ML15190A267
| ML15190A267 | |
| Person / Time | |
|---|---|
| Site: | Palisades |
| Issue date: | 04/03/2015 |
| From: | Wong W Structural Integrity Associates |
| To: | Office of Nuclear Reactor Regulation |
| Shared Package | |
| ML15190A274 | List: |
| References | |
| 10426669, 1400669 1400669.320, Rev. 0 | |
| Download: ML15190A267 (22) | |
Text
Structural Integrity Associates, Inc.
File No.: 1400669.320 V
s Project No.: 1400669 CALCULATION PACKAGE Quality Program: [ Nuclear E] Commercial PROJECT NAME:
Palisades Flaw Readiness Program for 1R24 NDE Inspections CONTRACT NO.:
10426669 CLIENT:
PLANT:
Entergy Nuclear Operations, Inc.
Palisades Nuclear Plant CALCULATION TITLE:
Finite Element Model Development for the Cold Leg Drain, Spray, and Charging Nozzles Document Affected Project Manager Preparer(s) &
Revision Pages Revision Description Approval Checker(s)
Signature & Date Signatures & Date 01
- 20 Initial Issue Preparer:
A A-2 Computer Files LJ* 9
)6'-
Norman Eng Wilson Wong NE 4/3/15 WW4/3/15 Checker:
Charles Fourcade CJF 4/3/15 Gole Mukhim GSM 4/3/15 Page 1 of 20 F0306-O1R1
rSb ft1rAl Integrlty Associates, Inc.
Table of Contents 1.0 OBJECTIVE.........................................................................................................
4 2.0 TECHNICAL APPROACH......................................................................................
4 3.0 ASSUM PTION S / DESIGN INPUTS......................................................................
4 4.0 FINITE ELEM ENT M ODEL....................................................................................
5 4.1 Elem ent Type and M esh...............................................................................
5 4.2 M aterials......................................................................................................
5 4.2.1 Creep Properties...........................................................................................
5 4.3 Loads and Boundary Conditions.................................................................
6
5.0 CONCLUSION
S......................................................................................................
6 6.0 REFEREN CES........................................................................................................
7 APPENDIX A COM PUTER FILES LISTING..............................................................
A-1 File No.: 1400669.320 Revision: 0 Page 2 of 20 F0306-01R2
j S ItUra Integtfly Associates, Inc.
List of Tables Table 1: Com ponent M aterials.............................................................................................
8 Table 2: Elastic Properties for SA-516 Grade 70 (< 4" Thick)..........................................
9 Table 3: Stress-Strain Curves for SA-516 Grade 70 (5 4" Thick).....................................
10 Table 4: Elastic Properties for ER308L.............................................................................
11 Table 5: Stress-Strain Curves for ER308L........................................................................
12 Table 6: Elastic Properties for Alloy 600..........................................................................
13 Table 7: Stress-Strain Curves for Alloy 600......................................................................
14 Table 8: Elastic Properties for Alloy 82/182......................................................................
15 Table 9: Stress-Strain Curves for Alloy 82/182.................................................................
16 T able 10: C reep Properties.................................................................................................
17 List of Figures Figure 1. Finite Element Model Dimensions....................................................................
18 Figure 2. Components Included in the Finite Element Model...........................................
19 Figure 3. Isometric View of the Finite Element Model....................................................
20 File No.: 1400669.320 Revision: 0 Page 3 of 20 F0306-01R2
nowbrui latgrify Associates, Inc.
1.0 OBJECTIVE The objective of this calculation package is to document the development of a bounding finite element model for the reactor cold leg spray, drain, and charging nozzles at the Palisades Nuclear Plant, which will be used to perform residual and operational-based fracture mechanics analyses to support a subsequent fracture mechanics evaluation as part of a flaw readiness program.
2.0 TECHNICAL APPROACH One bounding three-dimensional (3-D) finite element model is developed using the ANSYS finite element analysis software package [1] to represent a group of cold leg nozzles. All three nozzles are of similar size near the forging boss area (within 1/16 inch) [2, 3, and 4]. Therefore, the largest inside diameter (1D) and smallest outside diameter (OD) of the three nozzles is chosen for the bounding model.
The spray and drain nozzles have identical nozzle and boss OD dimensions of 4-9/16 inch and 6-3/16 inch, respectively, which are slightly smaller than the charging nozzle OD dimensions of 4-5/8 inch and 6-1/4 inch. For the nozzle ID, the charging nozzle is bored out to 2-5/8 inch in the first 1.5 inch to accommodate a thermal sleeve. For conservatism, it is assumed that the entire nozzle ID is 2-5/8 inch.
The area of interest is the nozzle-to-pipe weld. The model uses elastic-plastic material properties intended for weld residual stress analysis, and elastic material properties for linear elastic analyses.
3.0 ASSUMPTIONS / DESIGN INPUTS The dimensions and material types to develop the finite element model are provided in References 2, 3, and 4 and summarized in Figure 1. The material properties are obtained from References 5 and 6. A number of assumptions were made during development of the finite element model, which are listed as follows:
Since the area of interest is the nozzle to cold leg weld, dimensional differences between nozzles on the attached piping side are considered insignificant.
" The largest inside diameter (ID) and smallest outside diameter (OD) of the three nozzles will be chosen for the bounding model. This is conservative for pressure and mechanical loads.
" The axial length of the modeled portion of the cold leg piping is arbitrarily set at 36 inches, which is sufficiently long to negate possible end effects in the region of interest.
- The ID patch weld is added after removal of the backing ring according to the weld procedure mentioned in the drawings [2, 3]. The same material of the nozzle-to-pipe weld is used for the ID patch weld.
File No.: 1400669.320 Page 4 of 20 Revision: 0 F0306-01R2
r1i 'Uno Iglrilyt Associates, Inc.
4.0 FINITE ELEMENT MODEL The model includes a local portion of the cold leg pipe and cladding, the nozzle, and the nozzle-to-pipe weld, including the ID patch weld, as shown in Figure 2. As shown in the figure, a single 900 quadrant of the nozzle penetration is modeled due to geometric symmetry. The included portion of the cold leg piping measures 36 inches longitudinally and 180 degrees circumferentially. The mesh of the finite element model is shown in Figure 3.
4.1 Element Type and Mesh The 8-node solid element (SOLID 185) in ANSYS [1] is used for the model. SOLID 185 elements support material plasticity which is suitable for residual stress and elastic plastic fracture mechanics (EPFM) analyses. The model contains adequate mesh refinement within the weld region to predict the residual stresses from welding.
4.2 Materials The material designation for the modeled components is listed in Table 1. The temperature dependent nonlinear material property values are provided in a separate calculation package [6], which are based on the 2001 Edition of the ASME Code with Addenda through 2003 [5]. The material properties are listed in Table 2 through Table 9.
4.2.1 Creep Properties Since post weld heat treatment (PWHT) will be considered in the subsequent residual stress calculation, creep properties are required. In general, creep becomes significant at temperatures above 800'F; thus, creep behavior under 800'F will not be considered in this analysis.
There are two main categories of creep: primary and secondary. The primary creep addresses the creep characteristics for a short duration at the early stages of the creep regime, while the secondary creep accounts for the creep behavior for a long duration - usually more than 10,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />. Based on this definition, the PWHT falls within the primary creep characteristics. However, primary creep rates for materials are difficult to obtain, so the conservative secondary creep rates are used since primary creep rate is typically an order of magnitude higher than that for secondary creep.
In general, the primary creep rate for the materials is governed by the equation:
dt The creep data for the SA-516 Grade 70 cold leg material is based on carbon steel material [7]. The creep data for the Alloy 82/182 and ER308L weld metals are not available, so the creep properties for their base metals are used instead. The creep data for Type 304 (for ER308L) is provided in the same reference document as the carbon steel [7], while the creep data for the Alloy 600 (for Alloy 82/182) is provided in a separate reference document [8]. All the creep strengths, a, are provided at two creep rates
[7, 8] for each temperature point.
File No.: 1400669.320 Page 5 of 20 Revision: 0 F0306-01R2
,nfr ursi Ihtgrlly Associates, WncO When creep strength is provided at two creep rates at the same temperature point, as listed in Table 10, then A and n can be calculated as follows, where subscripts 1 and 2 refer to the creep data sets 1 and 2:
dc" dt
'1 =A 0 -In; 2 =ACo2 n E2
-l-
=nIn n
= n ln 2
.*2 J k
In c2) n A-n" 1
4.3 Loads and Boundary Conditions No loads or boundary conditions of any kind are included in the finite element model in this calculation.
Specific loads and boundary conditions, appropriate to the specific analyses, will be applied in the subsequent residual and thermal/mechanical stress calculation packages.
5.0 CONCLUSION
S A bounding finite element model for the cold leg spray, drain, and charging nozzles is developed. The model will be used in subsequent weld residual stress analyses and fracture mechanics analyses. The necessary ANSYS input file names are listed in Appendix A.
File No.: 1400669.320 Revision: 0 Page 6 of 20 F0306-01R2*
jstnkral hIeurlfy Associates, IncO
6.0 REFERENCES
- 1. ANSYS Mechanical APDL and PrepPost, Release 14.5 (w/ Service Pack 1), ANSYS, Inc.,
September 2012.
- 2. Combustion Engineering Drawing E232-675-4, "Nozzle Details," SI File No. 1400669.202.
- 3. Combustion Engineering Drawing E232-676-7, "Nozzle Details," SI File No. 1400669.202.
- 4. Combustion Engineering Drawing E232-673-7, "Piping Assembly & Details," SI File No.
1400669.202.
- 5. ASME Boiler and Pressure Vessel Code,Section II, Part D - Properties, 2001 Edition with Addenda through 2003.
- 6. SI Calculation No. 0800777.307, Rev. 5, "Material Properties for Residual Stress Analyses, Including MISO Properties Up To Material Flow Stress."
- 7. "Steels for Elevated Temperature Service," United States Steel Co., 1949.
- 8. Publication SMC-027, "Inconel Alloy 600," Special Metals Corp., 2004, SI File 0800777.211.
- 9. Palisades Design Input Record, "Palisades Alloy 600 Flaw Eval DIR 3-4-15 Rev 1.pdf," SI File No. 1400669.201.
File No.: 1400669.320 Revision: 0 Page 7 of 20 F0306-01R2
$ObuaIUra l0grilty Associates, Inc/
Table 1: Component Materials Component Material References Cold Leg Piping SA-516 Grade 70
[9]
Pipe Cladding ER308L (1)
[4]
Bounding Nozzle SB-166 Bounding_______Nozzle___
(N06600, Alloy 600)(2)
[2, 3]
Weld Alloy 182
[9]
ID Patch Weld Alloy 182
[9]
Notes:
- 1. The material properties are based on equivalent Type 304 base material.
- 2. Alloy SB-166 is assumed to have the same material properties as Alloy 600.
File No.: 1400669.320 Revision: 0 Page 8 of 20 F0306-01R2
rsftaftural Iaftgdfy Associates, IncO Table 2: Elastic Properties for SA-516 Grade 70 (< 4" Thick)
Temperature Elastic Mean Thermal Thermal Specific Modulus Expansion Conductivity(2)
Heat(2)
(OF)
(xl03 ksi)
(x10-6 in/in/IF)
(Btu/min-in-0 F)
(Btu/lb-°F) 70 29.5 6.4 0.0488 0.103 500 27.3 7.3 0.0410 0.128 700 25.5 7.6 0.0369 0.138 1100 18.0 8.2 0.0290 0.171 1500 5.0 8.6 0.0218 0.198 2500 0.1 9.5 0.0014 0.204 2500.1 0
Notes:
- 1.
All values per [6].
- 2.
Density (p) = 0.283 lb/in 3 [6], assumed temperature independent.
- 3.
Poisson's Ratio (v) = 0.3 [6], assumed temperature independent.
File No.: 1400669.320 Revision: 0 Page 9 of 20 F0306-01R2.
C IStnJob raIHltltiy Associates, Inc Table 3: Stress-Strain Curves for SA-516 Grade 70 (: 4" Thick)
Temperature Strain Stress
('F)
(in/in)
(ksi) 0.00128814 38.000 0.00187809 42.000 70 0.00257329 46.000 0.00381110 50.000 0.00600383 54.000 0.00113553 31.000 0.00142679 35.875 500 0.00183954 40.750 0.00261139 45.625 0.00415246 50.500 0.00106667 27.200 0.00132412 32.550 700 0.00166876 37.900 0.00228121 43.250 0.00354341 48.600 0.00116667 21.000 0.05116163 22.125 1100 0.05915444 23.250 0.06794123 24.375 0.07755935 25.500 0.00300000 15.000 0.16717493 15.125 1500 0.16992011 15.250 0.17268761 15.375 0.17547742 15.500 0.01000000 1.000 0.10961239 1.125 2500(2) 0.12781277 1.250 0.14689940 1.375 0.16683167 1.500 Notes:
1.
2.
All values per [6].
Values at 2500'F assumed arbitrarily small values for convergence stability.
File No.: 1400669.320 Revision: 0 Page 10 of 20 F0306-01R2.
Vjjsinwirw hIft ugrlY AssociaOS, Inc@
Table 4: Elastic Properties for ER308L Temperature Elastic Mean Thermal Thermal Specific Modulus Expansion Conductivity(2)
Heat(2)
(OF)
(x10 3 ksi)
(x10-6 in/in/°F)
(Btu/min-in-°F)
(Btu/lb-°F) 70 28.3 8.5 0.0119 0.116 500 25.8 9.7 0.0151 0.131 700 24.8 10.0 0.0164 0.135 1100 22.1 10.5 0.0189 0.140 1500 18.1 10.8 0.0212 0.145 2500 0.1 11.5 0.0292 0.159 2500.1 0
Notes:
- 1.
All values per [6].
- 2.
Density (p) = 0.283 lb/in3 [6], assumed temperature independent.
- 3.
Poisson's Ratio (v) = 0.3 [6], assumed temperature independent.
File No.: 1400669.320 Revision: 0 Page 11 of 20 F0306-01RZ
C oSntral hifegdriy Associates, Inc.8 Table 5: Stress-Strain Curves for ER308L Temperature Strain Stress (OF)
(in/in)
(ksi) 0.00203180 57.500 0.02471351 61.563 70 0.03107296 65.625 0.03861377 69.688 0.04747167 73.750 0.00140089 36.143 0.00714793 40.250 500 0.01065407 44.357 0.01558289 48.464 0.02233857 52.571 0.00132488 32.857 0.00477547 37.125 700 0.00743595 41.393 0.01143777 45.661 0.01727192 49.929 0.00121913 26.943 0.00264833 30.138 1100 0.00404100 33.332 0.00634529 36.527 0.01005286 39.721 0.00117995 21.357 0.05352064 21.563 1500 0.05610492 21.768 0.05878975 21.973 0.06157807 22.179 0.01000000 1.000 0.10961239 1.125 2500 (2) 0.12781277 1.250 0.14689940 1.375 1
0.16683167 1.500 Notes:
1.
2.
All values per [6].
Values at 2500'F assumed arbitrarily small values for convergence stability.
File No.: 1400669.320 Revision: 0 Page 12 of 20 F0306-01R2
jSfVowtfura kit.grty Assocades, lie Table 6: Elastic Properties for Alloy 600 Temperature Elastic Mean Thermal Thermal Specific Modulus Expansion Conductivity(2)
Heat(2)
(OF)
(xl03 ksi)
(x10-6 in/in/°F)
(Btu/min-in-0 F)
(Btu/lb-0 F) 70 31.0 6.8 0.0119 0.108 500 29.0 7.6 0.0147 0.120 700 28.2 7.9 0.0161 0.125 1100 25.9 8.4 0.0192 0.139 1500 23.1 9.0 0.0222 0.148 2500 0.1 10.0 0.0306 0.177 2500.1 0
Notes:
- 1.
All values per [6].
- 2.
Density (p) = 0.300 lb/in3 [6], assumed temperature independent.
- 3.
Poisson's Ratio (v) = 0.29 [6], assumed temperature independent.
File No.: 1400669.320 Revision: 0 Page 13 of 20 F0306-01R2
, o grural h
rly Associates, Inc.
Table 7: Stress-Strain Curves for Alloy 600 Temperature Strain Stress (OF)
(in/in)
(ksi) 0.00157419 48.800 0.01658847 55.300 70 0.02343324 61.800 0.03212188 68.300 0.04291703 74.800 0.00152069 44.100 0.01539220 50.338 500 0.02210610 56.575 0.03072476 62.813 0.04153277 69.050 0.00152128 42.900 0.01634485 49.000 700 0.02334760 55.100 0.03227153 61.200 0.04338643 67.300 0.00155985 40.400 0.02275193 44.475 1100 0.03004563 48.550 0.03888203 52.625 0.04943592 56.700 0.00092641 21.400 0.08827666 22.475 1500 0.09785101 23.550, 0.10796967 24.625 0.11863796 25.700 0.01000000 1.000 0.10961239 1.125 2500 (2) 0.12781277 1.250 0.14689940 1.375 0.16683167 1.500 Notes:
1.
2.
All values per [6].
Values at 2500'F assumed arbitrarily small values for convergence stability.
File No.: 1400669.320 Revision: 0 Page 14 of 20 F0306-01R2
Vjjsiwhirui kIn"*lf Assocatus, Inc@
Table 8: Elastic Properties for Alloy 82/182 Elastic Mean Thermal Thermal Specific Temperature Modulus Expansion Conductivity (2)
Heat (2)
(OF)
(x101 ksi)
(xl0-6 in/in/OF)
(Btu/min-in-°F)
(Btu/lb-°F) 70 31.0 6.8 0.0119 0.108 500 29.0 7.6 0.0147 0.120 700 28.2 7.9 0.0161 0.125 1100 25.9 8.4 0.0192 0.139 1500 23.1 9.0 0.0222 0.148 2500 0.1 10.0 0.0306 0.177 2500.1 0.0 Notes:
- 1.
All values per [6].
- 2.
Density (p) = 0.300 lb/in3 [6], assumed temperature independent.
- 3.
Poisson's Ratio (v) = 0.29 [6], assumed temperature independent.
File No.: 1400669.320 Revision: 0 Page 15 of 20 F0306-01R2
Vftchralu Igr/Qy Assacidtes, Inc.
Table 9: Stress-Strain Curves for Alloy 82/182 Temperature Strain Stress
('F)
(in/in)
(ksi) 0.00179032 55.500 0.03456710 60.113 70 0.04292837 64.725 0.05257245 69.338 0.06359421 73.950 0.00164483 47.700 0.02976152 52.313 500 0.03809895 56.925 0.04790379 61.538 0.05929946 66.150 0.00159574 45.000 0.02849157 49.538 700 0.03680454 54.075 0.04663682 58.613 0.05812078 63.150 0.00159073 41.200 0.03568855 44.488 1100 0.04402702 47.775 0.05360088 51.063 0.06449835 54.350 0.00106494 24.600 0.11812735 25.325 1500 0.12540227 26.050 0.13290814 26.775 0.14064577 27.500 0.01000000 1.000 0.10961239 1.125 2500(2) 0.12781277 1.250 0.14689940 1.375 0.16683167 1.500 Notes:
1.
2.
All values per [6].
Values at 2500'F assumed arbitrarily small values for convergence stability.
File No.: 1400669.320 Revision: 0 Page 16 of 20 F0306-01R2
$sn awrlyu Iue grify Associates, IncO Table 10: Creep Properties Temperature Creep Strength (ksi)
A Material (OF)
(.012r(ksi.hr)
(
(0.0001%/hr)
(0.00001%/hr)
SA-516 Gr.
800 19.0 12.4 1.26E-13 5.40 70 900 9.0 6.7 3.59E-14 7.80 (Based on 1000 3.5 2.8 2.43E-12 10.32 carbonsteel 1100 1.4 0.8 2.50E-07 4.11 per [7])
ER308L 800 33.4 25.0 7.73E-19 7.95 900 24.0 17.6 5.67E-17 7.42 (Based on Type 304 1000 17.6 11.5 1.82E-13 5.41 per [7])
1100 11.5 7.1 8.62E-12 4.77 Alloy 600 800 40.0 30.0 1.50E-19 8.00 Alloy 82/182 900 28.0 18.0 2.87E-14 5.21 (Based on 1000 12.5 6.1 3.02E-10 3.21 Alloy 600 1100 6.8 3.4 1.72E-09 3.32 per [8])
File No.: 1400669.320 Revision: 0 Page 17 of 20 F0306-01R2
It"OMWhbdly ASSOCiAts, hiaD 36"KFrom Center Line 2 5/8" I.D.
-49/16" O.D.
66 O
6 3/16" 0. D.
1 5/8" I
T T
35 11/16" 0. D.
29 11/16" I.D.
1/4" Figure 1. Finite Element Model Dimensions Note: Dimensions obtained from [2, 3, and 4].
File No.: 1400669.320 Revision: 0 Page 18 of 20 F0306-OIR2
Vobnuwrat IAlsun* Associates, In.
Figure 2. Components Included in the Finite Element Model File No.: 1400669.320 Revision: 0 Page 19 of 20 F0306-OI R2
t an " Ahm*
ASSOcia, WtDa glo Figure 3. Isometric View of the Finite Element Model (Nozzle detail shown in bottom left comer)
File No.: 1400669.320 Revision: 0 Page 20 of 20 F0306-01R2
c arombwMbep dn/.° APPENDIX A COMPUTER FILES LISTING File No.: 1400669.320 Revision: 0 Page A-I of A-2 F0306-01R2
C an"votv MOP*l Assocaft, WO File Name Description PalisadesCL.INP Input file to create base model geometry MPropMiso.INP Elastic plastic material properties inputs MatProp.xls Excel spreadsheet containing calculations of elastic-plastic material properties for residual stress analysis File No.: 1400669.320 Revision: 0 Page A-2 of A-2 F0306-01R2