsionTorsion>>T>>soloGno6,400PSIWithoutMichEbascoTorsionTorsionOTnroGn>>16,050PSIMithoutWithEbascoTorsionTorsion>>T>>snin11.09122.44534.562lo086l.684lo0792.4732>>4504.54061lo975712>>1546.529ll>>1497>>626ll>>987814.87411.46414.241920.4381021>>64012>>00416.56713>>11317>>924475354.5457>>487510.9364>>6789>>1831.7061.7001.683.3342.6203.3552483>>3635>>2275714.6847.5110.9655.1849.1011.9826>>58711.1212>>1557>>696ll>>9915.046ll>>47114>>3720.46412>>00916>>4621'64013>>17617>>841.0871.086"1>>082.468l>>8152.514.27524684267>>4754'657.4310.2544>>6808>>4010.807.6.7419>>7212.1257>>51112>>0714>>91410>>05414>>1619.27010.82615.1621.63712.10517'41>>7021.700-l>>683.4102.8333.424.8833.4104.867.491470174210.284.4.8608.0110>>863=67979~8112>>1297>>53912.0714>>94010>>08313>>7719.30310.87714.7421.63812>>10817.200Co 0830W"2TABLE220.10-2COMPARISONOFACCELERATIONOFDYNAMICANALYSISWITHANDWITHOUTTORSIONALDECREEOFFREEDOMSOILSHEARMODULUSC6400PSIoSSE>SPECTRUMMETHODS5ZDAMPINGE-WDIRECTIONSTARDYNE-3EBASCODYNAMIC2037N-SDIRECTIONSTARDYNE-3EBASCODYNAMIC2037MASSNO+CASE-I+CASE-II+*DIFFXCASEI*CASEI*CASEII+*DIFFX1234567891011121314151617181920210.2780.2572+2400.2260.2110.1940.178'.1670.1560.1480.1410.2340.223Oo2110.2000.1900.1800.1700.1610.153Oo1460.2720.2510+2340.220Oo2050.1880.1720.1610.1500.143Ool370.2280.2170.2050.1950.1840.1740.1650.1560+1480.1412~22~32~5-2.7-2.8-3.1-3.4-3.6-3'-3.4-2'-2.6-2.7-2.8-2.53023~3-2+9-3.1~303-3o40.2870'630.2460.2300.2140.1950.1780.1650.1530.1450.1390.2390.2260.2140.2020.1910.1800.1690.1600.1510.1430.2310.2180.2080.1990.1900.1790-1690.1620.1540~1490.1440.2000.1940.1870.1800.1740.1680.162Oe1570.1520.1470.2310.2170.207Oo1980+1890.1790.1690.1610.1540.1480.1440.2000.1930.1860.1800.1740.1680.1620.1560.151Ool460W.5W.5W.5%.500W.60&.700<.5<.50000W.6%.7Oe7R*Withouttorsionaldegreeoffreedomn**Withtorsionaldegreeoffreedomo
0830M"3TABLE220.10"2(Cont'd)E-NDIRECTIONEACDYNAMIC2037=N-SDIRECTIONYNE-EBASCDYNAMIC2037MASSNO+CASE-I*CASE-II"*DIPPxCASEI*CASEI*CASEIIa*DIPPX22232425262728293031323536390.1670.1640.1670+1570.1530.1480.1450.1790.1610153Owl'450+1710.163Ool3701610.1590.1560.1520.1480.1430.1400.1640.1470.1540.1490.1800.1700.135-3.6-3.1-3.73'2303-3.4-3'-8.4-8.7W.7+2.8+5.3+4.3-1050.1660.1630.1600.1560.1510.1460.1420.179,0.1600.1510.144Oo1720.1620.1340.1600.1580.1560.1540.1520.1480.1460.1690.1580.1520.14701640.1580.1410.1590.1580.1560.1540.1510.14801460.1690.157001510.1480.1640.1590+140W.600~0%.7000&+6007&e7.0K.6Oo7~*WithouttorsionaldegreeoffreedongeeNithtoreionaldegreeoffreedonn000CO 083'-4TABLE220.10-3COMPARISONOFACCELERATIONOFDYNAMICANALYSISMITHANDWITHOUTTORSIONALDEGREEOFFREEDOMSOILSHEARMODULUSG6400PSI,SSE,SPECTRUMMETHOD,5ZDAMPINGE-NDIRECTIONSTARDYNE-3EBASCODYNAMIC2037N-SDIRECTIONSTARDYNE-3EBASCODYNAMIC'037MASSNOoCASE-I+CASE-Ils*DIFFXCASEI*CASEI*CASEIIs*DIFFX123456O8910ll121314151617181920210.4920.4530.4230.3950.3670.333'0.2990.2750.2500+2320.2160.3560.3410.3250.3100.2950.2800.2650.2510.2370+2230.4790.4400.4110.3840.3560.3220.2900.2660.2420.2240.2090.3440.3300+3150.3000+2860.2710.2570.2430.2290.217"2.6-2.9-2.8-2.8-3.0303-3'3'302-3.53~2-3.43~2-31302-3.13~2-30-3~2-3.42'0.4300.4010.3790.3580+3370.3110.2860.2680.2490.2340.2220.3120.3030.2930.2840-2740.2650.2550+2450.2360.2260.4290.3990.3770.3570.3360.3100.2850.2660.24802330.2210.3110.3010.2920.2820.2730.2640.2540.2440.2350.226W.2&.5%.5W.3003-0.3003<.8W.4W.40+5003007003%.7o4W.4<.4<.4<.40lo8y*Nithouttorsionaldegreeoffreedom*aNithtorsionaldegreeoffreedoa00000 0830M-5TABLE220.10-3(Cont'd)STARDYNE-E-WDIRECTIONEBASCODYNAMIC2037N-SDIRECTIONSTARDYNE-'BASCODYNAMIC2037MASSNOeASE-I*CASE-II**DIFFxCASEI*CASEI*CASEII**DIFFx.CASE1*22.0.259230+255240.251250+244260.236270.228280.221290.277300.251310+238320.22435Oe268360.25439,0.206O0.2500.2460.2430.2360+2290.2200.2140.2540.229002390.2280.2820.2670+203-3.5-3.53~23~3-3.0-3.53~2-8.3-8.8+0+4+1.8+5+2+5.1-le50.2480.2460.2430.2390.2350+2290.2250.2680.2480.2380.2280.2590.2500.2150.2470.2450.2420.2380.2340.2280.2240.2670.2470.2360.22902620.2520.2134W.4<.4W.4W.4W.4W.4<o4<.4<o8K4+1~2Ka8W.9MithouttorsionaldeSreeoffreedorL~*aNethtorsionalde8reeoffreedonoco00I CONTAINMENTVESSELEL.197.512ZERODISTANCESHIELDBUILDING,1EL.198.3REACTORBLDG.'.REACTORBLDG.FHBRABEL.176.0132EL.172.4PLANREACTORBLDG.3EL.150.7gRABEL.-35.0FUELHANDLINGBUILDINGEL.132.015EL.110.0164EL.131.05EL.111.0ELEV.STRUCTURALLAYOUTEL.90.029ELA5.5EL.20.02620EL.88.0.17BEAMELEMENT(TYP.IEL.66.018EL.61.52230EL.55.023ELAG.024EL.44.0EL.33.0256EL.86.07EL.61.0COMBINED8STRUCTUREEL.41.03153733,34,5350EL.69.36ELA6.0EL.21.0REACTORAUXILIARYBUILDING131RIGIDLINKS140141EL22.0EL.8.02721EL.Q.O28EL00L19.010EL.-2.511EL.-24.032&38137CONNECTINGMEMBERBETWEENFHBBcRABZUPROTATIONCENTERATGRIDPOINT139.MAT139143HK0EL.-35.0TOPOFMATYNORTHKHSOlLSPRING,TRANSLATION,KIPS/FTKg=,SOILSPRING,ROCKING,KIPS/RADIANAMENDMENTND.5(8/81)FLORIDAPOWER8LIGHTCOMPANYST.LUCIEPLANTUNIT2REACTORBLDG..MATHEMATICALMODEL(NOTORSIONALEFFECT)FIGURE220.10-1 CONTAINMENTVESSELEL.197.512/jZERODISTANCESHIELDBUILDING1EL.198.3REACTORBLDG.FHBRABr;.REACTORBLDG.EL.176.0132EL.172.4.PLANREACTORBLDG.EL.154.0143EL.150.7RABEL.-35.0FUELHANDLINGBUILDINGEL.90.029EL.132.015EL.110.016EL.88.0174EL.131.05EL.111.06EL.86.0ELEV.STRUCTURALLAYOUTREACTORAUXILIARYBUILDINGELA5.5EL.61.52230EL.55.023EL.46,024EL,33.025EL.20.02613118EL.66.019ELA4.020RIGIDLINKBETWEENMASSCENTER7EL.61.0SHEARCENTERCOMBINED8STRUCTUREEL.41.0931537L.19.0137EL.21.033,34,35EL.69.0BEAMELEMENT(TYP.)36EL.46.0EL.8.027EL.<.02821EL.O.O10EL.-2.532538CONNECTINGMEMBERBETWEENFHB5RAB14014111EL.-24.0ZUP143KH5KgVYKHK,8KyZKg3TRANSLATIONAL53ROTATIONALSOILSPRINGSMAT39139ROTATIONCENTERATGRIDPOINT139EL.-35.0TOPOFMATYNORTHKH=SOIISPRING,X-DIRECTION,KIPS/FTKH=SOILSPRING,Y-DIRECTION,KIPS/FTKzSOILSPRINGZDIRECTIONKIPS/FTKg,Ks)=ROCKINGSOlLSPRINGSXICy=TORSIONALSOILSPRINGFLORIDAPOWER&LIGHTCOMPANYST.LUCIEPLANTUNIT2REACTORBUILDINGMATHEMATICALTORSIONMODELFIGURE220.10-2
QuestionNo.220.11/InTable3.7-24themaximummomentatmasspoints.20,22,23and24showsmallervaluesfor"thetime-historymethodthanforthe.responsespectramethod.Explainthesedifferencessincethe.time-historymethodisexpectedtoyieldalargerresponsethantheresponsespectramethod.Thissituationexistsforotherstructuresshowninothertables.ResponseTable3.7-24hasbeenrevisedtoreflectcorrectvaluesformaximummomentsatmasspoints20and22fortime-historymethod.Thesevaluesarehigherthanresponsespectramethodasanticipated'aximummomentsatmasspoints23and24arenegligiblyhigherforresponsespectramethodthantime-historymethodandcouldbeattributedtotheconservatismusedinreadingaccelerationvaluesfromgroundresponsespectra.and/orduetoslightlydifferentmodelsusedintwodifferentmethods.220.11-1AmendmentNo.5,(8/81) 0825W-2QuestionNo.220.12Thenaturalfrequencyof70.36showninTable3.7-18forES40ksi,EWdirection,Mode1,isinerror.Whatisthecorrectfrequency7ResponseThecorrectfrequencyis1.36.Table3.7-18hasbeencorrected'20.12-1AmendmentNo5,(8/81) 0825W-3QuestionNo.220.13OutlinethemethodusedtoaccountfordifferentialstructuralmovementduringanearthquakeforpipingthatissupportedbydifferentseismicCategoryIstructures.ResponseIForpipingthatissupportedbytwobuildingsonacommonmatortwostructureswithinthesamebuilding,therelativeseismicdisplacementsbetweeninterfacesupport/restraintsarederivedbytakingthesquarerootofthesumofthesquares,(SRSS)ofeachrelativeseismicdisplacementtowardsthecommonreference.Thecommonreferencecaneitherbethecommonmatorthestructurebasewhichisconsideredasanchorageintheanalyticalmodelofthestructure.2.Forpipingthatissupportedbytwobuildingsonseparatemats,therelativeseismicdisplacementsbetweeninterfacesupport/restraints,ingeneral,arederivedfromthecombinationofco-directionalmaximumabsoluteseismicdisplacementofthetwobuildingsatthesupportingelevationbysquarerootofthesumofthesquare(SRSS)methodsIftheinterfacesupport/restra1ntsatbothbuildingsarelocatednearthegroundlevelorthetwoadjacentbuildingshavesimilarbaseresponse,thelargerofthetwomax1mumabsoluteseismicdisplacementsmaybeconsideredasthemaximumrelativeseismicdisplacementbetweentheinterfacesupport/restraints.3.Allthemaximumrelativeseismicdisplacementareplacedattheinterfaceanchoragesuchasthepenetrationconnect1onsoftheReactorSteelConta1nmentUesselintheseismicdisplacemen'tanalysis.The'eismicdisplacementanalysisareatfirstperformedforeachofthethreeorthogonaldirect1onsindependently.ThentheresultdataarecombinedbySRSSmethod.220.13-1AmendmentNo,5,(8/81) 0825W-4QuestionNo.220.14DescribethemethodusedtoanalyzetheTurbineBuildingforseismicmotion.'IResponseAlthoughtheTurbineBuildingisanonseismicbuilding,wehavetakenintoaccounttheequivalentstatic"g"loadsinthestressanalysisoftheTurbineBuildingFraming.,Theseismicrequireddesign"g"valuesfortheTurbineBuildingstructureevaluationwereobtainedfromthedynamicseismicresponseanalysisusingasimplifiedmodeltorepresentthedynamicbehavioroftheTurbineBuildingstructure.220.14-1AmendmentNo.5,(8/81) 0825M-5QuestionNo-220.15Describeyourcriteriaforsystem/subsystemdecoupling.StandardReviewPlan3.7.2containsanacceptablecriteria.~ResossaForthereactorbuildinginparticular,studiesusingseismicmodelswithandwithoutsubsystemaremadetoensurethecouplingeffectisminimal.Modelswithmajorequipment(suchassteamgeneratorsandreactorvessel)andthesupportingstructure(i.e.,~theinternalstructure)modeledseparatelyandmodeledtogetherareconstructedandtheComputerCodeSTARDYNEisemployed.Dynamicresponsessuchasfrequencies,accelerations,andresponsespectraarecompared.Thedifferencesarefoundnegligible.220~15-1AmendmentNo5,(8/81)
082%1-1estionNo.220.16(3.7.3)ThecomparisonpointsinTable3.7-38,sampleproblem2donotmatch.Showotherpointcomparisonsforeachproblemsandshowpointswheredifferencebetweenmethodsisamaximum.ResponseBecauseofthedifferenceintheconsideratio'nofloaddistributionbetweenstaticanddynamicanalyses,themaximumcomputerstresswillnotalwaysappearatthesamepoint.However,withtheconsiderationintheproceduredelineatedinSubsection3-7.3.l.lb,themaximumcomputedstresswillbehigherforthe"ModifiedEquivalentStaticLoad"methodwhichisafrequencybasedstaticanalysis.Theoriginalcalculationsforthethreesampleproblemswere'erformedonthebasisofaflatresponsespectra'of1Ogacceleration.Foranactualresponsespectrageneratedfromordinarystructure,theresponsevaluesbeyondtheresonantregionusuallydecayrapidly.ThisisevidentlydemonstratedontheattachedFigures220.16-1thru220.16-3.'thethreesampleproblemshavebeenrecalculatedforbothflatresponsespectraandthismorerealisticresponsespectrausingcombinationmethodsofNRCRegulatoryGuide1.92Rev1andASMECodeSummer1973versionforCodeClass263piping~Theattachedtablesrepresentacomparisonofpipestressescomputedbyboth"ModifiedEquivalentStaticLoadMethod"andthemoderesponsespectraanalysis.Table220.16-1istheresultbasedonaflatresponsespectraof1.0gacceleration.Table220.16-2istheresultbasedontheenvelopedresponseonFigures220.16-1thru220.16-3.Inallcases,themaximum'omputedstressishigherforthefrequencybasedstaticanalysis.AsitisshowninTable220.16-2thisisevenmoreevidentialinthecomparisonbasedonarealresponsespectra.Itisworthtomentionthatwhilethesampleproblems2&3werearbitrarilypickedfromactualpipingsystems,thesampleproblem81doesnotreflectanynormalrestrainedpipingsystem.Itwaspu'rposelymodeledandrestrainedtoexemplifythepossibledynamicresponseofthepiping'ngeneralpractice,therestraintsareplacednearthevalves,cornersandoffsetsasmuchaspossible.220.16-1AmendmentNo.5,(8/81)' 0828W-2TABLE220.16-1HIGHSTRESSbaseonatCOMPARISONgresponseSampleProblem1(Fig.3.7-254)PointNo.SeismicStress(PSI)StaticDynamicDifference16141814153029130838371735562605525442219691964730455594789492143863743557255665779*2812256613391139679-3603-3602SampleProblem2(Fig.3.7-255)(Fig.3.7-256)PointNo.SeismicStress(PSI)StaticnamicDifference2531~192821175133632875582.9180027733673267086337600826631544703151125026652152934143538546993505238917243179*29761212143925659521309-842"845SampleProblem3(fig.3.7-257)PointNo.SeismicStress(PSI)StaticDynamicDifference2278431250151008179657765536317617454285198516913575717470844595180473440084091372320542462*1869209411371440142011071446-697+greatestdifference220'6-2AmendmentNo.5,(8/81) 08261-3TABLE220.16-2SampleProblem1(Pig.3.7-254)HIGHSTRESSCOMPARISONbasedonfloorresponsespectraPointNo.SeismicStress(PSI)StaticnamicDifferenceSampleProblem2(Fig.3.7-255)(Pig.3.7-25616181141543029~68533645322631522647238471170916341087193615026441524132213205219*2558129016502003860-611-611PointNo.SeismicStress(PSI)StaticDynamicDifferenceSampleProblem3(Fig.3.7-257)3119172151312303894367336493165304229832784274513151315101012361330110110551005259723582639*19291712188217291'740PointNoSeismicStress(PSI)StaticDynamicDifference271132420833289302928044212316226153286313911341324110025181510991205520882155*1705170416941652162412311051*greatestdifference220.16-3AmendmentNo.5,{8/81) 1.5Z-DIRECTION1.0o~ORcn+m+~cn>~U+noOcncnom0cncn>W0~commHAO~~~~+mm~X7~+m>~ozc~>ogcntvzomo>gooIocno-o~om~~cnmo&m~mc>cnoZ~-cno<<<nlmm+cnnIQ2nQITIgozrHC)xXAIQhJ0XUz0I-(ZLUUJOOz.5ozz00.513456789'IOFREQVENCY(CPS)15202530 1.5Y-VERTICAL1.0Uz0KOOOox~KPlgCIC-r~oOgl-OreOzcnTlvl+g)~,~~ornaCORNO~rn<+~~arrl&m~~~ra>h)0c~~O~cgOfllzooo+o~~oh)-Orll>Chiporcl~&DchOQo<~ZZC/lnIO2+OrC()A~rlrflliOgoxXCgh00X.5zQmzz0ccr0.513456789'IoFREQUENCY(CPSI15-20253Q
X-DIRECTIONU0I-0ILJOOnOXCll~mgC/I>~CII~OAvlc/cI-Om0cn~~>C)'llffomm~m~-IO~-Imm~A~~~zm~AlPXZw>ox~IvzOmo>>ooo+ooomg)cnmoX&mme+c/Ioxclo(gcnfmffcCAflIOr>C()Q~fVIfllmDrII'~r~C)C~~Al3'zCmzomzz0ccf0.5345678910FREQUENCY(CPS)15202530 0825M"6QuestionNo.220.17InSubsection3.7.3.9,ItemC,youusedthewords"significantsupportdisplacement."Definethethresholdofsignificantandthebasisforthislowerboundifalowerboundisused.~Resonse~Alltherelativeseismicdisplacementbetweenrestraint/supportpointswhichmaycontributeanestimatedbendingstressmorethanfivepercentofthecodeallowablestresslimitareconsideredtobesignificant.220~17-1AmendmentNo.5,(8/81) 0825W-7QuestionNo.220.18InSubsection3.7.3.3youstatedsufficientmasspointswillbeincludedinthemodeland-sufficientdynamicmodescomputed.Define"sufficient"fornumberofmasspointsanddynamicmodes.~Resonse0Ifthemasspointsandcorrespondingdynamicdegreesoffreedomaredistributedtoprovideforappropriaterepresentationofthedynamiccharacteristicsofthesubsystem,thenitisconsideredtobesufficient.AsindicatedinSubsection3.7.3.l.l.a,themaximumspacing.ofthemasspointsmaynotexceedonehalfthedistanceforwhichthefrequencyofasimplysupportedbeamwouldbe20Hz.Thecriteri'onforsufficiencyinnumberofdynamicmodesisthattheinclusionofadditionalmodesdoesnotresultinmorethana10percentincreaseinresponses.Ingeneral,thiscanbesatisfiedbyincludingallthedynamicmodesbelo~33H,ifthehighestmodecalculatedby33Hzhasalreadyfallenintotheflatrigidresponseregionofthecorrespondingresponsespectra,theeffectoftheremaininghighmodesaretakencareofbyaddingthedynamicanalysisresultwithanequivalentstaticsolutioninSRSSsummation.220.18-1AmendmentNo.5,(8/81) 0825W-8QuestionNo.220.19InSubsection3.7.3-4whatisyourcriteriaformovingthefrequencyofthesubsystemswith'especttothesupportingsystem?ResponseThesubsystemsingeneral,aredesignedorrestrainedtobeintherigidregiontoavoidresonancewiththesupportingsystem.Ifthefirstmodeperiodofthepipingismorethan70percentofthefirstmodeperiodofthestructure,amultimoderesponseanalysis.isperformed.Ifthefirstmodeperiodofthepipingis70percentorlessofthefirstmodeperiodofthestructures,theproceduresasoutlinedinSubsection3.7.3.1.l.bandcarefollowedasanalternativeofanalysisapproach.220.19-1AmendmentNo.5,(8/81) 0825V-.9tQuestionNo.1220.20Yourmodalresponsecombinationprocedure(Subsection3.7.3.7)usesonlySRSSandomitconsideration,ofcloselyspacedmodes.UseRegulatoryGuide1.92forcombiningmodesthatarecloselyspacedandcorrecttheappropriateloads.ResponseTheconsiderationofcloselyspacedmodesforsubsystemsarestatedinSubsections3.7.3.7.1,3.7.3.7.2,3.7.3.l.l.a,4and"3.7-3.1.2.3.d.bfollowingRegulatoryGuide1.92forcombiningmodesthatarecloselyspaced.220.20-1Amendment'o.5,(8/8i) -~ 0825W-10QuestionNo.1220.21YourprocedureinSubsection3.7.3.1.l.a,l(b)fordeterminingpipingsupportlocationsisunnecessarilycomplicated.Statethefrequencyyouintendtouseforsupportspacing.~ResonsaSubsection3.7.3.l.l.a.l.(b)addressestomassspacingnotrestraintspacing.AsitisstatedintheresponsetoQuestion220.18,themasspointsaredistributed,toprovideforappropriaterepresentationofthedynamiccharacteristicofthepipingsystem.Themaximumspacingbetweenmasspointsarelimitedsoastoprovidefairmodeshapeforallthesignificantmodes.220.21-1.AmendmentNo,5,(8/81) 0824M-1uestionNo.220.22Yourdescriptionofthemethodforanalyzingtheburied(3.7.3.12)seismicCategoryIpipingandtunnelsisverysketchy.Provideamoredetailedprocedureandcopiesofcalculationsincludinganyreferencedmaterial."ResponseProcedureandcalculationwillbeprovidedtotheNRCviaAmendment6totheFSARtobeissuedAugust31,1981.220.22-1AmendmentNo.5,(8/81) 0824W-2QuestionNo.220.23Whatmethodisusedtodeterminethecompositedampingforthereactorvesselandtheprimaryloopsystem.~ResonseAsillustratedinSubsection3.7.3.1.2.1,uniformmodaldampingisused.Wenotethatonepercentdampingis'tilizedforOBEandtwopercentdampingisutilizedforSSE.220,23-1AmendmentNo,5,(8/81) 0824M-3QuestionNo~220.24ProvideacomparisonofresultsofUnit1seismicanalysistotheresultsofUni't2analysistosupportyourconclusionthissiteisa"Multi-unitsite"addressedbyRegulatoryGuide1.12'I~ResonseTheSt~LucieUnit2structuraldesignsareessentiallythesameasthoseofUnit1,hencetheseismicresponsesexpectedtobeexperiencedintheSt~LucieUnit2plantaresimiliartothoseofUnit1plant~Usingidenticalseismicinputs,aseismicresponseanalysisofthestructurescomprisingSt.LucieUnits1and2woulddemonstrateidenticaleffectsforbothunits.220'4-1AmendmentNo.5,(8/81)
0824W-4estionNo.220.25(3.5)Theductilityrelationshipsforreinforcedconcretebeamsandslabsarelargerthanthoseacceptabletothestaff.Re-evaluateyourconcretebeamsandslabsforaductilityof~05(10.TheductilityratiosforsteelmembersarelargerPPthanthoseacceptabletothestaff.Re-evaluatethebeamsforaductilityratioof10andcolumnswithakl/r(20foraductilityratioof1.7.Forcolumnswithakl/r)20usearatioof1.0.~ResonseWehaveevaluatedconcreteslabsforductilityof.05(10andhavefoundthemacceptable.TheconcretebeamsPPhadalreadybeendesignedforthatvalve.SeeTable3.5-12.220.25-1AmendmentNo.5,(8/81)
0824W-5QuestionNo.220.26Providea'comparisonofyourloadcombinationswiththeloadcombinationequationsinStandardReviewPlan3.8.2,II.3andaddresstheeffectsofnotmeetingtheloadcombinations,includinganyloadsthataremissingfromyourcombinations.ResponseSRP3.8.2"LoadCombinationSt.Lucie2Table3.8-1Remarks(1)D+L+Pt+Tt(1)D+L+WConstructionloadcase(1)isequivalenttoSRPloadcombination(1)withPtandTtnotapplicable.-Wlateralwindloads(1)D+L+Pt+Tt(2)D+W+Pt+Tt(3)D+E+Pt+Tt+R+ToLiveloadnotincludedinSL2loadcombination.Theadditionaleffectwouldbeinsignificant.(2)D+L+To+Ro(3)D+L+To+Ro(4,5)D+L+To+RO+E+PeSL2loadcombination(4)or(5)isequivalenttoSRPloadcombination(3)(governsoverSRPloadcombination(2))exceptPewasaddedtotheloadcase.+Pa+EPa+E(4)D+L+Ta+Ra(6)D+Ta+Ra+LiveloadnotincludedinSL2loadcombination(6)-LOCAplusOBEloads'headditionaleffectwouldbeinsignificant.(5)D+L+Te+Re+Pe+E(4,5)D+L+Te+R+Pe+EEquivalent220,26-1AmendmentNo.5,(8/81) 0824W-6SRP3.8.2LoadCombinationStLucie2Table3.8-1Remarks(6)D+L+Ta+Ra+Pa+E'7)D+Ta+R+Pa+E'iveloadnotincludedinSL2loadcombination(7).Theadditionaleffectwouldbeinsignificant.(3)D+L+T(8)D+L+To+Ro+E+Yr(10)D+L+ToSL2loadcombinationsequivalenttoSRPloadcombination(3)exceptthatYrorYqwasaddedtotheloadcase.+R+E+Y)(7)D+L+T,+R+Pe+E'oneNocorrespondingloadcombi-nationonSL2~Effectoncontainmentcannotbeassessedwithoutdetailanalysis.CompletiondateofadditionaldetailanalysisisJuly31,1981.(8)D+L+Ta+Ra+Pa+Yr+Yg+Ym+E'9)D+L+To+R+Yr+E't.Lucie2loadcombinationisequivalenttoSRPloadcombinationwithY>>PaandYgeitherinsignifi-cantornotapplicable.WithPa~aandTareducestoRandTorespectively.(8)D+L+Ta+R+Pa+Yr+Yg+Ym+E(11)D+Ta+R+Pa+Y)+E't.Lucie2loadcombinationisequivalenttoSRPloadcombinationwithL,YrandYmeitherinsignificantornotapplicable.SRPloadcombination(9)wasnotcomparedbecauseFLisnotapplicable.Withtheeliminationofthisterm,thisSRPloadcombinationisenvelopedbySRPloadcombination(3)~220.26-2AmendmentNo.5,(8/81) 0824W-7tQuestionNo.220.27Describehowthecontainmentsteelshellisanchoredtotheconcretefoundationslab.Describetheproceduresusedtoaccountfortheshearstressesbetweenthesteelshellandtheconcreteonbothsidesoftheellipsoidalheadfortheloadswhichwillproducethesestresses.ResponseThesteelcontainmentellipsoidalbottomheadiscompletelyembeddedinconcrete.Thecontainmentdeadweightandanyoverturningmomentsduetoseismicareassumedtobetransferredtotheconcreteinbearing.Shear'tressesareassumedtobezero.Webelievethatthesearevalidassumptionssincetheheadisnothemispherical.220.27-1AmendmentNo.5,(8/81) 0824W-8QuestionNo.220.28Themethodologyusedtoanalyzethecontainmentshelltoguardagainstbucklingisnotcompletelydescribed.Providethefollowing:(2)(1)Detailsoftheassumptionsandboundaryconditionsusedintheanalysesofthedomeandthecylinderandjustifywhytheanalysisforeachsection'wasdoneseparately.Alltheloadcombinationswhichareconsideredcritical(thelimitingcases)forthebucklinganalysis.Foreachloadcombinationstatethemostlikelyeffectedregionsoftheshellforthistypeofcompressiveloadings~(3)CompareandjustifythemethodologyusedinyouranalysiswiththeacceptablemethodsstatedinthecurrentversionoftheASMECodesubsubarticleNE-3100.Provideadiscussionofthefactorofsafetyforeachservicelevel.(4)Provideacopyofthereferencedpapersusedinthebucklinganalysisofthecontainmentshell.ResponseThedesignofthecontainmentisinaccordancewithASMECodeSectionIII,NE-3133designruleswithassumptionsandboundaryconditionsinherentinthedesignrules.(2)Theloadingcombinationsareconsideredcriticalforbuckling~a)Case5-Coldshutdownatambienttemperature.ThiscaseincludesOBEseismicwithexternalpressure.b)Case9-Conditionwithsafeshutdownearthquake.ThiscaseincludesSSEseismicwithnointernalpressure.Thedesignmostlikelyaffectedregionsoftheshellarethetopheadnear'hecylinderjunctionandthebottomtangentlineonthecylinder.Bucklingintheellipsoidalheadisnotconsideredsinceitisembeddedinconcrete.220.28-1AmendmentNo.5,(8/81) 0824M-9(3)Asstatedabove,thedesignofthecontainmentisinaccordancewithASMECodeSectionIII,NE-3100designrules.ExternalpressureforcylinderandheadarecheckedusingdesignrulesinNE-3133.3andNE-3133.4.ThecylinderischeckedforaxialcompressionusingthedesignrulesinNE-3133.6.Seismicanddeadloadsareconsideredtocauseaxialcompression.Forthoseareaswithunequalbiaxialcompressivestresses,theASMErulesasmodifiedbyWRC69havebeenused'asically,theallowablestressforcompressiondeterminedbyNE-3133remainsthesameforall"designconditions"exceptforSSEearthquakewheretheASMESectIII;Minter1972AddendaNE-3131C(2)allowsa20percentincrease.TheStLucie2designdidnotusethis20percentincrease.(4)ReferencepaperisWRC69,June,1961.220.28-2AmendmentNo.5,(8/81) 082%-1cationNo.220.29Statethecodeusedinthedesignofthesteelstructuralsupportsforthereactor.coolantsystemandshowacomparisonofthecodeusedtothecurrentversionoftheASMECodeSectionIII,DivisionI,SubsectionNF.AlsoshowacomparisonoftheACI349CodetotheACI318-71CodeyouusedfordesignoftheConcreteInternalStructure-ResponsePartITheAISCcodeisusedinthedesignofthestructuralsteelsupportsfortheReactorCoolantSystems.RefertoSubsections3.8.3.2.1and3.8.3.5.2.PartIIThemajordifferencebetweentheACI318-71andACI349codesisintheareaofdesignloading~ThedesignloadsspecifiedinACI349aresupplementedbyRG1.142whichmakesthedesignloadsconsistentwiththosepresentedinSRP3.8.4.RefertotheattachedpartiallineupofSRP3.8.4forcomparisonofloadcombinationsspecifiedthereinandthoseusedinthedesignofseismicCategoryIstructures.TheattachedlineupofRG1.142givessupplementedrequirementsondesignprocedurestotheACI349Code,withstatementsofcompliance,alternatecomplianceandremarksonimpactofdeviations.RG1-142alsorequires,thatprovideradiationshielding,ofANSIStandardN101.6-1972followed~Theprovisionsoffollowingclarifications:forconcretestructuresusedtotheprovisionsofSections5.1and10"ConcreteRadiationShields"bethosesectionsarefollowedwiththe220.29-1AmendmentNo.5,(8/81)
0829W-2DOCUMENT:SRP3.8.4TITLE:OTHERSEISMICCATEGORYISTRUCTURESACCEPTANCECRITERIACOMPLIANCEALTERNATECOMPLIANCELoadCombinationsforConcreteStructuresForconcretestructures,theloadcombinationsareacceptableiffoundinaccordancewiththefol-lowing:a-Eorserviceloadconditions,eithertheworkingstressdesign(WSD)methodorthestrengthdesignmethodmaybeused.a-Thestrengthdesignmethodwasused.i-IftheWSDmethodisused,thefollowingloadcombin-ationsshouldbeconsidered:i-Notapplicable~4oMI(1)D+L(2)D+L+E(3)D+L+WIfthermalstressesduetoToandRo,arepresent,thefol-lowingcombinationsshouldbeconsidered:(la)D+L+To+R(2a)D+L+To+Ro+E(3a)D+L+To+Ro+WBothcasesofLhavingitsfullvalueorbeingcompletelyabsentshouldbechecked-B080 0829W-3DOCUMENT:SRP3.8.4(Cont'd)ACCEPTANCECRITERIACONFLIANCEALTERNATECOHPLIANCEii-Ifthestrengthdesignmethodisused,thefollowingloadcombinationsshouldbeconsidered:(1)1.4D+1.7L(2)1.4D+1.7L+1.9E(3)1.4D+1'7L+1.7WIfthermalstressesduetoToandRoarepresent.thefollowingcombinationsshouldalsobeconsidered:(lb)(0.75)(1~4D+17L17T+1.7R)ii-St.LucieUnit2designcomplieswiththeloadcombinationslisted,withtheexceptionofload-combinations(lb),(2b)and(3b)~ii-Thealternateloadcombinationsusedare:(lb)1.4(B+D)+1.3(R+T)+1.7(L+H)(2b)1.4(B+D)+1.3(Ro+To)+17(L+Ht)+1.9E(3b)1.4(B'D)+1.3(Ro+To)+1'L+H+W)whereBBuoyancyatnormalgroundwaterlevelSincetheacceptancecriterialoadcombinationshaveamulti-plicationfactorof0.75,thecombinedloadsusedasident-ifiedinalternatecompli-ancefortheSt.LucieUnit2designwouldbegreaterforalldesigncases.Theloadcombi-nationsusedonSt.LucioUnit2werebaseduponguidancepro-videdinAEClettertoFPALCo.,August30,1973,"Enclo"sure2-StructuralDesignCriteriaforCategoryIStructuresOu~tdetheCon-tainment<"inadditiontothosegiveninthe'ACI318-71Code.l4t4tOIut(2b)(0.75)(1o4D+1o7L+1.9E+lo7To+~1.7Ro)(3b)(0.75)(1.4D+1.7L+1.7W+1.7To+1.7RoBothcasesofLhavingitsfullvalueorbeingcom-pletelyabsentshouldbechecked.Inadditionthefollowingcombinationshouldbeconsidered:B'Buoyancyatmaximumgroundwaterlevelre-resultingfromaPMH.H~LateralearthloadsundernormalconditionsH'Lateralearthloadsundernormalandearth-quakeconditions(2b'1.2D+1.9E(3b)12D+lo7WoCOCoLheresoilandhydrostaticpressuresarepresent,inadditiontoalltheabovecombinationswheretheyhavebeenincludedinLandDrespectively,therequire-mentsofSections9.3.4and9.3.5ofACI-318-71(Ref1)shouldalsobesatisfied.Soilandhydrostaticpres-suresareincludedinthedesignandtherequirementsofACI-318-71Sections9.3.4and9.3.5werecon-sidered.
0829W"4DOCUMENT:SRP3.8.4(Cont'd)ACCEPThtL'ECRITERIACOHPLIANCEALTERNATECOHPLIANCERENARKSForfactoredloadconditions,whichrepresentextremeenviron-mental,abnormal,abnormal/severeenvironmentalandabnormal/extrcmeenvironmentalconditions,thestrengthdesignmethodshouldbcusedandthefollowingloadcombinationsshouldbeconsidered.b-StLuciaUnit2designcomplieswiththeloadcombinationslisted.tOc>a0(4)D+L+To+Ro+E(5)D+L+To+Ro+Wt(6)D+L+Ta+Ra+1>5Pa(7)D+L+'Ta+Ra+i+25Pa+loO(Yr+Yg+Ym)+1.25E(8)D+L+Ta+Ra+loOP~loO(Y+Y)+Ym)+1.0EIncombinations(6),(7),and(8'l>themaximumvaluesofPa~Ta>Ra,Yg>YrandYm,includ-inganappropriatedynamicloadfactor>shouldbeusedunlessatime-historyanalysisisperformedto)ustifyotherwise.Combinations(5),(7),and(8)andthecorre-spondingstructuralacceptancecriteriaofSectionII.5ofthisplanshouldbcsatisfiedfirstwithoutthetornadomissileloadin(5)andwithoutYr>Yg>andYmin(7)and(8).Whenconsid-eringtheseconcentratedloads,localsectionstrengthcapacitiesmaybeexceededprovidedtherewillbenolossoffunctionofanysafety"relatedsystem.BothcasesofLhavingitsfullvalueorbeingcompletelyabsentshouldbechecked.
0829W-5DOCUMENT:SRP3-8.4(Cont'd)ANSIN101.6-72SectionClarifications5.1.25.1.35.1.45.1.6Nohighdensityconcreteisused.Nohydrousaggregateisused-Noboroncontainingaggregatesareused.Coatingsofclay,silt,gypsum,calciteorcalicheoncoarseaggregatetotalnomorethanthreeandonehalfpercentofthetotalweightoftheaggregate.Radiationattenuationcalculationstakethisintoaccount.10.1.2DimensionaltolerancesforhatchesandopeningsasspecifiedinACI-347areusedratherthanthosegiveninTable1ofANSIN101.6-72.Minimumpracticablejointclearancesarespecified.10.1.310.2.2Servicetrenchesarenotused.Theweightofeachblockisindicatedonthedesigndrawing,notmarkedontheblock.10.2.3Blocksarecuredaccordingtogoodconstruction,practice,e.g.,useofwetburlaporcuringcompound,'butnotnecessarilyintheabsenceofdirectsunlightorheat.Thissunlightorheat,however,doesnotresultinthelossofshieldingefficiency.10.3.1Therearenopresentplansforpenetrationsthroughshieldingplugs.However,iftheyarerequired,streamingispreventedbyproperdesignofthepenetration.10.4Nomovableor'removablepouredwallsareused.10.6Precastshieldingcomponentsarefabricatedatthe,site~k220'9-5AmendmentNo.5,(8/81)
0829W-6TITLE;SAFETY-RELATEDCONCRETESTRUCTURESFORNUCLEARPOWERPLANTSOTHERTHANREACTORVESSELSANDCONTAINMENTACCEPTANCECRITERIACOMPLIANCEALTERNATECOMPLIANCE'IheproceduresandrequirementsdescribedinACIStandard349-76,"CodeRequirementsforNuclearSafetyRelatedConcreteStructures,"aregenerallyacceptabletotheNRCstaffandprovideanadequatebasisforcomplyingwiththeCommission'sregulationswithregardtothedesignofsafety-relatedconcretestructuresother.thanreactorvesselsandcontainments,subjecttothefollowing:ThedesignandanalysisproceduresDesignandanalysisofSt.Lucieutilizedforsafety-relatedconcreteUnit2startedbeforeACI349-76structuresareinaccordancewithwasissued.theACI318-71Code.MOIl.TheapplicabilityofstrengthdesignmethodstostructureswhoseprincipalfunctionistoprovideabarriertocontainorretainpressuresuchasthedividerbarrieroftheicemondenserofthePWRcontainmentisquestionable.There-fore,forthosestructures,mereconformancewiththerequirementsofACI349-76isunaccep-tabletothestaff,whowillcontinuetoreviewthedesignofthesestructuresonacase-by-casebasis.2,Whenconcretestructuresareusedtoprovideradiationshielding,theprovisionsofSections5.1and10ofAhSIStandardN101.6-1972,"ConcreteRadiationShields,"andthoseofANSIStandardN101.4-1972,3asendorsedbyRegulatoryCuide1.54,"QualityAssuranceRequirementsforProtectiveCoatingsAppliedtoMater-CooledNuclearPowerPlants,"areacpplicableo-1.NotapplicabletoStLucie-Unit22RefertoresponsetoQuestion220.29forcompliancetoSections5.1and10ofANSIStandardN101~6-1972.80CO ACCEPTANCECRITERIACOMPLIANCEALTERNATECOMPLIANCE~4CIl4I3.ACIStandard349-76lacksspecificrequire-mentstoensureductilityofframedstruc-tures-AdherencetotherequirementsofAppendixhtoACIStandard318-71isacceptable.4oSection5.1.2permitsdepositingconcrete4iwithoutthepriorremovalofwaterfromtheplaceofdepositatthediscretionoftheowner.Sincethepresenceofwaterintheplaceofdepositmayseriouslyaffectthestrengthpropertiesofconcrete,itisimportantthatwaterberemovedbeforecon-creteisdepositedunlessatremieisusediMaterisremovedbeforeconcreteisdeposited.3iAppendixAofACI318"SpecialProvisionsforSeismicDesign"isapplicablewhenseismicloadsarebasedonempiricalformulaesuchasthoseoftheUnifiedBuildingCode.FortheCategoryIstructures,seismicloadsareobtainedfromdynamicanalysisofthestructuresbasedonSSEandOBEdesignresponsespectra.Shearwallsandbracingsystemsaredesignedtotaketheseismicforcescalculatedfromsuchanalysis'orthesereasonsEbascofeelsthattherequiiementsofAppendixhofACI318arenotapplicabletothenuclearplantstructureswhosedesignisbasedoncon-servativecriteriaanddetailedseismicanalysis.4.RefertoConcreteSpecifi>>cationFLO2998.473.IBm0SiSection5.4.1allowsconcretethathasparti-5,allyhardenedorhasbeencontaminatedwithforeignmaterialsorremixedafterinitialsettobereusedatthediscretionoftheengineer.Suchamaterialwouldbedefectiveandthereforeshouldnotbeused.Theplacementofpar-tiallyhardened,contam-inatedorretemperedconcreteisnotpermittedi5.RefertoConcreteSpecifi-cationPLO2998i473iCOCO
0829W-8DOClMENT:RG1.142(REV.0)(Cont'd)ACCEPTANCECRITERIAALTERNATECOMPLIANCE6iInadditiontotherequirementsofSection1.3.1ofACIStandard349-76,theinspectorsshouldhavesufficientexperienceinrein-forcedandprestressedconcretepracticetointerpretplansandspecifications.ThcinspectorsshouldbethoroughlyfamiliarviththeapplicableACIandAS%MStandards.ACIStandard311-74,1"RecommendedPracticeforConcreteInspection,"shouldbefollowedexceptvheretherequirementsofSection1.5ofACI.Standard349-76control.6.FPALtoindicatecompliancebasedonsiteinspectionpractices.tVClt4I0>7~ThefrequencyofcylindertestingrequiredbyANSIN45.2.5-1974concreteSection4.3.1ofACIStandard349-76isnotcylindertestingfrequencyconsistentwithgenerallyacceptedpracticeivasfollowedonSt~LuciaAtestfrequencyinconformancevithANSIVnit2.StandardN45.2.5-1974,4asendorsedbyRegulatoryGuide1.94,"QualityAssuranceRequirementsforInstallation>Inspection,andTestingofStructuralConcreteandStructuralSteelDuringtheConstructionPhaseofNuclearPowerPlants,"isacceptable'.Theminimumpressure-testingrequirementsforembeddedpipingofACIStandard318-71havebeendeletedfromACIStandard349-76.Inordertoensurethatminimumpressure-testingrequirementsaremet,thepressuretestsofembeddedpipesinSection6.3.2.4ofACI349"76shouldalsosatisfytherequire-mentsofSubsection6.3.2.4ofACI318-71.8.Notapplicable.ACIStandard318-71,Section6.4,indi-catesthatpiping,withtheexceptionsofSection6.3.2'>istobetestedpriortocon-creting.Section6.3.2.5isasfollovs:"Drainpipesandotherpipingdesignedforpressuresofnotmorethan1psiaboveatmos-phericpressureneednotbetestedasrequiredinSection6.3o2e4o"000CO
0829'-9ACCEPTANCECRITERIACOMPLIAhCEALTERNATECOMPLIANCE9.Moreconservativeloadfactorsareappropriateinaccountingfortheeffectsofnormalorshutdovnthermalloads,postul'atedpipebreakaccidencs,andanoperatingbasisearthquake(OBE)incombinationwithapostulatedpipebreak.TheloadfactorsusedinSection9.3.1ofACIStandard349-76areacceptabletothestaffexceptforthefolloving:9.Loadfactorsutilizedarepre-sentedinSRP3.8.4lineup.Thenotedloadfactorchangesmaketheloadcombinationcon-sistentwiththosepresentedinSRP3.8.4o~4hlot4Ia.Inloadcombinations(9),(10),and(11)>1.7Tshouldbeusedinplaceof1.4To'.Inloadcombination(6),1.5Pashouldbeusedinplaceof1.25Pa.c~Inloadcombination(7),1.25Paand1.25Eoshouldbeusedinplaceof1.15Paand1.15E,respectively.d.Inloadcombinations(2)and(10),1.9Eoshouldbeusedinplaceof1.7Eo10.StructuresmustbeabletovithstandtheeffectsofdifEerentialsettlementunderenvironmentalloadsaswellasunderabnormalloads.Thus,inSection9.3.2.ofACI349-76,considerationoftheeffectsofdifferentialsettlementshouldbeincludedinloadcombi-nations(1)through(11).10'otapplicablesinceeachsafety-relatedconcretestructureissupportedonanindividualmat.Differentialsettlementvithinabuildingwosnotexpectedt'ooccurandwasnotincludedssadesignconsideration.8n0COCOlliTheprovisionsofSection9.3.3ofACIStand-ard349-76toaccountfortheeffeccsoEcransitoryloadsarenotsufficientlygeneral.ThusfinSection9.3~3ofACIStandard349-76/vhenanyloadreducestheeffectsofotherloads,thecorrespondingcoefficiencforthatloadshouldbetakenas0.9ifitcanbedemonstratedthattheloadisalvayspresentoroccurssimultaneouslywiththeotherloads.Othervise,thecoefficientforthatloadshouldbetakenaszero.11.Loadcombinationsusedindesignll,TheloadcombinationsusedoneitherusefuldeadandlincloadsSt'LucieUnit2werebaseduponorfulldeadandzerolineloadsguidanceprovidedinAECletter'toFP6LCoy83073>Enclosure2-StructuralDesignCriteriaforCategoryIStruc-turesOutsidetheContainment,"inadditiontothosegivenintheACI318-71Code.
0829M-10ACCEPTANCECRITERIACOHPLIANCEALTERNATECOMPLIANCE~4~4ot4Illi(Continued)Exeptionistakentotheregulatorypositionwhichre-quiresthatacoefficientof0.9orzerobeappliedtoanyloadwhichreducestheeffectsofotherloads.Consideringliveloadashavingitsfullvalueorbeingcompletelyabsentsatisfiestherequire-mentforsettingatransitoryloadtozero.However,apply-ingthe0.9coefficienttoallothersuchmitigatingloads,whicharealwayspresentoroccursimultaneously,wouldincreasethenumberofloadcombinationstoanimpracticallevelwithnodemonstratedormeaningfulincreadeintheoverallconservatismofthegoverningloadcombinations.OurpositionisconsistentwithACI318-77andACI349-76'2'heprovisioninSection9.3.6,ofACIStandard349-76permittinglocalexceedanceofsectionstrengthunderconcentrateddynamicloadsdoesnotensurethatthesectioncanwithstandtheassociateddistributedloadings.Thus,iftheprovisionofSection9.3.6ofACI349-76per-mittingexceedanceoflocalsectionstrengthsisinvoked,itshouldbedemonstratedthatsectionstrengthsareadequatetoaccommodateloadcombinations(7)and(8)withoutthe~dynamicloadsYg,Ym,andYr.12.DesigncriteriausedonStLucieUnit2doesnotpermitlocalexceedanceofsectionstrength. 0829M-11ACCEPTANCECRITERIACOHPLIANCEALTERNATECOMPLIANCE13.TheNRCstaffwouldacceptthelocalexcee-danceofsectionstrengthforconcentratedtornado~eneratedmissileloadingunderloadcombination(5).However,ananalysisshouldbeperformedtodemonstratethatsectionstrengthsareadequatetoaccommodateloadcombination(5)withoutthedynamicloadeffectoftornado"generatedmissiles.13.Sameas12above.14.ACIStandard349-76doesnotaddressthesubjectofopeningsinslabsandfootingsiProvisionsofSection11.12ofACI318-71areacceptableforthispurpose.14'rovisionsofSection11-12ofACI318-71arefollowed.MoP4ICLeon0CO00
0823W-I~uestionNo.220.30Youstatedthattheallowablestressforthefactoredloadcombinationswasincreased.Theseloadcombinationscontaintheearthquakeloading.Thestaffdoesnotallowanyincreaseintheallowableforearthquake3.oads.Re-evaluatethe"structureswithouttheincreaseintheallowablestressesandprovidetheresultsofyourre-evaluation.ResponseOurloadcombinationsandallowablestressescomplywiththoseintheStandardReviewPlan3.8.8~SRP3.8.II5doesallowanincreaseintheallowablesforearthquakeloadsinthefactoredloadcombinations.220.30>>1AmendmentNo.5,(8/Sl) 0823W-2uestionNo.220.31(3.8.3)(3.8.4)Inseveralanalysisyouhaveusedstaticloadstorepresentadynamicloading.Provideyourproceduresfortransformingthedynamicloadsintostaticloads,referencepipereactionsandpressurizationofshieldwall.ResponseTheSt.Lucie2structuraldesignutilizesequivalentstaticloadmethodology.TheloadingcombinationforallstructuralloadsisprovidedinFSARSubsection3.8.4~Themethodoftransformingthedynamicloadswithequivalentstaticloadsisasfollows:'l)Thedynamicpipingloads(i.e~,seismic,reliefvalvedischarge)aretransformedintostaticloadsinthepipingstressanalysisbyeitherutil1zingthemodelresponsespectramethodorbyapplyinganamplificationfactortotheexcitationloadsThesepipeloadsonstructuresareconsideredinthedesignfor=boththepositiveandnegativedirectionswiththesamemagnitude.(2)ThedynamiceffectsofpipewhipandjetimpingementarediscussedinFSARSection3.6.Thepipewh1ploadsonthestructuralcomponents(i.e.,pipewhiprestraints)werecalculatedutilizingstaticmethodswhilevariousconfirmatorydynamicanalysiswereutil1zedtoconfirmthesepipingloads(refertoAppendix3.6E)~ThejetimpingementanalysisutilizedaDynamicLoadFactor(DLF)oftwoappliedtotheKPAloadtodeterminetheloadsonstructuralcomponents(refertoSubsection3.6.2)~(3)Thedynamiceffectsassociatedwiththecontainmentsubcompartmentpressureanalysiswereconsideredinthestructuraldesignofthesubcompartmentwalls.Theequivalentstat1cloadswereobtainedbyapplyingaDynamicLoadFactortothepeakofeachdynamicloads.Thecalculatedpeakpressureforeachsubcompartmentandthecorrespond1ngdesignvalves(withcalculatedmargin)willbeprovidedinFSARSubsection6.2.3.220.3l-lAmendmentNo,5,(8/81)
0823W-3QuestionNo.220.32Youstatedthatthecabletrayrestiaintsweredesignedfora"minimumnaturalfrequencywithin16hz".Youfurthersaythe'VACrestraintsaredesignedwithaminimumnaturalfrequencyof15hz.Whatprovisionsweremadetoensurethefirstnaturalfrequencywas15or16hzandhowdoyouaccountforhighermodesinthesystems?Alsostatehowtherestraintsareanchoredtothestructure~FSARSubsection3.8.3.1.5containsseveralrestraintdesigns.ResponseThefirstnaturalfrequencyofthecabletray(HVAC)restraintisdeterminedaftermemberselectiontoensurethattheminimumnaturalfrequencyof16hz(15hz)issatisfied~Amplification.factorsareusedtoaccountfortheparticipationofhighermodes.Thecabletray(HVAC)restraintsareweldedtosteelembedmentswithafilletweldallaround'20'2-1AmendmentNo.5,(8/81) 0823W-4QuestionNo.220.33(3.8.5.5)Youstatedyouusedonlythepassiveearthpressureontheportionofthestructurestoresistsliding.Discusshowyouaccountedforthisloadonthewallsandprovideatableshowingthestructure.andthemaximumearthpressure.~ResonseFSARSubsection3.8'5.5statesthat,ifwediscounttheabilityofthewaterproofingmembrane(beneaththeShieldBuildingandReactorAuxiliaryBuilding)toresistshearforces,passiveearthpressureswouldbesufficienttoresistsliding.Adesignimpactreviewofthisassumptionhasbeencompletedandresultsareasfollows:ShieldBuilding-AsubstantialportionoftheShieldBuildinghasstructuralconcreteandfillconcretethroughoutthebuildingcross-sectionbelowplantislandgradeelevation.Therefore,thesoilpassivepressureloadsonthebuildingareofnodesignsignificance.However,thedesignanalysisofthebuildingdeterminedaseismicmovementandresistingearthpressurelessthanthefullpassiveearthpressure.Thisrequiresthewaterproofingmembranetobeabletotransfershearforces'herefore,thedesigncalculationsforresistancetoslidingarebaseduponthecombinationofresistingearthpressureandthemembraneshearstrengthvaluedocumentedbythemanufacturer.SeeFigure220.33-1forthemaximumpassivepressureanddesignresistingpressure.ReactorAuxiliaryBuildi-Thebuildinggeneralarrangementandresultingmatlayoutallowsslidingtoberesistedthroughinternalshearresistanceofthesoilandresistingearthpressures,in.theeast,westandsouthdirections.The.abilityofthewaterproofingmembranetotransfershearforcesisnotrequiredinthosedirections.Inthenorthdirection,theearthpressurerequiredtoresistslidingisgreaterthanthedesigncapacityofthebuildingwalls.Therefore,'hedesigncalculationsforresistancetoslidinginthatdirectionarebaseduponthecombinationofresistingearthpressureandthemembraneshearstrengthvalue-SeeFigure220.33-2forresistingpressures.SeeFSARSubsection3.8.5.5forrevisedstatementonthedesignconsiderationofwaterproofingmembraneinstructureslidinganalysis.220.33-1AmendmentNo.5,(8/81) t 0823M-5QuestionNo.220.34(3.8.5.2)Statethecodesusedandlistanydeviationstothecodesusedforfoundationdesign.Comparethecodesusedtothepresentversionofthecodesshowingdeviationsandtheeffectofthesedeviations.,ResponseStandardReviewPlan3.8.5"Foundations"referstoStandardReviewPlan3.8.3"InternalStructuresofContainments"forfoundationdesigncodesandACI381-71istheonlyapplicablecodelisted.St~LucieUnit2foundationdesignisinaccordancewithACI381-71assupplementedbyStandadReviewPlan3.8.4"OtherSeismicCategoryIStructures."SeeresponsetoQuestion220.29forcomparisonofSRP3.8.4loadcombinationrequirementsandthoseusedintheSt.LucieUnit2design.Areviewofthe1977editionofACI318Codehasdeterminedthatthechangeshaveinsignificanteffectonfoundationdesignrequirements.220.34-1AmendmentNo.5,(8/81)
0823W-6estionNo.220.35Provideatableshowingthefactorofsafetyagainstsliding,overturningandflotationfortheloadcombinationsshowninStandardReviewPlan3.8.5.~ResonseTheattachedtablesshowthefactorsofsafetyagainstsliding;overturningandflotation,fortheloadcombinationsshowninStandardReviewPlan3.8.5forthema)orandtypicalseismicCategoryIbuildings.NochangetotheFSARi.srequired.220.35-1AmendmentNo.5,(8/81)
0823W-7TABLE220.35-1REACTORBUIL'DINGLOADCCNBINATIONFACTOROFSAFETYAGAINSTSLIDINGOVERTURNINGFLOATATIOND+H+ED+H+ED+H+ElD+H+WtD+Fll.238.7)2.692.6921.73.12DDeadLo'adsE~OBEEl~DBEW~HurricanceWind8194mphWt~TornadoWind8300mphFl~Buoyancy,MaxGWTEL+21.00H.~SoilPressure220.35-2AmendmentNo.5,(8/81)
0823W-8TABLE220.35-2REACTORAUXILIARYBUILDINGFACTOROFSAFETYAGAINSTLOADCOMBINATIONSLIDINGOVERTURNINGFLOATATIOND+H+ED+H+ED+H+ElD+H+WtD+Fl1353.881.162842.644-142.153.152.35DDeadLoadsE~OBEEl~DBEW.HurricanceWind8194mphtWtTornadoWind8300mphFl~Buoyancy,MaxGWTEL+17.00H=SoilPressure220.35-3AmendmentNo.5,(8/81) 0823W-9TABLE'220.35-3CONDENSAXESTORAGETANKLOADCOMBINATIONFACTOROFSAFETYAGAINSTSLIDINGOVERTURNINGFLOATATIOND+H+ED+H+ED+H+ElD+H+WtD+Fl2.244.71)2.542-543.935.90D~DeadLoadsNote:E~OBEEl~DBEW~HurricanceWind8194mphWt~TornadoWind8360mphFl~Buoyancy,MaxGWTEL+17.00H~SoilPressureFactorsofsafetyforloadcombinationsD+HMandDW+WwillbehigherthanforD+HMIandD+H+Wtrespectively.~220,35-4AmendmentNo.5,(8/81) 0823W-10TABLE220.35-4FUELHANDLINGBUILDINGLOADCOMBINATIONSLIDINGFACTOROF'SAFETYAGAINSTOVERTURNINGFLOATATIOND+H+ED+H+ED+H+ED+H+WtD+Fl2.11)1.50l.254.092'3)1.50l.394.459.1D~DeadLoadsE~OBEElDBEW~HurricanceWind8194mphWt.~TornadoWind8360mph~F'Buoyancy,MaxGWZEL+17.00H,~SoilPressureNote:Dynsoilpressure)activesoilpressureincalculationsHisneglectedandthisiscon-servative.22035"5AmendmentNo.5,(8/81)
0823W-11TABLE220.35-5DIESELGENERATORBUILDINGFACTOROFSAFETYAGAINSTLOADCOHBINATIONSLIDINGOVERTURNINGFLOATATIOND+H+ED+H+ED+H+ElD+H+WD+Fl2.98)7.451.557.459.68)23.924.7123.926.44D~DeadLoadsE'OBEEl~DBEW~HurricanceWind8194mphWt~TornadoWind8360mphF~Buoyancy,MaxGWTEL+17.00H~SoilPressure22035-6AmendmentNo.5,(8/81) 0823W'12TABLE220.35-6COMPONENTCOOLINGFACTOROFSAFETYAGAINSTLOADCOMBINATIONSLIDING.OVERTURNINGFLOATATIOND+H+ED+H+ED+H+El+H+WD+Fl)1.52)3.071.523.07)4.16)12.684.1612.683.11DDeadLoadsE'OBEFl~DBEWHurricanceWind8194mphWt~TornadoWind8360mphFBuoyancy,Max(ÃTEL+17.00H~SoilPressure22035-7AmendmentNo.5,(8/81)
0823M-13TABLE220.35-7INTAKESTRUCTUREFACTOROFSAFETYAGAINSTLOADCOHBINATIONSLIDINGOVERTURNINGFLOATATIOND+H+ED+H+ED+H+'ElD+H+W,D+Fl1.644.381.133.831.521.65'.231.612.31D~DeadLoadsE<OBEFl~DBEWHurricanceWind8194mphWtTornadoWind8360mph'~Buoyancy,HaxGWTEL+16.00HSoilPressure220,35-8AmendmentNo.5,(8/81)
0823M-14estionNo.220.36TheloadcombinationslistedinSubsection3.8.4.3.2.1arenotinaccordancewithStandardReviewPlan3.8.4.Compareyourloadcombinationsanddiscusstheeffectsofyourdeviations.~ResonseRefertoresponsetoQuestion220.29forcomparisonofloadcombinationsspecifiedinSRP3.8.4andthoseusedinthedesignofseismicCategoryIstructures,statementsofcompliance,alternatecomplianceandremarksonimpactofdeviation.220.36-1AmendmentNo.5,(8/81) . 0823W-15uestionNo.220.37Identifyallmasonrywallsinyourfacility,whichareinproximity.toorhaveattachmentsfromsafety-relatedpipingorequipmentsuchthatwallfailurecouldaffectasafety-relatedsystem.Describethesystemsandequipment,bothsafetyandnon-safety-related,associatedwiththesemasonrywalls.Includeinyourreview,masonrywallsthatareintendedtoresistimpactorpressurizationloads,suchasmissiles,pipewhip,pipebreak,jetimpingement,ortornado,andfireorwaterbarriers,orshieldwallsEquipmenttobeconsideredasattachmentsorinproximitytobewallsshallinclude,butisnotlimitedtopumps,valves,motors,heatexchangers,cabletrays,,cable/conduit,HVACductwork,andelectricalcabinets,instrumentationandcontrols.Provideare-evaluationofthedesignadequacyofthewalls,identifiedabove,todeterminewhetherthemasonrywallswillperformtheirintendedfunctionunderallpostulatedloadsandloadcombinations.Submitawrittenreportuponcompletionofthere-evaluationprogram.Thereportshallincludethefollowinginformation:1-Describe,indetail,thefunctionofthemasonrywalls,theconfigurationsofthesewalls,thetypeandstrengthsofthematerialofwhichtheyareconstructed(mortar,grout,concreteandsteel),andthereinforcementdetails(horizontalsteel,.verticalsteel,andmasonrytiesformultiplewytheconstruction)~Awytheisconsideredtobe(asdefinedbyACIStandard531-1979)"eachcontinuousverticalsectionofawall,onemasonryunitorgroutedspaceinthicknessand2in.minimuminthickness."2-.Describetheconstructionpracticesemployedintheconstructionofthesewallsand,inparticular,theirade'quacyinpreventingsignificantvoidsorotherweaknessesinanymortar,grout,orconcretefill~3-There-evaluationreportshouldircludedetailedjustificationforthecri-teriaused.Referencestoexistingcodesortestdatamaybeusedifapplicablefortheplantconditions~There-evaluationshouldspecificallyaddressthefollowing:220.37-1AmendmentNo.5,(8/81) 0 0823M-16a-Allpostulatedloadsandloadcombinationsshouldbeevaluatedagainstthecorrespondingre-evaluationacceptancecriteria.There-evaluationshouldconsidertheloadsfromsafetyandnon-safety-relatedattachments,differentialfloordisplacementandthermaleffects(ordetailedjustificationthatthesecanbeconsideredselflimitingandcannotinducebrittlefailures),andtheeffectsofanypotentialcrackingunderdynamicloads.Describeindetailthemethodsusedtoaccountforthesefactorsinthere-evaluationandtheadequacyoftheacceptancecriteriaforbothi.n-planeandout-of-planeloads'-Themechanismforloadtransferintothemasonrywallsandpostulatedfailuremodesshouldbereviewed.Formultiplewythewallsinwhichcompositebehaviorisreliedupon,describethemethodsandacceptancecriteriausedtoassurethatthesewalls,especiallywithregardtoshearandtensiontransferatthewytheinterfaces~Withregardtolocalloadingssuchaspipingandequipmentsupportreactions,theacceptancecriteriashouldassurethattheloadsareadequatelytransferredintothewall,suchthatanyassumptionsregardingthebehaviorofthewallsareappropriate.Includethepotentialfortensilestresstransferthroughbondatthewytheinterfaces.Existingtestdataorconservativeassumptionsmaybeusedtojustifythere-evaluationacceptancecriteriaifthecriteriaareshowntobeconservative.andapplicablefortheactualplantconditions.Intheabsenceofappropriateacceptancecriteriaaconfirmatorymasonrywalltestprogramisrequiredby.theNRCinordertoquantifythesafetymarginsinherentinthere-evaluationcriteria.Describeindetailtheactionsplannedandtheirscheduletojustifythere-evaluationcriteria.Ifatestprogramisnecessary,provideyourcommitmentforsuchaprogramandascheduleforsubmittalofadescriptionofthetestprogramanda.scheduleforcompletionoftheprogram.Thistestprogramshouldaddressallappropriateloads(seismic,tornado,missile,etc).Submittiieresultsofthetestprogramuponitscompletion.ResponseThisquestionisNRCBulletin80-11.Afieldinspectionprogramandadesignre-evaluationprogramwereinstitutedandcompletedonSt~Lucie1whichaddressedtherequirementsofIEBulletin80-11.Aprogram,similartoSt~Lucie1,offieldinspectionsandre-evaluationofdesignadequacywillbeimplementedonSt.Lucie2asfollows:220.37-2AmendmentNo.5,(8/81)
0823W-171.Performfieldsurveysofallmasonrywallstoidentifyallmasonrywallswhichareinproximitytoorhaveattachmentsfromsafety-relatedpipingorequipmentsuchthatwallfailurecouldaffectasafety-relatedsystem..2-Masonrywallsidentifiedbythefieldinspectionprogramassa'fety-relatedwillbere-evaluatedtodemonstratetheircapacitytowithstandthepostulateddesignloads.Are"evaluationreportwillbesubmitteduponthecompletionofthere-evaluationprogram.ThisreportwillincludetheinformationasrequestedbyNRC.Justificationforthere-evaluationcriteriawillbebasedonreferencetoeffect'ivecodesandestablishedstandardsofpracticerelatedtoconcreteandmasonrydesigntypicallyusedthroughouttheindustry.Itisanticipatedthatsuchjustificationwillbeconsideredappropriateandatestprogramwillnotbenecessary'asonrywallsonSt~Lucie2arereinforcedandintendedtoresistseismicforces.Thedurationofthere-evaluationprogramissixmonths.TheerectionofconcreteblockwallsandinstallationofequipmentadjacenttothemshouldbesufficientlycompletedbyNovember1981.There-evaluationprogramwillthenstartsThiswillallowthefieldinspectionportionofthere-evaluationprogramtobecompletedinonepass(survey).220.37-3AmendmentNo.5;(8/81) ~'}}