ML14181A078
| ML14181A078 | |
| Person / Time | |
|---|---|
| Site: | Robinson |
| Issue date: | 06/30/2014 |
| From: | Michael Balazik Japan Lessons-Learned Division |
| To: | |
| Balazik M, NRR/JLD, 415-2856 | |
| References | |
| Download: ML14181A078 (20) | |
Text
Near-term Task Force Recommendation 2 1 Seismic Recommendation 2.1 Seismic Hazard Evaluation Duke Energy gy June 30, 2014
References for Meeting References for Meeting
- Licensee Presentation Slides - ML14181A032
- NRC Presentation Slides - ML141181A078
- Public Meeting Agenda - ML14167A164 M
ti F
db k F
(
t f fb@
)
- Meeting Feedback Form (request from mfb@nrc.gov)
- May 9, 2014, NRC letter regarding Seismic Screening and Prioritization Results for central and eastern US Licensees (ML14111A147)
- May 21, 2014, NRC memo providing preliminary staff ground motion response spectra for central and ground motion response spectra for central and eastern Licensees (ML14136A126)
- Meeting Summary to be issued within 30-day
Meeting Introduction Meeting Introduction
Purpose:
support information exchange and begin dialog to have d
di f h f h i
diff common understanding of the causes of the primary differences between the preliminary NRC and licensee seismic hazard results
Background:
NRC and licensee seismic hazard require resolution
Background:
NRC and licensee seismic hazard require resolution to support a final seismic screening decision and to support related follow-on submittals Outcomes:
- Begin NRC and licensee resolution to support regulatory decisions and development of seismic risk evaluations, as decisions and development of seismic risk evaluations, as appropriate
- Establish resolution path, including timelines and identification of potential information needs
Look-ahead:
l Potential Next Steps
- NRC will consider the meeting information NRC will consider the meeting information
- Potential paths:
Li b it l
t l i f ti b
d
- Licensee submits supplemental information based on public meeting dialog NRC staff issues a request for information
- NRC staff issues a request for information
- Licensee sends a revision or supplement to the seismic hazard report seismic hazard report
- NRC completes screening review and issues th fi l
i d t i
ti l tt the final screening determination letter
R 2.1-Seismic Hazard Analysis H.B. Robinson NPP Vladimir Graizer Sarah Tabatabai Sarah Tabatabai June 30, 2014 5
6
1 60 HB Robinson GMRS 1.40 1.60 GMRS Duke SSE appl 1.00 1.20 NRC GMRS NRC Preliminary 0.60 0.80 SA (g) 0 20 0.40 S
0.00 0.20 0.1 1
10 100 Freq enc H
7 Frequency, Hz Preliminary run was performed without kappa.
Primary Differences Primary Differences
- Thickness of Alluvium layer
- NRC Vs profiles based on regional
- NRC Vs profiles based on regional measurements of Middendorf formation
- Large epistemic uncertainty in Licensees Vs
- Large epistemic uncertainty in Licensee s Vs profiles
- Basis for P3 shear wave velocities?
Basis for P3 shear wave velocities?
- Use of EPRI Rock (M3) for Lower Base Case Velocity Profile (P2)
Velocity Profile (P2) 8
Revision of Source Model Revision of Source Model
- 50.54(f) letter specified use of CEUS-SSC model without need for site specific geologic investigations without need for site specific geologic investigations
- Section 2.2 of SPID states that use of CEUS-SSC as published is appropriate published is appropriate
- CEUS-SSC conducted as Level 3 SSHAC process and endorsed by NRC endorsed by NRC
- Per NUREG-2117 update of SSHAC 3 would need to be performed as formal SSHAC process and require be performed as formal SSHAC process and require subsequent NRC review
- NRC unable to evaluate impact of update without p
p rock hazard curves for Robinson 9
Site Location: Southwest shore of Lake Robinson in northwest Darlington County, South Carolina 10
Comparison of Site Response Profiles H.B. Robinson Control Point Depth to Shear-Wave Velocity Reference G/Gmax and Damping Licensee NRC Staff Licensee NRC Staff Licensee NRC Staff Ground Ground 460 ft 460 ft Alluvium Alluvium (EPRI Surface; above
- 1) 56 ft
- Alluvium, surface above
- 1) 30 ft
- Alluvium, (randomiz ed +-93 ft)
(randomiz ed with Sig=0.2)
(M1=EPRI Soil, M2=Peninsular, M3=EPRI Soil; equally Soil and Peninsular; equally weighted);
Middendorf Fm
- 2) 404 ft Middendorf Fm.,
- 3) Pre-
- 2) 430 ft Middendorf Fm.,
- 3) Pre-weighted);
Middendorf Fm (M1=EPRI Soil, M2=Peninsular, (EPRI Soil, and Peninsular; equally weighted);
Total kappa =
Cambrian crystalline rock Cambrian crystalline rock M3=EPRI Rock; equally weighted);
Hard rock kappa 0.0145 s.
Hard rock kappa =
0.006 s
= 0.006 s Control point defined at the top of alluvium FSAR Appendix 2.5E, letter from Dr. Housner)
Licensee considered the following modifications from MACTEC (URS, 2012):
All i l l i 56 ft i t
d f 30 ft (
ifi d i th FSAR)
Alluvial layer is 56 ft instead of 30 ft (as specified in the FSAR) 11
Vs Profile Development Vs Profile Development
- Section 2.5.4.1 (page 2.5.4-1) of UFSAR states:
(p g
)
These sediments are comprised of about 30 ft of surface alluvium over 430 ft of Middendorf formation formation
- Figure 2.5.1-2 of UFSAR also has 30 ft for alluvium layer and Vs=3600 ft/sec for the Middendorf formation
- Odum et al., 2003 estimates Vs=2840 ft/sec at 89 ft depth for Middendorf ft depth for Middendorf
- NRC assumed a factor of 1.29 for epistemic uncertainty to develop base case profiles y
p p
12
Site Profile from FSAR Table 1. S-wave velocities at H. B. Robinson NPP (from UFSAR Figure 2.5.1-2).
Depth to Bottom (ft)
Thickness (ft)
Geologic Formation Assigned S-wave velocity (ft/s)
Unit weight (pcf)
Comment
( )
(
)
30 30 Alluvium 750 125 Moderately compact alluvial sands and gravels. Developed from g
p the Middendorf Fm.
460 430 Middendorf Formation 3600 130 Sands (compact), silty and sandy clay (firm to hard), sandstone and
)
siltstone.
Piedmont Crystalline Basement 10000 170 13
0 0
2000 4000 6000 8000 10000 Shear-Wave Velocity (ft/sec)
Alluvium SCDOT Geotechnical Design Manual (2008):
Information from other sites:
100
Dense sand and gravel Vs= 650 to 1,350 ft/s 200 nt (ft) 300 w Control Poin Middendorf Fm.
(Tuscaloosa Fm.)
Tuscaloosa Fm. Vs=2840 ft/s at 89 ft (Odum et al.,
2003) 400 Depth Below 500 NRC-BC NRC-LBC 600 NRC-UBC Licensee-BC Licensee-LBC Licensee-UBC 14
Kappa Development Kappa Development
- NRC used Campbells eqn to estimate the total NRC used Campbell s eqn to estimate the total site kappa
- Using thickness of 460 ft gives kappa value of 8 5
- Using thickness of 460 ft gives kappa value of 8.5 msec for soil
- Total site kappa is 14 5 msec Total site kappa is 14.5 msec
- Effective kappa is about 11 msec (for middle base case profile) case profile) 15
Kappa check Depth (ft)
Thickness (ft)
BC Vs LBC Vs UBC Vs G2/D2 Small Strain Damping Q
Kappa BC Kappa LBC Kappa UBC G2/D2 Small Strain Damping Q
Kappa BC Kappa LBC Kappa UBC 20.00 20.00 1000 774 1292E soil 0-20 1.429 34.99 0.0006 0.0007 0.0004Pen 0-50 1.06 47.17 0.00042 0.00055 0.00033 30.00 10.00 1000 774 1292E soil 20-50 1.142 43.78 0.0002 0.0003 0.0002Pen 0-50 1.06 47.17 0.00021 0.00027 0.00016 50.00 20.00 3499 2708 4521E soil 20-50 1.142 43.78 0.0001 0.0002 0.0001Pen 0-50 1.06 47.17 0.00012 0.00016 0.00009 70.00 20.00 3509 2715 4534E soil 50-120 1 50.00 0.0001 0.0001 0.0001Pen 50-500 0.6 83.33 0.00007 0.00009 0.00005 90.00 20.00 3519 2723 4547E soil 50-120 1 50.00 0.0001 0.0001 0.0001Pen 50-500 0.6 83.33 0.00007 0.00009 0.00005 110.00 20.00 3529 2731 4560E soil 50-120 1 50.00 0.0001 0.0001 0.0001Pen 50-500 0.6 83.33 0.00007 0.00009 0.00005 120.00 10.00 3541 2741 4576E soil 50-120 1 50.00 0.0001 0.0001 0.0000Pen 50-500 0.6 83.33 0.00003 0.00004 0.00003 140.00 20.00 3541 2741 4576E soil 120-250 0.857 58.34 0.0001 0.0001 0.0001Pen 50-500 0.6 83.33 0.00007 0.00009 0.00005 190.00 50.00 3561 2756 4602E soil 120-250 0.857 58.34 0.0002 0.0003 0.0002Pen 50-500 0.6 83.33 0.00017 0.00022 0.00013 240.00 50.00 3586 2775 4634E soil 120-250 0.857 58.34 0.0002 0.0003 0.0002Pen 50-500 0.6 83.33 0.00017 0.00022 0.00013 250.00 10.00 3611 2795 4666E soil 120-250 0.857 58.34 0.0000 0.0001 0.0000Pen 50-500 0.6 83.33 0.00003 0.00004 0.00003 290.00 40.00 3611 2795 4666E soil 250-500 0.786 63.61 0.0002 0.0002 0.0001Pen 50-500 0.6 83.33 0.00013 0.00017 0.00010 340.00 50.00 3636 2814 4699E soil 250-500 0.786 63.61 0.0002 0.0003 0.0002Pen 50-500 0.6 83.33 0.00017 0.00021 0.00013 390.00 50.00 3661 2833 4731E soil 250-500 0.786 63.61 0.0002 0.0003 0.0002Pen 50-500 0.6 83.33 0.00016 0.00021 0.00013 460.00 70.00 3691 2857 4770E soil 250-500 0.786 63.61 0.0003 0.0004 0.0002Pen 50-500 0.6 83.33 0.00023 0.00029 0.00018 0.0029 0.0037 0.0022 0.0021 0.0027 0.0016 16 H (ft) =
460 Kappa "budget"
0.0145 kappa BC
0.0120 kappa LBC=
0.0113 kappa UBC=
0.0126
Comparison of Duke and NRC SAFs from Base Profiles and EPRI soil relations Profiles and EPRI soil relations.
4 50 HB_Robinson SAF 3.50 4.00 4.50 M1P M1P+sig M1P-sig Base prof, EPRI, bed sig=0.2 EPRI+sig EPRI i
2.50 3.00 n
EPRI-sig 1.00 1.50 2.00 Amplification 0.00 0.50 0.1 1
10 100 A
17 Frequency, Hz
1.60 HB Robinson GMRS 1.40 GMRS Duke SSE appl 1.00 1.20 SSE appl NRC GMRS 0 60 0.80 SA (g) 0.40 0.60 S
0.00 0.20 0 1 1
10 100 0.1 1
10 100 Frequency, Hz 18
Primary Differences Primary Differences
- Thickness of Alluvium layer
- NRC Vs profiles based on regional
- NRC Vs profiles based on regional measurements of Middendorf formation
- Large epistemic uncertainty in Licensees Vs
- Large epistemic uncertainty in Licensee s Vs profiles
- Basis for P3 shear wave velocities?
Basis for P3 shear wave velocities?
- Use of EPRI Rock (M3) for Lower Base Case Velocity Profile (P2)
Velocity Profile (P2) 19
References References H. B. Robinson Updated FSAR.
URS, 2012.
Assessment of Seismic Hazard at 34 U.S, Nuclear Plant Sites. EPRI Final Report, August 2008. 1016736.
Seismic E al ation G idance Screening Prioriti ation and Seismic Evaluation Guidance. Screening, Prioritization and Implementation Details (SPID) for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic. 2013 T
h i l R t
Technical Report.
USGS OFR 03-043. Odum J.K. et al., Near-Surface S-wave and P-wave Velocities of Primary Geological Formations on the Piedmont and Atlantic Coastal Plain of South Carolina, USA. 2003.
GEOTECHNICAL EARTHQUAKE ENGINEERING. SCDOT Geotechnical Design Manual. 2008 Manual. 2008 20