ML17261A111
| ML17261A111 | |
| Person / Time | |
|---|---|
| Site: | Ginna |
| Issue date: | 04/12/1979 |
| From: | Saddock H ROCHESTER GAS & ELECTRIC CORP. |
| To: | Ziemann D Office of Nuclear Reactor Regulation |
| References | |
| TASK-08-04, TASK-8-4, TASK-RR NUDOCS 7904230168 | |
| Download: ML17261A111 (52) | |
Text
REGULATORY INFORMATION DISTRIBUTION SYSTFM (RIDS)
ACCESSION NBR '7904230168 DOC- ~ DATE: 79/04/12 NOTARIZED:
NO DOCKET ¹ FACIL:50-244 ROBERT EMMET GINNA NUCLEAR PLANT, UNIT 1, ROCHESTER G
05000244 AUTH BYNAME AUTHOR AFFILIATION SADDOCKiHsG ~
ROCHESTER GAS 8
ELECTRIC CORPo Z IEMANNe D' L ~
RECIP ~ NAME RECIPIENT AFFILIATION OPERATING REACTORS BRANCH 2 VCkWEalm.
SUBJECT:
FORWARDS INFO REQUESTED ON 781208$
RE TOPIC VIII~4g ELECTRICAL PENETRATIONS OF REACTOR CONTAINMENT~
W/19 OVERSIZED DRAWINGS ENCL ~
DISTRIBUTION CODEi A001S COPIES RKCEIVEDSLTR "M'NCL ~
SIZE!
4 TITLE! GENERAL DISTRIBUTION FOR AF KR ISSUANCE OF OPERATE'.IC NOTES:/~2,)"~Llt~o~ C. /'Id/ tlat
'~SET
~gnJC s 'B'EilfCL TO'"'"K
'ECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL ID CODE/LIAME LTTR ENCL ACTION:
05 BC 0 8M~
7 7
INTERNAL: 01 12 I5h, 15 CORK PERF BR 17 ENGR BR 19 PLANT SYS BR 21 EFLT TRT SYS EXTERNALS 03 LPDR 23 ACRS 1
1 2
2 1
1 1
1 1
1 1
1 1
1 16 16 02 NRC PDR 14 TA/EDO 16 AD SYS/PROJ 18 REAC SFTY BR 20 EKB 22 BR INKMAN 04 NSIC 1
1 1
1 1
1 1
1 Fius5 Rec.c Qg bAAMideg 5m~7 Co D
gT.gfgo.AJ&L43, TOTAL NUMBER OF COPIES REQUIRED e LTTR 38 ENCL 38
lg I
1
<p,~ ~<<o Wp0
> d.
~+
~
o~
<<>>**+
UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555
~OKVVDUM FOR:
TERA Corp.
FROM:
SUBJECT:
US htKC/TIDC/Distribution Services Branch Special Document Handling Requirements O 1.
Please use the following special distribution list for the attached document.
0 2.
The attached document requires the following special considerations:
Do not send oversize enclosure to the KLC PDR.
Only one oversize enclosure was received please Q Pzopziatazy information - send adfidavit only to the NRC PDR Q Other(:specify) cc.
DSB Piles TIDC/DSB Authorized Signature
~
0
- IfIIIIIIIIIIIIItIIIIIIIIIIIII ROCHESTER GAS AND ELECTRIC CORPORATION 41 S9 EAST AVENUE, ROCHESTER, N.Y. 14649 HARRY G. SADDOCK VICK PRKSIOKNT Director of Nuclear Reactor Regulation ATTN: Mr. Dennis L. Ziemann, Chief Operating Reactors Branch No.
2 U. S. Nuclear Regulatory Commission Washington, D. C.
20555 April 12, 1979 TCCCPHONK ARCA COOK TIK S46 2 C~
Crr Pp
~~V1 Q
mph lTl H
CO Vl 700
Subject:
Systematic Evaluation Program Topic VIII-4, "Electrical Penetrations of Reactor Containment" R. E. Ginna Nuclear Power Plant, Unit No.
1 Docket No. 50-244
Dear Mr. Ziemann:
Enclosed is the information regarding electrical penetrations of the reactor containment at the R. E. Ginna Station, as requested in your December 8, 1978 letter.
Very truly yours, 7~ A Harry G. Saddock Enclosure 0(
57
4 C.
Sg U
C
Rochester Gas S Electric Corporation R.
E. Ginna Nuclear Power Plant SEP TOPIC VIII-4 ELECTRICAL PENETRATIONS of Reactor Containment, DOCKET NO.
50-244
l ~
k,
~
P A
Ã
Table of Contents Section Title Objective Analysis Testing Conclusion Appendix A - Block Diagrams Appendix B Relay and Fuse Curves Appendix C Electrical Penetration Drawings
l~
~
\\
II '
1.0
~Ob'ective The purpose of this submission is to provide the ad-ditional information requested in Mr. Ziemann's letter dated December 8,
- 1978, concerning electrical pene-trations.
It will also be shown that the electrical penetrations presently in service at Ginna are capable of maintaining containment integrity during the worst case short-circuit current conditions.
The worst case conditions are also taken coincident with the failure of the primary overload protection devices.
Failures could result from either loss of control power or a stuck breaker.
2.0
~Anal sis 2.1 There are presently seven different types or configura-tions of electrical penetrations in use at Ginna Station.
These penetrations were manufactured by the Crouse-Hinds Corporation and are identified by configuration types A
through G.
Details of each penetration can be seen on the Crouse-Hinds drawings enclosed as Appendix C of this submission.
In addition to the original seven
- types, a Westinghouse type WX-32714 was installed as part of the in containment T.V. modification.
This penetration was designed for multi-purposed, low voltage power, control and instrumentation applications and conforms to IEEE 317, 1972.
Design details are shown on the Westinghouse penetration drawings included in Appendix C.
2.2 Typical circuits representating each of the seven different electrical configurations were selected.
These circuits are identified by their penetration numbers and are tabulated on Column 2 of Table 1.
Appendix A contains'block diagrams for each typical circuit selected, showing the primary and backup pro-tection devices (breakers or fuses) and all cable information.
All breaker and/or fuse information are also shown on Table 1 Columns 9
6 11.
2.3 Maximum fault currents were calculated for each circuit selected and these values are shown on the respective Block Diagrams.
The worst case current values as seen by each electrical penetration and tabulated on column 7 of Table 1.
A postulated three phase bolted fault is assumed at each penetration.
'I E.
~ ~
N
)
~I
2.4 2.5 The manufacturer (Crouse-Hinds) has tested two of the seven electrical penetrations.
The, test shows the maximum short circuit current that the two "power" penetrations configurations A and E can withstand without, mechanical damage.
This data is shown in Table 1, column 4 as "max-current withstand RNS Amps".
The withstand values for the remaining five configurations were derived from manufacturer's calculations using a
ten to one safety factor.
The I t values for each type penetration are shown in 2
Table 1, column 5.
These values were obtained from either manufacture's calculations or from IPCEA P-32-382 Short Circuit Characteristics Of Insulated Cable which-ever was more conservative.
Once the I t values were established, they were used to 2
determine the maximum allowable time that the penetration can withstand the actual fault current.
These time values are then compared against the backup breaker clearing times for each circuit and shown in column 8
of Table 1.
2.6 The trip curves (current versus time) for both the primary and backup clearing devices are enclosed in Appendix B.
The curve numbers are referenced on each block diagram.
The actual clearing times are shown on column 10 and 12 for each circuit.
3.0 The manufacturer has performed Short Circuit Testing on their power penetrations (types A
& E).
The objective of these tests was to investigate the short circuit current capabilities of each penetration type.
The results of this test'ing indicated that the N2 ANG penetration withstood 37.4 KA (rms) for 3 cycles, and the 750 mcm penetration withstood 80 KA for 10 cycles.
No visible damage or gas leakage resulted.
4.0 Conclusion The penetration must retain structural integrity when subject to mechanical stresses caused by the maximum available momentary fault current.
The withstand values are shown in column 4 and the corresponding maximum momentary fault current is shown in column 6.
For those withstand currents determined by analysis, a
safety factor of 3.3 was used.
Thus although the maximum momentary current in penetration AE-5 (3500 A) is above the tabulated withstand current (1400 A), it is well below the current at which mechanical damage is expected to occur (4662 A).
c a
~ lg t4 4
"1 gp
TASLC-1 MCu. CuRRENT WITI-I-STAND CONT-URR RaPNCI R~
NUMBER -TION AMPS IvlAX.(lM)MAX.
aVAIL.
LLOWhGj.
uORT TIME FOR CURRENT (ENETR<
PRIL/IQR ~
gp pRIPIAR CLEARI TICKS SECONDS 5M:W Up CLfARINCj TIME'S ECCND9 CKT. TTPC REMA~
CG-IB AE. IO I
CE-I Cf I1
<2 AwCz 2I PIN
<<2A~
2i PiN AK<
diG SNLP
+
TWISTED IOO PRS<
~II@,
28SI~LD.
IPO QUAOS dB ABACI
+
QO PIN l400 V.>x(OT 23XI0 290xio~
290xio~
I.05XI0 9S
'2IO A CONT.
12
.050 CONT.
'2C 0 I5.5 es 9.c ~
.25 5OA AMP Fuse
.i8
.OI8 BUSSIvI FU9E
.0004 2432B59 l50&MP.G7~
FUDE
'22G AMP 1RA SUMAC
.0043
~xao POWER TO LIFT COIL LOW VOLTAGE PowER 4% VOLTS LOW VOLTA' IgC LOW VOLTQGE roc ROD DRIVE CKT.
XEO 4 R.C vCRTKR CURRY I IMITEO TO 5O MA.
NO SNORT CONOITION XSORO 4'd 4 R C COMVGI=ITCH CLIRRCruT LlgiTGO
~ MIvIANO S~T C~KT.
~~OI IOm~~
Z I 0 Ijj I- $
cp 3 (f If)
I-,e}-
Za'Ud Q..v U If) jj'.I-g
~ I-0 Q.
0
<<8 AWCI CHOPIN I400 j.Mxitf'0 5500
.084
.OI8 5OP200
.002 LOW VOLT~F POWC.R.
CKT.
C dd dd
~MCI 4 CC..2i op~
44m exio~
520 20 KA 5.25 25C
.045 IBB LOW VOLTAGE POWER Cm5
$ o vd dv CE.25 Cf -'27
- I50VCM Q PiN GSKR '28xiOs 450 5G.8 XA 2.0 (Bi)
I IA
.OI6 (I0)
'IO AwC
+
I44 PiN ii250 42ixio~
I.I7 ruSC, 2
.Oi4.
FuX 4 700 I25 V~C PWR.
CKT; BCvCI< UP FUSE WILLRESPOND iN ~ 7OO SECOND>
t v ~
d0 0
I2CAOLE.
I <<+
CE-8 'RQXlhL 8at O~
iO iA CONT.
Qg Q~
Qs Os Qn Qii Qa PowGW R~CE DETECTOR.
6>
@OWE% LIMIT%
TQ LESS 'TkAN 2 WATT> EaVIP W
LP C&l
.. QI4 z0
'hI III DETERMINED GY TEST' DETERMINE,O BY..ANELY9I5...
CLIRRE'4 T BALANCED TO"..PROVIDE ZERO NET E,XTERNAt tvtGETS TI-IE GuORT C<T.DIRECTIVES CF ICPE SI7 FORCE.
%<I <Qo C
<<v
h
~
I,
/
k l
I'
Appendix A Block Diagrams Circuit No.
CE 18 Sheet AE 6
AE 10 CE 1
CE 17 AE 5
10
~
~
C g 0 ZZ ag C BACK /J.P WGV)CQ PRicn~QQ
'tom~cEs OUNCE ttoC qoruTAlHeel E'r4<
I IA'Sl~
C~TP i~rncPlT I
I I
I I
I 4 j ty Z g Q I
4 02 ru~C
/50 4 Fume'OA.
(~)
Fuse 5CA CG I3 CON< lOVC/l I1ON 80 TO QINT Col LS 0
D D ZV F<<sC p,soy/so PrnI
'TQAP I=og.rA IoI c oo voCf
'T~ ClC/l,RING',2 K IO Fuse cu.k.vE'~ x 5o AMP MRhT Foklv7 IoI Goo yoI+
XZC Cer=sgloe z 34OO FA<<a.T F'ENETRAll(Pl g go Awpg
~Z6
= 2.3 x
/o'~>>
2 lOA 4 9.I/ ~<c.
I I
I I
I J
g LI
- I-t g Z 0 Z
8 lL0 Z
g D 0
Z0 Vl WL' 00
~ Y bi
o&T'S tWE CGNl'P INAIg+T I
INSib e-QCN.rP,I rIfnFNT I
I pCNETCA71ON AE(o 48O V I-3-Q
~9 coNr-isuehl Inrun X~/= $.3 xlO 6rnn> -. P3 MC ~
I I
I I
I I
le, T<AP4S.
<< Ib
~ALIT 0
Y W
~ 0 0
70 7
7 0 0
J g hl I-g 7 0 0O0 Y z
6 K0
~
~
~
~
E
o4~% IlOC CoNTA INWIT~+
I I
INSI+g I
COaze Ie NIg eq I
I I
I I
Q.4I 0Z Cb-IQ gAC.Y CvC5 - 0 TN I
gg'/(A@4 C<CRtIVT LIrnIYf.h 1'0 r~Q CONFI5CIIL/ITIQpl "Ir S rg PARIS f Gap %5 g4~ '.V)o X lo f>>*~ w Cgg I q %%6cl. a I
I Z~C - CLT
'To RTb-Tg iud)
FBI 7 5O red J
g td I
I ZO Z
g 0 0
0 I
NO C,GRAVC PFAU.I<66
C g 0 Zz w C E
eo 4
g Z g hl tL I~
0Z CE-I 0U 0 0
~ D Z0
)
TO Sa vnQ FAtJ,LT 5a rnp, J
< II
- I I-g z 0 Z
6 K0 Z
0 Z0 lh III P.
If Z
000
~ Y
~
~
g 0 Z ~
w C M
0 I
II.
4J 0Z Aha V Fu~ <
8o 4, (05o v)
(<
Cl Z0 Z>{-. = gg FAG.L~
240A Z
C ~
0 Jg hl I-g Z 0 Z0 N
UI R
0iI 0
~ Y bJ g
~
~
I k
g 0 z~
w C ghClf.4p FV,'Eg.
04l'Slg+
CoN TA(ncYIE~T I
I N'S<~
QON V~IN Al+~7 I
I I
I lQ L J
t0 Z
8uS Iq.7D EA.
see.
e~8.
CuCQENT Li~<Y<td~
F~i~ C Aron moo 30, ooo PHL IC ~
8~6(4A)
T'Ipr=-
HFA 4OA 0 - I -'9 A,E'-5 GOI IN V COZFeuQATill
'7~4
=
FAULT 35YA 6Qouo
>BEGS, H E'AY 0
0 Y
~
Cl ZV C,LCA'8I>G Tin)p Z
g Cl 0
QuOA PIC'
. ooQ SCC.
Bi>K. Cg J
g Il I
I-g Z0 z
6 R0 z0 N
LU E
000 Y L'
Ul g
~
~
~
~
z 00 zz f
33KA I
I OCCTSIzoC 1
I H~QC CoM fO'INMFN'T I
CCN I'AINMQNT i
I I
0 z0 ~
z V
bl o 0 Vl Z Bu.R i4 CE-PI C0IVT, AIR, (Ive) bN IT ABC CC eFISORPWI0N CLEhRIH6 -I lmt";
gl,r;~O.INC> 1 >n>r
.M~ Sec'.
CIIc VC
~"
C.7.2I Oa.
$>aV I 3-gOO I
S'6
~ I8 x lo 4.~'
3.w5 x~.
I I
I COCCI QC.
FAfg I A Fhuly 40 gA J
g hl I-g z 0 Z
6 R0 z
g Cl 0
Z0 Ia bl 0'.
000
~ Y Ill g
0
a g 0 zz ag C 4otb, FAun'ueezNT P 3P NET'A I C At Oned.u.P P R<a)hgif OU;TSr~
co% TA IhLlY)gN f
~-SC/ISO MrA I
I IHQ<tOE I
Carrel imm8'~>
I I
I I
Po's ttA,~>t=&
74 i3ot.'TEh, FAtJt:t Pz mowoR ag Z g hl I
Aly 0Z
~> /IIA
()o) 4ltr Vol l5 Ct.t'AR~HG 'ri~E
~ I 7 'sec.
~a/ZCV Ih
('5) at@.O 'VeaS BtLS II@,
C t.GAC<e Ci l'~ n'>C
.ate see.,
CE -zs Co&&such>rot-1 Pt:NET. 9-rioN I
I cC -41 eoH( vbPA viof4 C ooo HP KCP Ih A uLT P(n.> Kn 0
Y ~
~ 0 0
z0 z
g Cl 0
r I
tuV Crr r'Q Rt'P ]4-g Pt=-&C=TQp,-I>oe
- I."Q = PN x IO" t-~n~ '"-<
I I
I I.
Jg tu I
z 0 Z
6 L0 Z0 N
UI tL
.C lal z
000 X L'
g 0 W g Id g rI5
~
~
SCCTioW ~ I niniN r-usC
- che, le Puss 4-SECT (ON 4 g rrig<M Cu.>E C>8. te wc. war PA L,.
OLCT~ l~Z Cog t AtH&g~
&G. lT6, f lo c~ P-tGu.CA'Tt~
I I
>nS AoZ
<o&TAiH KE& f I
I I
l I
0 Cl ZV Z
0 02 fA U
rnp,>N A.a5C taboo A~<-
'goo cunP S tlg<ern~n-5mfi Topi/Q I ilig 3
h LV 4'gCQQtbl8 a <rnid,3 2
.ol4
'S eConr-4 loe a geCenDS PQA p ~p 8 ilA<nrncCT A'
Bo Emir
= l. l7 OCC.
I I
l l
J g Ll
- I-I K 0 2
6 IL' 20 N
bl E
000X bl g
Ul g L
5)
'I
~
~
~
'fr'i I
h v
gi'
CO~rrg u gP><Z0) 0 vi w
m I0 Pc%< fR'AvI0+
DoO O&W(.
I I
I
)
Z Cl 0
J
< M I
l g 0 Z
0 0:
0 0
Z gO N
4)
K C
Z 0.K0U0 X Jhl
Appendix B
Characteristic Curves 2.
G22102 Identification 1.
RCP1A-1 Circuit No.
CE-25, 27 AE-6 3.
Case Shawmut A50P FORMIOI AMP-TRAP AE-5 4
5.
6.
BUSSMANN FBX 10 AMP 250V FA MOLDED CASE BKR.
40A (548103)
Case Shawmut A60X FORM 101 AMP TRAP CE-17 AE-5 CE-17 CE-18 7.
Case Shawmut A2X 400 FORM 101 CE-23
~
~
~
~
I rh~f'~
4 gh I-7l f
""~
4
~'
EI
~4
. +'.
t." I";
~,.t ",. j I t ) ')
~I.'f,',.I
~jt I
t I
~
4
/
~ I I '1
~ s t'
'=l ll sI 4
I N'
I t
I:I=his+~:4W
~tefj@A I
rr
.I'I sfr Hi!hf" LE" ff I
l>>f UI 7: ->>
It*
~I t n g
'I h
I I
~a I11>>
apt
>>1 tt4 Ifa r
h s
I
~ ls t
14 ltl h
ls h
h hrsrltss E
E 5
5
$ scpg CUlUlENT IN AblpfRES 7f>>jQ REACTOR COOLANP...PUMP....XA.......,....... TESIE.CURRENT CHARACIERlSIIC CURVES PHASE PROTECTION
, CIIIIIASTATION.
BASIS FOR DATAStandards........---
..............................Dated I. Teltsrnadsa.....,..............
volts~at.. -..-
.............Pl starttnsat2scwitbnotatsaltoad
Ão Bcpl'..
2.
Center are ploued to -.........................,..Test points so rsrtstions sboetd be.......,..........
Date rfhc.cvnnchr as 5251"~~so
~eh BuS 11A od kv-~>eo'~~tens~~
~ 11 TranS "O>> 19 kV/4 kV 3000/5 CT's 1200/5 19 kv O.C.
Sta.
13
'" 3/7/79
'*~
'O-8 Model
$ 1875267A 4/12 AMP '1/11T CO-8 Model 81875267A Reactor Cooling Pump IA 51/11A 12 AMP tt TLS 4/12 AMP 4 kV 6000 H P, CO-B Model 81875265A
.5/2.5 AMP 10A - 3 TLS 1200/5 CT's 5IN/11A 0.5 AMP - II TLS COM-5 Model ll2898355A12 51 - 2/6 AMP 4.
AMP 8 TLS SON 20/80 AMP 35 AMP 50L 4/8 AMP 5 AMP
'I
>>h ~t, h
l
I ~
~
~
4 l
l' I ~
~
~
~
t '4 Itsi.t t
IN ls N
II 4
- ~
~ ~ I. ~
t;-F ~
t '
~
I I I 44 It littd t "r'r' t I RRENT IN lt'IB I
4 r tf f
N-
~'
II 5
$ 55$ N
+-
f P
f
~
~
3 11!I.
~. f'
.k.ss!4
.EI I lth 4i. "l I,if
~
I r.
'4 I Ft f
II
~.
r fa I K~
'- i-4 r+4 ~
Ehr
,.Is;it tt tt
's
~
H-+I'N:
P F
I lt ty 44I
'BuS ho,,l t!I*hiI T rttfh...
4
-'SOO/tOOOK.IIA TCAPISF.
DI,I3,
-4 143=4'30' Bc'I IIIIf,='I L s.l 4 N
f CISPFl
~. APIEE "4
'F
. LXO. ~SF<~l E2>>
its) ~
- L~C) STeF ISICC'IC YC4 tA:r IP 7 flol5Q )Yr
. '~Y -<":. I" I
~I
.-g3C-248%0, tf ~
2 J
4 AI sl I
I 1 III~
Is N rs ss>> g I I I I IIII CURRENT IN AMPERES
.=.....,......... TIME CVRRF'VF CHARACTERISllC CVRVES F
'BASIS FOR DATA'Staodards~~~~X~
~.
'attd I
Tests tffade at Velts~ at p lu Statttag at 2$ C fttth IIO Iaisat lead NO e
- ~..
~ ~t l dog>40 N 2
Curses are piotted Io,..... =.. '...-.--"I-"........Test polnts so ealtaSeos shouldbe,......,
Date
..4)..IE... 19.
risc-cuoosNT os 5257 H ~
cNARAcrsolsrfc
~ tt tt ~ ~ 4, Eeutrta ~ E ~'IIACo MCB Molded case BKR HFA-40 600 V.
3 pole 4
r ".
tttdt Il 4~ tftfstllpts BUS NO.
14 14 14 CELL NO.
BREAKER TYPE 18BIC DB-75 22C DB-50 23C DB-50 CONTINUOUS CURRFNT RATING AMPERFS PICK UP IN AMIsERES LONG DELAY SHORT DELAY 3000 400 500 3000 12,000 350 3000 425 480 V. BREAKER TRIP SETTINGS INST.
4000 70 30 20 30 622102 6
622102 4>> 622102 TIME DELAY LONG SIIORT DELAY DEIAY (SEC)
(CYCLFS)
CURVE 4
~
~
XIMUM PEAK LET-THRU CURRT 500 VOLT FORM IOI AMP-TRAP
<<ww
~w
~w sw
~w ssl ww sss
<<w
<<w
<<w
<<W I
<<w I
ss/
CL 0
<< ICio Y
0 w
s/l 0
sss w
I 2
~ >> ssl l I I lttt}j I
) I j!1st I l jttttt I
AVAILABLECURRENT RMS SYMMETRICAL AMPERES Rot to 9 (Amps)
Cold Ohms Hot Ohms RESISTANCE OF A50P FORM IOI AMP-TRAP FUSES CLEARING I 2T CURVES A50P FORM IOI AMP-TRAP 35 40 50 60 70 80 90 Iao 125 ISO 200 250 300 350
- 400, 500 600 800 IOOO I200 I400 I600
.00400
.00332
.00276
.00225
.002 I 2
.OOI88
.Oat ob
.OOI45
.OOI20
.OOI 03
.00775
.000620
.000532
.000457
.000375
.000270
.000220
.OOOIbo
.OOOI33
.OOOI07
.000094
.000080
.00550
.00450
.00360
.00300
.00256
.00225
.0020 I
.aot7z
.00 I40
.OOI I7
.00875
.0007 I0
.000585
.000505
.000438
.000350
.000266
.000202
.OOOI 69
.000I34
.OOOI23
.Oaotoz I/l C)2:p lokw O
I/w sgs s
~ s ~
s ssssl I I IIIIII I I I 3 Itlttf A50P AMP-TRAP RATING IH AMPERES
<<5
~as
~
~
~
~
f
't
I t and I iWR 8%Si'ARt 250 VOLT 2
p 10 ALLa SEi.llCOIJDKTOR FUaE Available Current 2500 Amp 10 000,",ap 105 000 Cap FBX 10 Z t
. 15 35 38 Xp 70 460 810
~I 4
c~
fi
fear r
. ~.5 O.$
5 7
4 7
S 7
~
5
~ OI~
CCRRKÃT I:I Ab}PCRL5 7$
aa tsar ts ~ Ola 4
~as I
~
44 1
C 1'1 4 ~
it<'
1 tre"I l w I
.Lra 1
~
~
~
L
~
~ '
~
~
~'
'vs vvI L}1 t J}L5 M 'T ~
,l tl 1 rt J
I I ~
'IJ tl >>
'I
'I i.
~ 1 'I ~
L44'
} f'f T
Tl I
~ - ~ rl ~ 'tr
~
all '
1
>II!hT -I. <<l~.
hh a 5 IO
~I-1, tva
~ 1 La 4
(r th, ns.
I,<isl aa 4L I
~
I
>><I ~
at rt srl 1 ~
~ L<
I=:
-I5-'=-j sl LI I
~
4 hrrr 1
5 I'I...II w... ti. Lh
.h..r till.l"-- LI I I'7 4 il
< ~
~
ara'
~
~
Ias
~l
~s
~ 1 ~
~ ~ ~ 4 II' Llvo>>
~
<L'r ltl
- 'phd'=I
~
~
~4I '1
~
L<V4}1 t td h<t<<
M
~
<r ~
I
~
~
~
si Il i
- r I-fills
~
~
v haw<
IL!.-
>>" ~ ~
~ ~ a I
5$
ls
'"1 "lt a
'Lair Vt hf<
I.-+3=+
t 4 h
c
~
4
,Rva s r}
i~ I \\4 ~ <1
+5 1
1 'Vh I~
= LJLI
'l'ah 1
1 4 I~
dial-J:i
~
1 L<r'Li
~ 1 1 'l Lr 1. Ii...pLL.'<.
'1 4th h 1 I
~
1
~ 1st II' v IL llIi
<}<os
~'\\
~ r ~ ~ 1 ~
~
4 ~
st 'l.:I lt ~
1 4".TI
~
~ r 1
V
~
7 ra 7
$$ } a
<< atv taDO rr
~
~
t C<
hr
~ 4 I<
t to Ir,ttft
-LI t
L 4 ~
al
~
4 I
LI J-5<<
5 I
~ 11, t
~
et'rl I
~
.="! '- =I
~ l
~
1
~ ~
~
'\\I
.'5 I ada
~ ~
41
~4 r
~r
~
~rrr 44 ~
LT I I'I t ~t ~'fa
- }"~
~ ~
I 4
.~ '
'I
~
r',4
~ ~
1 ~ 1< ~ ~
~ t
~
~
~"
~
a 1 1r
~ 1
~
'w' a O' iv) '.
rlttllta< r 5'I
~
~
.d itis
". 'I
~. ~
~
al 1 ~
~ '
~
~ I I
~ I I
I I.!!
Ja
~ '<
- 11 v 'o
<sr' 1
ra>>
~
<11 5
L 4'1
'1 4 fs M>>
<~ 1 '<<
a<S rili
~ '<
~ '4
~
~1
!IILOI ss 1 rd II<
I wi la I arrl ri<L l LL L a.11
'4't Js
~
~
S 5 I OI~
ia Ss aa tsllsa4 4
4 g g
~
R R
4 CIIRRTMIN AMP~~
4 4
R ~
$ 5 A't}'ERAGK.".....MEjT!NG....TIMT.CIIRRZNTQIARACTUI}5TICCuRVE5 BUSShVWN thFG.
DIV}SION for.F9X..lPEMICONDUCTOR..,FIJSE.p5Q p f<tac <<V<I Ih ri Ct
~lts C
ptt IVV<I,Ho. d3107 8A5}5fOR DATA 5Lhdatds...,.............
D Ild......
l, Ters toads al.....
Volts>>cat........
5LI,5tarrb<g al AC 4<it}.ho ahidal load..'.
Ão........-..".--h. ~
2 Carrel rrc cloned to..
Tnt 5<oiala so Tu4}ieoa lboutdIts<.........
~
Date J>>..
~ '
~
4 9 I 7
~
a'*I
~
II ~
~
f
'I
~ g I y'"q I l
I v
h
~,
AM(CERES 10 6000
~ ~
~
~
111
~<<
6000 SOOO
!f
~ I I
~ ~ t
~ !
1 ~ ~
~
4 r ~
>>I 4'lil I'll (Lit 78 ill t ~
i=c 4000 3000 4
~ ~ 4 I:C.
4
~f
~ ~ t ~
It!<<
'jest
~ t
~fi't' 4.
t
~ <<
<<t47tt Jo t<<4 hi;
!Ci
~ti
't I
I!
i 1000 f,
~
900 703
>>t
~ fft 4
~
~ 4
~ <<
~lt tt ~
~ ~
4! 44
'00 90 60 10 Iif 9
8 6
V S
Ql 6
Z 3
co
.9
.6
.7
.6 07 009 007 006 OOS 002 OOC 0009 OCN6 0007 0006 OOOS 0003 0.002 0 001 fo
'Jt!
(( j!
4
~t
~ 4!
l:II'
~
ll~
~ 4 1:tt 1<<l I
~
I ~
4
!~ ~
~I
>>'I lff.
I: Ijijj=f
<,~~%,
1<<l
~
~
~
4
~ f
+.,f 4
t
~ J
~
~
n" I I Nl, Iii
~
4
~
- ~
~
Jrf ff f
~ t C--I
~ 4 ~ t 1(f(
fttt >>!
tftf fft!
">>t
~r tf<<t
<<- ~
~ ~
~ ~ $
<<-7
~ 4f4 t
4 t ttf
~
~
~t>>
414>>>>1
!I<<jI ~ 4 4 I;
44
~4<<
k<<+1
~ t
<<~ 7 1<<
7 4
t>>
~ 4 1
~r
~ f
~
fP;.
Ir<<
~t 4<<
I>>
14 4
1
=4 AC
--- :-:====@WhoBT t
~
~
1 14t I
?
(4>>
~I
~
~
~ t
~t t ~
44 ICJI IHt 14 fH
~ tr
~ ttt 0
I 30 40 SO 60 70 6090 g 3
g 8
g g
P 8 3 STINGHOltSE ELECTRI AB DE-ION BREAKERS - TYPE PA THERMAL MAGNETIC 600 VAC 250 VDC 2 Pole 40 A7ccp.
S(t368D451G04 Cat.
No. FA2040 600 VAC 3 Pole 40 Aacp.
Sit!368D451020 Cat.
No.
FA3040 CURVES BASED ON AMBIENT TEMP. 40' COID START ev DATE~~P Att DATE owa 44a sHEET 44a RE@
~.
100 70 SO 60 6
0 9
8 6
C.O9
.75 07009 a07 a007
< ~
l I
A I
1
- g I
\\,
~
~
V
~
1/
C gP sX f
Fa 4
1 1
/
~>
gT 7g I~
I
~
l~
~
OUTRE DIMENSIONS 600 VOLT FORIYI IOI AMP-TRAP RC+.
QE-(7 CE-i'R FIG. I - TYPE I 0
))
FIG.
2
T Y P E 4
FI G. 3 A60X A602
'I I
4 IOz I
NCI IO V Z a Z'
IO V oC OC V
~8 V o I'-600 VOLTS OR LESS I
[ELEJ FIG. 4 TYPE I28 E
E FIG. 5 TGP*
07 -I STRIAER PIN I
EXERTS UNTRIPPEO ONE POUNO S TAT)0 FORCE'NTERRUPT ING RATING I
200i000 TRIPPEO AMOS ~
32 MINIMUM P VSING CVRRENT S A MP5.APPROC.
AT,N
~
7 A
SI 130 0
I 7 I 5300 ISOO 3
2 5NAWMVT TRIGGER 5 IO 25 74
)00 IA 21 IO i5 10 I10 7)4 I 204 I )CO
) l 00 1.2 5.1 10 I IO
)IO I 104 IN)0
~IOO I200 2.4 I CO I74 215
$500 7141 S)CO I.S ~ I0' 0
I M
E N
5 I
0 N
. 51 7.
FIG.
CATALOG NO.
TYPE TAP 1.4 I ~
I A60X I-30 2
A60X 35" 60 A60X 65-IOO 3
A60X I25 200 4
3 A60X 225-400 4
3 A60X 450-600 4
3 A60 X 700 800 4
4 A60X 700-800 I28 5
A60X IOOO"I200 I28 4 3/4 4 I3/32 4 I3/32 5 '/4 5 I/O 7 I/O 32)/)2 3 21/32 4 I/Id 4 I/Id 5 I/O 3 3/4 3 3/4 l3/l6 2 ')/I 2 29/32 2 29/3 2 7/4 2 7/4 3 I/2 13/)6 I 7/32 I I/2 2 I/2 2 I/2 I/4 23/32 I/4 3/I 3/16 I
I/I I
I/O I I/2 3/4 3/4 3/4 II/32 5/I6 5/Id
~)3/32 13/32 I 7/32 39/60 3/4 20 1/2 pep 3/4 20 I/2 0'
)I 72 III l00 Il l)0 110
)IO
)IO IIO
)IO 710 l200 OIO ICOO
)COO
~ IO 5
A60X 2600-2000
) 28 4
3 3/4 4)/2 I/2 20 I/2 0 ~ Ip J
IOI 7
MELTING TIME-CURRENT CHARACTERISTICS (A60XI
<<< <<<<<<<<<<<<<<<<<<o<<<
<<<<~<8~~
<<<o ev e ow o
<no oooo 8 8
8 8 8Pi8 EI EI88 25es HI IO 0
1 5
I.I A
.1 A
Vlo 0
.I z
V Z
~IIE I
I
.0
.1 4
~I AI XII Al
~
5 I 1
~ 0 lo 10
)I IO lo)01014)0)00 8
8 5I tI 2I @gpss II II II II II mIIIIII II ils'ct N
a CURRENT IN AMPERES
l" I
0 I
4>
n II c
~ I
FORM 600 AMP-TRAP FUSE MELTING TIME-CURRENT CURVES A6YI-30 TYPE 2 (600 VOLTS)
FORM 600 AMP-TRAP FUSE MELTING TIME-CURRENT CURVES A2Y OR A6YI-600 TYPES I, 3, 4 OR 5 (250 OR 600 VOLTS)
A6Y650-2000 TYPES 4 OR 5 600 VOLTS) 8Z00 Z
I IIOO
~00
~00 IIO
~RO 000 ISO
~0
I 0
I AJ A
1 ~
- i. 4 I'l t<<
I lt I
}1
!i' 1 ~
ill O RR\\ O I<<l OO eS Rj tt t O t q<<p I
I i$ttt r
tt I
H.Y a ~dli tfh I000
~00 000 700
~00 000
~00 0/0 CiZ00 l/l Z
I I
A AJ A
L4 g~<<R
'1 i IO 1
I<<
5.
,I
.0, 7't gtt ',
":> Q~Y t Pg r
0 1
<<ggi4 1 ~
II'4) it. tl 1
'I ttti
!IP I"
(jt(
It I,)l Il tl I:
1 4
~tL tt <<AJ ttl StS I. I
'ilats j},t
)t
)'(I}1,$ fitly
-'- -) l (I':~;.
TI Ii I
.I Ai AI AI AI AI
<< ~
'i".I Li 2'<<<<<<a CURRENT IN AMPERES Qt' t
.I Ai Al AS Al Al Al I'4
'A if 1
~
I, Il It II y t}HPII, II II II II IIIIIIIIII g i CURRENT IN AMPERES
~
Y
~
Appendix C
Crouse Hinds Drawings/Numbers 0100350 0100044 0100251 0100252 0100253 0100254 0100259 0100261 0100308 0100314 0100334 0100342 0100411 0100416 0100696 Sheets 1 through 3
Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 2
Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Westinghouse Drawings E 2802 Rev.
C E 2850 Rev.
B